

USING BIOLOGICAL INTEGRITY TO STRUCTURE WATER QUALITY CRITERIA: CALIFORNIA AND BEYOND

Michael J. Paul, Jeroen Gerritsen, Lei Zheng, Jerry Diamond, and Clint Boschen

Tetra Tech, Inc. Center for Ecological Sciences

TAKE HOME MESSAGES

- Criteria for many constituents do not lend themselves to lab approaches
- Field based approaches are continuing to surge in use
- California is applying such approaches to nutrients
- This is good news for field biology...

EVOLUTION OF ASSESSMENT

Original "indices" were single metric, tolerance based - saprobien, HBI

Second generation indices were multimetric/assemblage based – MMI, O/E, % Model Affinity

But there is a lot of information stored in taxonomic presence/absence and abundance

RISE OF CAUSAL ASSESSMENT

Causal assessment (Stressor Identification, CADDIS) spurred disentanglement Why is my site impaired? What is the cause?

Can the taxa tell me?

AT THE SAME TIME - FIELD BASED CRITERIA

A Field-Based Aquatic Life Benchmark for Conductivity in Central Appalachian Streams

National Center for Environmental Assessment Office of Research and Development, Cincinnati, OH 45268

FIELD BASED CRITERIA – STRESSOR-RESPONSE GUIDANCE

EPA-820-S-10-001 November 2010

Using Stressor-response Relationships to Derive Numeric **Nutrient Criteria**

Office of Science and Technology Office of Water U.S. Environmental Protection Agency Washington, DC

EXAMPLE APPLICATIONS NUTRIENT CRITERIA DEVELOPMENT - MS

Extensive work in MS on nutrient criteria development is relying on field data Using a variety of models

NUTRIENT CRITERIA DEVELOPMENT - MS

Extensive work in MS on nutrient criteria development is relying on field data

West Bioregion – Probability of impairment curves

NUTRIENT CRITERIA DEVELOPMENT - MS

Extensive work in MS on nutrient criteria development is relying on field data

Southeast Bioregion – Split point regression and impairment probability

NUTRIENT THRESHOLD DEVELOPMENT - OR

OR exploring the development of nutrient screening tools – with periphyton

WEMAP Periphyton MMI

NUTRIENT THRESHOLD DEVELOPMENT — TN AND WI LAKES

Developing endpoints for lakes to set watershed downstream protection values

RESPONSE TARGET MUST LINK TO VALUED CONDITION

A clear linkage to a desired endpoint is important

"Ecological change" is not necessarily sufficient - should be adverse change

Can be regulatory (e.g., DO criteria) or ecological (reference based)

CALIFORNIA – STREAM NUTRIENT CRITERIA

Fetscher et al. 2014

LINKING NUTRIENTS TO ALTERATIONS IN AQUATIC LIFE IN CALIFORNIA WADEABLE STREAMS

Again "ecological change" not necessarily sufficient. How do these change points relate to designated/beneficial use goals? CA has not yet defined these goals.

COMMON BIOLOGICAL GOAL SETTING

Statistical property of a least disturbed "reference" population

We chose this one Historical application Linkage to narrative and CWA goals Expert elicitation based on the Biological Condition Gradient (BCG)

LINKING RESPONSES TO VALUED CONDITION

- Identified response measures (invertebrates and algae)
- Calculated reference site percentiles (5th, 15th, 25th)
- Built simple linear regression models
- Solve for the X condition....

Chlorophyll-a (mg/m2), Log10 transformed vs. EPT (# Taxa)

Data: Statewide SWAMP macroinvertebrate dataset metric and Fetscher et al. (2014) stream algae dataset metrics

CA INVERTEBRATE MODELS

Nutrient value statistics (linear model)

1 1 1 0.9 0.9 0.9 0.8 0.8 0.8 **Cumulative Percentile** Cumulative Percentile 0.7 0.4 0.3 0.2 Cumulative Percentile 0.5 0.4 0.3 0.2 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.1 0.1 0 0 0 100 0.1 1 0.01 0.1 1 0.1 10 1000 0.01 10 0.001 10 1 10000 TN (mg/L) TP (mg/L) Chl a (g/m^2)

Fetscher et al. (2014) Threshold Ranges

Only significant regressions, in the expected direction, with interpolated values

CA ALGAL MODELS

Only significant regressions, in the expected direction, with interpolated values

NEXT STEP IN CALIFORNIA BIOLOGICAL CONDITION GRADIENT MODELING

Next phase of CA stream nutrient criteria work

Expert elicitation

- Experts slot sites into locations along gradient using taxonomic info only
- Both invertebrate and algal data

Tetra Tech Center for Ecological Science, SCWRRP, EPA Region 9, CA State Water Board

BIOLOGICAL CONDITION GRADIENT MODELING

Once the sites are slotted:

- Map biotic response/nutrient thresholds to BCG scores
- Translate assessment endpoints into BCG context
- Further strengthen thresholds
- Provides knock on benefits

BIOLOGICAL CONDITION GRADIENT MODELING

USING BIOLOGICAL INTEGRITY TO DERIVE CRITERIA ELEMENTS OF AN APPROACH

- Standard high quality biological sampling
- Paired stressor and response models
 - Needn't be statistically complex, but we might want to move there (SEM)
- Classification integration explicitly or implicitly
 - To reduce variability
- Response anchored to regulatory/management goal
 - Existing criteria, reference base, Biological Condition Gradient

TAKE HOME MESSAGES

- Criteria for many constituents do not lend themselves to lab approaches
- Field based approaches are continuing to surge in use
- California is applying such approaches to nutrients
- This is good news for field biology...