Statewide Efforts to Develop Biologicallyrelevant Instream Flow Recommendations

Integrating hydrologic and geomorphic characteristics with river ecosystem functions to estimate environmental flow targets at the reach scale and planning level

POLICY

Eric Stein Southern California Coastal Water Research Project

FLOW

science for a changing world

FORM

FUNCTION

Hydrology is an Integrative Driver of Stream Health

If you can mitigate hydrologic alteration, you'll solve a lot of other problems

Floodplain encroachment

Water quality basins

Retention/detention

Los Angeles Stormwater Capture Master Plan

California Environmental Flows Framework

Potential Applications

- MS4 effects of stormwater management practices on instream biology
- **Bio-integrity** causal assessment, hydrology is a key factor affecting biological condition
- **401** effects of proposed projects on stream condition, mitigation planning
- **Hydromodification** hydrologic change is highly correlated with hydromodification effects
- **NNE** flow management is key factor influencing nutrient effects on biological endpoints
- **IWRM** understanding biological effects of water management practices
- Climate change understanding potential role of climate induced flow changes (short and long term) on biological condition
- SGMA ensuring groundwater management practices protect instream beneficial uses

Setting Flow Targets

Change in flow regime

Many Technical Approaches

r Flow or Water Level

California Stream Condition Index

0.0

0.2

0.4

HighFlows

Allowable

1.2

0

0đ

Νον

Dec

Jan

Feb

1.4

March streamflow alteration (observed / expected)

0.8

1.0

0.6

Functional Flows - Yarnell et al. 2015

Mar

Apr

May

Jun

Jul

Dry-season baseflow

Sep

Aug

ELOHA -Carlisle et al. 2015

Considerations for In-stream Flow Targets

- 1. Scientifically defensible
- 2. Appropriate for stream type
- 3. Relevant to biological endpoints
- 4. Explainable/understandable
- 5. Implementable relative to management options
- 6. Amenable to monitoring
- 7. Scalable and consistent for other basins

Key Challenges

- How to deal with heterogeneity in the landscape?
- How to apply flow targets to ungaged streams?
- How to select the most appropriate endpoints?
 - Flow metrics
 - Biological metrics
- How to inform management decisions?

Stream Classification

Catchment Properties

Rainfall Patterns

Geology

Soil Properties

Natural Flow Class

(SM) Snowmelt
(HSR) High-volume snowmelt and rain
(LSR) Low-volume snowmelt and rain
(RSG) Rain and seasonal groundwater
(WS) Winter Storms
(GW) Groundwater
(PGR) Perennial groundwater and rain
(FER) Flashy, ephemeral rain
(HELP) High elevation & low precipitation
(LELP) Low elevation & low precipitation

California Case Study Examples

- Functional Flows Method
 - ex: Sierran Rivers

Flow-Ecology Approach (ELOHA)
 – ex: Southern California Streams

Modified Percent of Flow Approach

 – ex: North Coast Streams

Functional Flows Approach (fish)

- I. Fall Flushing Flows
- II. Winter Floods
- III. Spring Recession Flows
- IV. Summer Low Flows

Season	Function	Season	Flow Metrics	Frequency (duration)
Fall	Cue fish migration	Sept 1 - Nov 30	peak magnitude, percent over baseflow	Annually (2 weeks)
Winter	Clean spawning gravels	Dec 1 – Apr 1	Peak magnitude, recurrence interval	Once every 5 years (2-4 weeks)
Spring	Cue and support spawning	March 1 – May 30	Recession rate, starting magnitude	Annually (6-8 weeks)
Summer	Oversummering habitat	Apr 1-Sept 30	Magnitude, recurrence interval	annually

Geomorphic Effects on Functional Flows

1. LOW-ORDER WIDE VALLEY

4. ANASTOMOSING CHANNEL

2. POOL-RIFFLE

3. PLANE BED

5. UPLAND MEADOW

ELOHA Framework

classification

Fig. 1 The ELOHA framework (taken directly from Poff and others 2010)

Relate biological alteration (ΔB) to hydrologic alteration (ΔH) using a biological community approach

Features of ELOHA Approach

- Based on health of target biological community vs. a target species
- Provides a framework for balancing environmental flow needs with other water management needs
- Intended to be applied across geographic regions vs. at specific locations

Biological Response Curves

Develop curves based on ecological meaningful relationships: Index, metrics, traits, individual spp For several key hydrologic metrics

Relationships that could be used to set thresholds that limit biological responses

Relationships Developed by applying modeled hydrologic change to 800 bioassessment sites in S. CA

Modified Percent of Flow

- Prescribes cumulative maximum daily diversion volume
 - Variable diversion rate
- Maximum diversion based on percent change in stream stage
 - < 5% decrease in stage</p>
 - 10% reduction is streamflow

DRAFT TECHNICAL REPORT [] MAY 2016

A Regional Strategy for Protecting Instream Flows in North Coast California Watersheds

PREPARED FOR

Salmon and Steelhead Coalition CalTrout The Nature Conservancy Trout Unlimited PREPARED BY

William J. Trush, Humboldt State University Darren W. Mierau, California Trout Gabriel J. Rossi, UC Berkeley

Roadmap for the Session

- Setting regional targets based on flow-ecology relationships (ELOHA) – *Raphael Mazor*
- Managing functional flows in regulated rivers (functional flows) – *Sarah Yarnell*
- Assessing hydrologic changes in nation's rivers (flow alteration) *Ted Grantham*
- Developing a coordinated flow strategy for CA (statewide framework) – *Jeanette Howard*