SWAMP Bioassessment Physical Habitat (Phab)

Jim Harrington California Depart of Fish and Game Office of Spill Prevention and Response Aquatic Bioassessment Laboratory jharring@ospr.dfg.ca.gov

Review of Phab procedures Categorize type of measures

California Aquatic Bioassessment Workgroup November 9, 2011

Shawn McBride, CDFG/ABL smcbride@ospr.dfg.ca.gov

Managing a large-scale probabilistic bioassessment program

Complicating factors involved

Keys to success

Raphael Mazor Southern California Coastal Water Research Project (SCCWRP) raphaelm@sccwrp.org

Working with Phab data

Applications for Phab data

Needs for Effectively using Phab data

Rapid Biological Assessment 2007 SWAMP Procedures

Standard Operating Procedures for Collecting Benthic Macroinvertebrate Samples and Associated Physical and Chemical Data for Ambient Bioassessments in California February 2007

Collect BMIs

Measure Phab

Measure Basic Chemistry

CHANNEL DEMENTIONS ON TRANSECTS

MEASURING FLOW HABITAT TYPES

Flow Habitat Type	DESCRIPTION
Cascades	Short, high gradient drop in stream bed elevation often accompanied by boulders and considerable turbulence
Falls	High gradient drop in elevation of the stream bed associated with an abrupt change in the bedrock
Rapids	Sections of stream with swiftly flowing water and considerable surface turbulence. Rapids tend to have larger substrate sizes than riffles
Riffles	Shallow sections where the water flows over coarse stream bed particles that create mild to moderate surface turbulence; (< 0.5 m deep, > 0.3 m/s).
Runs	Long, relatively straight, low-gradient sections without flow obstructions. The stream bed is typically even and the water flows faster than it does in a pool; (> 0.5 m deep, > 0.3 m/s). A step-run is a series of runs separated by short riffles or flow obstructions that cause discontinuous breaks in slope
Glides	A section of stream with little or no turbulence, but faster velocity than pools; (< 0.5 m deep, < 0.3 m/s)
Pools	A reach of stream that is characterized by deep, low-velocity water and a smooth surface; (> 0.5 m deep, < 0.3 m/s)

Preferred Method for Discharge Measurements

Velocity Area Method

Stream Morphological Description

Average Wetted Width Average Depth Average Bankfull Width Average Bankfull Height Reach Slope and Sinuosity Stream Flow Habitats Stream Discharge

Substrate Composition and Algal Cover

						Transect Su	bstrates			
Position	Dist from LB (m)	Depth (cm)	mm/ size class	% Cobble Embed.	СРОМ	Microalgae Thickness Code	Macroalgae Attached	Macroalgae Unattached	Macrophytes	Microalgae Thickness Codes 0 = No microalgae present, Feels rough, not slimy;
Left Bank					ΡA		PAD	PAD	PAD	1 = Present but not visible, Feels slimy;
Left Center					ΡA		PAD	PAD	PAD	2 = Present and visible but <1mm; Rubbing fingers on surface produces a
Center					ΡA		PAD	PAD	PAD PAD brownish	brownish tint on them, scraping leaves visible trail.
Right Center					ΡA		PAD	PAD	PAD	3 = 1-5mm; 4 = 5-20mm;
Right Bank					ΡA		PAD	PAD	PAD	5 = >20mm; UD = Cannot determine if microalgae present,
						t measures of th ect measuremen		each particle or	one of the size	substrate too small or covered with silt (formerly Z-code). D = Dry, not assessed

Cobble Embeddedness

TR	Cobble Embed-				
Position	Dist from LB (cm)	Depth (cm)	mm/ size class	СРОМ	dedness (%)
Left Bank				ΡΑ	
Left Center				ΡΑ	
Center				ΡΑ	
Right Center				ΡΑ	
Right Bank				ΡΑ	

Additional Cobble Embeddedness Measures	1	2	3	4	5	6	7	8	9	10	11	12	13	
(carry over from transect forms if needed; measure in %)	14	15	16	17	18	19	20	21	22	23	24	25		
						S.						A	2	

