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2.  Particle analysis 
   

 
Particle analysis in gravel-bed rivers includes the analysis of particle size, particle shape, 
particle density and bulk density.  These four topics are presented and discussed below. 
 
 
2.1  Size analysis 

Particle-size analysis comprises the measurement and analysis of the three particle axes 
that define the three-dimensional shape of a particle.  For many applications, it is much 
more convenient to characterize particle size by only one variable, such as the length of 
the intermediate particle axes or the size of the sieve on which a particle was retained.  
Once the sizes of particles are determined, they are statistically analyzed, so that particle-
size distributions and statistical parameters characterizing them can be compared 
between streams or over time.  The mean particle size on a streambed, a particular 
particle-size percentile, a characteristic large particle size, as well as the entire spectrum 
of particle sizes all affect the hydraulics of flow as well as bedload transport rates.  
Studies concerned with the mechanics of particle entrainment, particle transport and 
deposition need to include the description and comparison of particle shapes. 
 
 
2.1.1  Particle axes 

The analyses of particle sizes and particle shape parameters are based on the length of 
three mutually perpendicular particle axes: the longest (a-axis), the intermediate (b-axis), 
and the shortest (c-axis) axis.  The demand for the a, b, and c-axes being truly the 
longest, the intermediate, and the shortest axes agrees with the demand for 
perpendicularity of the three particle axes only if the particle shape is ellipsoidal (e.g., 
like a lightly-worn bar of soap).  Particles with a rhombic shape cannot fulfill both 
demands, and this might leave the user confused on whether to base particle 
identification on the absolute lengths of particle axes or on perpendicularity.  The 
identification of the a- and the b-axes is affected most by this discrepancy, whereas the 
position and length of the c-axis is usually clear.   
 
The crucial point is whether the analysis starts with the definition of the a-axis as the 
longest axis, with the b-axis following as the longest intermediate axis perpendicular to 
the a-axis as done in the Canadian guidelines (Yuzyk and Winkler 1991) (Fig. 2.1), or 
whether the analysis starts with identifying the b-axis as the “shortest axis of the 
maximum projection plane (the plane with the largest area) perpendicular to the c-axis” 
(Gordon et al. 1992. 198-199).  If the a-axis is subsequently defined as perpendicular to 
the b-axis, then the a-axis is not necessarily the longest distance between two points on a 
given particle.  The b- and a-axes are along the heavy black arrows a and b in Fig. 2.1 
according to the definition by Gordon et al. (1992).   
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Differences in the definition of the a- and b-axis are most pronounced in particles of 
rhombic shape (Fig. 2.2, left).  a- and b-axes follow the gray stippled lines a and b when 
defined according to Yuzyk and Winkler (1991), and along the black solid lines a and b 
according to the definition by Gordon et al. (1992).  Both lines a and b are longer than a 
and b. 
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Fig. 2.1:  Definition of particle axes (Redrawn after Yuzyk 1986, and Yuzyk and Winkler 1991).   
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Fig. 2.2:  Discrepancy in b- and a-axes definitions for rhombic, irregular ellipsoidal, and ellipsoidal  particle 
shapes.  
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The differences in the two axis definitions become irrelevant for smooth ellipsoidal 
shapes (Fig. 2.2).  Consequently, the definition of particle b-axes should be 
unproblematic for well rounded and ellipsoidal particles in alluvial streams in which all 
particles experienced a long fluvial transport.  However, particle-axes measurements can 
be difficult in mountain streams with a non-fluvial sediment supply, or in headwaters 
where fluvial transport is short and the particles can be angular and rhomboidal. 
 
Ultimately, the study aim needs to decide how particle axes are measured.  If hand-
measured b-axis lengths are to be compared with sieve sizes, b-axis measurement should 
stimulate the way a particle drops through a sieve opening.  Measurements of a- and c-
axis then follow the rules of perpendicularity.  Measurements of b-axis lengths 
automatically follow this procedure if templates are used.  The b-axis measurements 
performed with rulers, calipers, and the pebble box on rhomboid particles (Section 2.1.3) 
are prone to orient the b-axis perpendicular to the longest (a-axis), which is least 
problematic to identify.  Such b-axis measurements tend to produce longer b-axis lengths 
than template measurements. 
 
 
2.1.2  Particle sizes and size classes 

The size of a particle can be determined in three different categories: the actual b-axis 
length, the nominal diameter, and the particle-sieve diameter.  The three approaches are 
used for different purposes.   
 

Actual b-axis length 
Measuring the actual lengths of particle b-axes in units of mm or cm may be important 
for studies that are concerned with a small range of particle sizes, a range smaller than 
distinguished by two consecutive sieves in a standard sieve set.  An example for such a 
study is the determination of the dominant particle size.  This is computed as the 
arithmetic mean of particle b-axes measured on about 30 large, but not the very largest, 
particles found within a deposit. 
 

Nominal diameter 
If the mass or volume of a particle is of more importance for a study than the particle b-
axis length or the sieve diameter, the nominal diameter is used.  The nominal diameter is 
a three-dimensional approach and describes particle size by its smallest characteristic 
diameter.  The nominal diameter denotes the diameter a particle would assume if its 
volume was expressed as a sphere and is computed from:   
 
 
  Dn = (a ·  b ·  c)1/3                                                                                          (2.1) 
 

Dn is directly related to particle volume VD = 
π
6 (a ·  b ·  c)3.  
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Particle sieve-diameter 
Particles contained in a sediment deposit are commonly analyzed by grouping particles of 
various sizes into particle size-classes that correspond to the size of sieve openings.  The 
particle sieve-size can be defined as the smallest sieve size through which a particle can 
pass (Dpass) or as the largest sieve size through which the particle did not pass, the 
retaining sieve size (Dret).  For a given particle, passing or retaining sieve size differs by 
one size class, thus, it is important to indicate whether reference is made to the passing or 
retaining sieve size.  Particle sieve-diameter also depends on whether sieves with square 
or round-holes were used; whereas for particles of equal weight, sieve diameter varies 
with particle shape (Sections 2.1.3.1, 2.1.3.4, and 2.1.3.5).   
 
Sieve diameter and nominal diameter are identical for spheres and ellipsoidal particles 
with certain axes ratios such as a = 3/2 b, and c=2/3 b, but deviate for other particle 
shapes.  Compared to a sphere with an identical b-axis, a disc has a smaller Dn due to its 
small c-axis, whereas the Dn of a rod-shaped particle exceeds that of a sphere because of 
its long a-axis.  Acknowledgment of this discrepancy can become important because 
sedimentation, i.e., erosion, transport, and deposition of particles, is tied to particle weight 
and shape (particularly the area projected towards the direction of flow).  The analysis of 
particle shape is discussed in Section 2.2. 
 
2.1.2.1  The Wentworth scale of particle sizes 

If particle size-classes progress in a linear scale, e.g., 10, 20, 30 mm, the frequency of 
particles per size class in fluvial gravel tends to be approximately logarithmically 
distributed.  Logarithmic distributions are statistically more difficult to work with than 
normal distributions.  In order to obtain an approximately normal distribution of particle 
sizes, particle-size classes were made to increase by a factor of 2 (Wentworth scale).  
Thus, particle sizes in units of mm double in consecutively larger size classes (2 - 4 mm, 4 
- 8 mm, 8 - 16 mm, 16 - 32 mm, etc.).  These size classes are grouped into six major 
particle-size categories - boulders, cobbles, gravel, sand, silt and clay (Table 2.1).  Silt 
and clay content are rarely analyzed in studies of gravel-bed rivers, thus, these size 
categories are included only in an abbreviated form in Table 2.1. 
 
The mass of a spherical particle increases by a factor of 8, when the particle diameter 
doubles.  This 8-fold range of particle mass per size class is quite large, and many studies 
therefore carry out particle-size analyses in size classes half as large as the Wentworth 
classes (see sieve sizes in Section 2.1.3).  
 
2.1.2.2  Particle size in φ-units 

The frequency distribution of the weight or number of particles per size class tends to 
follow approximately a lognormal distribution (Section 2.1.4.3) when particle sizes are 
expressed metrically in mm.  Consequently, the arithmetic mean particle size and the 
arithmetic median particle size are not the same (mean is usually larger than median).  If a 
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Table 2.1:  Size gradation for sediment in the range of sand to boulders (Wentworth scale) 
________________________________________________________________________________________________ 

 Description of particle size            φ = -log2       mm     ψ = log2   
  

       –        - 12.0   4096     12.0     
     very large         - 11.5   2896    11.5   
      –        - 11.0   2048     11.0  
     large          - 10.5   1448    10.5  
 Boulder    –        - 10.0   1024     10.0  
     Medium       - 9.5     724      9.5   
       –           - 9.0     512       9.0  
     small        - 8.5     362      8.5 
                      - 8.0      256       8.0  
     large        - 7.5     181      7.5   
 Cobble     –      - 7.0     128       7.0  
       Small        - 6.5       90.5     6.5   
                      - 6.0        64       6.0  
     very coarse      - 5.5       45.3     5.5  
        –        - 5.0       32       5.0   
     coarse        - 4.5       22.6      4.5      
        –   Pebble   - 4.0       16       4.0  
 Gravel  medium       - 3.5       11.3     3.5  
       –       - 3.0    8       3.0  
     fine        - 2.5    5.66     2.5  
           - 2.0    4       2.0  
         very fine      Granule   - 1.5    2.83     1.5  
                      - 1.0     2       1.0  
     very coarse      - 0.5    1.4 1     0.5    
       –            0        1       0  
     coarse       + 0.5        0.707   - 0.5  
      –     + 1.0         0.500     - 1.0 
 Sand   medium      + 1.5          0.354   - 1.5      
      –     + 2.0         0.250     - 2.0 
     fine       + 2.5        0.177   - 1.5  
      –     + 3.0         0.125   –  - 3.0 
     very fine      + 3.5          0.088   - 3.5  
                     + 4.0            0.063   –    - 4.0 
 Silt 
                     + 8.0          0.0039  -    - 8.0 
 Clay 
                   + 12.0          0.00024  -  - 12.0 
________________________________________________________________________________________________ 

 

particle-size distribution was truly logarithmic, log transformation of particle-size units 
would produce a normal distribution.  It is desirable to work with normal distributions, 
because standard statistical procedures can be used to analyze them.  
 
Any kind of logarithmic transformation, e.g., the simple log of the particle size D, i.e., log 
(D), applied to the original data will produce a normal distribution.  However, in order to 
obtain convenient, integer values after a log transformation, sedimentologists and 
geomorphologists (Krumbein 1934) expressed particle size D as the negative logarithm to 
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the base of 2 and called the result the φ-scale.  φ, spelled out as phi, is the Greek letter for 
f.  Particle sizes in φ-units are computed from particle sizes D in units of mm by  
 
 
  φi = -log2(Di)                          (2.2) 
 
 
Since the negative logarithm to the base of 2 is not routinely programmed in scientific 
calculators it needs to be computed from  
 
 

  φ  = - 
log(Di)
log(2)                            (2.3) 

 
 
Since log(2) = 0.3010, this expression can be simplified to 
 
 

  φi = 
-log(Di)
0.301   = -3.3219 log(Di)                      (2.4) 

 
 
For example, -3.3219 log(64) = -3.3219 ·  1.8062 = 6.0.  Conversely, particle sizes D in 
units of mm are obtained from particle sizes in φ-units by 
 
 
  Di = 2-φi                            (2.5) 
 
 
This expression can easily be solved by scientific calculators or spreadsheet programs.  
An alternative expression dating from the time of logarithmic and exponential tables is  
 
 
  Di = e-φi ln(2) = 10-φi log(2) = 10-0.301 φi                      (2.6)  
 
 
Table 2.1 presents particle sizes in units of mm and φ. 
 
 

2.1.2.3  Particle size in ψ-units 

The φ-transformation produces positive values for particle sizes smaller than 1 mm and 
negative values for particle sizes larger than 1 mm.  This feature is convenient for studies 
that focus on sand and smaller sediment.  However, this feature is inconvenient for studies 
in gravel-bed rivers, because having smaller, negative numbers for larger particle sizes is 
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counterintuitive.  Consequently, the ψ-scale was developed (Greek letter y spelled out as 
psi) which produces increasingly larger values as particle sizes increase from sand to 
boulders.  ψ-units are the negative values obtained in φ-units (ψ = -φ, or φ = -ψ).  ψ-units 
are computed from particle size D in units of mm by 
 
 
  ψi = log2 (Di)                              (2.7) 
 
 
By analogy to Eq. 2.2, this expression is solved by  
 
 

  ψi=  
log(Di)
log (2)                           (2.8) 

 
 
which can be simplified to ψi = 3.3219 log (Di).  For example, 3.3219 log(64) = 3.3219 ·  
1.8062 = 6.0.  Particle sizes in ψ-units are provided in Table 2.1.  Particle size D in mm-
units is obtained from particle sizes in ψ-units by 
 
 
  Di = 2ψ = eψ ln (2) = 10ψ log (2)                     (2.9) 
 
 
2.1.3  Sieving and manual measurements of particle size 

The size of gravel particles can be measured manually or by sieving.  The different 
equipment used in both approaches can affect the results.  This makes it necessary to 
compare different methods of particle-size measurements and to determine conversion 
factors. 
 
Sieving usually employs square-hole sieves, although some labs still have round-hole 
sieves.  Square- and round-hole sieves produce different size gradation curves, especially 
for flat particles.  Manual particle-size measurements traditionally use rulers and calipers.  
These devices are prone to operator error that can be avoided by using templates (Section 
2.1.3.6).  Notwithstanding operator error, ruler and template measurements differ to the 
same degree as do size gradations based on round-hole and square-hole sieves.  Pebble 
boxes are a handy device if all three particle axes are to be measured (Section 2.1.3.8) 
because they help to reduce operator error and speed up the measurements. 
 
 
2.1.3.1  Square-hole sieves 

Square-hole mesh wire sieves are the standard laboratory sieves for sand and gravel.  
They have size gradations between 0.063 and 64 mm.  Sieve sizes, i.e., the side length of 
the mesh width Ds, typically advance as a logarithmic series based on 2, i.e.,  
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  Ds = 2x                          (2.10) 
 

where x usually assumes values in increments of 0.5, so that Ds advances in 0.5 units of φ 
or ψ (Table 2.1).  For sediment from gravel-bed rivers, a stack of sieves in 0.5 φ units 
usually has 64 mm as the coarsest sieve, and consecutive smaller sieves have mesh widths 
of 45.3, 32, 22.6, 16, 11.3, 8, 5.66, 4, 2.83, and 2 mm.  If the sand fraction is of concern, 
sieve sizes continue with 1.4, 1.0, 0.71, 0.5, 0.35, 0.25, 0.18, 0.125, 0.088, and 0.063 mm.  
Sieves typically used in the United States produced by the American Society for Testing 
and Materials (ASTM E-11) follow the 0.5 φ or ψ-gradation only approximately for 
particle sizes in the gravel range.  This deviation stems from expressing particle-size 
classes as fractions of an inch.  Sieves that retain particles larger than 22.6 and 11.3 mm 
are commonly labeled 22.4 and 11.2 mm, suggesting an arithmetic mean between -4.5 φ 
(=22.6 mm) and 7/8 inch (= 22.2 mm).  Likewise, the 11.2 mm sieve size is the mean 
between -3.5 φ (=11.3 mm) and 7/16 inch = 11.1 mm.  Sometimes, ASTM E-11 sieves 
indicate three different mm sizes for the same sieve size.  The “45 mm” (1¾ inch) sieve, 
for example, sometimes indicates 44.45 mm, the mm equivalent of 1¾ inch, sometimes 
45.3 mm, the exact mm equivalent of -5.5 φ, and sometimes 45 mm, which is an 
intermediate value between the two.  This discrepancy is problematic if size classes are 
first expressed in mm, and then mathematically converted to φ or ψ- units for further 
particle-size analysis.   
 
Sieving in 0.5 φ-units is recommended for many sampling projects in gravel-bed rivers.  
However, some study objectives may require sieving in 0.25 φ-increments, while for 
others units of 1.0 φ may be sufficient.  
 
 
2.1.3.2  Relation between b-axis size and square-hole sieve sizes 

Particles found within one 0.5 φ sieve class can have b-axes lengths that range over a 
factor of almost 2.  The smallest b-axis length of a particle retained on a -4.5 φ = 22.6 mm 
sieve is 22.7 mm, the largest b-axis length is 45.2 mm.  For a given particle shape, the 

range of b-axes lengths is 2 ≅  1.41.  Perfect spheres have the smallest b-axes.  The 
smallest sphere retained on the 22.6-mm sieve has a b-axis of 22.7 mm, whereas the 
largest sphere to fit through the -5 φ = 32-mm sieve has a b-axis of 31.9 mm.  Extremely 
flat particles have the largest b-axes, ranging from 31.9 to 45.2.  Thus, the flatter the 
particle, the larger the b-axis that fits through a square sieve opening (Fig. 2.3).  Particle 
flatness can be expressed by the ratio of shortest to intermediate axis c/b.  The relation 
between the ratio of a square-hole sieve opening Ds to b-axis size and particle flatness 
(i.e., the ratio of c/b) is given by Eq. 2.11 and shown in Fig. 2.4.  Fig. 2.4 can likewise be 
used to illustrate the ratio 
 
 

 
Ds

b  = 
1

2
 ·  1 + 



c

b
2
                      

(2.11) 
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Fig. 2.3:  Illustration of effect of particle shape on largest b-axis size to fit through a square-hole sieve 
(Redrawn from Church et al. 1987; by permission of John Wiley and Sons, Ltd.). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.4:  Ratio of square-hole sieve opening Ds to measured b-axis size as a function of particle flatness, i.e., 
the ratio of c/b (Redrawn from Church et al. 1987; by permission of John Wiley and Sons, Ltd.). 
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of square-hole sieve size to round-hole sieve size for various degrees of particle flatness 
(Section 2.1.3.5). 
 

2.1.3.3  Round-hole sieves 

Some sieves consist of metal plates with round borings of the diameter Ds.  Since square-
hole sieves and round-hole sieves have openings of different shapes, both sieves produce 
different sieve results, except for particles with perfect spherical shapes.  A sphere with a 
diameter of 3.99 mm fits through both a round-hole and a square-hole sieve of 4 mm, and 
a ball 46 mm in diameter is likewise retained on both the square and the round-hole sieve 
of 45 mm.  However, sieving ellipsoidal or flat particles with both sieve types produces 
different gradation curves (i.e., cumulative frequencies).  Differences in mean particle b-
axes length and conversion factors between round and square-hole sieve results are 
discussed in Sections 2.1.3.4 and 2.1.3.5. 
 
 
2.1.3.4  Center of class and mean particle b-axes length per size class  

Sometimes, computations require that an entire particle-size class is represented by a 
single particle-size value.  Commonly, this value is taken as the “center of class”, Dc, 
which is the hypothetical sieve size between the retaining and the passing sieve size.  Dc is 
therefore determined from the logarithmic mean between the retaining sieve size Dret and 
the next larger, passing sieve size Dpass which is equal to the diagonal of the retaining 
sieve size.   
 
 

  Dc = 10^



log (Dret) + log (Dpass)

 
                   (2.12) 

 
 
For example, center of class for the 16 mm sieve is Dc = 10 (log 16+log 22.6)/2 = 19.02 mm.  In 
terms of φ-units, the center of class is the arithmetic mean between the retaining and the 
passing sieve size.  Thus, φc for the -4 to -4.5 φ size class is (-4 +-4.5)/2 = 4.25 φ = 19.03 
mm.  Eq. 2.12 can likewise be expressed by the best-fit regression between Dc and Dret, 
which yields the linear function  
 
 
  Dc = -0.00284 + 0.841 Dret                   (2.13)  
 
 
The center of class Dc (the central sieve size between the retaining and the passing sieve) 
is only equal to the particle size of the weight midpoint Dmc of the sediment between the 
retaining and the passing sieves if a sufficiently fine gradation of sieve sizes is chosen 
(Folk 1966).  In order to avoid an imbalance between Dc and Dmc, fluvial gravel ranging 
from sand to cobbles should rather be sieved in increments of 0.5 φ than in increments of 
1.0 φ.   

2 
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Mean particle b-axes length per size class 
The center of class Dc is not generally equal to the (geometric) mean particle b-axis 
length bm within that size class and thus can usually not be used as a substitute for bm.  Dc 
and bm are only identical for perfect spheres.  Dc for the size class 16 to 22.6 mm is 19.02 
mm.  The range of spheres retained on the 16-mm sieve extends from 16.1 to 22.5 mm 
with a geometric mean of 19.03 mm.     
 

The b-axes sizes of very flat particles retained on a given sieve are a factor of up to 2  ≅  
1.4 larger than the b-axes of spheres, extending from 31.9 to 22.5 mm, with a geometric 
mean of 26.8 mm.  Thus, for a sediment mixture of spheres and very flat particles, the 
geometric mean b-axis length of particles retained on the 16-mm sieve would be 
somewhere within the range of 19 and 26 mm.   
 
 
Uneven distribution of particle sizes per sieve class 
Fluvial gravel particles are usually not of equal particle shape, particularly not in 
mountainous areas where bed material comprises a variety of particle shapes due to 
highly variable transport distances of particles within a reach.  This variety of shapes 
produces an uneven, and approximately normal, distribution of particle b-axes lengths 
within one sieve class.  Small particles are scarce on a sieve because small particles are 
only retained if they are spherical, while flat particles of the same b-axis length are not 
retained.  Large particles are scarce on a sieve because only those large particles that are 
flat are passed through the next larger sieve, while round particles of the same b-axis size 
are retained on that larger sieve. The mid-size range of particles per sieve class comprises 
all particle shapes, thus mid-sized particles make up the majority of particles per sieve 
class.  Using round-hole sieves, the passing sieve retains all particles with a b-axis larger 
than the passing sieve size (instead of letting the flat ones through).  Thus, the majority of 
particles retained on a round-hole sieve are close to the passing sieve size when sieving 
sediment of mixed particle shapes.   
 
 
2.1.3.5  Comparison of sieve results using round-hole and square-hole sieves 

Sieving a given particle mixture with a set of square-hole sieves produces a finer size 
distribution than would be obtained from sieving the same particle mixture with round-
hole sieves.  This is because a round-hole sieve may retain particles that are not retained 
on a square-hole sieve of the same size.  For example, an ellipsoidal particle with a b-axis 
of 50 mm and a c-axis of 30 mm will not pass through a 45-mm round-hole sieve, but will 
pass through a 45-mm square-hole sieve.  Thus, this 50-mm particle will be tallied as 
larger than 45 mm when using round-hole sieves, and as smaller than 45 mm when using 
square-hole sieves.   
 
