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Types of Trends 205 

Detecting and16 Estimating Fend.. 

An imponant objective of many envimnmental monitoring pmgrams is to detect 
changes or trends in pollution levels over time. The purpose may be to look 
far increased envimnmental pollution resulting fmm changing land use practices 
such as the gmwth of cities, increased emsion fmm farmland into riven. or 
the stanup of a hazardous waste storage facility. Or the purpose may be to 
determine if pollution levels have declined following the initiation of pollution 
contml Droprams. . -

The Snt sections of this chapter dircu~s t ) p s  of tmndr, rtatistral complcr~tors 
in trend drtection. graph~cal and regresston method$ 16, daccting and estimating 
tnnds. and Box-lenkins lime scrics nlclhods for malcling polluliun pmrcsscs. 
The remainder of the chapter describes the ~ann -~enda l i  test for  detecting 
monotonic vends at sinele or mult i~ lestations and Sen's (1%8b) !~onnarametric 
esltmatur 01 trend (slope) Extenr~onsof the tecl>n!ques in t h~ r  chapter to handle 
rcaronol etTects am gwen in Chapter I7  Append,% B lists a compatcr ccdc that 
computes the tests and trend estimates discussed in Chapten 16 and 17 

16.1 TYPES OF TRENDS 
Figrrre 16.1 shows some common types of trends. A sequence of measurements 
with no trend is shown in Figure IG.l(a). The fluctuations along the sequence 
are due to random (unassignable) causes. Figure 16.l(b) illustrates a cyclical 
pattern wih no long-term trend, and Figure IG.l(c) shows random fluctuations I 

I 
(C) TREND f NON-RANDOM 
I 
(0 RANDOM WITH IMPULSE 

about s "sing linear trend line. Cycle may be caused by many factors induding 
seasonal dimatic changes, tides, changes in  vehicle traffic patterns during the 
day, pmduetion schedules of industry, and so on. Such cycles are not "trends" 
because they do not indicate long-term change. Figure 16.l(d) shows a cycle 
with a rising long-term trend with random fluctuation about the cycle. 

Frequently, pollution measurements taken close together in time or space are 
positively conelated, that is, high (low) values are likely to be followed by 
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treatment plant. Finally, a sequence of random measurements fluctuating about 
a constant level may be followed by a trend as shown in Figure 16.L(h). We 
concenvatc here on tests for detecting monotonic increasing or d s m i n g  trends 
as in (c). (dl, (E), and (h). 

16.2 STATISTICAL COMPLEXITIES 
The detection and estimation of uends is complicated by pmblems assaeiated 
with characteristics of pollution data. In this tia an we review these problems, 
m g g a  appmaehes for Unir alleviation, and reference pertinent literature for 
additional information. Hamed d al. (1981) review the literature dealing with 
mtistieal design and analysis aspects of detecting trends in water quality. Munn 
(1981) reviews ~e thods  for detecting trends in sir quality data. 

16.2.1 Changes in Procedures 
A change of analytical laboratories or of sampling and/or analytical pmeedum 
may occur during a long-term study. Unfomnately, this may cause a shift in 
the mean or in the variance of the measured values. Such shifts could be 
inco-tly attributed to changes in the underlying natural or man-induced 
pmcesses generating the pollution. 

When changes in procedures or laboratories ocucr abruptly, there may not 
be time to conduct comparative studies to estimate the magnitude of shifts due 
to these changes. This pmblem can sometimes be avoided by preparing duplicate 
samples at the time of sampling: one is analyzed and the other is stored to be 
analyzed if a change in laboratories or pmcedures is introduced later. The 
paired, old-new data on duplicate samples can then be compared for shifts or 
other inconsistencies. This method assumes that the pollumts in the sample do 
not change while in storage, an unrealistic assumption in many eases. 

16.2.2 Seasonality 
The variation added by seasonal or other cycles makes it more difficult to detect 
long-term trends. This problem can be alleviated by removing the cycle before 
applying tests or by using tests unaffected by cycles. A simple nonparametric 
test for trend using the first approach was developed by Sen (1968a). The 
seasonal Kendall test, discussed in Chapter 17, uses the latter appmach. 

16.2.3 Correlated Data 
Pollution measurements taken in close proximity over time a n  likely to be 
positively correlated, but most statistical tests require uncamlated data. One 
approach is to use test statistics developed by Sen (1963, 1965) for dependent 
A".- TO***"-":-. ,,O"<> --.+a A*, -**"c eo%,e"t h,,",,d .nes-rL........... 
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and pmvide tables of adjusted critical values for the Wilcoxon rank sum and 
Spearman tests. Their paper summarizes the latest statistid techniquw for trend 
detection. 

