2. Particle analysis

Particle analysisin gravel-bed riversincludes the analysis of particle size, particle shape,
particle density and bulk density. These four topics are presented and discussed below.

2.1 Size analysis

Particle-size analysis comprises the measurement and analysis of the three particle axes
that define the three-dimensional shape of a particle. For many applications, it is much
more convenient to characterize particle size by only one variable, such as the length of
the intermediate particle axes or the size of the sieve on which a particle was retained.
Once the sizes of particles are determined, they are statistically analyzed, so that particle-
size distributions and statistical parameters characterizing them can be compared
between streams or over time. The mean particle size on a streambed, a particular
particle-size percentile, a characteristic large particle size, aswell as the entire spectrum
of particle sizes all affect the hydraulics of flow aswell as bedload transport rates.
Studies concerned with the mechanics of particle entrainment, particle transport and
deposition need to include the description and comparison of particle shapes.

2.1.1 Particle axes

The analyses of particle sizes and particle shape parameters are based on the length of
three mutually perpendicular particle axes: the longest (a-axis), the intermediate (b-axis),
and the shortest (c-axis) axis. The demand for the a, b, and c-axes being truly the
longest, the intermediate, and the shortest axes agrees with the demand for
perpendicularity of the three particle axesonly if the particle shape is ellipsoidal (e.g.,
like alightly-worn bar of soap). Particleswith arhombic shape cannot fulfill both
demands, and this might leave the user confused on whether to base particle
identification on the absolute lengths of particle axes or on perpendicularity. The
identification of the a- and the b-axesis affected most by this discrepancy, whereas the
position and length of the c-axisis usually clear.

The crucial point iswhether the analysis starts with the definition of the a-axis asthe
longest axis, with the b-axis following as the longest intermediate axis perpendicular to
the a-axis as done in the Canadian guidelines (Y uzyk and Winkler 1991) (Fig. 2.1), or
whether the analysis starts with identifying the b-axis as the “ shortest axis of the
maximum projection plane (the plane with the largest area) perpendicular to the c-axis’
(Gordon et al. 1992. 198-199). If the a-axisis subsequently defined as perpendicular to
the b-axis, then the a-axisis not necessarily the longest distance between two points on a
given particle. The b- and a-axes are along the heavy black arrowsaand bin Fg. 2.1
according to the definition by Gordon et al. (1992).
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Differencesin the definition of the a- and b-axis are most pronounced in particles of
rhombic shape (Fig. 2.2, left). a- and b-axes follow the gray stippled lines a and b when
defined according to Y uzyk and Winkler (1991), and along the black solid linesa and b
according to the definition by Gordon et al. (1992). Both lines a and b are longer than a
and b.

a
L\ .

Fig. 2.1: Definition of particle axes (Redrawn after Yuzyk 1986, and Y uzyk and Winkler 1991).

x14

Fig. 2.2: Discrepancy in b- and a-axes definitions for rhombic, irregular ellipsoidal, and ellipsoidal particle
shapes.
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The differencesin the two axis definitions become irrelevant for smooth ellipsoidal
shapes (Fig. 2.2). Consequently, the definition of particle b-axes should be
unproblematic for well rounded and ellipsoidal particlesin aluvia streamsin which all
particles experienced along fluvial transport. However, particle-axes measurements can
be difficult in mountain streams with a non-fluvial sediment supply, or in headwaters
where fluvial transport is short and the particles can be angular and rhomboidal.

Ultimately, the study aim needs to decide how particle axes are measured. |f hand-
measured b-axis lengths are to be compared with sieve sizes, b-axis measurement should
stimulate the way a particle drops through a sieve opening. Measurements of a- and c-
axisthen follow the rules of perpendicularity. Measurements of b-axis lengths
automatically follow this procedure if templates are used. The b-axis measurements
performed with rulers, calipers, and the pebble box on rhomboid particles (Section 2.1.3)
are prone to orient the b-axis perpendicular to the longest (a-axis), which isleast
problematic to identify. Such b-axis measurements tend to produce longer b-axis lengths
than template measurements.

2.1.2 Particle sizes and size classes

The size of a particle can be determined in three different categories: the actual b-axis
length, the nominal diameter, and the particle-sieve diameter. The three approaches are
used for different purposes.

Actual b-axislength

Measuring the actual lengths of particle b-axesin units of mm or cm may be important
for studies that are concerned with a small range of particle sizes, arange smaller than
distinguished by two consecutive sieves in a standard sieve set. An example for such a
study is the determination of the dominant particle size. Thisis computed asthe
arithmetic mean of particle b-axes measured on about 30 large, but not the very largest,
particles found within a deposit.

Nominal diameter

If the mass or volume of a particle is of more importance for a study than the particle b-
axislength or the sieve diameter, the nominal diameter isused. The nominal diameter is
athree-dimensional approach and describes particle size by its smallest characteristic
diameter. The nominal diameter denotes the diameter a particle would assumeif its
volume was expressed as a sphere and is computed from:

D,=(@- b- o (2.1)

D, isdirectly related to particlevolumeVD:g(a- b- ¢
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Particle sieve-diameter

Particles contained in a sediment deposit are commonly analyzed by grouping particles of
various sizes into particle size-classes that correspond to the size of sieve openings. The
particle sieve-size can be defined as the smallest sieve size through which a particle can
pass (Dpass) Or asthe largest sieve size through which the particle did not pass, the
retaining sieve size (D,¢). For agiven particle, passing or retaining sieve size differs by
one size class, thus, it isimportant to indicate whether reference is made to the passing or
retaining sieve size. Particle sieve-diameter also depends on whether sieves with square
or round-holes were used; whereas for particles of equal weight, sieve diameter varies
with particle shape (Sections 2.1.3.1, 2.1.3.4, and 2.1.3.5).

Sieve diameter and nominal diameter are identical for spheres and ellipsoidal particles
with certain axesratios such asa = 3/2 b, and c=2/3 b, but deviate for other particle
shapes. Compared to a sphere with an identical b-axis, adisc hasasmaller D, dueto its
small c-axis, whereas the D,, of arod-shaped particle exceeds that of a sphere because of
itslong a-axis. Acknowledgment of this discrepancy can become important because
sedimentation, i.e., erosion, transport, and deposition of particles, istied to particle weight
and shape (particularly the area projected towards the direction of flow). The analysis of
particle shape is discussed in Section 2.2.

2.1.2.1 The Wentworth scale of particle sizes

If particle size-classes progressin alinear scale, e.g., 10, 20, 30 mm, the frequency of
particles per size classin fluvial gravel tendsto be approximately logarithmically
distributed. Logarithmic distributions are statistically more difficult to work with than
normal distributions. In order to obtain an approximately normal distribution of particle
sizes, particle-size classes were made to increase by afactor of 2 (Wentworth scale).

Thus, particle sizesin units of mm double in consecutively larger size classes (2 -4 mm, 4
-8 mm, 8- 16 mm, 16 - 32 mm, etc.). These size classes are grouped into six major
particle-size categories - boulders, cobbles, gravel, sand, silt and clay (Table 2.1). Silt
and clay content are rarely analyzed in studies of gravel-bed rivers, thus, these size
categories are included only in an abbreviated form in Table 2.1.

The mass of a spherical particle increases by a factor of 8, when the particle diameter
doubles. This8-fold range of particle mass per size classis quite large, and many studies
therefore carry out particle-size analysesin size classes half as large as the Wentworth
classes (see sieve sizesin Section 2.1.3).

2.1.2.2 Particle size in @-units

The frequency distribution of the weight or number of particles per size class tends to
follow approximately alognormal distribution (Section 2.1.4.3) when particle sizes are
expressed metrically in mm. Consequently, the arithmetic mean particle size and the
arithmetic median particle size are not the same (mean is usually larger than median). If a
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Table 2.1: Size gradation for sediment in the range of sand to boulders (Wentworth scale)

Description of particle size ¢=-log, mm y=log,
(T
([ - -12.0 @ 4096 [ 12.0
very large -115 2896 115
([ - -11.0 @ 2048 @ 11.0
large - 105 1448 105
Boulder [ - -10.0 M@ 1024 @ 10.0
Medium -95 724 9.5
[ - -9.0 M 512 @ 9.0
small -85 362 85
oooDooooooooooon -80 OO 256 M 8.0
large -75 181 7.5
Cobble [ - -7.0 0 128 M@ 7.0
Small -6.5 90.5 6.5
oooDoooOoooooooo -60 OO 64 [ 6.0
very coarse -55 453 55
[ - -50 0 32 M 5.0
coarse -45 22.6 4.5
([ — Pebble -40 @ 16 @ 40
Gravel medium -35 113 35
[ - -3.0 8 M 30
fine -25 5.66 25
([T -20 M@ 4 @ 20
very fine Granule -15 2.83 15
oooDoooOoooooooo -10 OO 2 @ 1.0
very coarse -0.5 141 0.5
[ - 0 m 1 0
coarse +0.5 0.707 -05
([ - +1.0 @ 0500 O -10
Sand medium +15 0.354 -15
[ - +2.0 0250 O -20
fine +25 0.177 -15
[ - +3.0 @ 0125 - -3.0
very fine +35 0.088 -35
ooooooooooooooo +40D00 0.063 — -4.0
Silt
ooooooodooooooo +8000 00039 - -80
Clay
D0o000o0dodooooonoo +120 00 0.00024 - -12.0

particle-size distribution was truly logarithmic, log transformation of particle-size units
would produce a normal distribution. It isdesirable to work with normal distributions,
because standard statistical procedures can be used to analyze them.

Any kind of logarithmic transformation, e.g., the ssimple log of the particle size D, i.e., log
(D), applied to the original datawill produce anormal distribution. However, in order to
obtain convenient, integer values after alog transformation, sedimentol ogists and
geomorphologists (Krumbein 1934) expressed particle size D as the negative logarithm to
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the base of 2 and called the result the gscale. ¢, spelled out as phi, isthe Greek letter for
f. Particle sizesin ¢@units are computed from particle sizes D in units of mm by

@ = -logy(D) (2.2)

Since the negative logarithm to the base of 2 is not routinely programmed in scientific
calculatorsit needsto be computed from

_ |Og(D|)

~ " log(2) (2.3)

Since log(2) = 0.3010, this expression can be smplified to

Q= '%93{(%2 =-3.3219 log(D)) (2.4)

For example, -3.3219 log(64) = -3.3219 - 1.8062 = 6.0. Conversely, particlesizesD in
units of mm are obtained from particle sizesin @-units by

Di - 2‘@ (25)

This expression can easily be solved by scientific calculators or spreadsheet programs.
An alternative expression dating from the time of logarithmic and exponential tablesis

D; = g% = 109109@ = 103014 (2.6)

Table 2.1 presents particle sizesin units of mm and ¢.

2.1.2.3 Particle size in grunits

The @transformation produces positive values for particle sizes smaller than 1 mm and
negative values for particle sizeslarger than 1 mm. Thisfeature is convenient for studies
that focus on sand and smaller sediment. However, this feature isinconvenient for studies
in gravel-bed rivers, because having smaller, negative numbers for larger particle sizesis
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counterintuitive. Consequently, the yr~scale was developed (Greek letter y spelled out as
psi) which producesincreasingly larger values as particle sizes increase from sand to
boulders. -units are the negative values obtained in gunits (¢ = -¢@, or @=-). Y-units
are computed from particle size D in units of mm by

i =109, (D)) (2.7)

By analogy to Eq. 2.2, this expression is solved by

_ |09(D|)

%= 1og (2) (2:8)

which can be smplified to ¢4 = 3.3219 log (D;). For example, 3.3219 log(64) = 3.3219 -
1.8062 = 6.0. Particle sizesin (-unitsare provided in Table 2.1. Particle size D in mm-
unitsis obtained from particle sizesin (-units by

Di=2Y=¢""®=10%'%9® (2.9)

2.1.3 Sieving and manual measurements of particle size

The size of gravel particles can be measured manually or by sieving. The different
equipment used in both approaches can affect the results. This makesit necessary to
compare different methods of particle-size measurements and to determine conversion
factors.

Sieving usually employs square-hole sieves, although some labs still have round-hole
sieves. Square- and round-hole sieves produce different size gradation curves, especially
for flat particles. Manual particle-size measurements traditionally use rulers and calipers.
These devices are prone to operator error that can be avoided by using templates (Section
2.1.3.6). Notwithstanding operator error, ruler and template measurements differ to the
same degree as do size gradations based on round-hole and square-hole sieves. Pebble
boxes are a handy device if all three particle axes are to be measured (Section 2.1.3.8)
because they help to reduce operator error and speed up the measurements.

2.1.3.1 Square-hole sieves

Square-hole mesh wire sieves are the standard |aboratory sieves for sand and gravel.
They have size gradations between 0.063 and 64 mm. Sieve sizes, i.e., the side length of
the mesh width Dy, typically advance as alogarithmic seriesbased on 2, i.e.,
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Ds = 2¥ (2.10)

where x usually assumes values in increments of 0.5, so that Ds advancesin 0.5 units of ¢
or Y (Table 2.1). For sediment from gravel-bed rivers, a stack of sievesin 0.5 gunits
usually has 64 mm as the coarsest sieve, and consecutive smaller sieves have mesh widths
of 45.3, 32, 22.6, 16, 11.3, 8, 5.66, 4, 2.83, and 2 mm. If the sand fraction is of concern,
Sieve sizes continue with 1.4, 1.0, 0.71, 0.5, 0.35, 0.25, 0.18, 0.125, 0.088, and 0.063 mm.
Sievestypically used in the United States produced by the American Society for Testing
and Materials (ASTM E-11) follow the 0.5 @or (-gradation only approximately for
particle sizesin the gravel range. This deviation stems from expressing particle-size
classes as fractions of an inch. Sievesthat retain particles larger than 22.6 and 11.3 mm
are commonly labeled 22.4 and 11.2 mm, suggesting an arithmetic mean between -4.5 ¢
(=22.6 mm) and 7/8 inch (= 22.2 mm). Likewise, the 11.2 mm Sieve size isthe mean
between -3.5 ¢(=11.3 mm) and 7/16 inch = 11.1 mm. Sometimes, ASTM E-11 sieves
indicate three different mm sizes for the same sieve size. The“45 mm” (1%4inch) sieve,
for example, sometimes indicates 44.45 mm, the mm equivalent of 1%2inch, sometimes
45.3 mm, the exact mm equivalent of -5.5 ¢ and sometimes 45 mm, which isan
intermediate value between the two. This discrepancy is problematic if size classes are
first expressed in mm, and then mathematically converted to gor (- unitsfor further
particle-size analysis.

Sieving in 0.5 @-unitsis recommended for many sampling projectsin gravel-bed rivers.

However, some study objectives may require sieving in 0.25 g-increments, while for
others units of 1.0 gmay be sufficient.

2.1.3.2 Relation between b-axis size and square-hole sieve sizes

Particles found within one 0.5 g sieve class can have b-axes lengths that range over a
factor of aimost 2. The smallest b-axis length of a particle retained on a-4.5 ¢=22.6 mm
seveis22.7 mm, the largest b-axis length is45.2 mm. For agiven particle shape, the
range of b-axes lengths iS\/_Z [11.41. Perfect spheres have the smallest b-axes. The
smallest sphere retained on the 22.6-mm sieve has a b-axis of 22.7 mm, whereas the
largest sphere to fit through the -5 ¢= 32-mm sieve has a b-axis of 31.9 mm. Extremely
flat particles have the largest b-axes, ranging from 31.9 to 45.2. Thus, the flatter the
particle, the larger the b-axis that fits through a square sieve opening (Fig. 2.3). Particle
flatness can be expressed by the ratio of shortest to intermediate axis ¢/b. The relation
between the ratio of a square-hole sieve opening D to b-axis size and particle flatness
(i.e., theratio of c/b) isgiven by Eq. 2.11 and shown in Fig. 2.4. Fg. 2.4 can likewise be
used to illustrate the ratio

2 g

(2.12)
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D¢/b=1 b c/b=1, sphere or elongated particle
D./b=0.8 b . ¢/b=0.6, ellipsoid or bladed particle
DJb=0. .~~~ b -~ c/b=0.2, discor platy

spHere

Fig. 2.3: Illustration of effect of particle shape on largest b-axis size to fit through a square-hole sieve
(Redrawn from Church et a. 1987; by permission of John Wiley and Sons, Ltd.).
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Fig. 2.4: Ratio of square-hole sieve opening Ds to measured b-axis size as a function of particle flatness, i.e.,
the ratio of ¢/b (Redrawn from Church et al. 1987; by permission of John Wiley and Sons, Ltd.).
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of square-hole sieve size to round-hole sieve size for various degrees of particle flathess
(Section 2.1.3.5).

2.1.3.3 Round-hole sieves

Some sieves consist of metal plates with round borings of the diameter Ds. Since square-
hole sieves and round-hol e sieves have openings of different shapes, both sieves produce
different sieve results, except for particles with perfect spherical shapes. A spherewith a
diameter of 3.99 mm fits through both a round-hole and a square-hole sieve of 4 mm, and
aball 46 mm in diameter islikewise retained on both the square and the round-hole sieve
of 45 mm. However, sieving ellipsoidal or flat particles with both sieve types produces
different gradation curves (i.e., cumulative frequencies). Differencesin mean particle b-
axes length and conversion factors between round and square-hole sieve results are
discussed in Sections 2.1.3.4 and 2.1.3.5.

2.1.3.4 Center of class and mean particle b-axes length per size class

Sometimes, computations require that an entire particle-size classis represented by a
single particle-size value. Commonly, thisvalue istaken asthe “ center of class’, D,
which isthe hypothetical sieve size between the retaining and the passing sieve size. D is
therefore determined from the logarithmic mean between the retaining sieve size D, and
the next larger, passing sieve size Dpass Which is equal to the diagonal of the retaining
sevesize.

@ !Dret! + |% !DEQ$!|:|
D.=10"g > 0 (212)

For example, center of class for the 16 mm sieve is D = 10 (®16*1°9220/2 = 19 02 mm. In
terms of @-units, the center of classis the arithmetic mean between the retaining and the
passing sievesize. Thus, @ for the-4to-4.5 gpsizeclassis (-4 +-4.5)/2 = 4.25 ¢= 19.03
mm. Eq. 2.12 can likewise be expressed by the best-fit regression between D, and D, ¢,
which yields the linear function

D, = -0.00284 + 0.841 D, & (2.13)

The center of class D, (the central sieve size between the retaining and the passing sieve)
isonly equal to the particle size of the weight midpoint D, of the sediment between the
retaining and the passing sieves if a sufficiently fine gradation of sieve sizesis chosen
(Folk 1966). In order to avoid an imbalance between D and Dy, fluvial gravel ranging
from sand to cobbles should rather be sieved in increments of 0.5 gthan in increments of
10¢@
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Mean particle b-axeslength per size class

The center of class D, is not generally equal to the (geometric) mean particle b-axis
length by, within that size class and thus can usually not be used as a substitute for by, D.
and b, are only identical for perfect spheres. D for the size class 16 to 22.6 mm is 19.02
mm. The range of spheresretained on the 16-mm sieve extends from 16.1 to 22.5 mm
with a geometric mean of 19.03 mm.

The b-axes sizes of very flat particles retained on a given sieve are afactor of up to \/_2 0
1.4 larger than the b-axes of spheres, extending from 31.9 to 22.5 mm, with a geometric
mean of 26.8 mm. Thus, for a sediment mixture of spheres and very flat particles, the
geometric mean b-axis length of particles retained on the 16-mm sieve would be
somewhere within the range of 19 and 26 mm.

Uneven distribution of particle sizes per sieve class

Fuvial gravel particles are usually not of equal particle shape, particularly not in

mountai nous areas where bed material comprises a variety of particle shapes due to
highly variable transport distances of particles within areach. This variety of shapes
produces an uneven, and approximately normal, distribution of particle b-axes lengths
within one sieve class. Small particles are scarce on a sieve because small particles are
only retained if they are spherical, while flat particles of the same b-axis length are not
retained. Large particles are scarce on a sieve because only those large particles that are
flat are passed through the next larger sieve, while round particles of the same b-axis size
are retained on that larger sieve. The mid-size range of particles per sieve class comprises
all particle shapes, thus mid-sized particles make up the mgjority of particles per sieve
class. Using round-hole sieves, the passing sieve retains all particles with a b-axis larger
than the passing sieve size (instead of letting the flat ones through). Thus, the majority of
particles retained on around-hole sieve are close to the passing sieve size when sieving
sediment of mixed particle shapes.

