Pitfalls and Opportunities with Integrating Dissimilar Indicators to Assess Condition

Fraser Shilling
Department of Environmental Science and Policy
UC Davis

Presentation to the
TWENTY-FIRST ANNUAL MEETING OF THE
CALIFORNIA AQUATIC BIOASSESSMENT WORKGROUP
Special Session on Multi-Indicator Integration
November 18 and 19, 2014

Iara Lacher, Susana Cardenas, & David Waetjen (UC Davis)

with
Abdul Khan, Rich Juricich, & Kamyar Guivetchi (DWR)
Vance Fong & Don Hodge (USEPA)
Council for Watershed Health & SAWPA
Pacific Institute, Sacramento River Watershed Program, Sacramento Regional County Sanitation District, Napa County, and South Yuba River Citizens League

http://indicators.ucdavis.edu
Examining Aquatic Indicators in Watershed Condition/Function Assessment

(Beyond IBIs)
CABW, 2007

Fraser Shilling
Department of Environmental Science and Policy
University of California, Davis
fmshilling@ucdavis.edu
Definitions

• **Metrics**— things we can measure in “the wild”

• **Indicators** – often composed of metrics, things we can evaluate around us that can tell us a story about components of a natural or human system

• **Performance Measures** — similar to indicators, except often confined to management actions and other intentional human actions

• **Index** – an aggregation of indicators that convey a more complete story about a system
My Previous Work with Sustainability Indicators

- Measuring whole system condition and performance
- Consistent with global literature, while breaking new ground
- Test cases in Lower Sacramento River and Yuba River, Feather River, Napa River, Los Angeles River, Santa Ana River Watersheds + state-scale test (2001-2013)
Report Cards

A. Maintain and improve water quality and supply to sustainably meet the needs of natural and human communities

1. Protect receiving waters from pollution to comply with current and future water quality regulations
2. Maintain water quality for healthy aquatic systems*
3. Protect the quality of drinking water supplies
4. Maintain and restore natural stream flows for aquatic and riparian communities*
5. Maintain water supplies to meet human needs within the watershed

B. Protect and enhance native aquatic and terrestrial species, especially sensitive and at-risk species and natural communities

1. Protect and enhance native fish populations, including anadromous fish*
2. Protect and enhance bird populations
3. Protect and enhance amphibian populations
4. Protect and enhance mammal populations*
5. Protect and enhance native invertebrate communities*
6. Discourage and reduce invasive, non-native species

C. Protect and enhance landscape and habitats structure and processes to benefit ecosystem and watershed functions

1. Protect and enhance riparian habitat quality
2. Protect and enhance wetland habitat quality
3. Protect and enhance aquatic habitat connectivity*
4. Protect and enhance terrestrial habitat connectivity*
5. Maintain and restore stream geomorphic processes
6. Optimize primary production and nutrient cycling to support aquatic and terrestrial communities* (for N)
7. Manage land-uses to reduce impacts on aquatic and terrestrial habitats

D. Maintain and restore natural disturbance processes that balance benefits for natural and human communities

1. Reduce high severity fire frequency; encourage natural fire regimes that support native communities*
2. Reduce flood risk to human communities; encourage natural flood processes that support native communities*
3. Reduce greenhouse gas emissions and encourage activities to adapt to climate change

E. Maintain and improve the social and economic conditions, including benefits from healthy watersheds

1. Protect and enhance wildlife friendly agricultural practices*
2. Improve grazing management
3. Encourage sustainable land use practices
4. Improve community economic status in balance with watershed condition*
5. Improve community relationship with watershed processes
6. The watershed supports sustainable social practices
7. Support and improve human uses associated with watershed condition*
8. To have widespread community awareness and deep civic engagement in the protection and improvement of watersheds*
What are indicators and how are they used?

World
- Millennium Ecosystem Assessment (2005)
- Environmental Performance Index (2010)
- Kingdom of Bhutan Happiness Index
- European Commission – OECD

US
- US EPA Environmental Indicators & Report on the Environment
- Chesapeake Bay Eco-Check
- State of the Sound (Puget Sound Partnership)

California
- California’s Legislative Report Card (Sierra Club)
- Southern California Issue-specific reports (Institute of the Environment, UCLA)
- Beach Report Card (Heal the Bay, annual)
- Ski Areas Report Card (Sierra Nevada Alliance and others)
- Central Valley Economy and Environment (Great Valley Center)
How do we integrate the parts to say something about watershed or waterway “condition”?