16.2.4 Corrections for Flow 
The detection of t ~ n d ~in stream water quality is more difficult when mncen-
trations are dated to sueam flow, Un usual situation. Smith, Hirseh, and Slack 
(1982) obtain flow-adjusted wnanwtions by fitting a e o n equation to 
the mneentrafion-flow relationship. Then he &dads hom re-ion are tested 
for trend by the seasonal KendaU test discussed in Chapter 17. Hamed, Daniel, 
and Crawford (1981) illustrate two allemalive methcds, discharge compensation 
and discharge-frequency weighting. Methods for adjusting ambient air quality 
levels for meteomlogical effects an discussed by Zeldin and Meisel (1978). 

16.3 METHODS 

16.3.1 Graphical 
Graphical methods are very useful aids to formal tests for trends. The tint step 
is to plot the data against time of collection. Velleman and Hoaglin (1981) 
provide a computer d e  for this purpase, which is designed for interactive ue 
an a computer terminal. They also provide a computer code for "smwthing" 
time series to paint out cycles andlor long-term trends that may otherwise be 
obscured by variability in the data. 

Cumulative sum (CUSUM) charts are also an effective graphical tool. With 
this method changes in the mean are d e t d  by keeping a cumulative total of 
deviations fmm a reference value or of miduals from a rralistic stochastic 
model of the pmcess. Page (1961, 1963), Ewsn (1963). Gibra (1975). Wetherill 
(1977). Benhouex, Hunter, and Pallesen (1978). and Vardeman and David 
(1984) pmvide details on the method and additional refennces. 

16.3.2 Regression 
If plats of data Venus time suggest a simple linear inercase or decrease over 
time, a linear regression of the variable against time may be fit to the data. A 
r test may be used to test that the tme slope is not different fmm mro; see, 
for example, Snedecor and Cochran (1980, p. 155). This Itest can be misleading 
if seasonal cycles are present, the data are not normally distributed, andlor the 
data are serially correlated. Hirsch, Slack, and Smith (1982) show Ulat in t h s e  
situations, the r test may indicate a significant slope when the uue slope actually 
is rero. They also examine the performance of linear regression applied to 
deseasonalized data. This procedure (called seasorto1 rqression) gave a r test 
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16.3.3 	 Intervention Analysis and 
Box- Jenkins Models 

If a Ibng time rqucnce of equally spaced data is available. intervention anrlyrir 
may be uwd to detect changer in average level rrsulttng fmm a natural or man-
induced rntenentian in Lc pmces. Thn approach, developed by Box and Tiao 
(1975). is a generalization of the autoregressive integrated moving-avcrage 
(ARIMA) time series models d c s a i y  by Box and Jenlrins (1976). Lett~maier 
and Murray (1977) and Lenenmaier (1978) study the power of the method to 
detect mnds. They emphasize the design of sampling plans to detect impacts 
from polluting facilities. Fxamples of its use are in Hipel et al. (1975) and Roy 
and Pellerin (1982). 

Box-Jenkins modeling techniques are powerful tools for the analysis of time 
series data. McMiehael and Hunter (1972) give a gwd intductian to Box- 
Jenkins modeling bf envimnmental data. using both deterministic and stochastic 
components to forecast temperature flow in the Ohio River. Fuller and Tsokos 
(1971) develop models to forecast dissolved oxygen in a stnam. Carlson, 
MacConnick, and Watts (1970) and MeKerchar and Delleur (1974) fit Box- 
Jenkins models to monthly river Rows. Hsu and Hunter (1976) analyze annual 
series of-air pollution SO, concentrations. McCdlister and Wilson (1975) forecast 
daily maximum and hourly average total oxidant and carbon monoxide concen-
trations in the Lm Aaples Basin. Hipel. McLmd, and Lennor (19770, 19776) 
illustrate impmved Box-Jenkins techniques to simplify model consmclion. 
Reinsel et al. (19810, 19816) use Box-Jenkins models to detect trends in 
stratospheric omne data. Two intductoty textbodrs are MeCleary and Hay 
(1980) and Chatfield (1984). Box and Jenkins (1976) is recommended reading 
for all users of the method. 