If all particles of the sample are of the same and known shape, results from round-hole 
and square-hole sieving are convertible.  Conversion factors between round-hole and 
square-hole sieves range from 0.71 for extremely flat particles to 1.0 for spheres (Church 
et al. 1987) and Fig. 2.4 can be used for conversion between round and square-hole sieve 
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results.  Fluvially transported particles in wadable gravel-bed streams are most likely to be 
approximately ellipsoidal in shape and therefore are likely to have a conversion factor 
between 0.8 and 0.9.  Note that particle shapes may vary between different size classes or 
different lithologies.  Thus, different conversion factors may have to be applied within 
one sample to account for this fact. 
 
 
2.1.3.6  Templates 

During field studies, gravel particle sizes are best determined with templates because 
template measurements provide higher accuracy than measurements with rulers and using 
templates reduces variability between different operators.  A template, also called a 
gravelometer, is a thin aluminum or plastic plate with several sieve-sized square-holes.  
The holes usually correspond to the sizes of standard 0.5 φ-increment sieve sets, starting 
at 2 mm, and reaching to 128 or 180 mm, depending on the size of the template.  
Templates can also be designed with holes in 1, or 0.25 φ-increments (Fig. 2.5).  A 
gravelometer made of plastic, about 25 by 30 cm in size, and 0.5 cm thick, can be 
purchased from Hydro Scientific in Great Britain (Fig. 2.6).  U.S. Government agencies 
can purchase templates from the Federal Interagency Sedimentation Project (FISP) in 
Vicksburg, Mississippi1.  The FISP gravelometer US SAH-97 is made of aluminum, is 
0.32 cm thick, and has 14 square-holes in 0.5 φ-units ranging from -1 to -7.5 φ (2 to 180 
mm).  The overall dimensions are 28 by 34 cm (Fig. 2.7). 
 
Templates are especially useful for pebble counts (Section 4.1.1. and 4.1.2).  The operator 
picks up a particle and pushes the particle through various holes.  The aim is to determine 
a particle’s sieve diameter either in terms of “not passing or larger than” the hole of a 
given size, or in terms of “passing or smaller than” the hole of a given size.  The “larger 
than” approach records the largest hole size (i.e., sieve size Ds) that is smaller than the 
particle diameter (equivalent to the sieve size on which the particle was retained).  
Particle size is tallied as “larger than Ds” where Ds is the next smaller hole size.  The 
“smaller than” approach records the smallest hole size through which the particle could 
be passed  (equivalent to sieve size through which the particle could pass), and tallies the 
particle as “smaller than Ds”, where Ds is the next larger hole size.  For example, a rock 
with a 60 mm b-axis would be tallied in the larger than 45 mm class using the “larger 
than” approach, or as smaller than 64 mm in the “smaller than” approach.  It does not 
matter which approach is followed, as long as one approach is followed consistently.  The 
“larger than” approach seems to be more intuitively connected to note taking when 
sieving, equivalent to recording the weight of particles “retained on the sieve” with the 
sieve size Ds.  The “smaller than” approach, equivalent to recording the weight of 
particles “passing a sieve” eliminates one step in the computation of cumulative 
frequency distribution, which is customarily computed as “percent of particles finer than” 
or “percent passing”, but seems to be less intuitive.  

                                                 
1 For further information contact FISP at (601) 634-2721. 
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Fig. 2.5:  Template in 0.25 φ-units used by Hey and Thorne (1983); Reproduced by permission of the 
American Society of Civil Engineers. 
 
 

 
 
Fig. 2.6:  Template available from Hydro Scientific Limited, Stratford-on-Avon, Warwickshire CV37 8EN, 
UK, Fax/phone:+44-1789-750965, email: HydroSci@aol.com; website: http://members.aol.com/HydroSci. 
Photo courtesy of Hydro Scientific.  
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Fig. 2.7:  Template US SAH-97, produced by the Federal Interagency Sedimentation Project, website: 
http://fisp.wes.army.mil/. 
 
 
Measuring particle sizes with templates is expedient because the appropriate “larger than” 
or “smaller than” hole size can usually be determined on the first or second try.  
Templates are also useful for field sieving individual bulk samples.  Template 
measurements are preferable to ruler and caliper measurements for particle-size analyses 
because potential errors arising from improperly defining the b-axis (Section 2.1.1), or 
from misreading the ruler can be avoided (Hey and Thorne 1983; Stream Notes, April 
1996).  The magnitude of errors avoided by template measurements becomes apparent if 
replicate b-axes measurements with rulers are performed on re-measured rocks.  The 
same operator can usually reproduce particle b-axis measurements correctly.  However, 
when multiple operators re-measure pre-measured particles using a ruler, individual 
operators produce different results (Wohl et al. 1996).  Differences between operators’ 
results are more pronounced when angular particles shapes, and particle structures due to 
layering or metamorphic processes make the correct identification of the b-axis difficult 
(Marcus et al. 1995).  The use of templates largely eliminates these measurement errors. 
 
 
2.1.3.7  Rulers and calipers 

Some field studies measure the particle b-axis size with a ruler.  This procedure is only 
recommended if the study focuses on measuring particle sizes within a fairly narrow 
range.  An example is the determination of the dominant large particle size from among 
perhaps 30 large, but not the largest, particles within a given sampling area.   
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Measuring the particle b-axes size with a ruler or caliper is not recommended in studies 
that tally b-axes measurements in φ units.  First, ruler measurements are prone to error 
because the operator has to accurately determine the orientation of the b-axis (Marcus et 
al. 1995).  Secondly, ruler measurements do not correspond to measurements made with 
templates, or square-hole sieves.  Ruler measurements correspond to measurements with 
round-hole sieves.  Thus, when comparing or merging ruler with template measurements, 
the same procedures as discussed in Section 2.1.3.5 apply, and particle sizes need to be 
converted, using for example Fig. 2.4.  Finally, no additional information on particle size 
is gained from measuring b-axes to the nearest mm with a ruler or calipers, if these 
measurements are then tallied in 0.5-φ size classes. 
 
Tallying particle sizes in φ units assumes that particle sizes are normally distributed in 
terms of φ units.  This assumption does often not hold in a strict statistical sense for 
particle-size distributions from gravel beds.  Nevertheless, a normal distribution is often 
assumed for convenience, so that standard statistical procedures can be used (Section 
2.1.4.3).  However, if the assumption of a normal distribution cannot be accepted, 
measuring particle b-axes lengths to the nearest mm or cm allows for more options in the 
statistical analysis.  
 
Rulers, or better, calipers, are appropriate for analyses of particle shape in the lab when 
particle axes are measured by a person aware of the difficulties involved in proper 
identification of the three particle axes.  If large quantities of pebbles need to be 
measured, a pebble-box (Section 2.1.3.8) may be needed. 
 

 
2.1.3.8  Pebble-box 

The pebble-box was developed by Ibbeken and Denzer (1988) who conducted several 
large studies of gravel particle shapes.  The pebble-box is a convenient device for easy 
measurements of the three particle axes because it does not require repositioning the 
particles between measurements, as ruler measurements do, and ensures all three 
measured particle axes are at right angles.  A pebble-box can be constructed of two 3-
sided corner pieces each formed by joining the edges of 3 square pieces of plywood.  The 
dimension of the box depends of the particle sizes to be measured.  A box 15 - 20 cm 
along the sides, made of plywood 0.5 - 1 cm thick is suitable for pebbles and small 
cobbles.  A diagonal handle made from a broomstick or a dowel stick is attached to one of 
the corner pieces (Fig. 2.8).  Thin clear plastic rulers in cm and mm gradations are glued 
to the two top edges and the front edge of the corner piece with no handle.  The “zero” 
marks of all rulers need to be in the corner, so that the distance from the corner can be 
read.   
 
To measure the three axes a pebble is pushed into the corner of the first pebble-box.  The 
second pebble-box (the one with the handle) is alternately placed along the top, side, and 
front of the pebble in the box.  The length of each particle axis can then be read on the 
tape measures.  The pebble-box is particularly useful when measuring the three axes of a  



 29 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.8:  Measuring the three particle axes with the pebble-box. 
 
large number of particles.  It takes about 20 minutes to measure 100 particles if a second 
operator records the measurements.  
 
Particle b-axes measurements with the pebble-box are similar to measurements with a 
ruler, or caliper.  Thus, particle sizes need to be converted if they are to be compared to 
particle sizes determined with square-hole sieves (Fig. 2.3 and Section 2.1.3.5).  
Compared to sieve or template measurements, pebble-box measurements may slightly 
overpredict the b-axes of rhombic or diamond-shaped particles.  Particles of this shape 

(1) A particle in the stationary corner 
piece 

(2) Measuring the longest axis 

(3) Measuring the intermediate axis (4) Measuring the shortest axis 
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tend to align in the box in such a way that b-axes are measured across the largest width, 
rather than parallel to the sides of the particle (i.e., along the stippled line b instead of the 
solid line b in Fig. 2.2).  
 
 
2.1.3.9  Lab sieving 

Sediment from gravel-bed rivers is usually dried before sieving2.  Wet sediment can be 
dried on metal pans (e.g., disposable 10-inch pie plates).  Two or three days of exposure to 
air at room temperature is usually sufficient to dry gravel, but the drying process can be 
accelerated by placing the sediment in an oven at 90ºC (194ºF) overnight.  Particles 
should be allowed to cool to room temperature before sieving and weighing, not only to 
avoid burning oneself, but also to avoid measuring an increase in particle weight as the 
particle absorbs air moisture during the cooling phase. 
 
For sieving, the gravel from one or more pie plates is poured into the sieve stack that has a 
sieve pan at the bottom.  The amount of sediment that can be sieved at a time depends on 
the number of sieves used and on the particle sizes.  It is important not to overfill the 
sieves.  As a rule of thumb, particles should not cover the sieves in a layer more than one 
or two particles thick.  Filled in this way, the sieving process takes about 10 minutes when 
sieves are mounted on a shaker (ROTAP), a sieving apparatus that automatically shakes 
and taps the sieve stack.  If an automatic shaker is not available, the shaking and tapping 
motion can be imitated by placing the sieve stack onto the floor.  The operator sits on a 
stool in front of the stack, rotating, and tilting the stack forward and backward.  A piece of 
wood placed under the sieve stack protects the floor and the sieves from damaging each 
other, and provides a hard enough surface when sieving in the field.  Gravel particles 
larger than 8 mm may not require a full 10 minutes of shaking, but particles might still be 
sieved out of fine gravel and sand after 10 minutes.  Some particles will get stuck in the 
sieves and should be removed and added to the sample before sieving the next subsample.  
Scrubbing the backside of the sieve and tapping the mesh and the sides of the sieve with a 
long handled fine wire brush helps clean the fine gravel sieves. Gentle prying with a 
screw-driver removes particles stuck in larger and more sturdy sieves.  Care must be taken 
not to damage the sieve. 
 
The weighing process depends on the weight range of the scale available in the lab.  
Sieved size fractions are weighed individually for each sieved subsample for small range 
scales, but individual size fractions from all subsamples should be combined for large 
range scales.    
 
It is recommended to prepare data sheets with one column for retaining (or passing) sieve 
sizes, and one or several other columns for the weight retained on each sieve, depending 
on the number of subsamples into which the entire sample had to be divided for the  
sieving process.  The example data sheet shown in Fig. 2.9 is for gravel and further differentiation 
of the sand into size fractions was not needed for that study.  Particle weight is usually  

                                                 
2 Wetsieving as a measure of particle dispersion is not necessary for gravel and sand. 
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recorded in grams or in kg.  If the scale has only English units, those should be recorded on 
the data sheets.  Unit conversions and all subsequent computations such as adding 
subsample mass, calculating frequencies and cumulative frequencies should be performed 
at a later stage after all data have been entered into a spreadsheet program.   

 
 
 
 
        
 
 
 

    Mass (g) of subsample Particle size  
(mm or f)  
    1    2      3           n 

   Total 
     64 
 45.3 
 32 
 22.6 
 16 
 11.3 
  8    
  5.6 
  4 
  2.8 
  2 
 <2 

 
 
 
 
 
 
 
 
 
 
 
 
 

  
Fig. 2.9:  Example data sheet for sieve analysis. 
 
 
The range of the scale permitting, each subsample should be weighed as a total before 
sieving.  Close correspondence between the total weight and the summed weight of all size 
fractions makes sure that all recordings are accurate.  If this control is not available, it is 
important to double-check the proper recording of each value.  All samples should be 
retained and put back into their sample bags until after the particle-size analysis, so that 
samples can be re-measured if results suggest errors. 
 
 
Sample splitting 
The fine part of a large sediment sample from a gravel bed consists of fine gravel and 
sand, and might weigh 10 – 20 kg.  This is considerably more sediment than is needed for 
a representative particle-size analysis of this size range (see, e.g., Fig. 5.14 for required 
sample mass for a given Dmax particle size).  It might therefore be useful to split the sample 
before sieving.  A sample is best split using a sample splitter.  A riffle splitter consists of a 
hopper under which a series of up to about 10 equally sized compartments is located.  The 

Stream: Date/Time: 

Person sieving: 

Standard sieve set: yes / no    ROTAP: yes / no 

Sieving duration:           (min) 

Notes: 
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bottom outlets of the compartments are alternately directed to the left or the right side of 
the splitter (see riffle splitter in Fig. 2.10). 
 
Sediment is poured evenly along the entire length of the hopper, making several passes 
from side to side.  The compartments funnel the sediment alternately to the left or the right 
side of the splitter where the sediment is caught in containers.  This process splits the 
sample in half.  Usually, the compartmentalization does not induce sediment sorting, so 
that an approximately equal amount of sediment of near-equal size distribution is 
contained in each of the two containers.  However, the sediment to be split in a splitter 
must be dry.  Otherwise, fine particles may cling to the compartment walls and produce 
subsamples with less fines than the original sample.   
 
One passage through the sample splitter divides the sample in half.  If one only needs 1/8th 
of the total sample mass, the sample is run through the splitter 3 times, one portion is 
discarded each time, the remaining portion is split again.  If the splitting aim is to obtain a 
subsample with about 1/5th of the total sample mass, the sample is first split into 8 
subsamples, two of which are discarded.  Three of the 1/8th splits are combined and split 
again to yield a subsample that has 3/16th of the total sample volume.  
 
Only one of the subsamples is sieved, unless the operator chooses to sieve several 
subsamples in order to compute the accuracy of the sieving result (see two-stage sampling, 
Section 5.4.2.1).   
 
 
2.1.3.10  Field sieving, weighing, volume determination, and counting  

Field sieving, templates and sieve sets  
The sample mass required for a good statistical analysis of particle sizes is often 
approximated by 20 - 100 times the mass of the Dmax particle size.  This amounts to 160 - 
800 kg in a gravel bed with a Dmax of 180 mm (Section 5.4.1.1).  Unless vehicle access of 
the field site and to the lab is excellent, such large samples can best be accommodated by 
sieving the coarse portion of the sample down to 16 or 11.3 mm in the field.   
 
Field sieving requires a relatively large open and dry work space, and dry weather so that 
particles can air dry.  The surfaces of pebbles air-dry within a day even under overcast 
skies, provided particles are well spread out on tarps.  The weight difference between air-
dried and oven-dried particles is usually negligible for pebbles and cobbles, but can make a 
difference for sand, or for highly porous particles that retain a measurable amount of 
water.  The drying process in the field can be accelerated by using black plastic perforated 
landscaping cloth instead of tarps, because the fine perforation prevents water puddles on 
the cloth, and the black color heats up quickly in the sun.  Landscaping cloth is light-
weight, especially when precut into long strips, but not very durable, and some of the fine 
sand may pass through the perforation. 
 
After particles are air-dried, any dry sand sticking to larger rocks is brushed off before 
sieving.  Cobbles and boulders larger than the largest sieve size or template hole are 
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measured with calipers or a ruler.  All three axes are measured, and the corresponding 
sieve diameter of those particles is estimated from the particle b- and c-axis dimensions.   
 
The equipment used to sieve cobbles and pebbles in the field depends on the scale of the 
sampling event.  A few tarps, one or two templates, a few sturdy plastic shopping bags, and 
a hanging scale are sufficient for small sample volumes of only a few buckets.  Such a 
field sieving kit is also recommended when working at a remote, hike-in, field site.  
Starting with the largest particles on the tarp, each particle is picked up and its size class is 
measured with a template.  This task is actually less daunting than it might appear at first.  
For example, a sample of 135 kg from a gravel-bed stream might only contain 26 particles 
larger than 64 mm, but these account for 35% of the total weight of the sample (Table 2.2).  
Continuing with field sieving down to the 22.6 or 16 mm size class, which requires 
handling roughly 600-1000 particles, analyzes 2/3 to 3/4 of the total sample weight 
already.  Particles of a given size class are collected in plastic bags, or in piles on an extra 
tarp.  The particles of each size class are then weighed using the hanging scale.  
Alternatively, the number of particles per size class may be counted, and that number can 
be converted into mass per size class at a later stage. 
 
If the site has vehicle access or is a short distance away from the vehicle, it is advisable to 
take a lab sieve set to the field when sieving larger volumes of gravel.  Less bulky than a 
stack of lab sieves is a (home-made) sieve box consisting of a frame (approximately 0.2 by 
0.3 m, 0.1 m high, into which screens of different mesh width can be inserted (Tom Lisle, 
pers. comm, 1998)3.  Particles sieved into different size classes are collected on tarps, 
pails, plastic tubs, or in strong ziploc bags, depending on the extent of the sampling 
project.  After sieving, particles of a size class can either be weighed, or counted. 
 
There is no rule regarding the lowest sieve size for field sieving, although fine gravel and 
sand can probably be sieved more conveniently in the lab.  If the unsieved portion of the 
sample is large, it can be split in the field so that sufficient sediment for the remaining 
largest particle-size class is taken to the laboratory for a standard sieve analysis.  A 
subsample mass of 6 kg is quite sufficient if particles larger than 16 mm have been 
removed in the field (Eq. 5.40 and Fig. 5.14 provides a relation between required sample 
mass for a given Dmax particle size).  One method of splitting a sample in the field is to 
distribute scoops of sediment from the sample alternately into a series of empty buckets.  
The number of buckets used depends on the desired sediment mass for the subsample.  The 
first scoop goes into bucket 1, the second into bucket 2, etc, until all sediment from the 
sample is evenly distributed.  The volume and the mass in each bucket should be equal.   A 
sturdy ladle works well for scooping sandy and fine gravelly sediment.  The number of all 
subsamples is recorded, but only one of the subsamples is then taken to the lab. 
Well thought out field sieving equipment is essential when undertaking an extensive field-
sampling program.  The minimum field equipment consists of a large rockable sieve-box 
(ca. 0.5 by 0.5 m, and 0.15 m high) with exchangeable pieces of meshwire corresponding 
sieving and splitting apparatus to the field site.  The device (Fig. 2.10) consists of a frame, 

                                                 
3 Research Hydrologist, Pacific Southwest Forest and Range Experiment Station, Arcata, CA. 
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to sieve sizes.  When sieving tons4 of sediment, Ibbeken (1974) recommends bringing a 
approximately 0.5 by 0.5 m, and 0.7 m high, into which a sieve and a sample splitter can 
be inserted.  The bottom of the frame is connected to a springy and rockable stand (old lab 
stool).  Two operators can sieve 0.5 - 1 tons of gravelly sediment per day with this 
apparatus.  The large masses of sediment to be handled require a large number of tarps and 
tubs, and a robust field scale for weighing.   
 
 
Particle weighing 
Particles collected per sieve class can be weighed in the field using an accurate hanging 
scale that is best hung from a strong tree branch, or from a tripod.  The particles to be 
weighted are placed into a plastic shopping bag.  Such bags have negligible weight, but do 
not withstand much use, so a supply is necessary. 
 
Two scales with different ranges are useful if the sample contains large cobbles and small 
boulders.  Particle weight per size class in a unimodal sample of about 150 kg from a 
gravel-bed ranges between 1 and 20 kg (Table 2.2).  Thus, a scale with a 0.1 - 10 kg is 
suitable.  Within the 100 g gradation, readings can be visually interpolated to the nearest 
10 or 20 g.  If the weight per sieve class exceeds 10 kg, particles are weighed in two 
batches.  Large cobbles and small boulders are weighed individually.  If their individual 
weight exceeds 10 kg, a scale with a larger range is needed, or the particle weight is 
computed by measuring particle volume and multiplying by an assumed particle density. 
 

Determination of particle volume 
It may be useful to determine particle volume in the field.  If all particles are of known 
density, weight can be computed from particle volume.  If particles are of distinctly 
different densities, such as volcanic rocks that range from massive basalt to vesicular 
pumice that floats on water, it is useful to determine both particle volume and weight to 
compute particle density.  A tall, straight-walled, bucket with a known diameter and a 
holding capacity of about 3 to 5 gallons can be used for measuring particle volume.  The 
bucket is filled with water to about half its capacity and the water level is read before and 
after the cobble is completely submerged.  The bucket should stand on a level surface 
when reading the water level.  If a level surface is not available, the bucket can be 
shimmed until level, using a builder’s level to verify that the bucket is horizontal.  If that is 
not possible, the water level needs to be read at several locations and averaged.  
 
 
 
 

                                                 
4 Ton (English units) = 907.185 kg = 2000 lb; Metric ton = 1,000 kg = 2,204.63 lb. 
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Fig. 2.10:  A sieving and splitting device: (1) basal plate, (2) catch bins, (3) rockable, springy stand, (4) central 
frame, (5) deflecting board, (6) riffle splitter, (7) splitter board, (8) screen frame, (9) screen, (10) assembled 
device with general measurements (Reprinted from Ibbeken (1974), by permission of  the Society of 
Sedimentary Geology). 
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Table 2.2:  Example of the number of particles  
and weight per size class in a volumetric bed- 
material sample.  Particles finer than 8 mm were 
not counted. 
__________________________________________________ 
Size Class     No. of  Weight   % Finer 
   (mm)    Particles    (kg)   by Weight 
_________________________________________________________ 
 256        0     0   100 
 180        1   16     88 
 128        1     6     84 
   90        5   10     76 
   64      19   14     65 
   45      66   18     52 
   32    169   16     40 
   22.6    326   11     32 
   16    716     9     25 
   11.3  1519     7     20 
     8        6     16 
     5.6          5     13 
     4        4     10 
     2.8        4       7 
     2        2       5 
        <2             7       4 
        Σ =  135  
__________________________________________________ 

 
 
Water levels can be read more easily if a clear plastic tube is mounted along the outside of 
the bucket.  The tube is connected to the inside of the bucket through a hole at the top and 
the bottom of the bucket.  Thus, the water level in the bucket is equal to the water level in 
the tube outside of the bucket.  A ruler mounted next to clear plastic tubing and a drop of 
dye in the tubing makes the reading even easier.  Again, it is essential that the bucket is 
level. 
 