2.1.3.5 Comparison of sieve results using round-hole and square-hole sieves

Sieving agiven particle mixture with a set of square-hole sieves produces afiner size
distribution than would be obtained from sieving the same particle mixture with round-
hole sieves. Thisis because around-hole sieve may retain particles that are not retained
on asquare-hole sieve of the same size. For example, an ellipsoidal particle with a b-axis
of 50 mm and a c-axis of 30 mm will not pass through a 45-mm round-hole sieve, but will
pass through a 45-mm square-hole sieve. Thus, this 50-mm particle will betallied as
larger than 45 mm when using round-hol e sieves, and as smaller than 45 mm when using
sguare-hole sieves.

If all particles of the sample are of the same and known shape, results from round-hole
and square-hole sieving are convertible. Conversion factors between round-hole and
sguare-hole sieves range from 0.71 for extremely flat particlesto 1.0 for spheres (Church
et al. 1987) and Fg. 2.4 can be used for conversion between round and square-hole sieve
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results. Huvially transported particles in wadable gravel-bed streams are most likely to be
approximately ellipsoidal in shape and therefore are likely to have a conversion factor
between 0.8 and 0.9. Note that particle shapes may vary between different size classes or
different lithologies. Thus, different conversion factors may have to be applied within
one sample to account for thisfact.

2.1.3.6 Templates

During field studies, gravel particle sizes are best determined with templ ates because
template measurements provide higher accuracy than measurements with rulers and using
templates reduces variability between different operators. A template, also called a
gravelometer, isathin auminum or plastic plate with several sieve-sized square-holes.
The holes usually correspond to the sizes of standard 0.5 @increment sieve sets, starting
at 2 mm, and reaching to 128 or 180 mm, depending on the size of the template.
Templates can also be designed with holesin 1, or 0.25 gincrements (Fig. 2.5). A
gravelometer made of plastic, about 25 by 30 cm in size, and 0.5 cm thick, can be
purchased from Hydro Scientific in Great Britain (Fig. 2.6). U.S. Government agencies
can purchase templates from the Federal Interagency Sedimentation Project (FISP) in
Vicksburg, Mississippi. The FISP gravelometer US SAH-97 is made of aluminum, is
0.32 cm thick, and has 14 square-holesin 0.5 @-units ranging from -1 to -7.5 ¢ (2 to 180
mm). The overall dimensions are 28 by 34 cm (Fig. 2.7).

Templates are especially useful for pebble counts (Section 4.1.1. and 4.1.2). The operator
picks up a particle and pushes the particle through various holes. The aim isto determine
aparticle’ ssieve diameter either in terms of “not passing or larger than” the hole of a
given size, or in terms of “passing or smaller than” the hole of agiven size. The “larger
than” approach records the largest hole size (i.e., sieve size D) that is smaller than the
particle diameter (equivalent to the sieve size on which the particle was retained).

Particle sizeistallied as“larger than D" where D isthe next smaller hole size. The
“smaller than” approach records the smallest hole size through which the particle could
be passed (equivalent to sieve size through which the particle could pass), and tallies the
particle as“smaller than Ds”, where Dy is the next larger hole size. For example, arock
with a 60 mm b-axis would be tallied in the larger than 45 mm class using the “larger
than” approach, or as smaller than 64 mm in the “smaller than” approach. It does not
matter which approach is followed, aslong as one approach is followed consistently. The
“larger than” approach seems to be more intuitively connected to note taking when
sieving, equivalent to recording the weight of particles “retained on the sieve” with the
sevesize Ds. The“smaller than” approach, equivalent to recording the weight of
particles“passing asieve” eliminates one step in the computation of cumulative
frequency distribution, which is customarily computed as “percent of particles finer than”
or “percent passing”, but seemsto be lessintuitive.

Y For further information contact FISP at (601) 634-2721.
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Fig. 2.5: Template in 0.25 ¢-units used by Hey and Thorne (1983); Reproduced by permission of the
American Society of Civil Engineers.

Fig. 2.6: Template available from Hydro Scientific Limited, Stratford-on-Avon, Warwickshire CV 37 8EN,
UK, Fax/phone:+44-1789-750965, email: HydroSci @aol.com; website: http://members.aol.com/HydroSci.
Photo courtesy of Hydro Scientific.
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Fig. 2.7: Template US SAH-97, produced by the Federal Interagency Sedimentation Project, website:
http://fisp.wes.army.mil/.

Measuring particle sizes with templatesis expedient because the appropriate “larger than”
or “smaller than” hole size can usually be determined on the first or second try.
Templates are also useful for field sieving individual bulk samples. Template
measurements are preferable to ruler and caliper measurements for particle-size analyses
because potential errors arising from improperly defining the b-axis (Section 2.1.1), or
from misreading the ruler can be avoided (Hey and Thorne 1983; Stream Notes, April
1996). The magnitude of errors avoided by template measurements becomes apparent if
replicate b-axes measurements with rulers are performed on re-measured rocks. The
same operator can usually reproduce particle b-axis measurements correctly. However,
when multiple operators re-measure pre-measured particles using aruler, individual
operators produce different results (Wohl et al. 1996). Differences between operators
results are more pronounced when angular particles shapes, and particle structures due to
layering or metamorphic processes make the correct identification of the b-axis difficult
(Marcuset a. 1995). The use of templates largely eliminates these measurement errors.

2.1.3.7 Rulers and calipers

Some field studies measure the particle b-axis size with aruler. This procedureisonly
recommended if the study focuses on measuring particle sizes within afairly narrow
range. An example isthe determination of the dominant large particle size from among
perhaps 30 large, but not the largest, particles within a given sampling area.
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Measuring the particle b-axes size with aruler or caliper is not recommended in studies
that tally b-axes measurementsin @units. First, ruler measurements are prone to error
because the operator has to accurately determine the orientation of the b-axis (Marcus et
a. 1995). Secondly, ruler measurements do not correspond to measurements made with
templates, or square-hole sieves. Ruler measurements correspond to measurements with
round-hole sieves. Thus, when comparing or merging ruler with template measurements,
the same procedures as discussed in Section 2.1.3.5 apply, and particle sizes need to be
converted, using for example Fig. 2.4. Finally, no additional information on particle size
is gained from measuring b-axesto the nearest mm with aruler or calipers, if these
measurements are then tallied in 0.5-¢si ze classes.

Tallying particle sizesin gunits assumes that particle sizes are normally distributed in
termsof gunits. This assumption does often not hold in a strict statistical sense for
particle-size distributions from gravel beds. Nevertheless, anormal distribution is often
assumed for convenience, so that standard statistical procedures can be used (Section
2.1.4.3). However, if the assumption of a normal distribution cannot be accepted,
measuring particle b-axes lengths to the nearest mm or cm allows for more optionsin the
statistical analysis.

Rulers, or better, calipers, are appropriate for analyses of particle shapein the lab when
particle axes are measured by a person aware of the difficultiesinvolved in proper
identification of the three particle axes. If large quantities of pebbles need to be
measured, a pebble-box (Section 2.1.3.8) may be needed.

2.1.3.8 Pebble-box

The pebble-box was devel oped by Ibbeken and Denzer (1988) who conducted several
large studies of gravel particle shapes. The pebble-box isa convenient device for easy
measurements of the three particle axes because it does not require repositioning the
particles between measurements, as ruler measurements do, and ensures all three
measured particle axes are at right angles. A pebble-box can be constructed of two 3-
sided corner pieces each formed by joining the edges of 3 square pieces of plywood. The
dimension of the box depends of the particle sizesto be measured. A box 15-20cm
along the sides, made of plywood 0.5 - 1 cm thick is suitable for pebbles and small
cobbles. A diagona handle made from a broomstick or a dowel stick is attached to one of
the corner pieces (Fig. 2.8). Thin clear plastic rulersin cm and mm gradations are glued
to the two top edges and the front edge of the corner piece with no handle. The “zero”
marks of all rulers need to be in the corner, so that the distance from the corner can be
read.

To measure the three axes a pebble is pushed into the corner of the first pebble-box. The
second pebble-box (the one with the handle) is alternately placed along the top, side, and
front of the pebble in the box. The length of each particle axis can then be read on the

tape measures. The pebble-box is particularly useful when measuring the three axes of a
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Fig. 2.8: Measuring the three particle axes with the pebble-box.

large number of particles. It takes about 20 minutes to measure 100 particlesif a second
operator records the measurements.

Particle b-axes measurements with the pebble-box are similar to measurements with a
ruler, or caliper. Thus, particle sizes need to be converted if they are to be compared to
particle sizes determined with square-hole sieves (Fig. 2.3 and Section 2.1.3.5).
Compared to sieve or template measurements, pebble-box measurements may dightly
overpredict the b-axes of rhombic or diamond-shaped particles. Particles of this shape
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tend to align in the box in such away that b-axes are measured across the largest width,
rather than parallel to the sides of the particle (i.e., along the stippled line b instead of the
solid linebinFg. 2.2).

2.1.3.9 Lab sieving

Sediment from gravel-bed riversis usually dried before sieving®. Wet sediment can be
dried on metal pans (e.g., disposable 10-inch pie plates). Two or three days of exposure to
air at room temperature is usually sufficient to dry gravel, but the drying process can be
accelerated by placing the sediment in an oven at 90°C (194°F) overnight. Particles
should be allowed to cool to room temperature before sieving and weighing, not only to
avoid burning oneself, but also to avoid measuring an increase in particle weight asthe
particle absorbs air moisture during the cooling phase.

For sieving, the gravel from one or more pie platesis poured into the sieve stack that has a
sieve pan at the bottom. The amount of sediment that can be sieved at a time depends on
the number of sieves used and on the particle sizes. It isimportant not to overfill the
sieves. Asarule of thumb, particles should not cover the sievesin alayer more than one
or two particlesthick. Flled in thisway, the sieving process takes about 10 minutes when
sieves are mounted on a shaker (ROTAP), asieving apparatus that automatically shakes
and tapsthe sieve stack. If an automatic shaker is not available, the shaking and tapping
motion can be imitated by placing the sieve stack onto the floor. The operator sitson a
stool in front of the stack, rotating, and tilting the stack forward and backward. A piece of
wood placed under the sieve stack protects the floor and the sieves from damaging each
other, and provides a hard enough surface when sieving in the field. Gravel particles
larger than 8 mm may not require afull 10 minutes of shaking, but particles might still be
sieved out of fine gravel and sand after 10 minutes. Some particles will get stuck in the
sieves and should be removed and added to the sample before sieving the next subsample.
Scrubbing the backside of the sieve and tapping the mesh and the sides of the sieve with a
long handled fine wire brush helps clean the fine gravel sieves. Gentle prying with a
screw-driver removes particles stuck in larger and more sturdy sieves. Care must be taken
not to damage the sieve.

The weighing process depends on the weight range of the scale available in the |ab.
Sieved size fractions are weighed individually for each sieved subsample for small range
scales, but individual size fractions from all subsamples should be combined for large
range scales.

It is recommended to prepare data sheets with one column for retaining (or passing) sieve
sizes, and one or several other columns for the weight retained on each sieve, depending
on the number of subsamples into which the entire sample had to be divided for the
sieving process. The example data sheet shown in Fig. 2.9 isfor gravel and further differentiation
of the sand into size fractions was not needed for that study. Particle weight is usually

2 .. . . . .
Wetsieving as a measure of particle dispersion is not necessary for gravel and sand.
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recorded in gramsor in kg. If the scale has only English units, those should be recorded on
the data sheets. Unit conversions and all subsequent computations such as adding
subsample mass, cal cul ating frequencies and cumulative frequencies should be performed
at alater stage after all data have been entered into a spreadsheet program.

Stream: Date/Time:

Person sieving:

Standard sieve set: yes/ no ROTAP: yes/ no

Sieving duration: (min)

Notes:

Particle size Mass (g) of subsample
(mmor /)

1 2 3 n

Total
64

16

w

»

@

A [
AL S R G e RN

Fig. 2.9: Example data sheet for sieve analysis.

The range of the scale permitting, each subsample should be weighed as atotal before
sieving. Close correspondence between the total weight and the summed weight of all size
fractions makes sure that all recordings are accurate. If this control isnot available, it is
important to double-check the proper recording of each value. All samples should be
retained and put back into their sample bags until after the particle-size analysis, so that
samples can be re-measured if results suggest errors.

Sample splitting

The fine part of alarge sediment sample from agravel bed consists of fine gravel and
sand, and might weigh 10 — 20 kg. Thisis considerably more sediment than is needed for
arepresentative particle-size analysis of this size range (see, e.g., Fig. 5.14 for required
sample mass for a given Do particle size). It might therefore be useful to split the sample
before sieving. A sampleisbest split using a sample splitter. A riffle splitter consists of a
hopper under which a series of up to about 10 equally sized compartmentsislocated. The
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bottom outlets of the compartments are alternately directed to the left or the right side of
the splitter (seeriffle splitter in Fg. 2.10).

Sediment is poured evenly along the entire length of the hopper, making several passes
from side to side. The compartments funnel the sediment alternately to the left or the right
side of the splitter where the sediment is caught in containers. This process splits the
samplein half. Usually, the compartmentalization does not induce sediment sorting, so
that an approximately equal amount of sediment of near-equal size distribution is
contained in each of the two containers. However, the sediment to be split in a splitter
must be dry. Otherwise, fine particles may cling to the compartment walls and produce
subsamples with less fines than the original sample.

One passage through the sample splitter divides the samplein half. If one only needs /8"
of the total sample mass, the sample isrun through the splitter 3 times, one portion is
discarded each time, the remaining portion is split again. If the splitting aim isto obtain a
subsample with about 1/5™ of the total sample mass, the sampleisfirst split into 8
subsamples, two of which are discarded. Three of the 1/8™ splits are combined and split
again to yield a subsample that has 3/16™ of the total sample volume.

Only one of the subsamplesis sieved, unless the operator chooses to sieve several

subsamples in order to compute the accuracy of the sieving result (see two-stage sampling,
Section 5.4.2.1).

2.1.3.10 Field sieving, weighing, volume determination, and counting

Field sieving, templates and sieve sets

The sample mass required for a good statistical analysis of particle sizesis often
approximated by 20 - 100 times the mass of the D, particle size. Thisamountsto 160 -
800 kgin agravel bed with a Dy Of 180 mm (Section 5.4.1.1). Unless vehicle access of
the field site and to the lab is excellent, such large samples can best be accommodated by
sieving the coarse portion of the sample down to 16 or 11.3 mm in the field.

Field sieving requires arelatively large open and dry work space, and dry weather so that
particles can air dry. The surfaces of pebbles air-dry within a day even under overcast
skies, provided particles are well spread out on tarps. The weight difference between air-
dried and oven-dried particlesis usually negligible for pebbles and cobbles, but can make a
difference for sand, or for highly porous particles that retain a measurable amount of

water. The drying processin the field can be accelerated by using black plastic perforated
landscaping cloth instead of tarps, because the fine perforation prevents water puddles on
the cloth, and the black color heats up quickly in the sun. Landscaping cloth islight-
weight, especially when precut into long strips, but not very durable, and some of the fine
sand may pass through the perforation.

After particles are air-dried, any dry sand sticking to larger rocks is brushed off before
sieving. Cobbles and boulders larger than the largest sieve size or template hole are
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measured with calipersor aruler. All three axes are measured, and the corresponding
sieve diameter of those particlesis estimated from the particle b- and c-axis dimensions.

The equipment used to sieve cobbles and pebbles in the field depends on the scale of the
sampling event. A few tarps, one or two templates, a few sturdy plastic shopping bags, and
a hanging scale are sufficient for small sample volumes of only afew buckets. Such a
field sieving kit is also recommended when working at aremote, hike-in, field site.
Starting with the largest particles on the tarp, each particle is picked up and its size classis
measured with atemplate. Thistask isactually less daunting than it might appear at first.
For example, asample of 135 kg from a gravel-bed stream might only contain 26 particles
larger than 64 mm, but these account for 35% of the total weight of the sample (Table 2.2).
Continuing with field sieving down to the 22.6 or 16 mm size class, which requires
handling roughly 600-1000 particles, analyzes 2/3 to 3/4 of the total sample weight
aready. Particles of agiven size class are collected in plastic bags, or in piles on an extra
tarp. The particles of each size class are then weighed using the hanging scale.
Alternatively, the number of particles per size class may be counted, and that number can
be converted into mass per size class at alater stage.

If the site has vehicle access or is a short distance away from the vehicle, it is advisable to
take alab sieve set to the field when sieving larger volumes of gravel. Less bulky than a
stack of lab sievesis a (home-made) sieve box consisting of aframe (approximately 0.2 by
0.3 m, 0.1 m high, into which screens of different mesh width can be inserted (Tom Lidle,
pers. comm, 1998). Particles sieved into different size classes are collected on tarps,
pails, plastic tubs, or in strong ziploc bags, depending on the extent of the sampling
project. After sieving, particles of asize class can either be weighed, or counted.

Thereisno rule regarding the lowest sieve size for field sieving, although fine gravel and
sand can probably be sieved more conveniently in the lab. If the unsieved portion of the
sampleislarge, it can be split in the field so that sufficient sediment for the remaining
largest particle-size classistaken to the laboratory for a standard sieve analysis. A
subsample mass of 6 kg is quite sufficient if particles larger than 16 mm have been
removed in the field (Eq. 5.40 and Fig. 5.14 provides a relation between required sample
mass for a given D particle size). One method of splitting asamplein thefield isto
distribute scoops of sediment from the sample alternately into a series of empty buckets.
The number of buckets used depends on the desired sediment mass for the subsample. The
first scoop goesinto bucket 1, the second into bucket 2, etc, until all sediment from the
sampleisevenly distributed. The volume and the mass in each bucket should be equal. A
sturdy ladle works well for scooping sandy and fine gravelly sediment. The number of all
subsamplesis recorded, but only one of the subsamplesisthen taken to the lab.

Well thought out field sieving equipment is essential when undertaking an extensive field-
sampling program. The minimum field equipment consists of alarge rockable sieve-box
(ca. 0.5 by 0.5 m, and 0.15 m high) with exchangeable pieces of meshwire corresponding
sieving and splitting apparatus to the field site. The device (Fig. 2.10) consists of aframe,

3 Research Hydrologist, Pacific Southwest Forest and Range Experiment Station, Arcata, CA.
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to sieve sizes. When sieving tons’ of sediment, |bbeken (1974) recommends bringing a
approximately 0.5 by 0.5 m, and 0.7 m high, into which a sieve and a sample splitter can
be inserted. The bottom of the frame is connected to a springy and rockable stand (old lab
stool). Two operators can sieve 0.5 - 1 tons of gravelly sediment per day with this
apparatus. The large masses of sediment to be handled require a large number of tarps and
tubs, and a robust field scale for weighing.

Particle weighing

Particles collected per sieve class can be weighed in the field using an accurate hanging
scale that is best hung from a strong tree branch, or from atripod. The particlesto be
weighted are placed into a plastic shopping bag. Such bags have negligible weight, but do
not withstand much use, so a supply is necessary.

Two scales with different ranges are useful if the sample contains large cobbles and small
boulders. Particle weight per size classin aunimodal sample of about 150 kg from a
gravel-bed ranges between 1 and 20 kg (Table 2.2). Thus, ascalewitha0.1-10kgis
suitable. Within the 100 g gradation, readings can be visually interpolated to the nearest
10 or 20 g. If the weight per sieve class exceeds 10 kg, particles are weighed in two
batches. Large cobbles and small boulders are weighed individually. If their individual
weight exceeds 10 kg, a scale with alarger range is needed, or the particle weight is
computed by measuring particle volume and multiplying by an assumed particle density.

Determination of particle volume

It may be useful to determine particle volumein thefield. If all particles are of known
density, weight can be computed from particle volume. If particles are of distinctly
different densities, such as volcanic rocks that range from massive basalt to vesicular
pumice that floats on water, it is useful to determine both particle volume and weight to
compute particle density. A tall, straight-walled, bucket with a known diameter and a
holding capacity of about 3 to 5 gallons can be used for measuring particle volume. The
bucket isfilled with water to about half its capacity and the water level isread before and
after the cobble is completely submerged. The bucket should stand on alevel surface
when reading the water level. If alevel surfaceisnot available, the bucket can be
shimmed until level, using abuilder’slevel to verify that the bucket is horizontal. If that is
not possible, the water level needsto be read at several locations and averaged.

