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202 Significance Tests ch. 8

cups is the manufacture of small arms cartridge cases. One critical dimension
is of paramount significance, namely, the variation of wall thickness around
the periphery denoted by X, Suppose management has set the following deci-
sion rule: Accept the lot if the expected variation in wall thickness around
the periphery [denoted by E(X)] is < .03 mm; reject it otherwise. Obviously
the decision management wishes to make is either to accept or refect the lot.
The rule set by management for acceptance of a lot is

Accept if E(X) < .03 mm
Reject if E(X) > .03 mm

A naive approach would be to measure the variation in wall thickness
of the whole lot, record these measurements and caiculate their arithmetic
mean X, and then apply the decision rule set by management. Is this a prac-
tical approach ? Obviously not: If we inspect edch cup our inspection cost will
be tremendous. Consequently, the cost of a cartridge case will be excessive.
In the light of this analysis it is evident that the decision to accept or reject
the lot will be based on the result of an experiment in which, say, a sample of
size n is selected at random from the lot and then each cup is inspected and ¥
is calculated. We expect that X will be too close to E(X), and hence we are
inclined to conclude that E(X) < .03 if and only if ¥ <{ a prescribed constant,
which should be > .03. How to determine the value of this constant is dis-
cussed later.

Actually the decision to accept or reject the lot will be based on the result
of a specified experiment. In other words, -our decision will be based on
staristical inference, Hence statistical inference can be defined as making fnfer-
ence about the population on the basis, of samples.

Now is this specified experiment the best? Or, in other words, is the choice
of a sample of size # at random and observing the sample mean X as a cri-
terion for decision the procedure that leads to the optimal decision? If the
answer is yes, what is the value of n? If the answer is no, what other alterna-
tive procedures might be used in order to reach an optimal decision? An
alternative procedure might beyto inspect a sample of size n at random and
to observe the largest measurement, X ... If X... < a prescribed constant,
conclude that £{X) is << .03 andacecordingly accept the lot or reject otherwise.
Suppose this alternative procedure is better than the previous one. What is
the value of #? In general, what is the basis for the selection of an optimal
procedure? We shall answer these questions as we proceed.

8.3 Statistical Decision Theory

Considering again our introductory example, we have two statistical
hypotheses. The first hypothesis is E(X) <C .03, and the second hypothesis
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is E(X) > .03. The procedure by which a choice is made between these two
statistical hypotheses is called sratistical hypothesis testing.

The hypothesis that is tested [E£(X) <C .03] is called the mull hypothesis
and is denoted by H,; the other [E(X) > .03] is called the alternative
hypothesis and is denoted by H,. Testing of statistical hypotheses involves
rejection or acceptance of the null hypothesis. In other words, we wish to
determine whether the null hypothesis is frue or false. In symbols we write

Hy: E(X)< .03
H: E(X)> .03

The decision to accept or to reject the null hypothesis will be based on the
outcome of our experiment. Suppose a sample of size n is drawn at random
and the sample mean X is calculated. Furthermore, suppose that the follow-
ing decision rule is specified: Accept the null hypothesis if and only if ¥ <
.035 and reject otherwise. Accordingly, we shall reject the null hypothesis if
and only if the observed outcome is greater than .035.

According to this decision rule we shall reject the null hypothesis if the
value of the sample mean X falls in the critical region, The critical region
(sometimes known as the rejection region) is specified by the set of values of X
that is greater than 035. To simplify the analysis let us suppose that this
critical dimension is normally distributed with unknown mean E(X) and
known standard deviation ¢ = .006. Accordingly, X is a random variable
that is normally distributed with mean E{X) and standard deviation g/~/7 .
Let us analyze further the outcomes based on this decision rule. If the mean
of the lot under consideration is actually equal to .03, as shown in Fig. 8.1,
then

7

1. The null hypothesis is accepted whenever the value of X does not fall in
the critical region.

2. The null hypothesis is rejecred whenever the value of X falls in the critical
region.

If the mean of the iot under considel:_at"ion is actually equal to .04, as shown
in Fig. 8.2, then -

3. The null hypothesis is accepted whenever the value of ¥ does not fall in
the critical region. .

4. The null hypothesis is rejecfed whenever the value of X falls in the critical
region.

Table 8.1 summarizes the outcomes based on this decision rule. Now in
1 and 4 we have made correct decisions whereas in 2 and 3 the decisions
made are incorrect.

