A NEW TOOL TO DETECT STRESS AT THE METABOLIC LEVEL IN AQUATIC INSECTS

Presented by: Scott Johnson & Jesus Reyes

California Aquatic Bioassessment Workshop October 30th, 2013

Acknowledgements

- Rich Gossett, Dr. Kevin Kelly IIRMES, CSULB
- Jesus Reyes Pacific Coast Environmental Conservancy
- Wendy Willis Aquatic Bioassay & Consulting Laboratories, Inc.
- Dr. Kristy Morris Council for Watershed Health

Pacific Coast Environmental Conservancy

San Gabriel River Monitoring Program Stakeholder Group

Outline

- Background on the San Gabriel River Regional Monitoring Program (2005 to present)
- Stressor Identification
 - MLOE Approach
- Proteomics
 - Background
 - Study Design & Methodology
 - SGRRMP Special Study Results
- Going Forward

Stream Condition Monitoring Indicators

California Rapid Assessment Method (CRAM)

SGRRMP **Assessment of Stream Condition**

- Multimetric So CA IBI
- Scores \leq 39 = changed

IBI SCORE*

0 - 12 13 - 25

26 - 38

39 - 50

51 - 63

64 - 76

77 - 89

SGRRMP Assessment of Stressors

• CRAM

SGRRMP Assessment of Stressors

• CA Toxics Rule (CTR): hardness adjusted dissolved metals

SGRRMP Assessment of Stressors

• PCA Biplot

- Comp 1 (45%)
 - o CRAM
 - o epifaunal substrate
 - % cobble
 - o % canopy
- Comp 2 (15%)
 - sediment deposition
 - o sands
 - o fines
- Comp 3 (10%) ions
 - o alkalinity
 - hardness
 - o pH
 - o Ec

Causal Assessment

Build associations between site condition and reference

How certain are we?

What if the bugs could tell us what's stressin' em?

Animal Phenotypic Response Measurements

- Measure using biomarkers as methodology in understanding environmental (water quality) effects
- Endocrine Responses [environmental endocrinology]
- Tissue Expression Responses [proteomics, genomics]

Animal Phenotypic Response Measurements

- Measure using biomarkers as methodology in understanding environmental (water quality) effects
- Endocrine Responses [environmental endocrinology]
- Tissue Expression Responses [proteomics, genomics]

Proteomics

Mapping and quantification of an organisms entire set of cellular proteins

 \rightarrow Phenotypic responses

reproductive, growth & development, toxicological, metabolic

\rightarrow Environmental factors

distinct biomarkers (protein, endocrine, other) reflect distinct environmental factors (chemical, physical, other)

Development of each new biomarker adds to subsequent diagnostic power

Prospects for detecting effects even when identity of environmental contaminant is not yet known

Proteomics

- Volume of protein produced differs in response to amount and duration of stress
- Protein maps are specific to each species and are reproducible
- Protein maps can be overlaid to assess protein expression among locations

Lab Methods

Sonicate & prep

Isoelectric focusing (IEF) on 2-D strip

Separate by molecular weight on 2-D gel

ID proteins using mass spec, local and external databases

Pick proteins for ID

Dye proteins on gel

IEF: isoelectric focusing

• Samples run on a 2-D gel which separates proteins by PI horizontally and mass vertically

PI: Isoelectric focusing point

English sole

 This results in a unique protein profile for each organisms from each environment (unique fingerprint)

Protein Identification (spot picking)

Colorado Lagoon Long Beach, CA

http://www.flickr.com/photos/crankyflier/3561009460/

Comparison of Multiple Biomarkers (Proteomics)

Colorado lagoon

Redwood city

Comparison of Multiple Biomarkers (Proteomics)

Colorado lagoon

Redwood city

Special Study Question(s)

- Can proteomics be used to map protein expression in aquatic insects?
 - Can differences in protein expression be detected in the same species collected at reference and nonreference stream reaches?

Method Development

 Two species common in both the upper and lower San Gabriel River watersheds.
Hydropsyche sp. Baetis adonis

DFG-ABL

DFG-ABL

Method Development

- The initial attempts at protein mapping were unsuccessful.
 - Due to using older specimens or ETOH
- Two separate samples were collected from the West Fork SGR
 - One sample preserved with 95% ETOH on ice
 - One sample held in water on ice
- The sample stored in cold sample water showed strong signals

Results : *Hydropsyche sp.*

Results: Baetis adonis

Protein Identification

TABLE I -- PROTEIN IDENTIFICATION RESULTS

Proteins with Scores ≥100				
plug # / positio n	Protein Name		protein score	protein ci
N3	Arginine kinase	1	110	100
N4	Arginine kinase	1	140	100
N6	Tropomyosin-2	2	228	100
N7	Tropomyosin-2	2	372	100
N21	ATP synthase subunit beta, mitochondrial	3	451	100
N22	ATP synthase subunit beta, mitochondrial	3	350	100
01	Arginine kinase	1	104	99.998
03	Trophomyosin-2	2	126	100
011	Heat shock 70 kDa protein cognate 3	4	164	100

Protein Identification

Stress Response/Detox

- *HSP70*
- *Metallothionein-protein type 2*
- Conotoxin
- Hepcidin
- Glutathione S-transferase

Metabolism

- Arginine kinase
- DNA directed-RNA polymerase

Structural & Transport

- Tropomyosin-2
- Troponin

Cell Signaling

- ATPase synthase
- Apoptosis regulator

- Can proteomics be used to map protein expression in aquatic insects?
- Preservation and storage techniques were optimized
- Provided the beginnings of species specific biomarker database for aquatic insects

- Can proteomics be used to map protein expression in aquatic insects? Yes !!!!
- Preservation and storage techniques were optimized
- Provided the beginnings of species specific biomarker database for aquatic insects

- Can proteomics be used to map protein expression in aquatic insects? Yes !!!!
- Preservation and storage techniques were optimized
- Provided the beginnings of species specific biomarker database for aquatic insects
 - More work needs to be done to create comprehensive protein profiles

- Lessons Learned
 - Hold times are short for organisms since they are collected live and held on ice.
 - Finding species resident in both reference and nonreference locations not as easy as it sounds.
 - What are the effects of collection and preservation on gene expression?

Future Studies

- Can differences in protein expression be detected in the same species collected at reference and non-reference stream reaches?
- Build protein database for several species

Questions????

Scott Johnson Aquatic Bioassay & Consulting Laboratories, Inc. <u>scott@aquabio.org</u>

Jesus Reyes Pacific Coast Environmental Conservancy <u>reyes@pceconservancy.org</u>