Disadvantages of Box-Jenkins methods are discussed by Montgomery and 
Johnson (1976). At least 50 and preferably LOO or more data collected at equal 
(or approximately equal) time intervals are needed. When the purpose is 
forecasting, we must assume the developed model applies to the future. Missing 
data or data reported as trace or less-than values can prevent the use of Box- 
Jenkim methods. Finally, the modeling pmess is often nontrivial, with a 
considerable inveslment in time and resources required to build a satisfactory~~ ~ ~~ ~~ 

model Fonunatcly. them several packages of rtatnstiral prngramr that conlzin 
coder for developing time series models. ineludmg Minitah (Ryan, loincr, and 
Ryan 1982). SPSS (1985). BMDP (1983), and SAS (1985). Codes for pcnonal 
computers are also becoming available 

16.4 MANN-KENDALL TEST 
In this section we discuss the nonparametric Mann-Kendall test for trend (Mann, 
1945; Kendall, 1975). This pmecdure is particularly useful since missing values 

. . .  	. . . .. . .. .. .... 
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than their measured values. We note that the Mann-Kendall test can be viewed 
as a nonpa-uic test for zem slope of the linear regmsion of time-odeted 

: data venus time, as illustrated by Hollander and Wolfe (1973, p. 201). 

16.4.1 	 Number of Data 40 or Less 
If n is 40 or less, the procedure in this section may be used. When n exceeds 
40, use the n o m l  appmximation test in Sstlon 16.4.2. We begin by considering 
the case where only one datum per time period is taken, where a time period 
may be a day, week,monUl, and so on. The ease of multiple data values per 
iime period is discussed in W o n  16.4.3. 

The first step is to list the data in the ordcr in which Ulcy were collected 
over time: x,, x,, . . . ,I., when 1,is the datum at time i. Then determine 
the sign of all n(n - 1)12 possible differences x, - xk, where j > k. These 
differencesare x, - xi,x, - x , ,  . . . ,x. - x,,  x, - x2, x, - rz,. . . ,x, 
- x..,, x. - x.- , .  A convenient way of arranging the calculations b shown 
in Tahle 16.1. 

Let sgn(x, - xJ be an indicator function lhat lakes on the valuu 1, 0, or 
-1 according to the sign of x, - r,: 

= - I  if 1 , - x k < O  

Then compute the Mann-Kendall statistic 

which is the number of positive differences minus the number of negative 
differences. These differences are easily obtained fmm the Ian two columns of 
Tahle 16.1. If S is a large positive number, Feasulements taken later in time 
tend to be larger than those taken earlier. Similarly, if S is a large negative 
number, measurements taken later in time tend to he smaller. If n is large, the 
computer code in Appendix B may he used to compute S. This code also 
computes the tests for trend discussed in Chapter 17. 

Suppose we want to test the nuU hypothesis, H,, of no trend against the 
alternative hypothesis, HA.of an upward trend. Then Hois rejected iin favor of 
If, if S is positive and if the pmbability value iq Tahle A18 comsponding to 
the computed S is less than the a priari specified m significance level of the 
test. Similarly, to test H, against the alternative hypothesis HAof a downward 
trend, reject Hoand accept HA if S is negative and if the probability value in 
the table mrresranding to the ahsolute value of S is kss than the a oriori 
spec~ficdo va~uk. If Ctua-tailed test i s  desired, that is. if wc want to detect 
erther an upuard or dounuard trend, the tahlcd probability level corresponding 
to the absolute value of S ic doubled and I& is rejected if bat doubled value 
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Table 16.2 Computation of the Mann-Kendall Trend Statistic S lor the Time 
Ordered Data Sequence 10. 15. 14. 20 

( 
xnw 
D o t ~  

I 
I0 

2 
is 

3 
I4 

4 
20 

h.of + 
tip 

No @ -
t i ~ ~  

significance level. Far ease of illurntian suppose only 4 measure- 
ments are collected in the following order OM time or along a line 
in space: 10, 15, 14, and 20. Thue are 6 diffemoces to consider: 
15 - LO, 14 - 10, 20 - 10, 14 - 15, 20 - 15, and 20 - 14. 
Using Eqs. 16.1 and 16.2, we obtain S = + I  + I + 1 - 1 + I 
+ I = +4, as illustrated in Table 16.2. (Note that h e  sign, net 
the magnihlde of the difference is used.) Fmm Table A18 we find 
for n = 4 that the tabled pmbability for S = +4 is 0.167. This 
number is the probability of obtaining a value of S equal to +4  or 
larger when n = 4 and when no upward vend is present. Since this 
value is greater than 0.10, we cannot reject He 

If the data sequence had been 18, 20, 23, 35, hen S = +6, and 
the tabled probability is 0.012. Since this value is less than 0.10, 
we reject Ho and accept the alternative hypothesis of an upward 
trend. 

