Biological and Physical Effects of Direct Hydromodification via Stream Bank Armoring

Eric Stein SCCWRP erics@sccwrp.org & Matt Cover CSU Stanislaus mcover@biology.csust an.edu

Today's Presentation

- Motivation for the study
- Study design
 ✓ Description of type of "hydromodification"
- Results

Implications and future directions

Collaborative Team

• SCCWRP – Eric Stein, Betty Fetscher, Rafi Mazor, Chris Solek

- UC Berkeley Matt Kondolf, Chris Alford, Carolina Zuri, Clare O'Reilly
- CSU Stanislaus Matt Cover, Roxana Guardado

Effect of Increased Impervious Cover

Biological Effects

• Decreases:

✓ relative abundance of Plecoptera
 ✓ richness of insect taxa
 ✓ EPT Richness

Increases:

- ✓ tolerant taxa richness
- ✓ richness of non-insects
- ✓ Chironomid dominance

Typical Management Response

Study Questions

- Is channel armoring (direct hydromodification) associated with changes in the in-stream biological community?
 - Are there mechanistic relationships that can be implied between physical or hydrologic changes and biological effects?

Do the effect propagate downstream?

- Benthic macroinvertebrates
- Stream algae
- CRAM
- Physical habitat (PHAB)
- Geomorphic assessment

Study Sites

San Gabriel River

Google"

Los Angeles River

Image U.S. Geological Surve

a SIO, NOAA, U.S. Navy, NGA, GEBCO

mage County of San Bernardino

- Big Tujunga
- W. Fork San Gabriel
- E. Fork San Gabriel
- Arroyo Seco
- Arroyo Simi
- Conejo Creek

Effects Based on CRAM

Physical Effects

	Site	%pools armored/ %pools upstream	
BH1	Big Tujunga	1.25	
BH2	W Fork San Gabriel	2.96	
BH3	E Fork San Gabriel	0.85	
BH4	Arroyo Seco	2.92	
BH5	Arroyo Simil	0.8	
BH6	Conejo Creek	0.93	

- No consistent patterns
 ✓ Site heterogeneity
- Some sites showed effects
 - ✓ More pools
 - ✓ Sediment deposition
- No downstream propagation

Sedimentation

Big Tujunga Pebble Counts

BMI Metrics Upstream vs. Impact (p value)

BMI Metrics (expected response)

SC-IBI Score (-) 40.2 / 36.4 (0.19) 1.5 / 0.5 (0.055) Coleoptera Taxa (-) EPT Taxa (-) 6.7 / 6.7 (0.50) Predator Taxa (-) 4.8 / 5.8 (0.89) % Collector Individuals (+) 80.0 / 81.0 (0.36) % Intolerant Individuals (-) 5.0 / 3.0 (0.18) % NonInsect Taxa (+) 25.8 / 23.0 (0.78) 21.3 / 25.8 (0.08) % Tolerant Taxa (+)

NMS Ordination of BMI

BMI NMS Ordination

Benthic Invertebrate Results

BMI NMS Ordination

Algae Results

No consistent patterns

- No differences in biomass
 - Increase in sediment tolerant taxa in armored reaches at some sites
- No downstream effects

Overall Conclusions

- Biological indicators showed subtle, mechanistic responses to the physical changes in channel conditions in the armored segments, where they were present
 - ✓ Lower CRAM biotic structure scores
 - ✓ More tolerant invertebrate taxa
 - ✓ Sediment tolerant algae taxa
- Site specific factors influence level of response
 - ✓ Confinement
 - ✓ Upstream inputs
- Where responses occur, they suggest a definable mechanism, but responses did not occur at all sites
 - ✓ Sedimentation → sediment tolerant taxa
- No downstream propagation

Overall Conclusions

- Biologically based assessments hold promise for monitoring and evaluation of effects of hydromodification
- Additional work is necessary to refine relationships between physical stress and biological response
- Focus on response at the functional trait level vs. the overall IBI or component metrics

Toward Flow-Ecology Models

QUESTIONS ?

Eric D. Stein erics@sccwrp.org

Matt Cover mcover@biology.csustan.edu

Physical Response of Streams

