PREDICTING NATURAL FLOWS FOR CA STREAMS

Daren Carlisle David Wolock Mike Wieczorek

Larry Brown

Jason May

Jeanette Howard Julie Zimmerman Ted Grantham

US Geological Survey, The Nature Conservancy, UC

Darkelov

QUESTIONS:

*What are the expected natural flows?

*How do natural flows vary on seasonal and annual basis?

APPROACH

- Predict monthly flow statistics
- Empirical models (vs. process-based)

EMPIRICAL MODELS

- · "Reference" watersheds
 - minimal human influence on hydrology
 - streamflow measurements (USGS)
- Robust modeling technique for "big data"

2 PROJECT PHASES

• PHASE I

- use previously ID'd reference sites
- model monthly mean flow
- evaluate various modeling approaches

PHASE 2

- ID additional reference sites
- model additional flow statistics
- predict natural conditions for ALL CA stream segments (NHDPlus v2)

Phase I Hydrologic Reference Sites

N = 163

Regionalization

"North Coastal Mts"

"Interior Mts"

"Xeric"

Model Performance

Phase I: Model Comparisons 5 4 3 2 boosted linear regression neural support cubist

mean O/E

PRELIMINARY, SUBJECT TO REVISION

net

random forest

Phase I: Model Performance

OBTAIN MORE REFERENCEWATERSHEDS

- HISTORICAL REFERENCE
 - Inactive gages with >5 yrs record (1950+)
- PARTIAL-RECORD REFERENCE
 - Current "non-reference" gages with records predating human influence

Reference Watershed Screening Process (Historical Reference)

- 1. All USGS stream gages in California (~1400)
- 2. 5+ yrs daily flow record since 1950
- 3. Examine monthly flow data
- 4. Verify lack of urban or agric.land cover (1970+) & dams (1950)

Reference Watershed Screening Process (Historical Reference)

Reference Watershed Screening Process (Historical Reference)

Reference Watershed Screening Process (Partial Record)

- Examine USGS Annual Data Reports, other info about begin date of hydrologic modification
- 2. Examine monthly flow data
- 3. Verify lack of urban or agric.land cover (1970+) & dams (1950)

Reference Watershed Screening Process (Partial Record)

Phase I Hydrologic Reference Sites

N = 163

EUSGS

Performance, Phase 2 (xeric region)

Cucamonga Creek

Frequency April natural flows > 0

0 to 0.33 0.34 to 0.66 0.67 to I

Under natural conditions, 19% of stream segments have flow in April

Prop. years with April flow

Cucamonga Creek

Apply models to gaged sites with biological assessment data

March flow alteration (O/E)

Caveats and Limitations

- Limited dimensions of streamflow
 - monthly mean
 - monthly maximum
 - monthly minimum

Model performance varies by month, region, & flow dimension

 Underlying limitation of spatial coverage of weather stations and stream gages

Time Line

2017 - final report Phase 2

2016 Sept: natural flow predictions for all CA stream segments

2015 - begin Phase 2

- draft report on Phase I

2012 - begin Phase

Example Output

	А	Б		U			u	п
1	COMID	AREA	Year		P10_Q	P50_Q	P90_Q	Estimated.Q
2	123456789	41.2	1958	1	1.61	5.19	13.62	6.55
3	123456789	41.2	1959	1	2.17	4.29	16.34	7.28
4	123456789	41.2	1960	1	1.46	3.76	16.57	6.94
5	123456789	41.2	1961	1	1.51	3.51	12.34	5.71
6	123456789	41.2	1962	1	1.46	4.24	13.26	6.09
7	123456789	41.2	1963	1	1.67	3.63	16.50	6.75
8	123456789	41.2	1964	1	1.14	2.94	13.44	5.50
9	123456789	41.2	1965	1	1.51	4.27	13.13	6.28
10	123456789	41.2	1966	1	2.29	8.40	18.94	10.25
11	123456789	41.2	1967	1	2.23	7.28	22.46	10.10
12	123456789	41.2	1968	1	1.79	4.89	13.35	6.49
13	123456789	41.2	1969	1	5.68	17.77	33.03	19.28
14	123456789	41.2	1970	1	2.17	5.46	16.90	8.09
15	123456789	41.2	1971	1	2.12	7.97	19.10	9.96
16	123456789	41.2	1972	1	1.48	4.43	13.60	6.68
17	123456789	41.2	1973	1	1.57	5.60	14.93	7.61
18	123456789	41.2	1974	1	3.61	8.58	25.37	11.71
19	123456789	41.2	1975	1	1.34	3.94	12.34	5.54
50	123456789	41.2	1976	1	1.23	2.99	16.05	5.92
21	123456789	41.2	1977	1	1.83	4.27	16.20	7.05
22	123456789	41.2	1978	1	3.45	8.92	29.17	13.92
23	123456789	41.2	1979	1	3.95	9.09	26.96	12.46
24	123456789	41.2	1980	1	2.74	7.16	23.55	9.95
25	123456789	41.2	1981	1	2.07	5.16	16.69	7.72
26	123456789	41.2	1982	1	2.07	5.99	15.49	7.55
27	123456789	41.2	1983	1	3.45	8.57	23.90	11.02
28	123456789	41.2	1984	1	2.20	5.08	12.34	6.47
29	123456789	41.2	1985	1	1.93	6.56	14.63	8.50
30			1986		1.53	3.90		
21	123456780	88 5	1050	1	1 73	7 74	35 03	14 56