IBI/CSCI
AQI
WQI
HGM
PI
Examples
Aggregation into Index

Aggregation of dis-similar indicators into an index of condition depends on definition of a goal for doing so, defined scales of analysis, references, and good application of statistics and logic.
1. Goals and Objectives
<table>
<thead>
<tr>
<th>Southern California Whole System Report Card</th>
<th>Sacramento River Watershed Watershed Health Indicator Program</th>
<th>North Bay Transect Report Card</th>
</tr>
</thead>
<tbody>
<tr>
<td>To sustainably manage local water supplies for human and natural communities.</td>
<td>Maintain and improve water quality and supply to sustainably meet the needs of natural and human communities</td>
<td>Improve and sustain watershed conditions and functions that advance human and environmental economies, in particular water quality and quantity</td>
</tr>
<tr>
<td>To meet human needs and enhance the quality of life by improving the conditions of watersheds and their ecosystems.</td>
<td>Protect and enhance landscape and habitats structure and processes to benefit ecosystem and watershed functions</td>
<td>Support community planning and management actions that further the goal of a healthy, happy, and economically just community</td>
</tr>
<tr>
<td>To conserve and restore a diversity of native habitats to support fish and wildlife.</td>
<td>Protect and enhance native aquatic and terrestrial species, especially sensitive and at-risk species and natural communities</td>
<td>Conserve, protect and improve native plant, wildlife and fish habitats and their communities</td>
</tr>
<tr>
<td>To restore or simulate natural disturbance processes that balance benefits for human and natural communities</td>
<td>Maintain and restore natural disturbance processes to benefit natural and human communities</td>
<td>Improve and protect geomorphic and hydrologic processes</td>
</tr>
<tr>
<td>To have widespread community awareness and deep civic engagement in the protection and improvement of watersheds</td>
<td>Maintain and improve the social and economic conditions, including benefits from healthy watersheds</td>
<td>Promote watershed awareness and stewardship through improved education, recreational access, and community involvement in decision-making</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reduce greenhouse gas emissions and adaptively manage watershed resources to address climate change</td>
</tr>
</tbody>
</table>
2. Measuring Performance

We are almost always measuring condition against some standard. It is unlikely that indicators would be as useful without this comparison. What approach allows inter-indicator and inter-regional comparison?
Some Issues & Examples

What is the condition and trend in condition?

Re-scaling data relative to standard/goal

Historical condition, attainment of beneficial use
Some Issues & Examples

Suitability of Indicator/Index

- Should we use the most sensitive (and potentially noisiest)?
- An index may be less noisy, but also less sensitive to change
- Different indicators have different response patterns & sensitivity
3. Transformation/re-scaling of indicators

- Ranking, empirical, axiological, mathematical, statistical

- Axiological normalization = relative distance between “good” and “bad” conditions (defined by user). This approach was termed the “distance to target” method in the California Water Plan, Update 2013
Axiological normalization (CSCI)

1.01 – mean reference
0.87 – low end reference
0.50 – stressed site mean minus variance
0 – theoretically worst condition
Problematic approaches (and why)

