

<u>MQOsⁱ for Determination of Cyanotoxinsⁱⁱ in Water and Tissue Samples by</u> <u>Liquid Chromatography and Mass Spectroscopy</u>

^{*ii}*MQOs developed specifically for determination of microcystins, anatoxin-a, and nodularin (toxins produced by cyanobacteria)</sup>

Table 1. Lab Quality Control for Microcystins, Anatoxin-a, and Nodularin in Water and Tissue Samples by Liquid Chromatography and Mass Spectroscopy

Lab Quality Control	Frequency of Analysis	Measurement Quality Objective	DQ Indicator or Reasoning
Tuning ¹ (not reported to SWAMP database)	Per analytical method	Per procedures specified by instrument manufacturer ⁽⁵⁾	Instrument setup
Calibration (not reported to SWAMP database)	Initial method setup and when calibration verification fails	 r² > 0.990 (for single standard) <u>OR</u> r² > 0.900 (for 2 or more standards) RSD ≤20% ⁽⁹⁾ Minimum of 5 points per curve At least 1 calibration point at or below the RL⁽⁵⁾) 	Bias, Instrument QC
Calibration Verification (not reported to SWAMP database)	After every 20 environmental samples 2 or every 12 hours, whichever is more frequent• Expected response or expected concentration ±20%		Bias, Continued Instrument QC
Laboratory Blank	Per 20 environmental samples or per analytical batch, whichever is more frequent		Representativeness of analytical system
Filter Blank ³ (only required if filter is used for process)	Per 20 environmental samples or per analytical batch, whichever is more frequent Reporting Limit		Check of processing materials
Reference Material ⁴ (preferred) <u>OR</u> Laboratory Control Sample	 For certified reference material recovery of 70 130% For non-certified reference materials recovery of 50-150% 		Lab accuracy
Reference Material Duplicate <u>OR</u> Laboratory Control Sample Duplicate	Per 20 environmental samples or per analytical batch, whichever is more frequent RPD ≤25% of true value		Lab precision
Matrix Spike	Per 20 environmental samples or per analytical batch, whichever is more frequent	Recovery 50-150% of true value	Matrix accuracy

ⁱ These MQOs have been developed for current SWAMP methodology. This does not limit the use of the MQOs for other laboratory methods. Please feel free to contact the OIMA Helpdesk (<u>OIMA-Helpdesk@waterboards.ca.gov</u>) to request assistance to adapt the MQOs for an additional laboratory method.

Lab Quality Control	Frequency of Analysis	Measurement Quality Objective	DQ Indicator or Reasoning
Environmental Sample Duplicate <u>OR</u> Matrix Spike Duplicate ⁵	Per 20 environmental samples or per analytical batch, whichever is more frequent	RPD ≤25% (water) RPD ≤30% (tissue)	Matrix precision
Surrogate ⁶	Per analytical method	Based on historical laboratory control limits (recovery of 50-150% or better)	Sample processing QC and process bias
Internal Standard ⁶	Per analytical method	Per analytical method	Instrument QC (after extraction)

¹ Applicable for mass spectroscopy instrument.

² The term "environmental samples" refers to the unknown samples; thus, quality control samples should not be included when calculating every 20 environmental samples.

³ Anytime a filter is used in the processing of the sample, one filter should be analyzed as a filter blank sample.

⁴ If reference material (RM) sample and RM sample duplicate is processed, then a laboratory control sample (LCS) and LCS duplicate is not required. Recommend preparing the RM or LCS from a second source or different manufacturing lot than was used to prepare the calibration standard. If a second source is unavailable, the RM or LCS should be prepared independently from the calibration standard (i.e. not a serial dilution from the stock solution used for calibration).

⁵ Performance of the duplicate on the matrix spike is preferred when environmental samples have low or nondetections. If an environmental sample duplicate is used, result of original must be > RL.

⁶ As appropriate compounds become available. Inclusion of surrogate and internal standard is not standard practice in currently available analytical methods. To ensure data of the highest quality, the use of internal standards and surrogates is preferred by SWAMP. These MQOs will be reviewed annually and may be revised pending further research and applicable method developments.

Table 2. Lab Quality Control Corrective Actions for Microcystins, Anatoxin-a, and Nodularin in Water and Tissue
Samples by Liquid Chromatography and Mass Spectroscopy