* Ton (English units) = 907.185 kg = 2000 Ib; Metric ton = 1,000 kg = 2,204.63 Ib.
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Fig. 2.10: A sieving and splitting device: (1) basal plate, (2) catch bins, (3) rockable, springy stand, (4) central
frame, (5) deflecting board, (6) riffle splitter, (7) splitter board, (8) screen frame, (9) screen, (10) assembled
device with general measurements (Reprinted from | bbeken (1974), by permission of the Society of
Sedimentary Geology).
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Table 2.2: Example of the number of particles
and weight per size class in a volumetric bed-
material sample. Particles finer than 8 mm were
not counted.

SizeClass No. of Weight % Finer
(mm) Particles (kg) by Weight

256 0 0 100
180 1 16 88
128 1 6 84
90 5 10 76
64 19 14 65
45 66 18 52
32 169 16 40
22.6 326 11 32
16 716 9 25
11.3 1519 7 20
8 6 16
5.6 5 13

4 4 10
2.8 4 7

2 2 5
<2 _7 4

2=135

Water levels can be read more easily if a clear plastic tube is mounted along the outside of
the bucket. The tube is connected to the inside of the bucket through a hole at the top and
the bottom of the bucket. Thus, the water level in the bucket is equal to the water level in
the tube outside of the bucket. A ruler mounted next to clear plastic tubing and a drop of
dye in the tubing makes the reading even easier. Again, it isessential that the bucket is
level.

Particle counting

Counting the number of particles per sieve classis an option if conditions are unfavorable
for field weighing. Since the laboratory sieve analysis of sand and pebble particle sizesis
mass based, the number of particles counted per sieve class needs to be converted to mass as
well. A generalizable relationship can be obtained from the following study.

A relation between mean weight of particles my; (g) and the retaining sieve Size Dyesqi (in
mm) was established for six bedload- and bed-material samples from mountain gravel-bed
rivers with mainly granitic or andesite petrology. Particle shapeswithin a sample varied,
ranging from compact to elongated. A power function in the form of my; = a Dyeysy)i P \was
fitted through the data and yielded a coefficient of determination r? = 0.999 (Fig. 2.11).
Particle density and shape, as well as measurement errors cause slight variability between
samples, but for six sediment samples from various gravel-bed streams examined in a study
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by the authors, coefficients ranged between 0.0024 and 0.0036, while exponents ranged
between 2.92 and 3.04. The mid point of all coefficients and exponents obtained for mean
particle weight per square-hole sieve size yielded the equation

2.98
My = 0.00307 (Dret(sq)i) (2.14)

where my,; isthe mean weight of particles (g) and D,«sg)i iSthe retaining sieve size (in mm)
Eq. 2.14 is applicable to mountain gravel-bed streams where bed material comprises a
variety of different particle shapes and where a particle density of approximately 2.65
g/cm® can be assumed.

Particle Size (¢@-units)

8 113 16 226 32 453 64 905 128
Retaining sieve size D, (Mmm)

Fig. 2.11: Measured mean particle weight for sieve sizesin 0.5 g-increments for square-hole sieves (m) and
the regression function (o). Sediment from Squaw Creek, MT.



2.1.4 Computation of the particle-size distribution

The statistical analysis of a bed-material sample starts with computing a particle-size
frequency and percentage frequency-distribution from which a cumulative frequency
distribution is computed in the third step. Percentiles are determined from the cumulative
distribution curve, and used by themselves, for example when comparing Dsy Sizes, or to
derive particle-distribution parameters such as mean, sorting (i.e., standard deviation) and
skewness that characterize the distribution as awhole. Particle-distribution parameters
can also be computed directly from afrequency distribution (moment methods).

2.1.4.1 Particle-size frequency and cumulative frequency distribution

The result of alaboratory or field particle size-analysisis arecord of particle weight (or
particle numbers) retained on each sieve size (see data sheet in Section 2.1.3.9). The
weight per size classisthen entered into a spreadsheet table (see column 1 and 2 in Table
2.3) for al subsequent computations. The first step of analysisisto compute the
percentage weight or number frequency for each size class. The weight or number of
particlesin each size classis divided by the total sample weight or particle number and
multiplied by 100 (column 3). The result can be plotted as a percentage frequency
distribution (histogram) using a bar graph (Fig. 2.12). Next, the percentage of particle
weight or numbers retained on each sieve is converted into the percentage of particle
weight or number passing the next larger sieve size (column 4).

For example, arecord showing 9.1% of particle weight retained on sieve size 32 mm
becomes 9.1% of particle weight passing the sieve size of 45 mm. The percentage particle
weight or particle number per size classisthen summed starting with the finest size class.
Thisleadsto a cumulative weight distribution (column 5) in terms of percent finer than or
percent finer the indicated size class. The cumulative distribution curve could
theoretically al'so be computed in terms of percent coarser or percent retained, but the
percent finer or percent passing approach is the commonly used approach for particle-size
distributions.

The cumulative particle size-distribution curve (Table 2.3), also called the sieve curve, or
the gradation curve, is plotted with the particle-size classes from column 1 or 2 asthe
abscissa (x-axis, horizontal), and the percent finer by weight (column 5) on the ordinate
(y-axis, vertical) (Fig. 2.12). If the analysisis based on frequency-by-number, such asin a
pebble-count, the percent finer by number is plotted on the ordinate. If particle sizesare
expressed in @-units, the x-axisis kept linear. If particle sizes are expressed in mm, the x-
axis should be expressed in alogarithmic scale. Alternatively, the mm-sizes of particle
size-classes can be plotted in equally spaced increments along the x-axis (asin bar or line
graphs). Segments of the cumulative distribution curve are connected by straight lines.

Data plotting is often the first step of analysis, especially when dealing with a sample from
anew stream site. Visualization of the frequency histogram and the cumulative frequency
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Table 2.3: Example of a particle-size analysis for a 103 kg sample of subsurface sediment taken at mid-
stream in a mountain gravel-bed stream (Squaw Creek, MT).

(1  (1b) 2 (©) ©) ®) (6) (7
X-aXis. yy-axis: Yo-axis.
Size of Weight retained Weight Cumulative Percentiles
sieve on sieve passing seve  weight
(mm) (9 (kg) (%) (%finer) (cum. %finer) (@) (@  (Dp (mm)
<2 <1 6.7 6.5 - -
103 -0.89 Ds 18
2 -1.0 2.3 2.3 6.5 6.5
2.8 -15 25 24 2.3 8.8
4 -2 2.6 25 2.4 11.2
5.6 -2.5 37 3.6 25 13.7
(RLG -2.82 D16 7.1
8 -3.0 53 5.1 3.6 17.3
11.3 -3.5 7.8 7.6 51 224
@s -3.67 Dy 127
16 -4.0 9.6 9.4 7.6 30.0
22.6 -4.5 10.9 10.6 9.4 394
32 -5.0 9.3 9.1 10.6 50.0 @o -5.00 Ds 32.0
45 -5.5 11.4 111 9.1 59.1
64 -6.0 12.2 109 111 70.1
@5 -6.22 D+ 74.7
90.5 -6.5 7.4 7.2 109 811
@ -6.70 Dg, 1043
128 -7.0 5.4 5.3 7.2 88.2
181 -7.5 6.6 6.5 5.3 935
@s -7.61 Dgs 195.8
256 -8.0 0.0 0.0 6.5 100.0
total: 102.7  100.0

distribution provides afirst impression of the data and is helpful for interpretation. If the
graph is used mainly for demonstrative or visualization purposes, the y-axisis usually

plotted in alinear scale. If percentile values are to be read off the graph, plotting the y-
axis on probability paper increases the accuracy with which the particle size of small and
large percentiles can be read.
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Fig. 2.12: Frequency distribution (histogram with hatched bars) and cumulative frequency distribution curve
(thick line) with indicated percentile values for data listed in Table 2.3.

2.1.4.2 Percentiles and their computation

Two sediment mixtures of different particle sizes are usually distinguished by comparing
several of the percentile values of the two distributions or the parameters derived from the
percentiles. A percentile isa sediment size indicated by the cumulative distribution curve
for aparticular “percent finer” value. For example, the sediment size for which 80% of
the sediment sampleisfiner isthe “80th percentile”. The notation is Dgy, where D
represents particle size (in mm) and the subscript “80” denotes 80%. The D5y isthe
median point of the distribution that divides the distribution in two equal parts. The
particle size for which 25% of the distribution isfiner is the 25th percentile, or the Ds.
The D,s and D75 are also called quartiles. Theoretically, any percentile value can be used
for comparison, but customarily, the particle sizes of the Dsy, (i.e., the median), the Dys
and D5 (quartiles), the D1g and Dgg, and the Ds and Dgs are used. In anormal distribution,
one standard deviation from the median encompasses all data between the D¢ and the Dgq4
and are the points on a distribution curve at which the change of curvature occurs). The
Ds and Dgs characterize the distribution tails. Data between the Ds and the Dgs comprise
almost two standard deviations on either side of the Dsy or median. Those 7 percentiles
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may be compared as individual values, or be used to compute distribution parameters such
as mean, sorting (i.e., standard deviation), and skewness (Section 2.1.5).

Reading percentiles off a graph plotted on probability paper

Before spreadsheet programs became commonly available, percentiles were often
graphically determined from the cumulative particle-size distribution curve plotted on
normal probability paper. The y-axis of this graph paper extends from a small value > 0 at
the lower end to avalue just below 100 at the high end. Probability partitioning spreads
the y-axis range at the low and the high end, while compressing the central range around
50. The x-axisislinear for particle sizesin ¢-units, and lognormal for particle sizesin
mm-units. Probability graph paper in linear and logarithmic partitioning is provided in the
appendix. The graph of a cumulative particle frequency-distribution approaches a straight
line as particle size-distributions approach normality, or lognormality, respectively. A
probability plot enables the user to read percentile valuesin g-units off the graph, but
plotting by hand becomes tedious when dealing with large data sets.

Mathematical linear interpolation

An alternative to plotting on probability paper isto compute percentiles mathematically by
linear interpolation between two known data pairs of sieve sizein @-units and their
percentile valuesin a cumulative distribution. Particle size-classesin mm require a
logarithmic interpolation, which means that the mm size classes need to be log-
transformed before the interpolation (log D). A particle size ¢, of adesired percentilexin
@-units can be computed from:

%= (X~ %) - %% X1 (2.15)

y, and y; are the two values of the cumulative percent frequency just below and above the
desired cumulative frequency yy (see shaded valuesin Table 2.3, column 5), and x, and x;
are the particle sizesin @-units associated with the cumulative frequenciesy, and y; (see
shaded valuesin column 1b in Table 2.3). The example below illustrates how the particle
size of the percentile @6 is computed for the particle-size distribution in Table 2.3 using
Eq. 2.15.

G = (-3--2.5) - 1176 3 1i37 7§+ -25=-2.82¢ (=7.1mm) (2.154)

Likewise, the D¢ is computed from:
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Dys = 100 @og ) - log (5.67)) - %@ log (5.67)@: 7.1mm (2.15h)

Note that the error incurred if the computation is performed with particle sizesin mm
without log transformation is relatively small and can maximally reach 1.7 % compared to
the result that would have been obtained if log transformed data were used.

2.1.4.3 Testing for various distribution types

Gravel deposits are typically not made up of one particle size only, but comprise a variety
of particle sizes that may take up various portions of the sediment volume. One possibility
isthat particle sizes of each size class (in terms of @-units) may comprise approximately
even portions of the total sediment volume (uniform distribution). More typically,
medium particle sizes comprise most of the sediment volume with little sediment in the
finest and coarsest size classes (normal or log-normal distributions).

Huvially transported sediment from gravel-bed rivers often tends to roughly approximate
lognormal distributionsif particle sizes are expressed in mm, or approximate normal
(Gaussian) distributions if particles sizes are expressed in ¢@-units which are alogarithmic
transformation of particle sizesin mm. Assuming an underlying normal distribution for
approximately normal particle-size distributions is convenient because normality isthe
prerequisite for several statistical applications. Normality isrequired for (1) binning
particle sizesin g-units, for (2) confidence in the results of standard descriptive statistical
procedures, as well asfor (3) confidence in the results of common sample-size equations.

In astrict statistical sense, particle-size distributions in @-units are often not normally
distributed (Church and Kellerhals 1978; Church et al. 1987; Rice and Church 1996b).
The tolerable degree of departure from normality varies depending on the planned
statistical analysis. Small departures from normality usually do not pose problems when
applying statistics that assume normality, but large departures do. If normality iswrongly
assumed, results of standard descriptive statistical parameters (e.g., the sample mean,
sorting, skewness and kurtosis) may not be accurate and may not serve well to
discriminate between samples.

Small departures from normality, however, can greatly affect the sample size required for
sampling specified percentiles with a preset precision. For example, in distributions that
have atail of fine sediment, alower sample size than computed from standard sample-size
eguations may suffice to predict the Dgs of the distribution with a preset precision.
Contrarily, sample size has to be considerable higher than computed to precisely predict
the D5 (Section 5.2.3.4). Church et al. (1987) and Rice and Church (1996b) therefore
recommend that no particular distribution should be assumed for sediment from gravel-
bed rivers, not even for large samples for which normality is more intuitively assumed
than for small samples. Equations have been developed for estimating sample size when no
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particular underlying distribution type is assumed (Section 5.4.1.1). Sample mass
predicted from these equationsis similar to the sample size predicted by equations based
on normal distributions for accurate sampling of high percentiles (Section 5.4.3). But
equations based on normal distributions predict that a much lower sample mass would
suffice to accurately predict central percentiles.

If a user wants to acknowledge that a particle-size distribution is not strictly normal (in
terms of @-units), non-parametric statistics could be applied. Non-parametric statistics are
necessary if the data severely deviate from normality. However, non-parametric tests are
only beginning to enter mainstream statistical analyses in geomorphology, and results
from arelatively unknown test might not be very convincing to areader. The reader is
referred to the statistical literature for non-parametric statistics, none of which are
described in this document.

A particle-size distribution can be tested for normality and lognormality in several ways.

» visual evaluation of the plotted graph,

* regression analysis between the cumulative frequency and the respective particle-size
classes,

» comparison of frequency distribution with ideal Gaussian or Rosin distributions,

» probability plot of residuals with regression analysis, and

» standard tests for normality and lognormality.

Visual evaluation of the plotted graph

The likelihood of whether a given distribution is normal or lognormal can be estimated by
plotting the cumulative size distribution of particle sizesin gunits on normal probability
paper”. Lognormal probability paper is used for plotting if particle sizesarein mm®. The
straightness of the graph is assessed visually. Ideal normal, or lognormal distributions,
respectively, plot as straight lines.

Some computer based statistical packages and some newer spreadsheet programs provide
plots on a probability-scaled y-axis for a visual assessment of the degree of normality or
lognormality. If such aprogram isnot available, a spreadsheet program can be used to
approximate a probability scale. Thefirst step isto compute a cumulative particle-size
distribution in which the frequency is expressed in decimals, i.e., as 0.4 instead of 40%.
The unsieved remaining particles, i.e., the contents of the “pan” should be excluded from
thisanalysis.

The cumulative frequency distribution can be interpreted as the probability with which to
expect a particular particle-size class. A standard normal distribution (or standard normal
density function) has a given probability p; (y-axis) for each value z; (x-axis of a bell-
shaped normal distribution). The valuesfor p and z, are listed in tables of any general
purpose statistics book. For example, probabilities of 0.5, 0.75, 0.975, and 0.99 are

® Provided in the appendix of this document.
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obtained by z, values of 0, 0.675, 1.96, and 2.33. Since the normal distribution is
symmetrical, probabilitiesof 1 - 0.99 = 0.01, and 1 - 0.975 = 0.025 are obtained by z,
values of -2.33, and -1.96, respectively. The relationship between z, and p can also be
approximated from various equations. One of the possibilities provided by Stedinger et al.
(1993) isthe equation

0.135 _ (1 _ p)0.135

p
%= 0.1975

(2.16)

Using this equation, the z, value associated with each probability, i.e., each decimal
fraction of the cumulative particle size-distribution can be computed in a spreadsheet. Ina
plot of z, values versus particle size, the resulting graph is a straight line for normally
distributed samples (Fig. 2.13). Deviation from a straight line can be visually assessed by
comparison with a best-fit handfitted straight line. For particle-size distributions, a
deviation from a straight line is usually most pronounced in the distribution tails, a

Particle Size (@-units)
1-15 -2 -25 -3 -35 -4 -45 5 55 -6 6.5 -7 -7.5 -g Probadility

40 = ® - 0.9999
35 b -
B0 L0999
25 % 099
S 200 i Yoo
£= £ ~ -095
T T e -
a EE -0.90
= O T e R -0.84
2 R -0.75
5 05
T 00 o o e -0.50
E 05—y ~0.25
e 10+ 4 -0.16
- £ -0.10
O o= e -0.05
N 2.0+
S L I —0.01
e T e e e -0.001
R T S e
0+ ~0.0001

2 28 4 56 8 11.3 1622.6 32 45 64 90 128 181 256
Particle size (mm)

Fig. 2.13: Z,-vaues versus particle size for an approximate normal distribution (@) (particle-size distribution
shown on Table 2.3 and in Fig. 2.12) and a non-normal block distribution (v).
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phenomenon easily checked by the visual assessment. If the deviation of the distribution
tailsis pronounced, truncating the data set to the range of @6 to @4, for example, might
straighten the graph.

Caution should be used when interpreting the results of this method. The graph with the
black circlesin Fig. 2.13 isthe particle size-distribution shown in Table 2.3 and Fig. 2.12.
The plotted data points seem to resemble anormal distribution well enough to justify the
assumption of anormal distribution, and hence to compute distribution parameters or the
sampling accuracy for a given sample size. However, non-normal distributions do not
necessarily show excessive deviation from a straight line in such plots. Even a definitely
non-normally distributed data set that comprises alternate frequencies of 12, 2, 12, 2, etc.
for consecutive particle-size classes yields an seemingly reasonable fit to a straight line
(graph marked by black trianglesin Fg. 2.13). Thislack of a standard regarding the
tolerable degree of deviation from a straight line is a disadvantage of the visual method.

Evaluation and comparison of regression coefficients

A regression analysis can be performed that regresses In(y), with y = cumulative
frequency, versus x, the particle sizein @-units. The coefficient of determination r®is
computed for the best fit exponential regressiony = a- €” *. The closer r? approaches the
value of 1, the closer the fit with anormal distribution. This approach is useful when
comparing the goodness-of-fit to a normal distribution between two samples with a
similar range of particle sizes. However, there are no standard values that r* needs to
obtain in order for the distribution to qualify asnormal. Thisis because the value for r* is
highly dependent on the particle-size range of the sample.

Comparison with best fit normal and lognormal distributions

Another test for normality of particle-size distributions in @-unitsisto compute the

normal distribution that most closely resembles the measured particle-size distribution
and compare the observed and computed distribution. The difference between samplesis
expressed as a percentage value that then is used to compare the goodness-of-fit between
samples. The standard normal distribution in its notation for grouped (i.e., “binned”) data
is

1 Y
G = o P ﬁ%}#ﬁ 2.17)

where G; isthe frequency of an equivalent Gaussian distribution for theith size classin
@-units, @ isthe particle size of theith classin gunits (Schleyer 1987). u usually denotes
the distribution mean, but Schleyer (1987) suggests that the distribution mode (i.e., the
size class with the largest frequency) is a more appropriate parameter when analyzing
coarse sediment samples in which the finest and the coarsest fractions may not be
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representative of the population. Unrepresentative distribution tails affect the distribution
mean, but not the mode. If particle frequency-distributions are too irregular in their
central partsto benefit from using the distribution mode, the distribution median should
be used instead. Various ways of computing a graphic arithmetic mean for particle sizes
in @-units are explained in Section 2.1.5.3 (Eqs. 2.31 - 2.34). oisthedistribution
standard deviation. In order to minimize the effects of possible truncation on g, Schleyer
(1987) suggests substituting o by a sorting coefficient s which is computed from

Ss=0.75 (@5 - @s) (2.18)

and focuses on the more central parts of the distri bution®. The constant in Eq. 2.19 could
be set to 0.5 if normality of the data was not assumed. However, using the constant of
0.75 renders the numerical values of sssimilar to the Inman sorting coefficient s (EQ.
2.46, Section 2.1.5.4)

If particle-size data are in mm units, correspondence with a standard lognormal
distribution should be tested instead of a normal distribution. The standard lognormal
distribution is given by (Gilbert 1987)

1 InD;-D
Lpi=——F7— exp- 2.19
Di o \E[ p 2 ( )

where Lp; isthe frequency of an equivalent lognormal distribution of the ith size classin
mm. Dy, isthe arithmetic mean of the log-transformed data and could be computed as

i n
Dm = et ;(Dci - m) (2.20)

where D isthe center of classin @units of ith size class, m isthe weight of particles
retained for the ith size class, and my, is the total weight of particles per sasmple. Eq. 2.19
can also be applied to number frequencies. In thiscase, m in Eqg. 2.20 becomes n;, the
number of particles per size class, and my becomes n, the total number of particles per
sample.

