Sampling Surface and Subsurface Particle-Size Distributions in Wadable Gravel- and Cobble-Bed Streams for Analyses in Sediment Transport, Hydraulics, and Streambed Monitoring

Kristin Bunte
Steven R. Abt
Abstract

This document provides guidance for sampling surface and subsurface sediment from wadable gravel- and cobble-bed streams. After a short introduction to streams types and classifications in gravel-bed rivers, the document explains the field and laboratory measurement of particle sizes and the statistical analysis of particle-size distributions. Analysis of particle parameters, including shape, density, and bulk density are also discussed. The document describes the spatial variability of bed-material particle sizes as well as the horizontal and vertical structure of particle deposits. The discussion of sampling procedures and equipment helps the user to make appropriate selections that support the sampling objective. Sample-size estimates may be obtained from empirical data or computed from statistical relationships between sample size and accuracy. The document explains a variety of methods, their usage and prerequisites. A detailed discussion of sampling schemes guides the user to select appropriate spatial sampling patterns necessary to produce representative samples.

Keywords: Particle-size analysis, spatial variability of bed-material size, sampling procedures, sampling equipment, sample size, spatial sampling schemes.

Authors

Kristin Bunte is a Fluvial Geomorphologist and Research Associate at the Engineering Research Center, Department of Civil Engineering, Colorado State University. She received M.S. and Ph.D. degrees in geography from the Freie Universität Berlin in Germany.

Steven R. Abt is Professor and Associate Dean for Research and Graduate Studies, College of Engineering, Colorado State University, and a Professional Engineer. He received M.S. and Ph.D. degrees in civil engineering from Colorado State University.

You may order additional copies of this publication by sending your mailing information in label form through one of the following media. Please specify the publication title and number.

Telephone (970) 498-1392
FAX (970) 498-1396
E-mail rschneider@fs.fed.us
Web site http://www.fs.fed.us/rm
Mailing Address Publications Distribution
Rocky Mountain Research Station
240 West Prospect Road
Fort Collins, CO 80526

The use of trade or firm names in this publication is for reader information and does not imply endorsement by the U.S. Department of Agriculture of any product or service
Sampling Surface and Subsurface Particle-Size Distributions in Wadable Gravel- and Cobble-Bed Streams for Analyses in Sediment Transport, Hydraulics, and Streambed Monitoring

Kristin Bunte
Steven R. Abt

Prepared in support of the National Stream Systems Technology Center mission to enable land managers to “secure favorable conditions of water flows” from our National Forests.
Preface

The Stream Systems Technology Center of the Rocky Mountain Research Station, U.S. Forest Service, initiated the generation of this compendium of methods because National Forest System streams are dominated by gravel caliber material and sound guidelines for characterizing the bed material of gravel- and cobble-bed streams are needed by hydrologists, fisheries and aquatic biologists, and geomorphologists. This project was initiated to meet Forest Service needs and at the same time provide an encyclopedia of approaches as a basis for the Federal Interagency Sedimentation Project Task Committee to adopt selected methods as standard approaches in the future. Work on this reference was initiated by an ad hoc team convened by Larry Schmidt of the Stream Systems Technology Center. The team included Ron Copeland, U.S. Army Corps of Engineers, Phil Zrymiak, Environment Canada, Randy Parker, U.S. Geological Survey, and Jim Fogg, Bureau of Land Management.

Streambed analysis and sampling in gravel-bed rivers have received increasing attention, especially over the last few years. Publishing activity reflects this trend. During the late 1970s and the 1980s, one or two papers were published per year on gravel-bed sampling procedures, sample size estimates, or sampling schemes. This number has risen to about five to seven papers per year during the 1990s. Despite the interest in the topic, a comprehensive compilation of these approaches is lacking and users need a reference to guide them through the multi-layered aspects of bed-material sampling.

The work presented is intended to fill this gap. Obviously attempting to comprehensively synthesize a rapidly evolving technology is impossible. This effort represents our knowledge at this point in time. Consequently, the user must exercise judgment in applying the approaches provided herein to specific sampling projects. To make the best choice of methods, the user should have knowledge about gravel-bed rivers and the processes forming them. The selection of a sampling program (where, how, and how much to sample) significantly influences the outcome.

Acknowledgments

This publication was made possible through a partnership between the Rocky Mountain Research Station, National Stream Systems Technology Center and the Colorado State University, Engineering Research Center. The authors appreciate the helpful contributions and assistance of John Gray, Tom Lisle, Sue Hilton, Dave Dawdy, Paul Bakke, Mike McNamara, Mark Weinhold, Mohammed Samad, and Pete Klingeman. A special thanks to John Buffington, John Potyondy, and John Ritter for their significant effort in carefully reviewing this document and to Kurt Swingle and Louise Kingsbury who helped edit the final manuscript.
Contents

Preface ... i
Acknowledgments ... i
Copyrighted Materials ... x
List of Notations and Units ... xiv

