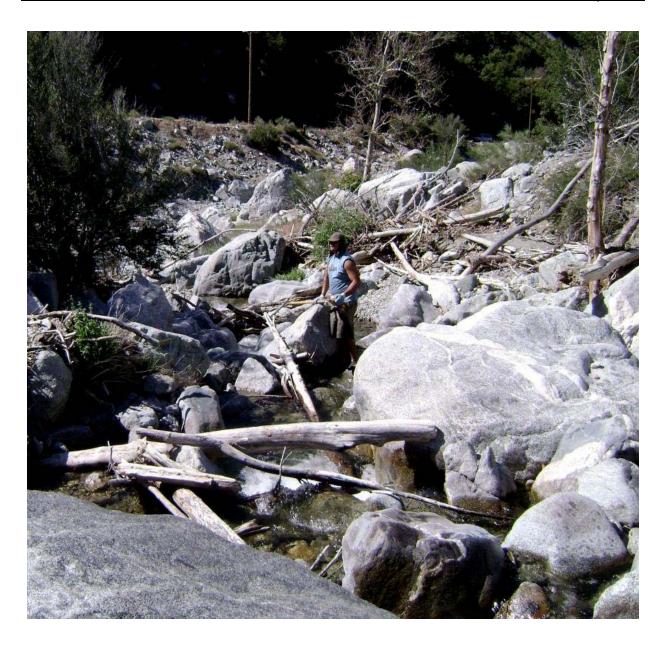


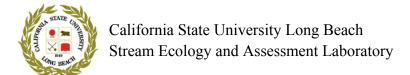
Final Technical Report

2014

FINAL REPORT WADEABLE STREAMS BIOASSESSMENT REGION 8 Sites Sampled: June – July 2011

Jose A. Caprile, and Dr. Dessie L.A. Underwood


California State University Long Beach Stream Ecology and Assessment Laboratory


SWAMP-MR-RB8-2014-0001

February 2014

Table of Contents

Executive Summary	. 5
Introduction	. 6
Project Objective	. 7
Methods	. 8
Sampling Site Selection	. 8
Sampling Reach Determination	. 9
Sample Collection	12
Physical Habitat Quality Assessment and Water Quality Measurements	13
Taxonomic Identification of BMIs	13
Data Analysis	14
Index of Biotic Integrity	14
Quality Assurance and Quality Control (QA/QC)	15
Results	18
BMI Community Structure	18
Physical Habitat Quality	18
Conclusion	28
Literature Cited	30
Appendix A: Location Photos	32
Appendix B: Standard Operating Procedures	41
Appendix C: Water Chemistry Data	42
Appendix D: Benthic Macroinvertebrates Used for Calculating IBI Metrics	45

Tables and Figures

Tables

Table 1. Sites sampled during the 2011 index period (June 6 – July 26, 2011)
Table 2. Bioassessment metrics used to describe characteristics of the benthic macroinvertebrate (BMI) communities at assessed sites
Table 3. Southern Coastal California Benthic Macroinvertebrate Index of Biotic Integrity parameters and scoring ranges (to adjust IBI scores so that they range from 0 to 100, multiply the total IBI score by 10/7; from Ode et al. 2005).
Table 4. SCC-IBI metrics and overall rating for each location sampled during the 2011 bioassessment survey. The eight sites shown in italics had fewer than 450 BMIs collected 20
Table 5. Physical habitat characterization and overall rating for each location sampled during the 2011 bioassessment survey
Table 6. Summary of IBI scores for ten sites previously sampled then resampled in 2011 31
Figures
Figure 1. SCC-IBI scores for sites sampled during the 2011 bioassessment survey
Figure 2. IBI scores as a function of elevation (IBI scores adjusted on a scale of 0 to 100) 24
Figure 3. IBI scores as a function of water temperature (IBI scores adjusted on a scale of 0 to 100)
Figure 4. IBI scores as a function of dissolved oxygen (IBI scores adjusted on a scale of 0 to 100)
Figure 5. IBI scores as a function of turbidity (IBI scores adjusted on a scale of 0 to 100) 25
Figure 6. IBI scores as a function of conductivity (IBI scores adjusted on a scale of 0 to 100) 26
Figure 7. IBI scores as a function of alkalinity (IBI scores adjusted on a scale of 0 to 100) 26
Figure 8. IBI scores as a function of dissolved orthophosphate (IBI scores adjusted on a scale of 0 to 100).
Figure 9. IBI scores as a function of ammonia (IBI scores adjusted on a scale of 0 to 100) 27
Figure 10. IBI scores as a function of nitrate (IBI scores adjusted on a scale of 0 to 100) 28
Figure 11. IBI scores as a function of nitrite (IBI scores adjusted on a scale of 0 to 100) 28
Figure 12. Scatterplot of past IBI scores and scores obtained from 2011 sampling. The regression line with 95% confidence intervals is shown in red. The blue line is a reference line representing a perfect concordance

Executive Summary

The Santa Ana Regional Water Quality Control Board contracted California State University Long Beach's Stream Ecology and Assessment Laboratory, through the Institute for Integrated Research in Materials Environments and Society, to conduct a six-year study (2006-2011) of the waterways within the Santa Ana River watershed. This study is designed to address the federal Environmental Protection Agency-mandated requirement (EPA requirement 305(b)) for an assessment of the integrity of surface waters in the watersheds of the Santa Ana and San Jacinto Rivers by sampling the biological (benthic macroinvertebrates), physical (in-stream habitat, surrounding riparian habitats), and chemical (water quality measurements and water samples for further laboratory analysis) attributes at each sampling location. At the conclusion of the six year period, the data collected will be used to estimate the number of wadeable stream kilometers (perinnial and ephemeral) that are in one of five categories of health (very good, good, fair, poor, and very poor). Annual reports during these six years will provide information on the quality of the individual sites sampled.

During the 2011 bioassessment sampling events, a total of 169 distinct benthic macroinvertebrate taxa were identified from the 45 sampled locations. Taxa were identified to Level II of the Standard Taxonomic Effort compiled by the Southwestern Association of Freshwater Invertebrate Taxonomists. Sample locations were divided into three categories: low-elevation (0 meters to 350 meters), mid-elevation (350 meters to 700 meters), and high-elevation (700 meters and higher). Using the Southern California Coastal Index of Biotic Integrity (SCC-IBI: Ode et al. 2005) as a measure of biotic condition, stream sites were classified (very poor, poor, fair, good, and very good). SCC-IBI scores (adjusted to a scale of 0 to 100) ranged from 1.0 to 45.8 (very poor to fair) for low-elevation sites, 0 to 34.3 (very poor to poor) for mid-elevation sites, and 22.9 to 74.4 (very poor to good) for high-elevation sites. The SCC-IBI scores were positively correlated with elevation (R-square = 0.39) (low-elevation mean score = 19.1 (SE = 3.1), midelevation mean score = 18.3 (SE = 5.6), and high-elevation mean score = 38.2 (SE = 2.9). IBI scores were also positively correlated with overall habitat scores ($R^2 = 0.44$) and were negatively correlated with temperature ($R^2 = 0.32$). The physical habitat condition of the sampled sites ranged from poor to optimal (0 to 15 "poor," 16 to 30 "marginal," 31 to 45 "suboptimal," and 46 to 60 "optimal"). Predominantly natural high-elevation channels had the highest values (averaging 48, SE = 1.8 and ranging from 28 to 58), followed by mid-elevation channels (averaging 40.6, SE = 5.1 and ranging from 22 to 50), and finally the low-elevation channels had the lowest values (averaging 28.7, SE = 2.7 and ranging from 14 to 49). The water quality characteristics were highly variable among sites with slightly acidic to alkaline with pH values ranging from 4.53 to 10.2, more than adequate levels of mean dissolved oxygen (5.68 to 28.47 mg/L), and highly variable specific conductance values (96 to 2603 μS/cm). Natural inland waters usually contain small amounts of dissolved mineral salts.

The data collected during the 2011 bioassessment sampling events concluded the subset of the proposed sites that were to be collected within the region over the six-year experimental period. The results obtained from 2006 to 2011 will provide information for a detailed analysis of the health of the waters within the region.

Introduction

Freshwater is an important natural resource. Understanding the health of rivers, streams, and other water resources is essential for the development of management plans that protect the nation's vital water resources. One approach that has been advocated for improving water quality is the development of biological objectives, which provide the narrative or numeric benchmarks that describe the conditions necessary to protect aquatic life beneficial uses. These bioassessment tools utilize direct measurements of biological assemblages occupying various trophic levels and can include plants, macroinvertebrates, vertebrates (fish) and periphyton (diatoms and algae), as direct methods for assessing the biological health of a waterway's ecosystem. Direct measurements of biological communities, when used in conjunction to other relevant measurements of watershed health (e.g. watershed characteristics, land-use practices, in-stream habitat and water chemistry), are effective ways to monitor long-term trends of a watershed's condition (Davis and Simon 1995). Biological assessments, which integrate the effects of water quality over time, are sensitive to many aspects of both habitat and water chemistry and provide a more familiar representation of ecological health to those who are unfamiliar with interpreting the results of chemical or toxicity tests (Gibson 1996). When integrated with physical habitat assessments and chemical test results, biological assessments describe the health of a waterway and provide an in vivo means of evaluating the anthropogenic effects (e.g. sediments, temperature and habitat alteration) on a waterway. As defined by the 2006 EPA Wadeable Streams Assessment (WSA) document, "biological integrity represents the capability of supporting and maintaining a balanced, integrated, adaptive community of organisms having a species composition, diversity and functional organization comparable to that of the natural habitat of the region." Bioassessment is a proxy for determining stream water quality and habitat quality based on the types and numbers of organisms living there.

The monitoring of water quality using benthic macroinvertebrates (BMIs) is the most utilized bioassessment method when compared with similar assessments that use vertebrates or periphyton. BMIs are not only ubiquitous, but are relatively stationary and highly diverse. These traits can provide a variety of predictable responses to a number of environmental stresses (Rosenberg and Resh 1993). Depending on the length of time an individual BMI taxon resides in an aquatic environment (a few months to several years), the sensitivity to physical and chemical alterations to its environment will vary. BMIs are an excellent indicator group in assessing the health of a waterway (Resh and Jackson 1993) and function as a significant food resource for both aquatic and terrestrial organisms. In addition, herbivorous BMIs aid in the control of periphyton populations and many BMI taxa contribute to the breakdown of detritus. Furthermore, the diversity of BMI taxa also plays an important role in the overall ecology and biogeography of a region (Erman 1996).

Biological assessments are often based on multimetric techniques. These techniques use a number of biologic measurements (metrics), each representing a particular aspect of the biological community, to assign a water quality value to the location under study. Locations can then be ranked by these values and classified into qualitative categories of "very good," "good," "fair," "poor," and "very poor." This system of ranking and categorizing biological conditions is referred to as an Index of Biotic Integrity (IBI), and is currently the recommended method for the development of biocriteria by the United States Environmental Protection Agency (USEPA;

Davis and Simon 1995). This method may also be used in the development of Tiered Aquatic Life Uses (TALU). The current IBI used for southern California is the Southern Coastal California Index of Biological Integrity (SCC-IBI; Ode et al. 2005), developed by the California Department of Fish and Game's Aquatic Bioassessment Laboratory (Cal/DFG-ABL).

Water quality information for the streams in the Santa Ana and San Jacinto watersheds (Region 8) is currently based mostly on discharger data from NPDES permits, and volunteer monitoring efforts of selected streams. This information focuses on problem areas within the region or areas where permits have been issued. Consequently, there are a large number of streams in the region that lack water quality information. Due to lack of available funding to implement a fully comprehensive "multiple biological assemblage model" to assess the biotic integrity, a decision was made by the Santa Ana Regional Water Quality Control Board (SARWQCB) to initially focus on using a macroinvertebrate bioassessment tool to assess the biotic integrity of the wadeable streams (perennial and ephermeral) in Region 8 of California.

With funding provided by the Surface Water Ambient Monitoring Program (SWAMP)¹, the SARWQCB contracted California State University Long Beach (CSULB) Stream Ecology and Assessment Laboratory (SEAL), through the Institute for Integrated Research in Materials Environments and Society (IIRMES), to conduct a six-year study within Region 8 of California waterways utilizing a probabilistic sampling design. IIRMES, a multifaceted organization was designed to promote and enhance educational and research opportunities for faculty, graduate and undergraduate students, and the greater community at large by embracing and integrating all scientists who study historical and temporally changing phenomena from the solid earth to organisms, landscapes, and societies. By collaborating with interdisciplinary faculty, scientists within the organization are able to bring common research perspectives, techniques, and instrumentation to bear their research.

While IIRMES has the task of analyzing the water chemistry for sites from the probablisitic draw, E. S. Babcock & Sons Inc. is contracted by San Bernandino County Flood Control District to analyze the water chemistry for the sites that are under the Southern California Stormwater Monitoring Coalition (SMC) program. The SMC program is a regional watershed monitoring effort initiated by the Southern California Coastal Water Research Project (SCCWRP) with the purpose of standardizing in-stream monitoring for local programs and coordinating monitoring efforts to produce an estimation of the stream condition in the region.

Project Objective

The objective of the 2011 sampling event is to conclude the six-year bioassessment project described within this report in order to address the federal Environmental Protection Agency

_

¹ SWAMP is a program enacted by the California State Waterboard that unifies the water supply monitoring programs conducted throughout State. SWAMP was designed in response to Assembly Bill 982, which called for an evaluation and accountability of the water quality monitoring programs by the State Legislature.

(EPA) mandated requirement (EPA requirement 305(b)) for an assessment of the integrity of surface waters in Region 8 of California. Specifically, this project aims to meet this objective by collecting and subsequently analyzing macroinvertebrate data collected from random sites using the SCC-IBI. This method yields a single score of the biological integrity of a site. The SCC-IBI model provides a score based on the combination of seven biological metrics. This score can then be ranked, and compared to sites that are independently designated as high-quality "reference" sites.

The data collected using this analysis may be used to identify streams where water quality and /or habitat condition improvements are warranted. They also may be used to refine and compare several methods of analysis and interpretation of bioassessment data. Although not comprehensive by nature, the design of the ongoing project will also provide a basis to estimate the percentage of wadeable stream kilometers in the region that meet the aquatic life beneficial use. The region's Basin Plan related to beneficial use is as follows: "Inland surface water communities and populations including vertebrate, invertebrate and plant species shall not be degraded as a result of the discharge of waste. Degradation is damage to an aquatic community or population with the result that a balanced community no longer exists. A balanced community is one that is diverse, has the ability to sustain itself through cyclic seasonal changes, includes necessary food chain species, and is not dominated by pollution tolerant species, unless that domination is caused by physical habitat limitations. A balanced community also may include historically introduced non-native species but does not include species present because best available technology has not been implemented or because site-specific objectives have been adopted or because of thermal discharges (SARWQCB 1995)."

Methods

In order to comply with standard sampling protocols, initially established by the Cal/DFG-ABL during the development of the SCC-IBI, benthic macroinvertebrate samples were collected between an index period between June 6 and July 26.

Sampling Site Selection

The SARWQCB worked with statistician Tony Olsen from EPA at Corvallis to design a cost effective, randomized sampling design based upon the Environmental Monitoring and Assessment Program (EMAP; USEPA 2006) criteria that could be used to representatively subsample the various streams in the region. Dr. Olsen provided a list of coordinates for 750 potential locations to select for sampling. Under the original sampling design, 50 sites would be randomly selected from these locations annually for a period of five years to provide a total of 250 sites that would be considered statistically representative of the 1302 linear stream kilometers covering the Santa Ana regional stream network. This sampling density provided a level of statistical precision of +/- 12% with at a spatial coverage resolution of approximately 1.6 linear kilometers. The original sampling study also did not include any stratification elements, and was designed for perennial and non-perennial streams that were 3rd and higher Strahler

stream order². Given the nature of the terrain and the xeric conditions in southern California, not all sites were found to be viable for the study. Consequently, prior to collecting any environmental measurements or infauna samples, the sites from within the list were prescreened first by undertaking reconnaissance of each of the sampling locations to determine accessibility and suitability for benthic macroinvertebrate sampling. Elements that were deemed essential for an accessible site to be considered suitable for sampling were based upon criteria that led to the development of the SCC-IBI. Subsequently, two approved modifications were made to the design in the sampling study outlined above:

First, due to the constraints in the available funds for the project, the number of sampling sites was set to 45 for the 2011 sampling year. Statistical analyses show that reduction in sampling effort increased the level of imprecision regarding the representation of the sub samples by 4% (Tony Olsen, personal communication). While not desirable, this difference was not considered to unduly compromise the objectives of the study. Furthermore it was concluded that additional sampling or an extension to the duration of the study could ultimately be undertaken to restore the original level of precision in the sampling design.

Second, the initial experimental design involved dividing Region 8 into three hydrological units (Santa Ana, San Gabriel, and the San Jacinto units). Because the portion of the San Gabriel hydrological unit included in Region 8 contained only seven sites, those sites were combined with those in the Santa Ana hydrological unit. The two hydrologic units (Santa Ana and San Jacinto, with the former including the San Gabriel) were subsequently divided into three elevation strata: 0 meters to 350 meters, 350 meters to 700 meters, and 700 meters and up. Randomly generated GPS coordinates were used to determine the location of sites (evenly distributed throughout defined categories). The purpose of dividing the region into three elevation categories was to ensure that sampling occurred throughout the entire region each year. It was determined that not dividing the region into these biologically relevant strata might have resulted in analytical bias due to intensive sampling in a small subset of the region one year and no sampling in this subset the following year.

Sampling took place between June 6 and July 26 in 2011, and the samples were transported to the laboratory within 36 hours of collection for water chemistry analyses, storage and subsequent processing. Table 1 provides site-specific information.