Stream Substrate Composition

Average Substrate Size (mm) Percent Fines/Sand (<0.06-2 mm) Percent Gravel (2-64 mm) Percent Cobble (64-250 mm) Percent Boulders (0.25-4 m) Percent Hardpan/Bedrock (>4 m)

Stream Substrate Composition

Percent Cobble Embeddedness Percent CPOM Percent Microalagal thickness Percent Macroalagal cover Percent Macrophyte cover

MEASURING HUMAN INFLUENCE

HUMAN INFLUENCE			nt B= 50 m from				en Bank a el (recorc			annel
(circle only the closest to wetted channel)	Left Bank				Channel		Right Bank			
Walls/ Rip-rap/ Dams	Ρ	С	В	0	Υ	Ν	0	В	С	Р
Buildings	Ρ	С	В	0	Υ	Ν	0	В	С	Р
Pavement/ Cleared Lot	Ρ	С	В	0			0	В	С	Ρ
Road/ Railroad	Ρ	С	В	0	Y	Ν	0	В	С	Р
Pipes (Inlet/ Outlet)	Ρ	С	В	0	Y	Ν	0	В	С	Р
Landfill/ Trash	Ρ	С	В	0	Υ	Ν	0	В	С	Р
Park/ Lawn	Ρ	С	В	0			0	В	С	Ρ
Row Crops	Ρ	С	В	0			0	В	С	Ρ
Pasture/ Range	Ρ	С	В	0			0	В	С	Р
Logging Operations	Ρ	С	В	0			0	В	С	Ρ
Mining Activity	Ρ	С	В	0	Υ	Ν	0	В	С	Р
Vegetation Management	Ρ	С	В	0			0	В	С	Ρ
Bridges/ Abutments	Ρ	С	В	0	Υ	Ν	0	В	С	Р
Orchards/ Vineyards	Ρ	С	В	0			0	В	С	Ρ

MEASURING RIPARIAN VEGETATION

RIPARIAN VEGETATION (facing downstream)	0 = Absent (0%) 3 = Heavy (40-75%) 1 = Sparse (<10%) 4 = Very Heavy>75%) 2 = Moderate (10-40%) circle one											
Vegetation Class		Le	ft B	ank		Right Bank						
Upper Canopy (>5 m high)												
Trees and saplings >5 m high	0	1	2	3	4	0	1	2	3	4		
Lower	Lower Canopy (0.5 m-5 m high)											
All vegetation 0.5 m to 5 m	0	1	2	3	4	0	1	2	3	4		
Grou	ind C	ove	r (<0).5 n	n high)							
Woody shrubs and saplings <0.5 m	0	1	2	3	4	0	1	2	3	4		
Herbs/ grasses	0	1	2	3	4	0	1	2	3	4		
Barren, bare soil/ duff	0	1	2	3	4	0	1	2	3	4		

MEASURING HABITAT COMPLEXITY MEASURING BANK STABILITY MEASURING CANOPY COVER

INSTREAM HABITAT COMPLEXITY	0 - Absent (0%) 1 - Sparse (<10%) 2 - Moderate (10-40%) 3 - Heavy (40-75%) 4 - Very Heavy (>75%)						
Filamentous Algae	0	1	2	3	4		
Aquatic Macrophytes/ Emergent Vegetation	0	1	2	3	4		
Boulders	0	1	2	3	4		
Woody Debris >0.3 m	0	1	2	3	4		
Woody Debris <0.3 m	0	1	2	3	4		
Undercut Banks	0	1	2	3	4		
Overhang. Vegetation	0	1	2	3	4		
Live Tree Roots	0	1	2	3	4		
Artificial Structures	0	1	2	3	4		

BANK STABILITY (score zone 5m up and 5m downstream of transect between bankfull - wetted width)