1. Introduction ... 1
1.1 Gravel- and cobble-bed streams: Distinctions from other streams 1
1.2 Bed-material sampling and guidelines ... 2
1.2.1 Aspects of bed-material sampling in gravel- and cobble-bed streams 2
1.2.2 Interdependency between sampling methods and study objectives 4
1.2.3 Deficiencies in existing guidelines ... 4
1.2.4 What these guidelines are intended to do .. 5
1.2.5 Guidelines are no substitute for experience ... 5
1.3 Classification of gravel- and cobble-bed streams ... 6
1.3.1 The Montgomery-Buffington stream classification ... 6
1.3.2 The Rosgen stream classification ... 7
1.3.3 Differences between the Rosgen and the Montgomery-Buffington classifications ... 9
1.3.4 Sediment source: self-formed versus relict/non-fluvial streams 12
1.3.5 Wadable and non-wadable streams .. 13

2. Particle analysis ... 14
2.1 Size analysis .. 14
2.1.1 Particle axes .. 14
2.1.2 Particle sizes and size classes ... 16
2.1.2.1 The Wentworth scale of particle sizes .. 17
2.1.2.2 Particle size in ϕ-units .. 17
2.1.2.3 Particle size in ψ-units .. 19
2.1.3 Sieving and manual measurements of particle size ... 20
2.1.3.1 Square-hole sieves ... 20
2.1.3.2 Relation between b-axis size and square-hole sieve sizes 21
2.1.3.3 Round-hole sieves .. 23
2.1.3.4 Center of class and mean particle b-axes length per size class 23
2.1.3.5 Comparison of sieve results using round-hole and square-hole sieves ... 24
2.1.3.6 Templates .. 25
2.1.3.7 Rulers and calipers ... 27
2.1.3.8 Pebble-box ... 28
2.1.3.9 Lab sieving .. 30
2.1.3.10 Field sieving, weighing, volume determination, and counting 32
2.1.4 Computation of the particle-size distribution ... 38
2.1.4.1 Particle-size frequency and cumulative frequency distribution 38
2.1.4.2 Percentiles and their computation ... 40
2.1.4.3 Testing for various distribution types ... 42
3.4.5 Cobble embeddedness and protrusion .. 139
3.4.6 Gravel sheltered in pockets ... 141
3.4.7 Implications of bed-surface structures for bed-material sampling 141

4. Sampling procedures and equipment ... 143

4.1 Surface sampling ... 144
4.1.1 Pebble counts along transects ... 146
 4.1.1.1 Heel-to-toe walks and sampling along a measuring tape 146
 4.1.1.2 Sources of errors in pebble counts ... 148
 4.1.1.3 Operator bias against small particles .. 149
 4.1.1.4 Operator bias against and towards cobbles and boulders 154
 4.1.1.5 Statistical detectability of operator bias 156
 4.1.1.6 Sampling frame for bias reduction in particle identification 158
 4.1.1.7 Measuring, recording and analyzing pebble count data 164

4.1.2 Grid sampling .. 166
 4.1.2.1 Grid sizes and spatial scale ... 166
 4.1.2.2 Photographic grid counts ... 166

4.1.3 Areal sampling ... 170
 4.1.3.1 Manual sampling ... 171
 4.1.3.2 Adhesive sampling ... 172
 4.1.3.3 Photographic areal sampling ... 178
 4.1.3.4 Photographic (areal) analyses in other scales 182
 4.1.3.5 Visual particle-size estimates ... 184

4.2 Volumetric sampling .. 188
4.2.1 Armor layer ... 188
 4.2.1.1 Definition and description ... 188
 4.2.1.2 Thickness and sampling depth of the armor layer 188

4.2.2 Subsurface, subarmor, and unstratified bed material 191
 4.2.2.1 Definition and description ... 191
 4.2.2.2 Sampling depth to avoid bias against large particles 192

4.2.3 Procedures and sampling dimensions for dry beds 195
 4.2.3.1 Tools for shoveled samples ... 195
 4.2.3.2 Sample dimensions for shoveled samples in unstratified bed material 195
 4.2.3.3 Surface pebble count on subsurface sediment 197

4.2.4 Procedures and equipment for submerged conditions 198
 4.2.4.1 Shovels ... 199
 4.2.4.2 Mesh-bag scoop .. 200
 4.2.4.3 Grab samples (US RBMH-80) ... 201
 4.2.4.4 Backhoe .. 203
 4.2.4.5 Pipe samplers and the McNeil sampler 203
 4.2.4.6 Barrel samplers ... 206
 4.2.4.7 Three-sided plywood shield .. 209
 4.2.4.8 Freeze-cores .. 210
 4.2.4.9 Resin cores .. 213
 4.2.4.10 Hybrid samplers: combined pipe and freeze-core sampler, or excavated freeze-cores ... 213
4.2.5 Volumetric sampling in deep water ... 215