Obviously in case 2 we rejected the ot despite the fact that E(X) = .03.
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Fig. 8.1 Graphical description of critical and acceptance regions
for the given decision rule [E(X) = .03).
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Fig. 8.2 Graphical description of critical and acceptance regions
for the given decision rule [E{X) = .04].
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TABLE &.1

Accept Null Hypothesis Reject Null Hypothesis

Null hypothesis true i } 2
Null hypothesis false 3 4

kind or a type I error. Now let us evaluate the probability of occurrence of
an error of the first kind (denoted by a). Then we write

o =P[X > .035| E(X) < .03}

el an 5
< P{z > 3&%}

Let us suppose that X is evaluated on.the basis of a sample of size n = 4.
Then the error of the first kind becomes

agP{z>'O—1°}

006
< .0485

This means (given the decision rule) the maximum error of the first kind is
.0485. « is sometimes known as the level of significance.

In case 3 we accepted the lot despite the fact that E(X) = .040. Thus we
have committed an error of the second kind or a type Il error. Let us evaluate
as well the probability of occurrence of an error of the second kind (denoted
by f). Then we write

BIE(X)} = P{X < 35|E(X) > .03}

Obviocusly the error of the second type is not a constant then but depends on
the value taken by E{X). If E(X) = .04, we have

BIE(X) = .04} = PL{{J/_TE‘?) < %g}
i, . —.010
- P{ZS 006 }

= .0485

Usually it is more convenient to study the characteristics of the decision
rule by defining a new function =z called the power of the test. The power of
the test is the probability of rejecting the null hypothesis when the alternative
is frue, Then we write

{E(X)} =1 — B{E(X)}
= P{X > .035| E(X) > .03}
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Table 8.2 shows the values of the power function for each possible value of
the parameter E(X) for the given decision rule. The graph of this power func-
tion is shown in Fig. 8.3, It can readily be seen from the graph that the chance
of accepting a lot having an average variation in wall thickness greater than
.03 mm decreases as this average value increases for the given decision rule.

TABLE 8.2
EQX) 030 033 .03 039 042 045 048
2 (E(X)) 0485 2527 6305 9087 9902 9996  .9999
1 {EX)}

1.0 = e —
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Fig. 8.3 Power curve for the given rule. '

From our previous discussion%thg reader can see that we arbitrarily de-
cided that X should be less than or equal to .035 and n = 4 in order to test
the hypothesis given by management. Usually this will not be the appropriate
procedure of testing statistical hypotheses. The inappropriateness of this
procedure stems from the fact that the rule set by management was too rigid.
Should management have decided that the maximum probability of rejecting
a lot having E(X) = .03 is, say, .02, then we could find the appropriate test

procedure in this case. In fact, then we would test the following hypothesis:

Hy: E(X)=< .03 against H,.: E(X)> .03 givena,,, = .02

Then we write
G = P[X > k1E(X) = .03}
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where k is a constant to be determined. The constant & must satisfy the fol-
lowing equation:

02 = P{TIJ E(HX) > —_’;Fﬁ‘}
- plz> 5=
-1-o(57)
Thus

Consequently, reject the null hypothesis if ¥ > .03 + .01233/+/ 1. Now
what is the sample size? The optimal procedure for determining the sample
size will be treated in the next chapter; however, we will analyze the effect
of the sample size on controlling risk of an error of the second kind. Let us
assume that n can be either 4, 9, or 16 and evaluate the power function based
on this assumption. If n =4, then -

01233

BEX)} = P{'J? < .03 + 222 E(x) > .03

Hence
7{E(X)} = 1 — P{X < .03616 | E(X) > .03}

Similarly, we can evaluate the value of the power function for n =9 and
n = 16. Values of the power function for these three sample sizes are given
in Table 8.3. The graphs for the three power functions are shown in Fig.
8.4,

TABLE 8.3

E(X) 030 033 L0367 039 042 045 048
n=4 02 15 487 .82 97 .99 ~1
R{E(X)] =9 .02 29 82 99 ~1
n=16 02 48 97 ~1

The risk of making an error of the second kind decreases as the sample size
increases. To illustrate, if the incoming lots have E(X) = .039 there will be
a chance of accepting such lots 18 times out of 100-as having E(X) < .030
when #n = 4, whereas there will be a chance of accepting such lots once out of
100 when n = 9. Referring to Table 8.2, we find that incoming lots with mean
= ,039-have a chance of being accepted 10 times out of 100 when # = 4 and

7209
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A EX)]

ta
I

I 1 ! 1 I I [ E(X)
027 030 033 036 039 .042 045 048 0.51

Fig. 8.4 Power functions for selected sampie sizes (o = .02).