Table A18 gives probability values only far n 5 LO. An extension 
of this table up to n = 40 is given in Table A.21 in Hollander and 
Wolfe (1973). 

16.4.2 Number of Data Greater Than 40 
When n is greater than 40, the normal approximation test described in this 
section is used. Acmally, Kendall (1975, p. 55) indicates that this methcd may 
be used for n as small as 10 unless there an many tied data values. The le1 
procedure is to fist compute S using Eq. 16.2 as described before. Then 
compute the variance of S by the following equation, which takes into account 
that ties may be present: 

1
VAR(S) = -["("- 1)(2n + 5) - 5 t,(t, - 1)(21, + 5)] 16.3 

18 p = ~  

where g is the number of tied groups and I, is the number of data in the pth 
group. For example, in the sequence (23, 24, hace, 6, trace, 24, 24, trace, 
23) we have g = 3, I, = 2 for the tied value 23, I, = 3 for the tied value 
24, end t, = 3 for the three trace values (considered to be of equal but unknown 
value less than 6). 

Then S and VAR(S) are used to compute the test statistic Z as follows:" .  
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: : : : : : : : : : : : : : :  : i : ; i i : : ;  
1 3 5 7 9 II 1 3 5 7 9 11 IMONTH 

I 2 YEAR 

Agure 16.2 Concentrations of "U in ground water in well E at the former St. 
Louis pirpon storage site for January 1981 through January 1983 (after Clark 
and Berven, 1984). 

A positive (negative) value of Z indicates an upward (downward) trend. If the 
null hypothesis. H,, of no trend is t ~ e ,the statistic Z has a standard normal 
distribution, and hence we use Table At  to decide whether to reject Ho.To 
test for either upward or downward trend (a hvo-tailed test) at the a level of 
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- 6(5)(12 + 5) - 2(1)(4 + 5) - 2(1)(4 + 511 
f 

= 1227.33 

or [vAR(S)]'~ = 35.0. Therefone, since S > 0, Eq. 16.4 gives Z 
= (108 - 1)135.0 - 3.1. Fmm Table A l  we find &., = 1.645. 
S i n a  Z exceeds 1.645. we reject H, and accept the alternative 
hypothesis of an upward trend. We note that the t h r a  missing values 

' in Figun 16.2 do nor enter into the dculations in any way. They 
a n  simply ignored and constiNte a regrettable loss of information 
for evaluating the prwence of trend. 

16.4.3 	 Multiple Observations per Time 

Period i 


When there are multiple observations per time perid, there an two ways to 
proceed. First, we could wrnpute a summary statistic, such as the median, for 
each time period and apply the Mann-Kendall test to the medians. An alternative 
apptuach is to consider the n, 2 I multiple observations at time i (or time 
period i) as ties in the time index. For this latter case the statistic S is still 
computed by Eq. 16.2, where n is now the sum of the n,, that is, the total 
number of observations rather than the number of time permds. The differences 
between data obtained at, the same time are given the score 0 no matter what 
the data values may be, since they are tied in the time index. 

When there are multiple observations per time period, the variance of S is 
computed by the followilg equation, which accounts for ties in the time index: 

significance, Ho is rejected if the heabsolute value of Z is greater than Z, .,, 
where Z, -,,2 is obtained fmm Table Al. If the alternative hypothesis is for an 
upward trend (a one-tailed test). H, is rejected if Z (Eq. 16.4) is greater than 
2,...We reject H, in favor of the alternative hypothesis of n downward trend 
if Z is negative and the absolute value of Z is gleanr than Z, ..E.Kendall 
(1975) indicates that using the standard normal tables (Table Al)  to judge the 
statistical significance of the Z test will ~mbably i n d u c e  little emrr as long 
as n z 10 unless there are many groups of ties and many ties within groups. 

