CHAMP Columbia Habitat Monitoring Program

Applying Twenty-First Century Technology to Solve Fish Management Questions at Multiple Scales

Presenter: Steve Fortney

Collaborators: Chris Beasley, Boyd Bouwes, Nick Bouwes, Andrew Hill, Chris Jordan, Mike Ward, Joe Wheaton, Carol Volk, Sarah Walker

Funders and More Collaborators

CHaMP Overview

- Status and trends monitoring program
- Purpose: answer management questions concerning the ESA-listed salmon populations of the 2008 Biological Opinion (NMFS 2008).
- Specific management questions:
 - 。 Limiting factors
 - 。Relationship between habitat actions and fish
 - Effectiveness of actions on fish populations

Geographic Area

Sampling Design

Sample allocation – Rotating panel

• 25 sites per watershed per year

• Total of 45 sites

GRTS (Generalized Random Tessellation Stratified)

- Stratified
- Spatially Balanced
- Flexible
- Weighted

Panel	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	Year 9
	2011	2012	2013	2014	2015	2016	2017	2018	2019
Annual Panel									
Rotating Panel 1									
Rotating Panel 2									
Rotating Panel 3									

Sampling Design: Upper Columbia

Multiscalar Samping Design

Controls on river character and behavior

Watershed

Valley Segment

River Reach

Geomorphic and Hydraulic Units

Floodplain features and in-channel units

BOTTOM UP CONTROLS

TOP DOWN CONTROLS

Geomorphic

Reach Type

Different Scales For Different Needs

Microhabitat (HSI)

Habitat metric e.g., pool frequency

Network-Scale Habitat Condition

Watershed / population

BASIN

Protocol revelopment

Topographic Survey

River Bathymetry Toolkit (RBT)

Thalweg

N

Wetted Centerline

Cross Sections

20 Meters 2013, Tucannon, CBW05583-519039

RBT Stage Slider

Crews find the best fit for the water extent and bankfull by interactively varying the water stage depth in the detrended DEM. Any stage can be modeled, not just the observed stage.

Geomorphic Change Detection

Geomorphic Change Results

Shear Zones

Habitat Suitability Model

HSI

Combine

Arithmetic Mean Geometric Mean Product Minimum Weighted Mean

Habitat Suitability Curves

Chinook Spawners

Source: <u>http://pubs.usgs.gov/sir/2004/5173/data/habitat_curves/</u> EA Engineering, Science and Technology Inc., 1991 a, 1991b; Rubin et al., 1991; R2 Resource Consultants, 2004

Maret TR, Hortness JE, and Ott DS. 2006. Instream flow characterization of upper Salmon River Basin streams, central Idaho, 2005: US Geological survey Scientific Investigations Report 2006-5230, 110 p

Habitat Suitability Model

HSI

Combine

Arithmetic Mean Geometric Mean Product Minimum Weighted Mean

Spatially Explicit Habitat Suitability

Habitat Measurements \rightarrow Carrying Capacity Topography (DEM) **Bed Roughness** Hydraulic Model & Drift Transport Net Rate Energy Intake **Carrying Capacity** the state of the s

Data Management

Automatically Generated Metrics

RBT-generated metrics

Geomorphic Change Detection Outputs

2D-Hydraulic Model Outputs

Hydraulic Modeling: Example Results 0 cm snatial resolution

On champmonitoring.org

Geomorphic Suitability Unit Tool (GUT)

Desktop-only

Habitat

Models

Metric Assessment

- variance decomposition is conducted annually to assess metric capability
- Other CHaMP metric assessment tools:
 - 10% repeat surveys
 - Crew variability study to quantify bias
 - Comparison of metrics shared with those of other regional monitoring programs

Upscaling

Geomorphic Reach Types

20 Kilometers

10

Confined

- Bedrock Canyon
- Confined Valley Boulder Bed
- Confined Valley Coarse Plane Bed
- Confined Valley Step Cascade
- Confined Valley With Floodplain Pockets
- Steep Alpine Headwaters
- Steep Ephemeral Hillslope
- Steep Perennial Headwaters