®max = .0485. This means that as the error of the first kind increases, the
error of the second kind decreases and vice versa, Tt follows that by varying
the sample size we can exercise control on the error of the second kind.

Now if we plot {E(X)} against the true average variation in wall thick-
ness for a fixed & = .02 and sample sizes 4, 9, and 16, the resulting plot is
called an operating characteristic (denoted by OC) curve. The result is repre-
sented by the curves in Fig. 8.5.

The level of significance und the sample size|uniquely determine the OC

curve for the given decision ride. It is evident that by increasing the sample

size for a given level of significance the error of the second kind decreases.
In practice a balance must be struck between the cost of additional observa-
tions and the advantage of decreasing the efror of the second kind. In many
situatjons it is not feasible to assess explicitly the cost parameters associated
with alternative testing procedures. In the absence of knowledge of these cost
parameters the criterion by which we can assess and compare tests of statisti-
cal hypothesis is found in the OC curves or power functions.

We have discussed so far a decision procedure that associated with it the
outcome of random variable X, sample size n, and acceptance region (¥ < a
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g {EX):

L L ) r i I i X
| 0.27 .030 .033 036 039 042 045 048 051 EX)

Fig. 8.5 OC curves for selected sample sizes (¢ = .02).

S, the

wylng prescribed constant), We shall refer to Ehis decision procedure as the X pro-

; cedure. Now we may raise the following question: s this procedure superior
thick- : to the X, procedure? Note that the X, procedure is specified by: draw
at random a sample of size n; observe the largest measurement, X,,.; if
X, < a prescribed constant conclude that E(X) is less than or equal to
.03; otherwise conclude that E(X)) is greater than .03,

To compare these two procedurgs (¥ and X,,) we will fix the level of ;
te OC significance at .02 and the sampie size at 4 for both procedures and use the |

slot is
repre-

'ample OC curves to provide a criterion of comparison. In other words, we will be !
easf;; comparing both procedures in probabilistic terms.
s;;n The alternative decision rule is to accept the null hypothesis if X, < &,
nany hence
ciated .
3¢ cost P[Xmaxgk}=lﬂu=98
tatiste- L Since these measurements are independent, identically distributed, normal
] variates, we write
L it the ,
T<a P(X, < K} P(X, < k) P[X, < K} P[X, <Kk} = 98
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Hence

k_ol')osw e—(l/z):=d e
f_; '-:755— Z = (98) = ,995

whence k ==.0454. This means the following: Reject the null hypothesis
whenever X, is greater than .0454. The probability of occurrence of the
error of the second kind is given by ‘

i O Al

Suppose now that E(X) = .036; then L
BL.036} = P{Xae < .0454| E(X) = .036} ) N
0454 —.036 | 4 ! L
- [J. 006 72?3—(”2):' dZ] :,kf'
=.78 BB

Similarly, we can calculate the probability of occurrence of the error of the
second kind for possible values of the true average [E(X)}. The result is
tabulated in Table 8.4. The OC curves for the ¥ and X, procedures are as
indicated in Fig. 8.6.

TABLE 8.4
E(X) .030 033 036 039 042 045 048
BLEXR 98 92 78 53 26 .06 01

4
Obviously, the procedure based upon X gives better protection than the

X ..z procedure for a whole range of alternatives, Thus the X procedure is :
preferred to the X, procedure. Now we proved that the X procedure is g 8.4 K
superior to the X, procedure. Does this imply that the ¥ procedure is the

optimal one? On what basis is a procedure said to be optimal ? The procedure , ‘ Ifa
is said to be optimal if the Pejection region for a fixed sample size and level of il distrib
significance minimizes the probability of occurrence of the error of the second . sis; otl
kind for a whole range of alternatives. The optimal procedure is sometimes : randon
called a uniformly most powerful test over a range of alternatives. There may P standa
be, in some situations, more than one optimal procedure. The procedure C - by two
based upon X is in fact the optimal procedure. This fact is proved by the - ‘ that o
Neyman-Pearson lemma, where justification for the use of the likelifhvod 1.7 is calle:
ratio has been established. : Anc
We have developed this example in order to introduce some fundamental 1 o 1s eqi
concepts of statistical inference in decision making. In Chapter 9 we will ' called ¢
take up the Neyman-Pearson lemma for testing statistical hypotheses about : Sup