- “Empirical” re-scaling compared to minimum and maximum value in an area

<table>
<thead>
<tr>
<th></th>
<th>.70-.72</th>
<th>.65-.69</th>
<th>.60-.64</th>
<th>.50-.59</th>
<th>.45-.49</th>
<th>.40-.44</th>
</tr>
</thead>
<tbody>
<tr>
<td>.72</td>
<td>.67</td>
<td>.61</td>
<td>.52</td>
<td>.66</td>
<td>.75</td>
<td>1.2</td>
</tr>
<tr>
<td>.65</td>
<td>.53</td>
<td>.49</td>
<td>.51</td>
<td>.63</td>
<td>.77</td>
<td>1.1</td>
</tr>
<tr>
<td>.60</td>
<td>.47</td>
<td>.40</td>
<td>.50</td>
<td>.62</td>
<td>.76</td>
<td>.78</td>
</tr>
<tr>
<td>.52</td>
<td>.49</td>
<td>.47</td>
<td>.45</td>
<td>.61</td>
<td>.60</td>
<td>.57</td>
</tr>
<tr>
<td>.44</td>
<td>.43</td>
<td>.42</td>
<td>.41</td>
<td>.40</td>
<td>.37</td>
<td>.29</td>
</tr>
<tr>
<td>.48</td>
<td>.43</td>
<td>.42</td>
<td>.43</td>
<td>.36</td>
<td>.35</td>
<td>.20</td>
</tr>
<tr>
<td>.61</td>
<td>.60</td>
<td>.46</td>
<td>.41</td>
<td>.33</td>
<td>.24</td>
<td>.13</td>
</tr>
<tr>
<td>.69</td>
<td>.73</td>
<td>.59</td>
<td>.50</td>
<td>.31</td>
<td>.26</td>
<td>.23</td>
</tr>
</tbody>
</table>

“Scores” equivalent to metric values can change with scale.
Problematic approaches (and why)

• “Statistical” re-scaling compared to 1,2 SD around a mean value
Axiological normalization

Water Temperature Scaling Curve

Survival (%) vs. 7DADM Temp.

Watershed condition and function
Water quality - temperature
Axiological normalization allows combination of dissimilar indicators into an index because now all indicators are on the same conceptual and mathematical scale “how far away are conditions from where we want them and don’t want them to be?”
4a. Summing Indicator Scores

Index = I_1 + I_2 + I_3 + I_4 + I_5 + I_6 + I_7 + I_8 + I_9 + I_{10}

A \quad \text{Index} = 5 + 10 + \text{ND} + 7 + 2 + 1 + \text{ND} + 8 + 3 + 6 = 42
B \quad \text{Index} = 9 + 10 + 8 + 7 + \text{ND} + 8 + \text{ND} + \text{ND} + \text{ND} + \text{ND} = 42
C \quad \text{Index} = 5 + 10 + 8 + 7 + 2 + 1 + 4 + 8 + 3 + 6 = 54
D \quad \text{Index} = 5 + \text{ND} + \text{ND} + 7 + \text{ND} + 8 + \text{ND} + \text{ND} + 3 + \text{ND} = 16

Problem: Missing values affect final index score

Solution: Only sum when all values present
4b. Averaging Indicator Scores

Index = \(\frac{I_1 + I_2 + I_3 + I_4 + I_5 + I_6 + I_7 + I_8 + I_9 + I_{10}}{n} \)

A Index = \(\frac{5 + 10 + ND + 7 + 2 + 1 + ND + 8 + 3 + 6}{8} = 5.3 \)

B Index = \(\frac{5 + 10 + 8 + 7 + ND + 8 + 4 + ND + ND + ND}{6} = 7 \)

C Index = \(\frac{5 + 10 + 8 + 7 + 2 + 1 + 4 + 8 + 3 + 6}{10} = 5.4 \)

D Index = \(\frac{5 + ND + ND + 7 + ND + 1 + ND + ND + 3 + ND}{4} = 4 \)

Problem: Missing values affect final index score
Solution: Use average when most values present are the same across conditions/places; determine influence of individual indicators
5. Weighting indicators

- Index $= a(I_1) + b(I_2) + c(I_3) + d(I_4) + e(I_5) + f(I_6) + g(I_7) + h(I_8) + i(I_9) + j(I_{10})$

- Index $= \frac{[a(I_1) + b(I_2) + c(I_3) + d(I_4) + e(I_5) + f(I_6) + g(I_7) + h(I_8) + i(I_9) + j(I_{10})]}{n}$

Problem: Weighting is always present, e.g., 1,2,3...etc = 1
Solution: Test different weighting strategies a priori with users/stakeholders, not after the fact
6. Opposing and co-varying indicators

• (-) co-varying: temperature and dissolved oxygen
• (+) co-varying: low fish, low algae, low BMI (IBI)

• Causing or inhibiting: One system component may directly stop or cause change in another

• Both causation and correlation (with and without direct causation) can affect conducting and interpreting index calculation
Contact

Fraser Shilling

fmshilling@ucdavis.edu

http://indicators.udavis.edu