Other possibilities to compute a distribution mean are shown in Section 2.1.5.3. oisthe
distribution standard deviation and computed from

6 o denotes the standard deviation of a population, s denotes the sample standard deviation. Sorting coefficients denoted
by s are an abbreviated computation of standard deviation based on a few percentiles of the distribution.
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o (InDg - Dy)? (2.21)

Nes:

In symmetrical distributions, o could be approximated by

||Mx

0g D84 I 0og Dlﬁﬁ

o= 100" @ (2.21a)

which is analogous to the Inman (1952) sorting coefficient 5 (Eq. 2.46). The goodness-of-
fit to a Gaussian distribution is computed from the absol ute differences between the
cumulative percent frequency of the ith size class (Zmy;) of a bed-material sample and the
cumulative percent frequency of the ideal Gaussian distribution (ZG.;). These differences
are summed over all size classes k and divided by k-1 (Schleyer 1987).

. 1 K
% Gaussfit = 100% - = - D O(ZMmy - ZGoq)U] (2.22)

i=1

Similarly, the goodness-of-fit to lognormal distributions can be computed from:

. 1 &
% lognormal fit = 100% - PEh ZD(Zm%i - 2Lo4)0 (2.23)
i=1

The percent goodness-of-fit is affected by whether the percent frequency is allotted to the
retaining sieve size D,¢ Or the center of class particle size D, and by how the data are
summed. If the percent frequency is alotted to D, and summed such that a 100%
cumulative frequency isreached at the D of the largest size class, the resulting cumul ative
frequency isinterms of “aslarge as or finer than” (<) the center of class of the largest size
class. If the percent frequency is allotted to the retaining sieve size D, ¢, and summed so
that 100% cumulative frequency is reached at the size class above the one with the largest
particle, the cumulative frequency isin terms of “smaller than” (<), or percent finer than
the indicated sieve size. Both procedures were applied to the same particle-size
distribution (Table 2.3 and Fig. 2.12) to show the resulting difference (Table 2.4 and Fig.
2.14). A goodness-of-fit of 94.3% was obtained when using the center of class D,
whereas a goodness-of-fit of 97.2% was obtained when using D,¢. Thus, computational
consistency isimportant when comparing the goodness-of-fit between samples. The
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Table 2.4: Computation of goodness-of-fit for particle-size distribution in Table 2.3 and Fig. 2.12. ¢ =
3.99; @5 = 6.3; ss= 1.73 (Eq. 2.18); u=5.75 ¢ Resulting goodness-of-fit (Eq. 2.22) = 97.2%.

Original distribution Equivalent Gaussian distribution
No. of Cum. Cum. Absolute
size Size class Mass Freq. freq. Eqg. 2.17 Freq. freq.  difference
class Q@ D; m My 2 My Gy G 2Gy  2Myi-2 Gy
(@ (mm) (kg) (%) (%) () (%) (%)

) 2 ©) 4 ©) (6) (6) ) ©) ©)
1 1.0 2 2.3 2.4 0.0 0.005 0.3 0.3 0.3
2 15 2.8 25 2.6 2.4 0.011 0.6 0.9 15
3 2.0 4 2.6 2.7 5.0 0.022 1.2 21 2.9
4 25 5.6 37 3.8 7.7 0.039 21 42 35
5 3.0 8 5.3 55 115 0.065 35 7.7 3.8
6 35 11.3 7.8 8.1 17.0 0.099 54 13.1 3.9
7 40 16 9.6 10.0 25.1 0.138 7.5 20.6 4.6
8 45 22.6 10.9 11.4 35.2 0.178 9.6 30.2 5.0
9 5.0 32 9.3 9.7 46.5 0.210 11.4 415 5.0

10 55 45.3 114 11.8 56.2 0.228 124 53.9 24
11 6.0 64 11.2 11.7 68.1 0.228 124 66.2 19
12 6.5 90.5 7.4 7.7 79.8 0.210 11.4 77.6 2.2
13 7.0 128 54 5.7 87.4 0.178 9.6 87.2 0.3
14 7.5 181 6.6 6.9 93.1 0.138 7.5 94.7 1.6
15 8.0 256 0.0 0.0 100.0 009 54 100.0 ~0.0

totals: 96.0 100.0 1.85 100.0 38.9

computational difference becomes smaller as the number of particle-size classes
increases, which could be achieved if the sample size islarge enough to facilitate sieving
in size classes of lessthan 0.5 @

Comparison with best-fit Rosin distribution

The Rosin exponential distribution was developed for coal milling purposes (Rosin and
Rammler 1933, cited after Ibbeken 1983) and applies well to crushed rock. Bed-material
frequency distributions that follow Rosin’s distribution are skewed towards fine particles
and the mode corresponds to the 36.78th percentile (Fig. 2.15) which is approximately the
Dg3 if the cumulative frequency is computed as the percent finer or percent passing. The
Rosin distribution is typical of jointed rock and unweathered slope sediment, and hence to
sediment supplied to the stream from hillslopes (Ibbeken 1983). Thus, testing for aRosin
distribution might be worthwhile, if the bed material has atail of fine sediment (skewed
towards fines) and sediment was supplied from unstable hillslopes.

For particle-size distribution where the center of classis adistinct value representing the

total class, theidea Rosin distribution corresponding to the measured distribution is
computed from (Schleyer 1987)
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Rpi = exp - %‘ﬁ?? - exp- %ﬁiﬁﬁa (2.24)

where Rp; isthe frequency of an equivalent Rosin distribution for the ith size class, Dyas
isthe passing sieve size for the ith size classin mm, and D,y is the retaining sieve size
for

Particle Size (@-units)
-1 -15 -2 -25 -3 35 4 45 5 55 6 65 -7 -7.5 -8

Cumulative Frequency (%)
Weight Frequency (%)

32 64 128 256
2.8 56 11.3 226 453 905 180

Particle Size (mm)

—m— orig. distr., % < thancntr.of class ——— ideal Gauss., % < than cntr.of class
—e— orig. distr., % < than sieve size —©— ideal Gauss., % < than sieve size

Fig. 2.14: Goodness-of-fit computations based on cumulative frequency in terms of < D, and in terms of <
than D¢ (% finer or % passing).

theith size classin mm. Dyqe IS the mode of the distribution, and sz is the sorting
coefficient which for a Rosin distribution is computed from

2.15

= — 2.25
R Bsa- Giga ( )
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Fig. 2.15: (A) Histograms of ideal Rosin distributions, increasingly poorly sorted from 1to 5. Cumulative
frequency curves of these distributions are plotted on Rosin-coordinate probability paper (B), and on
lognormal probability paper (C) (Reprinted from Ibbeken (1983), by permission of the Society of Sedimentary
Geologists).
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The goodness-of-fit to a Rosin distribution can be computed from (Schleyer 1987):

. 1 K1
% Rosin fit = 100% - PR O(ZMy - ZRy) 0 (2.26)
=1

where 2y is the cumulative percentage weight frequency of ith sieve class, and ZRy; is
the cumulative percentage frequency of the computed Rosin distribution for the ith sieve
class, and k is the number of sieve classes.

Computed this way, the goodness-of-fit to Gaussian and Rosin distributions is independent
of the range of the particle sizesincluded in the analysis and the degree of truncation of
the size distribution. Hence, bed-material sediment can be partitioned into agravel and a
sand fraction, and goodness-of-fit can be computed for each part individually, a procedure
useful for the analysis of bimodal sediment. Goodness-of-fit to Gaussian, or Rosin
distributionsis also independent of the degree of skewness (Section 2.1.5.5) of the bed-
material distribution in question. A Gaussian size-distribution that is skewed towards fine
particles does not automatically receive agood fit to a Rosin distribution, nor are good
Rosin fits reserved for distributions skewed towards fines.

An analysis of the goodness-of-fit to a Gaussian or Rosin distribution can be useful in two
ways: First, summary statistics used to describe particle-size distributions may not be
meaningful or appropriate, if the fit to a Gaussian distribution is poor. Second, the
goodness-of-fit to a Gaussian or a Rosin particle-size distribution can in and of itself serve
as ameans to analyze fluvial transport distance (Krumbein and Tisdel 1940; Kittleman
1964, both cited in Ibbeken 1983, and Schleyer 1987). A good fit to anormal distribution
indicates that the particle-size distribution was derived due to transport controlled factors,
whereas a good fit to a Rosin distribution indicates that the particle-size distribution is
controlled by supply from the rock source.

Probability plot of residuals and regression analysis

Another procedure to quantitatively evaluate normality is suggested by Neter et al. (1990).
The procedure prepares a normal probability plot of residuals and conducts a regression
analysis. A residua e inaset of x- and y-data is the difference between an observed value
y; and the value Y; predicted from aregression analysis. For the analysis of normality, the
ranked residuals g are plotted against the values E; which the residual s are expected to
have under normality. Near linearity of thisfunction indicates that the distribution is near-
normal. The degree of linearity, and thus the degree of normality, can be evaluated by the
coefficient of correlation r. Thisvalue can be compared with table values of r for
specified sample sizes and confidence levels to determine whether near-normality can be
assumed.

Thefirst step in assessing normality for particle-size frequency distributionsis to compute
the residuals g which are the positive or negative difference between the observed
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cumulative percent frequency for a particle size-class D; and the cumul ative percent
frequency of an equivalent Gaussian distribution (Eq. 2.17). The next step isto rank the
residualsin ascending order from g - ; to e - «, where k is the number of size classes. The
expected value E; of the ranked residuals under normality is computed from

o 020

z(A) isthe percentile of a standard normal distribution. The table value for z(A) of e.g.,
0.841is1.00. If Aissmaller than 0.5, zislooked up under A-1 and yields a negative
value. For example, if A=0.159, z(0.159 - 1) = z(-0.841) = -1.00.

Table 2.5 shows the computation of expected values for the residuals E; using the
example particle size-distribution listed in Table 2.3 and shown in Fg. 2.13. The
residuals g of the observed cumulative percent frequency (column 1in Table 2.5 and
column 6 in Table 2.4) and the cumul ative percent frequency of the equivalent Gaussian
distribution (column 2 in Table 2.5 and column 9 in Table 2.4) are computed in column 3
of Table2.5. Theresiduals g are then ranked in ascending order (column 5 of Table 2.5).
The summed term in Eq. 2.27 equals 141.02 (sum of column 6) for the example particle
size-distribution, and the square-root term is (141.02/(15-2))%° = (10.85)"° = 3.294.

For the smallest residua g withi =1, E; is computed as:
-0.37
\/10.85 - z 5 J?g 255§: 3.294 - 7(0.041) =3.294 - z(0.959) =3.294 - -1.739=-5.728

For the second smallest residual g withi = 2, E; is computed as:
- 0.375
1/10.85- z 540 25@2 3.294 - 7(0.107) =3.294 - z(0.893) =3.294 - -1.243=-4.094

The expected values E; are symmetrical, so that largest and the second largest values of E;
are 5.728 and 4.094, respectively. Table 2.5 listsall values of E; in column 10.

For avisual assessment of normality, the ranked residuals g are plotted against their
expected values E; (Fig. 2.16). The closer the data pointsfit to a straight line, the closer is
the degree of normality. In addition to a visual assessment, the closenessto a straight

line, and thus the degree of normality, can be mathematically quantified. To do so, the
ranked residuals g are compared to the values expected under normality E; by computing
alinear regression function E; =a - e +b. The values E; predicted from the regression
function are listed in column 11 of Table 2.5 and plotted in Fig. 2.16. The coefficient of
correlation r is used to indicate the departure from normality. Atr = 1, the distributionis
normal .
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Table 2.5: Computation of normality for residuals

Orig. Gauss. residual

distr.  distr. € ranked (i-0.375) expect. pred.
% 5% (1)-(2 rank g e’ (k+0.25) (9)-1 z E E
1 @) @ @ O (6) (7 ) €) (10) (11

0.0 03 -029
24 0.9 1.54
50 21 294
7.7 42 350
115 77 3.80
17.0 131 3.95
251 20.6 4.58

-1.56 242 0.041 -0959 -1739 -573 -131
-0.29 0.08 0.107 -0.893 -1.243 -409 -0.27
0.00 0.00 0172 -0.828 -0948 -3.12 0.35
0.25 0.06 0238 -0.762 -0.713 -2.35 0.85
154 2.38 0303 -0.697 -0516 -1.70 1.26
1.87 3.48 0369 -0631 -0335 -1.10 164
2.18 4.77 0434 -0566 -0.168 -0.55 1.99

O©CoO~NOOOTPA~,WNPEP

352 302 5.02 2.37 5.63 0.500 0 0 2.34
465 415 5.01 2.94 8.64 0.566 0.168 0.55 2.70
56.2 539 2.37 10 350 1228 0.631 0.335 1.10 3.05
68.1 66.2 1.87 11 380 1441 0.697 0.516 1.70 3.43
79.8 776 2.18 12 395 1557 0.762 0.713 2.35 3.84
874 872 0.25 13 458 2101 0.828 0.948 3.12 4.34
931 947 -15 14 501 2512 0.893 1.243 4.09 4.96
100.0 100.0 _0.00 15 502 2517 0.959 1.739 573 6.00
35.17 141.02

y=0.638 x + 2.345

Ranked residuals e;

Expected values E;

Fig. 2.16: Normal probability plot of ranked residuals versus their expected values under normality. The
example particle size-distribution listed in Table 2.3 and shown in Fig. 2.12 is used for the computation.



Asr becomes < than 1, the distribution departs from normality. Looney and Gulledge
(1985) provide table values of r that need to be exceeded to assume near-normality for
different levels of significance (Table 2.6) and number of data points used for the
regression (i.e., the number of size classesk). Anr-value larger than 0.989 for k = 15
indicates that the null hypothesis of normality is not rejected in 90 out of 100 cases, and
not rejected in 10 out of 100 casesif r islarger than 0.951. Neter et al. (1990) suggest
that departure from normality is not substantial if r exceeds the critical valuesfor a =
0.05. For k =15 this means that even if normality were true, an r as small as 0.939 would
only occur in 5% of all cases. The example particle size-distribution from Table 2.3 and
Fg. 2.12 obtained an r = 0.982 in the probability plot (Fig. 2.16). Thismeansthat in
about 70 out of 100 cases, the null hypothesis of normality is not rejected and near-
normality may be correctly assumed for that particle size-distribution.

Table 2.6: Ciritical values for a coefficient of correlation between ordered residuals g and expected
residual values under normality E; when the distribution of error termsis normal (excerpt of table from:
Looney and Gulledge 1985).

Number of Number of
size classes Level of significance a size classes Level of significance a
k 090 075 050 010 0.05 k 090 075 050 010 0.05
5 0988 0977 0960 0.903 0.880 16 0.989 0.985 0.978 0.953 0.941
6 098 0977 0962 0.910 0.888 17 0.990 0.986 0.979 0.954 0.944
7 098 0978 0964 0.918 0.898 18 0.990 0.986 0.979 0.957 0.946
8 0986 0978 0966 0.924 0.906 19 0.990 0.987 0.980 0.958 0.949
9 098 0980 0968 0.930 0.912 20 0991 0987 0981 0.960 0.951
10 0.987 0.980 0.970 0.934 0.918 25 0992 0989 0984 0.966 0.959
11 0987 0.981 0.972 0.938 0.923 30 0993 0.990 0.986 0.971 0.964
12 0988 0.982 0.973 0.942 0.928 40 0994 0.992 0.989 0.977 0.972
13 0988 0.983 0.974 0.945 0.932 50 0.995 0.993 0.990 0.981 0.977
14 0989 0.984 0.976 0.948 0.935 75 0996 0995 0.993 0.987 0.984
15 0989 0.984 0.977 0.951 0.939 100 0.997 0.996 0.993 0.989 0.987

D’ Agostino test for normality and lognormality

One of the standard tests for normality and lognormality that is applicable to sample sizes
between 50 and 1,000 isthe D’ Agostino test. The D’ Agostino test compares the value of
the test statistic Y with atable value to accept or reject the null hypothesisthat a
distribution isnormal. If data used in thistest are log-transformed, the Y statistic can
likewise be used to test for lognormality. Gilbert (1987) prefersthistest over the
Kolmogorov-Smirnov test because the latter isinvalid if the parameters of the
hypothesized distribution are estimated from the data set itself.

The D’ Agostino test ranks the data from smallest to largest. Hence, the test can be used

for pebble-count data. In the ranked list, the smallest particle sizeis listed as many times
as the number of particlesfound in that size class, then the next larger size classislisted
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as many times as the number of particlesfound in that size class, and soon. The D
statistic is computed from

i(i -05(n+1)) @
i=1

D= nz T s (228)

and should be determined to the 5" decimal. sisthe standard deviation and is computed

from:
_ |1
S= n-1 i

where ¢, isthe distribution mean, and i is the ranked order of the data, starting with 1 for
the smallest datum, and reaching n for the largest datum. The test statistic Y is computed
from:

(@i - om)” (2.29)

1

M-

_ D -0.28209479
0.02998598 A/n

(2.30)

The null hypothesis of anormal distribution isrejected at the significance level of a =
0.05if the test statistic Yislessthan Y, or greater than Y,_,». The quantilesfor a/2 =
0.025, and 1-a/2 = 0.975 are listed for various sample sizesin Table 2.7. The easiest way
to obtain quantiles for sample sizes not listed is by interpolation between listed sample
sizes. If higher accuracy isrequired, the quantilesfor unlisted n can be predicted from a
regression analysis of the quantilesfor a/2 and 1-a/2 versus n.

Table 2.7: Quantiles of D’ Agostino’s test for normality for a/2 = 0.025, and 1-a/2 = 0.975 for 100 < n
<500 (abbreviated from Table A8 in Gilbert 1987, p. 262).

n 100 150 200 250 300 350 400 450 500

a2 -2552 -2452 -2391 -2348 -2316 -2291 -2270 -2.253 -2.239
1-a/2 1.303 1.423 1.496 1.545 1.528 1.610 1.633 1.652 1.668
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2.1.5 Computation of particle distribution parameters

Particle-size distributions are commonly characterized by four distribution parameters:

* mean, which characterizes the central part of the distribution;

» sorting (i.e. standard deviation), or width of the distribution, which is the range of
particle sizes within which a preset percentage of all data are contained,

» skewness, which isameasure of deviation from symmetry of a distribution; and

» kurtosis, which isthe flatness or peakedness of the distribution.

Particle distribution-parameters were designed during the 1930’sto 1950's. Apart from
serving as a means for general sediment classification, ratios of various particle
distribution-parameters (e.g., mean versus sorting, or sorting versus skewness) can be
used to distinguish between sediments of different origins, transport modes, and the
duration or distance of transport.

The literature offers a variety of possibilities for computing distribution parameters.
Distribution parameters can be computed using percentiles (graphic approaches), or the
percentage frequency of a distribution (frequency approaches), and both methods can be
applied to particle sizesin mm (geometric approaches), or to particle sizesin gunits
(arithmetic approaches) (Fig. 2.17). The particulars of the data sets (especially the
accuracy of the distribution tails), the number of data sets to be analyzed, and the study
objective play arolein the decision of which method should be used.

Graphic approach Freq. distribution
(percentile method) approach,
(moment method)

N /N

Geometric Arithmetic For particle For particle
approaches approaches sizesin @ Sizesin
(for particle sizes (for particle sizes log(D)
in mm) in @

Fig. 2.17: Methods for computing particle-size distribution parameters and their applicability to particle size
classes D inmmor ¢-units

Some of the methods provide identical or very similar results when applied to the same

data set, whereas results from other methods may be somewhat different or not even
comparable. Thus, some methods can be used interchangeably, but others cannot.
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An overview of the most common approaches to compute the four distribution
parameters mean, sorting, skewness, and kurtosisis provided in Table 2.8. General
differences between approaches are explained in the first part of this section. Possible
methods used to compute distribution parameters are discussed in the remainder of this
section. Finally, all distribution parameters are computed for the example particle-size
distribution shown in Table 2.3 and Fig. 2.12, and results of these computations are
compared in Table 2.14.

