Use of RIVPACS-type Multitaxon Distribution Models to Assess Alterations in Regional Biodiversity

Charles Hawkins

Department of Watershed Sciences

Utah State University

Traditional application of RIVPACS models

Traditional RIVPACS-type site-specific assessments

What should be there (E)?

What is actually there (O)?

E = 8 species O = 3 species O/E = 0.38

NARS scales up site-specific index values to quantify regional conditions

But what about the status of individual species?

With RIVPACS outputs we can also compare observed frequencies of occurrence with expected ones.

Examples from North Carolina and the Mid-Atlantic Highlands

Multitaxon distribution models reveal severe alteration in the regional biodiversity of freshwater invertebrates

Charles P. Hawkins^{1,3} and Lester L. Yuan^{2,4}

Freshwater Science. 2016/ 35(4) – online open access Google - DOI: 10.1086/688848 or

https://www.researchgate.net/profile/Charles_Hawkins

Model Predictors

North Carolina Mid-Atlantic Highlands Latitude **Flevation** Day of Year Longitude Elevation Catchment Area Stream Width Carbonate Chemistry Stream Depth Ecoregion % Boulder % Rubble Day of Year

How well can we predict F_e ?

о 202 NC validation 30 О о samples. о 0 0 О 25-00 0 Used taxa \geq 5 sites. 00 Ο 000 00 0000 00 0000 00 20 0000000 D_i values for 350 •0 000000 000000000 Count taxa. 000000000 000000000 15-000000000 •000000000 00000000000 Black dots = 66 taxa0000000000 •• 000000000000000 (19%) that were 10 00000000000000 000000000000000 over predict under predict either over- or •00000000000• ••0000000000000 under-predicted. ••0000000000000 5-0000000000000000000 000000000000000000000 Under-prediction 2X more than over--0.10 -0.050.050.10 0.00prediction. 12 $F_o - F_e$

Example Taxa

Taxon	D _i
Acroneuria abnormis	-0.26
Isonychia	-0.20
Polycentropus	-0.33
Hexatoma	-0.27
Rheocricotopus robacki	+0.28

Taxon	D _i
Ephemerella	-0.35
Baetis	-0.33
Stempellinella	-0.39
Epeorus	-0.47
Hexatoma	-0.26

Most common taxa were decreasers!

	North Carolina			Mid-Atlantic Highlands		
Group	# Taxa	%D	%	# Taxa	%D	%
Total	547	50	26	251	36	35
Plecoptera	46	74	0	22	68	5
Trichoptera	102	79	7	29	52	21
Ephemeroptera	91	67	10	23	61	13
Diptera	174	36	36	115	30	34
Coleoptera	28	46	36	14	29	57
Odonata	29	2	59	9	11	44
Oligochaeta	25	16	56	18	11	72

So What? / Now What?

- Comparisons of F_e and F_o should be a standard part of NARS summaries of biological condition.
- *D_i* analyses provide a needed and direct link between CWA and ESA and also informs CBD targets.
- Technical stuff:
 - RIVPACS is a good start but methods that adjust for imperfect detection may be needed.
 - DNA-based IDs could provide needed 'species' level resolution and improve detection estimates.
- California has the data and tools needed to estimate D_i for hundreds of stream invertebrates – who will Pete have do it?