4.3 Conversion of sample distributions: grid - areal - volume, and number - weight ... 216

4.3.1 Voidless cube model ... 218

4.3.2 Modified cube model ... 224

4.3.3 Conversion based on computed penetration depth ... 226

4.3.4 Split plane surface model ... 227

4.4 Combination of two particle-size distributions .. 230

4.4.1 Rigid combination .. 230

4.4.2 Flexible combination ... 233

4.4.3 Adjusting frequency distributions .. 237

4.5 Recording field results .. 240

5. Sample size .. 241

5.1 Factors affecting sample size .. 242

5.2 Pebble counts: number-based sample-size recommendations 245

5.2.1 General form of number-based sample-size equations 245

5.2.2 Prespecified error around the mean ... 249

5.2.2.1 Absolute error around the mean in \(\phi \)-units .. 249

5.2.2.2 Percent error around the mean in mm ... 250

5.2.2.3 Percent error around the mean in \(\phi \)-units ... 252

5.2.2.4 Percent error in \(\phi \) and mm for approximate lognormal distributions 253

5.2.2.5 Limited number of particles available for sampling (\(N \neq \infty \)) 254

5.2.2.6 Comparison between sample-size equations for errors around the mean 256

5.2.2.7 Effect of bed-material sorting and error on sample size 258

5.2.2.8 Influence of multiple operators on sampling accuracy 259

5.2.2.9 Computation of sample size and error in the field 260

5.2.3 Specified error for all percentiles .. 261

5.2.3.1 Two-stage sampling approach (ISO 1992) .. 261

5.2.3.2 Binomial distribution approach (Fripp and Diplas 1993) 264

5.2.3.3 Multinominal distribution approach (Petrie and Diplas 2000) 265

5.2.3.4 Bootstrap approach: no assumed distribution type (Rice and Church 1996b) 268

5.2.3.5 Summary: the relation between sample size and error 275

5.2.4 Detectability of change in percent fines (Bevenger and King 1995) 277

5.2.4.1 Sample-size determination from diagrams ... 278

5.2.4.2 Sample-size computation ... 281

5.2.4.3 Operator error in the percent fines adds to the statistical error 283

5.3 Areal sampling: area-based sample-size recommendations 283

5.3.1 \(D_{\text{max}} \) and geometrical considerations ... 284

5.3.2 Two-stage sampling: specified error around the median 285

5.3.3 Multinominal approach .. 287

5.4 Volumetric sampling: mass-based sample-size recommendations 288

5.4.1 Sample mass as a function of largest particle size ... 289

5.4.1.1 Sample mass as cubic functions of \(D_{\text{max}} \) 290
5.4.1.2 National standards: non-cubic functions of D_{max} particle size 295
5.4.1.3 Error of the entire particle-size distribution due to the presence or absence of particles from the largest size class .. 298
5.4.1.4 Sample-mass reduction: truncation and readjustment at the coarse end ... 299

5.4.2 Sample mass as a function of acceptable percentile errors .. 301
5.4.2.1 Two-stage sampling approach (ISO 1992) ... 301
5.4.2.2 Computerized two-stage sampling (Hogan et al. 1993) ... 304

5.4.3 Analytical computation of sample mass (Ferguson and Paola 1997) 308
5.4.3.1 Sample mass for bias avoidance .. 311
5.4.3.2 Sample mass for specified acceptable error .. 315

5.4.4 Comparison of error curves for low, central, and higher percentiles 320
5.4.4.1 Symmetrical parent distributions .. 320
5.4.4.2 Asymmetrical parent distributions skewed towards a fine tail 322

6. Spatial sampling schemes ... 323

6.1 Terminology and sampling principles ... 325
6.1.1 Stream types and stream morphology .. 325
6.1.2 Length of the sampling reach .. 325
6.1.3 Homogeneous versus heterogeneous gravel deposits ... 326
6.1.4 Pilot studies .. 326
6.1.5 Spatial aspects of pebble counts .. 327
 6.1.5.1 Minimum sampling point spacing .. 327
 6.1.5.2 Number of sampling points .. 327
 6.1.5.3 Minimum sampling area .. 328
 6.1.5.4 Measurement of particle sizes in pebble counts .. 328
 6.1.5.5 Recording pebble count data .. 329
6.1.6 Spatial aspects of volumetric sampling ... 329
 6.1.6.1 Layers to be sampled .. 329
 6.1.6.2 Relation between surface and subsurface sediment size .. 330
 6.1.6.3 Feasibility and the statistical relationship between mass of subsamples, total sample mass, and number of sampling locations 331

6.2 Spatially integrated or unstratified pebble counts (reach-averaged sampling) 332
6.2.1 Near-homogeneous reaches: paced transects, transects along measuring tapes, and an unplanned zigzag course ... 333
6.2.2 Long and relatively homogeneous stream sections: planned zigzag course 334
6.2.3 Heterogeneous reaches and complex streambeds ... 336
 6.2.3.1 Grid sampling and lay-out of the grid .. 336
 6.2.3.2 Grid spacing and areal extent of the sampling grid .. 338

6.3 Spatially segregated pebble counts (sampling each unit individually) 340
6.3.1 Geomorphologically stratified sampling ... 340
 6.3.1.1 Characterization and delineation of geomorphological units 341
 6.3.1.2 Grid sampling on individual geomorphological units ... 341
 6.3.1.3 Sampling on riffles only .. 342
 6.3.1.4 Proportional sampling on long reaches .. 343
6.3.2 Sedimentary stratified sampling