2.1.5.1 Graphic, or percentile methods (geometric and arithmetic)

Graphic methods compute distribution parameters from a few percentile values that are
obtained from a cumulative particle-size frequency distribution. Traditionally, graphic
methods required a plotted cumulative frequency distribution, preferably on probability
paper, so that the percentiles used for the analysis could be easily read from the graph.
Thisis till aviable, though tedious, procedure. For a computerized analysis, percentile
values can be obtained from linear interpolation between the percentile values recorded
for adjacent ¢-size classes on the cumulative frequency distribution, or from linear
interpolation between log-transformed mm sizes (Section 2.1.4.2). Thisinterpolation
requires some time-consuming cell-by-cell computation in spreadsheet programs, so that
obtaining the percentile values continues to remain the most laborious part of computing
distribution parameters by graphic methods. Once the necessary percentile values are
interpolated, distribution parameters can be easily computed from a variety of equations.
Equations for the same distribution parameter can employ a different range and number
of percentiles, and use percentiles either in @-units or in mm.

Percentilesin g-unitsfor arithmetic approaches and mm-units for geometric
approaches

The four distribution parameters: mean, sorting, skewness, and kurtosis, have the most
informative value when applied to distributions that are near-normal, or almost Gaussian
distributed (see Section 2.1.4.3 for analysis of distribution types). Particle-size
distributionsin gravel-bed rivers tend to resemble normal distributions when computed in
@-units. The degree of normality reached is usually sufficient to compute distribution
parameters, although normality may not be obtained in a strict statistical sense. Thus,
arithmetic computations of particle-size distribution parameters (Folk and Ward 1957;
Inman 1952) are always performed in g-units. A geometric approach isrequired if
computations are preferred in mm-units, because geometric approaches compensate for
the absent log transformation of particle sizes. Thus, thefirst step in a particle-
distribution analysisisto evaluate whether the sample distribution approaches a normal,
or alognormal distribution. If the distribution is normal in ¢-units (or lognormal in mm),
agraphic arithmetic approach in @-units, the moment method in @-units, or ageometric
approach in mm should be used. If the distribution is normal in mm, which islesslikely,
mm should be used in a graphic arithmetic approach or the moment method (Fig. 2.17).
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The difference between arithmetic and geometric approaches can best be explained for the parameter
“mean”. An arithmetic progression is a series of numbers in which the difference between each
number and its predecessor isidentical: for example, the series 2, 4, 6, 8, or the series 9, 7.5, 6, 4.5.
The arithmetic mean is the sum of n termsdivided by n. In a geometric progression, each term
differs from its predecessor by the same factor (or multiplier) (Table 2.9), for example 2, 4, 8, 16 or -
8, -2,-0.5,-0.125. The geometric mean is defined as the central term of an odd number of
consecutive termsin a geometric progression. If the number of termsis even, or when the geometric
progression is not known, the geometric mean is computed from the nth root of the product of n
numbers (Table 2.9). An alternative to the nth root approach is the logarithmic approach, which

Table 2.9: Examples of geometric progressions with a central term, and computation of the geometric mean using the nth
root, and the logarithmic approach.

Geometric Ratio tz: t= Geometric_mean
progression t: t; =const.  Central term  nth root approach Logarithmic approach
3 log(4- 6- 9
4,6,9 15 6 \y4- 6- 9=6 0 3 = 0.78=log 6
1 1
21111 0.5 1 521 11 1—05 o b 2 4 é)— 0.30=1log 0.5
248 2 "t 2487 5 = 0=l h
3 log(3- 3*- 3
3,33 3 3? 3. 3.3 =09 = 3 = 0.95=log 9

does not require computing the nth root. Thisis an advantage when a calculator does not feature the
y* command. The numerical result of the geometric mean from the logarithmic approach is identical
to the log of the geometric mean computed by the nth root approach.

Graphic approaches to particle distribution-parameters compute the mean from two or three
percentiles. If the arithmetic mean from percentilesin @-unitsis transformed into mm-units, the
result isidentical to the geometric mean from the nth-root approach computed from the same
percentiles in mm, and to the antilog of the mean from the geometric log approach.

Number and range of percentiles used

To compute the four distribution parameters, Inman (1952), and Folk and Ward (1957) used five
different percentilesin g-units: g (the median), @ and @4 (the percentiles at the points of curvature
of a Gaussian distribution, approximately the data range of + one standard deviation around the
mean), and ¢ and @s (two percentiles that characterize the tails of the distribution, the data range of
approximately + two standard deviations around
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the median). In Gaussian distributions, the particle sizes of those five percentiles are
almost evenly-spaced over the particle-size range. Geometric approaches are commonly
based on four percentiles: D15 and Dg, (the percentiles at the point of curvature), and Dos
and D5 (the two quartiles). Trask’s (1932) mixed approach uses only the three quartiles
D25, D50, and D75.

Statistical analyses are more powerful and informative when data from the entire particle-
size range are included, but this holds true only if the accuracy of datais sufficiently high
over the entire datarange. Distribution tails are prone to sampling errorsin samples from
gravel-bed rivers. Small sample sizesin which the presence of alarge particle accounts
for 5 - 10% or more of the total sample weight cause errors at the coarse end. Operator
bias against fines in pebble counts, or disregard for the spatial variability of fineswithin
the sampling area, cause uncertainty at the fine end. If there is considerable doubt
regarding the accuracy of the distribution tails, peripheral percentiles from the distribution
tails should be excluded from the analysis. If the study focuses on the central tendency,
the analysis should be limited to the central part of the distribution.

The accuracy of distribution parametersisincreased when many percentiles are used for
analysis. Upto 7 or 10 percentiles might be used, but eventually there is a trade off
between the effort required for interpolating percentiles and the information gained by
using alarge number of percentiles. A set of 3 to 5 percentile values usually suffices
when computing distribution parameters with the goal of describing and identifying a
particle size-distribution. When the study objective is to detect minuscule differences
between samples, more than 5 percentiles might have to be used. However, the most
important factor for the ability of detecting small differences between samplesisthe
necessity of obtaining a sufficiently large sample size (Section 5).

2.1.5.2 Moment, or frequency distribution method

The frequency distribution method, also called the moment method, uses the absol ute or
percentage frequency of each particle size-class to compute the four moments that are
related to the four distribution parameters. Computations are usually performed in ¢
units, because particle size-distributions tend to resemble a Gaussian distribution when
computed in ¢, but using log-transformed particle-size classesin mm for the analysis (i.e.,
log D) would work aswell.

The moment method requires that the percentage or absolute frequency for all particle-
size classesis known, including the fine and the coarse tail, and that size classes are
equidistant (e.g., 0.5 gsize classes). An unsieved remainder, such as the contents of the
pan, or the particle-size category “smaller than 2 mm” cannot be included in the analysis
unlessthis sediment is further differentiated into discrete sieve classes. This measure
truncates a sample at the fine end. Similarly, a sample may have to be truncated at the
upper end if the percent frequency contributed by one or two particlesin the largest size
classisunduly high. Truncation, however, alters the shape of the distribution and thusits
percentiles
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and all summary statistics computed from it. Truncated samples can only be compared
among each other if all samples have been truncated at the same upper and lower size
classes.

The advantage of the moment method is that the computations of the distribution
parameters can be completely computerized once the data are entered. Thisisa
convenient attribute when dealing with alarge number of data sets.

Graphic approaches versus moment method

Graphic approaches are mathematically easy to compute once the percentiles have been
determined. However, determining the percentiles for alarger number of samplesisa
rather tedious and time consuming effort when applying graphic methods to alarge
number of samples. Graphic methods have the advantage of being both standardized and
flexible. The Folk and Ward (1957) approach in g-units offers arating scheme that can be
used to classify samples, for example as *poorly” or “well” sorted, or “moderately” or
“extremely skewed”. Hexibility, by contrast, results from the user’s choice of either
focusing on central percentiles or extending the analysis to peripheral ones, depending on
the accuracy of the distribution tails or the study objective. Graphic approaches can
further be modified with respect to the number of percentiles used, and even by altering
the computation itself. However, modifications might provide numerical valuesthat differ
from the ones obtained by “standard” approaches. If thisisthe case, classifications of the
degree of sorting or skewness, such as those introduced by Folk and Ward (1957), may not
be applicable.

The moment method is most suitable for complete and reliable particle-size frequency
distributions because, apart from truncation, the user can determine only the width of
particle size-classes (e.g., 0.25, 0.5, or 1 ¢@-units). Folk (1966) showed that the moment
method overpredicts values of standard deviation if the sediment isonly sieved in afew
large sieve classes, and the weight midpoint is not equal to the center of classsieve size
D.. To avoid this problem, moment methods should only be applied to sediment sieved in
sufficiently small increments. Particle-size classes of 0.5 ¢ should be appropriate for
gravel-bed streams with particles ranging between sand and cobbles.

The selection of sieve classes usually needs to be made before sampling, because sieving
in smaller size classesrequires alarger sample size. Disadvantages of the moment
method are the lack of standardized numerical values that distinguish between “poorly”
and “moderately” sorted particle size-distributions, or between the degrees of skewness.
The moment method is mathematically less straightforward than graphic methods,
particularly for the two higher moments representing the parameters skewness and
kurtosis. The power expressions of the moment equations need to be solved before they
can be applied to grouped data, and the solutions become lengthy for the third and the
fourth moment. However, once the solved equations are entered into spreadsheets,
computations can be applied to an unlimited number of data sets. The computational
rigidity, and the suitability for complete computer processing make the moment method
most suitable for analyzing large numbers of samples, that have accurate tails or that can
all be truncated at the same upper and lower size classes.
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2.1.5.3 Central tendency (mode, median, and mean)

The central tendency of a particle-size distribution can be characterized by its mode, its
median, and its mean.

Mode

The mode is the center of the size class that contains most of the sediment, either in terms
of weight frequency or number frequency. The mode can be computed in terms of mm
sizesor in gunits. The particle-size distribution shown in Table 2.3 and Fg. 2.12 hasits
mode in the center of the size class 45.3 to 64 mm, or -5.5t0-6.0 @ An analysis of
modality determines the number of modesin a distribution. Distributions can be
unimodal (one mode), bimodal (two modes), or polymodal (several modes). An
irregularity of afrequency distribution in which two non-contiguous size classes have
higher weight frequencies than their two neighbors, such as the size classes 45.3 and 22.6
mm in Table 2.3 and Fig. 2.12, does not qualify for bimodality. Bimodality and its
computation is explained in Section 2.1.5.9.

Median

The median is the center of the cumulative frequency distribution. The median can be
computed in terms of mm sizes as D or in terms of @-unitsas ¢ and is probably the
most frequently used parameter in the description of gravel-bed rivers. The distributionin
Table 2.3 hasa Dg of 32 mm, and a ¢ of -5.0.

Mean
The mean can be considered as the mathematical center of adata set. Means can be
computed by a variety of approaches.

Mode, median and mean are equal in symmetrical (unskewed), normally distributed data
sets, but not in skewed distributions which, however, are typical of fluvial gravel
sediment.

Graphic arithmetic means

The arithmetic mean is the nth fraction of a sum of n numbers. The graphic arithmetic
mean is usually computed from two or three percentilesin g-units that have equal
distances from the median. It isassumed that particle sizes approximate a normal or
Gaussian distribution when expressed in g-units (Section 2.1.2.2). Computationsin ¢
units are usually carried out to two decimals.

Inman (1952) computes the mean from the 16™ and the 84™ percentile in @-units, both of
which are equidistant to the median in anormal distribution.
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+
g = P07 (2.31)

Trask (1932) used the two quartile values.

+
Ot = 5"25—2% (2.32)

Cumulative distribution curves from unrepresentatively small samples are often jagged
and only little accuracy can be placed upon a particular percentile. It isanticipated that
these errorstend to cancel each other out if the graphic mean is computed from several
percentiles. Thus, Folk and Ward (1957) added the @, as athird datum to the
computation.

+ +
%YF&W:(Pm (P?fo Psa (2.33)

Briggs (1977, cited after Gordon et al. 1992) extended the computation evenly over the
entire data range and used nine percentile values (see also Folk 1966).

+ + +...+
s = P10+ P 9(P30 P (2.34)

At some point, there is a trade-off between increased accuracy due to alarge number of
percentiles used for the computations and the computational effort of determining
percentiles. The moment method is usually more practical if the entire data range isto be
included in the analysis.

Computations of @), Pmrews and @ are identical for distributions that are symmetrical
and truly normal in terms of g-units. In particle-size distributions skewed towards a tail of
fine particles, typical of gravel-bed rivers, the particle size of ¢,g islarger than the
particle size of @, rewWhichislarger than the particle size of @p,.

Graphic geometric mean, square root approach

The geometric mean is the nth root of the product of n numbers. For particle-size
distributions, the geometric mean is commonly computed from the square root of two
percentilesin mm (Kondolf and Wolman 1993; Y ang 1996).
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ng,sq = \[ D34 . D16 (235)

Graphic geometric mean, cube root approach
Alternatively, the cube root of three percentiles can be taken (Kondolf and Wolman 1993)

ng,cu = (D84 ) D50 ' Dl(i)]j3 (2.36)

More percentiles could be used if necessary for the study objective. When applied to the
same data set, the graphic geometric mean computed in mm from the square or cube root
approach is equivalent to the arithmetic mean computed in g-units, transformed into mm
(Eq. 2.5).

Graphic geometric mean, log approach
The graphic geometric mean can also be computed from the mathematically more smple
log approach. Thisisan advantage should a calculator not feature the y* command.

09 (Dis - D
Dyrcy = 107 [129-B15 Lo (237)

This geometric mean is equivalent to the geometric mean computed with the square root
approach in Eqg. 2.35.

Geometric mean from a frequency distribution (power approach)

A geometric mean can also be computed from a particle-size frequency-distribution
instead of percentiles. This approach ensures that the mean represents the entire particle-
size distribution and does not rely only on afew percentiles. Another advantage is that
this computation can be fully computerized and does not require the time consuming task
of determining percentiles. Platts et al. (1983) suggest the following equation:

ng,pw = (Dclm%1 ' Dch%2 BT DckmO/QK):U:LOO (238)

where D¢, to Dy are the centers of the particle-size classes 1 to k, k is the number of size
classes, and my; isthe percentage particle weight for the ith size class. The computations
can likewise be performed for number frequencies, in which case my; is substituted by no.
Dgmpw Yi€lds the same result as the mm-transformed mean obtained from the 1st moment
method based on @-units.
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The first moment (arithmetic mean from a frequency distribution)
Moment methods use all particle size-classes present and compute the arithmetic mean
(nirq OF a frequency distributions from

1 n
%,frq:m Z(@i - m) (2.39)

where @ isthe center of the ith size classin g-units (Section 2.1.5.2), m is the weight of
particlesretained on the ith size class sieve, and my, is the total weight of particles per
sample. For computation using number frequencies, m is substituted by n;, the number of
particles per size class, and my; by n, the total number of particles per sample. For
percentage frequency distributions, the equation becomes

1 k
Wnira =100 Z(fpci © M) (2.40)

where my; is the percentage frequency by weight for particles retained on the ith size
class, and k is the number of particle size-classesin the sample. For computations based
on frequency by number, my; is substituted by no.

Mean in mm from a log frequency distribution (log frequency approach)

In analogy to the arithmetic mean computed from the first moment, the mean particle
sizein mm D, can aso be computed from the antilog of 1og-transformed particle size
classesin mm (log D) (Gordon et al. 1992)

1 k
Driogra = 10 ﬁ% ;“Og(Dci) : I'Tb/oi}ﬁ (2.41)

where Dy isthe center of class of the size classes 1 to k, and my; is the percentage by
weight for theith size class. Alternatively, ny;, the percent frequency by number can be
used instead of my,;. Results of this computation are equal to the power approach in Eq.
2.38 and equal to the arithmetic mean computed by the 1st moment in equation 2.40.

2.1.5.4 Standard deviation and sorting

The standard deviation (o) expresses the spread or dispersion within normally distributed
data sets. Plus and minus one standard deviation (o = £1) comprises the central part of
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the cumulative frequency distribution that contains 68.26% of all data. Thus, one
standard deviation encompasses all datawithin the interval of the 16M percentile (pi) and
the 50™ percentile (psp) because

68.26%
2

P16 = 50% - =50% - 34.13% = 15.86% = 16% (2.42)

plus all the data between the 50" and the 84™ percentile (pss) because

26%
Peas = 50% + 68 26 ® = 50% + 34.13% = 84.13% = 84% (2.43)

Thus, the interval between the 84" and 16™ percentile (pgs and pyg) indicates the range of
the mode u +1 standard deviation ((u -10) + (1 +10)). A distribution has a standard
deviation of o= £1if

O=Psp—Pisgs =1 and O0=pgs1z—Psp=1 (2.44)

In symmetrical distributions, Eq. 2.44 is equal to

o = %@ -1 (2.443)

Plus and minus two standard deviations (£20) encompass 95.44% of al data, i.e., the data
between the 97.72th and 2.28th percentile. A distribution has a standard deviation of o=
+2if

o0 = 997.72%2' P2.28% _ 2 (2.45)

The computation of standard deviation can become somewhat complicated for grouped
data (see computation of the second moment, Egs. 2.56 to 2.58). Therefore,

sedimentol ogists analyze the spread or dispersion of a distribution from a sorting
coefficient that is are computed from a few percentiles of the distribution. The terms
sorting coefficient and standard deviation are synonymous for normal distributions, and
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their numerical valueisidentical if the distribution istruly normal. The numerical values
of sorting coefficients computed for particle-size distributionsin @units have been
standardized to compare the spread or dispersion between distributions.

The sorting of a particle-size distribution can be computed in several ways. Some
approaches yield identical values, some obtain identity after a transformation, while
others are non-comparable. This makesit necessary to analyze the relation between
different sorting coefficients.

Graphic arithmetic sorting coefficients

Particle-size distributions of fluvial sediment tend to roughly approximate normal
distributions when particle sizes are expressed in ¢-sizes. In accordanceto Eq. 2.44a,
Inman’s (1952) sorting coefficient 5 uses almost the same percentile difference, but 5 is
always positive since it is the absol ute difference, whereas the standard deviation is
defined astheinterval of +saround the mean.

5 = 84'2 16% (2.46)

As Inman’ s sorting coefficient uses two percentiles only, particle-size distributions that
are quite different can have the same sorting coefficient if only those two percentiles are
identical. Folk and Ward (1957) therefore include a broader range of the cumulative size-
distribution curve into the sorting analysis and compute sorting as

seay = 00 B (247)

Folk and Ward (1957) classify the degree of sorting of fluvial sediment into 7 categories
(Table 2.10). A chart for visual estimation of sorting isprovided in Fig. 2.18.

The two sorting coefficients 5 and se¢\w have identical results when applied to
symmetrical normal distributions, although equality may not be present if the distribution
isnot strictly normal or somewhat skewed. However, fluvial gravel deposits that
approach normal distributionsin @-units and are only dlightly asymmetrical, and which
are "poorly" sorted in terms of Folk and Ward (1957), have an Inman (1952) sorting
coefficient around 1.5 as well.
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Table 2.10: Classification of the degree of
sorting (from Folk and Ward 1957)

Sorting Characterization
Coefficient
> 4 extremely poor
2 - 4 very poor
1 2 poor
071 - 1 moderate
050 - 071 moderately well
035 - 05 well
<0.35 very well

00 LO @ 2250
008%08 QOQO oD
OQQQQQQQ QQQC%Q o@o

Srew = 0.35 Srew = 0.50

Qo o@ Q (e QCZ
QCQ>Q Oo OOOOQQ

OOQO C>Cc>> N QO

Srew=1.00 Srew = 200

Fig. 2.18: A chart for visua estimation of sediment sorting for the same D5, (Redrawn from Pettijohn et al.
(1972), by permission of Springer Verlag).