Sampling Reach Determination

The sampling procedures used during the 2011 bioassessment survey followed the FULL level of the Standard Operating Procedures for Collecting Benthic Macroinvertebrate Samples and Associated Physical and Chemical Data for Ambient Bioassessments in California (Ode 2007), which is a modification of the California Stream Bioassessment Procedures (CSBP; DFG 2003) and Environmental Monitoring and Assessment Program (EMAP) procedures. At each sample location, a 150-meter reach was established (250-meters for streams with wetted-widths greater

² Strahler stream order is a hierarchical method of describing where in a watershed a particular stream lies with respect to the headwater streams. For example, all headwater streams are first-order streams; when two first-order streams meet they form a second-order stream. This naming convention follows until the waterway meets an ocean or lake.

than 10 meters). Each reach was broken into 11 equidistant transects, spaced every 15 meters (25 meters for streams with widths greater than 10 meters), with each transect designated with a number representing its location along the reach (0 meters through 150/250 meters, downstream to upstream). BMI sample locations for each transect followed the reach-wide benthos procedure (RWB) for streams with gradients greater than 1% that carry particle size classes larger than sand (> 2mm particle size class); the margin-center-margin (MCM) was used for streams with gradients less than 1% that carry sand (< 2mm particle size class). This was implemented using best professional judgement whereby sites with substrates dominated by sand were sampled using the MCM method.

Table 1. Sites sampled during the 2011 index period (June 6 – July 26, 2011). Sites indicated in bold italics were part of the SMC program. All other sites were from the original probablisitic draw. "DUP" denotes where a field replicate was taken.

			Field F	Recorded		
SWAMP Code	Stream name	County	Latitude	Longitude	Elevation (m)	Collection date
			N/	ND 83		
802SWC020	Strawberry Creek	Riverside	33.76705	-116.69019	1896	12-Jul-11
801NLC105	Lytle Creek	San Bernardino	34.25153	-117.49409	982	14-Jul-11
802SJR116	Temescal Wash	Riverside	33.66458	-117.27673	402	25-Jul-11
801RB8197	Chino Creek	San Bernardino	33.9827	-117.69921	179	11-Jul-11
801RB8254	Deer Creek (DUP)	San Bernardino	34.17388	-116.98386	1366	19-Jul-11
801RB8312	Santa Ana River	Riverside	33.95507	-117.5329	183	6-Jul-11
801RB8339	Temescal Wash	Riverside	33.76385	-117.46571	304	25-Jul-11
801RB8404	Day Creek	San Bernardino	34.05885	-117.54179	298	15-Jun-11
801RB8418	San Diego Creek	Orange	33.68088	-117.80756	21	13-Jul-11
801RB8439	Temescal Wash	Riverside	33.86946	-117.53536	193	8-Jun-11
802SJC453	San Jacinto River	Riverside	33.73663	-116.8252	620	12-Jul-11
801RB8467	Temescal Wash	Riverside	33.78296	-117.47984	278	9-Jul-11
801RB8483	Cajon Wash	San Bernardino	34.25191	-117.45967	745	6-Jun-11
801RB8494	Santa Ana River	Riverside	33.96319	-117.47569	208	20-Jun-11
801RB8501	Mill Creek	San Bernardino	34.09206	-116.94312	1449	14-Jun-11
801RB8511	Herkey Creek	Orange	33.73577	-117.65975	317	9-Jun-11
801RB8512	Bear Creek (DUP)	San Bernardino	34.17054	-117.01403	1111	19-Jul-11
801RB8521	Chino Creek	San Bernardino	33.98065	-117.69542	182	6-Jul-11
801SAR528	Santa Ana River	Orange	33.87267	-117.71284	114	11-Jul-11
801RB8533	Mill Creek	San Bernardino	34.08833	-117.04308	858	7-Jul-11
801RB8549	Delhi Channel	Orange	33.66026	-117.88094	7	13-Jun-11
801RB8558	Temescal Wash	Riverside	33.8715	-117.53907	190	8-Jun-11
801RB8566	Cucamonga Creek (DUP)	San Bernardino	33.99743	-117.59924	216	15-Jun-11
801RB8575	Mill Creek	San Bernardino	34.09854	-116.99293	1146	7-Jun-11
801RB8590	Santa Ana River	San Bernardino	34.17328	-116.83667	1886	20-Jul-11
801RB8593	Delhi Channel	Orange	33.69763	-117.87672	5	13-Jun-11
801RB8594	Santa Ana River	Riverside	33.94695	-117.55388	175	20-Jun-11
801RB8607	Santa Ana River	San Bernardino	34.18322	-116.86449	1768	19-Jul-11
801RB8618	Santa Ana River	San Bernardino	34.16035	-116.80533	2006	19-Jul-11
801RB8622	Stream near Hartford Spring	Riverside	33.80933	-117.35716	574	16-Jun-11

			Field F	Recorded		
SWAMP Code	Stream name	County	Latitude	Longitude	Elevation (m)	Collection date
			NA	AD 83		
801RB8629	San Timoteo	Riverside	33.95681	-117.0647	650	14-Jul-11
845RB8633	Coyote Creek	Orange	33.87168	-118.0235	8	26-Jul-11
801S00791	Cleghorn Creek (DUP)	San Bernardino	34.27906	-117.4495	865	22-Jun-11
801S00903	Santa Ana River	San Bernardino	34.17732	-116.84428	1841	6-Jul-11
801S01367	Devil's Canyon	San Bernardino	34.2146	-117.32873	708	23-Jul-11
801S01523	Mill Creek	San Bernardino	34.09657	-116.9847	1198	7-Jul-11
801S01559	Lytle Creek	San Bernardino	34.21004	-117.45605	711	21-Jun-11
801S01655	Mill Creek	San Bernardino	34.07793	-117.06413	750	6-Jul-11
801S02123	City Creek	San Bernardino	34.10783	-117.20232	369	5-Jul-11
801S02464	San Antonio Creek Channel	San Bernardino	34.24498	-117.64409	1397	22-Jun-11
801S02749	Stream near Sphion Gage Canal	Riverside	33.93126	-117.37662	302	27-Jun-11
802S03234	Forbes Canyon	Riverside	33.66357	-116.62646	1470	28-Jun-11
802S10146	Robert Falls	Riverside	33.70541	-116.73363	1337	28-Jun-11
802S11394	Strawberry Creek	Riverside	33.7114	-116.76916	910	30-Jun-11
802S25288	Strawberry Creek	Riverside	33.71665	-116.76372	1013	30-Jun-11

Sample Collection

BMI samples were collected starting with the downstream transect and then proceeding upstream. BMI samples were collected from streams meeting RWB parameters at 25% instream of the right bank (R), 50% instream of the right bank (C) or 75% instream of the right bank (L) at each transect following a R, C, L, C, R zig-zag pattern starting with the right bank. This alternating pattern was followed along each 150-meter sampling reach until a single sample was collected from each reach (0 meters to 150 meters). Streams meeting MCM parameters were sampled at the right bank margin (RM), center (C), or left bank margin (LM) following a RM, C, LM, C, RM zig-zag pattern where flow was adequate.

The BMIs were collected using a one foot wide, 0.5-millimeter mesh D-frame kick-net. A one-foot by one-foot sampling plot, directly in front of the net, was sampled by first checking for heavy organisms such as clams and/or snails. These organisms were removed from the substrate by hand and placed into the net. Stones larger than a golf ball were carefully picked-up and rubbed in front of the net to collect all attached animals. The remaining underlying substrate was sampled by digging through the material to a depth of four inches (10-centimeters) and thoroughly manipulating the substrate in each quadrat with a consistent sampling effort (approximately one to three minutes). For streams with insufficient current to bring the suspended BMIs into the net, sites were sampled using the standard figure-eight collecting procedure. This procedure was repeated at each of the 11 transects.

The resulting 11 samples from a site were composited into 1-liter jars and preserved in the field using 95% isopropanol. Larger samples (e.g. samples that contained more than 50% sediment or 66% organic material) were split into additional jars as needed. A label containing the project, sample date, site designation, longitude and latitude, sampler's initials, and jar number was placed in each jar. A chain of custody form was completed for each sample location. As soon as the samples were returned to the lab, the isopropanol was replaced with fresh 70% ethanol.

Physical Habitat Quality Assessment and Water Quality Measurements

The physical habitat was surveyed along the entire reach of each sampling location following the Full Standard Operating Procedures for Collecting Benthic Macroinvertebrate Samples and Associated Physical and Chemical Data for Ambient Bioassessments in California (Ode 2007). At every 15-meter interval along the 150-meter reach (25-meter intervals along a 250-meter reach), starting at transect 0-meters, physical habitat quality was determined by recording substrate complexity, consolidation, embeddedness, sediment depth, identifying human influences, and measuring canopy cover. At each transect, a depth profile was obtained at five equidistant points starting at banks edge and ending on the opposite banks edge. Additional substrate measurements and depth profiles were measured midway between main transects throughout the entire reach. Each sampling reach was scored using the General Habitat Characterization Form. The scores for the three parameters (epifaunal substrate/cover, sediment deposition and channel alteration) are obtained by selecting the most appropriate number within four categories ranging from poor (0-5), marginal (6-10), subobtimal (11-15) and optimal (16-20) as outlined on page 2 of the Full version of the SWAMP Stream Habitat Characterization Form. Stream velocity was measured using a 60% stream depth method at each transect using a Flowatch flow meter that measures velocities directly (buoyant object method was used when 60% depth method cannot be preformed due to obstructions or depth limitations).

Four water quality parameters were collected on site at each sample location using a YSI 556 environmental monitoring unit and these included pH, dissolved oxygen (mg/l), specific conductance (µS/cm), and water temperature (°C). In addition to these on site measurements, a 1000 mL water sample was collected at each site for laboratory analysis to test for other parameters used to describe the general chemical status of the streams. These measurements were performed by IIRMES and include the quantification of ammonia as nitrogen, dissolved orthophosphate as P, nitrate-nitrogen, nitrite-nitrogen, alkalinity, turbidity, and total suspended solids. Measurements done under E. S. Babcock & Sons Inc. include the quantification of all analytes mentioned for IIRMES excluding turbidity, as well as total nitrogen and phosphorus as P. Although this form of sampling only provides a snapshot of the potential water chemistry at the time of BMI collection, the water chemistry collected during BMI sampling can provide valuable insight as to potential exposure values at each site.

Taxonomic Identification of BMIs

The BMI samples were transported to and processed by CSULB-SEAL. At the laboratory, each sample was rinsed through a No. 35 standard testing sieve (0.5 mm brass mesh) and transferred into a tray marked with twenty, 25 cm² grids. All sample material was removed from one

randomly selected grid at a time and placed into a Petri dish for inspection under a stereomicroscope. All invertebrates from the grid were separated from the surrounding detritus and transferred to vials containing 70% ethanol. This process was continued until 600 organisms³ were removed from each sample. The material left from the processed grids was transferred into a jar with 70% ethanol and labeled as "remnant" material. Any remaining unprocessed sample from the tray was transferred back to the original sample container with 70% ethanol and archived. BMIs were then identified to standard taxonomic levels established by the Southwestern Association of Freshwater Invertebrate Taxonomists (SAFIT) using standard taxonomic keys, typically genus level for insects and order or class for non-insects (Brown 1972, Edmunds et al. 1976, Kathman and Brinkhurst 1998, Klemm 1985, Merritt and Cummins 1995, Pennak 1989, Stewart and Stark 1993, Surdick 1985, Thorp and Covich 1991, Usinger 1963, Wiederholm 1983, 1986, Wiggins 1996, Wold 1974).

Data Analysis

A taxonomic list of all aquatic macroinvertebrates identified from the samples was entered into a Microsoft Excel[®] spreadsheet program. Excel[®] was used to generate a standalone taxonomic list, and to calculate and summarize the benthic macroinvertebrate community-based metric values.

To generate the seven biological metrics (Table 2) used to calculate the SCC-IBI, all samples were statistically subsampled to 500 BMIs. Each of the seven metrics is included in one of the following major categories:

Richness Measures – These metrics reflect the diversity of the aquatic assemblage where increasing diversity correlates with increasing health of the assemblage and suggests that niche space, habitat, and food sources are adequate to support survival and propagation of a variety of species.

Tolerance/Intolerance Measures – These metrics reflect the relative sensitivity of the community to aquatic perturbations. The taxa used are usually pollution tolerant or intolerant, but are generally nonspecific to the type of stressors. The metric values usually increase as the effects of pollution in the form of organics and sedimentation increase.

Functional Feeding Groups – These metrics provide information on the balance of feeding strategies in the aquatic assemblage. The functional feeding group composition is a surrogate for complex processes of trophic interactions, production, and food source availability. An imbalance of the functional feeding groups reflects unstable food dynamics and indicates a stressed condition.

Index of Biotic Integrity

An Index of Biotic Integrity (IBI) uses biological metrics to describe the biological condition of a watershed or ecoregion. These metrics vary by biogeographical area and are based on reference

_

³ Current SWAMP protocols require a 600 count of BMI. The calculation of the SCC-IBI, however, uses a 500 count. Samples are statistically subsampled to 500 prior to calculating the SCC-IBI.

sites. These reference sites are locations within the biogeographical area thought to be relatively pristine and minimally impacted by anthropogenic activities. Many different metrics were measured, but only those that showed responsiveness to watershed-scale and reach-scale disturbance variables and lacked correlation with other responsive metrics were used (Ode et al. 2005). The IBI used to evaluate the 45 sampled sites was developed from 2000 to 2003 and was based on data from the Southern California Coastal region (Ode et al. 2005; Table 3). It should be noted that the reference sites assessed during the development of the SCC-IBI did not include sites with physical alterations (i.e., concrete-lined or modified channels), and low gradient reference sites were largely underrepresented.

Quality Assurance and Quality Control (QA/QC)

All QA/QC requirements were followed by sampling personnel (CSULB 2010) during the 2011 sampling events. An auditor from SCCWRP accompanied sampling personnel during the 2011 bioassessment to ensure that all sampling activities were completed using the approved methods. Only CSULB-SEAL personnel trained in the approved sampling methods participated in the collection of BMIs during the 2011 sampling events. All internal QA/QC procedures were followed and none of the limits described in the document were violated. Picking error also occurred in certain samples during sample processing leading to greater than 600 BMIs being picked. When this occurred, 600 BMIs were randomly subsampled from the overall data set from that specific location. Sites 801RB8594, 801RB8622, 801RB8629, 802SWC020, 801NLC105, 801RB8494, 801S01655, and 802S11394 had fewer than 450 BMIs in the benthic sample; although SCC-IBI scores were generated for these sites, scores generated using fewer than 450 BMIs have not been validated. All QA/QC documentation, including the chain of custody form for each site, is on file with the appropriate contract laboratory and CSULB-SEAL.

Table 2. Bioassessment metrics used to describe characteristics of the benthic macroinvertebrate (BMI) communities at assessed sites.

BMI Metric	Description	Response to Impairment								
Richness Measures										
ЕРТ Таха	Number of taxa in the Ephemeroptera (mayfly), Plecoptera (stonefly) and Trichoptera (caddisfly) insect orders	Decrease								
Number of Coleoptera Taxa	Number of taxa from the insect order Coleoptera (beetles)	Decrease								
Number of Predator Taxa	Number of taxa from the predator functional feeding group	Decrease								
Tolerance/Intolerance	Measures									
Percent Tolerant Taxa	Percent Tolerant Taxa Percent Tolerant Taxa Percent of taxa in sample that are highly tolerant to impairment as indicated by a tolerance value 8, 9, 10									
Percent Non-insect Taxa	Percent of organisms in sample that are not in the Class Insecta	Increase								
Functional Feeding Gr	oups (FFG)									
Percent Collector- Gatherers (CG)	Percent of macrobenthos that collect or gather fine particulate matter	Increase								
Percent Collector- Filterers (CF)	Percent of macrobenthos that filter fine particulate matter	Increase								
Percent Collector Gathererers + Collector Filterers (CF)	Percent of macrobenthos that collect or gather fine particulate matter and/or percent of macrobenthos that filter fine particulate matter	Increase								

Table 3. Southern Coastal California Benthic Macroinvertebrate Index of Biotic Integrity parameters and scoring ranges (to adjust IBI scores so that they range from 0 to 100, multiply the total IBI score by 10/7; from Ode et al. 2005).

	Metric	Scoring Ra	nges for th	e Southeri	n Coas	stal	Califo	rnia	B-IBI
Metric Score	# EPT Taxa	% Intolerant Individuals	# Predator Taxa	% Tolerant Taxa	% No Inse Tax	ct	% CF +	-	# Coleoptera Taxa
10	> 17	25-100	> 12	0-4	0-8	1	0-59		> 5
9	16-17	23-24	12	5-8	9-1	2	60-63		
8	15	21-22	11	9-12	13-1	7	64-67		5
7	13-14	19-20	10	13-16	18-2	:1	68-71		4
6	11-12	16-18	9	17-19	22-2	5	72-75		
5	9-10	13-15	8	20-22	26-2	9	76-80		3
4	7-8	10-12	7	23-25	30-3	4	81-84		2
3	5-6	7-9	6	26-29	35-3	8	85-88		
2	4	4-6	5	30-33	39-4	.2	89-92		1
1	2-3	1-3	4	34-37	43-4	-6	93-96		
0	0-1	0	0-3	38-100	47-1	00	97-100)	0
	Total IBI Scoring Range Adjusted Scale (0 - 100) 0-19 Very Poor 20-39 Poor 40-59 Fair 60-79 Good 80-100 Very Good								

Results

BMI Community Structure

During the 2011 bioassessment sampling events, 169 distinct BMI taxa were identified from the 45 sampled locations (Appendix D).

Index of Biological Integrity – SCC-IBI scores were adjusted from a scale of 0 to 70 (seven summed metrics ranging from 0 to 10), to a scale of 0 to 100 for ease of interpretation. Adjusted SCC-IBI scores were obtained by multiplying the summed SCC-IBI score by 10 and dividing that score by 7. The adjusted SCC-IBI scores for the 2011 bioassessment sampling events ranged from 10 to 74 (Table 4, Figure 1). SCC-IBI scores were positively correlated with elevation ($R^2 = 0.39$, Figure 2) and overall habitat characterization scores ($R^2 = 0.44$, Figure 12), and negatively correlated with water temperature ($R^2 = 0.32$, Figure 3). SCC-IBI scores showed no correlation with dissolved oxygen (Figure 4), turbidity (Figure 5), specific conductance (Figure 6), alkalinity (Figure 7), dissolved orthophosphate (Figure 8), ammonia (Figure 9), nitrate (Figure 10), and nitrite (Figure 11).

Water Chemistry – Refer to Appendix C for water chemistry values.