 
Particle counting 
Counting the number of particles per sieve class is an option if conditions are unfavorable 
for field weighing.  Since the laboratory sieve analysis of sand and pebble particle sizes is 
mass based, the number of particles counted per sieve class needs to be converted to mass as 
well.  A generalizable relationship can be obtained from the following study. 
 
A relation between mean weight of particles mmi (g) and the retaining sieve size Dret(sq)i (in 
mm) was established for six bedload- and bed-material samples from mountain gravel-bed 
rivers with mainly granitic or andesite petrology.  Particle shapes within a sample varied, 
ranging from compact to elongated.  A power function in the form of mmi = a Dret(sq)i 

b was 
fitted through the data and yielded a coefficient of determination r2 = 0.999 (Fig. 2.11).  
Particle density and shape, as well as measurement errors cause slight variability between 
samples, but for six sediment samples from various gravel-bed streams examined in a study  



by the authors, coefficients ranged between 0.0024 and 0.0036, while exponents ranged 
between 2.92 and 3.04.  The mid point of all coefficients and exponents obtained for mean 
particle weight per square-hole sieve size yielded the equation 
 
 

  mmi = 0.00307 (Dret(sq)i)
2.98

                    (2.14) 
 
 
where mmi is the mean weight of particles (g) and Dret(sq)i is the retaining sieve size (in mm) 
Eq. 2.14 is applicable to mountain gravel-bed streams where bed material comprises a 
variety of different particle shapes and where a particle density of approximately 2.65 
g/cm3 can be assumed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.11:  Measured mean particle weight for sieve sizes in 0.5 φ-increments for square-hole sieves (�) and 
the regression function (�).  Sediment from Squaw Creek, MT. 
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2.1.4  Computation of the particle-size distribution 

The statistical analysis of a bed-material sample starts with computing a particle-size 
frequency and percentage frequency-distribution from which a cumulative frequency 
distribution is computed in the third step.  Percentiles are determined from the cumulative 
distribution curve, and used by themselves, for example when comparing D50 sizes, or to 
derive particle-distribution parameters such as mean, sorting (i.e., standard deviation) and 
skewness that characterize the distribution as a whole.  Particle-distribution parameters 
can also be computed directly from a frequency distribution (moment methods). 
 
 
2.1.4.1  Particle-size frequency and cumulative frequency distribution 

The result of a laboratory or field particle size-analysis is a record of particle weight (or 
particle numbers) retained on each sieve size (see data sheet in Section 2.1.3.9).  The 
weight per size class is then entered into a spreadsheet table (see column 1 and 2 in Table 
2.3) for all subsequent computations.  The first step of analysis is to compute the 
percentage weight or number frequency for each size class.  The weight or number of 
particles in each size class is divided by the total sample weight or particle number and 
multiplied by 100 (column 3).  The result can be plotted as a percentage frequency 
distribution (histogram) using a bar graph (Fig. 2.12).  Next, the percentage of particle 
weight or numbers retained on each sieve is converted into the percentage of particle 
weight or number passing the next larger sieve size (column 4). 
 
For example, a record showing 9.1% of particle weight retained on sieve size 32 mm 
becomes 9.1% of particle weight passing the sieve size of 45 mm.  The percentage particle 
weight or particle number per size class is then summed starting with the finest size class.  
This leads to a cumulative weight distribution (column 5) in terms of percent finer than or 
percent finer the indicated size class.  The cumulative distribution curve could 
theoretically also be computed in terms of percent coarser or percent retained, but the 
percent finer or percent passing approach is the commonly used approach for particle-size 
distributions. 
 
The cumulative particle size-distribution curve (Table 2.3), also called the sieve curve, or 
the gradation curve, is plotted with the particle-size classes from column 1 or 2 as the 
abscissa (x-axis, horizontal), and the percent finer by weight (column 5) on the ordinate 
(y-axis, vertical) (Fig. 2.12).  If the analysis is based on frequency-by-number, such as in a 
pebble-count, the percent finer by number is plotted on the ordinate.  If particle sizes are 
expressed in φ-units, the x-axis is kept linear.  If particle sizes are expressed in mm, the x-
axis should be expressed in a logarithmic scale.  Alternatively, the mm-sizes of particle 
size-classes can be plotted in equally spaced increments along the x-axis (as in bar or line 
graphs).  Segments of the cumulative distribution curve are connected by straight lines. 
 
Data plotting is often the first step of analysis, especially when dealing with a sample from 
a new stream site.  Visualization of the frequency histogram and the cumulative frequency  
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Table 2.3:  Example of a particle-size analysis for a 103 kg sample of subsurface sediment taken at mid-
stream in a mountain gravel-bed stream (Squaw Creek, MT). 
_____________________________________________________________________________________________________________

___ 

 (1a)     (1b)    (2)    (3)     (4)     (5)         (6)         (7) 

  x-axis:         y1-axis:          y2-axis:            
      Size of        Weight retained   Weight   Cumulative           Percentiles    
       sieve         on sieve          passing sieve weight           
  (mm)  (φ)    (kg)   (%)     (% finer)   (cum. % finer)     (φp)    (φ)    (Dp)         (mm) 
________________________________________________________________________________________________________________________________ 

  <2  <-1    6.7    6.5        -       -   
                     φ5  -0.89  D5      1.8 
    2  -1.0    2.3    2.3      6.5     6.5   
       
    2.8  -1.5     2.5    2.4      2.3     8.8   
       
    4  -2     2.6    2.5      2.4   11.2   
                       
    5.6  -2.5     3.7    3.6      2.5   13.7   
                     φ16  -2.82  D16     7.1 
    8  -3.0    5.3    5.1      3.6   17.3   
                       
  11.3  -3.5      7.8    7.6      5.1   22.4   
                     φ25  -3.67  D25   12.7 
  16  -4.0    9.6    9.4      7.6   30.0   
       
  22.6  -4.5  10.9  10.6      9.4   39.4   
       
  32  -5.0    9.3    9.1    10.6   50.0    φ50  -5.00  D50   32.0 
       
  45  -5.5  11.4  11.1      9.1   59.1    
                       
  64  -6.0  12.2  10.9    11.1   70.1    
                     φ75  -6.22  D75   74.7 
  90.5  -6.5    7.4    7.2    10.9   81.1    
                     φ84  -6.70  D84 104.3 
128  -7.0    5.4    5.3      7.2   88.2   
                       
181  -7.5    6.6    6.5      5.3   93.5     
                     φ95  -7.61  D95 195.8 
256  -8.0         0.0        0.0       6.5      100.0 
 total:       102.7    100.0  
_____________________________________________________________________________________________________________

___ 

 
 
distribution provides a first impression of the data and is helpful for interpretation.  If the 
graph is used mainly for demonstrative or visualization purposes, the y-axis is usually 
plotted in a linear scale.  If percentile values are to be read off the graph, plotting the y-
axis on probability paper increases the accuracy with which the particle size of small and 
large percentiles can be read. 
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Fig. 2.12:  Frequency distribution (histogram with hatched bars) and cumulative frequency distribution curve 
(thick line) with indicated percentile values for data listed in Table 2.3. 
 
 
2.1.4.2  Percentiles and their computation 

Two sediment mixtures of different particle sizes are usually distinguished by comparing 
several of the percentile values of the two distributions or the parameters derived from the 
percentiles.  A percentile is a sediment size indicated by the cumulative distribution curve 
for a particular “percent finer” value.  For example, the sediment size for which 80% of 
the sediment sample is finer is the “80th percentile”.  The notation is D80, where D 
represents particle size (in mm) and the subscript “80” denotes 80%.  The D50 is the 
median point of the distribution that divides the distribution in two equal parts.  The 
particle size for which 25% of the distribution is finer is the 25th percentile, or the D25.  
The D25 and D75 are also called quartiles.  Theoretically, any percentile value can be used 
for comparison, but customarily, the particle sizes of the D50, (i.e., the median), the D25 
and D75 (quartiles), the D16 and D84, and the D5 and D95 are used.  In a normal distribution, 
one standard deviation from the median encompasses all data between the D16 and the D84 
and are the points on a distribution curve at which the change of curvature occurs ).  The 
D5 and D95 characterize the distribution tails.  Data between the D5 and the D95 comprise 
almost two standard deviations on either side of the D50 or median.  Those 7 percentiles 
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may be compared as individual values, or be used to compute distribution parameters such 
as mean, sorting (i.e., standard deviation), and skewness (Section 2.1.5). 
 
Reading percentiles off a graph plotted on probability paper 
Before spreadsheet programs became commonly available, percentiles were often 
graphically determined from the cumulative particle-size distribution curve plotted on 
normal probability paper.  The y-axis of this graph paper extends from a small value > 0 at 
the lower end to a value just below 100 at the high end.  Probability partitioning spreads 
the y-axis range at the low and the high end, while compressing the central range around 
50.  The x-axis is linear for particle sizes in φ-units, and lognormal for particle sizes in 
mm-units.  Probability graph paper in linear and logarithmic partitioning is provided in the 
appendix.  The graph of a cumulative particle frequency-distribution approaches a straight 
line as particle size-distributions approach normality, or lognormality, respectively.  A 
probability plot enables the user to read percentile values in φ-units off the graph, but 
plotting by hand becomes tedious when dealing with large data sets.   
 
 
Mathematical linear interpolation  
An alternative to plotting on probability paper is to compute percentiles mathematically by 
linear interpolation between two known data pairs of sieve size in φ-units and their 
percentile values in a cumulative distribution.  Particle size-classes in mm require a 
logarithmic interpolation, which means that the mm size classes need to be log-
transformed before the interpolation (log D).  A particle size φx of a desired percentile x in 
φ-units can be computed from:  
 
 

  φx = (x2 - x1) ·  



yx - y1

 y2 - y1
 + x1                   (2.15) 

 
 
y2 and y1 are the two values of the cumulative percent frequency just below and above the 
desired cumulative frequency yx (see shaded values in Table 2.3, column 5), and x2 and x1 
are the particle sizes in φ-units associated with the cumulative frequencies y2 and y1 (see 
shaded values in column 1b in Table 2.3).  The example below illustrates how the particle 
size of the percentile φ16 is computed for the particle-size distribution in Table 2.3 using 
Eq. 2.15. 
 
 

 φ16 = (-3 - -2.5) ·  



16 - 13.7

 17.3 - 13.7
 + -2.5 = -2.82φ   (= 7.1 mm)       (2.15a) 

 
 
Likewise, the D16 is computed from:  
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 D16 = 10^ 



(log (8) - log (5.67)) ·  



16 - 13.7

 17.3 - 13.7
 + log (5.67)  = 7.1 mm   (2.15b) 

 
 
Note that the error incurred if the computation is performed with particle sizes in mm 
without log transformation is relatively small and can maximally reach 1.7 % compared to 
the result that would have been obtained if log transformed data were used.  
 
2.1.4.3  Testing for various distribution types 

Gravel deposits are typically not made up of one particle size only, but comprise a variety 
of particle sizes that may take up various portions of the sediment volume.  One possibility 
is that particle sizes of each size class (in terms of φ-units) may comprise approximately 
even portions of the total sediment volume (uniform distribution).  More typically, 
medium particle sizes comprise most of the sediment volume with little sediment in the 
finest and coarsest size classes (normal or log-normal distributions).  
 
Fluvially transported sediment from gravel-bed rivers often tends to roughly approximate 
lognormal distributions if particle sizes are expressed in mm, or approximate normal 
(Gaussian) distributions if particles sizes are expressed in φ-units which are a logarithmic 
transformation of particle sizes in mm.  Assuming an underlying normal distribution for 
approximately normal particle-size distributions is convenient because normality is the 
prerequisite for several statistical applications.  Normality is required for (1) binning 
particle sizes in φ-units, for (2) confidence in the results of standard descriptive statistical 
procedures, as well as for (3) confidence in the results of common sample-size equations. 
 
In a strict statistical sense, particle-size distributions in φ-units are often not normally 
distributed (Church and Kellerhals 1978; Church et al. 1987; Rice and Church 1996b). 
The tolerable degree of departure from normality varies depending on the planned 
statistical analysis.  Small departures from normality usually do not pose problems when 
applying statistics that assume normality, but large departures do.  If normality is wrongly 
assumed, results of standard descriptive statistical parameters (e.g., the sample mean, 
sorting, skewness and kurtosis) may not be accurate and may not serve well to 
discriminate between samples.  
  
Small departures from normality, however, can greatly affect the sample size required for 
sampling specified percentiles with a preset precision.  For example, in distributions that 
have a tail of fine sediment, a lower sample size than computed from standard sample-size 
equations may suffice to predict the D95 of the distribution with a preset precision.  
Contrarily, sample size has to be considerable higher than computed to precisely predict 
the D5 (Section 5.2.3.4).  Church et al. (1987) and Rice and Church (1996b) therefore 
recommend that no particular distribution should be assumed for sediment from gravel-
bed rivers, not even for large samples for which normality is more intuitively assumed 
than for small samples.  Equations have been developed for estimating sample size when no  
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particular underlying distribution type is assumed (Section 5.4.1.1).  Sample mass 
predicted from these equations is similar to the sample size predicted by equations based 
on normal distributions for accurate sampling of high percentiles (Section 5.4.3).  But 
equations based on normal distributions predict that a much lower sample mass would 
suffice to accurately predict central percentiles.    
 
If a user wants to acknowledge that a particle-size distribution is not strictly normal (in 
terms of φ-units), non-parametric statistics could be applied.  Non-parametric statistics are 
necessary if the data severely deviate from normality.  However, non-parametric tests are 
only beginning to enter mainstream statistical analyses in geomorphology, and results 
from a relatively unknown test might not be very convincing to a reader.  The reader is 
referred to the statistical literature for non-parametric statistics, none of which are 
described in this document.   
 
A particle-size distribution can be tested for normality and lognormality in several ways: 
 

• visual evaluation of the plotted graph, 
• regression analysis between the cumulative frequency and the respective particle-size 

classes, 
• comparison of frequency distribution with ideal Gaussian or Rosin distributions,  
• probability plot of residuals with regression analysis, and 
• standard tests for normality and lognormality.  
 
 
Visual evaluation of the plotted graph 
The likelihood of whether a given distribution is normal or lognormal can be estimated by 
plotting the cumulative size distribution of particle sizes in φ units on normal probability 
paper5.  Lognormal probability paper is used for plotting if particle sizes are in mm5.  The 
straightness of the graph is assessed visually.  Ideal normal, or lognormal distributions, 
respectively, plot as straight lines.  
 
Some computer based statistical packages and some newer spreadsheet programs provide 
plots on a probability-scaled y-axis for a visual assessment of the degree of normality or 
lognormality.  If such a program is not available, a spreadsheet program can be used to 
approximate a probability scale.  The first step is to compute a cumulative particle-size 
distribution in which the frequency is expressed in decimals, i.e., as 0.4 instead of 40%.  
The unsieved remaining particles, i.e., the contents of the “pan” should be excluded from 
this analysis.   
 
The cumulative frequency distribution can be interpreted as the probability with which to 
expect a particular particle-size class.  A standard normal distribution (or standard normal 
density function) has a given probability pi (y-axis) for each value zpi (x-axis of a bell-
shaped normal distribution).  The values for p and zp are listed in tables of any general 
purpose statistics book.  For example, probabilities of 0.5, 0.75, 0.975, and 0.99 are 

                                                 
5 Provided in the appendix of this document. 
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obtained by zp values of 0, 0.675, 1.96, and 2.33.  Since the normal distribution is 
symmetrical, probabilities of 1 - 0.99 = 0.01, and 1 - 0.975 = 0.025 are obtained by zp 
values of -2.33, and -1.96, respectively.  The relationship between zp and p can also be 
approximated from various equations.  One of the possibilities provided by Stedinger et al. 
(1993) is the equation 
 
 

  zp = 
p0.135 - (1 - p)0.135

0.1975                        (2.16) 

 
 
Using this equation, the zp value associated with each probability, i.e., each decimal 
fraction of the cumulative particle size-distribution can be computed in a spreadsheet.  In a 
plot of zp values versus particle size, the resulting graph is a straight line for normally 
distributed samples (Fig. 2.13).  Deviation from a straight line can be visually assessed by 
comparison with a best-fit handfitted straight line.  For particle-size distributions, a 
deviation from a straight line is usually most pronounced in the distribution tails, a  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.13:  Zp-values versus particle size for an approximate normal distribution (z) (particle-size distribution 
shown on Table 2.3 and in Fig. 2.12) and a non-normal block distribution (▼).   
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phenomenon easily checked by the visual assessment.  If the deviation of the distribution 
tails is pronounced, truncating the data set to the range of φ16 to φ84, for example, might 
straighten the graph. 
 
Caution should be used when interpreting the results of this method.  The graph with the 
black circles in Fig. 2.13 is the particle size-distribution shown in Table 2.3 and Fig. 2.12.  
The plotted data points seem to resemble a normal distribution well enough to justify the 
assumption of a normal distribution, and hence to compute distribution parameters or the 
sampling accuracy for a given sample size.  However, non-normal distributions do not 
necessarily show excessive deviation from a straight line in such plots.  Even a definitely 
non-normally distributed data set that comprises alternate frequencies of 12, 2, 12, 2, etc. 
for consecutive particle-size classes yields an seemingly reasonable fit to a straight line 
(graph marked by black triangles in Fig. 2.13).  This lack of a standard regarding the 
tolerable degree of deviation from a straight line is a disadvantage of the visual method. 
 
 
Evaluation and comparison of regression coefficients 
A regression analysis can be performed that regresses ln(y), with y = cumulative 
frequency, versus x, the particle size in φ-units.  The coefficient of determination r2 is 
computed for the best fit exponential regression y = a· eb· x.  The closer r2 approaches the 
value of 1, the closer the fit with a normal distribution.  This approach is useful when 
comparing the goodness-of-fit to a normal distribution between two samples with a 
similar range of particle sizes.  However, there are no standard values that r2 needs to 
obtain in order for the distribution to qualify as normal.  This is because the value for r2 is 
highly dependent on the particle-size range of the sample. 
 
 
Comparison with best fit normal and lognormal distributions 
Another test for normality of particle-size distributions in φ-units is to compute the 
normal distribution that most closely resembles the measured particle-size distribution 
and compare the observed and computed distribution.  The difference between samples is 
expressed as a percentage value that then is used to compare the goodness-of-fit between 
samples.  The standard normal distribution in its notation for grouped (i.e., “binned”) data 
is  
 
 

  Gφi = 
1

σ ·  2 π
 ·  exp - 



(φi - µ)2

2 σ2                 (2.17) 

 
 
where Gφi is the frequency of an equivalent Gaussian distribution for the ith size class in 
φ-units, φi is the particle size of the ith class in φ-units (Schleyer 1987).  µ usually denotes 
the distribution mean, but Schleyer (1987) suggests that the distribution mode (i.e., the 
size class with the largest frequency) is a more appropriate parameter when analyzing 
coarse sediment samples in which the finest and the coarsest fractions may not be 
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representative of the population.  Unrepresentative distribution tails affect the distribution 
mean, but not the mode.  If particle frequency-distributions are too irregular in their 
central parts to benefit from using the distribution mode, the distribution median should 
be used instead.  Various ways of computing a graphic arithmetic mean for particle sizes 
in φ-units are explained in Section 2.1.5.3 (Eqs. 2.31 - 2.34).  σ is the distribution 
standard deviation.  In order to minimize the effects of possible truncation on σ, Schleyer 
(1987) suggests substituting σ by a sorting coefficient ss which is computed from  
 
 
  sS = 0.75 (φ75 - φ25)                       (2.18) 
 
 
and focuses on the more central parts of the distribution6.  The constant in Eq. 2.19 could 
be set to 0.5 if normality of the data was not assumed.  However, using the constant of 
0.75 renders the numerical values of sS similar to the Inman sorting coefficient sI (Eq. 
2.46, Section 2.1.5.4) 
 
If particle-size data are in mm units, correspondence with a standard lognormal 
distribution should be tested instead of a normal distribution.  The standard lognormal 
distribution is given by (Gilbert 1987) 
 
 

  LDi = 
1

σ ·  2 π
 ·  exp - 



(ln Di - Dm)2

2 σ2                (2.19) 

 
 
where LDi is the frequency of an equivalent lognormal distribution of the ith size class in 
mm.  Dm is the arithmetic mean of the log-transformed data and could be computed as  
 
 

   Dm = 
1

mtot
  ∑

i=1

n

(Dci ·  mi)                     (2.20) 

 
 
where Dci is the center of class in φ-units of ith size class, mi is the weight of particles 
retained for the ith size class, and mtot is the total weight of particles per sample.  Eq. 2.19 
can also be applied to number frequencies.  In this case, mi in Eq. 2.20 becomes ni, the 
number of particles per size class, and mtot becomes n, the total number of particles per 
sample.  
 
Other possibilities to compute a distribution mean are shown in Section 2.1.5.3.  σ is the 
distribution standard deviation and computed from  

                                                 
6 σ denotes the standard deviation of a population, s denotes the sample standard deviation.  Sorting coefficients denoted 
by s are an abbreviated computation of standard deviation based on a few percentiles of the distribution. 
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  σ  = 
1

n-1 ∑
i =1

k

( ln Dci - Dm)2                  

 
 
In symmetrical distributions, σ could be approximated by  
 
 

  σ = 100^ 



log D84 – log D16

2                   (2.21a) 

 
 
which is analogous to the Inman (1952) sorting coefficient sI (Eq. 2.46).  The goodness-of-
fit to a Gaussian distribution is computed from the absolute differences between the 
cumulative percent frequency of the ith size class (Σm%i) of a bed-material sample and the 
cumulative percent frequency of the ideal Gaussian distribution (ΣG%i).  These differences 
are summed over all size classes k and divided by k-1 (Schleyer 1987). 
 