@-based sorting coefficients for fluvial gravel typically range between about 0.5 and 2.
Fig. 2.19 shows three example particle-size distributions with a common Dsgy of 32 mm,
but with three different sorting coefficientsof s= 0.5, 1.0, and 1.5. Particle sizesin
uncoupled gravel-bed streams might obtain a sorting coefficient of about 0.5 after along
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fluvial transport. Mountain gravel-bed streams with grain sizes ranging from sand to
boulders more typically have sorting coefficients in the range of 1.5 to 2.

Particle Size (@-units)

o 05 -1-15 -2 -25 -3 35 4 45 5 -55 6 65 -7 -75 -8 -85 -9 -95 -10

Cumulative Frequency (Percent Finer)

1 2 4 8 16 32 64 128 256 512 1024
14 28 56 113 226 45 90 180 362 724
Particle Size (mm)

Fig. 2.19: Three particle-size distributions with a common Ds, of 32 mm, but standard deviations of o = 0.5,
1.0, and 1.5. For the curve with g = 0.5, the range of one standard deviation between D¢ and Dg, is
indicated by the lightest gray shade, for the curves with o =1, and o =1.5, the ranges of one standard
deviation are indicated by the medium, and the darkest gray shade, respectively.

Graphic geometric sorting coefficients, log approach

Analogous to the standard deviation of particle sizesin @-unitsin anormal distribution
where 2s = @4 — @6, and S= (@4 — @i6)/2, the standard deviation of alognormal
distribution for particle sizesin mm can be expressed as (Simons and Senttirk 1992)

log %ﬁ:ﬁ
2

_logDgs—logDys

log s > = (2.48)
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The geometric sorting coefficient sy04 Can be computed for percentilesin mm by taking
the antilog of Eq. 2.48 which yields the same numerical results as the square root
expression in Eq. 2.53.

0g(Ds.) - 10g(D1e) %'Og%%
sg,loglzlofﬁ e 5 J “’ﬁ: 100 0———5 (2.49)

Since the term in parenthesis in the first equation is the log of the arithmetic Inman
sorting coefficient 5 =(¢&4 - ¢r6)/2, results computed by sy1051 and s are convertible. By
analogy to Egs. 2.4 and 2.3,

Sylog1 = 2> (2.50)
and

lo logl

S= " log) (2.51)

The log approach for a geometric sorting coefficient can include the Dsy value, so that
Eq. 2.49 can be rewritten as:

% a4, Dso
_ Dso D
Spiogz = 10°og 5= — 1 (252)

Eq. 2.49 and Eq. 2.52 yield identical resultsif distributions are symmetrical. When
applied to the distribution in Table 2.3, Eq. 2.49 provides a numerical value of 3.84
which issimilar but not identical to the numerical value of 3.88 provided by Eq. 2.52 for
the same data set. Eq. 2.52 can be smplified by eliminating the log and the antilog. This
measure yields the gradation coefficient.

Gradation coefficient
The gradation coefficient isaterm used in engineering. It computes the spread of a
distribution from percentilesin mm (Simons and Sentiirk 1992; Julien 1995; Y ang 1996)
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84 Dsoﬁ
% + P50
Dso  Dis

S (253)

Eq. 2.53 may be seen as a simplified notation of the log approach in Eq. 2.52, yielding the
same result. Note the conceptual difference between the terms “sorting” and “ gradation”
— sedimentol ogists refer to a sediment that spreads over a wide size range as poorly
sorted, while engineersrefer to a poorly sorted sediment aswell graded, i.e., it hasawide
range of particle sizesthat is sufficient for a given application.

Graphic geometric sorting coefficients, square root approach

Instead of an antilog, the logarithmic expression logs = (logDg, — l0gD16)/2 in EQ. 2.48
can also be solved by a square root equation (Simons and Sentirk 1992; Julien 1995; and
Y ang 1996)

Sa="\/p2 254

Eq. 2.54 and 2.48 yield identical results. An equation of similar form but with different
percentiles was proposed by Trask (1932)

D

572\ pa (2.55)

Results of Egs. 2.54 and 2.55 are different because they are based on different percentiles.

Graphic geometric sorting coefficients computed from percentilesin mm are
dimensionless.

The second moment (arithmetic sorting from a frequency distribution)
The general form of the equation for the 2nd moment, i.e., the distribution variance, for
grouped (or binned) datais

=PI (256)
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where @ isthe center of classin @-units of ith size class, n; isthe number of particles
retained for the ith size class, k is the number of size classesin the sample, n isthe total
number of particles, and ¢, is the arithmetic mean of the distribution in g-units. Eq. 2.56
can likewise be applied to the weight of particlesfor the ith size class, in which case n; is
substituted by the weight of particlesin theith size classm. If Eq. 2.56 isapplied to
percent frequencies, n; or m; are substituted by ne; and my;, respectively, and my; or n are
set to 100%.

2

1 k
Strqg = 100-1 Z Nosi (G - @n)z (2.57)

For the actual computation of the sorting parameter, the quadratic expressionsin Eq. 2.56
or 2.57 need to be solved and rearranged, and the square root needs to be taken because

standard deviation is defined as the square root of variance (s = \/gz). Eg. 2.58 isthe
solution of Eq. 2.56. The solutionissimilar for Eq. 2.57 for which n; is substituted by
Noyis and n = 100.

@ E -
Z(n. @) ;(ni- @) -n- @

n-1 (2.58)

Conversion between standard deviation of the log-transformed and the original data

If Egs. 2.56 to 2.58 were applied to particle sizesin mm (exchange all symbols ¢for D in
Eq. 2.58 and compute as above), the resulting numerical value 41 has no resemblance
to the geometric graphic sorting computed for percentilesin mm (Egs. 2.49 and 2.52 —
2.54). However, it is possible to compute the graphic arithmetic standard deviation for
particle sizesin g-units s, from the s4rq (EQs. 2.56 to 2.58) using the following equation
(Church et al. 1987):

B 0 it g %0.5
Sp=C %n %BZ;“ +1EE (2.59)

Dgm is the geometric distribution mean, and ¢ = 1.4427 when log-transformations are
based on ¢@-units (e.g., equations by Inman), or ¢ = 0.4343 for transformations based on
the log,q of particle sizes, and ¢ = 1 for the In of particle sizes. Using the example
distribution in Table 2.3 and Fig. 2.12, the logarithmic standard deviation 544 COMmputed
for mm sizes using Eqs. 2.56 to 5.58 is 58.13 mm, the distribution mean Dy, (€.9., from
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the square root approach in Eq. 2.35) is27.2 mm. Eg. 2.59 computes a standard
deviation of s, = 1.89 which issimilar to the Inman sorting coefficient of s, = 1.94 (Eq.
2.31), but lower than the standard deviation computed from the second moment of s =
2.02 (Eg. 2.58). Equity of results requires atrue normal/lognormal distribution.

The graphic arithmetic sorting coefficients computed for particle sizesin ¢@-units (s or
Srew) Yields the same numerical value as the standard deviation S computed using
equation 2.56 to 2.58 if both distributions are truly normal, and both results are in units of
¢ Graphic arithmetic sorting coefficients and the standard deviation computed using
Egs. 2,56 to 2.58 produce similar numerical valuesif the particle-size distribution is not
truly normal.

2.1.5.5 Skewness

Normal distributions are symmetric around the mean and not skewed towards either side
of the distribution. Distributions with negative skewness are skewed towards the low end
tail of the distributions, whereas distributions with positive skewness are skewed towards
ahigh end tail (Fig. 2.20). The degree of skewness of a distribution can be seen asa
degree of deviation from normality.

mode mode mode
= median median median
= mean

mean

coarse fine coarse fine coarse fine

Symmetrical Positively skewed towards a Negatively skewed to towards a
tail of high or positive values tail of low or negative values
i.e., towards fine particles i.e., towards coarse particles

Fig. 2.20: Shape of symmetrical, positively and negatively skewed frequency distributions

When applied to particle-size distributions in g-units, in which the coarsest particles sizes
have the smallest numerical values (e.g., -7¢= 128 mm, -1¢= 2 mm, +2¢ = 0.25 mm),
the term skewnessis reversed: positive skewnessistowards atail of fine particles (high
@-values, and negative skewnessistowards atail of coarse particles (low @values).

Bed-material size distributionsin ¢g-unitsin mountain gravel-bed rivers are often skewed
towards atail of finer gravel and sand (positively skewed), and thus deviate from
symmetrical normal distributions. In positively skewed distributions, particle frequency
of the largest size classes comprise the bulk of the sample, while finer particles cover awide
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range of sizes, but the frequency per size classislow. Positive skewness of a sample can
also be the result of unrepresentative sampling in which a few large clasts comprise 30 to
50% of the total sample weight. When analyzing a particle-size distribution for
skewness, samples need to be representative such that the weight of the largest size class
does not constitute more than a small percentage of total weight. Church et al. (1987)
suggested that the maximum allowable weight of the largest size class was 0.1% of the
total weight for Dyax < 32 mm, 1% for Dpax < 64 mm, and 5% for Dy < 128 mm
(Section 5.4.1.1).

Particle-size distributions in @-units that are mostly comprised of sand and fine gravel
with afew large gravel particles are skewed towards a coarse tail. Such distributions are
negatively skewed.

Skewness may be computed from various modifications of the ratio between distribution
mean and sorting. Computations may focus on the central part of the distribution, or
include the distribution tailsto various degrees. The user should select the computational
method that suits the data situation and provides the clearest answer to the study
objective. If, for example, little confidence can be placed into the tails of adistribution,
they should not be included in the analysis because they might distort the result.
However, omitting the tails excludes information that under ideal circumstances should
have been included.

Graphic arithmetic skewness

Graphic arithmetic skewness is computed from several percentilesin @-units. The
percentiles need to refer to the percent coarser cumulative frequency distribution if
positive skewness isto yield positive skewness values and negative skewness negative
values. However, the percent finer isthe more commonly used form of a cumulative
frequency distribution for bed-material samples. Thus, if graphic arithmetic skewnessis
computed from the percent finer distribution, skewness values need to be multiplied by -1
to obtain the correct sign.

The computed value for skewnessis sensitive to the range of data used for its
computation. Inman (1952) computes skewness as the difference between mean and
median divided by sorting.

o B o
- 2 -
a1 = G- o _ _ _Pet (254 2¢0 (2.60)
Oy Ba - Gie s - Qs
2

In order to account for skewness in the distribution tails, Inman (1952) suggested a
second computation in which the data range includes the 95" and 5" percentiles.
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Folk and Ward (1957) combined both of Inman’s equations and slightly modified the
second one.

Pt @u-(2- @) Bt @s-(2- @)
Sarw = (-0 T 2 (@ @) (261)

Warren (1974) simplified the Folk and Ward equation for skewness into aform that
yieldsanumerical identical result, but is easier to compute.

_ B0 Po- B (2.61a)
Ba-Pe Gs-G

SKa, w

The numerical values of skewness computed with Egs. 2.60 or 2.60a are not identical to
those from EqQ. 2.61 and 2.61a, but all three equationsyield O for symmetrical
distributions, and -1 and +1 for very negatively and very positively skewed distributions.
The Folk and Ward (1957) and the Warren (1974) skewness coefficients can be verbally
classified into the following categories (Table 2.11).

Table 2.11: Classification of skewness values (from: Folk and Ward 1957)

Skewness Description in terms of:

value @-units Relative particle size
-0.3to-1 very negatively skewed very skewed towards the fine side
-0.1t0-0.3 negatively skewed skewed towards the fine side
-0.1to 0.1 nearly symmetrical nearly symmetrical
0.1to 0.3 positively skewed skewed towards the coarse side
03to 1 very positively skewed very skewed towards the coarse side

Gordon et al. (1992) suggest a computation with a dightly smaller data range, which may
be useful when the tails of the distribution are unreliable. Resultsfrom Eq. 2.62 and Egs.
2.61 and 2.61a are not identical.
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The quartile skewness coefficient sk quart USeS only the central 50 percent of the data and
completely neglects the distribution tails.

_(@r5-@0) - (o - @)
Sagart =" (263)

Trask (1932) limits his equation to the central 50 percent as well, but uses mm units.

ka1 = —z—DZSD' 2 (2.64)
50

Geometric skewness from the square root approach (Fredle I ndex)

Aswith arithmetic skewness (Egs. 2.60 — 2.63), geometric skewnessis the ratio of the
geometric mean to geometric sorting. Recall that the geometric mean and geometric
sorting can be computed in a variety of ways. A simple expression for geometric
skewnessis

_ [Dgs- Dss
F1 — D
D 75

5

g = Fredle index (2.65)
O
O Dx O

which isalso an expression for the Fredle index that is used by fishery biologiststo relate

permeability and porosity of spawning gravel (Lotspeich and Everest 1981).

Geometric skewness from frequency distributions and percentiles
Platts et al. (1983) compute the Fredle index from:

m% m% m%, /100
_(Dcl o Dc2 02---Dck 0K)

@
25

(2.66)
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The numerator of Eq. 2.66 isidentical to the geometric mean computed from frequency
distributions (power approach, Eq. 2.38). D¢, to D are the midpoint diameters of
particles retained on the kth sieve class, and my to my are the percentage weight of
particles retained on the kth sieve class. Rice (1995) uses the square root of the
denominator, which isthe Trask (1932) sorting coefficient (Eg. 2.55).

D™ . D™ [ mkV100
,F3:( cl c2 D75 ck ) (2.67)
\/ Dzs

Equations 2.65 and 2.67 yield amost identical results. The Fredle index can only be
compared between samplesif all size distributions are truncated at acommon large
particle size, such as at 64 mm (Rice 1995), because the value of thisindex is affected by
the truncation point.

A graphic logarithmic approach to compute skewnessis not available. But in analogy to
graphic logarithmic mean and sorting, a graphic logarithmic skewness could theoretically
be computed from the ratio of mean and sorting

I Dy D

The third moment (arithmetic skewness from frequency distributions)
The general form of the equation for the 3rd moment for grouped (binned) datais

Z m (@ - (ﬁn)3
g =" p (2.69)

Myt -

where @ isthe center of theith class, @, is the distribution mean, k is the number of
classes, m isthe particle weight in the ith class, my; is the total weight of particles, and o
isthe distribution sorting as computed from the square root of the 2nd moment (see
Section 2.1.5.4). Eq. 2.69 needsto be solved before it can be applied to grouped data.
Gordon et al. (1992) provide the following solution
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Egs. 2.69 and 2.70 can be applied to number-frequencies of particlesaswell. Inthis
case, m is substituted by n;, the number of particles per size class, and my; by n, the total
number of particles per sample. Egs. 2.69 and 2.70 can also be applied to percent
frequencies. Inthiscase, m and n; are substituted by my;, and my;, the percentage
particle weight and number for the ith size class, and m; and n are set to 100.

Skewness values computed using the moment method produce positive values for
positively skewed distributions, and negative values for negative distributions. However,
skewness val ues from the moment method are not bound to the +1 to -1 interval asisthe
graphic arithmetic skewness, but may reach values of £3 or +4 or more.

2.1.5.6 Kurtosis

Kurtosis denotes the peakedness or flathess of a distribution in comparison to a normal
distribution. Thismeasure isonly infrequently used to characterize particle-size
distributionsin gravel-bed rivers.

Graphic arithmetic kurtosis
For particle-size distributionsin @-units, Folk and Ward (1957) propose to compute
kurtosis using the tails and the quartiles of the distribution.

ku - @s - Ps
aF&W ™ 2.44- (@rs- @s)

(2.71)

Kurtosis as computed by the Folk and Ward approach can be verbally classified into five
categories (Table 2.12)

Table 2.12: Classification of kurtosis values (from Folk and Ward 1957)

Value Classification Explanation

<0.67 very platykurtic very flat frequency distribution
0.67-0.90 platykurtic flat
0.90-1.11 mesokurtic not especially peaked, normal
1.11-1.50 leptokurtic highly peaked

> 1.50 very leptokurtic very highly peaked
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The Inman (1952) equation is also based on particle sizesin g-units and focuses on the
tails of the distribution

05 (s~ @) - 57

(s~ Bo
2

kua,l = (2.72)

When original untransformed particle sizesin mm are used, kurtosis can be computed
from the Trask (1932) equation

D75 - D25

Klatt =75 Doy - Do) (2.73)

Graphic geometric kurtosis

Graphic approaches to compute kurtosis are not available. If kurtosisisregarded asthe
ratio of two sorting coefficients, kurtosis, in analogy to the square root approach, could
hypothetically be computed from

_ .. |D1e/Dga
kug,sq = D75/D25 (274)

Another theoretical computation of kurtosisis analogous to the logarithmic approach

_ |Og (D15/D84)

Klglog = log (D75/D2s) (279

The fourth moment (arithmetic kurtosis) from frequency distributions)
Kurtosis can also be computed as the fourth moment kusq. The general form of the
equation is

K
Z m (¢ - @)
kufrq — izt p— 04 (276)
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where @ isthe center of theith class, @, isthe distribution mean, k is the number of
classes, m isthe absolute frequency of particle weights or numbersin theith class, my is
the total weight of particles, and o isthe distribution sorting as computed from the square
root of the 2nd moment (see Section 2.1.5.4). Eq. 2.76 can likewise be used for number
frequencies(m — n;; mg — N), or for percentage frequencies (M — My OF Nog; Mot —
100). Eq. 2.76 becomes rather extensive when solving the term m (g - @.)* and will not
be shown here since kurtosisis infrequently used to characterize a particle-size
distribution.

2.1.5.7 Comparison between methods

The four distribution parameters (mean, sorting, skewness and kurtosis) were computed
for the example particle-size distribution in Table 2.3 using several methods. The
distribution is poorly sorted and skewed towards large particles. The same methods and
equations as shown in Table 2.8 were applied. The results of those computations are
listed in Table 2.14 for a comparison of methods.

Mean

Arithmetic and geometric mean are both in units of length and mutually convertible.

The arithmetic mean of particle sizesin g-units, converted back into units of mm (Eg. 2.5
or 2.6), equals the geometric mean of particle sizesin mm, if the computations are based
on the same percentiles (Table 2.13). Similarly, geometric mean, computed in mm and
transformed to @-units using Eq. 2.3 or 2.4 equals the arithmetic mean computed for ¢
units,

All of the means are smaller than the Dsy or ¢, because the particle-size distribution is
skewed towards fine particles. Trask’s mean is considerably larger than the distribution
Ds in skewed distributions because skewed distributions have alarge mm-value of the
D75.

Sorting

Arithmetic sorting coefficients and the standard deviation computed from the moment
approach produce identical values for true normal and symmetrical distributions (Table
2.14). Arithmetic sorting coefficients computed from ¢-unit for the distribution in Table
2.3 differ somewhat between methods because the distribution is not truly normal, but all
values are generally within the same range. Hence, the Inman sorting 5 =1.94 (Eq. 2.46)
and the Folk and Ward sorting s-ew =1.70 (EQ. 2.47) are not identical. The difference
between s and the 2" moment Srq = 2.02 (Eq. 2.58) may be attributed to truncation of the
distribution at the fine end, because the unsieved remainder in the size class smaller than
2 mm was excluded in the moment method, but is included in the computation of
percentiles from the cumulative percentage frequency (i.e., the percent finer).
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Table 2.13: Equality between various geometric and arithmetic means when computed by different approaches for the same distribution
and expressed in the same units. Numbers in parenthesis indicate equation numbers in Section 2.

Geometric mean (computed in mm)
Geom. mean (computed in mm), expressed in @

Arithmetic mean (comp. in ¢), expressed in mm
Arithmetic mean (computed in ¢)

Square root appr. (35) \/Dis - Dgs = Inman appr. (31) uﬁ; A
Log appr. (37) 10"%’—%—20 D162' Des E = Inman appr. (31) *(Dl—(‘[é—eg 4

Cuberoot appr. (36) (D Dso- Dgg)™ Folk & Ward appr. (33) 2o %o® @

3
1 k
Power appr. (38) (Du™": D™?- ..o Dg™Y® = 1% moment (40) 700 2 (@ M)
i=1
0q k O
00 Z{IOg(Dci)' m%i}D < 1 k
Log freq. appr. (41) 10" "j=1 0 = 1" moment (40) 700 2( @i M)

i=1

Table 2.14: Results of distribution parameters computed with several methods for the example particle size-distribution in Table 2.3
(Small numbersin italics refer to equation numbers in Section 2).

(D5 =18, Di=7.1, Dyx=127, Dg=320, D;s=74.7, Dg=104.3, Dgs=195.8 mm;

@¢=-0.89, @s=-282, @s=-3.67, @u=-5.00, @s=-6.22, @4=-6.70, @s=-7.61).