a single parameter. The Po

7212
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Fig. 8.6 Comparison of the OC curves of the ¥ and AXmax pro-
— cedures for a fixed » and «.
?
a the
re 1s ’ 8.4 Kinds of Tests
re is
s the .. , o
sdure ‘ If a statistical hypothesis specifies the values of all the parameters of the
;el of : distribution of the random variable under study it is called simple hypothe-
scond ' sis; otherwise it is called a composite fiypothesis. Suppose, for example, the
Eimcs random variable under study is mormally distributed with mean & and i
may N standard deviation ¢. Hence the normal distribution is completely specified
sdure i by two parameters, x4 and . Testing if the mean is equal to, say, 100, given i
y the that o is known and equal to, say, 5, the null hypothesis is Hy:u =100 [t %
ihood is called a simple hypothesis. , i 4
Another illustration is testing if the mean is greater than 100 given that
sental o is equal to-5. The null hypothesis in this case is given by Hy: g > 100 is
e will called a composite hypothesis. . ,
about Suppose the random variable under study has a Poisson distribution.
The Poisson distribution is completely specified by a single parameter A.

7213
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t - Now if we are interested in testing if A = 10, then the null hypothesis H,: |
1t A = 101is a simple hypothesis, whereas H,: A < 10 is a composite hypothesis.
The study of testing hypotheses is usually classified in terms of the null hy-
11 pothesis H, and alternate hypothesis H,. Thus, if the vanate studied has a
: - ' Poisson distrubition, then the hypotheses
e ' '
Hy:A=10 H:1=12 ;
L is a simple against simple, whereas !
ﬁfwf Hy:A=10 H:A>10
i il is a simple against composite. Finaily s
it . Hy:2>10  Hi:l<10
g i % is a composite against composite. Simple hypotheses can be resolved, whereas
: ?‘ 1 _“; some of the composite hypotheses defy analytical solution,
} Hi
f 13 ' . .
it SUGGESTED REFERENCES
; |
i !; See the references given at the end of Chapter 10.
P ![
. J
i
LN
. 9.1 The L
le f ‘
‘ Ei The lik
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. %E' I : knowing w
g‘ it : than 1 ohn
il Ng, o3, ¥
: |; ¥ v i jecture, on
; ,; l ‘ 4 ; of the resis
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' l! 5. : one having
il ' ; tion having
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B L ¢
Tt |
i _ ¢ If the mear
LHLEE ! vidual mea
1. E {1 Since ti
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Sec. 8.7 Statistical Hypotheses Testing (Single Parameater) 241

is discrete, the values of &’ that correspond exactly to the usual specified values
of & will not always exist. In that event we choose the percentile that corre-
sponds to the level closest to «. The probability of accepting H, when H,
is true is .

; ] =, l Y
(543 B = Pr=kia =4} = 3 St
When iyt > 10 Egs. (9.42) and (9.43) can be approxlmated by the normal
distribution.

Example 9.7 Suppose that the number of unexcused absences per week in a
certairi plant follows the Poisson distribution with parameter A = 7. Management
improved the working conditions for a period of 3 weeks. At the end of this
period (3 weeks), the observed number of absences was found to be equal to ten.
(a) Would you infer from this result that managemeént’s action has reduced the

number of absences? Assume & = .025,

(b) What is the power of the test if 4, = 57

Solution
(a) Here we wish to test the hypothesis

Ho: A=1A¢ against H: =4, <4,
Hence, from Eq. (9.42) we have _
k=1 8—21(21)
E 'b‘

v=0

= .025

Consulting Table I in the Appendix we find that &' — | = 12, ie., &' = 13.
Thus we reject Hy when the number of observed absences is less than 13,
Since the number of observed absences falls in the critical region (0, 12), we
conclude that management’s action has reduced the number of absences.

(b) The power of the test is

A =1 — i “5)” = 268
The procedure of deriving the optimum rejection region and the power of

the test for other alternatives H, : A =4, > dpand H,: A = 4, = 4, will be
left as an exercise for the reader. o

9.7.3 Tests Concerning the Parameter (p) of
the Binomial Distribution

In this case the explicit hypothesis to be tested is o
Hy ip=p, against H, :p=p, < p,

The probability function of the binomial distribution is

O49) P =(N)pU—pr r=01....n 0<p<I

7215
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The nature of the optimum rejection region, then, is

Lry _ pil—p)"
9.45 Ly = >k
049 L) = ol =l
We note that the likelihood ratio is a monotonically decreasing function for
increasing » as long as p, << p,. Hence the optimum rejection region is equi-
- valent to the set of values of r less than some other constant k'. Accordingly,
we refect Hy when

-~ r < k)‘
The probability of type I error, then, is
il
046  Pr<kip=p)=3 (H)pMl —pr=u
The value of £’ can be obtained from the tables of the cumulative binomial
distribution (Table J in the Appendix). It should be noted that the exact
value of k' for every o will not always exist because the binomial variate has
a discrete distribution. In such cases we choose the percentile that corre-
sponds to the level closest to a.
The probability of accepting H, when H, is true is

04 By =Przkip=p}=3 (7)pt0 — sy

When » is large, Egs. (9.46) and (9.47) can be approximated by the normal
distribution. .

