Riparian restoration scale and stream benefits in California rangelands

Bronwen Stanford Erika Zavaleta University of California, Santa Cruz

Riparian tree restoration

- Widely used in agricultural systems
- Potential to restore ecological function
 - Biogeochemical processing
 - Habitat provision
 - Connectivity

Greater extent of shading

- Temperature regulation
- Channel complexity
- Shift from algae to leaf litter
- Longitudinal connectivity

Condition of surroundings

>30m

Wider buffer zone

- Nutrient processing
- Water filtration
- Lateral connectivity

 Which aspects of stream condition can be improved with restoration of narrow buffers?
Do longer buffer lengths result in greater improvements?

- Consistent land use: rangelands
- 2nd-4th order streams
- Restoration completed >7 years ago

Press Der

Treatment (distance along buffer)

- 25 sites nested in 8 streams
- Primary predictor variable is buffer length upstream linear length with riparian trees

• Abiotic

- Channel form
- Substrate size (D50)
- Dissolved solids (specific conductivity)
- Water temperature
- Biotic
 - Aquatic vegetation (% cover)
 - Organic debris and wood
 - Benthic macroinvertebrates
 - Density \downarrow
 - Richness ↑
 - Percent sensitive \uparrow -California Aquatic Bioassessment Laboratory Network

Upstream of buffer

Within buffer

Upstream of buffer

Within buffer

Response of in-stream conditions to

Watershed condition (hydrology, land cover) Riparian buffer length Riparian buffer presence

Stream condition variable but below reference

Site

No difference between 2015 and 2016 data

Watershed scale controls water quality

Sensitive = tolerance level 0 - 2 out of 10, CAMLnet 2003

Sensitive = tolerance level 0 - 2 out of 10, CAMLnet 2003

Similar responses

- Density (inverse)
- Temperature (inverse)

Buffer presence increases in-stream wood

Buffer presence increases in-stream wood

1. Response controlled by watershedscale

(controls including land use, geology)

3. Buffer presence

2. Buffer length

Proportion sensitive insect families Insect abundance Temperature

4. Patterns vary by site

Substrate size Insect family richness

Conclusions

- BUFFERS MATTER even narrow, short buffers
- Longer buffers (>500m) can be better than shorter
- Recovery is constrained by watershed condition
- Patterns robust across contrasting rainfall years

Thanks to David Herbst Karen Holl Liam Zarri Jessica Beatty UCSC interns

bstanfor@ucsc.edu

UNIVERSITY OF CALIFORNIA

Year Two - 2016

- Confirmation of year one patterns
- Some reversals stronger relationship of buffer length and richness
- More data to come

2016

NMDS1

Stream condition variable but below reference