Freg.distr.appr. Graphic (or percentile) approaches Freq.distr.appr.
Geometric approaches (for mm) Arithmetic approaches (in ¢)
power grad. sguare log cube Trask Inman Folk & Ward Moment
appr.  coeff. root appr. root (1932) (1952) (1957) Method*
Mean (¢) - - - - - - -4.76 -4.84 -4.74
(mm) 26.8 - 272 2712 287 437 27.2 28.7 26.8
Eq. 38 - 35 37 36 32 31 33 40
Sorting (@ - - - - - - 1.94 1.70 2.02
(mm) - - - - - - 3.84 3.25 4.06
) - 3.88 384 384 - 2.42 - - -
Eq. 53 54 49, 52 - 55 46 47 58
Skewness (-) 11.1 - 11.2 373 - 19.0 0.12 0.17 0.72
Eq. 66 - 65 68 - 64 60 61 70
Kurtosis(-) - - 1.6 15 - 0.2 0.7 11 -
Eq. - - 74 75 - 73 72 71 76

* Computations for the moment method excluded sediment passing the 2 mm sieve from the analysis.

81



Geometric sorting coefficients computed from percentilesin mm are dimensionless and
only ameasure of the logarithmic standard deviation which has units of mm. The square
root approach (Eq. 2.54) and the log approach (Eq. 2.49) yield identical results sy« =
Sylog = 3.84, which in atrue lognormal distribution would be identical to the gradation
coefficient syag = 3.88 (Eq. 2.53) aswell. Some of the geometric and arithmetic sorting
coefficients are transformable.

The geometric sorting coefficient of the untransformed datain mm Sqg1 and Inman’s
arithmetic sorting coefficient 5 computed for g-units are convertible using Egs. 2.51 and
2.52. Similarly, the standard deviation in g-units can be estimated from the standard
deviation computed from particle sizesin mm according to the moment method (Egs.
2.56 — 2.58) by applying Eq. 2.59. The Trask sorting parameter sy isnot comparable with
sorting computed by the other methods because it is based on different percentiles.

The various computations of skewness and kurtosis do not compare well because their
computations are too dissimilar.

2.1.5.8 Percent fines

Stream monitoring and fisheries studies are often concerned with the amount of fine
sediment (sand and fine gravel) in the streambed because large amounts of fine sediment
impair the spawning success of salmonid fish. Depending on the fish species concerned,
or on the monitoring objective, fine sediment might comprise medium sand < 0.85 mm,
sand < 2 mm, or various sizes of fine gravel < 3.36, 4.4, 6.4, or 9.5 mm (Reiser and
Bradley 1993; Rice 1995). The amount of fine sediment is usually computed as the
cumulative percent frequency finer than a specified particle size and referred to as the
“percent fines’. The percent finesis amore sensitive indicator of the amount of fines
than the Ds or D, because the size of small percentilesis affected by the coarse part of
the distribution.

For a comparison of the percent fines over space or time, Church et al. (1987)
recommend that the percent fines be computed for size distributions truncated at a certain
large particle size. Thisisto ensure that the percent finesis not affected by the presence
of afew large particles. If, for example, alarge cobble was added to one of two
otherwise identical gravel samples, and that cobble comprised 20% of the total sample
mass, then the percent fines would be smaller in the sample with the cobble than in the
sample without the cobble. The cut-off particle size for truncation should be some large
gravel size present in all samples, e.g., 45 or 64 mm.

The percentage surface fines computed for a given deposit does not only depend on
whether the sample was truncated or not, but also strongly depends on the sampling
method. Picking particles off the surface (an areal surface sample) produces alower
percentage surface fines than removing a thin layer of particles from the surface (an
armor layer sample). Thisaspect isfurther discussed under bimodality in Section 2.1.5.9
because alarge percent finesin agravel bed leads to abimodal particle-size distribution.
See also Sections 4.1.2 and 4.1.3 for the effect of different sampling methods on the resulting
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particle-size distribution. The percentage finesin a sample also varies between different
methods for identifying the particle to be picked up from the streambed, and is likely to
vary between operators (Section 4.1.1.3).

2.1.5.9 Bimodality

A bimodal particle-size distribution has two modes, i.e., two distinct peaksin the
frequency distribution, one in the finer and one in the coarser fraction. If the percent
sand and fine gravel becomes high enough, the distribution becomes bimodal, developing
amode (peak) in the sand range in addition to the other mode (peak) in the gravel range.
Bimodality can indicate the presence of two distinct particle-size popul ations, supplied
from a different source, with perhaps different petrology and abrasion resistance, and
each population may have had a different transport distance. The recognition and
characterization of the degree of bimodality isimportant for studies of sedimentation and
fluvial geomorphology because incipient motion conditions and transport behavior are
different in unimodal and bimodal sediment mixtures (Wilcock 1993). Bimodality isalso
of concern for matters of stream ecology and fish spawning habitat, especially if one of
the distribution modesisin the size range of sand to pea-gravel.

Bimodality parameters

Wilcock (1993) proposed a parameter B to characterize the degree of bimodality. The
parameter is based on the distance between the two modes, and on the amount of
sediment contained in the modes. The distance between the modes is expressed in the
eguation as the ratio of the particle size in mm of the coarse mode D, and the fine mode
Dt Inanalogy to the definition of geometric standard deviation, the square root is taken
from thisratio. To thisratio isadded the proportion of sediment contained in the coarse
modes P, and in the fine mode Py,,. These proportions are obtained by summing the
decimal frequency of four (k) contiguous size classes of 1/4 @-unitsthat contain the
mode.

k

k
Pem = Z My and  Ppn = Z Mk (2.77)
i=1

i=1

For sieving in 1/2 g-units, k becomes 2, comprising the size class of the mode and the
largest neighboring size class. For polymodal distributions, Eq. 2.77 is applied to al
modes. If all sediment is contained in one of the two modes, P¢y, + Psm = 1. Thisvalue
decreases towards 0 as the degree of bimodality reduces. Bimodality may be computed
from (Wilcock 1993):

B= gﬁﬁs (Pem + P (2.78)

83



Wilcock (1993) found athreshold value of B = 1.7, and that gravel is entrained as
unimodal sediment if the bed-material bimodality valueislow (B<1.7). By contrast,
bedload is entrained as bimodal sediment if the bed-material isbimodal (B>1.7). The
particle-size distribution in Table 2.3 has a coarse mode in the size class of 45.3 mm. Eq.
2.78 could be applied to test if the increased frequency for the size class of 22.6 mm
gualifiesfor bimodality. The square root of the ratio of the particle-size class of the
coarse mode (45.3 mm) and the presumed fine mode (22.6 mm) = 2°° = 1.41. The
decimal frequency of the coarse mode and its largest neighboring size class (64 mm), and
the decimal frequency of the presumed fine mode and its largest neighboring size class
(16 mm) are summed, yielding 0.111 + 0.109 + 0.106 + 0.094 = 0.42. The product of the
two bracketed termsin Eq. 2.78 is 0.6, which is smaller than the threshold value of 1.7.
Thus, the particle-size distribution in Table 2.3 is not bimodal.

Sambrook Smith et al. (1997) proposed a dightly different bimodality index (B*). This
index accounts for the relative size of the two modes and produces a numerical value that
reflects the magnitude of the difference in the particle size of the fine and the coarse
mode. The bimodality index is applicable to particle-size distributionsin @units.

T | (279)

@ and @, are the @-sizes of the primary and the secondary mode, respectively, and Py,
and P,,, are the proportions of sediment contained in the primary and secondary mode.
The above index is always positive. Bimodality startsat B* > 1.5 - 2.0. Exchanging the
absolute signsin Eq. 2.79 for brackets renders B* negative for a primary mode in the fine
sediment. Applied to the particle-size distribution on Table 2.3, the primary and
secondary modes are 5.5 and —4.5 ¢, and contain 11.1 and 10.6% of the sediment,
respectively. Thus, Eq. 2.79yields|-5.5--4.5|- (11.1/10.6)=1.0- 1.05=1.05and
indicates that the distribution is not bimodal.

Surface bimodality and percent fines. effect of different sampling methods

Bimodality and the percent fines (Section 2.1.5.8) are related, although not by a
monotonic function, and both the degree of bimodality and the percent fines are altered
depending on how the sediment on the stream surface is sampled. Sambrook Smith et al.
(1997) developed a numerical model to show this change. Assand is supplied to agravel
surface, sand first fills the voids between the gravel particles, until, asmore sand is
added, even the big particles become buried. The entire amount of sand in the
experiment adds up to 100 %. For various percentages of sand added, the surface
sediment is repeatedly sampled using two different methods: (1) picking individual
particles off the surface (areal surface samples), and (2) removing alayer of surface
sediment (armor layer sample). Both the percent surface sand and the degree of
bimodality were computed for given
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percentages of sand added to the streambed, and both parameters varied depending on the
sampling method used.

When particles were picked off the surface, the percent sand computed from those areal
samples S, quickly rose to 80% as the voids between the large clasts started to be filled
(20% sand added). The percent sand computed from the volumetric armor layer samples
S, increased slowly, reaching not even 40% when the entire surface was covered with
sand (at S, = 100) (Fig. 2.21).
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Fig. 2.21: Percent surface sand and degree of bimodality computed for two different sampling methods for
increasing amounts of sand. S, and B* , are the percent surface sand and degree of bimodality computed for
areal surface samples, S, and B*,, are the percent surface sand and the degree of bimodality computed for an
armor layer sample (Reprinted from Sambrook Smith et al. (1997), by permission of the American
Geophysical Union).

The degree of bimodality differed even more between the two sampling methods. For the
areal samples, bimodality B* ,, increased sharply and was most pronounced when about
50% of the surface was covered by sand (S, = 50%). For larger amounts of sand, the
degree of bimodality again decreased. When using armor layer samples, bimodality B*,,
increased slowly as progressively more sand was added to the bed.

2.2 Shape analysis

Particle forms are characterized by two factors. shape and angularity. Shape refersto the
ratio of the three axes lengths, whereas angularity refers to whether a particle has angular
edges as opposed to a rounded surface.
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Many parameters for characterizing particle form were developed in the 1930s to 1960s
because it was realized that particle form affects the area exposed to forces of flow, drag
forces, lift forces, and therefore particle entrainment, transport, and deposition. Thus, two
particles of the same weight or the same b-axis size but with different shapes can respond
quite differently to water flow. It istherefore important to consider whether a particular
study requires knowledge of the longest, the intermediate, or the shortest axis, or of al
axes.

2.2.1 Compact, platy, bladed, and elongated particle shapes

Particles are classified into four basic shapes according to the ratios of the three particle
axes, where aisthe longest axis, b isthe intermediate axis, and c is the shortest axis. The
length of the particle axes can be measured manually using aruler, calipers, or a pebble
box (Sections 2.1.3.7 — 2.1.3.8). An approximation of particle axeslengths can also be
computed from the axes of an ellipse that best fits the planimetrically determined outline
of a particle on a photograph (see photosieving, Section 4.1.3.3). The ellipse-
approximation eliminates the effects of angularity on particle shape, and thus improves
the determination of particle shape for angular particles (Diepenbroek and De Jong 1994).

The particle shape of adisc is characterized by its small c-axis. The degree of disc-shape
is quantified by the axisratio of c/b (Krumbein 1941). A sphere-like particle, in turn, has
almost identical a, b, and c axes. A bladed particleisthin and long, i.e., it has small
ratios of ¢/b and b/a, whereas arod-like particle islong, which is quantified by a small b/a
ratio (Fg. 2.22). Fg. 2.23 depicts these particle shapes using blocks for smplicity.
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Fig. 2.22: (A) Relation between axes ratios and particle shape (Zingg's classification) (Redrawn from
Krumbein (1941), by permission of the Society for Sedimentary Geology). (B) Relation between sphericity
and particle shape. Lines of equal sphericity shown as function of the axes ratios b/a and c/b. (Redrawn
from Krumbein (1941), by permission of the Society for Sedimentary Geology).

86



Sneed and Folk (1958) classify particle shape in terms of platyness, bladedness,
elongatedness, and compactness (Fig. 2.23). The form factor F distinguishes between
platy (i.e., disc shaped), bladed (i.e., ellipsoid) and elongated (i.e., rod shaped) particles
and is computed from

QO
1
O

(2.80)

M
I
:|
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F < 0.33 defines platy particles, 0.33 < F < 0.67 defines bladed particles, and F > 0.67
defines elongated particles. The degree of platyness, bladedness, and elongatedness, i.e.,
the degree of deviation from compactness S is defined by the ratio of

C
=2 (2.81)
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Fig. 2.23: (A) Sphericity-form diagram showing relation between particle shape and sphericity (Redrawn
from Sneed and Folk (1958), by permission of the University of Chicago Press). (B) Form triangle with
illustration of particle shapes using blocks of the appropriate axes ratios; al blocks have the same volume
(Reprinted from Sneed and Folk (1958), by permission of the University of Chicago Press).
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Particles are compact (C) with a shape close to a sphereif the Sfactor > 0.7. Particles
classify as compact platy, bladed, or elongated if 0.5 < S< 0.7, as platy, bladed, or
elongated for 0.3 < S< 0.5, and as very platy, bladed, or elongated for S< 0.3. The four
classes for compact, platy, bladed, and elongated, plus the degrees of deviation from
sphericity (e.g., compact bladed or very bladed) yield atotal of 10 shape categories. The
numerical values of the F and Sfactors are plotted in a triangular diagram from which the
descriptive term of particle shape can be read.

2.2.2 Sphericity

Particle sphericity refersto how well a particle of a given shape relates to the transport
properties of a sphere, whereas the expression roundness refers to the degree to which the
edges of a particle are rounded (Section 2.2.3). Sphericity can be used as an indication of
fluvial transport distance (Section 2.2.2.1), as well as a measure of particle suspensibility
and transportability, i.e., the ability of a particle to remain in transport once entrained
(Section 2.2.2.2). Since both conceptsinvolve different principles, i.e., abrasion versus
suspensibility, it isimportant to use different definitions of sphericity in each case.

2.2.2.1 Indication of fluvial transport distance

As particles are transported over long distances, abrasion wears off not only the particle
edges (see roundness, Section 2.2.3), but may tend to equalize the three axes lengths as
well, thus making a particle more spherical. Wadell (1932) defined this kind of sphericity
asthe third cube of the ratio of a measure for particle volume to the volume of the sphere
circumscribing it. Thisexpression was simplified by Krumbein (1941) and Pye and Pye
(1943) who suggested computing sphericity ( as

W= %'Larcﬁg (2.82)

Krumbein's sphericity reaches the value of 1 for perfect spheres and decreases towards O
for extremely platy or elongated particles. Particles of different shapes can have the same
sphericity value. However, platyness and el ongatedness do not increase at even rates as
the degree of sphericity decreases. For example, a particle with an elongation ratio of b/a
= 0.6, and a platyness ratio of c/b = 0.2 has a sphericity value of ¢ =0.42, but a particle
with an elongation ratio of b/a= 0.2, and platynessratio of ¢/b = 0.6, has a sphericity
value of = 0.32 (Fg. 2.22). This sphericity index acknowledges that as sphericity
increases with transport distance, the degree of elongatedness wears off more quickly or
pronouncedly during fluvial transport than the degree of platyness.

Particles of different structural properties from different geological parent material have
different susceptibilities to becoming sphere-like. Granite tends to break into cubic blocks
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and reaches a high degree of sphericity quickly with increasing transport distance,
whereas the “layered” structure of schist produces disc-shaped particles that do not
necessarily become highly spherical even after long transport distances. Similarly, large
basalt particles tend to chip pieces off during transport, thus producing small elongated
instead of spherical particles.

Not all researchers agree on the degree to which fluvial or coastal transport affects
particle sphericity. Bartoloma (1992) concluded that sphericity and shape are
predominantly controlled by the structural properties of the source rock, and barely
affected by transport, and that consequently sphericity and roundness (Section 2.2.3) are
independent properties.

2.2.2.2 Indication of particle transportability

Two definitions of sphericity are commonly used to refer to particle transportability: the
Corey (1949) shape factor C, and the Sneed and Folk (1958) effective settling sphericity
;. Both definitions are similar and transformabl e, and both definitions reach the value of
1 for perfect spheres and decrease towards O with increasing departure from sphericity.

Corey shape factor

The Corey (1949) shape factor is used as a parameter to determine the particle settling
velocity which for particles of equal weight is affected by particle shape. The shape
factor is computed from (Y ang 1996, p.4):

C

C= m (2.83)

Ellipsoidal or compact bladed gravel particles with long fluvial transport distances have
values around 0.7, whereas bladed particle shapes in mountain streams have values
around 0.5.

Sneed and Folk effective settling sphericity
Sneed and Folk (1958) define the effective settling sphericity as

w5 2

and provide a diagram to show how effective settling sphericity isrelated to particle
shape: the form factor F that distinguishes between platy, bladed, and elongated particles
(Eg. 2.80) and the degree of compactness S(Eq. 2.81) (Fig. 2.23).
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Lines of equal settling sphericity go diagonally across the diagram, and show that for the
same degree of flatness (axisratio of c/a) platy particles offer more resistance to settling
than elongated particles. Thus, the same value of ; = 0.7 is obtained for compact platy
aswell aselongated particles (Fig. 2.23). Thisdefinition of settling sphericity indicates
the tendency of platy particlesto settle relatively dowly. Thus, platy particles easily
remain suspended in flow, and once entrained can be transported over long distances.

If lines of equal Corey shape factors were included in the Sneed and Folk diagram (Fig.
2.23), they would plot approximately parallel but below to the lines of equal settling
sphericity. Linesof equal values of the Krumbein (1941) sphericity would also plot
diagonally across the Sneed and Folk diagram, but point into the opposite direction of the
Sneed and Folk sphericity. Compact elongated and platy particles would plot on the same
line indicating a similar transport distance. The Krumbein sphericity, referring to
transport distance, and the Sneed and Folk sphericity, referring to transportability,
intersect and have the same numerical values for particles roughly along the dividing line
between bladed and elongated particles with F values around 0.67.

2.2.3 Roundness or angularity: analytical and visual approaches

Roundness describes how well the “edges’ of a particle are rounded. Roundness and
sphericity are not conceptually related and are largely independent, however, nearly
spherical fluvial particles seldom show any sharp edges, whereas particles that are
ellipsoidal, bladed, or elongated are much more likely to show sharp edges.

Angular particles tend to wedge into each other and do not roll well. Thus, angularity
reduces particle mobility and probability of entrainment. Roundnessincreases as the
edges wear due to abrasion. Thus, high angularity also indicates that a particle has not
been transported over along distance. A number of different roundness indices has been
developed and are summarized by Swan (1974).

Wadell (1932) developed a complicated procedure of measuring and computing particle
roundness P that computes the mean size of the radii r that can be fitted into the number
of cornersn that a particle has and divides this number by the radius of the maximum
inscribed circle R so that

_ 2
P=""n (2.85)

On the basis of Wadell’ sresults, Krumbein (1941) developed a chart for the visual
estimate of particle roundness which has values between 0.1 (for very angular) and 0.9
(for very smooth particles) (Fig. 2.24). Mean roundness P,,, for a deposit is computed by a
weighting approach that multiplies the roundnessindex P by the number of particles n that
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Fig. 2.24: Images for visual analysis of roundness for pebbles 16 - 32 mm. The analysis should be carried
out for each particle-size class individually. The chart should be enlarged so that shown particle b-axes are of
the same length as the particles to be analyzed. (Slightly modified from Krumbein (1941), by permission of
the Society for Sedimentary Geology).

have that roundness, sums the Pn products and divides by the total number of particlesin
the sample 2n.

2P n
2n

P = (2.86)

Further discussion of conceptual and practical issues regarding particle roundness are
provided by Diepenbroek et al. (1992).

