21stth Annual CABW - 2014

New Tools and Videos

from the SWRCB's Clean Water Team

www.waterboards.ca.gov/water_issues/programs/swamp/cwt_volunteer.shtml

www.YouTube.com/CleanWaterTeamVideos

www.YouTube.com/CWQMCN

www.waterboards.ca.gov/resources/email subscriptions

Erick Burres Citizen Monitoring Coordinator SWRCB's Clean Water Team <u>eburres@waterboards.ca.gov</u>

CLEAN WATER TEAM'S AREAS of IMPACT

FUTURE APPS:

- CA DIGITAL REFERENCE COLLECTION
- VISUAL PHYSICAL HABITAT ASSESSMENT
- 3D IMAGES SUPPORTING
 BMI ANATOMY AND TAXONOMY

	ATERSHED/ STREAM: DMPANY/ AGENCY:								
Sr	TE DESCRIPTION:		-						
	Circle the appro	opriate score for all 20 habi	tat parameters. Record t	the total score on the front	page of the CBW.				
	HABITAT	CONDITION CATEGORY							
	PARAMETER	OPTIMAL	SUBOPTIMAL	MARGINAL	Poor				
ch	1. Epifaunal Substrate/ Available Cover	Greater than 70% (50% for low gradient streams) of substrate favorable for epifumal colonization and fish cover, most favorable is a mix of smags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/mags that are not new fall and not transient).	40-70% (30-50% for low gradient treems) mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20.40% (10.30% for low gradient streams) mix of stable habitat; habitat availability less than desimble; substrate frequently disturbed or removed.	Less than 20% (10% for low gradient streame) stable habitat; lack of habitat is obvious; substrate unstable or lacking.				
2 Lea		20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				
evaluated within the sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.				
- pa		20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				
- 8	3. Velocity/ Depth Regimes (deep<0.5 m, slow<0.3 m/s)	All four velocity/depth regimes present (slow- deep, slow-shallow, fast- deep, fast-shallow).	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).				
leten	-	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				
Parameters to	4. Sediment Deposition			Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% (50- 80% for low-gradient) of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% (80% for low-gradient) of the bottom changing frequently; pools almost absent due to substantial sediment deposition.				
		20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.				
1		20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				

California Digital Reference Collection Orders habitus photo (Cild Distinguishing characteristics thumbnal for larger Click the banner to jump to a specific order within the family image) level page Ephemeroptera Three "tais" or cerd, wit As Discussed at 20th dorsal or lateral, usually Odonata bdomen (Drago CABW Plecoptera Two "tala" or cerci; gila (e present on thoras, or on th tominal segments, two t Hemiptera "Half wings" – first set of wings half membraneus and half sciencized (looks like an \mathcal{K}); giercing-sucking mouthcarts Well-developed mandibles, four-Megaloptera segmented antennae. Head and abdomen are patterned; the head is also quadrate. Two claws on thoracic legs. Segmented lateral gills on abdomen Neuroptera Long antennae, slender legs with single claws. Transgarent gils on ventral side of abdominal secments. Mouthcarts elongate and unsegmented Trichoptera No "tals," just anal prolegs with clave; thores partially or fully sciencitzed, membranous abdomen. May have "case" built of various materials Lepidoptera Head is distinct with a ring of simple eyes. Thorax and legs are segmented. Prolegs and anal prolegs present abdominal segments. Coleoptera No anal prolega but possibly clava. Socies of larvae may be completely scientized; adults have a tardened first pair of winds ("elytra") Diptera feed may be scientized (and visible) or reduced. Legs are not scientized. Body fleshy (gossibly with clawed prolega) with various types of breathing structures on the tell and Non-Insects farious characteristics, please see non-insects page

www.dfg.ca.gov/abl/Lab/california_referencecollection.asp

Mobile Device Macro Lens Converters

California Digital Reference Collection

A digital resource tool to assist citizen scientists identify and learn about California's stream dwelling benthic macroinverbrates.

Made to be portable for easy access streamside.

Created to assist identification of organisms to the family level.

When using other field guides or taxonomy books, you can refer to this collection of images.

Erick Burres, Citizen Monitoring Coordinator – SWRCB Clean Water Team Janet Hsiao, Scientific Aid – SWRCB Clean Water Team Daniel Pickard, Aquatic Entomologist Chico Aquatic Bioassessment Laboratory Brian Taylor, Student Assistant – SWRCB Clean Water Team

A similar version of this document is available online at: <u>www.dfg.ca.gov/abl/Lab/referencecollection.asp</u>. This version was prepared April 2014.