Example 9.8 A manufacturer claims that his product (submitted in large lots)
is less than 25% defective. A randor sample of size 20 is drawn from a large lot.
The number of defective items observed in the sample was one.

(a) Would you substantiate or refute the manufacturer's claim? Use & = ,025.

(b) Find the probability of acgeptance if the submitted lot is 10%] defective.

(c) How large a sample is needed to make the answer in (b) equal .107 Use normal
approximation.

Solution b

(a) From Eq. (9.46) we have -
o (20 N o
.,ZE, ( v )(.25) (.75)20-¢ = 025

From Table J we find &' = 2. Actually, &’ = 2 corresponds to the .0243 level
of significance, which is close enough to the specified level. Hence, we reject
Hy when the number of defective items in the sample is less than two. Since
the number of observed defectives falls into the critical region [0, 1], the null

hypothesis can be rejected at the specified level of significance. This supports

the manufacturer’s claim.

® Bio: = 10) = 5, (F)c10)(90)20-+ = 6083

r=2
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ch 9 Statistical Hypotheses Testing (Single Parameter) 243

That is, the probability that this test will accept H, when actually g, = .10
is .6083.

(¢) From Eqs. (9.46) and (9.47) we have
% 3 (:)(.zs)vms)«-v = .025

v=0
. - H -y
Einys 3 (eror = 10
By trying successive values of # we can find from the tables of the cumulative
binomial distribution the values of smallest » and &° that satisfy the above
equations, However, since the largest sample size given in Table J is 20, we
shall use the normal approximation to the binomial, Hende, we have

kot n L o= o k-t 1 __]_ { — nu t
3 (Mcasyeasyra [* oL exp[ 2(_0 ) ]afz
where g = npy = 257 and @ = /apy(l — pg) = 4334/ n . Therefore

(' — 1+ 4) — 2507 _
o [ 433/ n ] =023

whence
(9.48) k=4 + 251 — (1L.96)(.4330/
Similarly,
N~ t
@ (%ﬁ‘_ﬁ) = .10
whence
(9.49) ok =i 4 e+ (D28

Solving Eqs. (9.48) and (9.49), we obtain
o [(!.96){.433)1—54— (.3}(1.28)‘!2 -7

In general, the required sample size is given by

(9.50) ,,E(v Pkl = po)Z o + 2/ (1 "PL)Zl-ﬁ)z
L= P
Thus, if we take a sample of 67 items we can detect an alternative P o= .10
with probability 902, = pew: - ¥

In a similar way the optimum rejectibn.'region and the power of the test
can be found for the alternatives H,:p =p, > p, and H:p=p #p,.

PROEBLEMS

9.1. Compute the error of the second kind if you wish to test the following hypothesis:
Hot =0 =10 against H: p=pu4, =11

at the 59/ level of significance. Assume that measurements are normaliy distributed with
o = 2.5 and a sample of size 16 is taken.

7217
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Most likely the manufacturer who buys his product (parts, subassemblies, more inf
material, etc.} in lots of conside’rable size, from one or more suppliers, desires % the same
. to know whether the quality characteristic within each lot conforms to his ‘.
specification. Obviously the. manufacturer would like to accept submitted lots
if their percent defective does not exceed the specified acceptable quality level.
Therefore, each lot must be inspected to determine whether it is acceptable.
More precisely, if a lot of size N items is submitted, every item in the lot wiil
be inspected and classified ds defective or satisfactory. The lot will be accepted
if the number of defective items in the lot is less than or equal to an allowable 17.2 Sis
number; otherwise it will be rejected. When the lot size & is exceptionally
large, 1009 inspection will be costly and time-consuming. Moreover, 1007} A san
inspection may not be feasible or advisable on the following grounds: It is char
I. The loss incurred due to a defective item is very low. In some cases no is the acc
inspection at all is the most.economical course of action. A sarm
2. 100% inspection is impossible when inspection is destructive. For instance, lot is acet
a lot of small caliber ammunition is accepted as satisfactory if 999 of _the accep
the shots fall within a specified distance from the center of a target at a if d =
given range. Hence the decision to accept or reject the lot will be reached waoqsl)
after destroying the entire lot, stderation
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3. 100Y%; inspection is not 10094 perfect since manual or mechanical inspec-
tion is subject to some margin of error,

