Development of a Wetland Status and Trends Program for California

ERIC STEIN & LEILA LACKEY S.CA COASTAL WATER RESEARCH PROJECT BIOLOGY DEPARTMENT

How Much wetlands are in CA?

Wetland inventory covers approximately 80% of the State Inventory is patchwork of base imagery dates (1980s or better) and resolution Status and Trends assessment is difficult to accomplish statewide

In a Perfect World . . . We Would Map Everything

- We do OK for streams....
- Not so good for other waterbodies
- Just map it!!!!
 - Not enough time
 - Not enough money
 - Not agile enough to inform management

What are the alternatives?

- Accounting of permits and restoration
 - Does not include natural changes, illegal or exempt activities, etc.
 - Requires remote or field validation

Probability-based sampling

- Capable of capturing all sources of change
- Does not result in a comprehensive map
- Both options (and more) should be part of an overall strategy that includes state, regional, and local data

NWI-S&T Design: Challenges in California

- National Wetland Inventory, Status and Trends Program
- Plot allocation based on a 1956 study of wetlands used by migratory birds
- Sample biased to coastal region
- Approximately 250 plots
- NEED more comprehensive and representative distribution

Overall Goals

- Report both status and trends
- Provide accurate information for all aquatic resources (e.g., wetlands, streams, and deepwater habitat)
- Target reporting for every five years, one year ahead of the National Condition Assessment
- Support regional or question-based intensification of sampling and coordination with other agency programs

Designing a Status and Trends Program

- 1. Review existing programs
- 2. Test various design options
- 3. Evaluate rigor vs. costs
- 4. Provide recommendation to CA Wetland Monitoring Workgroup
- 5. Test proposed design
- 6. Compare to traditional mapping
- 7. Phase 2 (beginning Oct. 2012):
 - Implementation of S&T program
 - Developing change assessment methodology

General Design Features

- Use the entire state as a sample frame, not just areas with known aquatic resources
 - Sample locations should be selected from a square grid, placed over the entire State.
- Select a master sample of locations for observation across all of California
 - Allows nesting for local intenstifications
- Map and classify all aquatic resources **and** upland areas within selected plots
 - o Use new, "proposed" California wetland classification system
 - Include general upland classifications to support change assessment

Design Options

- Which sampling method?
 - Simple Random Sampling vs. GRTS

• Whether to stratify?

- Unstratified
- Stratify by geography (e.g. Ecoregion)
- Stratify by soil type
- Stratify by soil + ecoregion
- What plot size?
 1 km², 4 km², 9 km², 16 km²

• How many plots?

• Cost analysis with plot size

• Panel design to balance status and trends assessment

- Fixed plots
- New plots each cycle
- Hybrid design

Methodology for Evaluating Design Options

Source Data: NHD and NWI

Modeling

• 5,000 Stochastic Simulations

• Compare distribution of results

4e+05

NHD by GRTS, Ecoregion Strata, 16 km²

f_{null}

0.04

0.87

0.67

m/km²

812

36

89

All

SO > 4

SO = 3 or 4

Tradeoffs of Plot Size

- Smaller plots are more cost effective
- Larger plots are more inclusive
- Riverine resources are present in almost every plot
- Other wetland types drop off substantially between 9 km² and 4 km² and even more at 1km²

Recommend 4 km² plot size

Effect of Stratification on Precision

Strata Tested

- Ecoregion
- Soil type
- Combination

Increasing variance with stratification \rightarrow Decreasing precision with stratification \rightarrow

Questions Addressed & Answered

- Which sampling method?
 ORTS
- Whether to stratify?
 Ounstratified sampling
- What plot size?
 - 0 4km²
 - Cost analysis with sample size
- How many plots?
 1,000 3,000 depending on desired confidence levels

Simulated Wetland Impacts: Trends

- Two growth scenarios
- Two locations
- 50 years
 10 x 5 yr increments
- Avoid protected areas
- Assume 50% wetland loss per impact grid

Summary: Sources of Uncertainty

Source	Estimated Magnitude								
Inter-mapper differences Multiple groups with calibration 	+/- 25%								
Methodological differencesbuffer rulesSOPs and QA measures can reduce this	+/- 40%								
Model estimation •Use GRTS estimator • Increase number of plots used	+/- 30%								
 Classification Does not influence total aquatic resource area Standardize classification system 	??								