EXAMPLE 16.2 
Figune 16.2 is a plot of n = 22 monthly '''U concentrations x , ,  12, 
x,, . . . , x22 obtained fmrn a gmundwater monitoring wdl from 
January I981 thmugh January 1983 (repotied in Clark and Bewen, 
1984). We use the Mann-Kendall procedure to test the null hypothesis 
at the a = 0.05 level that there is no trend in "'U gmundwater 
concentrations at this well over this 2-year period. The alternative 
hvmthmis is that an u~ward trend is present. 

2 I (I - l)(lp - 2) 5 "Juq - I)("? - 2) 
P - I  9- I 

+ 
9n(rt - l)(n - 2) 

x I (I - I) x tt*(rdq - I) 
p - l  p = ,

+ 
2"(" - 1) 

16.5 

where g and I, are as defined following Eq. 16.3, h is the number of time 
periods that contain multiple data, and ttq is the number of multiple data in the 
qth time period. Equation 16.5 reduces to Eq. 16.3 when there is one observation 
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Table 16.3 Illustration ot Computing S tor Example 16.3 

T i r n P ~ M d  I I 1 2 3 3 4 5 Srn~ft SUDO,-

i r l o  22 21 30 22 30 40 40 S:w S i p s  

NC NC +20 +12 +20 +M +30 5 0 
NC +8 0 + 8  +I8 +I8 4 0 

+9  +I + 9  +19 +I9 5 0 -
-8 0 +lo +lo 2 I 

NC +I8 +I8 2 0 
f 10 +I0 2 0 

0 - -0 
S = m  - I  

= 19 

NC = Not mmpM lim boch dam vnlva arc withim Ur am linv period. 

I 2 3 4 5 


TIME PERIOD 	 = 2.4. Referring to Table Al,  we find 7,.= = 1.645. Since Z > 
1.645, rejen H, and aaept the albmative hypothesis of an upward

Flgure 16.3 An artircial data set to illustrate the Mann-Kendall test for trend trend.when ties In both the data and time am present. 

EXAMPLE 16.3 	 16.4.4 Homogeneity of Stations 
To illustrate the computation of Sand VAR(S), considcr the following Thus far only one station has been considered. If data over time have been 
alliCleia1 data see collected M M > I slations, rue have dala as displayed in Table 16.4 (assuming 

one datum per sampling period). The Mann-Kendall test may be computed for 
(concentration, time period) each station. Also, an estimate of the magniNdc of the herrend at each station 
= (lo, I), (22, I), (21, I),(30,2). (22, 3), (30, 3). (40, 4). (40, 5 )  can be obtained using Sen's (19686) p w d u r e ,  as described in Seetion 16.5. 

When data are collected at several stations within a mgion or basin, there 
as plnted in Figure 16.3. There are 5 lime wiods  and n = 8 data. 
To illustlate computing S, we lay out the data as follows: 	

may be interest in making a basin-wide statement about trends. A general 
statement about the Dresence or absence of monotonic trends will be meaninchl -~~~ 
if the !rends at all staions am in the same dimtion-that is. all upward or all 
doanward Time plots of the data al each nation, preferably an thc name graph 
to make visual rompanson easier, may indicate when basin-wide slatemens are 

We shall test at the a = 0.05 level the null hypothesis, Ho, of no possible. In many situations an objective testing method will be needed to help 

trend Venus the alternative hypothesis, HA, of an upward trend, a make this decision. In this section we discuss a method for doing this that 

one-tailed test. 
Now, look at all 8(7)12 = 28 possible data pain, remembering Tabte 16.4 Data Collected over Time at Multiple Stalians 

to give a %ore of 0 to the 4 pain within the same time index. The 
s,or;on I . . . .s,.,tim M 

differences are shown in Table 16.3. Ignore the magnitudes of the 
differences, and sum the number of positive and negative signs to Sa"p;ing Ti",# ... Snsnprii8 Time 

obtain S = 19. It is clear fmtn Figure 16.3 that there are g = 3 
tied data gmuDs (22, 30, and 40) with I ,  = r2 = 1, = 2 Also, 

1 2 K I 2 K 

there are h = 2 timc index ties (times 1 and 3) with u, = 3 and I rill a t ' '. zn, . . .  I =,,w *nu . . . =X,W 

u, = 2. Hence, Eq. 16.5 gives 2
 '1.8 h., 
 .. . '-8 . .  
 2 ',Y 2 " ' ' ' xm 
Year : 

= I  *=I ... rn ' ' ' L rlur- hw ' ' ' xzur 
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makes use of the Mann-Kcnddl statistic computed for each station. This 
pmedure was originally proposed by van Belle and Hughes (1984) to test for 
homogeneity of trends between seasons (a test discussed in Chapter 17). 