Partly Confined Valley

- Fan/Terrace Controlled Discontinuous Floodplain
- Low Sinuosity Planform Controlled Anabranching
- Low To Moderate Sinuosity Planform Controlled Discontinuous Floodplain
- Meandering Planform Controlled Discontinuous Floodplain

Laterally Unconfined

- Alluvial Fan
- Intact Valley Fill
 - Moderate To High Sinuosity Gravel/Sand Bed

Valley Confinement

Capacity for Adjustment

Stream Temperature Modeling

Hypothesis Testing – Data Driven Project Design

Existing Terrain

Proposed Terrain

Predicted Deposition

Erosion

Predicted

Wood Structures

Project Design – NREI Modeling

Pre-LWD Treatment

Post-Treatment

Contributors

Philip Bailey, North Arrow Research Pamela Nelle, Terraqua, Inc. Sara Bangen, Utah State University Gary O'Brian, Utah State University Chris Beasley, Quantitative Consultants, Inc. Shubha Pandit, Terraqua Inc. Boyd Bouwes, Watershed Solutions, Inc. Carl Saunders, Utah State University Edwin R. Sedell, Oregon Department of Fish and Nicolaas Bouwes, Eco Logical Research, Inc. Wildlife Stephen Fortney, Terragua, Inc. Kevin E. See, Quantitative Consultants, Inc. Jeremiah Heitke, Blue Heron Consulting Keith van den Broek, Terraqua, Inc. Andrew Hill, Eco Logical Research, Inc. Carol Volk, South Fork Research, Inc. Chris Horn, Oregon Department of Fish and Wildlife Eric Wall, Utah State University Martha Jensen, Utah State University Chris E. Jordan, Northwest Fisheries Science Center, Michael B. Ward, Terraqua, Inc. **NOAA-Fisheries** Nicholas Weber, Eco Logical Research, Inc. Casey Justice, Columbia InterTribal Fish CommissionSeth White, Columbia InterTribal Fish Commission David P. Larsen, Pacific States Marine Fisheries Joe Wheaton, Utah State University Commission Kristina McNyset, NOAA-Fisheries

Matt Nahorniak, South Fork Research, Inc.

ettaque sulla

Thank you!

Questions?

Backup slides

Classification Tree (Partly Confined)

(Stage 1)

RBT metrics

- Site Length (centerline)
- Site Length (Thalweg)
- Sinuosity
- Wetted width
- Bankfull width
- Bankfull Channel Capacity
- Area Sum
- RP100
- Pool tail crest depth
 average
- Pool max depth average
- Average Bankfull elevation
- Average channel capacity
- Average cross section area
- Average rectangular cross section area
- Site topographic gradient
- Site water surface gradient
- Site area wetted
- Site area bankfull
- Wetted volume
- Bankfull volume
- Detrended DEM standard deviation
- Water depth standard deviation

- For Each Channel Unit
 - Area
 - Volume
 - Count
 - Frequency
 - Spacing
 - Percent of site
 - Average Max Depth
 - Average Depth at Thalweg Exit
 - Average Residual Depth
- For Each Tier 1 and Tier 2 Channel Unit Type
 - Area
 - Volume
 - Count
 - Frequency
 - Spacing
 - Percent of site
 - Average Max Depth
 - Average Depth at Thalweg Exit
 - Average Residual Depth

GCD metrics

- Raw area of erosion
- Thresholded area of erosion
- Percent of area of interest with detectable change
- Total net volume of difference
- Total net volume of difference +/- error
- Average net thickness of difference
- Average net thickeness of difference +/- error
- Average net thickness of difference with detectable change
- Average net thickness of difference with detectable change +/- error

Net Rate of Energy Intake Model

Encounter rate:

drift density (f(water velocity, invertebrate abundance)) foraging volume (f(reaction distance, water velocity, ...))

Fig. 3 – Plan view of the foraging model showing the geometry of prey interception. The fish is assumed to