Physical Habitat Quality

During the 2011 bioassessment sampling events, samples were collected from a wide array of landuse and channel types, which is presented in Table 5. Low elevation streams consisted of a mix of streams surrounded by urban/suburban landcover with concrete-lined and natural channel types; mid elevation streams were predominantly urban/suburban landcover with man-made embankments and natural stream bottoms; and high elevation streams were all surrounded by forest landcover with natural channel types (Table 5). Landuse/landcover categories follow those used on the SWAMP field data sheets. Overall habitat characterization scores for the 2011 sampling year ranged from 14 to 58 (poor to optimal; Table 5) with low elevation streams averaging 28.7 (SE = 2.7 (marginal)), mid elevation streams averaging 40.6 (SE = 5.1 (suboptimal)), and high elevation streams averaging 48 (SE = 1.8 (optimal)).

Resampling Efforts

Ten sites were chosen for sampling that had been previously sampled sometime over the six-year period. These are listed in Table 6. Figure 13 shows a scatterplot of the IBI scores of these sites from the original sampling year against the IBI score earned from 2011 sampling. The dark blue line represents perfect concordance of the pairs of IBI scores. The red lines are the best fit and 95% confidence intervals. Eight sites fall within these confidence intervals while two sites scored significantly different than their first sampling event. The IBI for 801RB8312 increased by 32 points while the IBI for 802SJR116 decreased by nine points. The slopes of the best fit and the perfect concordance lines are not significantly different from one another suggesting that IBI scores can be a stable index of biotic quality over time.

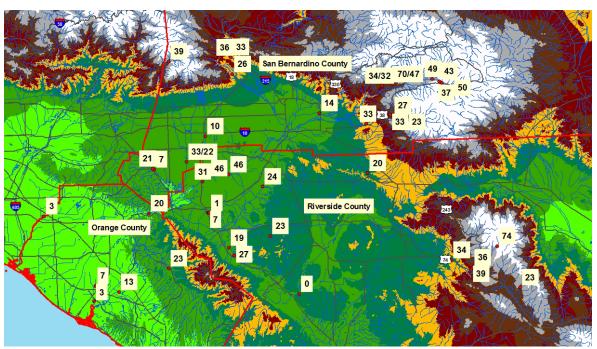


Figure 1. SCC-IBI scores for sites sampled during the 2011 bioassessment survey.

Table 4. SCC-IBI metrics and overall rating for each location sampled during the 2011 bioassessment

survey. The eight sites shown in italics had fewer than 450 BMIs collected.

survey. The eight	21162		tants nau 1		11 430 D14118	Conecieu	•			
Site/Replicate	EPT Taxa	Predator Taxa	Coleoptera Taxa	Percent Non- Insect Taxa	Percent Intolerant Individuals	Percent Tolerant Taxa	Percent Collector Individuals	IBI	IBI (100)	IBI Rating
802SWC020 (rep 1)	7	9	4	8	8	9	7	52	74	Good
801NLC105 (rep 1)	1	0	0	10	4	8	2	25	36	Poor
802SJR116 (rep 1)	0	0	0	0	0	0	0	0	0	Very Poor
801RB8197(rep 1)	1	0	0	8	0	6	0	15	21	Poor
801RB8254 (rep 1)	7	6	5	8	10	8	5	49	70	Good
801RB8254 (rep 2)	4	2	0	7	7	8	5	33	47	Fair
801RB8312 (rep 1)	2	1	7	7	0	5	10	32	46	Fair
801RB8339 (rep 1)	3	1	0	4	0	6	5	19	27	Poor
801RB8404 (rep 1)	0	0	0	2	0	5	0	7	10	Very Poor
801RB8418 (rep 1)	0	3	2	2	0	0	2	9	13	Very Poor
801RB8439 (rep 1)	0	0	0	0	0	0	1	1	1	Very Poor
802SJC453 (rep 1)	0	2	8	8	1	4	1	24	34	Poor
801RB8467 (rep 1)	4	1	0	1	0	1	6	13	19	Very Poor
801RB8483 (rep 1)	0	6	4	8	0	5	0	23	33	Poor
801RB8494 (rep 1)	3	2	7	9	0	7	4	32	46	Fair
801RB8501 (rep 1)	0	0	0	8	1	7	0	16	23	Poor
801RB8511 (rep 1)	2	3	4	4	0	2	1	16	23	Poor
801RB8512 (rep 1)	3	3	4	7	0	7	0	24	34	Poor
801RB8512 (rep 2)	3	2	4	6	0	7	0	22	31	Poor
801RB8521 (rep 1)	1	0	0	2	0	2	0	5	7	Very Poor
801SAR528 (rep 1)	3	0	0	4	0	7	0	14	20	Poor
801RB8533 (rep 1)	1	0	0	8	1	9	0	19	27	Poor
801RB8549 (rep 1)	1	0	0	1	0	0	0	2	3	Very Poor
801RB8558 (rep 1)	1	0	0	1	0	2	1	5	7	Very Poor
801RB8566 (rep 1)	3	0	0	7	0	5	8	23	33	Poor
801RB8566 (rep 2)	1	0	0	4	0	5	5	15	21	Poor
801RB8575 (rep 1)	2	1	0	10	1	9	0	23	33	Poor
801RB8590 (rep 1)	5	1	0	9	2	9	0	26	37	Poor
801RB8593 (rep 1)	0	0	0	0	0	0	5	5	7	Very Poor
801RB8594 (rep 1)	3	0	2	8	0	7	2	22	31	Poor
801RB8607 (rep 1)	5	7	2	7	4	8	1	34	49	Fair
801RB8618 (rep 1)	5	5	2	5	5	7	6	35	50	Fair
801RB8622 (rep 1)	1	1	0	2	0	2	10	16	23	Poor
801RB8629 (rep 1)	1	0	2	6	0	4	1	14	20	Poor
845RB8633 (rep 1)	0	0	0	0	0	0	2	2	3	Very Poor
801S00791 (rep 1)	1	0	2	10	0	7	0	20	29	Poor
801S00791 (rep 2)	0	0	2	9	0	6	0	17	24	Poor
801S00903 (rep 1)	5	3	0	9	3	10	0	30	43	Fair
801S01367 (rep 1)	6	10	5	8	8	6	6	49	70	Good

Table 4 continued. SCC-IBI metrics and overall rating for each location sampled during the 2011 bioassessment survey. The eight sites shown in italics had fewer than 450 BMIs collected.

Site/Replicate	EPT Taxa	Predator Taxa	Coleoptera Taxa	Percent Non- Insect Taxa	Percent Intolerant Individuals	Percent Tolerant Taxa	Percent Collector Individuals	IBI	IBI (100)	IBI Rating
801S01523 (rep 1)	3	2	0	7	1	6	0	19	27	Poor
801S01559 (rep 1)	1	0	0	8	0	9	0	18	26	Poor
801S01655 (rep 1)	3	1	5	7	1	6	0	23	33	Poor
801S02123 (rep 1)	3	0	0	4	0	2	1	10	14	Very Poor
801S02464 (rep 1)	3	2	0	10	2	9	1	27	39	Poor
801S02749 (rep 1)	1	0	2	8	0	6	0	17	24	Poor
802S03234 (rep 1)	0	4	2	6	0	4	0	16	23	Poor
802S10146 (rep 1)	0	3	2	4	1	6	1	17	24	Poor
802S11394 (rep 1)	5	1	0	8	3	9	1	27	39	Poor
802S25288 (rep 1)	4	2	0	9	1	8	1	25	36	Poor

Table 5. Physical habitat characterization and overall rating for each location sampled during the 2011 bioassessment survey.

Site	Epifaunal substrate	Sediment Deposition	Channel Alteration	Dominant landuse/landcover	Overall Habitat Characterization score (0 to 60)	Overall Habitat Characterization Score Rating	IBI (100)
802SWC020	19	19	20	Forest	58	Optimal	74
801NLC105	6	7	15	Suburban/Town	28	Marginal	36
802SJR116	13	18	14	Other	45	Suboptimal	0
801RB8197	2	19	1	Urban/Industrial	22	Marginal	21
801RB8254	18	16	20	Forest	54	Optimal	70
801RB8312	8	8	11	Suburban/Town	27	Marginal	46
801RB8339	16	15	18	Forest	49	Optimal	27
801RB8404	1	19	0	Urban/Industrial	20	Marginal	10
801RB8418	6	5	7	Suburban/Town	18	Marginal	13
801RB8439	5	19	0	Suburban/Town	24	Marginal	1
802SJC453	10	10	18	Forest	38	Suboptimal	34
801RB8467	12	11	15	Other	38	Suboptimal	19
801RB8483	17	12	20	Other	49	Optimal	33
801RB8494	14	15	12	Suburban/Town	41	Suboptimal	46
801RB8501	14	12	12	Forest	38	Suboptimal	23
801RB8511	11	16	16	Range	43	Suboptimal	23
801RB8512	16	18	20	Forest	54	Optimal	34
801RB8521	2	20	0	Urban/Industrial	22	Marginal	7
801SAR528	12	12	11	Suburban/Town	35	Suboptimal	20
801RB8533	9	15	16	Forest	40	Suboptimal	27
801RB8549	6	8	0	Suburban/Town	14	Poor	3
801RB8558	5	19	0	Suburban/Town	24	Marginal	7
801RB8566	1	20	0	Range	21	Marginal	33
801RB8575	12	16	20	Forest	48	Optimal	33
801RB8590	18	19	20	Forest	57	Optimal	37
801RB8593	9	5	0	Suburban/Town	14	Poor	7
801RB8594	14	16	11	Suburban/Town	41	Suboptimal	31
801RB8607	19	19	20	Forest	58	Optimal	49
801RB8618	11	19	20	Forest	50	Optimal	50
801RB8622	17	12	19	Suburban/Town	48	Optimal	23
801RB8629	18	13	19	Suburban/Town	50	Optimal	20
845RB8633	0	19	0	Urban/Industrial	19	Marginal	3
801S00791	8	10	16	Forest	34	Suboptimal	29
801S00903	19	9	19	Forest	47	Optimal	43
801S01367	19	17	20	Forest	56	Optimal	70
801S01523	11	14	20	Forest	45	Suboptimal	27
801S01559	9	15	13	Forest	37	Suboptimal	26
801S01655	12	15	15	Forest	42	Suboptimal	33
801S02123	8	6	8	Urban/Industrial	22	Marginal	14
801S02464	18	15	18	Forest	51	Optimal	39

Table 5 continued. Physical habitat characterization and overall rating for each location sampled during the 2011 bioassessment survey.

Site	Epifaunal substrate	Sediment Deposition	Channel Alteration	Dominant landuse/landcover	Overall Habitat Characterization score (0 to 60)	Overall Habitat Characterization Score Rating	IBI (100)
801S02749	14	16	15	Suburban/Town	45	Suboptimal	24
802S03234	18	14	20	Forest	52	Optimal	23
802S10146	18	14	12	Forest	44	Suboptimal	24
802S11394	18	19	20	Forest	57	Optimal	39
802S25288	19	18	20	Forest	57	Optimal	36

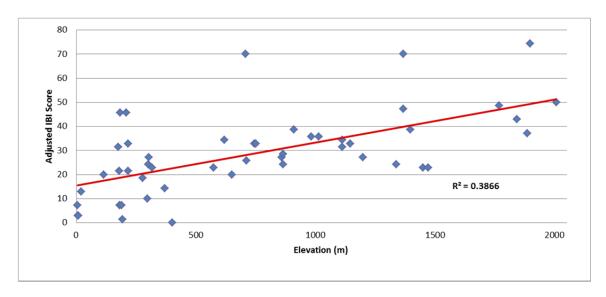


Figure 2. IBI scores as a function of elevation (IBI scores adjusted on a scale of 0 to 100) (p < 0.0001).

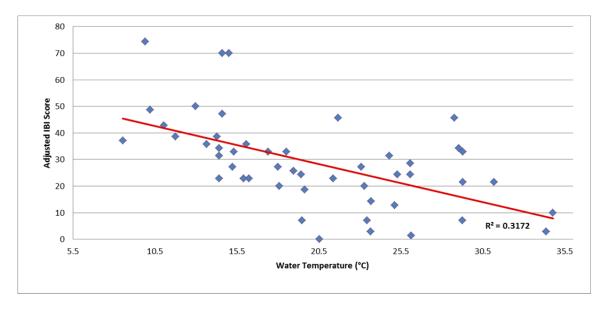


Figure 3. IBI scores as a function of water temperature (IBI scores adjusted on a scale of 0 to 100) (p= 0.001).

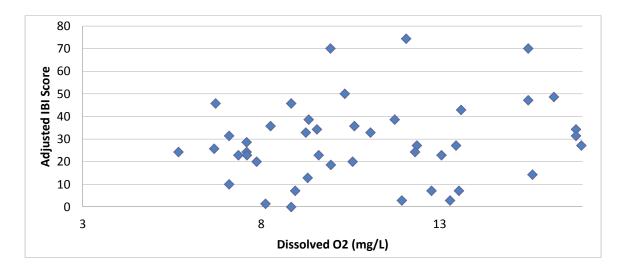


Figure 4. IBI scores as a function of dissolved oxygen (IBI scores adjusted on a scale of 0 to 100).

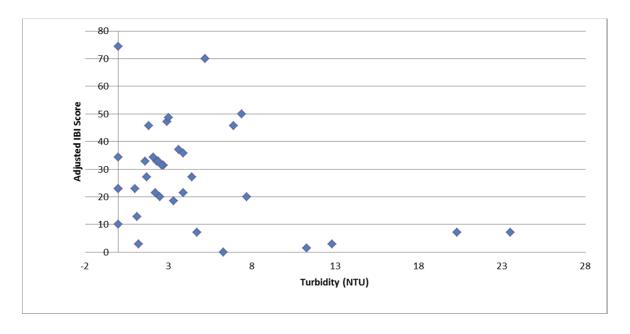


Figure 5. IBI scores as a function of turbidity (IBI scores adjusted on a scale of 0 to 100).



Figure 6. IBI scores as a function of specific conductance (IBI scores adjusted on a scale of 0 to 100).

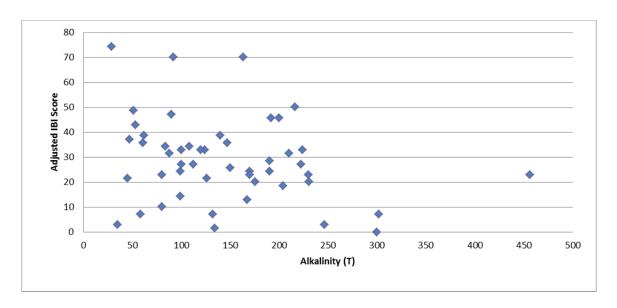


Figure 7. IBI scores as a function of alkalinity (IBI scores adjusted on a scale of 0 to 100).

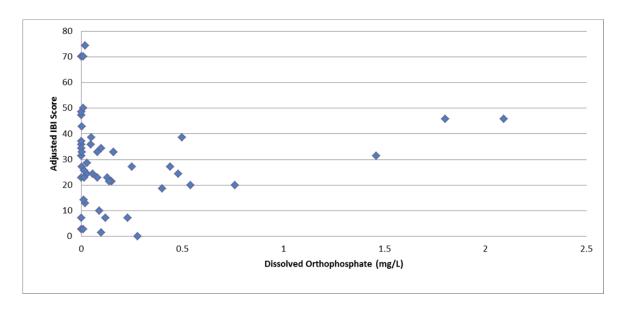


Figure 8. IBI scores as a function of dissolved orthophosphate (IBI scores adjusted on a scale of 0 to 100).

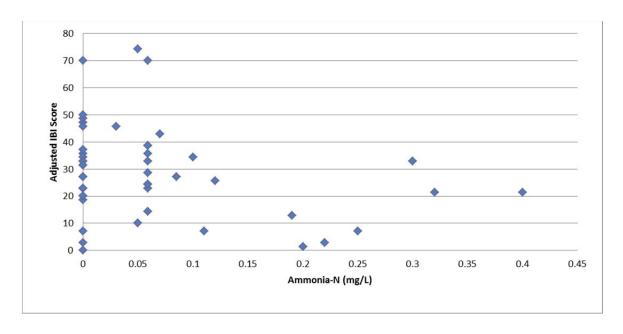


Figure 9. IBI scores as a function of ammonia (IBI scores adjusted on a scale of 0 to 100).

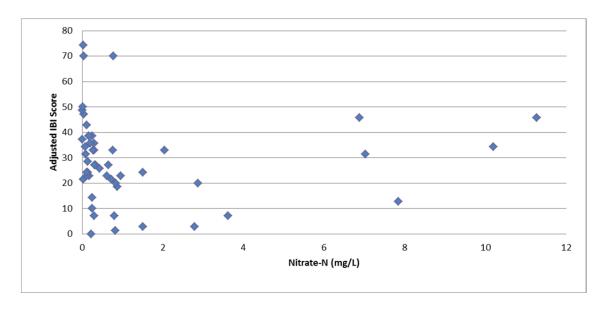


Figure 10. IBI scores as a function of nitrate (IBI scores adjusted on a scale of 0 to 100).

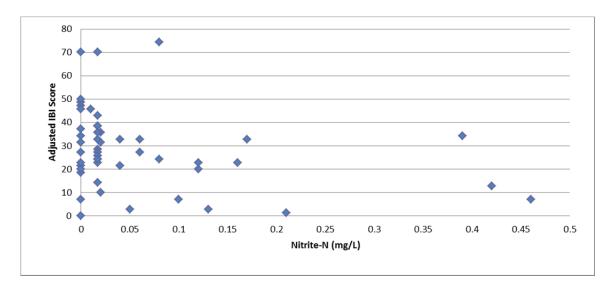


Figure 11. IBI scores as a function of nitrite (IBI scores adjusted on a scale of 0 to 100).

