## **DNA Barcoding as Tool for Freshwater Bioassessment**

#### **Eric D. Stein**

Southern California Coastal Water Research Project Biology Department erics@sccwrp.org www.sccwrp.org

# **Today's Talk**

- What is barcoding?
- Why use barcoding for bioassessment?
- What are some of the technical challenges?
- What is the status of the application of barcoding for routine bioassessment?
- What does the future hold?

#### **Challenges of Traditional Taxonomy**





- Time required to get results
- Expense of detailed taxonomy
- Taxonomic capacity
- Unpredictable quality of specimens
- Challenges of traditional taxonomy
  - Rare and cryptic species
  - Morphology of various life stages
  - Sexual dimorphism



### **Barcoding is Part of the Solution**

Neravetrology

- Faster answers
  - Weeks vs. months

#### Less expensive

- Current barcoding costs comparable with traditional taxonomy
- Next generation sequencing costs could be 60% cheaper

#### Improved taxonomy (better data)

- Recognizing misidentifications
- Improving taxonomic keys
- Helping with difficult to ID taxa
- Supports QA programs







More robust understanding of community composition

# What is barcoding?

A DNA barcode is a short gene sequence taken from standardized portions of the genome, used to identify species.



Similar to the UPC, DNA barcodes provide a universal system of unique tags for each species.



#### **How Does Barcoding Work?**

- Collect samples
- Remove small amount of tissue
- Extract and amplify DNA
- Isolate DNA "marker"
- Compare marker to reference lit
- Identify species



## **Technical Challenges**

Sounds Simple ..... But There are Technical Challenges

Sampling

Development of a Reference Library

Efficacy of DNA Markers

Application to Environmental Monitoring

### **Sampling Challenges**

- Normal sample preservation methods don't work
- Formalin used in routine bioassessment
  DNA degradation
- High volume ethanol used in molecular biology
  - Increases brittleness of samples
  - Logistically more difficult to take in the field
  - More hazardous

Need alternative sample preservation methods

#### **Preservation Methods: Study Approach**

- Test preservatives
  - 7 different treatments
  - Volume of ethanol
  - Number of ethanol replacements
  - Addition of glycerin



- Test holding times of 1 week 12 months
- Barcode all samples to determine effect of preservation method
- Initiated Sept. 2011

### **Building the Reference Library**

- Routine barcode application depends on a robust library
  - Do barcodes match correct taxa?
  - Are barcode results consistent?
  - Do barcode sequence have correct amount of genetic variation?

#### Progress to date

- Collected approximately 5,500 freshwater invertebrates from CA
- Vouchers for all specimens barcoded to date
- Approximately 2,500 species on SAFIT list
- 258 species in BOLD  $\approx$  75% from S. CA.

#### **Relationships to Traditional Taxonomy** *Efficacy of DNA Markers*

- How does information on species and community composition vary between barcoding and traditional taxonomy?
  - What effect might this have on Indices of Biotic Integrity?
- Side-by-side comparisons of two approaches for freshwater benthic macroinvertebrates
  - Barcoding and morphology based identification
  - Vouchers for every specimen

• Incorporated into existing study on the effects of channel armoring on benthic communities.



### **Taxonomic Identification**



### **Richness Measures**



# **Results Summary**

| Таха                        | Seqs. > 420bp | Specimens | % Success | Morpho. Richness | <b>Genetic Richness</b> | % Change |
|-----------------------------|---------------|-----------|-----------|------------------|-------------------------|----------|
| Ephemeroptera               | 1203          | 1378      | 87.3%     | 15               | 18                      | 20%      |
| Diptera (Non-Chiro)         | 935           | 937       | 99.8%     | 17               | 20                      | 18%      |
| Diptera (Chironomidae)      | 1277          | 1428      | 89.4%     | 34               | 92                      | 171%     |
| Trichoptera                 | 1004          | 1059      | 94.8%     | 13               | 18                      | 38%      |
| Plecoptera                  | 13            | 13        | 100.0%    | 2                | 2                       | 0%       |
| Coleoptera                  | 40            | 40        | 100.0%    | 7                | 6                       | -14%     |
| Arachnida                   | 142           | 145       | 97.9%     | 6                | 16                      | 167%     |
| Corbicula                   | 451           | 465       | 97.0%     | 1                | 1                       | 0%       |
| Ostracods, Odonates, Snails | 12            | 13        | 92.3%     | 6                | 6                       | 0%       |
| Total                       | 5107          | 5509      | 92.7%     | 101              | 179                     | 77%      |