6.3.2.1 Visual delineation of sedimentary units (facies or patches) based on estimates of percentile particle sizes

6.3.2.2 Visual delineation based on a two-level characterization of particle sizes

6.3.2.3 Statistical delineation from systematic grid data

6.3.2.4 Strategies for sampling within delineated facies units

6.3.2.5 Area-weighted reach-averaged particle-size distribution from stratified sampling

6.4 Spatially integrated volumetric sampling (reach-averaged)

6.4.1 Sampling a truly homogeneous reach

6.4.2 Sampling schemes for spatially integrated sampling of heterogeneous reaches

6.4.2.1 Random sampling locations

6.4.2.2 Sampling the reach at systematic grid points

6.4.2.3 Random placement of sampling locations within grid cells

6.4.2.4 Two-stage sampling using overlaying grid systems or a small grid pattern

6.4.3 Number of sampling points for systematic samples of heterogeneous reaches

6.4.3.1 Large streams, no space limitation

6.4.3.2 Small streams, space limitation for sampling

6.4.4 Subsample mass at each grid location and total sample mass within the reach

6.4.4.1 Full sample at each grid location in well sorted, fine to medium gravel beds

6.4.4.2 Reduction of sample mass at each grid location in poorly sorted gravel- and cobble beds

6.4.4.3 Individually biased grab samples, empirical approach

6.4.4.4 Determining sampling precision from two-stage sampling with overlaying grid systems

6.4.4.5 Individually unbiased subsamples for assumed normal distributions

6.4.4.6 Comparison of subsample masses and total sample mass computed with two different approaches

6.4.4.7 Retroactive computation of the number of sampling points

6.4.4.8 Problems with collecting large samples in coarse gravel and cobble-bed streams

6.4.4.9 Computation of the reach-averaged particle-size distribution

6.5 Spatially segregated volumetric sampling (sampling each unit individually)

6.5.1 Geomorphologically stratified sampling

6.5.1.1 Sampling on riffles only

6.5.1.2 Sampling patterns and sample mass for riffle samples

6.5.2 Sedimentary stratified sampling

6.5.2.1 Reach-averaged information on subsurface, armor, or bulk sediment size

6.5.2.2 Sampling location for reach-averaged subsurface D_{50} size

6.6 Spatially focused sampling

6.6.1 Sampling large particles on bar heads for stream competence analysis

6.6.2 Sampling fines in pools for analysis of fine sediment supply
We would like to thank the following publishers, individuals, and organizations for granting permission to reproduce, quote, or modify the following figures as needed. We have made every effort to contact those we believe to be the original sources to obtain these permissions. If there have been any accidental errors, omissions, or misattributions we apologize to those concerned.

Elsevier Science, for **Fig. 1.2**; taken from Fig. 1 on p. 174 in: Rosgen, D.L., 1994. A classification of natural rivers. *Catena* 22: 169-199.

John Wiley and Sons, for **Fig. 2.3** and **Fig. 2.4**; taken from Fig. 3.3 on p. 51 in: Church, M., D.G. McLean and J.F. Walcott, 1987. River bed gravels: sampling and analysis. In: *Sediment Transport in Gravel-Bed Rivers*. C.R. Thorne, J.C. Bathurst and R.D. Hey (eds.).

American Society of Civil Engineers, for **Fig. 2.5**; taken from Fig. 1 on p. 844 in: Hey, R.D. and C.R. Thorne, 1983. Accuracy of surface samples from gravel bed material. *Journal of Hydraulic Engineering*, 109 (6): 842-851.

Society for Sedimentary Geology, for **Fig. 2.10**; taken from Fig. 1 on p. 940 in: Ibbeken, H., 1974. A simple sieving and splitting device for field analysis of coarse grained sediments. *Journal of Sedimentary Petrology* 44(3): 939-946.

Society for Sedimentary Geology, for **Fig. 2.15**; taken from Fig. 3 on p. 1218 in: Ibbeken, H., 1983. Jointed source rock and fluvial gravels controlled by Rosin’s law: a grain size study in Calabria, South Italy. *Journal of Sedimentary Petrology* 53(4): 1213-1231.

Springer Verlag, for **Fig. 2.18**; taken from Fig. A-1 on p. 585 in: Pettijohn, J.F., P.E. Potter, and R. Siever, 1972. *Sand and Sandstone*. Springer Verlag, New York, Heidelberg, Berlin, 619 pp.

American Geophysical Union, for **Fig. 2.21**; taken from Fig. 6 on p. 1183 in: Sambrook Smith, G.H., A.P. Nicholas and R.I. Ferguson, 1997. Measuring and defining bimodal sediments: Problems and implications. *Water Resources Research* 33 (5): 1179-1185.

Society for Sedimentary Geology, for **Fig. 2.22**; taken from Figs. 3 and 4 on p. 66 and 67 in: Krumbein, W.C., 1941. Measurement and geological significance of shape and roundness of sedimentary particles. *Journal of Sedimentary Petrology* 11 (2): 64-72.

University of Chicago Press, for **Fig. 2.23**; taken from Figs. 2 and 6 on p. 119 and 123 in: Sneed, E.D. and R.L. Folk, 1958. Pebbles in the lower Colorado River, Texas: a study in particle morphogenesis. *Journal of Geology* 66: 114-150.

Society for Sedimentary Geology, for **Fig. 2.24**; taken from Plate 1 in: Krumbein, W.C., 1941. Measurement and geological significance of shape and roundness of sedimentary particles. *Journal of Sedimentary Petrology* 11 (2): 64-72.