Left Bank	eroded	vulnerable	stable
Right Bank	eroded	vulnerable	stable

DENSIOMETER READINGS (0-17) count covered dots								
Center Left								
Center Upstream								
Center Downstream								
Center Right								
Left Bank (optional)								
Right Bank (optional)								

Stream Habitat Characteristics

Instream Habitat Complexity Riparian Vegetation Human Disturbance Percent Bank Stability Percent Canopy Cover

AMBIENT WATER QUALITY MEASUREMENT							bidity and calibration			nal;	
Temp (°C)		pН				alinity 1g/L)		Turbidity (ntu)			A.C.
		cal. date						cal. date			100
Dissolved O ² (mg/L)		Specific. Conduct (µS/cm)				linity. ppt)		Silica (mg/L)			時であって
cal. date		cal. date			cal. date			cal. date			

Chemical Stressors Toxicity Nutrients Metals Pesticides Human Health Concerns

PREPARING AND MANAGING SAMPLING ACTIVITIES

CABW 2011 Shawn McBride, CDFG/ABL smcbride@ospr.dfg.ca.gov

152 probabilistic site visits

- •Full Physical habitat
- •Bioassessment
- •Algae
- •Chemistry
- •CRAM

Efficient sampling is necessary because?

- Large scale programs are expensive, 47 to 68% of all probabilistic project costs are field costs
- Overall project success is entirely dependent on sample collection
- Efficient sampling allows flexibility for unexpected problems or delays

Complications affecting project completion and efficiency

- Field computers
- Holding times (e.g. Chemical, Algal)
- Invasive species decontamination
- Poor site evaluation/recon techniques
- Variable environmental conditions
- Inadequate project resources

Keys to success

- •Planning and organizing
- •Setting realistic goals
- •Anticipate problems
- •Fix errors/ mistakes immediately
- •Hire capable personnel and provide comprehensive training
- •Experience counts

WORKING WITH PHAB DATA

CABW 2011 Raphael Mazor raphaelm@sccwrp.org

PHAB data is underutilized

Four major obstacles:

- Challenges in the field
 - Time consuming
 - Ambiguous conditions
 - Redundancies (esp. with CRAM)
- Data management
 - Data entry, export is challenging (see Marco Sigala's talk for SWAMP's progress)
- No framework for interpretation
 - E.g., no IBI equivalent
 - No QA
- Multiple roles/applications
 - Stressor and condition indicator

PHAB data is undervalued

- Dollar-per-datapoint, one of the cheapest tools we have.
- Enhances value of most (all?) other indicators
- Great stand-alone value too
 - Measures management endpoints
 - Describes natural variability in stream types
 - Quantifies stress
 - Assesses overall condition of habitat

- Explanatory variable (e.g., for benthic macroinvertebrates)
- Stressor indicator
- Condition indicator
 - Single-component indicator
 - Integrative indicator

• Explanatory variable (e.g., for benthic macroinvertebrates)

PHAB metrics can account for the effects of natural variability in bioassessment metrics

Slope

Stressor indicator

% moderate or heavy groundcover

PHAB metrics can characterize stressors that affect biological endpoints

Condition indicator: Single stressor

PHAB metrics can show the effects of land use and management on specific components of stream habitat condition

% Sands and Fines

• Condition indicator: Integrated assessments

Index of PHAB Integrity

PHAB metrics can be combined to provide an integrated assessment of condition.

What is needed?

Protocol refinement

- Intercalibration exercises (SWAMP, SMC) to highlight problem areas for improved training, SOP modification
- Streamlining with CRAM
- Improvements in PHAB data infrastructure:
 - Reporting tools
 - Like BMI metric calculations
 - Data entry facilitation
 - Simpler, faster, field-based tools

Interpretive framework

- QA development
- Index development
- Guidelines for analysis
- Reference data/benchmarks

What is needed?

Demonstrations!

- Fire impacts
- BMPs
- Restorations
- Etc.

We are looking for applications to demonstrate use of PHAB data for management objectives.

If you are interested in seeing your data analyzed, contact me! (raphaelm@sccwrp.org)

Thank you! Questions?