In light of the previous discussion, can a receiver use better inspection to
assure the quality of product or work submitted by a producer? The answer
is 10 use acceptance sampling plans. That is, the decision to accept or reject
a lot will be based on a series of samples drawn at random from the submitted
lot, Sampling plans are not only economical but also are as effective as 1009
inspection. In many instances a well-designed sampling plan may produce
better results than 1009, inspection.

[t should be borne in mind that an acceptance sampling plan may accept
occasional lots with a much higher fraction of defective items than the con-

“sumer is willing to tolerate. However, if submitted lots differ in quality, the

sampling plan will accept the good lots more frequently than the bad lots,
and as a result a long-range average quality level, consistent with the quality
specified, can be maintained.

Sampling plans may be based on two different kinds of measurements,
Inspection may be performed by grading the product as defective or non-
defective or as good or bad, e.g., checking the size of cylindrical male parts
by go and not-go ring gages. Inspection also may be performed by measuring
the product to verify whether it conforms to specification, e.g., measuring
the pitch diameter of a screw with a thread micrometer. When related to
sampling inspection, the first is known as sampling by attributes whereas
the second is known as sampling by variables. In general, inspection by attri-
butes is less expensive than by variables. However, inspection by variables is
more informative than attributes and requires smaller sample size 10 provide
the same protection against accepting Jots of poor quality.

SAMPLING BY ATTRIBUTES

17.2 Single Sampling Plans _

A sampling plan based on one sample is called a single sampling plan.
It is characterized by two numbers {», ¢), where n is the sample size and ¢
is the acceptance number,

A sample of size n is drawn from the lot and inspected by attributes. The
lot is accepted if the number of defectives (d) in the sample does not exceed
the acceptance number (c). That is, accept the lot if & < ¢ and reject the lot
if d > ¢. Now on what basis can one determine the values of n and ¢?
Obviously the optimal selection of 1 and ¢ should be based on economic con-
siderations. However, the formulation of an economic model which inctudes
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relevant cost parameters is complicated. Therefore the values of 7 and ¢ are
determined so that the sampling plan will discriminate between good and bad
lots with specified odds for any level of fraction defective in the submitted lots,

17.2.1 The Operating Characteristic (OC)
Curve—-t_at Quality

Let p denote the fraction defective in a submitted lot. Suppose that the
consumer will accept a submitted ot if its fraction defective is less than or
equal to 17 and invariably will reject a lot of poorer quality. A plan that
would discriminate perfectly between lots with p < 1 % and lots with r>1%
would have the operating characteristic (OC) curve shown in Fig. 17.1.

1.00

§o{aeepr HoG

:

Probability of acceptance P,
, :

p (%)

0 | S 2 3

Fraction defective

Fig. 17,1 Iqeal OC curve for a sampling plan.

This ideal OC curve can be achieved only with 1009 inspection, provided that

1007 inspection is infallible. Unfortunately no sampling plan will have an

ideal OC curve as such. A well-designed sampling plan, however, can

approach such a curve. Now if the consumer will reject a submitted lot when-

ever its fraction defectjve exceeds 1% (using 1009 inspection), the producer
will have to screen the rejected lot to eliminate defectives. This means that
- both the consumer and! producer will sustain excessive inspection cost.
Consequently, it seems necessary to seek a more realistic approach to this
problem, an approach by which it would be feasible to reduce the prohibitive
cost of inspection. This dilemma has been solved by instituting acceptance
sampling plans,

In practice, the producer and consumer reach an agreement on a sampling
plan that is fair to both. Obviously the consumer wants to protect himself
against accepting a poor quality lot having a sizable fraction of défectives.
He must define the risk he is willing to take in having a poor quality lot
accepted by the sampling plan. In.other words, the consumer specifies the
probability of the sampling plan accepting a lot that has a fraction defective
p,. This probability is usually denoted by 8. Similarly, the producer specifies
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the probability of the sampling plan rejecting a lot that has a fraction defec-
tive p,. This probability is usually denoted by &. Once the consumer and pro-
ducer have come to agreement on the values of «, £, p,, and p,, a sampling

1.00 ,
a = producer’s risk

Q:'

g Bof

S

3

&

§ .60 |

b

o

Z 40}

E

o

S

£ 20r B = consumer's risk

0 p=AQL po=LTPD p'(%)

