

Deer Creek Watershed

Index of Biotic Integrity

- The composition of the benthic macroinvertebrate assemblages provide a direct measure of the integrity of the stream's ecological condition
- Family-level IBI
 - Utilizes citizen science data
 - Affordable for non-profit watershed groups
 - Facilitates communication to the public about ecological conditions
- Macroinvertebrate families have varying responses to anthropogenic disturbance gradients

- 48 candidate metrics
- BMIs ID'ed to family by volunteers (with QA/QC)
- Disturbance stressor gradients:
 - % of watershed urban development
 - % of riparian area (2km x 200m upstream) impervious surfaces
 - Dissolved Oxygen (mg/L)
 - pH
 - Turbidity (ntu)
 - Nitrate (mg/L)

Richness Measures

Total Taxa Trichoptera Taxa

Diptera Taxa Insect Taxa % Intolerant

Coleoptera Taxa Non-insect Taxa Hilsenhoff's Biotic Index

Plecoptera & Trichoptera Taxa Ephemeroptera Taxa

EPT Taxa Plecoptera Taxa

Trophic or Functional Feeding Group Measures

% Collector/gatherers Collector/gatherers Taxa

% Filterers Filterer Taxa % Predators **Predator Taxa** % Scrapers Scraper Taxa Shredder Taxa

Insufficient range for scoring Unresponsive to disturbance

Obvious seasonality

% Shredders

Correlated with other

metrics

Tolerance Measures

% Tolerant Intolerant Taxa

Beck's Biotic Index

Tolerant Taxa

Composition Measures

% Non-insect % Chironomidae

% EPT % Amphipoda

% EPT excluding Baetidae % Gastropoda

% Ephemeroptera % Isopoda

% Ephemeroptera (w/oBaetidae) % Oligochaeta

% Plecoptera Shannon-Wiener Index

% Trichoptera Margaleff's Index

% Plecoptera & Trichoptera Simpson's Index

% Coleoptera % Dominant Taxon

% Odonata % 3 Most Dominant Taxa

% Diptera

Reference IBI Score

Watershed Area	Reference	Deer Creek
Upper	40	32.7
Middle	32	21.5
Lower	18	16.6

Full Dataset Distribution of IBI Scores

- Upper Watershed (Site 1) Urban development = 2.29%
- Lower Watershed (Site 10) Urban development = 10.04%

Deer Creek Monitoring Sites

- Recreational dam in lower Deer Creek watershed
- Immediately downstream of dam is WWTP
- Government mandate in 2007
 - Upgrade to fully denitrify wastewater, produce more consistent, contained flows

IBI Scores below treatment plant:

Site 8 seasonality after upgrade

June

October

P=0.5058

P=0.04972

Methods

Non-metric Multidimensional Scaling (NMS)

Environmental significance at site(s) of interest

Community Differences

Multi-Response Permutation Procedures (MRPP)

NMS

Pros

- Non-parametric technique
- Unlike PCA, does not depend on linear relationships among variables.
- Unlike CCA, does not depend on linear combinations of variables for environmental correlations.

Cons

Not a "constrained"
ordination; environmental
correlations may require
more interpretation.

McCune & Grace (2002)

Overall Site Summary

Significant Variables (r>0.20) along Axis 3 in overall NMS:

Correlations	Axis 3 variance	
Phosphate	-0.558	
Nitrate	-0.451	
рН	-0.652	
Conductivity	-0.843	
Water Temperature	-0.571	
Shed Area Above	-0.789	
Urban Cover	-0.413	
Impervious Cover	-0.486	

- Did Nitrate inputs actually decrease?
- What other water quality parameters changed?

10.16				
	Parameter	W	р	
	Phosphate	286.5	0.4108	
Maria Sa	Nitrate	421.5	<0.01	
	рН	243	0.8819	
	Conductivity	266.5	0.7148	
1	Turbidity	210.5	0.3729	
	D.O.	195	0.2131	
H	Water Temp.	292.5	0.3373	

Reduced NO₃ from μ = 1.085 mg/L to 0.67 mg/L (SE \pm 0.18, z= -440.5, p= 0.03)

Site 8 seasonality after upgrade

June

October

P=0.5058

P=0.04972

MRPP of BMI Composition

Season/Treatment

$$T = -5.47$$

$$A = 0.151$$

$$p = < 0.01$$

Before vs After	Т	А	р
June	-1.93	0.07	0.04
October	-6.72	0.19	<0.01

MRPP of BMI Composition

MRPP of BMI Composition

MRPP Statistics	Т	А	р
Before	-2.21	0.12	0.02
8 vs 9	-2.32	0.13	0.02
8 vs 10	-1.74	0.11	0.06
9 vs 10	-0.77	0.04	0.21

MRPP Statistics	Т	А	р
After	0.32	-0.013	0.59
8 vs 9	-0.03	0.001	0.44
8 vs 10	-0.26	0.01	0.35
9 vs 10	1.2	-0.06	0.91

Stress: 13.19 Instability: 0.00 R²: 0.769 Axis 3 R²: 0.330

Stress: 13.19 Instability: 0.00 R²: 0.769 Axis 3 R²: 0.211

Correlations	r	τ
Phosphate	-0.723	-0.639
Nitrate	-0.740	-0.547
рН	0.369	0.326
Conductivity	-0.726	-0.484
Dissolved Oxygen	-0.289	-0.284

Stress: 13.19 Instability: 0.00 R²: 0.769 Axis 3 R²: 0.330

Correlations	r	τ
Phosphate	-0.40	-0.26
Nitrate	-0.44	-0.33
Conductivity	-0.57	-0.29
Turbidity	0.37	0.33
Water		
Temperature	0.20	0.03

Stress: 13.19 Instability: 0.00 R²: 0.769 Axis 3 R²: 0.211

Correlations	r	τ
Phosphate	-0.723	-0.639
Nitrate	-0.740	-0.547
рН	0.369	0.326
Conductivity	-0.726	-0.484
Dissolved Oxygen	-0.289	-0.284

Stress: 13.19 Instability: 0.00 R²: 0.769 Axis 3 R²: 0.330

Stress: 13.19 Instability: 0.00 R²: 0.769 Axis 3 R²: 0.211

Indicator Species Analysis

Before

Coleoptera, Dytiscidae "Water Tiger", Diving Beetle IV = 20.0, p = 0.0340 Tolerance Value 5, Predator

After

Diptera, Tipulidae Crane Flies

IV = 32.9, p = 0.0382

Tolerance Value 3, Shredder/Collector

Coleoptera, Dytiscidae

Coleoptera, Dytiscidae

Model for all observations

Diptera, Tipulidae

IV = 32.9, p = 0.0382 Tolerance Value 3, Shredder/Collector

Diptera, Tipulidae

Model for all observations

IBI / Multivariate Methods

	IBI	Multivariate
Change in community	√	√
Change in health	\checkmark	
Environmental Correlations		✓
Changes through time	✓	+/-
Clear dissemination to Stakeholders	√	

Note: Not a comparison! Simply shows that both methods should be used together.

- Citizen-science data can successfully be used for robust bioassessments.
- Multi-metric methods can be amenable to smaller watersheds with varied disturbances conditionally.
- Family level IBI is sensitive enough for analysis.
- The "causal analysis" can also be used as a validation step for the IBI scores when using smaller datasets.

- Collect more data points at the reference sites
- Carry out more inclusive multivariate analysis including reference sites and IBI scores for more direct validation.
- Expand dataset to include citizen science data from other watersheds