 

  % Gauss fit = 100% -  
1

k-1 · ∑
i=1

k

 (Σm%i - ΣG%i)              (2.22) 

 
 
Similarly, the goodness-of-fit to lognormal distributions can be computed from: 
 
 

  % lognormal fit = 100% -  
1

k-1 · ∑
i=1

k

  (Σm%i - ΣL%i)             (2.23) 

 
 
The percent goodness-of-fit is affected by whether the percent frequency is allotted to the 
retaining sieve size Dret or the center of class particle size Dc, and by how the data are 
summed.  If the percent frequency is allotted to Dc and summed such that a 100% 
cumulative frequency is reached at the Dc of the largest size class, the resulting cumulative 
frequency is in terms of “as large as or finer than” (≤) the center of class of the largest size 
class.  If the percent frequency is allotted to the retaining sieve size Dret, and summed so 
that 100% cumulative frequency is reached at the size class above the one with the largest 
particle, the cumulative frequency is in terms of “smaller than” (<), or percent finer than 
the indicated sieve size.  Both procedures were applied to the same particle-size 
distribution (Table 2.3 and Fig. 2.12) to show the resulting difference (Table 2.4 and Fig. 
2.14).  A goodness-of-fit of 94.3% was obtained when using the center of class Dc, 
whereas a goodness-of-fit of 97.2% was obtained when using Dret.  Thus, computational 
consistency is important when comparing the goodness-of-fit between samples.  The  

(2.21) 
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Table 2.4:  Computation of goodness-of-fit for particle-size distribution in Table 2.3 and Fig. 2.12.  φ25 = 
3.99; φ75 = 6.3; sS = 1.73 (Eq. 2.18); µ = 5.75 φ.  Resulting goodness-of-fit (Eq. 2.22) = 97.2%. 
_______________________________________________________________________________________________________________________________________________ 

              Original distribution          Equivalent Gaussian distribution     
No. of                     Cum.              Cum.      Absolute  
size      Size class     Mass    Freq.       freq.      Eq. 2.17  Freq.        freq.     difference 

class     φi       Di   mi            m%i   Σm%I   Gφi     G%i   ΣG%i     Σm%i-ΣG%i 
     (φ)       (mm)     (kg)       (%)   (%)       (-)    (%)         (%)  
 (1)    (2)   (3)  (4)   (5)     (6)     (6)     (7)      (8)      (9)  
_______________________________________________________________________________________________________________________________     
  1     1.0     2       2.3       2.4     0.0   0.005     0.3      0.3      0.3 
  2     1.5    2.8      2.5       2.6     2.4   0.011     0.6      0.9      1.5 
  3     2.0    4       2.6       2.7     5.0   0.022     1.2      2.1      2.9 
  4     2.5    5.6      3.7       3.8     7.7   0.039     2.1       4.2      3.5 
  5     3.0    8       5.3       5.5   11.5   0.065      3.5      7.7      3.8 
  6     3.5  11.3      7.8       8.1   17.0   0.099     5.4    13.1      3.9 
  7     4.0  16       9.6     10.0   25.1   0.138     7.5    20.6      4.6 
  8     4.5  22.6    10.9     11.4   35.2   0.178     9.6    30.2      5.0 
  9     5.0  32       9.3       9.7   46.5   0.210   11.4    41.5      5.0 
10     5.5  45.3    11.4     11.8   56.2   0.228   12.4    53.9      2.4 
11     6.0  64        11.2     11.7   68.1   0.228   12.4    66.2      1.9 
12     6.5      90.5      7.4       7.7   79.8   0.210   11.4    77.6      2.2 
13     7.0     128       5.4       5.7   87.4   0.178     9.6    87.2      0.3 
14     7.5     181       6.6       6.9   93.1   0.138     7.5    94.7      1.6 
15     8.0     256          0.0          0.0     100.0   0.099         5.4      100.0      0.0 
 totals:        96.0   100.0       1.85     100.0       38.9 
________________________________________________________________________________________________________________________________________________ 
 
 
computational difference becomes smaller as the number of particle-size classes 
increases, which could be achieved if the sample size is large enough to facilitate sieving 
in size classes of less than 0.5 φ.  
 
 
Comparison with best-fit Rosin distribution 
The Rosin exponential distribution was developed for coal milling purposes (Rosin and 
Rammler 1933, cited after Ibbeken 1983) and applies well to crushed rock.  Bed-material 
frequency distributions that follow Rosin’s distribution are skewed towards fine particles 
and the mode corresponds to the 36.78th percentile (Fig. 2.15) which is approximately the 
D63 if the cumulative frequency is computed as the percent finer or percent passing.  The 
Rosin distribution is typical of jointed rock and unweathered slope sediment, and hence to 
sediment supplied to the stream from hillslopes (Ibbeken 1983).  Thus, testing for a Rosin 
distribution might be worthwhile, if the bed material has a tail of fine sediment (skewed 
towards fines) and sediment was supplied from unstable hillslopes.  
 
For particle-size distribution where the center of class is a distinct value representing the 
total class, the ideal Rosin distribution corresponding to the measured distribution is 
computed from (Schleyer 1987) 
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  RDi = exp - 



Dpass(i)

Dmode

sR

  -  exp - 



Dret(i)

Dmode

sR

                (2.24) 

 
 
where RDi is the frequency of an equivalent Rosin distribution for the ith size class, Dpass(i)  
is the passing sieve size for the ith size class in mm, and Dret(i) is the retaining sieve size 
for 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.14:  Goodness-of-fit computations based on cumulative frequency in terms of ≤ Dc, and in terms of < 
than Dret  (% finer or % passing). 
 
 
the ith size class in mm.  Dmode is the mode of the distribution, and sR is the sorting 
coefficient which for a Rosin distribution is computed from 
 
 

sR = 
2.15

φ68.4 - φ18.4
                       (2.25) 
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Fig. 2.15:  (A) Histograms of ideal Rosin distributions, increasingly poorly sorted from 1 to 5.  Cumulative 
frequency curves of these distributions are plotted on Rosin-coordinate probability paper (B), and on 
lognormal probability paper (C) (Reprinted from Ibbeken (1983), by permission of the Society of Sedimentary 
Geologists). 
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The goodness-of-fit to a Rosin distribution can be computed from (Schleyer 1987): 
 
 

  % Rosin fit = 100% - 
1

k-1 ·  ∑
i =1

k -1

  (Σm%i - ΣR%i)           

 
where Σm%i is the cumulative percentage weight frequency of ith sieve class, and ΣR%i is 
the cumulative percentage frequency of the computed Rosin distribution for the ith sieve 
class, and k is the number of sieve classes. 
 
Computed this way, the goodness-of-fit to Gaussian and Rosin distributions is independent 
of the range of the particle sizes included in the analysis and the degree of truncation of 
the size distribution.  Hence, bed-material sediment can be partitioned into a gravel and a 
sand fraction, and goodness-of-fit can be computed for each part individually, a procedure 
useful for the analysis of bimodal sediment.  Goodness-of-fit to Gaussian, or Rosin 
distributions is also independent of the degree of skewness (Section 2.1.5.5) of the bed-
material distribution in question.  A Gaussian size-distribution that is skewed towards fine 
particles does not automatically receive a good fit to a Rosin distribution, nor are good 
Rosin fits reserved for distributions skewed towards fines.  
 
An analysis of the goodness-of-fit to a Gaussian or Rosin distribution can be useful in two 
ways: First, summary statistics used to describe particle-size distributions may not be 
meaningful or appropriate, if the fit to a Gaussian distribution is poor.  Second, the 
goodness-of-fit to a Gaussian or a Rosin particle-size distribution can in and of itself serve 
as a means to analyze fluvial transport distance (Krumbein and Tisdel 1940; Kittleman 
1964, both cited in Ibbeken 1983, and Schleyer 1987).  A good fit to a normal distribution 
indicates that the particle-size distribution was derived due to transport controlled factors, 
whereas a good fit to a Rosin distribution indicates that the particle-size distribution is 
controlled by supply from the rock source. 
 
Probability plot of residuals and regression analysis 
Another procedure to quantitatively evaluate normality is suggested by Neter et al. (1990).  
The procedure prepares a normal probability plot of residuals and conducts a regression 
analysis.  A residual ei in a set of x- and y-data is the difference between an observed value 
yi and the value Yi predicted from a regression analysis.  For the analysis of normality, the 
ranked residuals ei are plotted against the values Ei which the residuals are expected to 
have under normality.  Near linearity of this function indicates that the distribution is near-
normal.  The degree of linearity, and thus the degree of normality, can be evaluated by the 
coefficient of correlation r.  This value can be compared with table values of r for 
specified sample sizes and confidence levels to determine whether near-normality can be 
assumed.  
 
The first step in assessing normality for particle-size frequency distributions is to compute 
the residuals ei which are the positive or negative difference between the observed 

(2.26) 
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cumulative percent frequency for a particle size-class Di and the cumulative percent 
frequency of an equivalent Gaussian distribution (Eq. 2.17).  The next step is to rank the 
residuals in ascending order from ei = 1 to ei = k, where k is the number of size classes.  The 
expected value Ei of the ranked residuals under normality is computed from 
 
 

  Ei = 

∑
i =1

k

ei
2

k - 2    ·   





z 



i - 0.375

k + 0.25               

 
 
z (A) is the percentile of a standard normal distribution.  The table value for z (A) of e.g., 
0.841 is 1.00.  If A is smaller than 0.5, z is looked up under A-1 and yields a negative 
value.  For example, if A = 0.159, z (0.159 - 1) = z (-0.841) = -1.00.    

Table 2.5 shows the computation of expected values for the residuals Ei using the 
example particle size-distribution listed in Table 2.3 and shown in Fig. 2.13.  The 
residuals ei of the observed cumulative percent frequency (column 1 in Table 2.5 and 
column 6 in Table 2.4) and the cumulative percent frequency of the equivalent Gaussian 
distribution (column 2 in Table 2.5 and column 9 in Table 2.4) are computed in column 3 
of Table 2.5.  The residuals ei are then ranked in ascending order (column 5 of Table 2.5).  
The summed term in Eq. 2.27 equals 141.02 (sum of column 6) for the example particle 
size-distribution, and the square-root term is (141.02/(15-2))0.5 = (10.85)0.5 = 3.294. 
 
For the smallest residual ei with i = 1, Ei is computed as: 

10.85 ·  z 



1 - 0.375

15 + 0.25  = 3.294 ·  z (0.041) = 3.294 ·  z (0.959) = 3.294 ·  -1.739 = -5.728   

 
For the second smallest residual ei with i = 2, Ei is computed as: 

10.85 ·  z 



2 - 0.375

15 + 0.25  = 3.294 ·  z (0.107) = 3.294 ·  z (0.893) = 3.294 ·  -1.243 = -4.094   

 
The expected values Ei are symmetrical, so that largest and the second largest values of Ei 
are 5.728 and 4.094, respectively.  Table 2.5 lists all values of Ei in column 10.   
 
For a visual assessment of normality, the ranked residuals ei are plotted against their 
expected values Ei (Fig. 2.16).  The closer the data points fit to a straight line, the closer is 
the degree of normality.  In addition to a visual assessment, the closeness to a straight 
line, and thus the degree of normality, can be mathematically quantified.  To do so, the 
ranked residuals ei are compared to the values expected under normality Ei by computing 
a linear regression function Ei = a ·  ei + b.  The values Ei predicted from the regression 
function are listed in column 11 of Table 2.5 and plotted in Fig. 2.16.  The coefficient of 
correlation r is used to indicate the departure from normality.  At r = 1, the distribution is 
normal. 

(2.27) 
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Table 2.5:  Computation of normality for residuals     
________________________________________________________________________________________________________________________________________________ 

  Orig.    Gauss.   residual     
  distr.      distr.      ei              ranked          (i-0.375)              expect.     pred. 
  Σ%       Σ% (1) - (2)   rank      ei        ei

2          (k+0.25)    (9) - 1           z     Ei      Εi 
    (1)         (2)         (3)      (4)        (5)      (6)              (7)            (8)         (9)       (10)     (11) 
_______________________________________________________________________________________________________________________________ 

    0.0    0.3   -0.29    1      -1.56      2.42       0.041      -0.959      -1.739      -5.73    -1.31 
    2.4    0.9    1.54    2      -0.29      0.08       0.107      -0.893      -1.243      -4.09    -0.27 
    5.0    2.1    2.94    3       0.00      0.00       0.172      -0.828      -0.948      -3.12     0.35 
    7.7    4.2    3.50    4       0.25      0.06       0.238      -0.762      -0.713      -2.35     0.85 
  11.5    7.7    3.80    5       1.54      2.38       0.303      -0.697      -0.516      -1.70     1.26 
  17.0      13.1       3.95    6       1.87      3.48       0.369      -0.631      -0.335      -1.10     1.64 
  25.1      20.6    4.58    7       2.18      4.77       0.434      -0.566      -0.168      -0.55     1.99 
  35.2      30.2    5.02    8       2.37      5.63       0.500               0      0      2.34 
  46.5      41.5    5.01    9       2.94      8.64       0.566               0.168       0.55     2.70 
  56.2      53.9    2.37       10       3.50       12.28       0.631               0.335       1.10     3.05 
  68.1      66.2    1.87       11       3.80       14.41       0.697               0.516       1.70     3.43 
  79.8      77.6    2.18       12       3.95       15.57       0.762               0.713       2.35     3.84 
  87.4      87.2    0.25       13       4.58       21.01       0.828               0.948       3.12     4.34 
  93.1      94.7   -1.56       14       5.01       25.12       0.893               1.243       4.09     4.96 
100.0    100.0       0.00       15       5.02       25.17       0.959               1.739       5.73     6.00 
               35.17            141.02          
________________________________________________________________________________________________________________________________________________ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.16:  Normal probability plot of ranked residuals versus their expected values under normality.  The 
example particle size-distribution listed in Table 2.3 and shown in Fig. 2.12 is used for the computation. 
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As r becomes < than 1, the distribution departs from normality.  Looney and Gulledge 
(1985) provide table values of r that need to be exceeded to assume near-normality for 
different levels of significance (Table 2.6) and number of data points used for the 
regression (i.e., the number of size classes k).  An r-value larger than 0.989 for k = 15 
indicates that the null hypothesis of normality is not rejected in 90 out of 100 cases, and 
not rejected in 10 out of 100 cases if r is larger than 0.951.  Neter et al. (1990) suggest 
that departure from normality is not substantial if r exceeds the critical values for α = 
0.05.  For k = 15 this means that even if normality were true, an r as small as 0.939 would 
only occur in 5% of all cases.  The example particle size-distribution from Table 2.3 and 
Fig. 2.12 obtained an r = 0.982 in the probability plot (Fig. 2.16).  This means that in 
about 70 out of 100 cases, the null hypothesis of normality is not rejected and near-
normality may be correctly assumed for that particle size-distribution.   
 
 
Table 2.6:  Critical values for a coefficient of correlation between ordered residuals ei and expected  
residual values under normality Ei when the distribution of error terms is normal (excerpt of table from: 
Looney and Gulledge 1985).   
_______________________________________________________________________________________________________________________________________________ 

Number of            Number of          
size classes         Level of significance  α             size classes           Level of significance  α             
       k       0.90      0.75     0.50       0.10   0.05        k     0.90     0.75      0.50      0.10       0.05        
_______________________________________________________________________________________________________________________________

  5     0.988    0.977    0.960    0.903    0.880     
  6     0.986    0.977    0.962    0.910    0.888     
  7     0.986    0.978    0.964    0.918    0.898     
  8     0.986    0.978    0.966    0.924    0.906     
  9     0.986    0.980    0.968    0.930    0.912     
10     0.987    0.980    0.970    0.934    0.918     
11     0.987    0.981    0.972    0.938    0.923     
12     0.988    0.982    0.973    0.942    0.928     
13     0.988    0.983    0.974    0.945    0.932     
14     0.989    0.984    0.976    0.948    0.935     
15     0.989    0.984    0.977    0.951    0.939     

  16    0.989    0.985    0.978    0.953    0.941     
  17    0.990    0.986    0.979    0.954    0.944     
  18    0.990    0.986    0.979    0.957    0.946     
  19    0.990    0.987    0.980    0.958    0.949     
  20    0.991    0.987    0.981    0.960    0.951     
  25    0.992    0.989    0.984    0.966    0.959     
  30    0.993    0.990    0.986    0.971    0.964     
  40    0.994    0.992    0.989    0.977    0.972     
  50    0.995    0.993    0.990    0.981    0.977     
  75    0.996    0.995    0.993    0.987    0.984     
100    0.997    0.996    0.993    0.989    0.987     

________________________________________________________________________________________________________________________________________________ 

 
 
D’Agostino test for normality and lognormality 
One of the standard tests for normality and lognormality that is applicable to sample sizes 
between 50 and 1,000 is the D’Agostino test.  The D’Agostino test compares the value of 
the test statistic Y with a table value to accept or reject the null hypothesis that a 
distribution is normal.  If data used in this test are log-transformed, the Y statistic can 
likewise be used to test for lognormality.  Gilbert (1987) prefers this test over the 
Kolmogorov-Smirnov test because the latter is invalid if the parameters of the 
hypothesized distribution are estimated from the data set itself. 
 
The D’Agostino test ranks the data from smallest to largest.  Hence, the test can be used 
for pebble-count data.  In the ranked list, the smallest particle size is listed as many times 
as the number of particles found in that size class, then the next larger size class is listed 
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as many times as the number of particles found in that size class, and so on.  The D 
statistic is computed from 
 
 

  D = 

 ∑
i =1

n

( )i - 0.5(n + 1)  φi 

n2 ·  s           

 
 
and should be determined to the 5th decimal.  s is the standard deviation and is computed 
from: 
 
 

  s = 
1

n-1 ∑
i =1

n

(φ i - φ m)2                   (2.29) 

 
 
where φ m is the distribution mean, and i is the ranked order of the data, starting with 1 for 
the smallest datum, and reaching n for the largest datum.  The test statistic Y is computed 
from: 
 
 

  Y = 
D - 0.28209479

0.02998598 / n
                         (2.30) 

 
 
The null hypothesis of a normal distribution is rejected at the significance level of α = 
0.05 if the test statistic Y is less than Yα/2, or greater than Y1-α/2.  The quantiles for α/2 = 
0.025, and 1-α/2 = 0.975 are listed for various sample sizes in Table 2.7.  The easiest way 
to obtain quantiles for sample sizes not listed is by interpolation between listed sample 
sizes.  If higher accuracy is required, the quantiles for unlisted n can be predicted from a 
regression analysis of the quantiles for α/2 and 1-α/2 versus n. 
 
 
Table 2.7:  Quantiles of D’Agostino’s test for normality for α/2 = 0.025, and 1-α/2 = 0.975 for 100 < n 
<500 (abbreviated from Table A8 in Gilbert 1987, p. 262). 
____________________________________________________________________________________________________________________________________________ 

n      100      150      200      250      300      350      400      450      500 
____________________________________________________________________________________________________________________________ 
α/2 -2.552  -2.452  -2.391  -2.348  -2.316  -2.291  -2.270  -2.253  -2.239   
1-α/2  1.303   1.423   1.496   1.545   1.528   1.610   1.633   1.652   1.668 
_____________________________________________________________________________________________________________________________________________ 

 
 
 

(2.28) 
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2.1.5  Computation of particle distribution parameters 

Particle-size distributions are commonly characterized by four distribution parameters:  

• mean, which characterizes the central part of the distribution;  
• sorting (i.e. standard deviation), or width of the distribution, which is the range of 

particle sizes within which a preset percentage of all data are contained;  
• skewness, which is a measure of deviation from symmetry of a distribution; and  
• kurtosis, which is the flatness or peakedness of the distribution.   
 
Particle distribution-parameters were designed during the 1930’s to 1950’s.  Apart from 
serving as a means for general sediment classification, ratios of various particle 
distribution-parameters (e.g., mean versus sorting, or sorting versus skewness) can be 
used to distinguish between sediments of different origins, transport modes, and the 
duration or distance of transport.   
 
The literature offers a variety of possibilities for computing distribution parameters.   
Distribution parameters can be computed using percentiles (graphic approaches), or the 
percentage frequency of a distribution (frequency approaches), and both methods can be 
applied to particle sizes in mm (geometric approaches), or to particle sizes in φ-units 
(arithmetic approaches) (Fig. 2.17).  The particulars of the data sets (especially the 
accuracy of the distribution tails), the number of data sets to be analyzed, and the study 
objective play a role in the decision of which method should be used.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.17:  Methods for computing particle-size distribution parameters and their applicability to particle size 
classes D in mm or φ-units 
 
Some of the methods provide identical or very similar results when applied to the same 
data set, whereas results from other methods may be somewhat different or not even 
comparable.  Thus, some methods can be used interchangeably, but others cannot.  

Geometric 
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An overview of the most common approaches to compute the four distribution 
parameters mean, sorting, skewness, and kurtosis is provided in Table 2.8.  General 
differences between approaches are explained in the first part of this section.  Possible 
methods used to compute distribution parameters are discussed in the remainder of this 
section.  Finally, all distribution parameters are computed for the example particle-size 
distribution shown in Table 2.3 and Fig. 2.12, and results of these computations are 
compared in Table 2.14. 
 
 
2.1.5.1  Graphic, or percentile methods (geometric and arithmetic) 

Graphic methods compute distribution parameters from a few percentile values that are 
obtained from a cumulative particle-size frequency distribution.  Traditionally, graphic 
methods required a plotted cumulative frequency distribution, preferably on probability 
paper, so that the percentiles used for the analysis could be easily read from the graph.  
This is still a viable, though tedious, procedure.  For a computerized analysis, percentile 
values can be obtained from linear interpolation between the percentile values recorded 
for adjacent φ-size classes on the cumulative frequency distribution, or from linear 
interpolation between log-transformed mm sizes (Section 2.1.4.2).  This interpolation 
requires some time-consuming cell-by-cell computation in spreadsheet programs, so that 
obtaining the percentile values continues to remain the most laborious part of computing 
distribution parameters by graphic methods.  Once the necessary percentile values are 
interpolated, distribution parameters can be easily computed from a variety of equations.  
Equations for the same distribution parameter can employ a different range and number 
of percentiles, and use percentiles either in φ-units or in mm. 
 