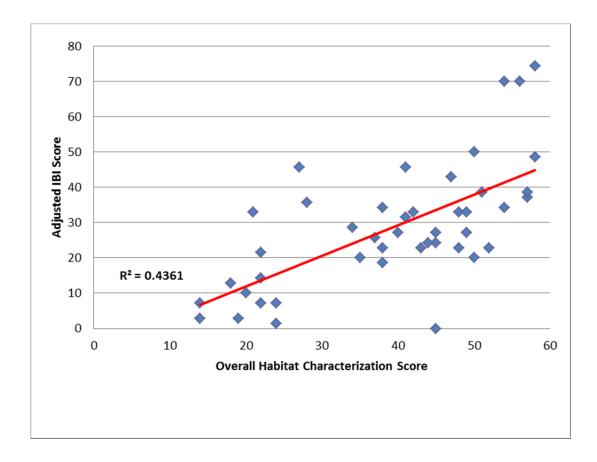


Figure 12. IBI scores as a function of overall habitat characterization (IBI scores adjusted on a scale of 0 to 100) (p < 0.0001).

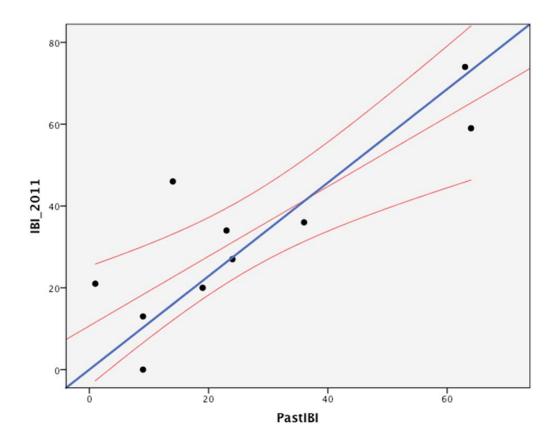


Figure 13. Scatterplot of past IBI scores and scores obtained from 2011 sampling. The regression line with 95% confidence intervals is shown in red. The blue line is a reference line representing perfect concordance between the past IBI score and the IBI score from 2011 sampling.

Table 6. Summary of IBI scores for ten sites previously sampled then resampled in 2011. The two sites shown in italics had fewer than 450 BMIs collected.

Site	Sampling Year of Past IBI	2011 IBI	2011 IBI Past IBI	
802SWC020	2006	74	63	11
801NLC105	2007	36	36	0
802SJR116	2006	0	9	-9
801RB8197	2009	21	1	20
801RB8254	2009	59	64	-5
801RB8312	2009	46	14	32
801RB8339	2009	27	24	3
801RB8418	2009	13	9	4
802SJC453	2007	34	23	11
801SAR528	2008	20	19	1

Conclusion

This report gives the results from the sixth year of the six-year monitoring project to assess the quality of the waterways within Region 8.

BMI Community Structure - The low and mid elevation sites were dominated by the facultative and tolerant insects and non-insects. These included midge larvae Chironomidae, crustaceans *Hyalella* sp. and Ostracoda, worms Oligochaeta, as well as mayflies *Baetis* sp. Highelevations sites were not only dominated by the aforementioned organisms (with the exception of Oligochaeta and *Hyalella* sp.), but were also dominated by semi-intolerant blackfly larvae *Simulium* sp., intolerant blackfly larvae *Prosimulium* sp., and intolerant stoneflies *Malenka* sp., *Yoraperla* sp., and *Zapada* sp.

Chironomidae larvae are highly tolerant of impaired conditions and are a documented signature of urbanization (Wang and Lyons 2002). Although Chironomidae larvae were present at all sites, their presence was not entirely determined by urbanization. Sites that were isolated from the influence of urbanization still exhibited similar levels of Chironomidae larvae when compared to sites surrounded by urbanization. Most Baetidae mayfly genera are moderately tolerant members of the EPT group of BMIs and have a preference for sediment-dominated streambeds, having no need for complex habitat with high volume of interstitial areas. They are, however, sensitive to contamination and low dissolved oxygen levels. The presence of stoneflies *Malenka* sp., *Yoraperla* sp., and *Zapada* sp. within high-elevation sites indicates relatively pristine habitat conditions for these sensitive organisms.

Physical/Habitat Quality and Chemical Characteristics – "Poor" scores for physical habitat condition of low elevation streams were primarily driven by the lack of epifaunal substrate cover coupled with channel alterations for flood control purposes; concrete-lined channels' physical habitat conditions scored higher than expected due to the lack of sediment within these systems, which is considered beneficial for inhabiting BMIs; on the contrary, concrete-lined channels lack micro-topography that many sensitive BMIs require to survive. "Marginal" scores for physical habitat condition of mid elevation streams were due to an increase in epifaunal substrate cover, when compared to low gradient streams. "Optimal" scores for physical habitat condition of high elevation streams were due to pristine habitat conditions, although a few locations were lacking in epifaunal substrate cover and had increased sedimentation.

The water quality characteristics were not consistent among sites with acidic to alkaline mean pH field values (4.53 to 10.2; Appendix C), more than adequate levels of mean dissolved oxygen (5.68 to 97.1 mg/L; Appendix C), and highly variable conductivity values (0.158 to 2021 μ S/cm; Appendix C). Natural inland waters usually contain small amounts of dissolved mineral salts; low and high levels of dissolved salts can be harmful to living organisms not able to osmoregulate causing the uptake of water into the organism's cells which can be lethal. Surveys of inland fresh waters indicate that a good mix of fish fauna is found where conductivity values range between 150 and 500 uS/cm and that the upper tolerance limit for freshwater organisms is 2000 uS/cm (McKee and Wolf 1971). Within this study, the highest levels of conductivity were found within our urban low elevation streams and are typical of systems with flows fed by urban influence.

SCC-IBI and Region 8 – While an IBI is an informative tool for assessing waterway condition, this multimetric technique is not without its limitations. When an IBI is developed, the individual metrics that comprise an IBI are generated for a specific region based on reference condition sites for that area. While Region 8 falls within the boundaries of the SCC-IBI, there were few sites from this area reflected in the developed SCC-IBI and this may partially explain the variability in IBI scores observed among the low gradient sites within Region 8. Moreover, the resultant IBI scores may not adequately reflect waterway condition or health. Many sites included in the developed SCC-IBI were located at high elevations and were also characterized as high gradient streams. However, many sites in Region 8 were located at low elevation, and characterized as low gradient streams in channelized environments. Currently there is no developed IBI for low gradient, low elevation streams in this region, nor are channelized waterways included in the developed SCC-IBI.

Additionally, the SCC-IBI was developed by adjusting total counts of BMIs to 500 by means of the Monte Carlo method. This was necessary as the current SWAMP protocols require a sample of 600 BMIs, but the SCC-IBI was built using a 500 count. Several streams sampled during the 2011 bioassessment survey were whole-sorted and obtained fewer than 450 organisms; although IBI scores were generated for these locations, caution should be used when interpreting these scores being that they do not adhere to the statistical tools used to generate the SCC-IBI.

Resampling Efforts – In 2011, ten sites were resampled. The primary objective of resampling was to ascertain how consistent SCC-IBI scores may be from year to year at the same site. This was in preparation for future sampling events (2012 and 2013) where resampling was a key component. The data from the ten sites resampled in 2011 suggested that there was a high degree of congruence, but that some sites may have experienced significant changes (either positive or negative) and that they warrant further study. The two sites identified here (801RB8312 and 802SJR116) as showing notable divergence in SCC-IBI scores in 2011 as compared to their scores when they were originally sampled were targeted for resampling in 2012.

Literature Cited

- Brown, H.P. 1972. Aquatic Dryopoid Beetles (Coleoptera) of the United States. U.S. Environmental Protection Agency Project, # 18050 ELD. Washington D.C.
- CSULB, 2006. Quality Assurance Project Plan for Bioassessment Monitoring of Region 8 v.1.0. Santa Ana Regional Water Quality Control Board (Region 8). (updated 5/15/2010).
- Davis, W.S. and T.P. Simon, eds. 1995. Biological assessment and criteria. Tools for water resource planning and decision making. CRC Press, Boca Raton, FL.
- DFG. 2003. California Stream Bioassessment Procedure. California Department of Fish and Game, Water Pollution Control Laboratory. Rancho Cordova, CA.
- Edmunds, G.G., S.L. Jensen and B. Lewis. 1976. The Mayflies of North and Central America. University of Minnesota Press, Minneapolis, MN.
- Erman, N.A. 1996. Status of Aquatic Invertebrates. In: Sierra Nevada Ecosystem Project: Final Report to Congress, Vol. II, Assessments and Scientific Basis for Management Options. University of California Davis, Centers for Water and Wildland Resources.
- Gibson, G.R. 1996. Biological Criteria: Technical Guidance for Streams and Small Rivers. EPA 822-B-96-001. U.S. Environmental Protection Agency, Office of Water, Washington, D.C.
- Kathman, R.D., and R.O. Brinkhurst. 1998. Guide to the Freshwater Oligochaetes of North America. Aquatic Resources Center, College Grove, TN.
- Klemm, D.J. 1985. A guide to the freshwater Annelida (Polychaeta, Naidid and Tubificid Oligochaeta, and Hirudinea of North America. Kendall/Hunt Publishing Co., Dubuque, IA.
- McKee, J. E. and H.W. Wolf (eds.) 1971. Water quality criteria, 2nd ed., California, The Resources Agency of California, State Water Resources Control Board, 584 pp. (Publ. No. 3-A).
- Merritt, R.W. and K.W. Cummins. 1995. An introduction to the aquatic insects of North America. Second Edition. Kendall/Hunt Publishing Co., Dubuque, IA.
- Ode, P.R. 2007. Standard Operating Procedures for Collecting Benthic Macroinvertebrate Samples and Associated Physical and Chemical Data for Ambient Bioassessments in California. SWAMP Bioassessment Field Procedures.
- Ode, P.R., A.C. Rehn and J.T. May. 2005. A Quantitative Tool for Assessing the Integrity of Southern Coastal California Streams. Environmental Management 35:493-504.

- Pennak, R.W. 1989. Freshwater invertebrates of the United States, 3rd Ed. John Wiley and Sons, Inc., New York, NY.
- Resh, V.H. and J.K. Jackson. 1993. Rapid Assessment approaches to biomonitoring using benthic macroinvertebrates. In: D.M. Rosenberg and V.H. Resh, eds., Chapman and Hall, NY.
- Rosenberg, D.M. and V.H. Resh, eds. 1993. Freshwater Biomonitoring and Benthic Macroinvertebrates, Chapman Hall, New York, NY.
- SARWQCB 1995. The Water Quality Control Plan (Basin Plan) for the Santa Ana River Basin. California Environmental Protection Agency, Santa Ana Regional Water Quality Control Board. Riverside, California.
- Stewart, K.W. and B.P.Stark. 1993. Nymphs of North American Stonefly Genera (Plecoptera). University of North Texas Press, Denton, TX.
- Surdick, R.F. 1985. Nearctic Genera of Chloroperlinae (Plecoptera: Chloroperlidae). University of Illinois Press. Chicago, IL.
- Thorp, J.H. and A.P. Covich (eds.) 1991. Ecology and Classification of North American Freshwater Invertebrates. Academic Press, San Diego.
- USEPA (Dec 2006). United States Environmental Protection Agency (USEPA). Biological Indicators of Watershed Health. Retrieved January 19, 2007, from. http://www.epa.gov/bioindicators/html/worms.html.
- Usinger, R.L. 1963. Aquatic Insects of California. University of California Press. Berkeley, CA.
- Wang, L. and J. Lyons. 2002. Fish and Benthic Macroinvertebrate assemblages as indicators of stream degradation in urbanizing watersheds. In T.P. Simon (ed). Biological Response Signatures: Indicator Patterns Using Aquatic Communities. CRC Press, Washington D.C.
- Wiederholm, T. 1983. Chironomidae of the Holarctic region Part 1. Larvae. Entomologica Scandinavica, Supplement No. 19. Sandby, Sweden.
- Wiederholm, T. 1986. Chironomidae of the Holarctic region Part 2. Pupae. Entomologica Scandinavica, Supplement No.28. Sandby, Sweden.
- Wiggins, G.B. 1996. Larvae of the North American Caddisfly Genera (Trichoptera), 2nd Edition. University of Toronto Press, Toronto, Canada.
- Wold, J.L. 1974. Systematics of the genus Rhyacophila (Trichoptera: Rhyacophilidae) in western North America with special reference to the immature stages. Masters of Science Thesis. Oregon State University, Corvallis, OR.

Appendix A: Location Photos for Transect A

Site 020: Transect A

Site 105: Transect A

Site 116: Transect A

Site 197: Transect A

Site 254: Transect A

Site 312: Transect A

Site 339: Transect A

Site 404: Transect A

Site 418: Transect A

Site 439: Transect A

Site 453: Transect A

Site 467: Transect A

Site 483: Transect A

Site 494: Transect A

Site 501: Transect A

Site 511: Transect A

Site 512: Transect A

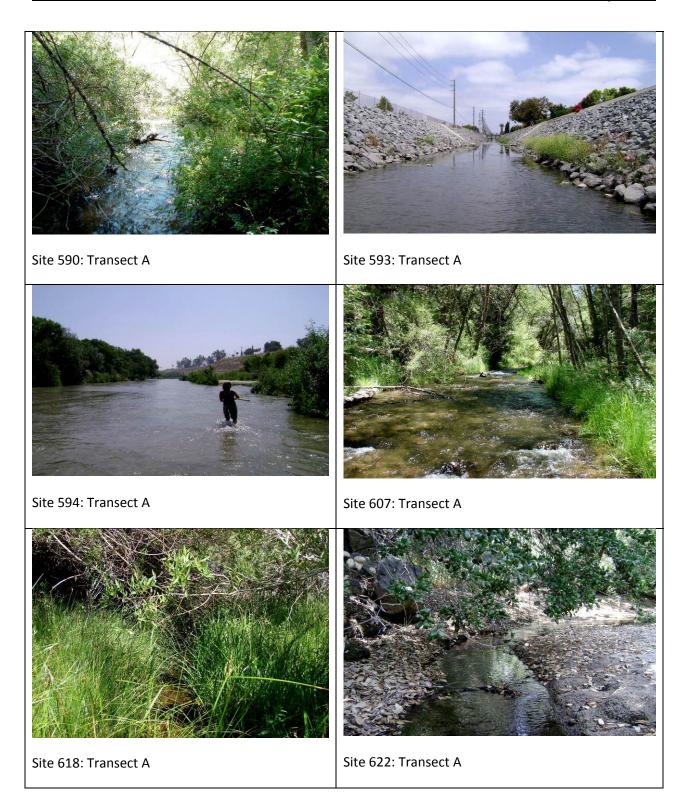
Site 521: Transect A

N/A

Site 528: Transect A

Site 533: Transect A

Site 549: Transect A


Site 558: Transect A

Site 566: Transect A

Site 575: Transect A

Site SMC-01559: Transect A

Site SMC-01655: Transect A

Site SMC-02123: Transect A

Site SMC-02464: Transect A

Site SMC-02749: Transect A

Site SMC-03234: Transect A

N/A

Site SMC-11394: Transect A

Site SMC-10146: Transect A

N/A

Site SMC-25288: Transect A

Appendix B: Standard Operating Procedures

STANDARD OPERATING PROCEDURES FOR COLLECTING BENTHIC MACROINVERTEBRATE SAMPLES AND ASSOCIATED PHYSICAL AND CHEMICAL DATA FOR AMBIENT BIOASSESSMENTS IN CALIFORNIA (UPDATED 02/01/07) CAN BE DOWNLOADED FROM:

http://swamp.mpsl.mlml.calstate.edu/wp-content/uploads/2009/04/swamp_sop_bioassessment_collection_020107.pdf

Appendix C: Water Chemistry Data

Appendix C1. Water chemistry data from IIRMES (including field and lab analyses). "DUP" denotes a field replicate; red values indicate a "Not Detectable" reading, and blue values indicate a"Detectable, but Not Quantifiable" reading. Dissolved oxygen, pH, water temperature, and specific conductance were measured in the field while the rest of the analytes were measured in the lab.