2.2.4 Shape/roundness matrix: visual field classification

Some field studies might want to classify particles not only by one, but by two parameters
combined, such as particle shape and angularity, in order to differentiate between deposits
of different sedimentary origins or depositional processes. Crofts (1974) designed a chart
for visual field evaluation of particle shape and angularity (Fig. 2.25). For 50 random
particles collected from a 1-m? area, the first step of the visual analysis distinguishes
between spherical and flat particles. Particles are assigned to one of the 6 shape categories
ranging from very spherical to very flat (neglecting the degree of elongatedness). Then
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Fig. 2.25: Visual 6-by-6 matrix distinguishing between the degrees of sphericity-to-flatness and roundness-
to-angularity (top), and example of plotted results (bottom). (Reprinted from Crofts (1974), by permission

of the Society for Sedimentary Geology.)

each particle is sorted into one of the 6 degrees of angularity. The number of particles
within each of the potential 36 shape-angularity categoriesis recorded and may be plotted
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angular

. angular
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angular

sub-
rounded

rounded

well

| rounded

as abivariate scattergram. For such a plot, the number of particles per category is

grouped into 4 - 6 evenly spaced intervals, and each consecutive interval is assigned an
increasing degree of shading or hatching. The visual analysis of 50 particles from one
field location takes less than 30 minutes including the time for field plotting the results.
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The same approach as outlined above can be applied to any two-particle parametersif
their variability can be described in certain visually distinguishable increments. For best
results, the visual classification matrix should be larger than 4 by 4, but not exceed 9 by 9
fields. Each study needs to find the optimum matrix size, as well as the optimum sample
size, compromising between accuracy and time expenditure.

Visual field classification can also be used to distinguish between three particle
parameters. An example in which particle-size mixtures are visually classified into three
major and 12 minor Size categories, and results are plotted in ternary diagrams, is
provided by Buffington and Montgomery (1999a) (Section 4.1.3.5).

2.2.5 Pivot angles and their computation

One of the most important applications of particle-shape parametersin sediment transport
studies of gravel-bed riversis the determination of the pivot angle, also called the angle of
repose or intergranular friction angle. The pivot angle isthe angle @ that atop particle of
the diameter D has to overcome when rolling over a bottom particle with the diameter K
that is partially under and partially in front of it (Fig. 2.26). Thus, pivot angles control the
force required for particle motion, and are an integral part of force-balancing equations.

D
Flow ——>
- @
v
Gravity

Fig. 2.26: Definition of pivot angle @, and particle diameters D (top particle), and K (bottom particle).

Pivot angles are difficult to measure in the field (Johnston et al. 1998). Measurements are
therefore either performed on pieces of reconstructed streambed in alab (Kirchner et al.
1990) or the pivot angle is estimated from various particle parameters such as:
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» particle roundness,

e particle shape,

» packing (base of two, three, or four bottom particles K), and
* relative particle size D/K.

Angularity or roundness

Pivot angles increase with angularity (Fig. 2.27), areason why riprap is often angular. In
order to rotate an even-sized triangle (all inside angles = 60°) situated on aflat plain over
one of itsangles, a pivot angle of 60° needs to be overcome. The pivot angle for a square
with four angles of 45° is45. Pivot angles @ for even-sided polygons can be expressed as
(Julien 1995):

180°
n

o= (2.87)

where n isthe number of angles within the polygon. For a sphere, the number of inside
anglesisindefinitely large, thus @ = 180°/~ = 0°, which means that there is no pivot angle
for asphere on aflat surface. Pivot angles on a streambed may exceed thosein Fig. 2.27
because surface particles may be nestled in shallow depressions on top of three or four
bottom particles.

-———— < N - = AN
/ V3 7 3 /4
/ Jal% ‘s -
o 180 o 180 o o 180 . 18 180
3 4 5 6 00

Fig. 2.27: Effect of angularity on pivot angles on aflat surface (Redrawn from Julien (1995), by permission
of Cambridge University Press).

Particle packing

Pivot angles vary with packing patterns of the bottom particles. A spherical top particle D
can be nestled on a base of two, three, or four spherical bottom particlesK (Fig. 2.28).
Pivot angles described in Fg. 2.28 vary with three parameters:. (1) the sizeratio D/K, (2)
whether the top particle D rolls over the top (grain-top rotation) or over the saddle
between two spheres K (saddle-top rotation) and (3) the number of bottom particles K
comprising the base for the top particle D (Li and Komar 1986; Julien 1995).
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Fig. 2.28: Pivot angles for unisized particles (D/K = 1) with different packing: top particles lying on top of
two (left), three (center), and four particles (right). (Redrawn from Julien (1995), by permission of
Cambridge University Press).

Particle shape

Spherical particles have smaller pivot angles than particles with ellipsoidal, elongated, or
platy particle shapes. Pivot anglesfor spheres are approximately 10° lower than those for
ellipsoids which are about 10° lower than those for angular particles (Li and Komar
1986).

Relative size
Miller and Byrne (1966) express the effect of relative particle size D/K on the pivot angle
@ by anegative power function.

®=a %@b (2.88)

Pivot angles for small surface particles D nestled on top of large bottom particles K with
D/K = 0.3 are 40-50° larger than the pivot angles for large surface particles on top of
small bottom particleswith D/K = 3 (Fig. 2.29). Thiseffect of relative size is seen for all
particle shapes.

Pivot anglesin channel beds

Kirchner et al. (1990) measured pivot angles on water-worked flume surfaces and
concluded that pivot angles obtained from experiments with well sorted and well rounded
particlesin regular packing are too low, and vary too much with relative size. Kirchner et
al. (1990) therefore suggest the following a-coefficient and b-exponent for Eq. (2.86)
(Fg. 2.30):

D 03
@5y = 55.2 @gtﬁ (2.89)
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Fig. 2.29: Pivot angles for spherical, elipsoidal, and angular particle shapes as well as for imbricated
deposits as functions of relative particle size, i.e., theratio of entrained particle size D to bottom particle size
K (plotted with data from Li and Komar 1986).

where @5, isthe median pivot angle, and Ksg is the median size of the bottom bed-
material particles. Gravel-bed riverswith particles of various dimensions, various relative
Sizes, shapes, rotation modes, and packing have a wide range of small and large pivot
angles (Buffington et al. 1992). Each riverbed is characterized by a unique probability
distribution of pivot angles, and the parameters of the distribution (median, skewness, and
kurtosis) are afunction of various particle parameters.

Buffington et al. (1992) include aterm for bed-material sorting o in their equation and
provide the coefficient x (Eq. 2.90). Adjusting x facilitates computing the probability

distribution of pivot angles. tan®, to which critical shear stress 1., is proportional, can vary
widely on a given streambed, indicating the differential erodibility of surface particles.

Py = ax @%ﬁbx : G_CX (2.90)
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natural gravel-bed material:
- B=55.2 (D/K) %
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Fig. 2.30: Pivot anglesfor particles on channel surfaces computed from Eq. 2.89 by Kirchner et al. (1990)
(thick line); Median pivot angles computed from Eq. 2.90 by Buffington et al. (1992) (thick line with
bullets). For comparison: pivot angles for saddle-top rotation of well sorted spheres and ellipsoids in regular
packing, based on results by Li and Komar (1986) (thin hatched lines).

2.2.6 Sample size for shape analysis

The number of particles used to establish the dominant bed-material particle shape
depends on the variability of the particle shapesfound at asite. There also might be
several populations of particle shapes corresponding to differences in hardness of the
source rock and differences in travel distance. Particles originating from soft rocks, or
those traveled farthest are more rounded and more ellipsoidal than hard rocks or bedload
supplied to the mainstem stream by a small tributary just upstream. Particles from local
rockfall or debris flows are usually angular and deviate from a spherical or ellipsoidal
particle shape.

Because the situation can be quite different from stream to stream, pilot studies are
recommended. Thefirst step isto visually identify particle-shape populations. Then
collect 25 particles from each population, measure the 3 axes, compute the Sand F form
factors (Egs. 2.80 and 2.81) and plot them in a sphericity-form diagram (Fig. 2.23). If the
datafor 25 particles do not plot closely together, more particles may need to be analyzed
or the criteria for identifying particle shapes need to be changed. Another option isto
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apply Student’ s t-statistics to measured particle-shape parameters and to determine the
sample size necessary for an acceptable accuracy and a given particle-shape variability
(see Section 5 on sample size).

2.3 Particle density, specific weight, specific gravity, and submerged
specific weight

Many equations for sediment transport or the initiation of particle motion require particle
density or the specific particle weight asinput. Particle density is particle weight (or
mass) (m) divided by itsvolume V. Conventionally, particle density is abbreviated by the
Greek letter “rho” with the subscript s for sediment (ps) to distinguish it from the fluid
density (in this case water) which is noted by p.

Ps = (2.91)

<I3

The units of particle density are g/cm®, or kg/m®. Particle massis measured by weight and
particle volume is either measured or estimated from particle shape. To measure particle
volume, take a large measuring beaker for large particles, or a graded cylinder for small
rocks, fill it about half full with water and record the volume of water. Place the particle
into the water (particle must be completely submerged) and record the water volume
corresponding to the elevated water level. The difference between the two water volumes
in the beaker isthe particle volume. When particles are small, or when one wants to
know the average density of particlesin amixture, several particles can be analyzed
together. To reduce measurement errors, the entire analysis should be repeated several
times with new particles.

The density of quartz and feldspar particlesis 2.65 g/cm® or 2,650 kg/m°. Thisvalue can
often be used as afirst approximation of particle density because many particles contain a
high percentage of quartz and feldspar. Rock density is less than the one for quartz when
rocks have poresfilled with water or air. Sandstone rocks, for example, have a density of
about 2.2 g/lem®. Solid, dark volcanic rocks or those with high metal content have a
density of more than 3 g/cm®. Density is to some extent dependent on particle size,
Cobble and gravel-sized pieces of vesicular basalt or pumice might have densities
between 2 and 1 g/cm®. Thisvalue can increase to about 3 g/cm® when vesicular volcanic
rock is ground into sand size and the vesicular structureislost. Table 2.15 presents
particle densities for common geological materials.
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Table 2.15: Particle densities (g/cm®) of various materials’

Material Density
humus, pumice <15
sandstone 21-22
limestone, quartz, granite, porphyry 2.7
feldspars (the “white” in granite) 25-28
dolomite, anhydrite 29
micas (the flaky, shiny parts of granite) 2.7-33
apatite 31-33
peridotite, gabbro >3.2
basalt, diabas 3.3
iron 7.2

*for comparison: water density at 4°C = 1.00 g/cm?®

Specific particle weight
Specific particle weight y isthe product of particle density ps and acceleration due to

gravity g. For most applicationsin gravel-bed rivers g can be assumed to take a val ue of
981 cm/s’, or 9.81 m/s’.

%=ps g = 265 9Bl 2= 2600 2 (2.92)

Specific gravity of sediment and water

Specific gravity isthe dimensionless ratio of specific weights or densities. For quartz
particleswith a density of 2.65 g/cm® and water with a density of 1 g/cm?, the specific
gravity is

2
T65 = 265 (2.93)

G- X _ L
Yo P

The density of pure water at 4°C (0,y) iS1 g/em’. River water with suspended sediment
concentration and a temperature above 4°C may have a density (o) higher than 1,
perhaps 1.005. The specific gravity of river water G,,, is computed from

1,005
Gy, = M = Bw _ 2389 4 g5 (2.94)
Yow  Ppw 1
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Submerged specific weight

The submerged specific weight p’ s of a quartz particle is the difference between the
particle density and the fluid density. For clear water, the submerged specific particle
weight is

0's= ps- pr =2.65-1=1.65g/cm’. (2.95)

For heavily sediment-laden water with a sediment concentration of 100 g/I, fluid density
increases to 1.23 g/cm®. Thus, the submerged specific particle weight is reduced to 1.42
g/cm®. This reduction in the specific weight of particlesin heavily sediment-laden flow
leads to an increase in particle mobility and may even cause bouldersto “swim”.

2.4 Bulk density, porosity, and void ratio

Knowledge of sediment bulk density is needed to evaluate the pore space available for
aguatic habitat (Milhous 2001). Bulk density p, is defined asthe ratio of the weight of a
bulk material m, that is contained in a specific bulk volume V.

P =, (2.96)

In situ gravel sediment, inundated sediment

Bulk density of riverbed material should be measured on undisturbed samplesin their
original packing because the bulk density changes when the natural packing is disturbed
by shoveling the sediment. Piston cores also disturb the original packing and are not
suitable for measurements of bulk density in gravel deposits.

Milhous (pers. comm. 2000) suggested that bulk density of inundated sediment in gravel-
bed rivers may be measured in situ from large freeze cores (Section 4.2.4.8) taken from
the substrate below the water surface, so that the sample is completely saturated with
water (i.e., al poresfilled with water, none with air). The cores are weighed frozen and
fully waterlogged (m,), as well as after the ice has melted and the sediment has dried (my).
To compute the bulk density of the sediment in the core, the dry sediment massisdivided
by the total core volume which is the volume of the sediment particles Vs plus the volume
of the water in the pores V,,.

m
Po =\ + Vs

(2.97)

100



The volume of the sediment particlesis calculated from

ms
Vs = 2.98
° Prw - Gs ( )

where p,,, IS the density of the river water, and G; is the specific gravity of the sediment
(Section 2.3). The volume of the water contained in the sample is computed from

Vy=—"— (2.99)

where G,,, is the specific gravity of the river water (Section 2.3).

In situ gravel sediment, dry surface
Milhous (2001) suggested the following technigue for measuring the bulk density of
subsurface sediment in adry part of the streambed:

Step 1. Measurethe volume of water that displacesthe surface sediment or the

armor layer
Remove all surface particles from a dry streambed area for a measurement of the
subsurface sediment bulk density. Alternatively, remove the armor layer (Sections
4.1.3.1,4.1.3.2, 4.2.1.2) before measuring the subarmor bulk density. Place a square
frame, 0.6 —0.9 min length, and 2.5 — 5 cm high onto the area cleared of armor
sediment (Fig. 2.31). Place some sediment along the inside of the frame just next to
the frame to create a smooth transition between sediment and frame. Smooth out the
cornersaswell. Do not sample or disturb this sediment. Cover the exposed subsurface
sediment surface with a plastic sheet, and fit it snugly into al corners within the inside
of the frame. Fll the plastic-lined depression with water (river water isfine) and
measure the water volume needed until overflow using a large laboratory cylinder.
Alternatively, weigh the amount of water needed to fill the plastic sheet and compute
the volume using afluid density of 1,000 kg/m?® for clear, cold water. Discard the
water and remove the plastic sheet (Fig. 2.32 top). Be careful not to disturb the frame
or the exposed sediment surface.

Step 2: Measurethe volume of water that displaces the subsurface or subar mor
sediment
Take a subsurface bed-material sample with avolume of about 20 liters from inside
the area within the frame (See Section 4.2.2 for vertical extent of a subsurface bulk
sample). Thissampleislater dried, weighed, and sieved. When extracting the sample,
the operator should try to create a hole with a smooth bottom. The operator should be

101



Fig. 2.31: Frame for measuring in situ subsurface sediment bulk density (Photo courtesy of R. Milhous).

careful not to disturb the exposed subsurface sediment surface or the position of the
frame while taking the subsurface sample. After the subsurface sampleistaken,
carefully line the hole with plastic sheeting and extend the sheet over the exposed
sediment surface within the frame, and the frame itself. Make sure that the plastic
sheet fits snugly into the hole and leaves no cavities. Air-filled cavities are especially
prone to develop in the bottom of the hole. Make sure the plastic sheet is everywhere
in contact with the bottom of the hole. Refill the plastic sheet with water and measure
the volume needed until overflow onto the gravel surface (Fig. 2.32 bottom).

The volume displacing the subsurface sample Vg, is the difference between the volume of
the second V, and the first measurement V;.

Ve =Va- Vi (2.100)

The bulk density of the bed material pg, isthe ratio of dry weight of the subsurface
sediment removed from the hole my, to the volume of the subsurface sample Vg,
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_ Maup
Psub = Vaub (2101)

Bulk density measured thisway in several gravel-bed rivers ranged between 1.7 and 2.6
g/cm®, with a mean of 2.1 g/em?®.

Step 1:

Step 2:

Fig. 2.32: In situ measurements of the subsurface sediment bulk density.

Repeating density measurements to determine a mean value is advisable, because
differencesin material packing aswell as operator errors are likely to produce a range of
results. Note also that a 20-liter sample volume yields a sample mass of approximately 10
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kg and that several subsamples may be required to obtain the total sample mass necessary
for apreset accuracy of the particle-size analysis.

If the sediment porosity p is known, bulk density may also be computed from

Po=ps- (1-p) (2.102)

Effect of particle packing on bulk density

Particle packing can significantly affect bulk density. The weight of quartz sand filling a
10 liter pail (1,000 cm®, ca. 2.5 gallons) is not 2.65 g/cm® times 1,000 cm® = 26.5 kg, but
considerably less (approximately 20 kg). The exact weight depends on how closely the
guartz grains are packed. Particle packing can range between open and dense. The
packing is open or cubic when each unisized sphere has a neighbor exactly on top and
beneath, on the north, east, south, and the west side. The resulting bulk density for this
packing is 1.39 g/cm®. In the densest packing (rhombohedral), six spheres are clustered
around the center sphere, and have atop sphere in the “pocket” or depressions between
the bottom spheres. In this case, the bulk density is 1.96. Assemblages of natural
particles are seldom unisized, however. Thus, small particles fit between the voids | eft by
larger particles, and the packing becomes denser the wider the particle-size distribution.
Packing also becomes more dense as the deposit becomes more compacted due to
pressure or shock waves (e.g., more rice grains can befilled into ajar if one gently hits
the bottom of the jar). Bulk densitiesfor various sediments are presented in Table 2.16.

Table 2.16: Bulk density and porosity for various sediments with a particle density of 2.65 g/cm®.

Description Bulk density Porosity
(glem’) )
Unisized spheres in open (cubical) packing (theoretical) 1.39 0.48
Unisized spheresin closest packing (theoretical) 1.96 0.26
Clay 159-1.06 0.40-0.60
Silt _ 1.72-133 0.35-0.50
Fine sand (Smith and Wheatcraft 1993) 212-146 0.20-0.45
Coarse sand 225-172 0.15-0.35
Surface soil of wet clay 112 0.58
Surface soil of loam texture 1.28 0.52
Subsoil of sandy texture (Marshall and Holmes 1988) 161 0.39
Sandy loam compacted by heavy traffic 1.90 0.28
Sandstone 212 0.20
sand-gravel mixture (Carling and Reader 1982, freeze cores) 2.30 0.13
range in severa gravel-bed rivers _ _ 260-1.70 0.02-0.36
mean of several gravel-bed rivers } (Milhous, 2001, volume difference) 2,10 0.21
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Porosity

Porosity is defined as the ratio of the space taken up by voids to the total volume of
sediment. Porosity is adimensionless number lessthan 1, and may be expressed as a
percentage. Porosity p can be computed in two ways. One possibility is:

v%ﬁ
Vv _Vt'Vs _ ' S
= Vt

(2.103)

P=V Vi

where V, isthe volume of the void or pore spaces, V; isthe total volume of sediment, and
V; isthe volume of the sediment without pores. The dry mass of the sediment is ms and
particle density is ps. Alternatively, porosity may be computed from:

D = @-% (2.104)

Egs. 2.102 and 2.104 show that bulk density of a sediment deposit isinversely related to
porosity, and one term can be used to compute the other. Porosity isa measure important
for aquatic habitat studies, aswell asfor assessing the potential amount of finesin a
streambed. However, little is known about the spatial and temporal variability of porosity
and bulk density in gravel-beds because in-situ measurements of bulk density are time
consuming and therefore rare.

Void ratio

The void ratio e is a parameter similar to sediment porosity, and is computed from the
ratio of the volume of voids to the volume of sediment particles:

;i

W _ M-V
s

e=y Vv (2.105)

7]

Ps

Similar to porosity, void ratio also yields values smaller than 1, but the values are
somewhat larger.
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Example 2.1.
A subsurface sample taken with the water displacement method described in

Section 2.4 has atotal volume of V;, = 0.020 m® or 20 liter, and adry mass of m,
=42 kg. The parent material ismainly quartz with a particle density of ps =
2,650 kg/m®.

Bulk density p, = myV, = 42 kg/0.02 m? = 2,100 kg/m?®.
Sed. volume Vs = my/ps = 42 kg/2650 m® = 0.01585 n’.
Voidvolume V, = V,-Vs = 0.020 m®- 0.01585 m® = 0.00415 m".
Porosity (1) p = VWV, = 0.00415 m*/0.020 m* = 0.208 or 20.8%
Porosity (2) p = 1-(y/0s) = 1-(2,100(kg/m’)/2,650(kg/m®)) = 1-0.792 = 0.208
Voidratio e = V/Vs = 0.00415 m*/0.01585 m® = 0.2619



