

Rapid Causal Assessment Screening Tool

Jerry Diamond, Ann Roseberry Lincoln, Lei Zheng, Erik Leppo, Chris Wharton, Clint Boschen - Tetra Tech Ruth Kolb - City of San Diego

Goals

 Develop a user-friendly tool to screen sites for likely causes of biological impairment

Incorporate current science in the approach

- New way of establishing appropriate comparator sites
- Species tolerance information for certain types of stressors
- Flow ecology models and indicators of hydrologic alteration
- Indicators of physically modified sites

Incorporate as much available data as feasible

Objectives

- Rapidly rule out unlikely stressors
- Include relevant analyses that help identify likely causes of biological impairment
- Provide an objective tool to help prioritize sites where restoration efforts are best spent
- Provide a tool that could help identify vulnerable sites in need of further protection

Causal Assessment Screening Approach

Tool components

Required data

- Predictor (geological, climatological, etc.) (StreamCat, CSCI predictors)
- Stressor (water chemistry, physical habitat, flow & modification status)
- Response (biological indices, metrics, taxa lists)
- Supportive (stressor-specific tolerance values, SSDs, relevant criteria)

Required operations

- Step 1: Cluster reaches and identify reach cluster for target site(s)
- Step 2: Identify potential stressor(s)
- Step 3: Graphical analysis of stressors vs. responses
- Step 4: Generate weight-of-evidence/graphical & summary output

Step 1: Define the Case

Identify target sites

- What sites might be target sites?
 - Sites on impaired reaches from the 303(d) list
 - Specific sites with low CSCI scores
- What data are required from the site?
 - Location (reach ID)
 - Available stressor and biological data
 - Includes taxa lists, calculated metrics, and calculated indices

Cluster sites

Identify sites with similar biological expectations to the target

Define the Case

- Identify target site(s)
- Identify cluster membership

Step 1. Clustering Process

Candidate data for clustering

 NHD+ version 2, all reaches within Southern California/Northern Baja Coast ecoregion (Ecoregion 85)

StreamCat predictive data

- Reach characteristics (latitude, longitude, watershed area, elevation, slope)
- Hydrological (baseflow)
- Climatological (temperature, precipitation, runoff)
- Geological (soil type, lithology)

Optional data

- Land cover (percent agriculture, forest, urban, impervious surface
- Modifications (dams, mines, road crossings)

Variable Selection

Numeric variables

- Principal component loadings
- Select number of axes
 - 13 with land cover, 9 without
- 90% variance explained
- Select highest loading for each axis

Categorical variables

- Rock
- Soil
- Landscape position

Clustering method

Calculate distance (R cluster)

- Numeric variables interval scaled variables
- Categorical variables Gower's distance

Identify clusters

- Hierarchical clustering (connectivity-based)
- K-means clustering (centroid based)

Cluster analysis results – reaches

Step 2. Compare stressors to cluster data

List Candidate Causes

- Compare site stressor data to distribution of stressor in cluster
- Evaluate modification & flow status
- Add listing reasons

Step 2: Compare stressors to cluster data

- Stressors with values in the extremes of the stressor distribution for the cluster
 - ≤ 5th percentile
 - ≥ 95th percentile
 - Others as specified by the analyst

Physical modifications

- Based on physical habitat data OR
- Based on location on a modified or likely modified stream reach

Hydromodification

- Based on differences between "reference" and current flow status
- "Listed pollutants (303(d) list)"

Standardized Values

Step 3: Stressor-response analysis

Evaluate Data

• Perform regressions of stressor-response data

- Cluster-level
- Ecoregion-level
- Incorporate other relevant, available data

Step 3: Stressor-response analysis

- Graphical analysis
- Stressor-specific data
 - Species tox values
 - Species-sensitivity distributions
 - Tolerance values
 - Conductivity
 - Fine sediment
 - Nutrients

TP_P_uf_mg_L (log transformed)

Step 4: Summarize weight-of-evidence

Identify Probable Causes

- Evidence supports
- Evidence refutes
- Evidence equivocal

Provide preliminary scores

- Report either: ↑ (supports), ↓ (refutes), or ↔ (equivocal); not detailed CADDIS scores
- Not all lines of evidence can be evaluated

Causal Considerations	Conductivity			TSS			Turbidity		
	CSCI	% EPT	% intol	CSCI	% EPT	% intol	CSCI	% EPT	% intol
Co-occurrence (spatial & temporal)	1	1	1	1	¢	1	ţ	ţ	Ļ
Biological Gradient	1	1	Ļ	1	1	Ļ	1	1	Ļ
Consistency of Association	1	1	1	1	1	1	1	ſ	1

Current Status

Proof of concept completed

Prototype tool in development

- Refining clustering methods and data
- Refining graphical analysis options
 - Confidence intervals vs predictions
- Identifying and incorporating additional supporting data (criteria, SSDs, stressor-specific tolerance values)
- Formulating report formats and other requirements
- Designing user interface

THE END

Extra slides follow

How can we streamline?

- Identify steps that can be performed on many sites at once
- Eliminate lines of evidence that provide limited value in the analysis, often due to lack of information
 - Experimental evidence (on site media or from field experiments)
 - Specificity of cause (except in limited cases)
 - Predictive performance
- Provide specific tools that are valuable as diagnostic indicators for particular stressors, e.g.:
 - Conductivity-specific tolerance values
 - Species-sensitivity distributions

Stressor Identification steps

- Step 1: Define the case
- Step 2: List candidate causes
- Step 3: Evaluate data from the case
- Step 4: Evaluate data from elsewhere
- Step 5: Identify probable causes

Obtain required data

Base layer: NHD+ version 2

Predictor data

- StreamCat
- CSCI Predictors

• Analysis data

- CEDEN (water quality, chemistry, physical habitat, biology)
- Tt's modified streams
- SCCWRP's flow ecology data (modeled reference)
- Tt's perennial/non-perennial streams (current)
- Additional relevant data
 - Tolerance values, SSDs, criteria, etc.

Cluster analysis results – catchments

Match target sites to reach clusters

Show target sites on a map relative to cluster

Show measures of similarity/dissimilarity:

- Target site "defining characteristics" compared to most similar and most dissimilar reaches
 - What are "defining characteristics?"
- Prefer graphical output
 - Bar charts for specific variables
 - Maps showing gradients for specific variables

Flow and modified stream status

Is the reach considered modified or likely modified?

- Use modified stream GIS layer/COMID
- Identifies reaches likely to be physically modified due to dams, channelization,

• Has the flow regime changed?

- SCCWRP's flow ecology model outputs "reference" flow status
- Tt's flow status screening tool estimates current flow status
- If these don't agree, the flow regime may have been modified and hydromodification should be listed as a potential stressor