Society for Sedimentary Geology, for **Fig. 2.25**; taken from Figs. 1 and 2 on p. 932 in: Crofts, R.S., 1974. A visual measure of single particle form for use in the field. *Journal of Sedimentary Petrology* 44 (3): 931-934.

Press Syndicate of the University of Cambridge, for **Fig. 2.27**; taken from Fig. 7.1 (top) on p. 112 in: Julien, P., 1995. *Erosion and Sedimentation*. Cambridge University Press, Cambridge.

Press Syndicate of the University of Cambridge, **Fig. 2.28**; taken from Fig. 7.1 (bottom) on. P. 112 in: Julien, P., 1995. *Erosion and Sedimentation*. Cambridge University Press, Cambridge.
John Wiley and Sons, for Fig. 3.1; taken from Fig. 11.6 (top) on p. 302 in: Church, M. and D. Jones, 1982. Channel bars in gravel-bed rivers. In: Gravel-bed Rivers. Fluvial Processes, Engineering and Management. R.D. Hey; J.C. Bathurst and C.R. Thorne (eds.).

Newbury Hydraulics Ltd., for Fig. 3.3; taken from Fig. 3.9 on p. 76 in: Newbury, R.W. and M.N. Garbouy, 1993. Stream Analysis and Fish Habitat Design. A Field Manual.

John Wiley and Sons, for Fig. 3.4; taken from Figs. 11.1 and 11.4 on p. 295 and 299 in: Church, M. and D. Jones, 1982. Channel bars in gravel-bed rivers. In: Gravel-bed Rivers. Fluvial Processes, Engineering and Management. R.D. Hey; J.C. Bathurst and C.R. Thorne (eds.).

John Wiley and Sons, for Fig. 3.5; taken from Figs. 2 and 4 on p. 634 and 636 in: Thompson, A., 1986. Secondary flows and the pool-riffle unit: a case study of the processes of meander development. Earth Surface Processes and Landforms 11: 631-641.

American Geophysical Union, for Fig. 3.6; taken from Fig. 26 on p. 1379 in: Dietrich, W.E. and J.D. Smith, 1984. Bedload transport in a river meander. Water Resources Research 20 (10): 1355-1380.

John Wiley and Sons, for Fig. 3.7; taken from Fig. 6.9 on p. 215 in: Whiting, P., 1996. Sediment sorting over bed topography. In: Advances in Fluvial Dynamics and Stratigraphy, P.A. Carling and M.R. Dawson (eds.).

Blackwell Science, for Fig. 3.8; taken from Fig. 6.6 on p. 134 in: Church, M., 1992. Channel morphology and typology. In: The Rivers Handbook, Vol. 1. P. Calow and G.E. Petts, eds.

John Wiley and Sons, for Fig. 3.9; taken from Fig. 8 on p. 258 in: Sear, D.A., 1996. Sediment transport processes in pool-riffle sequences. Earth Surface Processes and Landforms 21: 241-262.

John Wiley and Sons, for Fig. 3.10; taken from Fig. 13.3 on p. 285 in: Lisle, T.E. and M.A. Madej, 1992. Spatial variation in armouring in a channel with high sediment supply. In: Dynamics of Gravel Bed Rivers. P. Billi, R.D. Hey, C.R. Thorne and P. Tacconi (eds.).

Blackwell Science for Fig. 3.11; taken from Fig. 6.4 a on p. 130 in: Church, M., 1992. Channel morphology and typology. In: The Rivers Handbook, Vol. 1. P. Calow and G.E. Petts, eds.

American Geophysical Union, for Fig. 3.13; taken from Fig. 1 b on p. 1904 in: Buffington, J.M. and D.R. Montgomery, 1999a. A procedure for classifying textural facies in gravel-bed rivers. Water Resources Research 35 (6):1903-1914.

John Wiley and Sons, Inc., for Fig. 3.14; taken from Fig. 3.1 on p. 47 in: Church, M., D.G. McLean and J.F. Walcott, 1987. River bed gravels: sampling and analysis. In: Sediment Transport in Gravel-Bed Rivers, C.R. Thorne, J.C. Bathurst and R.D. Hey (eds.).

Geological Society of America, for Fig. 3.16; taken from Fig. 1 on p. 105 in: Whiting, P.J., W.E. Dietrich, L.B. Leopold, T.G. Drake, and R.L. Shreve, 1988. Bedload sheets in heterogeneous sediment. Geology 16: 105-108.

John Wiley and Sons, for Fig. 3.18; taken from Fig. 9.2 in: Todd, S.P., 1996. Process deduction from fluvial sedimentary structures. In: Advances in Fluvial Dynamics and Stratigraphy. P.A. Carling and M.R. Dawson (eds.).

Canadian Society of Petroleum Geologists, for Fig. 3.19; taken from Fig. 2 on p. 79 in: Brayshaw, 1984. Characteristics and origin of cluster bedforms in coarse-grained alluvial channels. In: Sedimentology of Gravels and Conglomerates. E.H. Koster and R.J. Steel, (eds.), Canadian Society of Petroleum Geologists, Memoir 10: 77-85.