Taxonomic Hierarchy

Benthic - live on, under, and around rocks and sediment on the bottoms of lakes, rivers, and streams.

Macro- are visible to the eye without the aid of a microscope.

Invertebrates- organisms without backbones

Some of the organisms you may find will be larvae (immature) and some will be adults.

A larval *Baetis adonis* mayfly.

An adult Elmide, riffle beetle.

Eukaryota	Domain
Animalia	Kingdom
Arthropoda	Phylum
Insecta	Class
Ephemeroptera	Order
Baetidae	Family
Baetis	Genus
adonis	Species

Tolerance Values provide a measure of the sensitivity of aquatic organisms to anthropogenic disturbances and have historically provided a useful tool for assessing the biological condition of streams and rivers.

Tolerance are based on a family's tolerance, ranging from 0 (least tolerant) to 10 (most tolerant). A **biosurvey** is literally a "life-survey", a simple test of stream health that involves collecting and classifying stream life. The biosurvey described here, and more extensive sampling known as **bioassessment**, are tools for measuring stream water quality and habitat health based on the types of invertebrate organisms that live on the stream bottom.

Aquatic insects and other invertebrates are the most common form of animal life in streams. They live among algae, aquatic plants, and many microscopic organisms (like bacteria). **Macroinvertebrates** (those invertebrates visible to the unaided eye) play many roles in the aquatic food web-they help break down organic debris, recycle nutrients, and provide food for fish, amphibians and riparian birds. Some of these organisms can live and even thrive under polluted conditions but many others require clean and cold water to survive. **The variety and types of organisms present are indicators of the health of the stream**.

<u>The California Streamside Biosurvey</u> & <u>Bio-encuesta para los arroyos de California</u> www.waterboards.ca.gov/water_issues/programs/swamp/cwt_guidance.shtml#30

Citizen Science & Water Quality Monitoring

www.waterboards.ca.gov/water_issues/prog rams/swamp/cwt_volunteer.shtml

The Standard Taxonomic Effort List is a

complete list of all the bentic macroinvertebrates found in California's wadeble streams. <u>http://safit.org/ste.html</u>

TOUCH SCREEN NAVIGATION

www.waterboards.ca.gov/water issues/
programs/swamp/docs/cwt/guidance/
351e bugstogo0414.pdf

A California Water Quality Monitoring Collaboration Network Presentation

Introduction to Identifying the Freshwater Stream Dwelling Insect Orders of Callifornia

October 2014

Presenter:

Joseph Slusark Taxonomist Chico Aquatic Bioassessment Lab

Joe joined the Aquatic Bioassessment Lab (ABL) in 2001. He has over 20 years of macroinvertebrate identification from across the US. His current work includes identification of all ABL projects, and internal QC of other ABL projects. Joe is involved with the development and implementation of bioassessment QA and standardized data reporting efforts for the state of California. Joe is a member of SAFIT's board of directors and is active in organizing taxonomic workshops and web based taxonomic training sessions for professionals and citizen monitors. His taxonomic expertise is with *Ephemeroptera* and *Chironomidae*. He holds a B.S. in Wildlife Science and M.S. in Entomology/Ecology from Penn State University.

www.youtube.com/watch?v=o_kAz dG17-o&list=UUlrumrB_lrzOL8Sxv9FaPQ

Soft-Bodied Stream Algae of California

Algae as Indicators for Ecosystem Health

To incorporate algae into the bioassessment toolbox, SWAMP funded the development of a guidance document (the "Algae Plan") that established a detailed road map for achieving robust and consistent algae bioassessment in California. The Algae Plan recommends a structured and standardized approach to algal bioassessment. Standardized infrastructure and tools will ensure consistency among users.

http://dbmuseblade.colorado.edu/DiatomTwo/sbsac_site/proj_desc.html

This DIY conversion stand is more than capable of functioning in an actual laboratory setting. With magnification levels as high as 175x With the addition of a second lens magnification can be as high as 375x, plant cells and their nuclei are easily observed!

