CALIFORNIA'S FRESHWATER AMPHIPODS

AND IMPLICATIONS FOR BIOASSESSMENT

Dr. G.O. Graening

Department of Biological Sciences California State University, Sacramento

Outline of Presentation

Summarize the State's Diversity
Impact of Exotic Species
Research Goals
Implications for Bioassessment

CHECKLIST OF FRESHWATER AMPHIPODA (CRUSTACEA: MALACOSTRACA) OF CALIFORNIA (in review)

 G.O. Graening California State University, Sacramento

D. Christopher Rogers University of Kansas, Lawrence

John R. Holsinger Old Dominion University

Cheryl Barr University of California, Berkeley

Richard Bottorff University of California, Davis

What's In the Manuscript?

large (exhaustive?) bibliography
 distributions of all taxa
 list of keys (but not a key for CA taxa)
 Conservation status ranks for CNDDB

Worldwide (FW) Amphipod Diversity

 About 1,870 species and subspecies recognized from fresh or inland waters (Vainola et al. 2008)

North America has 236 FW species in 23 general

Marine Diversity 10X greater
 California has > 350 marine species

Marine Taxa Also Larger

supergiant amphipod Alicella gigantea from the North Pacific gyre - 340 mm (13 in) long

California has 350 marine species and 62 freshwater species (with annoying overlap = euryhaline)

California has about 25% of the richness of North American freshwater amphipod species

Californian (FW) Diversity

46 native taxa
16 exotic taxa

CA is under-inventoried + taxonomic crisis

The majority of Californian taxa are either stenohaline, cold stenotherms (subterranean obligates) or invasive, euryhaline species.

What is also remarkable about California's native amphipod fauna is its narrow endemism: 60% of the taxa are restricted to a single body of water

High Endemism

- 24 species are known only from California
- 19 species are restricted to a single body of water
 - singletons
 - typically 1 spring or 1 cave stream
 - 2 spp. in Lake Tahoe benthos
- 3 species are known from only two sites
 doubletons

THE CALIFORNIA CHECKLIST

FAMILY AMPITHOIDAE

□ 3 species (euryhaline)

Family ANISOGAMMARIDAE

Eogammarus

Family ANISOGAMMARIDAE

- Anisogammarus pugettensis (euryhaline)
 Eogammarus confervicolus (euryhaline)
 Ramellogammarus californicus (stenohaline, singleton)
- Ramellogammarus columbianus (hyporheic)
 Ramellogammarus oregonensis
 Ramellogammarus ramellus

Family AORIDAE

Grandidierella japonica (euryhaline, exotic)
 Microdeutopus gyrllotalpa (euryhaline, exotic)

Grandidierella japonica

Family COROPHIIDAE

Family COROPHIIDAE

(tube builders, burrowers, etc.)

Americorophium salmonis (euryhaline)
 Americorophium spinicorne (euryhaline)
 Americorophium stimpsoni (euryhaline)
 Corophium louisianum (euryhaline, exotic)
 Sinocorophium alienense (euryhaline, exotic)

Family COROPHIIDAE

- Sinocorophium heteroceratum (euryhaline, exotic)
- Monocorophium acherusicum (euryhaline, exotic)
- Monocorophium insidiosum (euryhaline, exotic)
- *Monocorophium uenoi* (euryhaline, exotic)
 Paracorophium sp. (euryhaline, exotic)

Family CRANGONYCTIDAE

Family CRANGONYCTIDAE

Crangonyx floridanus (exotic, stenohaline)

Crangonyx pseudogracilis (exotic, stenohaline)

Crangonyx richmondensis Ellis' Bog Amphipod (stenohaline)

Stygobromus

Photo by Dr. Jean Krejca

Stygobromids

- cold stenotherms
- extreme k-selection
 - long life span
 - slow metabolism = adapted to oligotrophic waters
- Singletons, Doubletons = Narrow Endemics
- Sensitive to Pollution
- Stygobionts
 Phreatobionts
 Hyporheics

- Stygobromus cherylae (phreatobioint, singleton)
- *S. cowani* (phreatobioint, singleton)
- □ *S. gallawayae* (phreatobioint, singleton)
- S. gradyi (stygobioint)
- S. grahami (stygobioint)
- S. harai (stygobioint)
- *S. hyporheicus* (hyporheic; singleton; historic)
- □ *S. imperialis* (stygobiont, singleton)
- □ S. lacicolus (benthic; singleton; also Nevada)