John Wiley and Sons, for Fig. 3.20; taken from Fig. 9 a on p. 129 in: Bunte, K. and J. Poesen, 1994. Effects of rock fragment size and cover on overland flow hydraulics, local turbulence and sediment yield on an erodible soil surface. Earth Surface Processes and Landforms 19: 115-135.

John Wiley and Sons, for Fig. 4.12; taken from Fig. 2 on p. 62 in: Ibbeken, H. and R. Schleyer, 1986. Photo sieving: a method for grain size analysis of coarse-grained, unconsolidated bedding surfaces. Earth Surface Processes and Landforms 11: 59-77.
Kristin Bunte and Steven Abt
Fort Collins, May, 2001
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Particle a-axis, the longest axis</td>
</tr>
<tr>
<td>a</td>
<td>Coefficient</td>
</tr>
<tr>
<td>a, β</td>
<td>Confidence levels</td>
</tr>
<tr>
<td>b</td>
<td>Particle b-axis, the intermediate axis</td>
</tr>
<tr>
<td>b</td>
<td>Coefficient</td>
</tr>
<tr>
<td>A</td>
<td>Area</td>
</tr>
<tr>
<td>A_p</td>
<td>Area covered by one particle</td>
</tr>
<tr>
<td>A_s</td>
<td>Sampling area</td>
</tr>
<tr>
<td>B</td>
<td>Bimodality index (Wilcock 1993)</td>
</tr>
<tr>
<td>B^*</td>
<td>Bimodality index (Sambrook Smith et al. 1997)</td>
</tr>
<tr>
<td>c</td>
<td>Particle c-axis, the shortest axis</td>
</tr>
<tr>
<td>C</td>
<td>Corey shape factor, similar to particle sphericity ψ</td>
</tr>
<tr>
<td>b_m</td>
<td>Mean particle b-axis size</td>
</tr>
<tr>
<td>$b_m(sq)$</td>
<td>Mean b-axis size of particles retained on a square-hole sieve</td>
</tr>
<tr>
<td>$b_m(rd)$</td>
<td>Mean b-axis size of particles retained on a round-hole sieve</td>
</tr>
<tr>
<td>d</td>
<td>Diameter (e.g., of a freeze core)</td>
</tr>
<tr>
<td>d_p</td>
<td>Penetration depth of adhesive in areal sampling</td>
</tr>
<tr>
<td>$d_{s\text{min}}$</td>
<td>Minimum sampling depth</td>
</tr>
<tr>
<td>D</td>
<td>Particle size or particle sieve size</td>
</tr>
<tr>
<td>D_{cm}</td>
<td>Particle size of the coarse mode of a distribution</td>
</tr>
<tr>
<td>D_{ci}</td>
<td>Particle size of the center of the ith size class</td>
</tr>
<tr>
<td>D_{dom}</td>
<td>Dominant large particle diameter within an area of concern (reach)</td>
</tr>
<tr>
<td>D_e</td>
<td>Vertical extent of particle embedded or buried below the bed</td>
</tr>
<tr>
<td>D_f</td>
<td>Height with which a particle protrudes above the bed</td>
</tr>
<tr>
<td>D_{fm}</td>
<td>Particle size of the fine mode of a distribution</td>
</tr>
<tr>
<td>D_{gm}</td>
<td>Geometric mean particle size of a distribution</td>
</tr>
<tr>
<td>D_i</td>
<td>Particle size of the ith size class</td>
</tr>
<tr>
<td>D_{ic}</td>
<td>Center of class particle size computed from the geometric mean of the upper and lower border of the size fraction (equal to logarithmic mean, or arithmetic mean of particle sizes in ϕ-units)</td>
</tr>
<tr>
<td>$D_{i(sq)}$</td>
<td>Particle size of the ith size class on a square-hole sieve</td>
</tr>
<tr>
<td>$D_{i(rd)}$</td>
<td>Particle size of the ith size class on a round-hole sieve</td>
</tr>
<tr>
<td>D_m</td>
<td>Mean particle size of a distribution</td>
</tr>
<tr>
<td>D_{max}</td>
<td>Largest particle</td>
</tr>
<tr>
<td>D_{mc}</td>
<td>Particle size of the weight midpoint of a sieve class; i.e., particle size that halves the particle mass per size class</td>
</tr>
<tr>
<td>D_{min}</td>
<td>Smallest particle</td>
</tr>
<tr>
<td>D_{mode}</td>
<td>Mode of particle size distribution</td>
</tr>
<tr>
<td>D_n</td>
<td>Nominal particle diameter, $(a \cdot b \cdot c)^{1/3}$</td>
</tr>
<tr>
<td>D_p</td>
<td>pth percentile of a particle-size distribution</td>
</tr>
<tr>
<td>D_{pass}</td>
<td>Smallest sieve size through which a particle passed</td>
</tr>
<tr>
<td>$D_{pass(i)}$</td>
<td>Smallest sieve size passed by all particles of the ith size class</td>
</tr>
<tr>
<td>D_{pm}</td>
<td>Mean of pth percentile obtained from several subsamples</td>
</tr>
<tr>
<td>D_{rel}</td>
<td>Largest sieve size that retained a particle</td>
</tr>
<tr>
<td>$D_{rel(i)}$</td>
<td>Largest sieve size retaining all particles of the ith size class</td>
</tr>
<tr>
<td>D_s</td>
<td>Size of sieve opening</td>
</tr>
<tr>
<td>D_t</td>
<td>Total vertical extent of a particle</td>
</tr>
<tr>
<td>D_{50}</td>
<td>Median particle size of a distribution</td>
</tr>
<tr>
<td>D_{84}</td>
<td>84th percentile of a particle-size distribution (subscript number refers to percentile)</td>
</tr>
<tr>
<td>D_{84m}</td>
<td>Mean particle size of the D_{84} in subsamples</td>
</tr>
<tr>
<td>e</td>