### **Neighbor-joining Grouping**





#### **Species Complex Resolution** *Potentially "new" or "rare" species*



#### **Match Unidentified Specimens to Existing Libraries**



#### **Near-term Applications of Barcoding**

- Improved taxonomic resolution
- Improved taxonomic keys
- Identification of cryptic species
- Resolving errors in original identification / QA
- Identification of additional species
  - Immature life stages
  - Previously undescribed taxa
  - Focused morphodiagnosis to answer specific questions
- Phylogenetic analysis
- More finely tuned biotic indices



## The Long View

#### 10-15 Year Vision

Incorporate barcoding into routine bioassessment

Faster & cheaper results

Develop and test next-generation sequencing
 Analysis of bulk environmental samples

#### Develop new applications

- Additional taxa (algae, prokaryotes, meiofauna)
- Early screening applications for invasive species, etc.
- E-DNA stressor evaluation
- Mechanistic investigations
- Phylogeny and systematics
- Yet unimagined applications







# **EXTRA SLIDES**

### **Richness Accumulation Curve**



### **Bioinformatics Tools**

#### **SCCWRP-BOL Cluster Browser**

#### Projects | Add\_Project | Search | Help

Organization: SCCWRP | Clusters: 179 | Group: Everything | Tree File: 🕻 | Temporary Master Tree: SCCWRP - Everything

| Reference ID                          | Cluster Number | Number ID's | Abundance | % Of Cluster | Max K2p % | Detail | Flags | ID List |
|---------------------------------------|----------------|-------------|-----------|--------------|-----------|--------|-------|---------|
| 10-SCCWRP-2831.1 Hydroptila           | 5              | 1           | 807       | 100.00% =>   | 0.64%     | ×.     | -     | ~~~     |
| 10-SCCWRP-0766 Baetis_tricaudatus     | 69             | 2           | 798       | 100.00% =>   | 3.64%     | ×.     | -     | ~~~     |
| 10-SCCWRP-4834 Simulium               | 68             | 1           | 555       | 100.00% =>   | 3.08%     | 1      | -     | ~~~     |
| 10-SCCWRP-6797 Corbicula              | 179            | 2           | 444       | 100.00% =>   | 0.36%     | ×.     | 1     | ~~~     |
| 10-SCCWRP-5356 Eukiefferiella         | 132            | 2           | 301       | 100.00% =>   | 3.63% 主   | 1      | -     | ~~~     |
| 10-SCCWRP-1305 Simulium               | 63             | 1           | 273       | 100.00% =>   | 3.65% 主   | ×.     | -     | ~~~     |
| 10-SCCWRP-0500.1 Serratella_micheneri | 49             | 1           | 133       | 100.00% =>   | 6.14%     | 1      | -     | ~~~     |
| 10-SCCWRP-2913 Baetis_adonis          | 70             | 2           | 122       | 100.00% =>   | 3.93% 主   | 2      | -     | ~~~     |
| 10-SCCWRP-0849 Helicopsyche           | 14             | 1           | 94        | 100.00% =>   | 0.93% 主   | 1      | -     | ~~~     |

👻 Set



### **Topics for Discussion**

- Why is SCCWRP pursuing this research line?
- What is barcoding?
- How does barcoding fit into the larger molecular biology research agenda?
- What are our ultimate/long-term goals?
- What are some of the key technical challenges?
- What is our plan/roadmap for achieving our goals?
- Who are our partners?
- What progress have we made thus far?
- What are the next steps?



# **How Does Barcoding Work?**







#### **Species Diversity**