Site	Lab Replicate	Field Replicate	Dissolved O2 (mg/L)	Field pH	Water Temp. (°C)	Conductivity (µS/cm)	Alkalinity (T)	Ammonia-N (mg/L)	Nitrate-N (mg/L)	Nitrite-N (mg/L)	Dissolved Orthophosphate (mg/L)	Total Suspended Solids (mg/L)	Turbidity (NTU)
Reporting Limits						1	5	0.03	0.05	0.05	0.01	5	2
802SWC020	1	1	12.06	6.93	9.9	700	28.6	0.05	0.03	0.08	0.02	4.8	-88
801NLC105	1	1	10.61	7.93	13.66	393	146.9	-88	0.3	0.02	-88	13.8	3.9
802SJR116	1	1	8.84	7.62	20.53	2011	299.9	-88	0.23	-88	0.28	10	6.3
801RB8197	1	1	20.65	9.45	31.18	453	44.9	0.4	0.03	-88	0.15	30	3.9
801RB8254	1	1	15.48	6.55	14.61	170	91.8	-88	0.04	-88	-88	7.5	5.2
801RB8254 DUP	1	2	15.48	6.55	14.61	170	89.8	-88	0.04	-88	-88	2.6	2.9
801RB8312	1	1	8.84	8.06	21.68	1034	191.8	-88	11.26	-88	2.09	58.4	6.9
801RB8339	1	1	16.97	7.28	23.1	1188	222.4	-88	0.33	-88	0.44	5.3	4.4
801RB8404	1	1	7.1	9.83	34.78	279	80	0.05	0.25	0.02	0.09	9	-88
801RB8418	1	1	9.3	8.43	25.12	978	167.3	0.19	7.84	0.42	0.02	6.5	1.1
801RB8439	1	1	8.12	8.07	26.14	1171	134	0.2	0.82	0.21	0.1	11.2	11.3
802SJC453	1	1	9.56	7.57	29.05	279	108.1	0.1	10.19	0.39	0.1	-88	-88
801RB8467	1	1	9.95	6.89	19.65	117	204	-88	0.87	-88	0.4	2	3.3
801RB8483	1	1	9.25	6.92	15.33	699	224	-88	2.04	0.17	0.08	2.8	1.6
801RB8494	1	1	6.72	7.59	28.76	1012	200	0.03	6.87	0.01	1.8	62	1.8
801RB8501	1	1	13.05	5.1	16.24	184	80	-88	0.18	-88	-88	1.4	-88
801RB8511	1	1	7.36	7.07	21.38	788	230	-88	0.62	0.16	0.13	1.6	1
801RB8512	1	1	16.82	5.34	14.41	177	83.6	-88	0.08	-88	-88	-88	2.1
801RB8512 DUP	1	2	16.82	5.34	14.41	177	87.7	-88	0.09	-88	-88	2	2.7
801RB8521	1	1	8.95	10.2	29.26	1000	58	0.25	0.3	0.1	0.23	15.2	23.5
801SAR528	1	1	7.87	7.39	23.28	864	175.4	-88	2.87	0.12	0.54	162.8	2.5
801RB8533	1	1	13.46	6.34	15.23	255	112	-88	0.31	0.06	0.25	2.2	1.7
801RB8549	1	1	11.94	7.61	23.65	2603	246	-88	2.79	0.13	-88	4	1.2
801RB8558	1	1	13.54	8.34	23.45	1175	132	0.11	0.8	-88	0.12	20.4	20.3
801RB8566	1	1	22.2	10.13	29.28	604	124	0.3	0.76	0.04	0.16	13.1	2.3
801RB8566 DUP	1	2	22.2	10.13	29.28	604	126	0.32	0.73	0.04	0.14	12.4	2.2
801RB8575	1	1	97.1	5.07	17.4	220	100	-88	0.3	0.06	0.16	1.8	2.4
801RB8590	1	1	28.47	6.24	8.54	96	46.9	-88	-88	-88	-88	6.7	3.6
801RB8593	1	1	12.77	6.67	19.49	342	302	-88	3.62	0.46	-88	29.8	4.7
801RB8594	1	1	7.1	7.14	24.8	528	210	-88	7.02	0.02	1.46	209.4	2.6
801RB8607	1	1	16.2	7.8	10.21	117	51	-88	-88	-88	-88	9.5	3
801RB8618	1	1	10.34	5.69	12.99	420	216.2	-88	0.02	-88	0.01	14.4	7.4
801RB8622	1	1	9.61	6.97	14.41	2021	456	-88	0.96	0.12	0.08	3.6	-88
801RB8629	1	1	10.56	7.62	18.09	728	230.5	-88	0.84	-88	0.76	12.8	7.7
845RB8633	1	1	13.29	9.97	34.37	1346	34.7	0.22	1.51	0.05	0.01	38.2	12.8

Appendix C2. Water chemistry data from E. S. Babcock & Sons, Inc. (including field and lab analyses). "DUP" denotes a field replicate; red values indicate a "Not Detectable" reading, and blue values indicate a "Detectable, but Not Quantifiable" reading. Dissolved oxygen, pH, water temperature, and specific conductance were measured in the field while the rest of the analytes were measured in the lab.

Site	Lab Replicate	Field Replicate	Dissolved O2 (mg/L)	Field pH	Water Temp.	Conductivity (μS/cm)	Alkalinity (T)	Total Nitrogen (mg/L)	Ammonia-N (mg/L)	Nitrate-N (mg/L)	Nitrite-N (mg/L)	Dissolved Orthophosphate (mg/L)	Total Suspended Solids (mg/L)	Phosphorus as P (mg/L)
Reporting Limits						1	3	0.4	0.1	0.2	0.1	0.05	1	0.05
801500791	1	1	7.59	7.05	26.08	437	190	0.45	0.059	0.14	0.017	0.029	22	0.02
801S00791 DUP	1	2	7.59	7.05	26.08	437	190	0.45	0.059	0.14	0.017	0.029	22	0.02
801S00903	1	1	13.6	4.53	11.05	104	53	0	0.07	0.11	0.017	0.0028	7	0.01
801S01367	1	1	9.94	7.25	15.02	381	163	0.97	0.059	0.77	0.017	0.011	0.7	0.01
801501523	1	1	12.36	5.21	18.02	220	100	1	0.085	0.65	0.017	0.003	4	0.02
801501559	1	1	6.68	7.49	18.95	321	150	0.72	0.12	0.43	0.017	0.015	5	0.01
801S01655	1	1	11.06	6.4	18.53	252	120	0.54	0.059	0.27	0.017	0.003	6	0.02
801502123	1	1	15.6	7.66	23.69	237	99	0.61	0.059	0.25	0.017	0.012	4	0.02
801502464	1	1	9.33	7.03	11.76	260	140	0.62	0.059	0.25	0.017	0.499	1	0.01
801S02749	1	1	12.31	7.83	25.3	1344	170	2	0.059	1.5	0.08	0.48	2	0.56
802503234	1	1	7.6	7.08	15.91	465	170	0	0.059	0.11	0.017	0.015	0.9	0.03
802S10146	1	1	5.68	7.08	19.42	305	99	0	0.059	0.11	0.017	0.057	2	0.09
802511394	1	1	11.74	7.23	14.3	159	62	0.46	0.059	0.16	0.017	0.05	0.6	0.05
802525288	1	1	8.26	7.29	16.09	158	61	0.42	0.059	0.2	0.017	0.047	0.6	0.05

Appendix D: Benthic Macroinvertebrates Used for Calculating IBI Metrics

Table D1. BMI's collected, adjusted to counts of 500 via Monte Carlo method. Taxonomy follows the Standard Taxonomic Effort (SAFIT, 2011). Tolerance values and functional feeding groups based on CAMLnet (2007).

			Tol	Func						
		Identified Taxa	Val	Feed	801R	B8512	801RB8521	801SAR528	801RB8533	801RB8549
1			(TV)	Grp	1	2				
Insecta Taxa										
	Ephemeroptera									
		Ameletus	0	cg						
		Baetidae	4	cg						
		Baetis	5	cg		7	1	41	84	
		Baetis adonis	5	cg						
		Baetis tricaudatus	6	cg	21	22		22	141	
		Caudatella heterocaudata	1	ca	1					
		Caudatella hystrix	1	cg	1					
		Cinygmula	4	cg sc						
		Diphetor hageni	5							
		Drunella Drunella	0	cg						
		Drunella coloradensis	0	cg p						
		Drunella flavilinea	0	cg					16	
		Drunella spinifera	0	р					10	
		Epeorus -	0	sc						
		Ephemerella maculata	1	cg						
		Ephemerellidae	1	cg						
		Fallceon	4	cg	1		7	5		1
		Ironodes	3	sc						
		Leptohyphidae	4	cg						
		Leptophlebiidae	2	cg						
		Matriella teresa	2	cg		1				
		Paraleptophlebia	4	cg						
		Rhithrogena	0	sc						
		Tricorythodes	_					4.0		
		explicatus	4	cg				10		3
	Odonata									
		Anax	8	р						
		Argia	7	р						
		Coenagrionidae	9	р						
	BI.	Libellulidae	9	р						
	Plecoptera	0.1: 1:5								
		Calineuria californica Chloroperlidae	2	р	1					
		· ·	1	р						
		Isoperla	2	p						
		Malenka	2	sh						
		Nemouridae Osobenus	2 1	sh p						
		Perlodidae	2							
		Skwala	2	p p						
		Suwallia	1	р						
		Sweltsa	1	р						
		Zapada	2	sh	1					
	Hemiptera	Zapada cinctipes	2	sh						
	Пенириета	Ambrysus	5	р						
		Corisella decolor Corixidae	8	p p						4

Table D1 continued part 1. BMI's collected, adjusted to counts of 500 via Monte Carlo method.

•	nued part 1. BMI's co	Tol	Func		•				
	Identified Taxa	Val	Feed	901B	B8512	801RB8521	801SAR528	801RB8533	801RB8549
	identined raxa	(TV)	Grp	1	2	001KB0321	6013AN328	901KB9333	801KB6545
Trichoptera		(10)	GIP						
Inchoptera	Agapetus	0	SC	2				1	
	Arctopsyche	4	cf					_	
	Cheumatopsyche	5	cf						
	Farula	0	cg						
	Glossosoma	1	SC						
	Glossosomatidae	0	SC						
	Gumaga	3	sh						
	Helicopsyche	3	sc						
	Hydropsyche	4	cf		1		317	4	
	Hydropsychidae	4	cf				4		
	Hydroptila	6	ph	3	5	6	-		1
	Hydroptilidae	4	ph						
	Lepidostoma	1	sh	1	1				1
	Micrasema	1	mh	1	1				
	Nectopsyche	3	om						
	Neophylax	3	cg						
	Neotrichia	4	SC						
	Ochrotrichia	4	ph		2				
	Oxyethira	3	ph						
	Parapsyche	0	р						
	Psychoglypha	2	sh						
	Rhyacophila	0	р		2			2	
	Sericostomatidae	3	sh					_	
	Tinodes	2	sc						
	Trichoptera	_							
	Wormaldia	3	cf						
Coleoptera									
	Berosus	5	р						
	Elmidae	4	cg	1					
	Enochrus	5	cg						
	Helichus	5	sh						
	Heterlimnius	4	cg	3					
	Hydraena	5	р						
	Hydrobius	8	р						
	Hydrobius fuscipes	5	р						
	Hydrophilus	5	р						
	Hydroporus	5	р						
	Hydroporus occidentalis	5	р						
	Hygrotus	5	р						
	Laccobius	5	cg						
	Lara	4	sh						
	Narpus	4	cg						
	Optioservus	4	sc		2				
	Postelichus	5							
	Sanfilippodytes	5	р						
	Staphylinidae Stictotarsus	5							
	Tropisternus Tropisternus	5	p p						
	Zaitzevia	4	sc		1				

Table D1 continued part 2. BMI's collected, adjusted to counts of 500 via Monte Carlo method.

			Func						
	Identified Taxa	Tol Val	Feed	801RI	B8512	801RB8521	801SAR528	801RB8533	801RB8549
		(TV)	Grp	1	2				
Diptera									
	Bezzia/Palpomyia	6	р						
	Blepharicera	0	SC					4	
	Caloparyphus	7	cg						
	Caloparyphus/Euparyphus	8	cg						
	Caudatella	1	cg						
	Ceratopogonidae	6	р					8	
	Chironomidae	6	cg	401	400	362	66	150	172
	Chrysops	8	р						
	Clinocera	6	р		1				
	Culicoides								
	Dasyhelea	6	cg						
	Dicranota	3	р						
	Diptera								
	Dixa	2	cg		1				
	Dixidae	2	cg						
	Dolichopodidae	4	р			1			
	Empididae	6	р				3		
	Ephydridae	6	·						
	Euparyphus	8	cg						
	Glutops	3	р						
	Hemerodromia	6	р				2		
	Hexatoma	2	р				_		
	Limonia	6	sh						
	Limoniinae	3	-						
	Maruina lanceolata	2	sc						
	Metachela/ Chelifera	6	р						
	Muscidae	6	р	4	9				
	Neoplasta	6	р	1				1	
	Pedicia	1	sh						
	Pericoma/Telmatoscopus	4	cg	1					
	Phoridae Phoridae	-	cg						
	Probezzia	6	р						
	Psychodidae		cg						
	Sciomyzidae	6	р						
	Simulium	6	cf	2	3	3	3	7	
	Simulium arcticum	6	cf		, J	3	3	,	
	Simulium argus	6	cf	1	4				
	Simulium canadense	6	cf	1	4				
	Simulium clarum/ venator	6							
	Simulium clarumy venator Simulium defoliarti	6	cf cf	21	15			79	
	Simulium donovani	6	cf	2				-	
	Simulium hippovorum Simulium hunteri	6 6	cg cf	5	4				
	Simulium jacumbae	6	cf						
	Simulium piperi	6	cf						
	Simulium tescorum Simulium vittatum	6	cf cf				10		3
	Stratiomyidae	8	cg				10		3
	Tabanidae	8	р						
	Tipula Tipulidae	3	om						
	Приниис	э	J	l	l	<u> </u>	1	<u> </u>	<u> </u>

Table D1 continued part 3. BMI's collected, adjusted to counts of 500 via Monte Carlo method.

			Tol	Func						
		Identified Taxa	Val	Feed	801R	B8512	801RB8521	801SAR528	801RB8533	801RB8549
			(TV)	Grp	1	2				
	Lepidoptera									
		Petrophila	5	sc						
	Megaloptera									
		Neohermes	0	р						
		Orohermes	0	р						
Non- Insecta Taxa				·						
	Oligochaeta		5	cg	17	12	38	7	2	10
	Ostracoda		8	cg	6	3	80			179
	Turbellaria		4	р				7		
	Amphipoda									
		Crangonyctidae	4	cg						
		Gammarus	6	cg						
		Hyalella	8	cg			1		1	125
	Arhynchobdellida									
		Erpobdellidae	8	р						
	Basommatophora									
		Ferrissia	6	sc						
		Lymnaea	6	sc						
		Menetus								
		opercularis	8					1		1
	I human anatura mada	Physa		SC				1		1
	Hypsogastropoda	Hydrobiidae	8							
			•	SC						
	Neotaenioglossa	Pyrgulopsis		SC						
	Neotaemogiossa	Melanoides tuberculatus		SC						1
	Trombidiformes									
		Atractides	8	р	1					
		Frontipoda		р						
		Lebertia	8	р	1	1				
		Protzia	8	р						
		Sperchon	8	р			1			
		Sperchonopsis	8	р						
		Torrenticola	5	р	1	1				
		Wandesia	5	р						
	Veneroida									
		Corbicula	8	cf				2		
		Pisidium	8	cf		1				
		1	-			<u> </u>				
		TOTAL			500	500	500	500	500	500

2011 SARWQCB Bioassessment

Table D2. BMI's collected, adjusted to counts of 500 via Monte Carlo method.

			Tol	Func						
		Identified Taxa	Val	Feed	801RB8558	801F	RB8566	801RB8575	801RB8590	801RB8593
			(TV)	Grp		1	2			
Insecta Taxa										
	Ephemeroptera									
		Ameletus	0	cg						
		Baetidae	4	cg		2				
		Baetis	5	cg		2	8	143	44	
		Baetis adonis	5	cg		12	21			
		Baetis tricaudatus	6	cg				128	176	
		Caudatella heterocaudata	1	cg				1	11	
		Caudatella hystrix	1	cg						
		Cinygmula	4	sc					2	
		Diphetor hageni	5	cg						
		Drunella	0	cg						
		Drunella coloradensis								
			0	р				42		
		Drunella flavilinea	0	cg		1		13	_	
		Drunella spinifera	0	р					2	
		Epeorus Ephemerella	0	sc		-			5	
		maculata	1	cg						
		Ephemerellidae	1	cg				1	2	
		Fallceon	4	cg	1	2	10			
		Ironodes	3	sc						
		Leptohyphidae	4	cg						
		Leptophlebiidae	2	cg						
		Matriella teresa	2	cg					1	
		Paraleptophlebia	4	cg						
		Rhithrogena Tricorythodes	0	SC		+			1	
		explicatus	4	cg						
	Odonata									
		Anax	8	р						
		Argia Coenagrionidae	7 9	p			 			
		Libellulidae	9	p p		+				
	Plecoptera									
		Calineuria californica	2	n						
		Chloroperlidae	1	p p			<u> </u>			
		Isoperla	2	р						
		Malenka	2	sh						
		Nemouridae Osobenus	2	sh p		+	 			
		Perlodidae	2	р		1				
		Skwala	2	р						
		Suvallia	1	р		+	-	1	7	
		Sweltsa Zapada	2	p sh		+	 	1		
		Zapada cinctipes	2	sh						
	Hemiptera									
		Ambrysus	5	р						
		Corisella decolor	8	р						

2011 SARWQCB BioassessmentFebruary 2014Table D2 continued part 1. BMI's collected, adjusted to counts of 500 via Monte Carlo method.

Tak	one D2 conti	nueu part 1. Divit s	Tol	Func	isted to coun		200 110	i Wonte Cu	l lo memou.	
		Identified Taxa	Val	Feed	801RB8558	8016	RB8566	801RB8575	801RB8590	801RB8593
		identified ruxu	(TV)	Grp	0011100330	1	2	0011120373	0011100330	3011120333
	Trichoptera		(11)							
	·	Agapetus	0	sc						
		Arctopsyche	4	cf					2	
		Cheumatopsyche	5	cf						
		Farula	0	cg						
		Glossosoma	1	sc						
		Glossosomatidae	0	sc						
		Gumaga	3	sh						
		Helicopsyche	3	sc						
		Hydropsyche	4	cf				6	2	
		Hydropsychidae	4	cf						
		Hydroptila	6	ph						
		Hydroptilidae	4	ph	1	1				
		Lepidostoma	1	sh						
		Micrasema	1	mh					1	
		Nectopsyche	3	om						
		Neophylax	3	cg						
		Neotrichia	4	sc						
		Ochrotrichia	4	ph						
		Oxyethira	3	ph						
		Parapsyche	0	р						
		Psychoglypha	2	sh						
		Rhyacophila	0	р				2	2	
		Sericostomatidae	3	sh						
		Tinodes	2	sc						
		Trichoptera				1				
		Wormaldia	3	cf						
	Coleoptera									
		Berosus	5	р						
		Elmidae	4	cg						
		Enochrus	5	cg						
		Helichus	5	sh						
		Heterlimnius	4	cg						
		Hydraena	5	р						
		Hydrobius	8	р						
		Hydrobius fuscipes	5	р						
		Hydrophilus	5	р						
		Hydroporus	5	р						
		Hydroporus occidentalis	5	р						
		Hygrotus	5	р						
		Laccobius	5	cg						
		Lara	4	sh						
		Narpus	4	cg						
		Optioservus	4	SC						
		Postelichus	5	1 30						
		Sanfilippodytes	5	р						
		Staphylinidae								
		Stictotarsus	5	р						
		Tropisternus	5	р						
		Zaitzevia	4	SC						
		201020110		- 50	l .	L	L	1	1	l .