<td>Void ratio, ratio of volume of voids to total volume</td>
</tr>
<tr>
<td>$e_%\text{Dm}$</td>
<td>Percentage error around the mean particle size in mm (D_m)</td>
</tr>
<tr>
<td>e_2pm</td>
<td>Absolute error around the mean particle size in ϕ-units (ϕ_m)</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>$e_{\phi m}$</td>
<td>Percentage error around the mean particle size in ϕ-units (ϕ_m)</td>
</tr>
<tr>
<td>e_{2Dp}</td>
<td>Absolute error around the mean particle size for the pth percentile in mm.</td>
</tr>
<tr>
<td>e_{2Dp}</td>
<td>Absolute error around the mean particle size for the pth percentile in ϕ-units</td>
</tr>
<tr>
<td>E</td>
<td>Embeddedness</td>
</tr>
<tr>
<td>$E%$</td>
<td>Percent cobble embeddedness</td>
</tr>
<tr>
<td>F</td>
<td>Particle form factor distinguishing between platy, bladed and elongated particle shapes</td>
</tr>
<tr>
<td>f</td>
<td>Frequency by weight or number of a particle-size class</td>
</tr>
<tr>
<td>$f_{%}$</td>
<td>Percent frequency by weight or number of a particle-size class</td>
</tr>
<tr>
<td>$G_{\phi i}$</td>
<td>Frequency of an equivalent Gaussian distribution of ϕ_i</td>
</tr>
<tr>
<td>$G_{%i}$</td>
<td>Percent frequency of an equivalent Gaussian distribution of ϕ_i</td>
</tr>
<tr>
<td>g</td>
<td>Acceleration due to gravity = 9.81 m/s2</td>
</tr>
<tr>
<td>i</td>
<td>ith size class</td>
</tr>
<tr>
<td>k</td>
<td>Total number of size classes</td>
</tr>
<tr>
<td>K</td>
<td>Particle size of the bottom particle</td>
</tr>
<tr>
<td>ku</td>
<td>Arithmetic kurtosis of a distribution</td>
</tr>
<tr>
<td>k_{tg}</td>
<td>Geometric kurtosis of a distribution (hypothetical)</td>
</tr>
<tr>
<td>l</td>
<td>Length (e.g., of a freeze core)</td>
</tr>
<tr>
<td>L_{Di}</td>
<td>Frequency of an equivalent lognormal distribution of D_i</td>
</tr>
<tr>
<td>$L_{%i}$</td>
<td>Percent frequency of an equivalent lognormal distribution of D_i</td>
</tr>
<tr>
<td>m</td>
<td>Mass</td>
</tr>
<tr>
<td>$m_{D_{\text{max}}}$</td>
<td>Mass of the D_{max} particle size</td>
</tr>
<tr>
<td>m_{i}</td>
<td>Mean weight of particles retained on the ith size class</td>
</tr>
<tr>
<td>m_i</td>
<td>Mass of particles retained on the ith size class</td>
</tr>
<tr>
<td>m_s</td>
<td>Mass of all particles contained in a sample</td>
</tr>
<tr>
<td>m_{ss}</td>
<td>Mass of all particles contained in a subsample</td>
</tr>
<tr>
<td>m_{tot}</td>
<td>Mass of all particles contained in the total sample</td>
</tr>
<tr>
<td>$m_{%i}$</td>
<td>Percent frequency of particle mass for the ith size class</td>
</tr>
<tr>
<td>$m_{%\text{cmi}}$</td>
<td>Percent frequency of particle mass for the ith size class that is part of the coarse mode of the distribution</td>
</tr>
<tr>
<td>$m_{%fmi}$</td>
<td>Percent frequency of particle mass for the ith size class that is part of the fine mode of the distribution</td>
</tr>
<tr>
<td>n_{emb}</td>
<td>Number of embedded particles</td>
</tr>
<tr>
<td>n_{exp}</td>
<td>Number of particles exposed on the bed surface</td>
</tr>
<tr>
<td>n_i</td>
<td>Number of particles retained for ith size class</td>
</tr>
<tr>
<td>n</td>
<td>Total number of particles per sample</td>
</tr>
<tr>
<td>$n_{%\text{exp}}$</td>
<td>Percent of particles exposed on the bed surface</td>
</tr>
<tr>
<td>n_i</td>
<td>Number of particles retained in the ith size class</td>
</tr>
<tr>
<td>n_{ph}</td>
<td>Number of particles contained within a photographed area</td>
</tr>
<tr>
<td>n_r</td>
<td>Number of particles at the reference site</td>
</tr>
<tr>
<td>n_s</td>
<td>Number of particles at the study site</td>
</tr>
<tr>
<td>n_{tot}</td>
<td>Total number of samples</td>
</tr>
<tr>
<td>n_2</td>
<td>Second sample</td>
</tr>
<tr>
<td>$n_{%i}$</td>
<td>Percent frequency of particle numbers for the ith size class</td>
</tr>
<tr>
<td>$\Sigma n_{%i}$</td>
<td>Cumulative percent frequency of particle numbers for the ith size class = p_i</td>
</tr>
<tr>
<td>p</td>
<td>Porosity, ratio of volume of voids to total volume</td>
</tr>
<tr>
<td>$p_{i,a-w}$</td>
<td>Weight fraction (m_i/m_{tot}) of the ith size class of an area-by-weight particle-size distribution</td>
</tr>
<tr>
<td>$p_{i,v-w}$</td>
<td>Weight fraction (m_i/m_{tot}) of the ith size class of a volume-by-weight particle-size distribution converted from an area-by-weight distribution</td>
</tr>
<tr>
<td>p_s</td>
<td>Proportion of fines in bed material at a study site</td>
</tr>
</tbody>
</table>
p_r Proportion of fines in bed material at a reference site