Fraction defective
Fig. 17.2 OC curve for a single sampling plan.

plan is determined. The OC of this sampling plan should pass through the
two points (p,, &) and (p,, 8), as shown in Fig. 17.2. The following nomencla—
ture will be adopted for these points:
o = producer’s risk
3 = consumer’s risk
2, = acceptable quality level (denoted by AQL)
= lot tolerance percentage defective (denoted by LTPD) or sometimes
called rejectable quality level (denoted by RQL)

The area between the AQL and LTPD is known as the indifference zone. From
Fig. 17.2 it can be seen that if the quality of the submitted lot is better than
p,, the lot will be accepted with probability greater than (I — a); if worse
than p,, the lot will be accepted with probability less than 8. Thus the OC
curve for any sampling plan wiil give the probability with which the plan wil
discriminate between good and bad or acceptable and unacceptable lots for
any level of fraction defective.

Let us now derive the probability of accepting a lot submitted with frac-
tion defective p'. If the incoming lot size is ¥ and we are sampling without
replacement, then the probability distribution of the number of defectives
(£) in a sample -of size n is hypergeometric. In symbols,

(e %)
a7.1) Pylk) =35 A n—k

()

7

ave:

7221




494  Acceprance Sampling Ch. 17

In practice, the lot size N runs into hundreds, thousands, or even larger,
In Sec. 6.19.4 we proved that the hypergeometric distribution with parameters
n, p’, and N approaches the binomial distribution with parameters # and p,

Consequently, Eq. (17.1) can be written
P =( 1 )pt — py*

We proved in Sec. 6.2 that if # — oo and p’ — 0 so that np’ == 4, the limiting
distribution of the binomial is a Poisson. Thus Eq. (17.2) becomes

Py =K

(17.2)

- (17.3)

where 2 = np‘.- ‘
Now if the sampling plan is specified by (s, ¢) and the lot quality is p’,
then the probability of accepting the lot is

(17‘4) Pa =~ kzc é‘al,li: k=g a=#p (np )k
k=9 .3:-0

Equation (17.4) can be evaluated by using Table I in the Appendix. The
product mp’ = 4 is used to enter Table I, in the column headed &k =¢,
to find the P, value. The following example will iflustrate the use of Table I:

Example 17.1 A single sampling plan uses a sample size of 40 and an accep-
tance number of 1. The lot size is large in comparison with sample size. Use Table
I to compute the probabilities of acceptance of lots .5, 1, 2, 3, 4, 5, 6, 7, 8, and
10%; defective. Plot the OC curve for the sampling plan,

Solution. Here we have a sampling plan with # = 40, ¢ = 1. That is, a sample
of 40 items is drawn from the lot and inspected. The lot is accepted if the sample
contains not more than one defective. If p* = 5%, then 4 = .20. The probability
of accepting ,5% defective lot is

=l o= 20(,20)%

SV = Z %!

(Note that .982 is read out of Table I with entries A = .2 and & = 1.) Similarly,
we can compute the values of P, for the specified values of p’, which are tabulated
below: +

K

Plp = = 982

J.4 5% 1% 2% 3% 4% 5% 6% 109

.406

7% | 8%

P, 982 | 938 | B9 | 663 525 .308 171 .092

The OC curve for the sampling plan is shown in Fig. 17.3.

Note that the probability of accepting a lot given a specified lot quality
{p") depends solely on the sample size (#) and the acceptance number {¢).
Thus the two numbers # and ¢ completely determine the OC curve. Let us
now study the effect of n and ¢ on the shape of the OC curve. Suppose in
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Fig. 17.5 Comparisoen of OC curves with different sample sizes.

1.- For the same sample size, increasing the ¢ value serves to move the curve
farther from the origin, Thus for a fixed sample size the sampling plan
would give better discrimination among lots of different quality if the
acceptance number is reduced. To illustrate, suppose a 4% defective lot
is submitted for inspection; the lot wouid be accepted 209 of the time if
¢ = 0, whereas the same lot would be accepted 78 % of the time if ¢ = 2.

2. For the same acceptance number, increasing the sample size causes the
slope of the OC to become steeper. The steeper the curve, the better the
protection against accepting lots of poorer quality.

