PREDICTING MONTHLY FLOWS FOR CA STREAMS

Daren Carlisle David Wolock Mike Wieczorek James Falcone

US Geological Survey*

* What are the expected natural flows?

- * What are the expected natural flows?
- * How do expected flows vary through time?

- * What are the expected natural flows?
- * How do expected flows vary through time?
- * Which streams are affected by flow alteration?

PROS:

PROS:

· Indicate seasonality, magnitude, frequency

PROS:

- · Indicate seasonality, magnitude, frequency
- Easy to communicate, measure, manage

PROS:

- · Indicate seasonality, magnitude, frequency
- Easy to communicate, measure, manage
- Temporal synchrony with observed precip

PROS:

- Indicate seasonality, magnitude, frequency
- Easy to communicate, measure, manage
- Temporal synchrony with observed precip

CONS:

Excludes extremes, durations, variability

Roseburg Crater Lake National Par Klamath Elko Nevada Reno ta Rosa o Sacomento San Fremon Santa Cruz Fresno Las Vegas Henderson Bakersfield OLOS Angel Long Beach Oceanside O Escondido San Diego O Mexicali O Map data ©2013 Google **■USGS**

Hydrologic Reference Sites

N = 163

"North Coastal Mts"

"North Coastal Mts"

"Interior Mts"

"North Coastal Mts"

"Interior Mts"

"Xeric"

monthly mean $Q_{yr} =$

~ runoff (t-0...t-12)

monthly mean $Q_{yr} =$

```
~ runoff (t-0...t-12)
```

~ precipitation (t-0...t-12)


```
~ runoff (t-0...t-12)
```

- ~ precipitation (t-0...t-12)
- ~ temperature (t-0...t-12)

- ~ runoff (t-0...t-12)
- ~ precipitation (t-0...t-12)
- ~ temperature (t-0...t-12)
- ~ 90 static predictors including

- ~ runoff (t-0...t-12)
- ~ precipitation (t-0...t-12)
- ~ temperature (t-0...t-12)
- ~ 90 static predictors including soils, geology, topography, climate, etc.

monthly mean $Q_{yr} =$

- ~ runoff (t-0...t-12)
- ~ precipitation (t-0...t-12)
- ~ temperature (t-0...t-12)
- ~ 90 static predictors including soils, geology, topography, climate, etc.

yr = 1950-2012

Random Forests Assumption-free Nonlinear & interactions Resists overfitting

Assessing Model Performance

- ~ 50-70 reference sites/region
- ~ Jack-knife (leave-one-out)

Assessing Model Performance

- ~ 50-70 reference sites/region
- ~ Jack-knife (leave-one-out)

- ~ Normalized RMSE
- ~ Correlation Observed vs Predicted
- ~ Mean Observed/Predicted through time
- ~ SD of O/P through time

observedpredicted

Willits

observedpredicted

Willits

- observed
- predicted

Willits

How do expected natural flows change through time?

2010

1968

■USGS

Probability of April flow > 0

0 to 0.33 0.34 to 0.66 0.67 to I

~700 USGS gages >10yrs post 1990

Increasing likelihood of flow depletion