(http://cdn.instructables.com/FPD/UWFL/HMNNFTF0/FPDUWF

(http://cdn.instructables.com/FY4/TBHS/HMMFBB4V/FY4TBHSHMMFBB4V.LARGE.jpg)

www.instructables.com/id/10-Smartphone-to-digital-microscope-conversion/

Visual

Physical Habitat Assessment Enhanced Data Sheet (Excel/PDF/Video)

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS

STREAM NAME	
LOCATION	
STATION NUMBER	
STREAM CLASS	
LAT/LONG	
RIVER BASIN	
STORET # / CEDEN #	
GROUP or AGENCY	
INVESTIGATORS	

FORM	COMPLETED BY					
DATE		TIT	ME	AM	I	PM
REAS	SON FOR SURVEY					

Total Score 0

INSTRUCTIONS AND RELATED RESOURCES

NOTICE: The spreadsheet above ranks and scores assessment questions from POOR to OPTIMAL (0 - 20). However, the accompanying document and Bioassessment Protocols for Use in Wadeable Streams and Rivers EPA 841-B-99-002, ranks these same questions from OPTIMAL to POOR (20 - 0)

INSTRUCTIONS: Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish - Second Edition

CWT's Training PPT: Rapid Bioassessment Protocols for Use in Wadeable Streams and Rivers: Visual Habitat Assessment (PDF)

CLEAN WATER TEAM COMPENDIUM www.waterboards.ca.gov/water_issues/programs/swamp/cwt_guidance.shtml

3D – Insect Models

Mayfly by Enupnion https://sketchfab.com/models/35vujC096yySzhqbTkgIm8TZUg1 8

www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0094346

2014 Bio-Related CWQMCN Webinar Videos

Using Citizen Scientists to Map Streams During the Hottest Driest times of the Year Dale Turner, TNC AZ

Using the FlowCAM for Plankton Studies in San Francisco Estuary

Peggy Lehman California Department of Water Resources Peggy.Lehman@water.ca.gov

Application of FLowCam in California Peggy Lehman, DWR

www.YouTube.com/CWQMCN & www.YouTube.com/CleanWaterTeamVideos

2014 Conf. Presentations & Posters

9th National Monitoring Conference – Cincinnati, OH

Combined Aquatic Sciences Conference – Portland, OR

Southern California Academy of Science – Camarillo, CA

http://testthewater.org/

MOBILE LAB BOOK

٠		18 📄	
♀ Santa Monica 🛛 🛆	Ballona Creek 1		
OBSERVATION SITE INFO	ORMATION		
PHYSICAL PROPERTIES			
CHEMICAL PROPERTIES			
рH			m/s
	Add to Report 着		
Nitrates			m/s
	Add to Report 2		
Phosphates			m/s
	Add to Report 🗐		
BIOLOGICAL PROPERTIE	is		
HABITAT PROPERTIES			
MY REPORT			¢.

Our MobileLabBook webApp is designed to support in-the-field activities, by digitally assisting water sample collection and measurement record keeping.

- The MobileLabBook is operational on any mobile smart-phone, Pad, or Computer and maintains operations and data integrity, even in the absence of Internet connection.
- Samples and measurements can be precisely positioned with GPS coordinates and timestamped offering a highly accurate Geospacial Time coordinate positioning of samples and data results.
- After review, digital records are synchronized with the TTW central database

 TTW data management system has been designed to integrate seamlessly with CEDEN, California's water monitoring database, and allows for an easy data submission process that helps users to have their data meet CEDEN compliance standards.

REPORT TOOL

Location Name	Alameda Watershed	·7
Sample Name	Creekside4	Select a Location

Average of Result					
Analyte Name	Fri Aug 30 2013 07:48:55 F	ri Aug 30 2013 07:48:57	Sat Aug 17 2013 10:46:58	Sat Aug 17 2013 13:42:18	Sat Aug 17 2013 13:42:20
Turbidity	1	1	3	1.538461538	4
Grand Total	1	1	3	1.538461538	4

1/3

The TTW Report Tool empowers the user to take control of their monitoring data.

- The Report Tool is an excel based data analysis model that comes equipped with tools that enable the user to analyze and trend their data whether it be by location, measurement or data etc.
- The user can export their measurements and observations to the report via the Data Management webApp portal.

×

FORUM

Our Forum provides a means to connect with other watersheds to share your findings, organize meet-ups, and provide valuable feedback to the Test The Water team to help us continue to deliver the best data gathering and management ecosystem available.

What's Going On?	
B Currently Active Users	
There are currently 1 users online. 1 members and 0 guest	5
Most users ever online was 2, 03-10-2014 at 11:44 PM.	
4marbleswater	
TestTheWater Forums Statistics	
Threads: 0 Posts: 0 Members: 1 Active Members: 1 Welcome to our newest member, 4marbleswater	
Blogs: 0 Entries: 0 Last 24 Hours: 0	
Icon Legend	
Contains unread forum posts	

www.waterboards.ca.gov/water_issues/programs/swamp/cwt_volunteer.shtml www.waterboards.ca.gov/water_issues/programs/swamp/cwt_guidance.shtml www.YouTube.com/CleanWaterTeamVideos www.YouTube.com/CWQMCN

www.waterboards.ca.gov/resources/email subscriptions