2011 SARWQCB Bioassessment February 2014 **Table D2 continued part 2. BMI's collected, adjusted to counts of 500 via Monte Carlo method.**

•	*					-			
		Tol	Func						
	Identified Taxa	Val	Feed	801RB8558	801RI	B8566	801RB8575	801RB8590	801RB8593
1		(TV)	Grp		1	2			
Diptera									
	Bezzia/Palpomyia	6	р				8	6	
	Blepharicera	0	sc						
	Caloparyphus	7	cg						
	Caloparyphus/Euparyphus	8	cg						
	Caudatella	1	cg						
	Ceratopogonidae	6	р						
	Chironomidae	6	cg	39	213	210	85	26	136
	Chrysops	8	р						
	Clinocera	6	р				1		
	Culicoides							1	
	Dasyhelea	6	cg						
	Dicranota	3	р						
	Diptera								
	Dixa	2	cg				1		
	Dixidae	2	cg						
	Dolichopodidae	4	р						
	Empididae	6	р						
	Ephydridae	6							
	Euparyphus	8	cg						
	Glutops	3	р						
	Hemerodromia	6	р						
	Hexatoma	2	р						
	Limonia	6	sh						
		3	311						
	Limoniinae	2							
	Maruina lanceolata		SC						
	Metachela/ Chelifera	6	р						
	Muscidae	6	р						
	Neoplasta	6	р						
	Pedicia	1	sh						
	Pericoma/Telmatoscopus	4	cg				1		
	Phoridae		cg						
	Probezzia	6	р						
	Psychodidae		cg		1				
	Sciomyzidae	6	р						
	Simulium	6	cf	3	2	2	25	3	
	Simulium arcticum	6	cf						
	Simulium argus	6	cf						
	Simulium canadense	6	cf					15	
	Simulium clarum/ venator	6	cf						
	Simulium defoliarti Simulium donovani	6	cf cf					160	
	Simulium hippovorum	6	cg			2	81		
	Simulium hunteri	6	cf						
	Simulium jacumbae Simulium piperi	6 6	cf cf						
	Simulium piperi Simulium tescorum	6	cf					4	
	Simulium vittatum	6	cf	1	40	68			
	Stratiomyidae Tabanidae	8	cg p						
	Tipula	4	om						
	Tipulidae	3							

<u>2011 SARWQCB Bioassessment</u> <u>February 2014</u> Table D2 continued part 3. BMI's collected, adjusted to counts of 500 via Monte Carlo method.

			Tol	Func						
		Identified Taxa	Val	Feed	801RB8558	801R	B8566	801RB8575	801RB8590	801RB8593
			(TV)	Grp		1	2			
	Lepidoptera									
		Petrophila	5	SC		178	114			
	Megaloptera									
		Neohermes	0	р						
		Orohermes	0	р						
Non- Insecta Taxa										
	Oligochaeta		5	cg			63		8	1
	Ostracoda		8	cg	419	45	1	2		12
	Turbellaria		4	р						
	Amphipoda			P						
		Crangonyctidae	4	cg		1				
		Gammarus	6	cg		1				
		Hyalella	8	cg		1				231
	Arhynchobdellida	riyarena		~5						231
	Arriyiichobaciilaa	Erpobdellidae	8	n						
	Basommatophora	Егровиениие	0	р						
	ваѕоттасорнога	Forrissia	-							
		Ferrissia ,	6	SC						
		Lymnaea Menetus	6	SC						
		opercularis			3					
		Physa	8	SC	33					6
	Hypsogastropoda									
		Hydrobiidae	8	SC						
		Pyrgulopsis		sc						
	Neotaenioglossa									
		Melanoides								
		tuberculatus		SC						114
	Trombidiformes									
		Atractides	8	р						
		Frontipoda		р						
		Lebertia	8	р			-			
		Protzia	8	р		1	 			
		Sperchon	8	р		1	1			
		Sperchonopsis	8	р		1	-			
		Torrenticola	5	р		1				
		Wandesia	5	р		-				
	Veneroida			ļ		1	ļ			
		Corbicula	8	cf						
		Pisidium	8	cf					19	
				1		1	<u> </u>			
		TOTAL			500	500	500	500	500	500

2011 SARWQCB Bioassessment Table D3. BMI's collected, adjusted to counts of 500 via Monte Carlo method.

			Tol	Func						
		Identified Taxa	Val	Feed	801RB8594	801RB8607	801RB8618	801RB8622	801RB8629	845RB863
Insecta	-		(TV)	Grp						
Taxa										
	Ephemeroptera									
		Ameletus	0	cg						
		Baetidae	4	cg						
		Baetis	5	cg	3	66	112	8	25	
		Baetis adonis	5	cg	-			1		
		Baetis tricaudatus	6	cg		15	17	_	4	
		Caudatella		- 5						
		heterocaudata	1	cg		21				
		Caudatella hystrix	1	cg						
		Cinygmula	4	sc						
		Diphetor hageni	5	cg			1			
		Drunella	0	cg						
		Drunella coloradensis	0	р						
		Drunella flavilinea	0	cg		1	3			
		Drunella spinifera	0	р		8				
		Epeorus	0	sc		5				
		Ephemerella								
		maculata	1	cg						
		Ephemerellidae	1	cg		2				
		Fallceon	4	cg	100				5	7
		Ironodes	3	sc			111			
		Leptohyphidae	4	cg						
		Leptophlebiidae	2	cg			3			
		Matriella teresa	2	cg		6	13			
		Paraleptophlebia	4	cg						
		Rhithrogena	0	sc						
		Tricorythodes								
		explicatus	4	cg	2					
	Odonata									
		Anax	8	р						
		Argia	7	р					1	1
		Coenagrionidae	9	р					1	
		Libellulidae	9	р						ļ
	Plecoptera									
		Calineuria californica	2	р						
		Chloroperlidae	1	р						
		Isoperla	2	р			9			
		Malenka	2	sh						
		Nemouridae	2	sh						
		Osobenus	1	р						
		Perlodidae	2	р		1				
		Skwala	2	р		2				
		Suwallia	1	р						
		Sweltsa	1	p			2			
		Zapada Zapada cinctipes	2	sh sh			3 58			
	Hemiptera	Zupudu cirictipes		311			36			
		Ambrysus	5	р	1					
		Corisella decolor	8	р						
		Corixidae	8	р			l	1		

2011 SARWQCB Bioassessment February 2014 **Table D3 continued part 1. BMI's collected, adjusted to counts of 500 via Monte Carlo method.**

	Identified Taxa	Tol Val	Func Feed	801RB8594	801RB8607	801RB8618	801RB8622	801RB8629	845RB8633
		(TV)	Grp						
Trichoptera									
-	Agapetus	0	SC						
	Arctopsyche	4	cf		1				
	Cheumatopsyche	5	cf						
	Farula	0	cg						
	Glossosoma	1	SC						
	Glossosomatidae	0	SC						
	Gumaga	3	sh						
	Helicopsyche	3	SC						
	Hydropsyche	4	cf	8	5	1	6		
	Hydropsychidae	4	cf	1					
	Hydroptila	6	ph	14				3	
	Hydroptilidae	4	ph	3					
	Lepidostoma	1	sh						
	Micrasema	1	mh		1	2			
	Nectopsyche	3	om						
	Neophylax	3	cg						
	Neotrichia	4	sc						
	Ochrotrichia	4	ph						
	Oxyethira	3	ph						
	Parapsyche	0	р						
	Psychoglypha	2	sh			2			
	Rhyacophila	0	р		13	1			
	Sericostomatidae	3	sh						
	Tinodes	2	SC						
	Trichoptera								
	Wormaldia	3	cf						
Coleoptera									
	Berosus	5	р						
	Elmidae	4	cg		2				
	Enochrus	5	cg						
	Helichus	5	sh						
	Heterlimnius	4	cg						
	Hydraena	5	р						
	Hydrobius	8	р						
	Hydrobius fuscipes	5	р						
	Hydrophilus	5	р						
	Hydroporus	5	р						
	Hydroporus occidentalis	5	р						
	Hygrotus	5	р	1					
	Laccobius	5	cg						
	Lara	4	sh						
	Narpus	4	cg					1	
	Optioservus	4	sc						
	Postelichus	5							
	Sanfilippodytes	5	р						
	Staphylinidae								
	Stictotarsus	5	р						
	Tropisternus	5	р			1			
	Zaitzevia	4	SC						

2011 SARWQCB Bioassessment February 2014 **Table D3 continued part 2. BMI's collected, adjusted to counts of 500 via Monte Carlo method.**

-	•		Tol	Func	_					
		Identified Taxa	Val	Feed	801RB8594	801RB8607	801RB8618	801RB8622	801RB8629	845RB8633
			(TV)	Grp						
	Diptera									
		Bezzia/Palpomyia	6	р		4		14		
		Blepharicera	0	sc						
		Caloparyphus	7	cg						
		Caloparyphus/Euparyphus	8	cg					1	33
		Caudatella	1	cg		9				
		Ceratopogonidae	6	р						
		Chironomidae	6	cg	14	288	49	59	12	59
		Chrysops	8	р						
		Clinocera	6	р						
		Culicoides								
		Dasyhelea	6	cg	1					
		Dicranota	3	р			1			
		Diptera								
		Dixa	2	cg				1		
		Dixidae	2	cg						
		Dolichopodidae	4	р						
		Empididae	6	р		2				
		Ephydridae	6		5			2		
		Euparyphus	8	cg						21
		Glutops	3	р						
		Hemerodromia	6	р						
		Hexatoma	2	р						
		Limonia	6	sh						
		Limoniinae	3							
		Maruina lanceolata	2	sc						
		Metachela/ Chelifera	6	р		2				
		Muscidae	6	р						
		Neoplasta	6	р		1				
		Pedicia	1	sh						
		Pericoma/Telmatoscopus	4	cg	1	6				
		Phoridae		cg						
		Probezzia	6	р						
		Psychodidae		cg						
		Sciomyzidae	6	р				1		
		Simulium Simulium arcticum	6 6	cf cf	3	28		6		
		Simulium argus	6	cf	4	28			8	
		Simulium canadense	6	cf						
		Simulium clarum/ venator	6 6	cf cf	30		5			
		Simulium defoliarti Simulium donovani	6	cf cf			3		61	
		Simulium hippovorum	6	cg						
		Simulium hunteri	6 6	cf cf						
		Simulium jacumbae Simulium piperi	6	cf cf		1	73	5		
		Simulium tescorum	6	cf					16	
		Simulium vittatum Stratiomyidae	6 8	cf						
		Tabanidae Tabanidae	8	cg p						
		Tipula	4	om			1			
		Tipulidae	3							

<u>2011 SARWQCB Bioassessment</u> <u>February 2014</u> Table D3 continued part 3. BMI's collected, adjusted to counts of 500 via Monte Carlo method.

			Tol	Func						
		Identified Taxa	Val	Feed	801RB8594	801RB8607	801RB8618	801RB8622	801RB8629	845RB863
	1	1	(TV)	Grp						
	Lepidoptera									
		Petrophila	5	SC						
	Megaloptera									
		Neohermes	0	р						
		Orohermes	0	р						
Non- Insecta Taxa										
	Oligochaeta		5	cg		4	21	37		4
	Ostracoda		8	cg	5		2	59		118
	Turbellaria		4	р					1	47
	Amphipoda									
		Crangonyctidae	4	cg						
		Gammarus	6	cg						
		Hyalella	8	cg						211
	Arhynchobdellida	.,,								
		Erpobdellidae	8	р						
	Basommatophora			P						
	Вазонницеорнога	Ferrissia	6	sc						
		Lymnaea	6	sc						
		Menetus	0	SC						
		opercularis								
		Physa	8	sc	1			125	1	
	Hypsogastropoda									
		Hydrobiidae	8	sc						
		Pyrgulopsis		sc						
	Neotaenioglossa									
		Melanoides tuberculatus		sc						
	Trombidiformes									
		Atractides	8	р				1		-
		Frontipoda		р						
		Lebertia	8	р		2	2			
		Protzia	8	р		1				
		Sperchon	8	р				5	1	1
		Sperchonopsis	8	р			1			
		Torrenticola	5	р		2	1			
		Wandesia	5	р			1			
	Veneroida									
		Corbicula	8	cf						
		Pisidium	8	cf		1	6			
		TOTAL			197	500	500	330	141	500

2011 SARWQCB Bioassessment Table D4. BMI's collected, adjusted to counts of 500 via Monte Carlo method.

			Tol	Func						
		Identified Taxa	Val	Feed	802SWC020	802SWC105	802SWC116	802SWC197	8025\	WC254
			(TV)	Grp					1	2
Insecta Taxa										
	Ephemeroptera									
		Ameletus	0	cg	10					
		Baetidae	4	cg			1			
		Baetis	5	cg	79	17			42	9
		Baetis adonis	5	cg						
		Baetis tricaudatus	6	cg	11	44			59	72
		Caudatella heterocaudata	1	cg						
		Caudatella hystrix	1	cg	1					
		Cinygmula	4	SC						
		Diphetor hageni	5	cg						
		Drunella	0	cg						
		Drunella coloradensis	0	р						
		Drunella flavilinea	0	cg	2	1				
		Drunella spinifera	0	р					6	3
		Epeorus	0	sc						
		Ephemerella maculata	1	cg						
		Ephemerellidae	1	cg	2					
		Fallceon	4	cg			6	3		
		Ironodes	3	sc	25				2	
		Leptohyphidae	4	cg						
		Leptophlebiidae	2	cg						
		Matriella teresa	2	cg	6					
		Paraleptophlebia	4	cg						
		Rhithrogena	0	sc						
		Tricorythodes explicatus	4	cg						
	Odonata									
		Anax	8	р						
		Argia	7	р			2		1	
		Coenagrionidae	9	р			3			
		Libellulidae	9	р						
	Plecoptera			<u> </u>						
	,	Calineuria californica	2	р						
		Chloroperlidae	1	р	4					
		Isoperla	2	р						
		Malenka	2	sh		9			4	
		Nemouridae	2	sh		-			7	
		Osobenus	1	р						
		Perlodidae	2	р						
		Skwala	2	р						
		Suwallia	1	р						
		Sweltsa	1	р	25					†
		Zapada	2	sh	31					1
		Zapada cinctipes	2	sh	J.					2
	Hemiptera	presentation of the second	<u> </u>	<u> </u>						
	7.c.mp.teru	Ambrysus	5	р						<u> </u>
		Corisella decolor	8	р						
		Corixidae	8	р						

2011 SARWQCB Bioassessment February 2014 **Table D4 continued part 1. BMI's collected, adjusted to counts of 500 via Monte Carlo method.**

·									
		Tol	Func						
	Identified Taxa	Val	Feed	802SWC020	802SWC105	802SWC116	802SWC197	802SV	VC254
		(TV)	Grp					1	2
Trichoptera									
	Agapetus	0	SC		2			1	35
	Arctopsyche	4	cf					2	1
	Cheumatopsyche	5	cf						
	Farula	0	cg					87	
	Glossosoma	1	SC					4	
	Glossosomatidae	0	sc						
	Gumaga	3	sh						
	Helicopsyche	3	sc						
	Hydropsyche	4	cf					10	7
	Hydropsychidae	4	cf		1				17
	Hydroptila	6	ph				2		
	Hydroptilidae	4	ph						
	Lepidostoma	1	sh	4				1	
	Micrasema	1	mh	7				119	79
	Nectopsyche	3	om						
	Neophylax	3	cg	4	1			16	
	Neotrichia	4	SC						
	Ochrotrichia	4	ph						
	Oxyethira	3	ph						
	Parapsyche	0	р	14	1			4	1
	Psychoglypha	2	sh	4					
	Rhyacophila	0	р	1				3	5
	Sericostomatidae	3	sh						
	Tinodes	2	sc						
	Trichoptera			1					
	Wormaldia	3	cf	-					
Coleoptera	TTOTAL CALL		<u>.</u>						
	Berosus	5	р						
	Elmidae	4	cg						
	Enochrus	5	cg						
	Helichus	5	sh						
	Heterlimnius	4	cg						
	Hydraena	5	р					1	
	Hydrobius	8	р						
	Hydrobius fuscipes	5	р						
	Hydrophilus	5	р						
	Hydroporus	5	р						
	Hydroporus occidentalis	5	р						
	Hygrotus	5							
	Laccobius	5	p cg						
	Lara	4	sh					1	
	Narpus	4	cg						
	Optioservus Postelichus	4 5	SC						
	Sanfilippodytes	5	р	1					
	Staphylinidae	-		2					
	Stictotarsus Tropisternus	5 5	p p	2					
	Zaitzevia	4	SC					1	

2011 SARWQCB Bioassessment February 2014 **Table D4 continued part 2. BMI's collected, adjusted to counts of 500 via Monte Carlo method.**

		Tol	Func						
	Identified Taxa	Val	Feed	802SWC020	802SWC105	802SWC116	802SWC197	8025\	NC254
		(TV)	Grp					1	2
Diptera									
	Bezzia/Palpomyia	6	р			1			
	Blepharicera	0	sc						
	Caloparyphus	7	cg				5		
	Caloparyphus/Euparyphus	8	cg		1	2	4		
	Caudatella	1	cg						
	Ceratopogonidae	6	р						
	Chironomidae	6	cg	57	12	28	154	98	205
	Chrysops	8	р						
	Clinocera	6	р					1	
	Culicoides		۲						
	Dasyhelea	6	ca						
		3	cg	9				1	
	Dictara	3	р	9				1	
	Diptera	_						42	
	Dixa	2	cg					12	1
	Dixidae	2	cg				_		
	Dolichopodidae	4	р	1			1		
	Empididae	6	р						
	Ephydridae	6							
	Euparyphus	8	cg				3		
	Glutops	3	р	1					
	Hemerodromia	6	р						
	Hexatoma	2	р	1					
	Limonia	6	sh						
	Limoniinae	3		1					
	Maruina lanceolata	2	sc						
	Metachela/ Chelifera	6	р						
	Muscidae	6	р	1					
	Neoplasta	6	р						2
	Pedicia	1	sh						
	Pericoma/Telmatoscopus	4	cg	6			1		
	Phoridae		cg	6			-		
	Probezzia	6	р	<u> </u>					
	Psychodidae		cg				2		
	Sciomyzidae	6	р						
	Simulium Simulium arcticum	6	cf cf	1		2	2		
	Simulium argus	6	cf				3		
	Simulium canadense	6	cf		2				
	Simulium clarum/ venator Simulium defoliarti	6	cf cf		2				
	Simulium derollarti Simulium donovani	6	cf					1	
	Simulium hippovorum	6	cg						1
	Simulium hunteri	6	cf						
	Simulium jacumbae Simulium piperi	6	cf cf					1	4
	Simulium tescorum	6	cf				1		10
	Simulium vittatum	6	cf	1					
	Stratiomyidae Tabanidae	8	cg p						
	Tipula	4	om						
	Tipulidae	3		1		·			

<u>2011 SARWQCB Bioassessment</u> <u>February 2014</u> Table D4 continued part 3. BMI's collected, adjusted to counts of 500 via Monte Carlo method.