Lab Quality Control	Recommended Corrective Action ¹	
Calibration	If calibration does not meet acceptance criteria, then recalibrate instrument prior to analyzing samples.	
Calibration Verification	If verification fails, either recalibrate the instrument or verify with fresh calibration standard as a second attempt. If second attempt verification fails, recalibrate instrument. If further verification fails, maintenance instrument prior to analysis. ⁽⁹⁾	
Laboratory Blank	If value is ≥RL then all samples with detections are considered invalid. Investigate the source contamination. Prepare fresh samples and re-analyze analytical batch.	
Filter Blank	If value is ≥RL then all samples with detections are considered invalid. Investigate the source contamination. Prepare fresh samples and re-analyze analytical batch.	
Reference Material <u>OR</u> Laboratory Control Sample	Reanalyze the reference material or LCS to confirm the result. If reanalysis fails, prepare fresh samples and reanalyze the analytical batch. ⁽⁶⁾	
Reference Material Duplicate <u>OR</u> Laboratory Control Sample Duplicate	Reanalyze the sample to confirm result. Review the recovery obtained for the sample. Review the results of other quality control samples to determine if other analytical problems are the potential source. ⁽⁶⁾	
Matrix Spike	The concentration of the spike solution should be near the midrange of the calibration curve. Reanalyze the sample to confirm the result. Compare result to the recovery of the duplicate sample if possible. Review the results of other quality control samples to determine if other analytical problems are the potential source. ⁽⁶⁾	

Lab Quality Control	Recommended Corrective Action	
Environmental Sample	The concentration of the spike solution should be near the midrange of the	
Duplicate	calibration curve. Reanalyze the sample to confirm the result. Compare result to	
<u>OR</u>	the recovery of the matrix spike sample. Review the results of other quality	
Matrix Spike Duplicate	control samples to determine if other analytical problems are the potential source. ⁽⁶⁾	
Surrogate	Complete actions per analytical method. If applicable, include surrogate in all samples and all QC samples. If acceptance criteria are not met, reprocess samples. Consider behavior of surrogate compound during trouble shooting. If	
	reprocessing of samples is not possible, stop analysis and flag batch. ⁽⁶⁾	
Internal Standard	Complete actions per analytical method. If acceptance criteria are not met, reprocess samples if possible. ⁽⁶⁾	

Documentation should be included when a MQO is not met and appropriate corrective actions are taken. Please include this documentation in the "LabBatchComments" field of the SWAMP data template or in a Corrective Action Report. The documentation should provide justification for excluding the record(s) from the lab batch **or** why the record(s) should be considered in the lab batch after corrective actions.

Table 3. Field Quality Control for Microcystins, Anatoxin-a, and Nodularin in Water and Tissue Samples by Liquid Chromatography and Mass Spectroscopy

Field Quality Control	Frequency of Analysis	Measurement Quality Objective	DQ Indicator or Reasoning
Equipment Blank ¹	5% of analytical batch or 5% of project samples, whichever is fewer	<reporting limit<="" td=""><td>Field Process Bias</td></reporting>	Field Process Bias
Field Duplicate	5% of analytical batch or 5% of project samples, whichever is fewer	RPD ≤25%	Sample Collection Precision
Filter Blank (only required if filtration done in field)	5% of analytical batch or 5% of project samples, whichever is fewer	<reporting limit<="" td=""><td>Sample Process Bias</td></reporting>	Sample Process Bias

¹ Equipment blank refers to preparing a sample bottle blank or sampling equipment blank. Sample bottle blank is only required if the sample bottle is re-cleaned from prior sampling. Sampling equipment blank is only required if a device (e.g. cup, pump) is used to transfer the environmental sample from water body to the sample container.

Table 4. Field Quality Control Corrective Actions for Microcystins, Anatoxin-a, and Nodularin in Water and Tissue Samples by Liquid Chromatography and Mass Spectroscopy

Field Quality Control	Recommended Corrective Action	
Equipment Blank	Investigate the source of contamination. The laboratory should report evidence of fie	
	contamination as soon as possible so corrective actions can be implemented. Samples	
	collected in the presence of field contamination should be flagged. ⁽⁶⁾	
Field Duplicate	Visually inspect the sample to determine if a high RPD between results could be	
	attributed to sample heterogeneity. For duplicate results due to matrix	
	heterogeneity, or where ambient concentrations are below the reporting limit,	
	qualify the results and document the heterogeneity. All failures should be	
	communicated to the project coordinator for further actions. ⁽⁶⁾	
Filter Blank	Investigate the source of contamination. The laboratory should report evidence of field	
	contamination as soon as possible so corrective actions can be implemented. Samples	
	collected in the presence of field contamination should be flagged. ⁽⁶⁾	

¹ Documentation should be included when a MQO is not met and appropriate corrective actions are taken in the field at the time of collection. Please include this documentation in the collection comments found on the field entry form or in a Corrective Action Report. The documentation should provide justification for excluding the record(s) from the data set **or** why the record(s) should be considered in the data set after corrective actions.