□ *S. mackenziei* (stygobiont, singleton) □ *S. myersae* (phreatobioint) □ S. mysticus (phreatobioint, singleton) □ *S. rudolphi* (phreatobioint, singleton) □ S. sheldoni (phreatobioint, singleton) □ S. sierrensis (phreatobioint, singleton) S. sp. nov. (*hubbsi* group) (hyporheic, singleton) □ S. sp. nov. (Sonoma Co.) (phreatobioint, singleton)

- □ *S. tahoensis* (benthic; singleton; also Nevada)
- □ S. trinus (stygobiont, singleton)
- S. wengerorum (stygobiont, doubleton)
- S. sp. nov. aff. *imperialis* (phreatobioint, singleton)
- □ S. sp. nov. aff. *mackenziei* (hyporheic, singleton)
- □ S. sp. nov. cf. mackenziei (hyporheic)
- S. sp. nov. aff. *sierrensis* (phreatobioint, singleton)

Family GAMMARIDAE

Family GAMMARIDAE

□ Gammarus daiberi Bousfield 1969 (exotic)

□ *Gammarus lacustris sensu lato* (native?)

Gammarus mucronatus (exotic)

Family HYALELLIDAE

Family HYALELLIDAE

- Hyalella azteca sensu lato
- Hyalella muerta Death Valley Amphipod (doubleton)
- Hyalella sandra (doubleton)
- Hyalella sp. nov
- 33 provisional species (haplotypes) present in the Great Basin ecoregion of California and Nevada (Witt et al. 2006).

Hyalella azteca sensu lato

Cosmopolitan in California
 Native + introductions
 Polyphyletic = *Hyalella* sp.
 Tolerant of high temperatures & salinities

Other Families

HYALIDAE
ISAEIDAE
MELITIDAE
PONTOGENEIIDAE

Taxonomic keys

Very few comprehensive keys
 None for the California fauna
 except for Rogers (2005)
 Part of the Taxonomic Crisis

Impacts of Invasives

- Alteration of aquatic food webs
- Transmission of parasites
- Ship and harbor fouling
- Cause the disappearance of native taxa
 - competition
 - displacement
 - direct predation

Impacts of Invasives

- Transportation is the major species dispersion vector
 - Globalization of international trade
- 7,000 marine and coastal species travel across the world's oceans every day
- 84% of the world's marine regions reported invasive species in 2008
 - primarily shipping
- Ship's Ballast Water

Source: Ba et al., 2010

Open Niches, Ideal Conditions

- Carlton (1979) identifies the factors needed for a successful estuarine introduction
- = habitat alteration and synanthropy
- Sediment Pollution (from Hydraulic Mining) Created New Niche for tubebuilders/burrowers

Ship's Ballast Water

Current recommended solution:

Open ocean exchange of ballast water
 Elimination of organisms using chemicals

Source: Ba et al., 2010

Research Goals

Create checklist
Find / create keys
Solicit additional records and specimens
Explore zoogeographic patterns
Update Natural Heritage Ranks (CNDDB)

Soliciting additional records and specimens

Send to:
 G.O. Graening
 Department of Biological Sciences
 California State University, Sacramento
 6000 J Street, Sacramento, CA 95819
 graening@csus.edu
 916.452.5442

Collaborating Taxonomist: Dr. John Holsinger

Acnowledgements – Data Sharing

- Monique Born (Sustainable Land Stewardship Institute)
- Andrea Caires (U. of Nevada, Reno)
- Darren Fong (Golden Gate National Recreation Area)
- Noah Hume (Stillwater Sciences)
- John Lee (John Lee Consulting)
- Chris Malan (Institute for Conservation Advocacy, Research & Education)
- Darlene McGriff (CDFG)
- R. Pisor (CDWR)
- Andy Sheldon (University of Montana, Missoula)
- William Shepard (Essig Museum of Entomology)
- Robert Wisseman (Aquatic Biology Associates, Inc.)
- J. Witt and S. Usjak (U. of Waterloo).