			Tol	Func						
		Identified Taxa	Val	Feed	802SWC020	802SWC105	802SWC116	802SWC197		NC254
	T		(TV)	Grp					1	2
	Lepidoptera									
		Petrophila	5	SC						
	Megaloptera									
		Neohermes	0	р						
		Orohermes	0	р						
Non- Insecta Taxa										
	Oligochaeta		5	cg	2		52	58		3
	Ostracoda		8	cg	3		363	261	5	8
	Turbellaria		4	р						
	Amphipoda									
		Crangonyctidae	4	cg						
		Gammarus	6	cg						
		Hyalella	8	cg			32			
	Arhynchobdellida									
	·	Erpobdellidae	8	р			4			
	Basommatophora			·						
		Ferrissia	6	sc			1			
		Lymnaea	6	sc						
		Menetus opercularis		50					1	
		Physa	8	sc					-	
	Hypsogastropoda	Thysu		30						
	Пурзовази ороша	Hydrobiidae	8	sc			1			
		Pyrgulopsis	•				1			
	Nesterniedere	ryrgulopsis		SC						
	Neotaenioglossa	Adalas aidas tub assulatus								
	- 1:1:C	Melanoides tuberculatus		SC						
	Trombidiformes	4		-					 	
		Atractides	8	р					 	
		Frontipoda	_	р	1				_	
		Lebertia	8	р	4				1	
		Protzia	8	р					-	
		Sperchon .	8	р					-	
		Sperchonopsis	8	р					-	
		Torrenticola	5	р					1	
		Wandesia	5	р					 	1
	Veneroida								 	
		Corbicula	8	cf			2			
		Pisidium	8	cf					7	8
		TOTAL		ı	330	93	500	500	500	50

2011 SARWQCB Bioassessment

Table D5. BMI's collected, adjusted to counts of 500 via Monte Carlo method.

			Tol	Func						
		Identified Taxa	Val	Feed	802SWC312	802SWC339	802SWC404	802SWC418	802SWC439	802SWC45
			(TV)	Grp						
Insecta			, ,							
Таха										
	Ephemeroptera									
		Ameletus	0 4	cg						
		Baetidae Baetis	5	cg						
		Baetis adonis	5	cg cg		5				
		Baetis tricaudatus	6	cg		18				
		Caudatella	1							
		heterocaudata	1	cg						
		Caudatella hystrix	1	cg						
		Cinygmula	4	SC						
		Diphetor hageni	5	cg		2				
		Drunella	0	cg						
		Drunella								
		coloradensis	0	р						
		Drunella flavilinea	0	cg						
										İ
		Drunella spinifera	0	р						
		Epeorus	0	SC						
		Ephemerella maculata	1	ca						
		Ephemerellidae		cg						
		Fallceon	1 4	cg	73			287		
		Ironodes	3	cg sc	/3			207		
		Leptohyphidae	4	cg						
		Leptophlebiidae	2	cg						
		Matriella teresa	2	cg						
		Paraleptophlebia	4							
		Rhithrogena	0	cg sc						
		Tricorythodes	0	30						
		explicatus	4	cg	3					
	Odonata	слрпсисиз	·	- 25	3					
		Anax	8	р						
		Argia	7	р		20				
		Coenagrionidae	9	р		1				
		Libellulidae	9	р						
	Plecoptera									
		Calineuria								
		californica	2	р						
		Chloroperlidae	1	р						
		Isoperla	2	р						
		Malenka	2	sh						
		Nemouridae	2	sh						
		Osobenus	1	р						-
		Perlodidae	2	р						
		Skwala	2	p						
		Suwallia	1	р						-
		Sweltsa	1	р						-
		Zapada	2	sh						-
		Zapada cinctipes	2	sh						
	Hemiptera									
		Ambrysus	5	р						
		Corisella decolor	8	р				6		
		Corixidae	8	р				2		

2011 SARWQCB Bioassessment February 2014 **Table D5 continued part 1. BMI's collected, adjusted to counts of 500 via Monte Carlo method.**

	Identified Taxa	Tol Val	Func Feed	802SWC312	802SWC339	802SWC404	802SWC418	802SWC439	802SWC453
	identified Taxa	(TV)	Grp	0023110312	0023110333	0023110404	0023110410	0023110433	0023110433
Trichoptera		(,	G.P						
	Agapetus	0	sc						
	Arctopsyche	4	cf						
	Cheumatopsyche	5	cf						
	Farula	0	cg						
	Glossosoma	1	SC						
	Glossosomatidae	0	SC						
	Gumaga	3	sh						
		3							
	Helicopsyche	4	SC	4	24.0			1	
	Hydropsyche		cf	1	218			1	
	Hydropsychidae	4	cf	_					_
	Hydroptila	6	ph	2	11				2
	Hydroptilidae	4	ph		1				
	Lepidostoma	1	sh						
	Micrasema	1	mh						8
	Nectopsyche	3	om						8
	Neophylax	3	cg						
	Neotrichia	4	SC						
	Ochrotrichia	4	ph		2				
	Oxyethira	3	ph						
	Parapsyche	0	р						
	Psychoglypha	2	sh						
	Rhyacophila	0	р						
	Sericostomatidae	3	sh						
	Tinodes	2	sc						1
	Trichoptera				1				
	Wormaldia	3	cf						
Coleoptera									
	Berosus	5	р						1
	Elmidae	4	cg						
	Enochrus	5	cg						
	Helichus	5	sh						
	Heterlimnius	4	cg						
	Hydraena	5	р						
	Hydrobius	8	р						18
	Hydrobius fuscipes Hydrophilus	5	p p	1			1		
	Hydroporus	5	р	2					
	Hydroporus occidentalis	5	р						
	Hygrotus	5	p	4					4
	Laccobius Lara	5 4	cg sh	1					1
	Narpus	4	cg						
	Optioservus	4	SC						
	Postelichus	5							
	Sanfilippodytes Staphylinidae	5	р						1 6
	Stictotarsus	5	р						U
	Tropisternus	5	р	2					
	Zaitzevia	4	SC						

2011 SARWQCB Bioassessment February 2014 **Table D5 continued part 2. BMI's collected, adjusted to counts of 500 via Monte Carlo method.**

		Tol	Func						
	Identified Taxa	Val	Feed	802SWC312	802SWC339	802SWC404	802SWC418	802SWC439	802SWC453
		(TV)	Grp						
Dipte	ra								
	Bezzia/Palpomyia	6	р	4			3		4
	Blepharicera	0	sc						
	Caloparyphus	7	cg						
	Caloparyphus/Euparyphus	8	cg				2		4
	Caudatella	1	cg						
	Ceratopogonidae	6	р						
	Chironomidae	6	cg	35	108	495	133	43	430
	Chrysops	8		33	100	.55	155		.50
			p						
	Clinocera	6	р	_					_
	Culicoides			1					1
	Dasyhelea	6	cg						
	Dicranota	3	р				1		
	Diptera								
	Dixa	2	cg						
	Dixidae	2	cg						
	Dolichopodidae	4	р				15		3
	Empididae	6	р						
	Ephydridae	6	r	1			8		1
	Euparyphus	8	ca	-			2		1
	Glutops	3	cg				2		1
			р						
	Hemerodromia	6	р						
	Hexatoma	2	р						
	Limonia	6	sh						
	Limoniinae	3							
	Maruina lanceolata Metachela/ Chelifera	6	SC						
	Muscidae Muscidae	6	p p						
	Neoplasta	6	р		1				
	Pedicia	1	sh						
	Pericoma/Telmatoscopus Phoridae	4	cg						
	Probezzia	6	cg p						
	Psychodidae		cg				4		
	Sciomyzidae	6	р						
	Simulium Simulium arcticum	6	cf cf					2	
	Simulium argus	6	cf			1	1		
	Simulium canadense	6	cf						
	Simulium clarum/ venator	6	cf						
	Simulium defoliarti Simulium donovani	6	cf cf		4				
	Simulium hippovorum	6	cg		4				
	Simulium hunteri	6	cf						
	Simulium jacumbae	6	cf						
	Simulium piperi Simulium tescorum	6	cf cf		21				
	Simulium vittatum	6	cf	30		2		3	
	Stratiomyidae	8	cg						
	Tabanidae	8 4	p						
	Tipula Tipulidae	3	om						
	ripanaac	,		1	I .	1	1	1	1

<u>2011 SARWQCB Bioassessment</u> <u>February 2014</u> Table D5 continued part 3. BMI's collected, adjusted to counts of 500 via Monte Carlo method.

	•	Identified Taxa	Tol Val (TV)	Func Feed Grp	802SWC312	802SWC339	802SWC404	802SWC418	802SWC439	802SWC453
	Lepidoptera									
		Petrophila	5	sc						
	Megaloptera									
		Neohermes	0	р						
		Orohermes	0	р						
Non- Insecta Taxa				,						
	Oligochaeta		5	cg		3	1	12		5
	Ostracoda		8	cg	19	6	1	9	420	3
	Turbellaria		4	р		6				
	Amphipoda			·						
		Crangonyctidae	4	cg						
		Gammarus	6	cg						
		Hyalella	8	cg	73			2	1	
	Arhynchobdellida									
	ĺ	Erpobdellidae	8	р						
	Basommatophora			ľ						
	· ·	Ferrissia	6	SC						
		Lymnaea	6	SC						
		Menetus opercularis								
		Physa	8	SC	252			7	30	2
	Hypsogastropoda									
		Hydrobiidae	8	SC				3		
		Pyrgulopsis		SC						
	Neotaenioglossa	Melanoides tuberculatus		SC						
	Trombidiformes									
		Atractides	8	р						
		Frontipoda		р						
		Lebertia	8	р						
		Protzia	8	р						
		Sperchon	8	р		71		1		
		Sperchonopsis	8	р						
		Torrenticola	5	р						
		Wandesia	5	р						
	Veneroida									
		Corbicula	8	cf		1		1		
		Pisidium	8	cf		±		1		
		TOTAL		l	500	500	500	500	500	500

2011 SARWQCB Bioassessment Table D6. BMI's collected, adjusted to counts of 500 via Monte Carlo method.

			Tol	Func						
		Identified Taxa	Val	Feed	802SWC467	802SWC483	802SWC494	802SWC501	8015	00791
			(TV)	Grp					1	2
Insecta Taxa										
	Ephemeroptera									
		Ameletus	0	cg						
		Baetidae	4	cg						
		Baetis	5	cg	84	21		58	54	15
		Baetis adonis	5	cg	20	16	4		13	3
		Baetis tricaudatus	6	cg				17	38	
		Caudatella heterocaudata	1	cg				6		
		Caudatella hystrix	1	cg						
		Cinygmula	4	SC						
		Diphetor hageni	5	cg						
		Drunella	0	cg						
		Drunella coloradensis	0	р						
		Drunella flavilinea	0	cg				9		
		Drunella spinifera	0	р						
		Epeorus	0	sc						<u> </u>
		Ephemerella maculata	1	cg						
		Ephemerellidae	1	cg						
		Fallceon	4	cg	50		48			
		Ironodes	3	SC						
		Leptohyphidae	4	cg	1					
		Leptophlebiidae	2	cg						
		Matriella teresa	2	cg						
		Paraleptophlebia	4	cg						
		Rhithrogena	0	SC						
		Tricorythodes explicatus	4	cg			2			
	Odonata									-
		Anax	8	р						-
		Argia	7	р						
		Coenagrionidae	9	р						-
		Libellulidae	9	р						-
	Plecoptera									1
		Calineuria californica	2	р						-
		Chloroperlidae . ,	1	р						├
		Isoperla	2	p					_	
		Malenka	2	sh					4	
		Nemouridae	2	sh						
		Osobenus	1	p						
		Perlodidae	2	р						
		Skwala Suwallia	2	р				Г		
			1	р				5		
		Sweltsa	1	p						_
		Zapada sinstinas	2	sh						3
	Hem!t	Zapada cinctipes	2	sh						
	Hemiptera	Ambrique	١,	_						
		Ambrysus Corisella desalor	5	р						
		Corisella decolor Corixidae	8	p p						

2011 SARWQCB BioassessmentFebruary 2014Table D6 continued part 1. BMI's collected, adjusted to counts of 500 via Monte Carlo method.

Table Do colle	nucu part	1. DIVIT'S COHECTE			to counts	01 500 VIa	Wionic Ca	110 metho	u.	
		Identified Terre	Tol Val	Func	0025145457	002014/0402	002514/6404	002014/0504	00150	0704
		Identified Taxa	(TV)	Feed	802SWC467	802SWC483	802SWC494	802SWC501	80150	
Tric	hontora		(10)	Grp					1	2
ITIC	hoptera	Agapetus	0	SC						
		Arctopsyche	4	cf						
		Cheumatopsyche	5	cf	1					
		Farula	0		1					
		Glossosoma	1	cg sc						
		Glossosomatidae	0	sc		1				
		Gumaga	3	sh		1				
		Helicopsyche	3	SC						
		Hydropsyche	4	cf	1	8	23		5	12
		Hydropsychidae	4	cf	3	Ü	23			12
		Hydroptila	6	ph	15		19			
		Hydroptilidae	4	ph	2		10			
		Lepidostoma	1	sh	2		10			
		Micrasema	1	mh						
		Nectopsyche	3	om						
		Neophylax	3	cg						
		Neotrichia	4	SC					1	
		Ochrotrichia	4	ph		1			_	
		Oxyethira	3	ph	1					
		Parapsyche	0	р						
		Psychoglypha	2	sh						
		Rhyacophila	0	р						
		Sericostomatidae	3	sh						
		Tinodes	2	sc						
		Trichoptera		- 50	1		1			
		Wormaldia	3	cf						
Cole	eoptera									
		Berosus	5	р						
		Elmidae	4	cg						
		Enochrus	5	cg			1			
		Helichus	5	sh			1			
		Heterlimnius	4	cg			-			
		Hydraena	5	р						
		Hydrobius	8	р		1			1	1
		Hydrobius fuscipes	5	р		-	1		_	
		Hydrophilus	5	р			-			
		Hydroporus	5	р						
		Hydroporus occidentalis	5	р						
		Hygrotus	5	р						
		Laccobius	5	cg						
		Lara	4	sh		1				
		Narpus	4	cg		=				
		Optioservus	4	SC						
		Postelichus	5				1			
		Sanfilippodytes	5	р			=			
		Staphylinidae		<u> </u>						
		Stictotarsus	5	р						
		Tropisternus	5	р						
		Zaitzevia	4	SC						

2011 SARWQCB Bioassessment February 2014
Table D6 continued part 2. BMI's collected, adjusted to counts of 500 via Monte Carlo method.

		Tol	Func						
	Identified Taxa			802SWC467	802SWC483	802SWC494	802SWC501	80150	00791
	100111100 1000			0020110101	0020110100	0020110101	0020110002		2
Dintera		(,	<u> С.р</u>					-	
Diptera	Pozzia /Dalo omuja	6							
									-
			1						-
			cg						1
	Caloparyphus/Euparyphus	8	cg	4		3			
	Caudatella	1	cg						
	Ceratopogonidae	6	р						
	Chironomidae	6	cg	80	386	43	52	28	78
	Chrysops	8	р						
	Clinocera	6	р		4				
	Culicoides								
	Dasyhelea	6	cg						
		Ť							†
		,	Ca						t
									+
								2	_
						1		2	_
			р						-
						34			
	Euparyphus	8	cg	1				2	6
	Glutops	3	р						
	Hemerodromia	6	р		2	1		1	
	Hexatoma	2	р						
	Limonia	6	sh						
	Limoniinae	3							
	Maruina lanceolata	2	sc						
			1						
				1	2	4			1
				1		7			
		1			1				_
	Pericoma/Telmatoscopus	4	cg						
	Phoridae	-	cg						-
		6			1	18			+
		6				10			
	Simulium	6	cf	4	8	27	30	28	58
	Simulium arcticum	6	cf					1	
					23	21	O.E.		86 29
							93	/3	23
	Simulium defoliarti	6	cf				227		
	Simulium donovani	6	cf	1	_			420	3
					5			138	31
	Simulium jacumbae	6	cf						
	Simulium piperi	6	cf						
	Simulium tescorum	6	cf			9			—
									+-
	Tabanidae	8	cg p		2		 		+-
	rubumuue								
	Diptera Diptera Diptera	Bezzia/Palpomyia Blepharicera Caloparyphus Caloparyphus/Euparyphus Caudatella Ceratopogonidae Chironomidae Chrysops Clinocera Culicoides Dasyhelea Dicranota Diptera Dixa Dixidae Dolichopodidae Empididae Ephydridae Euparyphus Glutops Hemerodromia Hexatoma Limonia Limoniinae Maruina lanceolata Metachela/ Chelifera Muscidae Neoplasta Pedicia Pericoma/Telmatoscopus Phoridae Probezzia Psychodidae Sciomyzidae Simulium arcticum Simulium arcticum Simulium canadense Simulium canadense Simulium defoliarti Simulium hunteri Simulium piperi	Diptera Bezzia/Palpomyia 6 Blepharicera 0 Caloparyphus 7 Coloparyphus/Euparyphus 8 Caudatella 1 Ceratopogonidae 6 Chironomidae 6 Chir	Diptera Bezzia/Palpomyia 6	Diptera Bezzia/Palpomyia 6 p	Identified Taxa		Diptera Sexis/Palpomyla 6 p	Note Note

2011 SARWQCB Bioassessment February 2014 **Table D6 continued part 3. BMI's collected, adjusted to counts of 500 via Monte Carlo method.**

			Tol	Func						
		Identified Taxa	Val	Feed	802SWC467	802SWC483	802SWC494	802SWC501	80150	0791
			(TV)	Grp					1	2
	Lepidoptera									
		Petrophila	5	sc						
	Megaloptera									
		Neohermes	0	р						
		Orohermes	0	р						
Non- Insecta Taxa				·						
	Oligochaeta		5	cg	3	7				
	Ostracoda		8	cg	113		2	1		
	Turbellaria		4	р						
	Amphipoda									
		Crangonyctidae	4	cg	1					
		Gammarus	6	cg	3					
		Hyalella	8	cg	4					
	Arhynchobdellida									
		Erpobdellidae	8	р						
	Basommatophora									
		Ferrissia	6	SC						
		Lymnaea	6	SC						
		Menetus opercularis								
		Physa	8	SC	99					
	Hypsogastropoda									
	7,000	Hydrobiidae	8	SC						
		Pyrgulopsis		SC						
	Neotaenioglossa	. , . gaepse								
	11001001110310000	Melanoides tuberculatus		SC						
	Trombidiformes	- Meranoraes taserealatas		30						
		Atractides	8	р	1	2				
		Frontipoda	Ť	р	-	-				
		Lebertia	8	р	1					
		Protzia	8	р	<u> </u>					
		Sperchon	8	р	5	8	3			
		Sperchonopsis	8	р			j			
		Torrenticola	5	р						
		Wandesia	5	р						
	Veneroida	variacsia		Р						
	Veneroida			_						
		Corbicula	8	cf						
		Pisidium	8	cf						
		TOTAL		ı	500	500	277	500	500	5

2011 SARWQCB Bioassessment

Table D7. BMI's collected, adjusted to counts of 500 via Monte Carlo method.

