California's Surface Water Ambient Monitoring Program Cyanotoxins Discovered in Different Water body Types Throughout Southern California October 30, 2013

Presented by: Carey Nagoda, *RWQCB9*

Additional Contributors:

Lilian Busse, *RWQCB9* Chad Loflen, *RWQCB9* Betty Fetscher, *SCCWRP* Meredith D.A. Howard, *SCCWRP* Eric Stein, *SCCWRP* Martha Sutula, *SCCWRP* Raphael M. Kudela, *UC Santa Cruz*

Presentation Overview

- Intro
- Water Body Types
 & Data Sources
- Methods
- Results
- Take Home Messages
- Next Steps

Why the Concern About Cyanotoxins?

- Negative health effects/mortality on humans, domestic animals, & wildlife
 - recreation, drinking water, shellfish consumption
- Implications for a broad range of agencies
 - public health
 - natural resource management
 - water supply
 - recreation
- Bloom distributions are expanding worldwide, lasting longer, & producing more toxins (Paerl et al.)
- SETAC deemed cyanotoxins "Contaminants of Emerging Concern" (2012 national conference)
- No cyanotoxin monitoring programs in region or statewide

Cyanotoxins – Far Reaching Effects

Mortality of sea otters due to microcystin intoxication

- Distribution of otters dying due to microcystin intoxication
- Microcystin samples collected

Intense red shading corresponds to locations most frequently utilized by affected animals

Miller et al., 2010

Data Opportunistically Collected Through Multiple Studies

Mainly microcystins (most common cyanotoxins)

Some data on:

- Saxitoxin
- Lyngbyatoxin
- Anatoxin
- Cylindrospermopsin
- Nodularin

Water Bodies Screened (Southern CA)

Probabilistic Studies

- Stormwater Monitoring Coalition (SMC)
 <u>Targeted Study</u>
- San Diego Reference Streams Study (SCCWRP)

Probabilistic Study

 Depressional Wetlands (SWAMP/SCCWRP)

Water Bodies Screened (San Diego Region)

Targeted Study

Cyanotoxins in lakes and reservoirs

Targeted Study

Cyanotoxins in coastal wetlands

Beneficial Uses

- Drinking water
- ➤ Fishing
- Recreational

Methods of Cyanotoxin Collection

 Grab Samples (particulate) Toxins inside of the cells

(SPATT) Samplers

Continuous (dissolved) — Toxins released from the cells

Solid Phase Adsorption Toxin Tracking

Kudela, 2011

Grab Samples Can Miss Toxic Events

No Toxin Detected Toxin Detected

Slide 9

Kudela, 2011

Study Design of Lakes & Estuaries

9 Coastal Wetlands 10 Lakes/Reservoirs

SPATT Results

STATION	NAME	SPATT #1	SPATT #2
902TV0111	Vail Lake	No	Yes
903PLH214	Lake Henshaw	Yes	Yes
904SNELLG	San Elijo Lagoon	Yes	Yes
904SNELPD	San Elijo Pond	Yes	Yes
905PLH070	Lake Hodges	Yes	Yes
905PLS198	Lake Sutherland	Yes	No
90606MISS	Mission Bay	No	Yes
906LSPNLG	Los Penasquitos Lagoon	No	Yes
906PLM142	Lake Miramar	Yes	Yes
907CUYRES	Cuyamaca Reservoir	Yes	Missing
907LKMURR	Lake Murray	Yes	No
907PEC062	El Capitan Reservoir	Yes	No
907SDRVES	San Diego River Estuary	No	Yes
908SDBNTC	San Diego Bay near NTC	Yes	Yes
908SDBYSS	San Diego Bay Silver Strand	Yes	No
908SDBTSW	San Diego Bay Sweetwater	No	Yes
910PLO182	Lower Otay Reservoir	Missing	Damaged
911PMR110	Morena Reservoir	Missing	Yes
911TJRVES	Tijuana River Estuary	Yes!	Yes

 All sites had a "hit" during at least one of the SPATT deployments!

Microcystins Detected in Estuaries & Lakes (San Diego Region / Targeted) SPATT Results

Microcystins Detected in Wadeable Streams (Southern CA / Probabilistic) Filter Results

Microcystins Detected in Depressional Wetlands (Southern CA / Probabilistic) Filter & SPATT Results

Microcystins Widespread in Southern California Water Bodies

- Depressional wetlands, Coastal lagoons, Lakes, Streams, Rivers, Estuaries
- Plankton, Benthos, Dissolved
- Across many land use types

Take Home Messages

- Cyanotoxins have been detected throughout southern California, in a wide variety of water bodies
- Multiple types of cyanotoxins have been detected, sometimes simultaneously
 - Microcystins, Anatoxin-a, Cylindrospermopsin, Lyngbyatoxin, Saxitoxin
- Cyanotoxins can affect areas far downstream from their biological origin
- SPATT (passive sampler) provides continuous monitoring of microcystins – Great screening tool!
 - captures ephemeral events that traditional grab samples miss

Next Steps

- Create report that includes streams, depressional wetlands, lakes/reservoirs, and coastal wetlands
- Future cyanotoxin monitoring studies, beyond screening-level (e.g., bioaccumulation)
- Develop monitoring program

Thank you!

Carey Nagoda San Diego Water Board carey.nagoda@waterboards.ca.gov (619) 521-3003