Percentiles in φ-units for arithmetic approaches and mm-units for geometric 
approaches 
The four distribution parameters: mean, sorting, skewness, and kurtosis, have the most 
informative value when applied to distributions that are near-normal, or almost Gaussian 
distributed (see Section 2.1.4.3 for analysis of distribution types).  Particle-size 
distributions in gravel-bed rivers tend to resemble normal distributions when computed in 
φ-units.  The degree of normality reached is usually sufficient to compute distribution 
parameters, although normality may not be obtained in a strict statistical sense.  Thus, 
arithmetic computations of particle-size distribution parameters (Folk and Ward 1957; 
Inman 1952) are always performed in φ-units.  A geometric approach is required if 
computations are preferred in mm-units, because geometric approaches compensate for 
the absent log transformation of particle sizes.  Thus, the first step in a particle-
distribution analysis is to evaluate whether the sample distribution approaches a normal, 
or a lognormal distribution.  If the distribution is normal in φ-units (or lognormal in mm), 
a graphic arithmetic approach in φ-units, the moment method in φ-units, or a geometric 
approach in mm should be used.  If the distribution is normal in mm, which is less likely, 
mm should be used in a graphic arithmetic approach or the moment method (Fig. 2.17).  
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The difference between arithmetic and geometric approaches can best be explained for the parameter 
“mean”.  An arithmetic progression is a series of numbers in which the difference between each 
number and its predecessor is identical: for example, the series 2, 4, 6, 8, or the series 9, 7.5, 6, 4.5.  
The arithmetic mean is the sum of n terms divided by n.  In a geometric progression, each term 
differs from its predecessor by the same factor (or multiplier) (Table 2.9), for example 2, 4, 8, 16 or -
8, -2, -0.5, -0.125.  The geometric mean is defined as the central term of an odd number of 
consecutive terms in a geometric progression.  If the number of terms is even, or when the geometric 
progression is not known, the geometric mean is computed from the nth root of the product of n 
numbers (Table 2.9).  An alternative to the nth root approach is the logarithmic approach, which  
 
 
Table 2.9:  Examples of geometric progressions with a central term, and computation of the geometric mean using the nth 
root, and the logarithmic approach. 
________________________________________________________________________ 

Geometric Ratio t3 : t2=            Geometric  mean                
progression t2 : t1 = const.  Central term   nth root approach        Logarithmic approach 
________________________________________________________________________________________________________________________________ 

4, 6, 9    1.5        6    
3

4 ·  6 ·  9  =  6    
log (4 ·  6 ·  9)

3  =  0.78 = log 6 

 

2,1, 
1
2, 

1
4, 

1
8   -0.5       

1
2       

5
2· 1·  

1
2 ·  

1
4 ·  

1
8   =  0.5   

log (2· 1·  
1
2 ·  

1
4 ·  

1
8)

5  =  -0.30 = log 0.5 

 

3, 32, 33      3        32       
3

3 ·  32 ·  33  =  9       
log (3 ·  32 ·  33)

3  =  0.95 = log 9 
__________________________________________________________________________________________________________________________________________________________ 

 
 
does not require computing the nth root.  This is an advantage when a calculator does not feature the 
yx command.  The numerical result of the geometric mean from the logarithmic approach is identical 
to the log of the geometric mean computed by the nth root approach. 
 
Graphic approaches to particle distribution-parameters compute the mean from two or three 
percentiles.  If the arithmetic mean from percentiles in φ-units is transformed into mm-units, the 
result is identical to the geometric mean from the nth-root approach computed from the same 
percentiles in mm, and to the antilog of the mean from the geometric log approach. 
 
 
Number and range of percentiles used 
To compute the four distribution parameters, Inman (1952), and Folk and Ward (1957) used five 
different percentiles in φ-units: φ50 (the median), φ16 and φ84 (the percentiles at the points of curvature 
of a Gaussian distribution, approximately the data range of ± one standard deviation around the 
mean), and φ5 and φ95 (two percentiles that characterize the tails of the distribution, the data range of 
approximately ± two standard deviations around 
 
 



 60 

the median).  In Gaussian distributions, the particle sizes of those five percentiles are 
almost evenly-spaced over the particle-size range.  Geometric approaches are commonly 
based on four percentiles: D16 and D84 (the percentiles at the point of curvature), and D25 
and D75 (the two quartiles).  Trask’s (1932) mixed approach uses only the three quartiles 
D25, D50, and D75.   
 
Statistical analyses are more powerful and informative when data from the entire particle-
size range are included, but this holds true only if the accuracy of data is sufficiently high 
over the entire data range.  Distribution tails are prone to sampling errors in samples from 
gravel-bed rivers.  Small sample sizes in which the presence of a large particle accounts 
for 5 - 10% or more of the total sample weight cause errors at the coarse end.  Operator 
bias against fines in pebble counts, or disregard for the spatial variability of fines within 
the sampling area, cause uncertainty at the fine end.  If there is considerable doubt 
regarding the accuracy of the distribution tails, peripheral percentiles from the distribution 
tails should be excluded from the analysis.  If the study focuses on the central tendency, 
the analysis should be limited to the central part of the distribution.  
 
The accuracy of distribution parameters is increased when many percentiles are used for 
analysis.  Up to 7 or 10 percentiles might be used, but eventually there is a trade off 
between the effort required for interpolating percentiles and the information gained by 
using a large number of percentiles.  A set of 3 to 5 percentile values usually suffices 
when computing distribution parameters with the goal of describing and identifying a 
particle size-distribution.  When the study objective is to detect minuscule differences 
between samples, more than 5 percentiles might have to be used.  However, the most 
important factor for the ability of detecting small differences between samples is the 
necessity of obtaining a sufficiently large sample size (Section 5). 
 
 
2.1.5.2  Moment, or frequency distribution method   

The frequency distribution method, also called the moment method, uses the absolute or 
percentage frequency of each particle size-class to compute the four moments that are 
related to the four distribution parameters.  Computations are usually performed in φ-
units, because particle size-distributions tend to resemble a Gaussian distribution when 
computed in φ, but using log-transformed particle-size classes in mm for the analysis (i.e., 
log D) would work as well.   
   
The moment method requires that the percentage or absolute frequency for all particle-
size classes is known, including the fine and the coarse tail, and that size classes are 
equidistant (e.g., 0.5 φ size classes).  An unsieved remainder, such as the contents of the 
pan, or the particle-size category “smaller than 2 mm” cannot be included in the analysis 
unless this sediment is further differentiated into discrete sieve classes.  This measure 
truncates a sample at the fine end.  Similarly, a sample may have to be truncated at the 
upper end if the percent frequency contributed by one or two particles in the largest size 
class is unduly high.  Truncation, however, alters the shape of the distribution and thus its 
percentiles 
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and all summary statistics computed from it.  Truncated samples can only be compared 
among each other if all samples have been truncated at the same upper and lower size 
classes.   
 
The advantage of the moment method is that the computations of the distribution 
parameters can be completely computerized once the data are entered.  This is a 
convenient attribute when dealing with a large number of data sets. 
 
Graphic approaches versus moment method 
Graphic approaches are mathematically easy to compute once the percentiles have been 
determined.  However, determining the percentiles for a larger number of samples is a 
rather tedious and time consuming effort when applying graphic methods to a large 
number of samples.  Graphic methods have the advantage of being both standardized and 
flexible.  The Folk and Ward (1957) approach in φ-units offers a rating scheme that can be 
used to classify samples, for example as “poorly” or “well” sorted, or “moderately” or 
“extremely skewed”.  Flexibility, by contrast, results from the user’s choice of either 
focusing on central percentiles or extending the analysis to peripheral ones, depending on 
the accuracy of the distribution tails or the study objective.  Graphic approaches can 
further be modified with respect to the number of percentiles used, and even by altering 
the computation itself.  However, modifications might provide numerical values that differ 
from the ones obtained by “standard” approaches.  If this is the case, classifications of the 
degree of sorting or skewness, such as those introduced by Folk and Ward (1957), may not 
be applicable. 
 
The moment method is most suitable for complete and reliable particle-size frequency 
distributions because, apart from truncation, the user can determine only the width of 
particle size-classes (e.g., 0.25, 0.5, or 1 φ-units).  Folk (1966) showed that the moment 
method overpredicts values of standard deviation if the sediment is only sieved in a few 
large sieve classes, and the weight midpoint is not equal to the center of class sieve size 
Dc.  To avoid this problem, moment methods should only be applied to sediment sieved in 
sufficiently small increments.  Particle-size classes of 0.5 φ  should be appropriate for 
gravel-bed streams with particles ranging between sand and cobbles.  
 
The selection of sieve classes usually needs to be made before sampling, because sieving 
in smaller size classes requires a larger sample size.  Disadvantages of the moment 
method are the lack of standardized numerical values that distinguish between “poorly” 
and “moderately” sorted particle size-distributions, or between the degrees of skewness.  
The moment method is mathematically less straightforward than graphic methods, 
particularly for the two higher moments representing the parameters skewness and 
kurtosis.  The power expressions of the moment equations need to be solved before they 
can be applied to grouped data, and the solutions become lengthy for the third and the 
fourth moment.  However, once the solved equations are entered into spreadsheets, 
computations can be applied to an unlimited number of data sets.  The computational 
rigidity, and the suitability for complete computer processing make the moment method 
most suitable for analyzing large numbers of samples, that have accurate tails or that can 
all be truncated at the same upper and lower size classes. 
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2.1.5.3  Central tendency (mode, median, and mean) 

The central tendency of a particle-size distribution can be characterized by its mode, its 
median, and its mean.  
 
 
Mode 
The mode is the center of the size class that contains most of the sediment, either in terms 
of weight frequency or number frequency.  The mode can be computed in terms of mm 
sizes or in φ-units.  The particle-size distribution shown in Table 2.3 and Fig. 2.12 has its 
mode in the center of the size class 45.3 to 64 mm, or -5.5 to -6.0 φ.  An analysis of 
modality determines the number of modes in a distribution.  Distributions can be 
unimodal (one mode), bimodal (two modes), or polymodal (several modes).  An 
irregularity of a frequency distribution in which two non-contiguous size classes have 
higher weight frequencies than their two neighbors, such as the size classes 45.3 and 22.6 
mm in Table 2.3 and Fig. 2.12, does not qualify for bimodality.  Bimodality and its 
computation is explained in Section 2.1.5.9. 
 
 
Median 
The median is the center of the cumulative frequency distribution.  The median can be 
computed in terms of mm sizes as D50 or in terms of φ-units as φ50 and is probably the 
most frequently used parameter in the description of gravel-bed rivers.  The distribution in 
Table 2.3 has a D50 of 32 mm, and a φ50 of -5.0. 
 
 
Mean 
The mean can be considered as the mathematical center of a data set.  Means can be 
computed by a variety of approaches. 
 
Mode, median and mean are equal in symmetrical (unskewed), normally distributed data 
sets, but not in skewed distributions which, however, are typical of fluvial gravel 
sediment. 
 
 
Graphic arithmetic means 
The arithmetic mean is the nth fraction of a sum of n numbers.  The graphic arithmetic 
mean is usually computed from two or three percentiles in φ-units that have equal 
distances from the median.  It is assumed that particle sizes approximate a normal or 
Gaussian distribution when expressed in φ-units (Section 2.1.2.2).  Computations in φ-
units are usually carried out to two decimals. 
 
Inman (1952) computes the mean from the 16th and the 84th percentile in φ-units, both of 
which are equidistant to the median in a normal distribution. 
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  φm,I = 
φ 16 + φ 84

2                        (2.31) 

                        
  
Trask (1932) used the two quartile values.  
 
 

  φm,T = 
φ25 + φ75

2                        (2.32) 

 
 
Cumulative distribution curves from unrepresentatively small samples are often jagged 
and only little accuracy can be placed upon a particular percentile.  It is anticipated that 
these errors tend to cancel each other out if the graphic mean is computed from several 
percentiles.  Thus, Folk and Ward (1957) added the φ50 as a third datum to the 
computation. 
 
 

  φm,F&W = 
φ 16 + φ 50 + φ 84

3                     (2.33) 

 
 
Briggs (1977, cited after Gordon et al. 1992) extended the computation evenly over the 
entire data range and used nine percentile values (see also Folk 1966). 
 
 

  φm,B = 
φ 10 + φ 20 + φ 30 +...+φ 90

9                   (2.34) 

 
 
At some point, there is a trade-off between increased accuracy due to a large number of 
percentiles used for the computations and the computational effort of determining 
percentiles.  The moment method is usually more practical if the entire data range is to be 
included in the analysis. 
 
Computations of φ m,I, φ m,F&W, and φ m,B are identical for distributions that are symmetrical 
and truly normal in terms of φ-units.  In particle-size distributions skewed towards a tail of 
fine particles, typical of gravel-bed rivers, the particle size of φ m,B is larger than the 
particle size of φ m,F&W which is larger than the particle size of φ m,I.  
 
 
Graphic geometric mean, square root approach   
The geometric mean is the nth root of the product of n numbers.  For particle-size 
distributions, the geometric mean is commonly computed from the square root of two 
percentiles in mm (Kondolf and Wolman 1993; Yang 1996). 
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  Dgm,sq = D84 ·  D16 
                  (2.35) 

 
 
Graphic geometric mean, cube root approach   
Alternatively, the cube root of three percentiles can be taken (Kondolf and Wolman 1993) 
 
 
  Dgm,cu = (D84 ·  D50 ·  D16)

1/3                 (2.36) 
 
 
More percentiles could be used if necessary for the study objective.  When applied to the 
same data set, the graphic geometric mean computed in mm from the square or cube root 
approach is equivalent to the arithmetic mean computed in φ-units, transformed into mm 
(Eq. 2.5). 
 
 
Graphic geometric mean, log approach 
The graphic geometric mean can also be computed from the mathematically more simple 
log approach.  This is an advantage should a calculator not feature the yx command. 
 
 

  Dgm,log = 10^ 



log (D16 ·  D84)

2                  (2.37) 

 
 
This geometric mean is equivalent to the geometric mean computed with the square root 
approach in Eq. 2.35. 
 
 
Geometric mean from a frequency distribution (power approach) 
A geometric mean can also be computed from a particle-size frequency-distribution 
instead of percentiles.  This approach ensures that the mean represents the entire particle-
size distribution and does not rely only on a few percentiles.  Another advantage is that 
this computation can be fully computerized and does not require the time consuming task 
of determining percentiles.  Platts et al. (1983) suggest the following equation: 
 
 
  Dgm,pw = (Dc1

m%1 ·  Dc2
m%2 ·  ... ·  Dck

m%k)1/100           (2.38) 
 
 
where Dc1 to Dck are the centers of the particle-size classes 1 to k, k is the number of size 
classes, and m%i is the percentage particle weight for the ith size class.  The computations 
can likewise be performed for number frequencies, in which case m%i is substituted by n%i.  
Dgm,pw yields the same result as the mm-transformed mean obtained from the 1st moment 
method based on φ-units. 
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The first moment (arithmetic mean from a frequency distribution) 
Moment methods use all particle size-classes present and compute the arithmetic mean 
φm,frq of a frequency distributions from  
 
 

   φm,frq = 
1

mtot
  ∑

i=1

n

(φci ·  mi)                   (2.39) 

 
 
where φci is the center of the ith size class in φ-units (Section 2.1.5.2), mi is the weight of 
particles retained on the ith size class sieve, and mtot is the total weight of particles per 
sample.  For computation using number frequencies, mi is substituted by ni, the number of 
particles per size class, and mtot by n, the total number of particles per sample.  For 
percentage frequency distributions, the equation becomes 
 
 

   φm,frq = 
1

100  ∑
i=1

k

(φci ·  m%i)                   (2.40) 

 
 
where m%i is the percentage frequency by weight for particles retained on the ith size 
class, and k is the number of particle size-classes in the sample.  For computations based 
on frequency by number, m%i is substituted by n%i. 
 
 
Mean in mm from a log frequency distribution (log frequency approach) 
In analogy to the arithmetic mean computed from the first moment, the mean particle 
size in mm Dm can also be computed from the antilog of log-transformed particle size 
classes in mm (log D) (Gordon et al. 1992)  
 
 

  Dm,logfrq = 10 
 

1
100  ∑

i=1

k

{log(Dci) ·  m%i}
             (2.41) 

 
where Dci is the center of class of the size classes 1 to k, and m%i is the percentage by 
weight for the ith size class.  Alternatively, n%i, the percent frequency by number can be 
used instead of m%i.  Results of this computation are equal to the power approach in Eq. 
2.38 and equal to the arithmetic mean computed by the 1st moment in equation 2.40. 
 
 
2.1.5.4  Standard deviation and sorting 

The standard deviation (σ) expresses the spread or dispersion within normally distributed 
data sets.  Plus and minus one standard deviation (σ  = ±1) comprises the central part of 
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the cumulative frequency distribution that contains 68.26% of all data.  Thus, one 
standard deviation encompasses all data within the interval of the 16th percentile (p16) and 
the 50th percentile (p50) because  
 
 

  p16% = 50% - 
68.26%

2  = 50% - 34.13% = 15.86%  ≈ 16%         (2.42) 

 
 
plus all the data between the 50th and the 84th percentile (p84) because  
 
 

  p84% = 50% + 
68.26%

2  = 50% + 34.13% = 84.13%  ≈  84%         (2.43) 

 
 
Thus, the interval between the 84th and 16th percentile (p84 and p16) indicates the range of 
the mode µ ±1 standard deviation ((µ -1σ ) + (µ +1σ)).  A distribution has a standard 
deviation of σ = ±1 if 
 
 
  σ = p50 – p15.86 = 1   and   σ = p84.13 – p50 = 1             (2.44) 
 
 
In symmetrical distributions, Eq. 2.44 is equal to     
 
 

  σ  = 
p84.13 - p15.86

2  = 1                   (2.44a) 

 
 
Plus and minus two standard deviations (±2σ) encompass 95.44% of all data, i.e., the data 
between the 97.72th and 2.28th percentile.  A distribution has a standard deviation of σ = 
±2 if 
 
 

  2σ  = 
p97.72% - p2.28%

2  = 2                    (2.45) 

 
 
The computation of standard deviation can become somewhat complicated for grouped 
data (see computation of the second moment, Eqs. 2.56 to 2.58).  Therefore, 
sedimentologists analyze the spread or dispersion of a distribution from a sorting 
coefficient that is are computed from a few percentiles of the distribution.  The terms 
sorting coefficient and standard deviation are synonymous for normal distributions, and 
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their numerical value is identical if the distribution is truly normal.  The numerical values 
of sorting coefficients computed for particle-size distributions in φ units have been 
standardized to compare the spread or dispersion between distributions. 
 
The sorting of a particle-size distribution can be computed in several ways.  Some 
approaches yield identical values, some obtain identity after a transformation, while 
others are non-comparable.  This makes it necessary to analyze the relation between 
different sorting coefficients.   
 
 
Graphic arithmetic sorting coefficients 
Particle-size distributions of fluvial sediment tend to roughly approximate normal 
distributions when particle sizes are expressed in φ-sizes.  In accordance to Eq. 2.44a, 
Inman’s (1952) sorting coefficient sI uses almost the same percentile difference, but sI is 
always positive since it is the absolute difference, whereas the standard deviation is 
defined as the interval of ±s around the mean.    
 
 

  sI  =  



φ 84 - φ 16

 2                        (2.46) 

 
 
As Inman’s sorting coefficient uses two percentiles only, particle-size distributions that 
are quite different can have the same sorting coefficient if only those two percentiles are 
identical.  Folk and Ward (1957) therefore include a broader range of the cumulative size-
distribution curve into the sorting analysis and compute sorting as 
 
 

  sF&W  =  
φ84 - φ16

4  + 
φ95 - φ5

6.6                     (2.47) 

 
 
Folk and Ward (1957) classify the degree of sorting of fluvial sediment into 7 categories 
(Table 2.10).  A chart for visual estimation of sorting is provided in Fig. 2.18. 
 
The two sorting coefficients sI and sF&W have identical results when applied to 
symmetrical normal distributions, although equality may not be present if the distribution 
is not strictly normal or somewhat skewed.  However, fluvial gravel deposits that 
approach normal distributions in φ-units and are only slightly asymmetrical, and which 
are "poorly" sorted in terms of Folk and Ward (1957), have an Inman (1952) sorting 
coefficient around 1.5 as well.  
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Table 2.10:  Classification of the degree of 
sorting (from Folk and Ward 1957) 
____________________________________________________________ 

Sorting    Characterization 
Coefficient 

_____________________________________________________ 

   >  4   extremely poor 
    2  -  4   very poor    
    1  -  2   poor     
     0.71 -  1   moderate  
     0.50 -   0.71  moderately well 
     0.35 -   0.5   well 
    < 0.35  very well 
____________________________________________________________ 

 
 
 
 
 
 
 
 
 
 
 
          sF&W = 0.35               sF&W = 0.50    
 
 
 
 
 
 
 
 
 
 
 
     
          sF&W = 1.00               sF&W = 2.00 
 
 
Fig. 2.18: A chart for visual estimation of sediment sorting for the same D50  (Redrawn from Pettijohn et al. 
(1972), by permission of Springer Verlag). 
 
 
φ-based sorting coefficients for fluvial gravel typically range between about 0.5 and 2.  
Fig. 2.19 shows three example particle-size distributions with a common D50 of 32 mm, 
but with three different sorting coefficients of s = 0.5, 1.0, and 1.5.  Particle sizes in 
uncoupled gravel-bed streams might obtain a sorting coefficient of about 0.5 after a long 
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fluvial transport.  Mountain gravel-bed streams with grain sizes ranging from sand to 
boulders more typically have sorting coefficients in the range of 1.5 to 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.19:  Three particle-size distributions with a common D50 of 32 mm, but standard deviations of σ = 0.5, 
1.0, and 1.5.  For the curve with σ = 0.5, the range of one standard deviation between D16 and D84 is 
indicated by the lightest gray shade, for the curves with σ =1, and σ =1.5, the ranges of one standard 
deviation are indicated by the medium, and the darkest gray shade, respectively. 
 
 
Graphic geometric sorting coefficients, log approach 
Analogous to the standard deviation of particle sizes in φ-units in a normal distribution 
where 2s = φ84 – φ16, and s = (φ84 – φ16)/2, the standard deviation of a lognormal 
distribution for particle sizes in mm can be expressed as (Simons and Sentürk 1992) 
 
 

  log s = 
log D84 – log D16

2   = 
 log 



D84

D16

2                  (2.48) 
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The geometric sorting coefficient sg,log can be computed for percentiles in mm by taking 
the antilog of Eq. 2.48 which yields the same numerical results as the square root 
expression in Eq. 2.53. 
 
