Linking Land Uses, Stressors and Invertebrate Assemblages in Nevada Streams

Jacob J. Vander Laan & Charles P. Hawkins

Western Center for Monitoring and Assessment of Freshwater Ecosystems Watershed Science Department and Ecology Center Utah State University

California Aquatic Bioassessment Workgroup

9-10 November 2011

Outline & Research Questions

- 1. What are stressors of interest in Nevada?
- 2. What are the individual and cumulative effects of stressors on biological condition?
- 3. Can impaired biological condition be attributed to the presence of stressors?
- 4. Are stressor concentrations related to land uses?

Multi-Stressor Environments

Research Design

Study Area and Data

- Samples previously collected by NDEP, EPA, or USU at 500 sites.
- Defined 165 sites as reference.
- 416 test and 80
 reference samples
 with corresponding
 chemistry data.

Research Questions

- **1.** What are stressors of interest in Nevada?
- 2. What are the individual and cumulative effects of stressors on biological condition?
- 3. Can impaired biological condition be attributed to the presence of stressors?
- 4. Are stressor concentrations related to land uses?

Measuring Biological Condition

- RIVPACS-type model to predict expected invertebrate assemblages.
- Observed to expected (O/E) taxa ratio used to measure biological condition.

Stressor Selection

- Total Dissolved Solids:
 - Conductivity
- Thermal alteration:
 - Stream temperature
- Nutrient enrichment:
 - Total N and Total P
- Dams:
 - Normal storage volume of largest dam within watershed
- Metal contamination (dissolved):
 - Used PCA to identify independent axes of variation
 - Selected one metal from each axis to use in modeling

Stressor Effects on O/E

- Regress O/E on stressors
 - Regression Tree
 - Random Forest Regression
 - Variable importance
 - Partial dependence plots
 - —Accounts for individual and interactive effects of stressors

Selected Stressors

- Conductivity
- Stream Temperature
- Total N
- Total P
- Storage volume of largest dam
- Metal Contamination (PCA):
 - Cadmium (ug/L) heavy metals (Cd, Cu, Pb, Zn, Hg)
 - Arsenic (ug/L)
 - Nickel (ug/L) Ni & Se
 - Chromium (ug/L) Cr & Ag

Stressor Effects on O/E

% Variation of O/E explained = 23%

Conductivity and Temperature Effects on O/E

Nutrients Effects on O/E

Metals Effects on O/E

Dam Effects on O/E

Research Questions

- 1. What are stressors of interest in Nevada?
- 2. What are the individual and cumulative effects of stressors on biological condition?
- 3. Can impaired biological condition be attributed to the presence of stressors?
- 4. Are stressor concentrations related to land uses?

Predicting Biological Degradation

- Use Random Forest classification
- Stressors as predictors, reference or nonreference condition as response

Predicting Degraded Samples

Percent Correctly Classified = 80%

Research Questions

- 1. What are stressors of interest in Nevada?
- 2. What are the individual and cumulative effects of stressors on biological condition?
- 3. Can impaired biological condition be attributed to the presence of stressors?
- 4. Are stressor concentrations related to land uses?

Characterizing Land Use

- Agriculture
 - Percent of whole watershed
 - Percent of watershed within 3 km of sample
- Urbanization
 - Percent of whole watershed
 - Percent of watershed within 3 km of sample
- Mining

- Density of mine sites within watershed

Land Use Effects on Stressors

- Regress stressor concentrations on land use variables Random Forest model
- Stressors also vary naturally
 - Models included environmental gradients as predictors to account for natural variability
 - Precipitation, air temperature, elevation, watershed area

Relating Stressors to Land use

Stressor	% Variation Explained	Influential Land Uses
Conductivity	96%	Agriculture, Mining
Temperature	83%	Urban, Agriculture
Cadmium	67%	Urban, Mining
Total N	62%	Agriculture, Mining
Total P	58%	Agriculture
Arsenic	7%	

Conductivity

Cadmium

Temperature

Nutrients – Total P

Nutrients – Total N

How can these stressors lead to biological degradation?

- Metals:
 - Directly toxic to organisms
- Nutrients:
 - Enrichment may alter algal communities and lead to changes in macroinvertebrate communities via food web or microhabitat alterations
- Conductivity:
 - Extremely high conductivities can be toxic
 - Increases from low to moderate conductivity may change chemical niche space and reduce fitness of taxa adapted to very low conductivities
- Dams:
 - Change flow, thermal and sediment regimes

Other Sources of Degradation

Contacts

Jake Vander Laan (jacob.vl@aggiemail.usu.edu)

Charles Hawkins (chuck.hawkins@usu.edu)