Explore Zoogeographic Patterns

- Marine invasions of freshwaters
- Bousfield and Morino (1992) hypothesize that the limits of Pleistocene (Wisconsin) glaciation explain the distribution of some amphipods (e.g. *Rammellogammarus*).
- Gammaridea demonstrate a preference for cold water (Barnard and Gray 1969)
- Faultlines as dispersal corridors

update Natural Heritage Ranks (CNDDB)

Taxon	Current	Suggested	Niche, endemicity, etc.
	Rank	Rank	
Americorophium salmonis	GNR, SNR		euryhaline
Americorophium spinicorne	GNR, SNR	S4	euryhaline
Americorophium stimpsoni	GNR, SNR	S3	euryhaline; rare, according to Chapman (2007)
Ampithoe lacertosa	GNR, SNR		euryhaline
Ampithoe simulans	GNR, SNR		euryhaline
Ampithoe valida	GNR, SNR		euryhaline
Anisogammarus pugettensis	GNR, SNR		euryhaline
Apohyale pugettensis	GNR, SNR		euryhaline
<i>Cheirimedeia macrocarpa</i>	GNR, SNR	SNA	euryhaline, exotic
Corophium louisianum	GNR, SNR	SNA	euryhaline, exotic
Crangonyx floridanus	G5, SNA		stenohaline, exotic
Crangonyx pseudogracilis	G5, SNR	SNA	stenohaline, exotic
Crangonyx richmondensis	G5, SNR	S1	stenohaline
Elasmopus antennatus	GNR, SNR	SNA	euryhaline, exotic
Eogammarus confervicolus	GNR, SNR		euryhaline
Eohaustorius estuarius	GNR, SNR		euryhaline
Gammarus daiberi	GNR, SNR	SNA	euryhaline, exotic
Gammarus lacustris sensu lato	GNR, SNR	G5Q, S1	stenohaline; may be polyphyletic
Gammarus mucronatus	GNR, SNR	SNA	stenohaline, exotic
Grandidi erella japonica	GNR, SNR	SNA	euryhaline, exotic
Hyalella azteca sensu lato	G5, SNR	G5Q, S5	stenohaline? polyphyletic
Hyalella muerta	G1, S1		phreatobioint, doubleton
Hyalella sandra	G1, S1		phreatobioint, doubleton
Hyalella sp. nov.		GU, SU	phreatobioint, 33 provisional species

Bioindicators

- Presence / absence of rare (indicator) taxa
- Stygobromids highly endemic & susceptible to pollution
- Proposed are regional lists of indicator species that are not part of SWAMP score
 - non-numeric criteria?

Bioindicators

 Differences in physiology and life history between epigean taxa and hypogean taxa result in differing responses to acute and chronic pollutant exposure

Differences between amphipods and isopods

Epigean vs. Hypogean

Example

In general, epigean crustaceans have very little tolerance to conditions of severe hypoxia or anoxia (Zebe, 1991). Hypogean crustaceans, are generally more tolerant of anoxia (Hervant et al., 1995, 1996, 1997a).

Epigean / Hypogean Ratio

- Epigean / Hypogean Fauna Ratio (Ronneberger 1975)
- Example: sewage introduced into an aquifer extirpated the hypogean organisms, while epigean fauna remained
- Thus the epigean/hypogean ratio shifted (Malard et al. 1994)

Amphipod / Isopod Ratio

- Even between stygobiotic species, pollution tolerances differ
- Amphipods are more susceptible to pollution than isopods (Whitehurst 1991; Simon and Buikema, Jr. 1997).

Amphipod / Isopod Ratio

- Amphipod / Isopod Ratio (Simon and Buikema 1997)
- The different pollution tolerances of amphipods and isopods could be useful in biomonitoring.
- In general, isopods are tolerant of pollution (Aston and Milner, 1980; Pennak, 1989; Malard *et al.*, 1996; Simon and Buikema Jr., 1997).
- In Hidden River Cave, Kentucky, troglobiotic amphipods (*Crangonyx*) are found only in regions not stressed by pollution (Poulson, 1990).

Amphipod / Isopod Ratio

- Ratios of widespread species of isopods and amphipods (such as *Asellus* and *Gammarus*) are used to compare regional water-quality conditions (Naylor et al. 1990; Maltby 1991, 1995; Whitehurst 1991; Mullis et al. 1996; Thorp and Covich 2001)
- However, many California freshwaters are lacking in isopods

Acnowledgements – Fieldwork

CSUS students and graduates – C. Akin, T. Audisio, D. Chatterton, A. DePalma-Dow, J. Flores, A. Keith, R. Gordon, E. Kanawi, A. Mercado, N. Macias, N. Sharma – and other associates – R. Aalbu, L. Babcock, R. Davis, D. Hunter, P. Johnson.