To test for homogeneity of trend dimtion at multiple stations, compute the 
homogeneity chi-square statistic, x&, where 

z, = 4 	 16.7 
( ~ A R ( s ~ ) I ' ~  

S, is the Mann-Kendall trend statistic for the jth station, 

- 1 '
and Z = - C ZMi-, ' 

If the trend at each station is in the same direction, then xL,has a chi-
squan distribution with M - I degrees of hedom (df). This distribution is 
given in Table Al9. To test for trend homogeneily between stations at the a 
significance level, we refer our calculated value of x L g  to the u critical value 
in Table A19 in the row with M - 1 df. If X& exceeds this critical value, 
we reject the KO or homogeneous station trends. In that case no regiowl-wide 
statements should be made about trend direction. However, a Mann-Kendall 
tesl for trend at each station may be used. If x2- d ~ snot exceed the a 
critical level in Table A19, then the statistic xbd = MZ2 is referred to the 
chi-square distribution with I df to test the null hypothesis Ha that the (common) 
trend direction is significantly different from zem. 

The validity of these chi-square tests depends on each of the Z, values (Eq. 
16.7) having a standard normal distribution. Based on results in Kendall (1975). 
this implies that the number of data (over time) for each station should exceed 
LO. Also, the validity of the tests requires that the 5 be independent. This 
requirement means that the data fmm different stations must be uncamlated. 
We note that the Mann-Kendall test and the chi-square tests given in this section 
may be computed even when the number of sampling times, K, varies fmm 
year to year and when there are multiple data collected per sampling time at 
one or more times. 

EXAivWLE 16.4 

We consider a simple ease to illustrate computations. Suppose the 
following data are obtained: 
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8 a n d S , = - l + O - I - I + I - 1 + O - 1 - 1 + 1 =  
2 - 6 = -4. Equation 16.3 gives 

VAR(S,) = 5(4)(15)-= 16.667 and VAR(S2
I8 

Therefore Q. 16.4 gives 

Z,=-- 7 	 -3 
(16.6673~n- and & = o,,= -0.783 

Thus 

x2- = 1.71' + (-0.783)' - 2 (1.71 ;0.783)' = 3.1 

Referring to the chi-squat tables with M - I = L df, we find the 
a = 0.05 level critical value is 3.84. Since X& < 3.84, we 
cannot leject the null hypothesis of homogeneaos trend dimtion 
over time at the 2 stations. Hence, an overall test of trend using the 
statistic x&,, a n  be made. [Note that the critical value 3.84 is only 
approximate (somewhat too small), sgce the number of data at both 
stations is less than 10.1 xk, = MZ' = Z(0.2148) = 0.43. S ina  
0.43 < 3.84, we cannot reject the null hypothesis of no trend at 
the 2 sMions. 

' We may test for trend at each station using the Mann-Kendall 
test by referring S, = 8 and S2 = -4 to Table A18. The tabled 
value far SI = 8 when a = 5 is 0.042. Daubling this value to give 
a two-tailed test gives 0.084, which is greater than our prcspecified 
u = 0.05. Hence, we cannot reject H, of no trend for smion 1 at 
the u = 0.05 level. The tabled value for S, = -4 when n = 5 is 
0.242. Since 0.484 > 0.05, we cannot reject Ho of no trend for 
station 2. These results are consistent with the x&, test before. 
Note, however, that station 1 still appears to be increasing over 
time, and the render may canfinn it is significant at the u = 0.10 
level. This result suggests that this station be carefully watched in 
the future. 

16.5 	 SEN'S NONPARAMETRIC 
ESTIMATOR OF SLOPE 

As noted in Smian 16.3.2, if a linear trend is present, the true slope (change 
per unit time) may be estimated by computing the least squares estimate of Ule 
*ln- L "  ̂ ^_ L _____...a 2.. a:. ...... ...L., ,:"-"-a"a"":""...̂ .l̂ l̂  
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gmss data emns or outlien, and it can be computed when data are missing. 
Sen's estimator is dosely related to the Mann-Kemlall test, as illustrated in the 
following paragraphs. The computer wde in Appendix B computes Sen's 
e ~ t i m a t o ~  

First, compute the N' slope estimates, Q, for each stafion: 

where x,. and x, are data values at times (or during time periods) i' and i, 
respectively, and when i' > i: N' is the number of data pairs for which i' > 
i. The median of these N' values of Q is Sm's estimator of slope. If there is 
ody one daNm in each time period, then N' = n(n - 1)12, when n is the 
number of time periods. If then are multiple observations in one or mom time 
periods, then N' < n(n - l)lZ, where n is now the total number of observations, 
not time periods, since Eq. 16.8 cannot be computed with two data fmm the 
same time period, that is, when i' = i. If an x, is below the detection limit, 
one half Ule detection limil may be used for x,. 