			Tol	Func						
		Identified Taxa	Val	Feed	802SWC511	801S00903	801S01367	801S01523	801S01559	80150165
			(TV)	Grp						
Insecta Taxa										
Idxd	Ephemeroptera									
	Epitemeropeera	Amalatus	0	67						
		Ameletus Baetidae	4	cg cg						
		Baetis	5	cg	4	20	102	195	11	48
		Baetis adonis	5	cg	28		2			9
		Baetis tricaudatus	6			3	5	219	103	169
		Caudatella	0	cg		3	3	219	103	109
		heterocaudata	1	cg		27		2		
		Caudatella hystrix	1	cg						
		Cinygmula	4	sc						
		Diphetor hageni	5	cg						
		Drunella	0	cg				9		1
		Drunella						_		
		coloradensis	0	р			1	5		
		Drunella flavilinea	0	cg					1	1
		Drunella spinifera	0	р		2				
		Epeorus	0	SC		2	9	1		
		Ephemerella maculata	1	ca		3				
		Ephemerellidae	1	cg cg		7	1			
		Fallceon	4	cg	4	,	-			5
		Ironodes	3	sc	-					
		Leptohyphidae	4	cg						
		Leptophlebiidae	2	cg						
		Matriella teresa	2	cg		13				
		Paraleptophlebia	4	cg						
		Rhithrogena	0	sc		1		2		
		Tricorythodes								
		explicatus	4	cg						
	Odonata									
		Anax	8	р						
		Argia	7	р						
		Coenagrionidae Libellulidae	9	p p			1			
	Plecoptera	Libellallade	2	۲			1			
	riccoptera	Calineuria								
		californica	2	р						
		Chloroperlidae	1	р						
		Isoperla	2	р			1			
		Malenka	2	sh			49		1	1
		Nemouridae	2	sh			2			
		Osobenus	1	р		1				
		Perlodidae	2	р	-					
		Skwala	2	р						
		Suwallia	1	р						
		Sweltsa	1	р						
		Zapada	2	sh						
		Zapada cinctipes	2	sh						
	Hemiptera				-					
		Ambrysus	5	р						
		Corisella decolor Corixidae	8	р						

2011 SARWQCB Bioassessment February 2014 **Table D7 continued part 1. BMI's collected, adjusted to counts of 500 via Monte Carlo method.**

		Tol	Func						
	Identified Taxa	Val	Feed	802SWC511	801S00903	801S01367	801S01523	801S01559	801S0165
		(TV)	Grp						
Trichoptera									
	Agapetus	0	SC			21	1	1	2
	Arctopsyche	4	cf						
	Cheumatopsyche	5	cf						
	Farula	0	cg						
	Glossosoma	1	SC						
	Glossosomatidae	0	SC			14			
	Gumaga	3	sh						
	Helicopsyche	3	sc						
	Hydropsyche	4	cf	10	1	90	31	10	17
	Hydropsychidae	4	cf				2		
	Hydroptila	6	ph						1
	Hydroptilidae	4	ph	1			1		1
	Lepidostoma	1	sh			27		1	
	Micrasema	1	mh		2	9			
	Nectopsyche	3	om						
	Neophylax	3	cg						
	Neotrichia	4	sc						
	Ochrotrichia	4	ph	3			1		
	Oxyethira	3	ph						
	Parapsyche	0	р			2			
	Psychoglypha	2	sh						
	Rhyacophila	0	р		5	19	6		
	Sericostomatidae	3	sh						
	Tinodes	2	sc						
	Trichoptera		30			1			
	Wormaldia	3	cf						
Coleoptera	VVOITITATA		C.						
Colcoptera	Berosus	5	n						
	Elmidae	4	b						
			cg						
	Enochrus	5	cg						
	Helichus	5	sh						1
	Heterlimnius	4	cg						
	Hydraena	5	р	_					
	Hydrobius	8	р	2					
	Hydrobius fuscipes	5	р						
	Hydrophilus	5	р						
	Hydroporus	5	р						
	Hydroporus occidentalis	5	р			1			1
	Hygrotus	5	р						
	Laccobius	5	cg						
	Lara	4	sh						
	Narpus	4	cg			1			
	Optioservus	4	SC			1			
	Postelichus	5							
	Sanfilippodytes	5	р	2					
	Staphylinidae								
	Stictotarsus	5	р			19			
	Tropisternus	5	р						
	Zaitzevia	4	sc						1

2011 SARWQCB Bioassessment February 2014 **Table D7 continued part 2. BMI's collected, adjusted to counts of 500 via Monte Carlo method.**

		Tol	Func						
	Identified Taxa	Val	Feed	802SWC511	801S00903	801S01367	801S01523	801S01559	80150165
		(TV)	Grp						
Diptera									
	Bezzia/Palpomyia	6	р	2	1				
	Blepharicera	0	sc						
	Caloparyphus	7	cg						
	Caloparyphus/Euparyphus	8	cg				1		1
	Caudatella	1	cg						
	Ceratopogonidae	6	р		1				
	Chironomidae	6	cg	339	159	74	13	44	54
	Chrysops	8	р						
	Clinocera	6	р			1	1		
	Culicoides	Ť	P						
	Dasyhelea	6	ca.						
	Dicranota		cg			2			
		3	р			2			
	Diptera	-				_			
_	Dixa	2	cg			3			
+	Dixidae	2	cg			2			
	Dolichopodidae	4	р				1		
	Empididae	6	р					3	
	Ephydridae	6							
	Euparyphus	8	cg						
	Glutops	3	р						
	Hemerodromia	6	р						
	Hexatoma	2	р						
	Limonia	6	sh						
	Limoniinae	3							
	Maruina lanceolata	2	sc						
	Metachela/ Chelifera	6	р						
	Muscidae	6	р	1					
	Neoplasta	6	р	-		1			2
	Pedicia	1	sh		1	1			
					1				
	Pericoma/Telmatoscopus	4	cg						
	Phoridae Probezzia	6	cg n						
	Psychodidae		cg						
	Sciomyzidae	6	р						
	Simulium	6	cf	1	2	3		8	1
	Simulium arcticum Simulium argus	6	cf cf	61				7	9
	Simulium canadense	6	cf	01				,	9
	Simulium clarum/ venator	6	cf						
	Simulium defoliarti	6	cf						
	Simulium donovani	6	cf	5					
	Simulium hippovorum	6	cg		237		2	308	
	Simulium hunteri	6	cf						
	Simulium jacumbae	6	cf cf		 				
	Simulium piperi Simulium tescorum	6	cf cf						
	Simulium vittatum	6	cf						5
	Stratiomyidae	8	cg						
	Tabanidae	8	р						
	Tipula	4	om	i	•	1			

2011 SARWQCB Bioassessment February 2014
Table D7 continued part 3. BMI's collected, adjusted to counts of 500 via Monte Carlo method.

		Identified Taxa	Tol Val (TV)	Func Feed Grp	802SWC511	801S00903	801501367	801S01523	801501559	80150165
	Lepidoptera		(11)							
		Petrophila	5	sc						
	Megaloptera									
	<u> </u>	Neohermes	0	n			2			
		Orohermes	0	р			2			
Non- Insecta Taxa		Oronermes	U	р						
	Oligochaeta		5	cg	4	2		2	1	1
	Ostracoda		8	cg	19		15	3	1	1
	Turbellaria		4	р						
	Amphipoda									
		Crangonyctidae	4	cg						
		Gammarus	6	cg						
		Hyalella	8	cg						
	Arhynchobdellida									
	,	Erpobdellidae	8	р						
	Basommatophora	,		,						
		Ferrissia	6	sc						
		Lymnaea	6	sc						
		Menetus		- 50						
		opercularis	_							
		Physa	8	SC	2					
	Hypsogastropoda									
		Hydrobiidae	8	SC						
		Pyrgulopsis	_	SC			6			
	Neotaenioglossa	Melanoides tuberculatus		sc						
	Trombidiformes									
		Atractides	8	р	9		5			1
		Frontipoda		р						
		Lebertia	8	р			7			
		Protzia	8	р						
		Sperchon	8	р	3			2		4
		Sperchonopsis	8	р			1		_	
		Torrenticola	5	р						
		Wandesia	5	р		10				
	Veneroida									
		Corbicula	8	cf						
		Pisidium	8	cf						1
		. Asididini		CI						
		TOTAL			500	500	500	500	500	337

2011 SARWQCB Bioassessment

Table D8. BMI's collected, adjusted to counts of 500 via Monte Carlo method.

ibic Do.	DIVIT 5 COIL	ecteu, aujusteu to	Coun	165 01	500 VIa 1	VIOIILE C		nou.			
			Tol	Func							
		Identified Taxa	Val	Feed	801S02123	801S02464	801S02749	802S03234	802S10146	802S11394	8025252
			(TV)	Grp							
Insecta Taxa											
	Ephemeroptera										
		Ameletus	0	cg							1
		Baetidae	4	cg							
		Baetis	5	cg	90	36	36	7	57	178	46
		Baetis adonis	5	cg	38				33	4	
		Baetis tricaudatus	6	cg		99	48			94	21
		Caudatella heterocaudata	1	cg							
		Caudatella hystrix	1	cg							
		Cinygmula	4	sc							
		Diphetor hageni	5	cg		1					
		Drunella	0	cg							
		Drunella coloradensis	0	р							6
		Drunella flavilinea	0	cg		13				3	
		Drunella spinifera	0	р							
		Epeorus	0	sc		4					
		Ephemerella maculata	1	cg							
		Ephemerellidae	1	cg							
		Fallceon	4	cg	30		47	1			
		Ironodes	3	sc		1					
		Leptohyphidae	4	cg							
		Leptophlebiidae	2	cg		1			11		
		Matriella teresa	2	cg							
		Paraleptophlebia	4	cg					6	1	
		Rhithrogena	0	sc							
		Tricorythodes explicatus	4	cg	1						
	Odonata										
		Anax	8	р							1
		Argia	7	р							
		Coenagrionidae	9	р							
		Libellulidae	9	р							
	Plecoptera										
		Calineuria californica	2	р						 	
		Chloroperlidae	1	р							
		Isoperla	2	р						1	1
		Malenka	2	sh						 	-
		Nemouridae	2	sh						 	-
		Osobenus	1	р							-
		Perlodidae	2	р						 	
		Skwala	2	р						 	
		Suwallia	1	р						 	
		Sweltsa	1	р .						 	
		Zapada	2	sh		9				 	
		Zapada cinctipes	2	sh						 	
	Hemiptera	. ,	 	 						 	
		Ambrysus	5	р						 	
		Corisella decolor	8	р							

2011 SARWQCB BioassessmentFebruary 2014Table D8 continued part 1. BMI's collected, adjusted to counts of 500 via Monte Carlo method.

1 abic .	Do continucu j	part 1. Divil 8 con		i, auj	usicu io	Counts of	1 300 VIa	Monte		illou.	
			Tol	Func							
		Identified Taxa	Val	Feed	801S02123	801S02464	801S02749	802S03234	802S10146	802S11394	802S25288
			(TV)	Grp							
	Trichoptera										
		Agapetus	0	SC							2
		Arctopsyche	4	cf							
		Cheumatopsyche	5	cf							
		Farula	0	cg							
		Glossosoma	1	SC							
		Glossosomatidae	0	SC						18	8
		Gumaga	3	sh						4	1
		Helicopsyche	3	sc	1						
		Hydropsyche	4	cf						3	
		Hydropsychidae	4	cf							
		Hydroptila	6	ph	11			1	1		
		Hydroptilidae	4	ph	3			2			
		Lepidostoma	1	sh						4	2
		Micrasema	1	mh					8	7	4
		Nectopsyche	3	om							
		Neophylax	3	cg							
		Neotrichia	4	SC							
		Ochrotrichia	4	ph							
		Oxyethira	3	ph							
		Parapsyche	0	р		6					
		Psychoglypha	2	sh				1			
		Rhyacophila	0	р		8					
		Sericostomatidae	3	sh						1	1
		Tinodes	2	SC							
		Trichoptera							2		
		Wormaldia	3	cf						1	
	Coleoptera										
		Berosus	5	р							
		Elmidae	4	cg							
		Enochrus	5	cg							
		Helichus	5	sh							
		Heterlimnius	4	cg							
		Hydraena	5	р							
		Hydrobius	8	р							
		Hydrobius fuscipes	5	р							
		Hydrophilus	5	р							
		Hydroporus	5	р							
		Hydroporus occidentalis	5	р							
		Hygrotus	5	р	-						
		Laccobius Lara	5 4	cg sh			1				
		Narpus	4	cg							
		Optioservus	4	sc							
		Postelichus Sanfilippodytes	5	n	1			2	1		
		Staphylinidae	3	р					1		
		Stictotarsus	5	р							
		Tropisternus Zaitzevia	5	p sc							
		_0.020.70		30	1	I .	1	l	l	1	L

2011 SARWQCB Bioassessment February 2014 **Table D8 continued part 2. BMI's collected, adjusted to counts of 500 via Monte Carlo method.**

Table D	o continucu	part 2. BM1/s colle					1 300 VIa	IVIOIILE \		liiou.	
			Tol	Func							
		Identified Taxa	Val	Feed	801S02123	801S02464	801S02749	802S03234	802S10146	802S11394	802S25288
			(TV)	Grp							
	Diptera										
		Bezzia/Palpomyia	6	р				5	1		
		Blepharicera	0	SC							
		Caloparyphus	7	cg							
		Caloparyphus/Euparyphus	8	cg	5		112				
		Caudatella	1	cg							
		Ceratopogonidae	6	р							
		Chironomidae	6	cg	130	56	41	324	99	87	84
		Chrysops	8	р				1			
		Clinocera	6	р				3	2		
		Culicoides									
		Dasyhelea	6	cg							
		Dicranota	3	р						1	
		Diptera		r					1	_	
		Dixa	2	cg		1					
		Dixidae	2			-					
		Dolichopodidae	4	cg	2		2			1	
				p	2	4	3			1	
		Empididae	6	р		1					
		Ephydridae	6								
		Euparyphus	8	cg			8				
		Glutops	3	р							
		Hemerodromia	6	р							
		Hexatoma	2	р							
		Limonia	6	sh						1	
		Limoniinae	3								
		Maruina lanceolata	2	sc						10	3
		Metachela/ Chelifera	6	р							
		Muscidae	6	р			5	2	4		
		Neoplasta	6	р					1		2
		Pedicia	1	sh							
		Pericoma/Telmatoscopus	4	cg			6				
		Phoridae		cg			-				
		Probezzia	6	р							
		Psychodidae		cg			1				
		Sciomyzidae Simulium	6	p cf	32	13		15	38	2	34
		Simulium arcticum	6	cf	32	15		15	30	-	34
		Simulium argus	6	cf	129		150				
		Simulium canadense Simulium clarum/ venator	6	cf cf		247				2	130
		Simulium defoliarti	6	cf							
		Simulium donovani	6	cf			2	8			
		Simulium hippovorum	6	cg	20					5	147
		Simulium hunteri	6	cf cf				1		1	
		Simulium jacumbae Simulium piperi	6	cf cf				21		3	1
		Simulium tescorum	6	cf						1	
		Simulium vittatum	6	cf						1	
		Stratiomyidae Tabanidae	8	cg p			1			1	
		Tipula	4	om							
		Tipulidae	3								

February 2014

2011 SARWQCB Bioassessment February 20 Table D8 continued part 3. BMI's collected, adjusted to counts of 500 via Monte Carlo method.

			Tol	Func							
		Identified Taxa	Val	Feed	801S02123	801S02464	801S02749	802S03234	802S10146	802S11394	802S2528
			(TV)	Grp							
	Lepidoptera										
		Petrophila	5	sc							
	Megaloptera	,									
		Markana	_								
		Neohermes	0	р							
Non- Insecta		Orohermes	0	р		1					
Таха	Oligochaeta		5	cg	1		1	96	218	13	4
	Ostracoda		8	cg	1		38				
	Turbellaria		4	р			33				
	Amphipoda			P							
	, anpinpoda	Crangonyctidae	4	Ca							
		Gammarus	6	cg							
				cg					2		
		Hyalella	8	cg					3		
	Arhynchobdellida	5 () m	_								
		Erpobdellidae	8	р							
	Basommatophora										
		Ferrissia	6	SC							
		Lymnaea	6	sc					9		
		Menetus opercularis									
		Physa	8	sc	2			8	3	1	
	Hypsogastropoda	,						_	-		
	- The Same beau	Hydrobiidae	8	sc							
		Pyrgulopsis		sc							
	Neotaenioglossa	1 yigulopsis		30							
	Neotaemogiossa	Melanoides tuberculatus		SC							
	Trombidiformes										
		Atractides	8	р	1			1	2	1	1
		Frontipoda		р							
		Lebertia	8	р							
		Protzia	8	р							
		Sperchon	8	р	3	3		1			
		Sperchonopsis	8	р							
		Torrenticola	5	р							
		Wandesia	5	р							
	Veneroida										
		c. li. l	_	_							
		Corbicula	8	cf							
		Pisidium	8	cf							
		TOTAL		ı	500	500	500	500	500	447	500