Table 5. Sample Handling for Microcystins, Anatoxin-a, and Nodularin in Water and Tissue Samples

Matrix	Container ^{3,6}	Microcystin & Nodularin	Anatoxin-a Temperature &
		Temperature & Holding Time	Holding Time ⁴
Water (for total toxin ¹)	Amber glass	Cool to <6 °C (in dark) for up to	Cool to <6 °C (in dark) for up to
	(recommended) or	5 days, then freeze at <-20°C. ⁽²⁾	3 days, then freeze at <-20°C. ⁽²⁾
	dark colored HDPE ³	Long term storage of up to 6	Long term storage of up to 6
		months at -80°C. ^(10,11)	months at -80°C. (10,11)
Water (for dissolved	Amber glass	Cool to <6 °C (in dark) for up to	Cool to <6 °C (in dark) for up to
phase or	(recommended) or	48 hours, then freeze at <-20°C.	48 hours, then freeze at <-
filtrate)	dark colored HDPE ³	Long term storage of up to 6	20°C. Long term storage of up
		months at -80°C. ^(10,11)	to 6 months at -80°C. ^(10,11)
Water (for particulate	Amber glass	Cool to <6 °C (in dark) for up to	Cool to <6 °C (in dark) for up to
phase ² or	(recommended) or	24 hours, then freeze at <-20°C.	24 hours, then freeze at <-
periphyton)	dark colored HDPE ^{3,5}	Long term storage of up to 6	20°C. Long term storage of up
		months at -80°C. ⁽⁷⁾	to 6 months at -80°C. ⁽⁷⁾
Tissue ⁷ (for dissected	Amber glass	Freeze short term at	Freeze short term at
tissue)	(recommended) or	<-20°C. Long term storage of up	<-20°C. Long term storage of
	dark colored HDPE	to 6 months at	up to 6 months at
		-80°C. ^(1,5)	-80°C. ^(1,5)

¹Analysis of intracellular and extracellular cyanotoxins.

² Analysis of intracellular cyanotoxins.

³ Glass containers recommended to prevent adsorption of toxin to plastic material. ^(3, 8)

⁴ Limit holding time for anatoxin-a analysis to reduce toxin degradation.

⁵ Filtering conducted in the field may utilize petri dishes as an alternative container to store filters.

⁶ If amber or dark colored containers are not available, foil may be used to cover containers. Ensure foil completely covers container.

⁷ Table 5 has been developed for analysis of muscle and organ tissue from fish and shellfish. This does not limit the use of the guidelines for other tissue types. Please feel free to contact the OIMA Helpdesk

(OIMA-Helpdesk@waterboards.ca.gov) to request assistance to adapt the guidelines for an alternative tissue.

References:

- (1) <u>Al-Sammak, M. A.</u> Hoagland K.D., Cassada, D., and Snow, D.D., 2014, Co-occurrence of the Cyanotoxins BMAA, DABA and Anatoxin-a in Nebraska Reservoirs, Fish, and Aquatic Plants, Toxins, Volume 6, 488-508.
- (2) <u>Graham, J.L</u>., Loftin, K.A., Ziegler, A.C., and Meyer, M.T., 2008, Guidelines for design and sampling for cyanobacterial toxin and taste-and-odor studies in lakes and reservoirs: U.S. Geological Survey Scientific Investigations Report 2008–5038, 39 p. [Also at <u>http://pubs.acs.org/doi/abs/10.1021/es1008938</u>]
- (3) <u>Hyenstrand, P.</u>, Metcalf J.S., Beattie K.A., Codd G.A., 2001, Effects of adsorption to plastics and solvent conditions in the analysis of the cyanobacterial toxin microcystin-LR by high performance liquid chromatography, Water Research, Volume 35, Issue 14, 3508-3511.
- (4) <u>Mekebri, A.,</u> Blondina, G.J., Crane, D.B., 2009, Method validation of microcystins in water and tissue by enhanced liquid chromatography tandem mass spectrometry, Journal of Chromatography, Volume 1216, Issue 15, 3147-3155.
- (5) Smith G.A., Pepich B.V., Munch, D.J. Method 536: Determination of Triazine Pesticides and their Degradates In Drinking Water by Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry (LC/ESI-MS/MS), US EPA Ohio: Office Of Ground Water and Drinking Water, Version 1, 2007.
- (6) SWAMP. Water Quality Control and Sample Handling Tables. Web. 10 December 2014.
- (7) <u>Szlag, D.C.</u>, Sinclair, J.L., et al., 2015, Cyanobacteria and Cyanotoxins Occurrence and Removal from Five High-Risk Conventional Treatment Drinking Water Plants, Toxins, Volume 7, 2198-2220.
- (8) US EPA. "Detection." <u>Nutrient Policy and Data</u>. 1 October 2014. Web. 7 January 2015.
- (9) US EPA. Forum on Environmental Measurements. Calibration Curves Program Use/Needs. 2010.
- (10) <u>US EPA, Ohio.</u> Total (Extracellular and Intracellular) Microcystins ADDA by ELISA Analytical Methodology. Version 2, January 2015.
- (11) US EPA, Region 9 Laboratory. SOP 1305 Microcystin by ELISA Analysis. Revision 4, November 2012.