The median of the N' slope estimates is obtained in the usual way, as 
discussed in Section 13.3.1. That is, the N' values of Q are ranked from 
smallest to largest (denote the ranked values by Qlll S Qlrl 5 

' ' ' S 

Q l ~ . - l ls and we compute 

Sen's estimator = median slope 

= Q~rw+unl if N' is add 

= 4 ( Q ~ ~ ~ if ~N' is even 16.9+ Q ~ ~ + ~ , ~ )  

A lW(1 - two-sided confidence interval about the tNe slope may be 
obtained by the nonpmmetrie technique given by Sen (1968b). We give here 
a simpler pmedure, based on the normal distribution, that is valid for n as 
small as LO unless then are many ties. This pmedun is a generalization of 
that given by Hollander and Wolfe (1973, p. 207) when ties andlor multiple 
observations per time period are present. 

I 	 Choav the dcrtred confidence coeffie~enl a and find Z, tn lable Al .> 
2 Computc C. = Z , . . n l ~ ~ ~ ( ~ ; l ' n ,  cumpuled fmm Wcwhere VAR(5) s 

16 3 or 16 5 1he lancr equal~on ic used IIlhcre am mulllple ohsewat8ons 
per lime period. 

3. Compute Mi = (N' - CJ12 an4 M, = (N' + C.)IZ. 
4. 	The lower and upper limits of the confidence interval are the M,th largest 

and (M2 + I)th largest of the N' ordered slope estimates, respectively. 

EXAMPLE 16.5 
we ,,re the dstn wt in Eramole 16.3 to illustrate Sen's pmeedure. 
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Table 16.5 Illustration of Computing an Wimate of Trend Slope Using Sen's 
(196%) Nonparametric Pracedure (for Example 16.5). Tabled Values Are 

Individual Slope Esllmates. 0 

NC NC +20 +6 +I0 110 t7.5 
NC +8 0 +d +6 +4.5 

+9 +0.5 fd.5 +633 i4.75 
-8 0 +5 C3.33 

NC +I8 +9 
+to +5 

0 

NC = Canwl be canp~LFdr i m  both data valoa arc within Ur srn time priod. 

slope estimates' Q for these pairs are obtained by dividing the 
diferencs in Table 16.3 by i' - i. The 24 Q values are givm in 
Table 16.5. 

Ranking lhese Q values fmm smallest to largest gives 

Since N' = 24 is even, the median of these Q values is the average 
of the 12th and 13th largest values (by Eq. 16.8). which is 5.5, the 
Sen estimate of the true slope. That is, the average (median) change 
is estimated to be 5.5 units per time period. 

A 90% confidence internal about the true slope is obtaied as 
follows. Fmm Table Al  we find &., = 1.645. Hence, 

C. = 1.645[VAR(S)]'" = 1.645[58.IJ1" = 12.54 

where the value for VAR(S) was obtained fmm Example 16.3. Since 
N' = 24, we have M, = (24 - 12.54)/2 = 5.73 and M2 + I = 
(24 + 12.54)12 + 1 = 19.27. From the list of 24 ordend slopes 
given eadier, the lower limit is found to be 2.6 by interpolating 
between the 5th and 6th largest values. The upper limit is similarly 
found to be 9.3 by interpolating. between the 19th and 2Gih largest 
values. 

16.6 CASE STUDY 
This Section illustrates the pmcedures presented in this chapter for evaluating 
trends. The computer pmgram in Appendix B is used on +e hypthetical data 
listed in Table 16.6 and plotted in Figure 16.4. These data, generated on a 
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Table 16.6 Simulated Monthly Data a1 Two Slations over a Four-Year Period 

I U 1 8 E R  OF 
STITION PAT& P O I N T S  S T A T I O N  

1 18  2 I 8  
"ERR MONTH ITATlOl 1 YEAR MOUTH S T A T I O N  2 

1 1 6.00 1 
1 2 5 . 6 ,  I 
1 3 4 . 5 8  1 
1 4 4 . 3 4  1 
I 5 4.77 I 
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and the d m  for station 2 are lognormal with a Uend of 0.4 units per year or 
0.0333 units per month. These models were among those used by Hinch, Slack, 
and Smith (1982) to evaluate the power of the seasonal Kendall test for trend, 
a test we divuss in Chapter 17. 