p_{v0} Porosity, ratio of volume of voids to total sediment volume (bulk)

p Probability associated with z_p values

p Percentile (in decimals)

p_i Percentile of a cumulative distribution for i^{th} size class (in decimals)

p_{Ai} Percentile for i^{th} size class of an areal sample

p_{Gi} Percentile for i^{th} size class of a grid sample

p_{ri} Percentile for i^{th} size class of a sample using a rigid combination method

p_{fi} Percentile for i^{th} size class of a sample using a flexible combination method

P Particle roundness index

P_m Mean particle roundness index for a deposit

P_{cm} Proportion of sediment contained in the coarse distribution mode

P_{fm} Proportion of sediment contained in the fine distribution mode

P_{1m} Proportion of sediment contained in the primary distribution mode

P_{2m} Proportion of sediment contained in the secondary distribution mode

q Number of subsamples

r Largest radius of a circle that can be inscribed into a corner of a particle

R Largest radius of a circle that can be inscribed into the entire particle

R_{Di} Frequency of an equivalent Rosin distribution of D_i

R_{54i} Percent frequency of an equivalent Rosin distribution of D_{i}

s Sample standard deviation, or sorting coefficient of an approximately normal distribution

s_{Dm} Standard deviation of the mean particle size in subsamples

s_{50} Standard deviation of the median particle size D_{50} in subsamples

s_g Geometric standard deviation or sorting coefficient of a sample distribution

sk Arithmetic skewness of a distribution

sk_g Geometric skewness of a distribution

s_p Standard error around percentile p

s_R Sorting coefficient for a Rosin distribution

s_I Sorting coefficient as computed by Inman (1952)

S Particle compactness

V Volume (e.g., of a freeze core)

V_s Volume of sediment without pores

V_t Total volume of sediment

V_v Volume of voids or pores in sediment

z_p Values of the x-axis of a true, bell-shaped normal distribution

Φ Pivot angle, angle of repose, intergranular friction angle

ϕ Particle size unit = $-\log_2(D)$

ϕ_m Arithmetic mean particle size of a distribution

ϕ_i Particle size in ϕ-units of the i^{th} size class

ϕ_{ci} Particle size in ϕ-units of the center of the i^{th} size class

ϕ_{m1} Particle size of the primary distribution mode

ϕ_{m2} Particle size of the secondary distribution mode

ϕ_{50} Median particle size of a distribution

ϕ_{84} 84th percentile of a particle-size distribution (subscript number refers to percentile)

ϕ_p p^{th} percentile of a particle-size distribution

γ Specific weight $\rho \cdot g$ g/cm2·s2, kg/m2·s2

μ Distribution mode

π Dimensionless constant, 3.141
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ</td>
<td>Density</td>
<td>g/cm3, kg/m3</td>
</tr>
<tr>
<td>ρ_f</td>
<td>Fluid density</td>
<td>g/cm3, kg/m3</td>
</tr>
<tr>
<td>ρ_s</td>
<td>Density of a sediment particle</td>
<td>g/cm3, kg/m3</td>
</tr>
<tr>
<td>ρ_s'</td>
<td>Submerged particle density</td>
<td>g/cm3, kg/m3</td>
</tr>
<tr>
<td>ρ_b</td>
<td>Sediment bulk density</td>
<td>g/cm3, kg/m3</td>
</tr>
<tr>
<td>ρ_{sub}</td>
<td>Subsurface sediment bulk density</td>
<td>g/cm3, kg/m3</td>
</tr>
<tr>
<td>σ</td>
<td>Standard deviation of the population distribution</td>
<td>any unit</td>
</tr>
<tr>
<td>Σ</td>
<td>Sum</td>
<td>any unit</td>
</tr>
<tr>
<td>ψ</td>
<td>Particle size unit, $= \log_2(D) = -\phi$</td>
<td>ψ</td>
</tr>
<tr>
<td>ψ</td>
<td>Particle sphericity</td>
<td></td>
</tr>
<tr>
<td>ψ_r</td>
<td>Effective particle settling sphericity</td>
<td></td>
</tr>
</tbody>
</table>