17.2.2 Determination of Sampling Plan

Assume that the producer and the consuiner have agreed to use a single

-sampling plan for attributes that will protect $pecified values of AQL and

LTPD with specified values of « and f, respectively. What is now needed is
an OC curve that will pass through the points (AQL, I — &) and (LTPD, §).
This OC curve is uniquely determined by the numbers # and ¢. It should be
noted that since n and ¢ can take on integral values only, it is usuaily not
possible to find an OC curve that will pass through these points exactly;
however, it is possible to find a curve that will closely approach these points.

Example 17.2 Devise a single sampling plan that will provide the following
protection: « = .05, AQL = p, = .02 and §# = .05, LTPD = p, = .08.

Solution. To find the sample size # and the acceptance number ¢, we first assume
that ¢ = 0 and then find the ratio p,/p,. If this ratio is equal to .08/.02 = 4, then
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requirements. Actually, we ot
AQ:

i

which is close indeed to the n
The same result can be |

The following table was deve
single sampling schemes (¢ =

Ro

38,
12.
75

5.7
4.6
4.0

3.6
33
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2.7 .
.37
2.03

1.81
1.61
1.51

1.335
1.251
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the acceptance number of the sampling plan is 0 and the corresponding samplé_
size can be determined. If p,/p, > 4 for ¢ = 0, we try ¢ = 1. We continue in this

way until we find the value of ¢ that yields a value for P:/py equal or closest to 4,
To illustrate, if ¢ = 0, then .

n

ars Plpy=emm=95 = Z Rl

T
oz =t

& S I Z -
- 1 =

I

“;&#\*\‘é\;whenee npy = .05. Similarly, P,(p,;) = e~##2 = .05, whence np; = 3.0, Proceeding

in this way we obtain the following results:

c “oonpy(l - a = .95) 1pa(f = 05) %
0 .05 3.0 60.0
1 .35 4.8 13.7
2 .80 6.3 7.9
3 [.36 7.8 5.7
4 1.95 9.17 4.7
5 2.61 10,5 4,02
6 3.20 11.9 171
Therefore, ¢ =5 and n = 2.61 {02 = 131 appear to correspond closely with the
requirements. Actually, we obtain the following protection with # = 31 andc = 5
AQL = .02 LTPD = .08
& = .0494 B = .05

which is close indeed to the requirements.
The same result can be obtained by using the Peach-Littauer (14] method.

The following table was developed by P. Peach and S. B. Littauer for designing
single sampling schemes (& = § = .05):

Ry c ‘ noy
58, 0 05
12. I 36
7.5 2 82
5.7 3 1.37
4.6 , 1.97
4.0 " s 2.61
3.6 - 6 329
33 7 3.98
3.1 8 4.70

Lad
-
S

6.17
9.25

!\.)

[¥%]

-]
b
=

—
=3
—_—
R
~ o

37.20
51.43

in

—
on
L]
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Directions for use of table:

1. Calculate R, = ﬁ—

1
2. Find R, in table. If it does not appear, use the next larger value shown.
3. Read directly the acceptance number ¢.

4, Davide np, by p, to get n, the sample size.

The authors [14] proved that if the number of defectives in a sampie of # follows a
Poisson law, then :

Xdizgesny _ 2001 _ Py
(17.6) Xi-gi1een)  2np;

Applying Eq. (17.6) 10 Example 17.2 we obtain
(7.7 Z.Zos. 2c+1) _ _1_

X5, 20c+1)
From Table G in the Appendix we find that Eq. (17.7) is satisfied when 2(c 4+ I}
= 12; i.e,, ¢ = 5 and the corresponding sample size can be obtained from the
equations

(17.8) Xoaeey = 20p, of Xi_paeesny = 2np2
On substitution, Eq. (17.8) becomes
Xhs, 12 = 5.226 =20(.02) or x%;. .z = 21.026 = 2a(.08)

whence # 2= 131, which agrees with cur previous finding.

17.3 Average Qutgaing Quality

Sampling plans also may be specified according to the qualiry level of
lots that leave the inspection point. Suppose that lots of size N are being
subjected to a single sampling plan specified by » and ¢. Furthermore, sup-
pose that lots of but one quality level p’ are submitted for inspection. If
inspection is nondestructive and the lot $ize is very large compared to the
sample size, then the sampling plan will rejeet p* % defective lot with proba-
bility S

c e‘"""(np')",

P Y e
Now if reiected lots are 1009 inspected and the defectives are removed and
replaced by nondefectives, none of these lots will be rejected by the sampling
plan. These lots are called rectified lots and the inspection scheme is known as
rectifying inspection. Thus lots accepted by the sampling plan will contain
either (1) approximately the percent defective submitted (p') although they
will be slightly improved by the replacement of any defectives found in the
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