 

  sg,log1 = 10^



log(D84) - log(D16)

2   =  10^









 
 log 



D84

D16

2         

 
 
Since the term in parenthesis in the first equation is the log of the arithmetic Inman 
sorting coefficient sI =(φ84 - φ16)/2, results computed by sg,log1 and sI are convertible.  By 
analogy to Eqs. 2.4 and 2.3,  
 
 
  sg,log,1 = 2sI                         (2.50) 
 
 
and  
 
 

  sI = 
log(sg,log1)

log(2)                          (2.51) 

 
 
The log approach for a geometric sorting coefficient can include the D50 value, so that 
Eq. 2.49 can be rewritten as: 
 
 

  sg,log2 = 10^









log 













D84

 D50
 + 

D50

 D16

2                 (2.52) 

 
 
Eq. 2.49 and Eq. 2.52 yield identical results if distributions are symmetrical.  When 
applied to the distribution in Table 2.3, Eq. 2.49 provides a numerical value of 3.84 
which is similar but not identical to the numerical value of 3.88 provided by Eq. 2.52 for 
the same data set.  Eq. 2.52 can be simplified by eliminating the log and the antilog.  This 
measure yields the gradation coefficient. 
 
 
Gradation coefficient 
The gradation coefficient is a term used in engineering.  It computes the spread of a 
distribution from percentiles in mm (Simons and Sentürk 1992; Julien 1995; Yang 1996) 

(2.49) 
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  sgrad =  




D84

 D50
 + 

D50

 D16

2                       (2.53) 

 
 
Eq. 2.53 may be seen as a simplified notation of the log approach in Eq. 2.52, yielding the 
same result.  Note the conceptual difference between the terms “sorting” and “gradation” 
–  sedimentologists refer to a sediment that spreads over a wide size range as poorly 
sorted, while engineers refer to a poorly sorted sediment as well graded, i.e., it has a wide 
range of particle sizes that is sufficient for a given application. 
 
 
Graphic geometric sorting coefficients, square root approach 
Instead of an antilog, the logarithmic expression logs = (logD84 – logD16)/2 in Eq. 2.48 
can also be solved by a square root equation (Simons and Sentürk 1992; Julien 1995; and 
Yang 1996) 
 
 

  sg,sq = 
D84

D16
                         (2.54) 

 
 
Eq. 2.54 and 2.48 yield identical results.  An equation of similar form but with different 
percentiles was proposed by Trask (1932)  
 
 

  sg,T = 
D75

D25
                         (2.55) 

 
 
Results of Eqs. 2.54 and 2.55 are different because they are based on different percentiles. 
 
Graphic geometric sorting coefficients computed from percentiles in mm are 
dimensionless.  
 
 
The second moment (arithmetic sorting from a frequency distribution) 
The general form of the equation for the 2nd moment, i.e., the distribution variance, for 
grouped (or binned) data is  
 
 

   sfrq
2 = 

1
n-1 ∑

i =1

k

 ni (φci - φm)2                    (2.56) 
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where φci is the center of class in φ-units of ith size class, ni is the number of particles 
retained for the ith size class, k is the number of size classes in the sample, n is the total 
number of particles, and φm is the arithmetic mean of the distribution in φ-units.  Eq. 2.56 
can likewise be applied to the weight of particles for the ith size class, in which case ni is 
substituted by the weight of particles in the ith size class mi.  If Eq. 2.56 is applied to 
percent frequencies, ni or mi are substituted by n%i and m%i, respectively, and mtot or n are 
set to 100%. 
 

   sfrq
2 = 

1
100-1 ∑

i =1

k

 n%i (φci - φm)2               (2.57) 

 
 
For the actual computation of the sorting parameter, the quadratic expressions in Eq. 2.56 
or 2.57 need to be solved and rearranged, and the square root needs to be taken because 

standard deviation is defined as the square root of variance (s  ≡ s2).  Eq. 2.58 is the 
solution of Eq. 2.56.  The solution is similar for Eq. 2.57 for which ni is substituted by 
n%i, and n = 100. 
 
 

 sfrq =
∑
i=1

 k

 (ni ·  φci
2) - 














 ∑

i=1

k

 ni  ·  φci

2

n

n -1   =  
∑
i=1

 k

 (ni ·  φci
2) - n ·  φm

2

n -1   

 
 
Conversion between standard deviation of the log-transformed and the original data 
If Eqs. 2.56 to 2.58 were applied to particle sizes in mm (exchange all symbols φ for D in 
Eq. 2.58 and compute as above), the resulting numerical value slogfrq has no resemblance 
to the geometric graphic sorting computed for percentiles in mm (Eqs. 2.49 and 2.52 – 
2.54).  However, it is possible to compute the graphic arithmetic standard deviation for 
particle sizes in φ-units sφ from the slogfrq (Eqs. 2.56 to 2.58) using the following equation 
(Church et al. 1987): 
 

  sφ = c 








ln 












slogfrq

Dgm

2

+1  
0.5

                     (2.59) 

 
Dgm is the geometric distribution mean, and c = 1.4427 when log-transformations are 
based on φ-units (e.g., equations by Inman), or c = 0.4343 for transformations based on 
the log10 of particle sizes, and c = 1 for the ln of particle sizes.  Using the example 
distribution in Table 2.3 and Fig. 2.12, the logarithmic standard deviation slogfrq computed 
for mm sizes using Eqs. 2.56 to 5.58 is 58.13 mm, the distribution mean Dgm (e.g., from 

(2.58) 
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the square root approach in Eq. 2.35 ) is 27.2 mm.  Eq. 2.59 computes a standard 
deviation of s,φ = 1.89 which is similar to the Inman sorting coefficient of s,I = 1.94 (Eq. 
2.31), but lower than the standard deviation computed from the second moment of sfrq = 
2.02 (Eq. 2.58).  Equity of results requires a true normal/lognormal distribution. 
 
The graphic arithmetic sorting coefficients computed for particle sizes in φ-units (sI or 
sF&W) yields the same numerical value as the standard deviation sfreq computed using 
equation 2.56 to 2.58 if both distributions are truly normal, and both results are in units of 
φ.  Graphic arithmetic sorting coefficients and the standard deviation computed using 
Eqs. 2,56 to 2.58 produce similar numerical values if the particle-size distribution is not 
truly normal.  
 
 
2.1.5.5  Skewness 

Normal distributions are symmetric around the mean and not skewed towards either side 
of the distribution.  Distributions with negative skewness are skewed towards the low end 
tail of the distributions, whereas distributions with positive skewness are skewed towards 
a high end tail (Fig. 2.20).  The degree of skewness of a distribution can be seen as a 
degree of deviation from normality.   
 
 
 
 
          
 

 
 
 
  
 
 
 
 
 
Fig. 2.20:  Shape of symmetrical, positively and negatively skewed frequency distributions  
 
 
When applied to particle-size distributions in φ-units, in which the coarsest particles sizes 
have the smallest numerical values (e.g., -7φ = 128 mm, -1φ = 2 mm, +2φ  = 0.25 mm), 
the term skewness is reversed: positive skewness is towards a tail of fine particles (high 
φ-values, and negative skewness is towards a tail of coarse particles (low φ-values).    
 
Bed-material size distributions in φ-units in mountain gravel-bed rivers are often skewed 
towards a tail of finer gravel and sand (positively skewed), and thus deviate from 
symmetrical normal distributions.  In positively skewed distributions, particle frequency 
of the largest size classes comprise the bulk of the sample, while finer particles cover a wide 

        mode 
  median 
 mean 

mode 
  median 
      mean 

Symmetrical Positively skewed towards a 
tail of high or positive values 
i.e., towards fine particles   

Negatively skewed to towards a 
tail of low or negative values 
i.e., towards coarse particles  

coarse                  fine coarse                  fine coarse                  fine 

mode 
= median 
= mean 
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range of sizes, but the frequency per size class is low.  Positive skewness of a sample can 
also be the result of unrepresentative sampling in which a few large clasts comprise 30 to 
50% of the total sample weight.  When analyzing a particle-size distribution for 
skewness, samples need to be representative such that the weight of the largest size class 
does not constitute more than a small percentage of total weight.  Church et al. (1987) 
suggested that the maximum allowable weight of the largest size class was 0.1% of the 
total weight for Dmax ≤ 32 mm, 1% for Dmax ≤ 64 mm, and 5% for Dmax ≤ 128 mm 
(Section 5.4.1.1). 
 
Particle-size distributions in φ-units that are mostly comprised of sand and fine gravel 
with a few large gravel particles are skewed towards a coarse tail.  Such distributions are 
negatively skewed.  
 
Skewness may be computed from various modifications of the ratio between distribution 
mean and sorting.  Computations may focus on the central part of the distribution, or 
include the distribution tails to various degrees.  The user should select the computational 
method that suits the data situation and provides the clearest answer to the study 
objective.  If, for example, little confidence can be placed into the tails of a distribution, 
they should not be included in the analysis because they might distort the result.  
However, omitting the tails excludes information that under ideal circumstances should 
have been included. 
 
 
Graphic arithmetic skewness 
Graphic arithmetic skewness is computed from several percentiles in φ-units.  The 
percentiles need to refer to the percent coarser cumulative frequency distribution if 
positive skewness is to yield positive skewness values and negative skewness negative 
values.  However, the percent finer is the more commonly used form of a cumulative 
frequency distribution for bed-material samples.  Thus, if graphic arithmetic skewness is 
computed from the percent finer distribution, skewness values need to be multiplied by -1 
to obtain the correct sign. 
 
The computed value for skewness is sensitive to the range of data used for its 
computation.  Inman (1952) computes skewness as the difference between mean and 
median divided by sorting. 
 
 

  ska,I1 = 
φm - φ50

σφ
  =  

φ16 + φ84

2  - φ50

φ84 - φ16

2

  =  
φ16 + φ84 - 2φ50

 φ84 - φ16 
         (2.60) 

 
In order to account for skewness in the distribution tails, Inman (1952) suggested a 
second computation in which the data range includes the 95th and 5th percentiles. 
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  ska,I2 =  
φ5 + φ95 - (2· φ50)

2· (φ84 - φ16) 
                  (2.60a) 

 
 
Folk and Ward (1957) combined both of Inman’s equations and slightly modified the 
second one. 
 
 

  ska,F+W = 
φ16 + φ84 - (2· φ50)

2· (φ84 - φ16)
 + 

φ5 + φ95 - (2· φ50)
2· (φ95 - φ5)

          (2.61) 

 
 
Warren (1974) simplified the Folk and Ward equation for skewness into a form that 
yields a numerical identical result, but is easier to compute. 
 
 

  ska, W = 
φ84 - φ50

φ84 - φ16
  -  

φ50 - φ5

φ95 - φ5
                  (2.61a) 

 
 
The numerical values of skewness computed with Eqs. 2.60 or 2.60a are not identical to 
those from Eq. 2.61 and 2.61a, but all three equations yield 0 for symmetrical 
distributions, and -1 and +1 for very negatively and very positively skewed distributions.  
The Folk and Ward (1957) and the Warren (1974) skewness coefficients can be verbally 
classified into the following categories (Table 2.11). 
 
 

Table 2.11:  Classification of skewness values (from: Folk and Ward 1957) 
_____________________________________________________________________________________________________________________ 

Skewness            Description in terms of:           
   value   φ-units       Relative particle size 
_______________________________________________________________________________________________________ 

-0.3 to -1   very negatively skewed    very skewed towards the fine side 
-0.1 to -0.3  negatively skewed    skewed towards the fine side 
-0.1 to  0.1  nearly symmetrical    nearly symmetrical 
 0.1 to  0.3  positively skewed         skewed towards the coarse side 
 0.3 to  1   very positively skewed    very skewed towards the coarse side 
______________________________________________________________________________________________________________________ 

 
 
Gordon et al. (1992) suggest a computation with a slightly smaller data range, which may 
be useful when the tails of the distribution are unreliable.  Results from Eq. 2.62 and Eqs. 
2.61 and 2.61a are not identical. 
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  ska,Gor = 
φ84 - φ50

φ84 - φ16
  - 

φ50 - φ10
 φ90 - φ10

                    (2.62) 

 
 
The quartile skewness coefficient ska,quart uses only the central 50 percent of the data and 
completely neglects the distribution tails.    
 
 

  ska,quart = 
(φ75 - φ50) - (φ50 - φ25)

 φ75 - φ25
                   (2.63) 

 
 
Trask (1932) limits his equation to the central 50 percent as well, but uses mm units.  
 
 

  ska,T = 
D25 ·  D75

D50
2                         (2.64) 

 
 
Geometric skewness from the square root approach (Fredle Index) 
As with arithmetic skewness (Eqs. 2.60 – 2.63), geometric skewness is the ratio of the 
geometric mean to geometric sorting.  Recall that the geometric mean and geometric 
sorting can be computed in a variety of ways.  A simple expression for geometric 
skewness is  
 
 

  skg,F1 = 









D84 ·  D16

D75

D25

0.5

 = Fredle index                (2.65) 

 
 
which is also an expression for the Fredle index that is used by fishery biologists to relate 
permeability and porosity of spawning gravel (Lotspeich and Everest 1981).   
 
 
Geometric skewness from frequency distributions and percentiles 
Platts et al. (1983) compute the Fredle index from: 
 
 

  skg,F2 = 
(Dc1

m%1 ·  Dc2
m%2 ...Dck

m%k)1/100

 



D75

D25

                (2.66) 
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The numerator of Eq. 2.66 is identical to the geometric mean computed from frequency 
distributions (power approach, Eq. 2.38).  Dc1 to Dck are the midpoint diameters of 
particles retained on the kth sieve class, and m1 to mk are the percentage weight of 
particles retained on the kth sieve class.  Rice (1995) uses the square root of the 
denominator, which is the Trask (1932) sorting coefficient (Eq. 2.55). 
 
 

  skg,F3 = 
(Dc1

m%1 ·  Dc2
m%2 ...Dck

m%k)1/100

D75

D25

               (2.67) 

 
 
Equations 2.65 and 2.67 yield almost identical results.  The Fredle index can only be 
compared between samples if all size distributions are truncated at a common large 
particle size, such as at 64 mm (Rice 1995), because the value of this index is affected by 
the truncation point.   
 
A graphic logarithmic approach to compute skewness is not available.  But in analogy to 
graphic logarithmic mean and sorting, a graphic logarithmic skewness could theoretically 
be computed from the ratio of mean and sorting 
 
 

  skg,log = 
log (D16 · D84)
log (D75/D25)

                     (2.68) 

 
 
The third moment (arithmetic skewness from frequency distributions) 
The general form of the equation for the 3rd moment for grouped (binned) data is  
 
 

  Skfrq = 
∑
i =1

k

 mi (φci - φm)3

mtot ·  σ3                       (2.69) 

 
 
where φci is the center of the ith class, φm is the distribution mean, k is the number of 
classes, mi is the particle weight in the ith class, mtot is the total weight of particles, and σ 
is the distribution sorting as computed from the square root of the 2nd moment (see 
Section 2.1.5.4).  Eq. 2.69 needs to be solved before it can be applied to grouped data.  
Gordon et al. (1992) provide the following solution   
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 skfrq
 = 

mtot

(mtot -1)· (mtot -2)  ·




∑

i=1

k

 φci
3 ·  mi  - 3φm 





∑

i=1

k

 φci
2 ·  mi  + 2 mtot ·  φm

3

s3   (2.70) 

 
 
Eqs. 2.69 and 2.70 can be applied to number-frequencies of particles as well.  In this 
case, mi is substituted by ni, the number of particles per size class, and mtot by n, the total 
number of particles per sample.  Eqs. 2.69 and 2.70 can also be applied to percent 
frequencies.  In this case, mi and ni are substituted by m%i, and m%i, the percentage 
particle weight and number for the ith size class, and mtot and n are set to 100.  
 
Skewness values computed using the moment method produce positive values for 
positively skewed distributions, and negative values for negative distributions.  However, 
skewness values from the moment method are not bound to the +1 to -1 interval as is the 
graphic arithmetic skewness, but may reach values of ±3 or ±4 or more. 
 
 
2.1.5.6  Kurtosis 

Kurtosis denotes the peakedness or flatness of a distribution in comparison to a normal 
distribution.  This measure is only infrequently used to characterize particle-size 
distributions in gravel-bed rivers.   
 

Graphic arithmetic kurtosis 
For particle-size distributions in φ-units, Folk and Ward (1957) propose to compute 
kurtosis using the tails and the quartiles of the distribution.  
 
 

  kua,F&W  =  
φ95 - φ 5

 2.44· (φ75 - φ25)
                 (2.71) 

 
 
Kurtosis as computed by the Folk and Ward approach can be verbally classified into five 
categories (Table 2.12) 
 
 

Table 2.12:  Classification of kurtosis values (from Folk and Ward 1957) 
_______________________________________________________________________________________________________ 

Value    Classification     Explanation 
___________________________________________________________________________________________ 

       < 0.67  very platykurtic    very flat frequency distribution 
0.67 - 0.90  platykurtic     flat  
0.90 - 1.11  mesokurtic     not especially peaked, normal 
1.11 - 1.50  leptokurtic     highly peaked 
   > 1.50  very leptokurtic    very highly peaked 
_______________________________________________________________________________________________________ 
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The Inman (1952) equation is also based on particle sizes in φ-units and focuses on the 
tails of the distribution 
 
 

  kua,I = 
0.5 (φ95 - φ5) - 

φ84 - φ16

2
φ84 - φ16

2

                   (2.72) 

 
 
When original untransformed particle sizes in mm are used, kurtosis can be computed 
from the Trask (1932) equation 
 
 

  kua,Tr = 
D75 - D25

 2 (D90 - D10)
                      (2.73) 

 
 
Graphic geometric kurtosis 
Graphic approaches to compute kurtosis are not available.  If kurtosis is regarded as the 
ratio of two sorting coefficients, kurtosis, in analogy to the square root approach, could 
hypothetically be computed from 
 
 

  kug,sq = 
D16/D84

D75/D25
                       (2.74) 

 
 
Another theoretical computation of kurtosis is analogous to the logarithmic approach  
 
 

  kug,log = 
log (D16/D84)
log (D75/D25)

                     (2.75) 

 
 
The fourth moment (arithmetic kurtosis) from frequency distributions) 
Kurtosis can also be computed as the fourth moment kufrq.  The general form of the 
equation is 
 

  kufrq =   
∑
i=1

k

 mi (φci - φm)4

 mtot ·  σ4                     (2.76) 
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where φci is the center of the ith class, φm is the distribution mean, k is the number of 
classes, mi is the absolute frequency of particle weights or numbers in the ith class, mtot is 
the total weight of particles, and σ is the distribution sorting as computed from the square 
root of the 2nd moment (see Section 2.1.5.4).  Eq. 2.76 can likewise be used for number 
frequencies (mi → ni; mtot → n), or for percentage frequencies (mi → m%i or n%i; mtot → 
100).  Eq. 2.76 becomes rather extensive when solving the term mi (φci - φm)4 and will not 
be shown here since kurtosis is infrequently used to characterize a particle-size 
distribution. 
 
 
2.1.5.7  Comparison between methods 

The four distribution parameters (mean, sorting, skewness and kurtosis) were computed 
for the example particle-size distribution in Table 2.3 using several methods.  The 
distribution is poorly sorted and skewed towards large particles.  The same methods and 
equations as shown in Table 2.8 were applied.  The results of those computations are 
listed in Table 2.14 for a comparison of methods. 
 
 
Mean 
Arithmetic and geometric mean are both in units of length and mutually convertible.   
The arithmetic mean of particle sizes in φ-units, converted back into units of mm (Eq. 2.5 
or 2.6), equals the geometric mean of particle sizes in mm, if the computations are based 
on the same percentiles (Table 2.13).  Similarly, geometric mean, computed in mm and 
transformed to φ-units using Eq. 2.3 or 2.4 equals the arithmetic mean computed for φ-
units. 
 
All of the means are smaller than the D50 or φ50 because the particle-size distribution is 
skewed towards fine particles.  Trask’s mean is considerably larger than the distribution 
D50 in skewed distributions because skewed distributions have a large mm-value of the 
D75. 
 
 
Sorting 
Arithmetic sorting coefficients and the standard deviation computed from the moment 
approach produce identical values for true normal and symmetrical distributions (Table 
2.14).  Arithmetic sorting coefficients computed from φ-unit for the distribution in Table 
2.3 differ somewhat between methods because the distribution is not truly normal, but all 
values are generally within the same range.  Hence, the Inman sorting sI =1.94 (Eq. 2.46) 
and the Folk and Ward sorting sF&W =1.70 (Eq. 2.47) are not identical.  The difference 
between sI and the 2nd moment sfrq = 2.02 (Eq. 2.58) may be attributed to truncation of the 
distribution at the fine end, because the unsieved remainder in the size class smaller than 
2 mm was excluded in the moment method, but is included in the computation of 
percentiles from the cumulative percentage frequency (i.e., the percent finer).   
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Table 2.13:  Equality between various geometric and arithmetic means when computed by different approaches for the same distribution 
and expressed in the same units.  Numbers in parenthesis indicate equation numbers in Section 2. 
___________________________________________________________________________________________________________________________________________________________ 

Geometric mean (computed in mm)            =    Arithmetic mean (comp. in φ), expressed in mm 
Geom. mean (computed in mm), expressed in φ      =    Arithmetic mean (computed in φ) 
__________________________________________________________________________________________________________________________________________ 

Square root appr.  (35)      D16 ·  D84     =  Inman appr. (31)          
φ16 + φ84

2   

 

Log appr.  (37)        10^



 

log (D16 ·  D84)
2     =  Inman appr. (31)          

φ16 + φ84

2   

 

Cube root appr.  (36)      (D16 ·  D50 ·  D84)
1.3    =  Folk & Ward appr.  (33)  

φ16 + φ50 + φ84

3   

 

Power appr.  (38)     (Dc1
m%1 ·  Dc2

m%2 ·  ... ·  Dck
m%k)1/100 =  1st moment  (40)     

1
100  ∑

i=1

k
(φ ci ·  m%i)  

Log freq. appr. (41)      10^





1

100 ∑
i=1

k
{log(Dci) ·  m%i}

   =  1st moment  (40)     
1

100  ∑
i=1

k
( φ ci ·  m%i)  

______________________________________________________________________________________________________________________________________________________________ 

 
 
Table 2.14:  Results of distribution parameters computed with several methods for the example particle size-distribution in Table 2.3 
(Small numbers in italics refer to equation numbers in Section 2). 

 (D5 = 1.8,    D16 = 7.1,    D25 = 12.7,    D50 = 32.0,    D75 = 74.7,   D84 = 104.3,    D95 = 195.8 mm;    
 φ5 = -0.89,  φ16 = -2.82,  φ25 = -3.67,    φ50 = -5.00,   φ75 = -6.22,   φ84 = -6.70,     φ95 = -7.61).   
________________________________________________________________________________________________________________________________________________ 

   Freq.distr.appr.       Graphic (or percentile) approaches                Freq.distr.appr. 

