Mountain Meadow Restoration in California: Reconciling Research and Implementation

Karen Pope¹ and Sarah Yarnell²

¹USFS Pacific Southwest Research Station, Redwood Sciences Lab ²UC Davis, Center for Watershed Sciences

What are mountain meadows?

Why are meadows important?

- Flood attenuation
- Sediment filtration
- Ground water recharge
- Productivity
- Biodiversity
- Carbon sinks

Status of California's Mountain Meadows

- Historical overuse
 - Livestock grazing
 - Mining
 - Timber harvest
 - Fire suppression
- ~70% degraded

Options

- 1. Allow the channel to establish a new equilibrium condition
- 2. Assist the channel in reaching a new equilibrium
- 3. Restore the hydraulic grade of the system to reestablish the hydrologic connection to the historic floodplain

Restoration Methods

Pond-and-Plug

- Excavate and fill incised channel
- Redirect water to channels on historic floodplain
- Results in:
 - Raised water table
 - Reconnected floodplain
 - Series of ponds and dams

Smith Creek

Success Stories

- Sediment depletion
- Absence of flooding
- Low groundwater storage
- Xeric plant community

- Sediment storage
- Frequent flooding
- High groundwater storage
- Mesic plant community

www.feather-river-crm.org/

Published Studies

- Few but positive
- Hydrologic
 - raised water table
 - increased duration of inundation
 - decreased magnitude of flood peaks
- Focused on few, well-funded projects
 - 3 of 4 studies were from the same watershed
- Difficult to determine realistic expectations of outcomes

Study Design

- Randomly selected 10 restored meadows
- Paired with unrestored
 - Nearby
 - Similar size
 - Similar elevation
 - Similar management histories

Biomass, Cover, Wetland Status and Soil Carbon

Channel condition

- Not comparable
- Not enough time
- Not always so successful

Post-treatment meadow

e.g., Trout Creek, Shasta-Trinity National Forest

Red Clover – McReynolds

Meadow Restoration in CA

- Ramped up in the past decade
- Prop 1 funds likely to increase rate even more
- Many projects involve fairly intensive land alteration
- Monitoring is focused on documenting success
- Minimal research is focused on post-project processes
- Difficult for research to keep pace with implementation
- El Niño test case?

A Demonstration of the Carbon Sequestration and Biodiversity Benefits of Beaver and Beaver Dam Analogue Restoration Techniques

Childs Meadow, Tehama County CA

UC Davis Center for Watershed Sciences, The Nature Conservancy, PSW, Point Blue

Beaver Dam Analogues (BDAs)

Pollock, M.M., G. Lewallen, K. Woodruff, C.E. Jordan and J.M. Castro (Editors) 2015. The Beaver Restoration Guidebook: Working with Beaver to Restore Streams, Wetlands, and Floodplains.

<u>Childs Meadow</u> Study Design

- BACI
 - 2 treatments
 - 2 controls
- Above and below-ground Carbon
- Hydrogeomorphic conditions
- Response of targeted wildlife spp.
 - Willow flycatcher
 - Cascades frog

Yuba Headwaters Meadow Restoration – Rachel Hutchinson, South Yuba River Citizens League

Green Acres: A Collaborative Vision for Meadow Recovery in California – *Rene Henery, Trout Unlimited*

Researching and Repairing Legacy Grazing Impacts in Sierra Nevada Wetlands – Evan Wolf, UC Davis