Building the Technical Foundation for Biological Objectives

Peter Ode and Andrew Rehn (DFG-ABL) Raphael Mazor and Ken Schiff (SCCWRP) CABW, November 2012

SWAMP Surface Water Ambient Monitoring Program

- **Technical Foundation** (Peter Ode/ Rafi Mazor DFG, SCCWRP)
- Regulatory Framework (Karen Larsen, State Water Board)
- Causal Analysis (David Gillett, SCCWRP)
- Stakeholder Process (Brock Bernstein)
- Open Discussion
- Measuring Stressor Distributions (Andy Rehn, DFG)
- Tools for Assessing Stream/Wetland Condition (Eric Stein, SCCWRP)
- SWAMP's Lab SOP for BMIs (Melinda Woodard, QA Tea

Technical Foundation

Part I – Laying the groundwork (20)
Part II – Creating the scoring tools (40)
Part III – Supporting Implementation (20)

Technical Team

*Andy Rehn, DFG-ABL *Raphael Mazor, SCCWRP +DFG-ABL Larry Brown, USGS Jason May, USGS David Herbst, SNARL Peter Ode, DFG-WPCL/ABL Ken Schiff, SCCWRP David Gillett, SCCWRP Eric Stein, SCCWRP Betty Fetscher, SCCWRP Kevin Lunde, SF Water Board

Why Develop Ecological Indicators?

- Global paradigm shift toward ecological indicators
- Provide direct evidence about resources we are trying to protect
- More relevant measures of impacts and BMP effectiveness
- Links resource protection across multiple agencies by focus on ultimate policy goals

CA's Ecological Indicators

Multiple Indicators – BMIs, algae, (fish), riparian vegetation

Multiple waterbody types – large rivers, non-perennial streams, lakes, wetlands

Start with invertebrates and perennial streams

invertebrates:

the backbone of bioassessment

- Abundant
- Diverse
- Informative
- Adorable

How do we convert a list of species into a condition score?

NABS (www.benthos.org)

Standardized Bioassessment Infrastructure Elements

Surface Water Ambient Monitoring Program (SWAMP)

ent Monitoring

Program

Biological Objectives Workgroups > 20 meetings, excellent feedback

Scientific Advisory Panel

Charles Hawkins, Utah State University **Dave Buchwalter,** North Carolina State **Rick Hafele,** Oregon DEQ (retired) John VanSickle*, EPA (retired)

roaran

Chris Konrad, USGS

Lester Yuan*, EPA

LeRoy Poff, Colorado State

*not pictured

Scoring Tools Depend on Reference Sites

(sites with low levels of disturbance)

"What should the biology look like at a test site?"

Technical Challenges: Strong natural gradients result in natural variation in biological expectations

Technical Challenges: *Intense development can create regional gaps*

Reference Sites for Biocriteria Selecting for site quality and representativeness

Challenge: Very few (if any) pristine streams exist; site selection process has to maximize representativeness while minimizing amount of disturbance at reference sites

Performance Objectives:

- 1. Reference pool represents the majority of CA streams
- 2. Biological "quality" is maintained at reference sites

15

Assemble Data from > 2400 sites

Reference sites have few sources of human stress

- Infrastructure: roads, railroads
- Population
- Hydromodification
 - manmade channels, canals, pipelines
- Landuse
 - Ag/Urban development
 - Timber Harvest, Grazing
- Fire history, dams, mines
- 303d list, known discharges
- Invasive invertebrates, plants
- Instream and riparian habitat
- Water chemistry

Thresholds are comparable or stricter than other CA indices and include many more criteria

Metric	Bio- Objectives	South Coast IBI	North Coast IBI
Local Disturbance (W1_Hall)	1.5	-	-
% Agricultural	3,3,10	5	5
% Urban	3,3,10	3	3
% Ag + Urban	5,5,10		
% Code 21	7,7,10	in urban	in urban
Road Dens (km/km ²)	1.5	2.0	1.5/ 2.0
Paved Road X-ings (#/ws)	5/10/50		
Nearest Dams	>10 km	-	-
Active Producing Mines	0 (5k)	-	-
% Canals & Pipelines	10	-	-
Gravel Mine Density	0.1 (r5k)		
Conductivity	<2000 uS, + <99%, >1%		
BPJ Screen	X	X	x

Very good geographic coverage

REGION	n
North Coast	75
Central Valley	1
Coastal Chaparral	57
Interior Chaparral	33
South Coast Mountains	85
South Coast Xeric	34
Western Sierra	131
Central Lahontan	114
Deserts + Modoc	27
TOTAL	586

Multivariate view of natural diversity

Strong environmental representativeness hot, dry (non-Max_ELEV perennial?) ws_AREA 5.0 -TEMP large North 00 0 **Coast rivers Nat.PC2** DMde \bigcirc DMmo °°0 CHco CHin SCm 0.0 COND SCx \bigcirc SNcl SNws 0 ● NC K_Factor CV PPT -5.0 low elevation \bigcirc **South Coast** -4 Nat.PC1 21

Part III – Supporting Implementation (technical support for policy decisions)

- Setting Impairment Thresholds
- Ensuring statewide consistency
- Applicability: Objective approaches for setting limits to the tools
- Summary and What's Next

Desirable Qualities of Regulatory Thresholds

- Objective
- Balance false positives and false
 negatives should be protective of resource, but not over-sensitive
- Incorporate uncertainty of site score

Distribution based thresholds:

Incorporating Test Site Uncertainty

Use within-site error rate to account for uncertainty around test site score

more certainty with multiple samples

Ensuring Regionally Consistent Thresholds

Enhancing threshold consistency

Where can we apply the CSCI?

- **Categorical** = exception classes in policy
 - Excepted regions (e.g., Central Valley)
 - Excepted waterbody types (e.g., modified channels)
- Quantitative Approaches

Quantitative Approaches:

"is a test site within the experience of the model in environmental space?"

environmental settings

Applicability of the CSCI in exception class settings

- We can still use the CSCI as a ruler, but we won't regulate based a reference-based threshold
- Could use "best attainable" approach instead of "reference" to set expectation, or use to compare among sites

Automation and Documentation

STANDARD METHODS ... available on SWAMP website AUTOMATE calculations

- Package GIS layers
- Make standard calculation and reporting tools available via **CEDEN**

Document, document, document

- Journal articles
- Website 101 and FAQ
- Website appendices

Questions?