Advantages for California

- Ability to report on wetland, stream, and other water body extent, distribution, and trends
- Sample frame for probabilistic condition analysis for resources where comprehensive mapping is unavailable (e.g. things other than streams)
- Platform for identifying priority areas for intensified investigations of extent or condition

Depressional Wetland Condition Assessment

Indicators of condition CRAM Aquatic invertebrates Algae

Indicators of stress
Chemistry and/or toxicity
Hydrology and hydroperiod
Landscape factors

Next Steps

- CNRA, CDFG, SWRCB to develop implementation recommendations
 - Agency stewardship
 - Funding
- Begin Phase 2 October 2012
 - Refine change assessment methodology
 - Develop SOPs and data quality objectives
 - Create sample frame for the state
 - First phase implementation (approx. 200 plots)

... Get involved, it's your "map"

http://www.sccwrp.org/Documents/TechnicalReports

Recap Design Recommendations

- Utilize probabilistic sampling and analysis methods
- Use the entire state as a sample frame
- Do not pre-stratify
- Repeat mapping over time at fixed locations
- Use 4 km² plot size

Trends Monitoring

- Fixed sampling locations were substantially more precise than moving locations or SPR
- No method showed substantial bias

Challenges for California

Size and ecological heterogeneity

Static locations may not capture spatial variability

More focused sample

frame may be required

Relative scarcity of wetlands (~3% of land area)

Cowardin-derived classification may not support all types

Unique and arid-region wetland types

Results for Plot Size

- Most sample plots contain aquatic resources
- Riverine resources are present in almost every plot
- Other types drop off substantially between 9 and 4 and between 4 and 1

Cost-savings											
С	ent	ral (Coas	st		South Coast				t	
	16	9	4	1			16	9	4	1	
Ν	30	29	27	26		Ν	30	30	30	28	
Aq Res	30	29	27	26		Aq Res	30	29	29	26	Potenti
Dep	20	20	14	5		Dep	21	21	18	8	region
Est	2	1	1	0		Est	0	0	0	0	issue
Lac	1	1	1	0		Lac	3	3	2	2	
Mar	4	3	0	0		Mar	0	0	0	0	K
Riv	29	28	27	26		Riv	30	29	29	26	
Slo	15	12	8	4		Slo	11	9	6	3	

What Will it Cost?

	± 10 error	±15% (error				
# of plots/cycle	2000	100	00				
Cost/plot w/NAIP	\$100	00					
Cost/plot w/new imagery	\$500	\$500					
Total cost w/NAIP	\$200,000	\$100,	000				
Total cost w/new imagery	\$1,000,000	\$500,	,000				
 Assumes 4 km² plot size Assumes 95% CI Does not include program admin. Costs Cost/cycle decline if using fixed plots 							

Supplemented Panel Design

	t ₁	t ₂	t ₃	t ₄	t ₅	t ₆	t ₇	t ₈	t ₉	t ₁₀	
p _{sup}	•	•	•	•	•	•	•	•	•	•	•••
p ₁	•					•					
p ₂		•					•				
p ₃			•					•			•••
p ₄				•					•		
\mathbf{p}_{5}					•					•	

Existing Programs

• National Wetland Inventory, Status and Trends Program (NWI-S&T)

US Fish and Wildlife Service

http://www.fws.gov/wetlands/StatusAndTrends/index.html

• Natural Resource Inventory (NRI)

US Department of Agriculture

http://www.nrcs.usda.gov/technical/NRI/

• Minnesota Wetland Status and Trends Program (MN-S&T)

Minnesota Department of Natural Resources

http://www.dnr.state.mn.us/eco/wetlands/wstm_prog.html

Technical Advisory Committee

Federal & MN Agencies

- MN-S&T: Steve Kloiber
- NRCS: Jennifer Cavanaugh, Dean Kwasny
- USEPA: Paul Jones
- USFS: Dave Weixelman
- USFWS: Elaine Blok, Tom Dahl

Independent

- CNPS: Julie Evens
- MLML: Ross Clark, Kevin O'Conner
- SCCWRP: Leila Lackey, Kerry Ritter, Chris Solek, Eric Stein, Martha Sutula
- SFEI: Kristen Cayce, Josh Collins

California State Agencies

- CDFG: Jim Harrington, Todd Keeler-Wolfe
- CDWR: Gail Kuenster
- CNRA: Chris Potter
- COPC: Pam Rittlemeyer
- CWMW: Chad Roberts
- Regional WB: Ben Livsey
- SCC: Karen Bane, Tim Duff
- State WB: Cliff Harvey

Academic Institutions

- CSUN: Shawna Dark
- Penn State: Denice Wardrop
- UC Davis: John Eadie
- UCLA: Rich Ambrose