           Geometric approaches (for mm)                      Arithmetic approaches (in φ)  

        power     grad. square     log       cube   Trask        Inman       Folk & Ward       Moment 
         appr.    coeff.   root     appr.     root  (1932)    (1952)      (1957)      Method* 
________________________________________________________________________________________________________________________________ 
Mean (φ)     -            -           -   -     -   -           -4.76          -4.84         -4.74 
(mm)    26.8  -    27.2     27.2      28.7    43.7     27.2    28.7         26.8 
Eq.        38        -      35        37    36       32         31        33              40 
 

Sorting (φ)     -        -           -        -     -   -     1.94    1.70      2.02  
(mm)         -        -           -        -     -   -   3.84    3.25    4.06 
(-)      -         3.88        3.84      3.84         -      2.42     -          -            - 
Eq.            53      54     49, 52         -              55          46             47              58 
 

Skewness (-) 11.1  -   11.2     3.73         -      19.0       0.12    0.17     0.72  
Eq.         66        -      65  68     -       64    60         6 1      70 
 

Kurtosis (-)     -        -     1.6       1.5     -      0.2   0.7      1.1           - 
Eq.       -        -     74        75     -      73           72       71      76  
_________________________________________________________________________________________________________________________________________________ 

* Computations for the moment method excluded sediment passing the 2 mm sieve from the analysis. 
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Geometric sorting coefficients computed from percentiles in mm are dimensionless and 
only a measure of the logarithmic standard deviation which has units of mm.  The square 
root approach (Eq. 2.54) and the log approach (Eq. 2.49) yield identical results sg,sq = 
sg,log = 3.84, which in a true lognormal distribution would be identical to the gradation 
coefficient sgrad = 3.88 (Eq. 2.53) as well.  Some of the geometric and arithmetic sorting 
coefficients are transformable.   
 
The geometric sorting coefficient of the untransformed data in mm slog,1 and Inman’s 
arithmetic sorting coefficient sI computed for φ-units are convertible using Eqs. 2.51 and 
2.52.  Similarly, the standard deviation in φ-units can be estimated from the standard 
deviation computed from particle sizes in mm according to the moment method (Eqs. 
2.56 – 2.58) by applying Eq. 2.59.  The Trask sorting parameter sT is not comparable with 
sorting computed by the other methods because it is based on different percentiles. 
 
The various computations of skewness and kurtosis do not compare well because their 
computations are too dissimilar. 
 
2.1.5.8  Percent fines 

Stream monitoring and fisheries studies are often concerned with the amount of fine 
sediment (sand and fine gravel) in the streambed because large amounts of fine sediment 
impair the spawning success of salmonid fish.  Depending on the fish species concerned, 
or on the monitoring objective, fine sediment might comprise medium sand < 0.85 mm, 
sand < 2 mm, or various sizes of fine gravel < 3.36, 4.4, 6.4, or 9.5 mm (Reiser and 
Bradley 1993; Rice 1995).  The amount of fine sediment is usually computed as the 
cumulative percent frequency finer than a specified particle size and referred to as the 
“percent fines”.  The percent fines is a more sensitive indicator of the amount of fines 
than the D5 or D10, because the size of small percentiles is affected by the coarse part of 
the distribution.   
 
For a comparison of the percent fines over space or time, Church et al. (1987) 
recommend that the percent fines be computed for size distributions truncated at a certain 
large particle size.  This is to ensure that the percent fines is not affected by the presence 
of a few large particles.  If, for example, a large cobble was added to one of two 
otherwise identical gravel samples, and that cobble comprised 20% of the total sample 
mass, then the percent fines would be smaller in the sample with the cobble than in the 
sample without the cobble.  The cut-off particle size for truncation should be some large 
gravel size present in all samples, e.g., 45 or 64 mm. 
 
The percentage surface fines computed for a given deposit does not only depend on 
whether the sample was truncated or not, but also strongly depends on the sampling 
method.  Picking particles off the surface (an areal surface sample) produces a lower 
percentage surface fines than removing a thin layer of particles from the surface (an 
armor layer sample).  This aspect is further discussed under bimodality in Section 2.1.5.9 
because a large percent fines in a gravel bed leads to a bimodal particle-size distribution.  
See also Sections 4.1.2 and 4.1.3 for the effect of different sampling methods on the resulting 
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particle-size distribution.  The percentage fines in a sample also varies between different 
methods for identifying the particle to be picked up from the streambed, and is likely to 
vary between operators (Section 4.1.1.3).    
 
2.1.5.9  Bimodality 

A bimodal particle-size distribution has two modes, i.e., two distinct peaks in the 
frequency distribution, one in the finer and one in the coarser fraction.  If the percent 
sand and fine gravel becomes high enough, the distribution becomes bimodal, developing 
a mode (peak) in the sand range in addition to the other mode (peak) in the gravel range.  
Bimodality can indicate the presence of two distinct particle-size populations, supplied 
from a different source, with perhaps different petrology and abrasion resistance, and 
each population may have had a different transport distance.  The recognition and 
characterization of the degree of bimodality is important for studies of sedimentation and 
fluvial geomorphology because incipient motion conditions and transport behavior are 
different in unimodal and bimodal sediment mixtures (Wilcock 1993).  Bimodality is also 
of concern for matters of stream ecology and fish spawning habitat, especially if one of 
the distribution modes is in the size range of sand to pea-gravel. 
 
 
Bimodality parameters 
Wilcock (1993) proposed a parameter B to characterize the degree of bimodality.  The 
parameter is based on the distance between the two modes, and on the amount of 
sediment contained in the modes.  The distance between the modes is expressed in the 
equation as the ratio of the particle size in mm of the coarse mode Dcm and the fine mode 
Dfm.  In analogy to the definition of geometric standard deviation, the square root is taken 
from this ratio.  To this ratio is added the proportion of sediment contained in the coarse 
modes Pcm and in the fine mode Pfm.  These proportions are obtained by summing the 
decimal frequency of four (k) contiguous size classes of 1/4 φ-units that contain the 
mode.  
 
 

Pcm = ∑
i=1

k

 m%cmi   and     Pfm = ∑
i=1

k

 mfmi                (2.77) 

 
For sieving in 1/2 φ-units, k becomes 2, comprising the size class of the mode and the 
largest neighboring size class.  For polymodal distributions, Eq. 2.77 is applied to all 
modes.  If all sediment is contained in one of the two modes, Pcm + Pfm = 1.  This value 
decreases towards 0 as the degree of bimodality reduces.  Bimodality may be computed 
from (Wilcock 1993):  
 
 

  B = 



Dcm

Dfm

0.5

·  (Pcm +  Pfm)                   (2.78) 
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Wilcock (1993) found a threshold value of B = 1.7, and that gravel is entrained as 
unimodal sediment if the bed-material bimodality value is low (B<1.7).  By contrast, 
bedload is entrained as bimodal sediment if the bed-material is bimodal (B>1.7).  The 
particle-size distribution in Table 2.3 has a coarse mode in the size class of 45.3 mm.  Eq. 
2.78 could be applied to test if the increased frequency for the size class of 22.6 mm 
qualifies for bimodality.  The square root of the ratio of the particle-size class of the 
coarse mode (45.3 mm) and the presumed fine mode (22.6 mm) = 20.5 = 1.41.  The 
decimal frequency of the coarse mode and its largest neighboring size class (64 mm), and 
the decimal frequency of the presumed fine mode and its largest neighboring size class 
(16 mm) are summed, yielding 0.111 + 0.109 + 0.106 + 0.094 = 0.42.  The product of the 
two bracketed terms in Eq. 2.78 is 0.6, which is smaller than the threshold value of 1.7.  
Thus, the particle-size distribution in Table 2.3 is not bimodal. 
 
Sambrook Smith et al. (1997) proposed a slightly different bimodality index (B*).  This 
index accounts for the relative size of the two modes and produces a numerical value that 
reflects the magnitude of the difference in the particle size of the fine and the coarse 
mode.  The bimodality index is applicable to particle-size distributions in φ units.   
 
 

  B* = | |φm2 - φm1  



P2m

P1m
                   (2.79) 

 
 
φ1m and φ2m are the φ-sizes of the primary and the secondary mode, respectively, and P1m 
and P2m are the proportions of sediment contained in the primary and secondary mode.  
The above index is always positive.  Bimodality starts at B* > 1.5 - 2.0.  Exchanging the 
absolute signs in Eq. 2.79 for brackets renders B* negative for a primary mode in the fine 
sediment.  Applied to the particle-size distribution on Table 2.3, the primary and 
secondary modes are –5.5 and –4.5 φ, and contain 11.1 and 10.6% of the sediment, 
respectively.  Thus, Eq. 2.79 yields |-5.5 - -4.5| ·  (11.1/10.6) = 1.0 ·  1.05 = 1.05 and 
indicates that the distribution is not bimodal.  
 
 
Surface bimodality and percent fines: effect of different sampling methods 
Bimodality and the percent fines (Section 2.1.5.8) are related, although not by a 
monotonic function, and both the degree of bimodality and the percent fines are altered 
depending on how the sediment on the stream surface is sampled.  Sambrook Smith et al. 
(1997) developed a numerical model to show this change.  As sand is supplied to a gravel 
surface, sand first fills the voids between the gravel particles, until, as more sand is 
added, even the big particles become buried.  The entire amount of sand in the 
experiment adds up to 100 %.  For various percentages of sand added, the surface 
sediment is repeatedly sampled using two different methods: (1) picking individual 
particles off the surface (areal surface samples), and (2) removing a layer of surface 
sediment (armor layer sample).  Both the percent surface sand and the degree of 
bimodality were computed for given  
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percentages of sand added to the streambed, and both parameters varied depending on the 
sampling method used.    
 
When particles were picked off the surface, the percent sand computed from those areal 
samples Sa quickly rose to 80% as the voids between the large clasts started to be filled 
(20% sand added).  The percent sand computed from the volumetric armor layer samples 
Sv increased slowly, reaching not even 40% when the entire surface was covered with 
sand (at Sa = 100) (Fig. 2.21).   
 

 
Fig. 2.21:  Percent surface sand and degree of bimodality computed for two different sampling methods for 
increasing amounts of sand.  Sa and B*a are the percent surface sand and degree of bimodality computed for 
areal surface samples, Sv  and B*v are the percent surface sand and the degree of bimodality computed for an 
armor layer sample (Reprinted from Sambrook Smith et al. (1997), by permission of the American 
Geophysical Union). 
 
 
The degree of bimodality differed even more between the two sampling methods.  For the 
areal samples, bimodality B*a, increased sharply and was most pronounced when about 
50% of the surface was covered by sand (Sa ≈ 50%).  For larger amounts of sand, the 
degree of bimodality again decreased.  When using armor layer samples, bimodality B*v 
increased slowly as progressively more sand was added to the bed. 
 
 
2.2  Shape analysis 

Particle forms are characterized by two factors: shape and angularity.  Shape refers to the 
ratio of the three axes lengths, whereas angularity refers to whether a particle has angular 
edges as opposed to a rounded surface. 
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Many parameters for characterizing particle form were developed in the 1930s to 1960s 
because it was realized that particle form affects the area exposed to forces of flow, drag 
forces, lift forces, and therefore particle entrainment, transport, and deposition.  Thus, two 
particles of the same weight or the same b-axis size but with different shapes can respond 
quite differently to water flow.  It is therefore important to consider whether a particular 
study requires knowledge of the longest, the intermediate, or the shortest axis, or of all 
axes.   
 
 
2.2.1  Compact, platy, bladed, and elongated particle shapes 

Particles are classified into four basic shapes according to the ratios of the three particle 
axes, where a is the longest axis, b is the intermediate axis, and c is the shortest axis.  The 
length of the particle axes can be measured manually using a ruler, calipers, or a pebble 
box (Sections 2.1.3.7 – 2.1.3.8).  An approximation of particle axes lengths can also be 
computed from the axes of an ellipse that best fits the planimetrically determined outline 
of a particle on a photograph (see photosieving, Section 4.1.3.3).  The ellipse-
approximation eliminates the effects of angularity on particle shape, and thus improves 
the determination of particle shape for angular particles (Diepenbroek and De Jong 1994). 
 
The particle shape of a disc is characterized by its small c-axis.  The degree of disc-shape 
is quantified by the axis ratio of c/b (Krumbein 1941).  A sphere-like particle, in turn, has 
almost identical a, b, and c axes.  A bladed particle is thin and long, i.e., it has small 
ratios of c/b and b/a, whereas a rod-like particle is long, which is quantified by a small b/a 
ratio (Fig. 2.22).  Fig. 2.23 depicts these particle shapes using blocks for simplicity.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.22:  (A) Relation between axes ratios and particle shape (Zingg’s classification) (Redrawn from 
Krumbein (1941), by permission of the Society for Sedimentary Geology).  (B) Relation between sphericity 
and particle shape.  Lines of equal sphericity shown as function of the axes ratios b/a and c/b.  (Redrawn 
from Krumbein (1941), by permission of the Society for Sedimentary Geology).  
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Sneed and Folk (1958) classify particle shape in terms of platyness, bladedness, 
elongatedness, and compactness (Fig. 2.23).  The form factor F distinguishes between 
platy (i.e., disc shaped), bladed (i.e., ellipsoid) and elongated (i.e., rod shaped) particles 
and is computed from 
 
 

  F = 
a - b
a - c                           (2.80) 

 
 
F < 0.33 defines platy particles, 0.33 < F < 0.67 defines bladed particles, and F > 0.67 
defines elongated particles.  The degree of platyness, bladedness, and elongatedness, i.e., 
the degree of deviation from compactness S, is defined by the ratio of 
   
 

  S = 
c
a                           (2.81) 

 
 

 
 
Fig. 2.23:  (A) Sphericity-form diagram showing relation between particle shape and sphericity (Redrawn 
from Sneed and Folk (1958), by permission of the University of Chicago Press).  (B) Form triangle with 
illustration of particle shapes using blocks of the appropriate axes ratios; all blocks have the same volume 
(Reprinted from Sneed and Folk (1958), by permission of the University of Chicago Press).  
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Particles are compact (C) with a shape close to a sphere if the S factor > 0.7.  Particles 
classify as compact platy, bladed, or elongated if 0.5 < S < 0.7, as platy, bladed, or 
elongated for 0.3 < S < 0.5, and as very platy, bladed, or elongated for S < 0.3.  The four 
classes for compact, platy, bladed, and elongated, plus the degrees of deviation from 
sphericity (e.g., compact bladed or very bladed) yield a total of 10 shape categories.  The 
numerical values of the F and S factors are plotted in a triangular diagram from which the 
descriptive term of particle shape can be read.  
 
 
2.2.2  Sphericity 

Particle sphericity refers to how well a particle of a given shape relates to the transport 
properties of a sphere, whereas the expression roundness refers to the degree to which the 
edges of a particle are rounded (Section 2.2.3).  Sphericity can be used as an indication of 
fluvial transport distance (Section 2.2.2.1), as well as a measure of particle suspensibility 
and transportability, i.e., the ability of a particle to remain in transport once entrained 
(Section 2.2.2.2).  Since both concepts involve different principles, i.e., abrasion versus 
suspensibility, it is important to use different definitions of sphericity in each case.  
  
 
2.2.2.1  Indication of fluvial transport distance 

As particles are transported over long distances, abrasion wears off not only the particle 
edges (see roundness, Section 2.2.3), but may tend to equalize the three axes lengths as 
well, thus making a particle more spherical.  Wadell (1932) defined this kind of sphericity 
as the third cube of the ratio of a measure for particle volume to the volume of the sphere 
circumscribing it.  This expression was simplified by Krumbein (1941) and Pye and Pye 
(1943) who suggested computing sphericity ψ as 
 
 

  ψ = 



b ·  c

a2

1/3

                        (2.82) 

 
 
Krumbein’s sphericity reaches the value of 1 for perfect spheres and decreases towards 0 
for extremely platy or elongated particles.  Particles of different shapes can have the same 
sphericity value.  However, platyness and elongatedness do not increase at even rates as 
the degree of sphericity decreases.  For example, a particle with an elongation ratio of b/a 
= 0.6, and a platyness ratio of c/b = 0.2 has a sphericity value of ψ = 0.42, but a particle 
with an elongation ratio of b/a = 0.2, and platyness ratio of c/b = 0.6, has a sphericity 
value of ψ = 0.32 (Fig. 2.22).  This sphericity index acknowledges that as sphericity 
increases with transport distance, the degree of elongatedness wears off more quickly or 
pronouncedly during fluvial transport than the degree of platyness. 
 
Particles of different structural properties from different geological parent material have 
different susceptibilities to becoming sphere-like. Granite tends to break into cubic blocks 
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and reaches a high degree of sphericity quickly with increasing transport distance, 
whereas the “layered” structure of schist produces disc-shaped particles that do not 
necessarily become highly spherical even after long transport distances.  Similarly, large 
basalt particles tend to chip pieces off during transport, thus producing small elongated 
instead of spherical particles.  
 
Not all researchers agree on the degree to which fluvial or coastal transport affects 
particle sphericity.  Bartolomä (1992) concluded that sphericity and shape are 
predominantly controlled by the structural properties of the source rock, and barely 
affected by transport, and that consequently sphericity and roundness (Section 2.2.3) are 
independent properties.   
 
 
2.2.2.2  Indication of particle transportability 

Two definitions of sphericity are commonly used to refer to particle transportability: the 
Corey (1949) shape factor C, and the Sneed and Folk (1958) effective settling sphericity 
ψr.  Both definitions are similar and transformable, and both definitions reach the value of 
1 for perfect spheres and decrease towards 0 with increasing departure from sphericity. 
 
 
Corey shape factor 
The Corey (1949) shape factor is used as a parameter to determine the particle settling 
velocity which for particles of equal weight is affected by particle shape.  The shape 
factor is computed from (Yang 1996, p.4): 
 

  C = 
c

(a ·  b)0.5                           (2.83) 

 
 
Ellipsoidal or compact bladed gravel particles with long fluvial transport distances have 
values around 0.7, whereas bladed particle shapes in mountain streams have values 
around 0.5. 
 
 
Sneed and Folk effective settling sphericity 
Sneed and Folk (1958) define the effective settling sphericity as 
 

  ψr = 



c2

a ·  b

1/3

                                  (2.84) 

 
 
and provide a diagram to show how effective settling sphericity is related to particle 
shape: the form factor F that distinguishes between platy, bladed, and elongated particles 
(Eq. 2.80) and the degree of compactness S (Eq. 2.81) (Fig. 2.23).   
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Lines of equal settling sphericity go diagonally across the diagram, and show that for the 
same degree of flatness (axis ratio of c/a) platy particles offer more resistance to settling 
than elongated particles.  Thus, the same value of ψr = 0.7 is obtained for compact platy 
as well as elongated particles (Fig. 2.23).  This definition of settling sphericity indicates 
the tendency of platy particles to settle relatively slowly.  Thus, platy particles easily 
remain suspended in flow, and once entrained can be transported over long distances.   
 
If lines of equal Corey shape factors were included in the Sneed and Folk diagram (Fig. 
2.23), they would plot approximately parallel but below to the lines of equal settling 
sphericity.  Lines of equal values of the Krumbein (1941) sphericity would also plot 
diagonally across the Sneed and Folk diagram, but point into the opposite direction of the 
Sneed and Folk sphericity.  Compact elongated and platy particles would plot on the same 
line indicating a similar transport distance.  The Krumbein sphericity, referring to 
transport distance, and the Sneed and Folk sphericity, referring to transportability, 
intersect and have the same numerical values for particles roughly along the dividing line 
between bladed and elongated particles with F values around 0.67.  
 
2.2.3  Roundness or angularity: analytical and visual approaches 

Roundness describes how well the “edges” of a particle are rounded.  Roundness and 
sphericity are not conceptually related and are largely independent, however, nearly 
spherical fluvial particles seldom show any sharp edges, whereas particles that are 
ellipsoidal, bladed, or elongated are much more likely to show sharp edges.   
 
Angular particles tend to wedge into each other and do not roll well.  Thus, angularity 
reduces particle mobility and probability of entrainment.  Roundness increases as the 
edges wear due to abrasion.  Thus, high angularity also indicates that a particle has not 
been transported over a long distance.  A number of different roundness indices has been 
developed and are summarized by Swan (1974).   
 
Wadell (1932) developed a complicated procedure of measuring and computing particle 
roundness P that computes the mean size of the radii r that can be fitted into the number 
of corners n that a particle has and divides this number by the radius of the maximum 
inscribed circle R so that  
 

  P = 
Σrn

n ·  R                          (2.85) 

 
 
On the basis of Wadell’s results, Krumbein (1941) developed a chart for the visual 
estimate of particle roundness which has values between 0.1 (for very angular) and 0.9 
(for very smooth particles) (Fig. 2.24). Mean roundness Pm for a deposit is computed by a 
weighting approach that multiplies the roundness index P by the number of particles n that  
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Fig. 2.24:  Images for visual analysis of roundness for pebbles 16 - 32 mm.  The analysis should be carried 
out for each particle-size class individually.  The chart should be enlarged so that shown particle b-axes are of 
the same length as the particles to be analyzed.  (Slightly modified from Krumbein (1941), by permission of 
the Society for Sedimentary Geology). 
 
 
have that roundness, sums the Pn products and divides by the total number of particles in 
the sample Σn.  
 
 

  Pm = 
ΣP ·  n

Σn
                            (2.86) 

 
Further discussion of conceptual and practical issues regarding particle roundness are 
provided by Diepenbroek et al. (1992). 
 
 
2.2.4  Shape/roundness matrix: visual field classification 

Some field studies might want to classify particles not only by one, but by two parameters 
combined, such as particle shape and angularity, in order to differentiate between deposits 
of different sedimentary origins or depositional processes.  Crofts (1974) designed a chart 
for visual field evaluation of particle shape and angularity (Fig. 2.25).  For 50 random 
particles collected from a 1-m2 area, the first step of the visual analysis distinguishes 
between spherical and flat particles. Particles are assigned to one of the 6 shape categories 
ranging from very spherical to very flat (neglecting the degree of elongatedness).  Then  
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Fig. 2.25:  Visual 6-by-6 matrix distinguishing between the degrees of sphericity-to-flatness and roundness-
to-angularity (top), and example of plotted results (bottom).  (Reprinted from Crofts (1974), by permission 
of the Society for Sedimentary Geology.)  
 
 
each particle is sorted into one of the 6 degrees of angularity.  The number of particles 
within each of the potential 36 shape-angularity categories is recorded and may be plotted 
as a bivariate scattergram.  For such a plot, the number of particles per category is 
grouped into 4 - 6 evenly spaced intervals, and each consecutive interval is assigned an 
increasing degree of shading or hatching.  The visual analysis of 50 particles from one 
field location takes less than 30 minutes including the time for field plotting the results. 
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The same approach as outlined above can be applied to any two-particle parameters if 
their variability can be described in certain visually distinguishable increments.  For best 
results, the visual classification matrix should be larger than 4 by 4, but not exceed 9 by 9 
fields.  Each study needs to find the optimum matrix size, as well as the optimum sample 
size, compromising between accuracy and time expenditure.   
 
