Integrating Physical Habitat into Bioassessment: A Case Study

Jeff Lauder and Rachel Durben Sierra Streams Institute

Objectives/Summary

- Identify patterns in physical habitat variability, and how that variability influences the benthic community
- Examine validity of using physical habitat data "on it's own" to identify restoration objectives
- Data validation
 - Two perspectives:
 - PHab data precision
 - Precision of citizen-science (volunteer-collected)
 PHab data

What Do We Already Know?

PHAB metrics are not like biological metrics

- Bio-metrics are a response to stress.
- PHAB metrics may be a measure of stress, a response to stress, both, or neither (yet still important for biology).

From Mazor, et al. "Assessing Physical Habitat Integrity: Developing an index for PHAB assessment", CABW 2013

What Do We Already Know?

PHAB metrics are not like biological metrics

- PHAB metrics often respond to stress independently.
- Bio metrics typically integrate stressors.

From Mazor, et al. "Assessing Physical Habitat Integrity: Developing an index for PHAB assessment", CABW 2013

What Do We Already Know?

What are the challenges?

Challenge	How to solve it
1. Identifying meaningful metrics	Develop a conceptual model
2. Setting appropriate expectations	Develop statistical models based on reference condition
3. Selecting useful metrics	Screen metrics based on objective performance criteria (e.g., accuracy, precision, responsiveness)
4. Combining metrics into an index	Lots of options (all of them optional!)

Some steps are similar to biological index development, but differences are important!

From Mazor, et al. "Assessing Physical Habitat Integrity: Developing an index for PHAB assessment", CABW 2013

Choosing/Calculating Metrics

Туре

"Commonly" used (EMAP, Kauffman et al. 1999)

Habitat heterogeneity

Landscape-scale/GISderived

Floodplain

Example

Substrate size, human influence, in-stream habitat, % cover of flow habitats, riparian vegetation, etc.

Modified Shannon Diversity of habitats, habitat evenness

Watershed Area, % Urban, % Impervious, etc.

Bankfull Height: Bankfull Width variance

Evaluating Metrics

Precision

- •Small prediction error
- •Low variability among replicates

Responsiveness

- •Sensitivity
 - •Reference versus sample usually considered
 - •Here we looked at variability that is significant in structuring benthic communities, as opposed to "inherent variability"

Assessing Precision

Signal: Noise Ratio (modified from Kauffman et al. 1999)

 $\sigma_{st(vear)}^2/\sigma_{rep}^2$

 $\sigma^{2}_{st(vear)}$ = Signal: Between-sample variation

 σ^2_{rep} = Noise: Within-sample variation, which in this case uses pooled variance from repeat visits to the same site in one year

No repeat visits on Deer Creek:

Noise: pooled variance from visits to "like" site, as identified via cluster analysis

- Not as accurate a depiction of noise, but creates more discriminatory criteria: variation between "like" sites is inherently larger than the same site at different visits

Precision criteria: S:N ratio >2.0 ("moderately biased")

Axis 1

3.5

3.0

2.5

20

ς. Ω

0.1

Majority of "noisy" variables are those related to estimates of % cover

Highly subjective

Can be addressed with better training, maintenance of one "estimator" or recorder, etc.

[%] Falls S:N by year

Some "noisy" variables can be dropped in favor of more precise measurements

% Canopy cover estimate

Site Clustering by PHab

Site Clustering by Water Quality

BMI Significantly Correlate with Few PHab, Water Quality, and Watershed-Scale Metrics

Niche Habitat Models show some families demonstrate curvilinear response to primarily physical habitat instead of water quality. . .

Plecoptera: periodidae

Others families show bimodal response to interactions of physical habitat and water quality. . .

And others show unimodal responses to either habitat or water quality, but only when both are considered!

Trichoptera: Psychodidae

Organisms do not show linear responses, and respond interactively to multiple stressors -Indices of benthic integrity should do the same!

Future Goals

Integrate NPMR weights ("tolerance") into IBI, or use as first steps toward "IHI" (multi-indicator integration):

- When % predators considered as metric in an IBI, weight that metric by taxa response to physical habitat variability. Result can be:
 - Decreased IBI: degraded habitat but healthy community
 - Increased IBI: healthy community and robust habitat
 Ex: % predator score within IBI = 23 x .8(sand/fines) x
 1.6(habitat heterogeneity) = 29.44

SO, WHAT DOES THIS TELL US?

Some PHab metrics can be considered "independent" - can help establish restoration goals, such as riparian vegetation metrics

Interpret with caution!

Shifts in % shrub cover can show success if removing invasives (decreased cover), but failure when considering native replacement (decreased overall cover, but increased native cover)

Photo credit: Victor von Salza, swni.org

Most Phab metrics must be interpreted with respect to other metrics (water quality, biological, etc.), so we don't miss important interactions

Integrate PHab metric affinities into restoration objectives: Use "ideal" habitat of "good BMI" to set restoration targets

THANK YOU!

Questions? Contact Jeff Lauder: jeff@sierrastreams.org www.sierrastreams.org