Cyanotoxin Production in Northern California's Eel

Keith Bouma-Gregson¹, Mary E. Power¹, and Raphael M. Kudela² UC Berkeley¹ and UC Santa Cruz² CABW Meeting November 19, 2014

The Eel River

Algae fuel aquatic summer food webs

Algae kills dogs in the Eel river

Algal assemblages can tip towards toxic cyanobacteria

Potential consequences of cyanobacteria blooms

1. <u>Altered aquatic food webs and reduced</u> <u>secondary production</u> <u>Biomass of Trophic Levels</u>

Potential consequences of cyanobacteria blooms

- 2. <u>Cyanotoxin production and public health</u> <u>threats</u> <u>- Focal</u> cyanotoxins:
 - Microcystins: liver toxins
 - Anatoxin-a: neurotoxin
 - Swimming warnings posted by Humboldt Co.
 - 11 dog deaths (Backer et al. 2013, Toxins)

Factors associated with cyanobacteria blooms

Citizen science and outreach

Eel River Recovery **PROJECT** www.eelriverrecovery.org

Angelo Jun-2013

What is the temporal and spatial distribution of cyanobacteria in the Eel River?

Monitoring sites:

- Visited weekly June Sep. 2013 and 2014
- Collected algal samples
- Cyanotoxin concentrations, temperature, TDN, and TDP

Observed cyanobacterial taxa

Anabaena spp.

Nodularia spp.

Cylindrospermum spp.

Observed cyanobacterial taxa

Phormidium spp.

Nostoc spp.

<u>Solid Phase Adsorption</u> <u>Toxin Tracking (SPATT) Samplers</u>

3 g HP20 DIAION™ resin

 Cyanotoxins microcystin and anatoxin-a measured with LC-MS

Lane et al. 2010, *Limnology and Oceanography: Methods* Kudela 2011, *Harmful Algae*

Visualizing SPATT data

SPATT results 2013

SPATT MCY results 2014

SPATT ATX results 2014

Intracellular cyanotoxins

Date	Site	Taxa MCY		ATX
7-Aug	RG	Phormidium	Phormidium	
31-Aug	SH	Phormidium +		+
12-Jul	PV	Anabaena +		
7-Aug	Pville	Anabaena		+
7-Aug	Pville	Anabaena	+	+
31-Aug	Pville	Anabaena	+	+
12-Jul	MF	Nostoc ears		+
31-Aug	SH	Nostoc ears		+
12-Jul	HF	Cylindrospermum +		
26-Aug	Farm	Oscillatoria		

Intracellular cyanotoxins

Temperature

Water chemistry 2013

Water chemistry 2013

Possible processes resulting in increased cyanobacteria

Scouring floods: exports invertebrate grazers (Power and Dietrich 2008)

Higher temperatures: climate change? (Paerl and Huisman 2009)

Water withdrawals: decrease summer base flows

Acknowledgements

<u>Funding:</u>

EPA STAR Fellowship 2014 NSF Eel River Critical Zone Observatory NorCal SETAC Summer Student Grant UC Mathias Graduate Research Grant

People:

Dr. ME Power (UCB), Dr. RM Kudela (UCSC), Dr. JC Finlay (Univ. Minnesota), Kendra Negrey, and Eel River Recovery Project Volunteers

Lab Members: Hiromi Uno, Phil Georgakakos, Gina Hervey, Caroline Ribet, Jeanine Porzio, Ari Nuri, Aditi Narawayan, Natalie Soto, Mikaela Raphael, and Anika Bratt

Questions?

Keith Bouma-Gregson kbg@berkeley.edu

Water Chemistry Results

OEHHA Action Levels

Action levels for selected scenarios

	Microcystins ¹	Anatoxin-a	Cylindro- spermopsin	Media (units)
Human recreational uses ²	0.8	90	4	Water (µg/L)
Human fish consumption	10	5000	70	Fish (ng/g) ww ³
Subchronic water intake, dog ⁴	2	100	10	Water (µg/L)
Subchronic crust and mat intake, dog	0.01	0.3	0.04	Crusts and Mats (mg/kg) dw ⁵
Acute water intake, dog ⁶	100	100	200	Water (µg/L)
Acute crust and mat intake, dog	0.5	0.3	0.5	Crusts and Mats (mg/kg) dw ⁵
Subchronic water intake, cattle ⁷	0.9	40	5	Water (µg/L)
Subchronic crust and mat intake, cattle ⁷	0.1	3	0.4	Crusts and Mats (mg/kg) dw ⁵
Acute water intake, cattle7	50	40	60	Water (µg/L)
Acute crust and mat intake, cattle ⁷	5	3	5	Crusts and Mats (mg/kg) dw ⁵

¹ Microcystins LA, LR, RR, and YR all had the same RfD so the action levels are the same.

² The most highly exposed of all the recreational users were 7- to-10-year-old swimmers. Boaters and water-skiers are less exposed and therefore protected by these action levels. This level

should not be used to judge the acceptability of drinking water concentrations.

³ Wet weight or fresh weight.

⁴ Subchronic refers to exposures over multiple days.

⁵ Based on sample dry weight (dw).

⁶ Acute refers to exposures in a single day.

Based on small breed dairy cows because their potential exposure to cyanotoxins is greatest. See Section VI for action levels in beef cattle.

CA OEHHA, Toxicological Summary and Suggested Action Levels to Reduce Adverse Health Effects of Six Cyanotoxins, May 2012