Visual field classification can also be used to distinguish between three particle 
parameters.  An example in which particle-size mixtures are visually classified into three 
major and 12 minor size categories, and results are plotted in ternary diagrams, is 
provided by Buffington and Montgomery (1999a) (Section 4.1.3.5). 
 
 
2.2.5  Pivot angles and their computation 

One of the most important applications of particle-shape parameters in sediment transport 
studies of gravel-bed rivers is the determination of the pivot angle, also called the angle of 
repose or intergranular friction angle.  The pivot angle is the angle Φ that a top particle of 
the diameter D has to overcome when rolling over a bottom particle with the diameter K 
that is partially under and partially in front of it (Fig. 2.26).  Thus, pivot angles control the 
force required for particle motion, and are an integral part of force-balancing equations.   
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                    Gravity 
 
 
Fig. 2.26:  Definition of pivot angle Φ, and particle diameters D (top particle), and K (bottom particle). 
 
 
Pivot angles are difficult to measure in the field (Johnston et al. 1998).  Measurements are 
therefore either performed on pieces of reconstructed streambed in a lab (Kirchner et al. 
1990) or the pivot angle is estimated from various particle parameters such as: 
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• particle roundness, 
• particle shape, 
• packing (base of two, three, or four bottom particles K), and  
• relative particle size D/K. 
 
 
Angularity or roundness 
Pivot angles increase with angularity (Fig. 2.27), a reason why riprap is often angular.  In 
order to rotate an even-sized triangle (all inside angles = 60°) situated on a flat plain over 
one of its angles, a pivot angle of 60° needs to be overcome.  The pivot angle for a square 
with four angles of 45° is 45.  Pivot angles Φ for even-sided polygons can be expressed as 
(Julien 1995): 
 
 

  Φ = 
180°

n                           (2.87) 

 
 
where n is the number of angles within the polygon.  For a sphere, the number of inside 
angles is indefinitely large, thus Φ = 180°/� = 0°, which means that there is no pivot angle 
for a sphere on a flat surface.  Pivot angles on a streambed may exceed those in Fig. 2.27 
because surface particles may be nestled in shallow depressions on top of three or four 
bottom particles.   
 
 
 
 
 
 

  Φ = 
180°

3  = 60°         Φ = 
180°

4  = 45°           Φ = 
180°

5  = 36°      Φ = 
180°

6  = 30°     Φ = 
180°

∞  = 0°   

 
 
Fig. 2.27:  Effect of angularity on pivot angles on a flat surface (Redrawn from Julien (1995), by permission 
of Cambridge University Press). 
 
 
Particle packing  
Pivot angles vary with packing patterns of the bottom particles.  A spherical top particle D 
can be nestled on a base of two, three, or four spherical bottom particles K (Fig. 2.28).   
Pivot angles described in Fig. 2.28 vary with three parameters: (1) the size ratio D/K, (2) 
whether the top particle D rolls over the top (grain-top rotation) or over the saddle 
between two spheres K (saddle-top rotation) and (3) the number of bottom particles K 
comprising the base for the top particle D (Li and Komar 1986; Julien 1995). 
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      3 cylinders     4 spheres      5 spheres 
         Φ = 30°      Φ = 19.5°      Φ = 35.3°       
 
 
Fig. 2.28:  Pivot angles for unisized particles (D/K = 1) with different packing: top particles lying on top of 
two (left), three (center), and four particles (right). (Redrawn from Julien (1995), by permission of 
Cambridge University Press ). 
 
 
Particle shape  
Spherical particles have smaller pivot angles than particles with ellipsoidal, elongated, or 
platy particle shapes.  Pivot angles for spheres are approximately 10° lower than those for 
ellipsoids which are about 10° lower than those for angular particles (Li and Komar 
1986).   
 
 
Relative size 
Miller and Byrne (1966) express the effect of relative particle size D/K on the pivot angle 
Φ  by a negative power function.  
 
 

  Φ = a 



D

K

-b

                         (2.88) 

 
 
Pivot angles for small surface particles D nestled on top of large bottom particles K with 
D/K ≈ 0.3 are 40-50° larger than the pivot angles for large surface particles on top of 
small bottom particles with D/K ≈ 3 (Fig. 2.29).  This effect of relative size is seen for all 
particle shapes. 
 
 
Pivot angles in channel beds 
Kirchner et al. (1990) measured pivot angles on water-worked flume surfaces and 
concluded that pivot angles obtained from experiments with well sorted and well rounded 
particles in regular packing are too low, and vary too much with relative size.  Kirchner et 
al. (1990) therefore suggest the following a-coefficient and b-exponent for Eq. (2.86) 
(Fig. 2.30): 
 
 

  Φ50 = 55.2 



D

K50

-0.31

                      (2.89) 
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Fig. 2.29:  Pivot angles for spherical, ellipsoidal, and angular particle shapes as well as for imbricated 
deposits as functions of relative particle size, i.e., the ratio of entrained particle size D to bottom particle size 
K (plotted with data from Li and Komar 1986). 
 
 
where Φ50 is the median pivot angle, and K50 is the median size of the bottom bed-
material particles.  Gravel-bed rivers with particles of various dimensions, various relative 
sizes, shapes, rotation modes, and packing have a wide range of small and large pivot 
angles (Buffington et al. 1992).  Each riverbed is characterized by a unique probability 
distribution of pivot angles, and the parameters of the distribution (median, skewness, and 
kurtosis) are a function of various particle parameters.   
 
Buffington et al. (1992) include a term for bed-material sorting σ in their equation and 
provide the coefficient x (Eq. 2.90).  Adjusting x facilitates computing the probability 
distribution of pivot angles. tanΦ, to which critical shear stress τc is proportional, can vary 
widely on a given streambed, indicating the differential erodibility of surface particles. 
  
 

  Φx = ax 



D

K50

-bx
 ·  σ

-cx
                   (2.90) 
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Fig. 2.30:  Pivot angles for particles on channel surfaces computed from Eq. 2.89 by Kirchner et al. (1990) 
(thick line);  Median pivot angles computed from Eq. 2.90 by Buffington et al. (1992) (thick line with 
bullets).  For comparison: pivot angles for saddle-top rotation of well sorted spheres and ellipsoids in regular 
packing, based on results by Li and Komar (1986) (thin hatched lines). 
 
 
2.2.6  Sample size for shape analysis 

The number of particles used to establish the dominant bed-material particle shape 
depends on the variability of the particle shapes found at a site.  There also might be 
several populations of particle shapes corresponding to differences in hardness of the  
source rock and differences in travel distance.  Particles originating from soft rocks, or 
those traveled farthest are more rounded and more ellipsoidal than hard rocks or bedload 
supplied to the mainstem stream by a small tributary just upstream.  Particles from local 
rockfall or debris flows are usually angular and deviate from a spherical or ellipsoidal 
particle shape.   
 
Because the situation can be quite different from stream to stream, pilot studies are 
recommended.  The first step is to visually identify particle-shape populations.  Then 
collect 25 particles from each population, measure the 3 axes, compute the S and F form 
factors (Eqs. 2.80 and 2.81) and plot them in a sphericity-form diagram (Fig. 2.23).  If the 
data for 25 particles do not plot closely together, more particles may need to be analyzed 
or the criteria for identifying particle shapes need to be changed.  Another option is to  
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apply Student’s t-statistics to measured particle-shape parameters and to determine the 
sample size necessary for an acceptable accuracy and a given particle-shape variability 
(see Section 5 on sample size).  
 
 
2.3  Particle density, specific weight, specific gravity, and submerged 
specific weight 

Many equations for sediment transport or the initiation of particle motion require particle 
density or the specific particle weight as input.  Particle density is particle weight (or 
mass) (m) divided by its volume V.  Conventionally, particle density is abbreviated by the 
Greek letter “rho” with the subscript s for sediment (ρs) to distinguish it from the fluid 
density (in this case water) which is noted by ρf. 
 
 

  ρs  =  
m
V                             (2.91) 

 
 
The units of particle density are g/cm3, or kg/m3.  Particle mass is measured by weight and 
particle volume is either measured or estimated from particle shape.  To measure particle 
volume, take a large measuring beaker for large particles, or a graded cylinder for small 
rocks, fill it about half full with water and record the volume of water.  Place the particle 
into the water (particle must be completely submerged) and record the water volume 
corresponding to the elevated water level.  The difference between the two water volumes 
in the beaker is the particle volume.  When particles are small, or when one wants to 
know the average density of particles in a mixture, several particles can be analyzed 
together.  To reduce measurement errors, the entire analysis should be repeated several 
times with new particles. 
 
The density of quartz and feldspar particles is 2.65 g/cm3 or 2,650 kg/m3.  This value can 
often be used as a first approximation of particle density because many particles contain a 
high percentage of quartz and feldspar.  Rock density is less than the one for quartz when 
rocks have pores filled with water or air.  Sandstone rocks, for example, have a density of 
about 2.2 g/cm3.  Solid, dark volcanic rocks or those with high metal content have a 
density of more than 3 g/cm3.  Density is to some extent dependent on particle size.  
Cobble and gravel-sized pieces of vesicular basalt or pumice might have densities 
between 2 and 1 g/cm3.  This value can increase to about 3 g/cm3 when vesicular volcanic 
rock is ground into sand size and the vesicular structure is lost.  Table 2.15 presents 
particle densities for common geological materials.   
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Table 2.15:  Particle densities (g/cm3) of various materials*  
_________________________________________________________________________________ 
Material            Density 
_______________________________________________________________________ 
humus, pumice             <1.5 
sandstone             2.1 - 2.2 
limestone, quartz, granite, porphyry     2.7 
feldspars (the “white” in granite)        2.5 - 2.8 
dolomite, anhydrite          2.9 
micas (the flaky, shiny parts of granite)    2.7 - 3.3 
apatite              3.1 - 3.3 
peridotite, gabbro             >3.2 
basalt, diabas            3.3 
iron              7.2 
_________________________________________________________________________________ 
*for comparison: water density at 4°C = 1.00 g/cm3 

 
 
Specific particle weight 
Specific particle weight γs is the product of particle density ρs and acceleration due to 
gravity g.  For most applications in gravel-bed rivers g can be assumed to take a value of 
981 cm/s2, or 9.81 m/s2. 
 
 

  γs = ρs ·  g   =   2.65 ·  981 
g ·  cm

cm3 ·  s2  =  2,600 
g

cm2· s2         (2.92) 

 
 
Specific gravity of sediment and water 
Specific gravity is the dimensionless ratio of specific weights or densities.  For quartz 
particles with a density of 2.65 g/cm3 and water with a density of 1 g/cm3, the specific 
gravity is  
 
 

Gs  =  
γs

γw
  =  

ρs

ρw
  =  

2.65
1   =  2.65                  (2.93) 

 
 
The density of pure water at 4°C (ρpw) is 1 g/cm3.  River water with suspended sediment 
concentration and a temperature above 4°C may have a density (ρrw) higher than 1, 
perhaps 1.005.  The specific gravity of river water Grw is computed from    
 
 

Grw  =  
γrw

γpw
  =  

ρrw

ρpw
  =  

1.005
1   =  1.005                (2.94) 
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Submerged specific weight 
The submerged specific weight ρ’s of a quartz particle is the difference between the 
particle density and the fluid density.  For clear water, the submerged specific particle 
weight is  
 
 
  ρ’s = ρs - ρf  = 2.65 - 1 = 1.65 g/cm3.                (2.95) 
 
 
For heavily sediment-laden water with a sediment concentration of 100 g/l, fluid density 
increases to 1.23 g/cm3.  Thus, the submerged specific particle weight is reduced to 1.42 
g/cm3.  This reduction in the specific weight of particles in heavily sediment-laden flow 
leads to an increase in particle mobility and may even cause boulders to “swim”.  
 
 
2.4  Bulk density, porosity, and void ratio 

Knowledge of sediment bulk density is needed to evaluate the pore space available for 
aquatic habitat (Milhous 2001).  Bulk density ρb is defined as the ratio of the weight of a 
bulk material mb that is contained in a specific bulk volume Vb.   
 
 

  ρb  =  
mb

Vb
                          (2.96) 

 
 
In situ gravel sediment, inundated sediment 
Bulk density of riverbed material should be measured on undisturbed samples in their 
original packing because the bulk density changes when the natural packing is disturbed 
by shoveling the sediment.  Piston cores also disturb the original packing and are not 
suitable for measurements of bulk density in gravel deposits. 
 
Milhous (pers. comm. 2000) suggested that bulk density of inundated sediment in gravel-
bed rivers may be measured in situ from large freeze cores (Section 4.2.4.8) taken from 
the substrate below the water surface, so that the sample is completely saturated with 
water (i.e., all pores filled with water, none with air).  The cores are weighed frozen and 
fully waterlogged (mw), as well as after the ice has melted and the sediment has dried (ms).  
To compute the bulk density of the sediment in the core, the dry sediment mass is divided 
by the total core volume which is the volume of the sediment particles Vs plus the volume 
of the water in the pores Vw. 
 
 

ρb = 
ms

Vw + Vs
                         (2.97) 
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The volume of the sediment particles is calculated from 
 

  Vs = 
ms

 ρrw ·  Gs
                       (2.98)

  
 
where ρrw is the density of the river water, and Gs is the specific gravity of the sediment 
(Section 2.3).  The volume of the water contained in the sample is computed from  
 
 

  Vw = 
mw

 ρrw ·  Grw
                       (2.99) 

 
 
where Grw is the specific gravity of the river water (Section 2.3).   
 
 
In situ gravel sediment, dry surface  
Milhous (2001) suggested the following technique for measuring the bulk density of 
subsurface sediment in a dry part of the streambed:  
 
Step 1:  Measure the volume of water that displaces the surface sediment or the 
armor layer  

Remove all surface particles from a dry streambed area for a measurement of the 
subsurface sediment bulk density.  Alternatively, remove the armor layer (Sections 
4.1.3.1, 4.1.3.2, 4.2.1.2) before measuring the subarmor bulk density.  Place a square 
frame, 0.6 – 0.9 m in length, and 2.5 – 5 cm high onto the area cleared of armor 
sediment (Fig. 2.31).  Place some sediment along the inside of the frame just next to 
the frame to create a smooth transition between sediment and frame.  Smooth out the 
corners as well.  Do not sample or disturb this sediment.  Cover the exposed subsurface 
sediment surface with a plastic sheet, and fit it snugly into all corners within the inside 
of the frame.  Fill the plastic-lined depression with water (river water is fine) and 
measure the water volume needed until overflow using a large laboratory cylinder.  
Alternatively, weigh the amount of water needed to fill the plastic sheet and compute 
the volume using a fluid density of 1,000 kg/m3 for clear, cold water.  Discard the 
water and remove the plastic sheet (Fig. 2.32 top).  Be careful not to disturb the frame 
or the exposed sediment surface. 
 

Step 2:  Measure the volume of water that displaces the subsurface or subarmor 
sediment 

Take a subsurface bed-material sample with a volume of about 20 liters from inside 
the area within the frame (See Section 4.2.2 for vertical extent of a subsurface bulk 
sample).  This sample is later dried, weighed, and sieved.  When extracting the sample, 
the operator should try to create a hole with a smooth bottom.  The operator should be  
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Fig. 2.31:  Frame for measuring in situ subsurface sediment bulk density (Photo courtesy of R. Milhous). 
 
 

careful not to disturb the exposed subsurface sediment surface or the position of the 
frame while taking the subsurface sample.  After the subsurface sample is taken, 
carefully line the hole with plastic sheeting and extend the sheet over the exposed 
sediment surface within the frame, and the frame itself.  Make sure that the plastic 
sheet fits snugly into the hole and leaves no cavities.  Air-filled cavities are especially 
prone to develop in the bottom of the hole.  Make sure the plastic sheet is everywhere 
in contact with the bottom of the hole.  Refill the plastic sheet with water and measure 
the volume needed until overflow onto the gravel surface (Fig. 2.32 bottom).   

 
The volume displacing the subsurface sample Vsub is the difference between the volume of 
the second V2 and the first measurement V1.  
 
 
  Vsub = V2 - V1                         (2.100) 
 
 
The bulk density of the bed material ρsub is the ratio of dry weight of the subsurface 
sediment removed from the hole msub to the volume of the subsurface sample Vsub.  
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  ρsub  =  
msub

Vsub
                        (2.101) 

 
Bulk density measured this way in several gravel-bed rivers ranged between 1.7 and 2.6 
g/cm3, with a mean of 2.1 g/cm3.  
 
 
  Step 1: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  Step 2: 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.32:  In situ measurements of the subsurface sediment bulk density.   
 
 
Repeating density measurements to determine a mean value is advisable, because 
differences in material packing as well as operator errors are likely to produce a range of 
results.  Note also that a 20-liter sample volume yields a sample mass of approximately 10 
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kg and that several subsamples may be required to obtain the total sample mass necessary 
for a preset accuracy of the particle-size analysis. 
 
If the sediment porosity p is known, bulk density may also be computed from  
 
 
  ρb = ρs ·  (1 - p)                      (2.102) 
 
 
Effect of particle packing on bulk density 
Particle packing can significantly affect bulk density.  The weight of quartz sand filling a 
10 liter pail (1,000 cm3; ca. 2.5 gallons) is not 2.65 g/cm3 times 1,000 cm3 = 26.5 kg, but 
considerably less (approximately 20 kg).  The exact weight depends on how closely the 
quartz grains are packed.  Particle packing can range between open and dense.  The 
packing is open or cubic when each unisized sphere has a neighbor exactly on top and 
beneath, on the north, east, south, and the west side.  The resulting bulk density for this 
packing is 1.39 g/cm3.  In the densest packing (rhombohedral), six spheres are clustered 
around the center sphere, and have a top sphere in the “pocket” or depressions between 
the bottom spheres.  In this case, the bulk density is 1.96.  Assemblages of natural 
particles are seldom unisized, however.  Thus, small particles fit between the voids left by 
larger particles, and the packing becomes denser the wider the particle-size distribution.  
Packing also becomes more dense as the deposit becomes more compacted due to 
pressure or shock waves (e.g., more rice grains can be filled into a jar if one gently hits 
the bottom of the jar).  Bulk densities for various sediments are presented in Table 2.16. 
 
 

Table 2.16:  Bulk density and porosity for various sediments with a particle density of 2.65 g/cm3. 
_________________________________________________________________________________________________________________________________________ 
Description                     Bulk density   Porosity 
                       (g/cm3)          (-) 
_________________________________________________________________________________________________________________________ 
Unisized spheres in open (cubical) packing (theoretical)      1.39    0.48 
Unisized spheres in closest packing (theoretical)         1.96    0.26 
 
Clay                    1.59 – 1.06  0.40 – 0.60 
Silt                    1.72 – 1.33  0.35 – 0.50 
Fine sand                     2.12 – 1.46  0.20 – 0.45 
Coarse sand                  2.25 – 1.72  0.15 – 0.35 
 
Surface soil of wet clay                1.12    0.58 
Surface soil of loam texture               1.28    0.52 
Subsoil of sandy texture                1.61    0.39 
Sandy loam compacted by heavy traffic           1.90    0.28 
Sandstone                    2.12    0.20 
 
sand-gravel mixture   (Carling and Reader 1982, freeze cores)     2.30    0.13 
range in several gravel-bed rivers             2.60 - 1.70  0.02 – 0.36 
mean of several gravel-bed rivers             2.10    0.21 
__________________________________________________________________________________________________________________________________________ 

(Smith and Wheatcraft 1993) 

(Marshall and Holmes 1988)  

(Milhous, 2001, volume difference) 
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Porosity 
Porosity is defined as the ratio of the space taken up by voids to the total volume of 
sediment.  Porosity is a dimensionless number less than 1, and may be expressed as a 
percentage.  Porosity p can be computed in two ways.  One possibility is: 
 
 

  p  =  
Vv

Vt
    =  

Vt - Vs

Vt
    =  

Vt - 



ms

ρs

Vt
               (2.103) 

 
 
where Vv is the volume of the void or pore spaces, Vt is the total volume of sediment, and 
Vs is the volume of the sediment without pores.  The dry mass of the sediment is ms and 
particle density is ρs.  Alternatively, porosity may be computed from: 
 
 

  p  =  





1 - 
ρb

ρs
                       (2.104) 

 
 
Eqs. 2.102 and 2.104 show that bulk density of a sediment deposit is inversely related to 
porosity, and one term can be used to compute the other.  Porosity is a measure important 
for aquatic habitat studies, as well as for assessing the potential amount of fines in a 
streambed.  However, little is known about the spatial and temporal variability of porosity 
and bulk density in gravel-beds because in-situ measurements of bulk density are time 
consuming and therefore rare. 

 

Void ratio 
The void ratio e is a parameter similar to sediment porosity, and is computed from the 
ratio of the volume of voids to the volume of sediment particles:  
 
   

e  =  
Vv

Vs
    =  

Vt - Vs

Vs
    =  

Vt - 



ms

ρs

ms

ρs

               (2.105) 

 
 
Similar to porosity, void ratio also yields values smaller than 1, but the values are 
somewhat larger. 
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Example 2.1:   
A subsurface sample taken with the water displacement method described in 
Section 2.4 has a total volume of Vt = 0.020 m3 or 20 liter, and a dry mass of mb 
= 42 kg.  The parent material is mainly quartz with a particle density of ρs = 
2,650 kg/m3.   
 
Bulk density  ρb  =  mb/Vt  =  42 kg/0.02 m3        =  2,100 kg/m3. 

Sed. volume  Vs  =  mb/ρs  =  42 kg/2650 m3        =  0.01585 m3. 

Void volume  Vv  =  Vt - Vs  =  0.020 m3 - 0.01585 m3   =  0.00415 m3. 

Porosity (1)  p  =  Vv/Vt   =  0.00415 m3/0.020 m3    =  0.208 or 20.8% 

Porosity (2)  p  = 1-(ρb/ρs)   =  1-(2,100(kg/m3)/2,650(kg/m3))  = 1-0.792 = 0.208 

Void ratio       e  =  Vv/Vs     =  0.00415 m3/0.01585 m3    =  0.2619  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