The results obtained from h e  computer eodc in Appendix B are shown in 
Tahle 16.7. The fin1 steo is to decide whether the iwo stations have trends in 

~~ 

the same dimtion. In h i s  example we know it is not so, since one station ha. 
a trend and the other does not. But in ~ractice this a priori information will 
na be available. 

Table 16.7 shows that the chi-squm test of homogeneity (Eq.16.6) is highly 
significant (XL10.0: computed significance level of 0.W).lZcnce, we= 
ignore the chi-square test for t m d  that is automatically computed by the pmgram 
and turn instead to the Mann-Kendall twt results for each station. This test for 
station I is nonsignibant (P value of 0:70), indicating no slmng evidence for 
trends, but thaS for station 2 is highly significant. All of these test results agree 
with the true situation. Sen's estimates of slope are 0 . W  and 0.041 per month 
for slations I and 2, w h e w  the m e  values are 0.0 and 0.0333, respectively. 
The computer code computes 100(1 - a)% confidence limits for the true slope 
for a = 0.20, 0.10, 0.05, and 0.01. Far this example the 95% confidence 
limits are -0.009 and 0.012 for station 1, and 0.030 and 0.050 for station 2. 

The computer code allows one to split up the 48 observations at each station 
into meaningful groups h t  contain multiple obsetvations. For instance, suppose 

Table 16.7 Chi-Square Tests for Homogeneity of Trends at the Two Stations, 
and Mann-Kendall Tests for Each Station 

H O R 0 6 E I E I T Y T E S T R E S U L T S  

? R O B .  01  A 


C H I - S O U A R E  S T A T I S T I C S  d f  L A R G E R  VALUE 

TOTAL 23.97558 2 0.000 ~ r e n d n o tequal 
H O M O G E N E I T Y  10.03526 I 0.002 / .t t h e  2 s t a t i o n s  
T R E N D  13.94034 1 0.000 t "of meaningful 

P R O B . O I  E X C E E D I N G  

n r ~ n - THE A B S O L U T E  VLLUE 
K E W D A L L  OF T H E  2 S T L T I S T I C  

I T Y O - T A I L E D  T E S T )  
I l " > 1 0S T 1 T I O W  S E L S O l  S T A T I S T I C  I T L T I S T I C  n 

I 1 45.00 0.39121 L8 0.696 
2 1 549.00 4.87122 48 0.000 

SEN SLOPE 
C O N l l O f M t E  INTERVALS 

5717101 5E1SOH ALPHA LOWER L I M I T  S L D I e  UPPER L I M I T  

1 1 0.010 -0.013 0.002 0.016 
n nm -0.009 0.002 0.012 
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Table 16.8 Analyses of the data in Table 16.6 Considering the Data as 

Twelve Multiple Observations In Each of Four Years 


NUMBER OF YEARS i4 

N U M B E R O F  SE"S0"f = 1 

NUMBEROF S T A T l O N S i  2 

W O I I O B E N E I I I  TEST RESULTS 

?ROB. OF A 
S O U R C E  C H I - S Q U A R E  d f  LARPERYLLUE 

M A I M -
PRO*. OF E X C E E D I N ~  
T H E  AaSOLUTEVlLuE 

XLlDLLL O F T H E  Z S T A T 1 5 7 1 1  
I 2 I T Y O - T A I L E D  T E S T )  

STATION SELSON STLTISTIC S T A T I S T I C  n I F n h 1 0  

SEN SLOPE 
CONFIDEICE rlTLRYALS 

STATLON SEASON A L P H A  L O U E R  LlHll SLOPE UPPER L I M I T  

we regard the data in this example as I2 multiple data points in each of four 
years. Applying the code using this interpretation gives the results in Table 
16.8. 

The conclusions of the tests are the same i s  obtained in Table 16.7 when 
the data were considered as one time series of 48 single observations. However, 
this may not be the case with other data sets or groupings of multiple observations. 
lodeed, the Mann-Kendnll test statistic Z for station I is larger in Table 16.8 
than in Table 16.7, so that the test is =laser to (falsely) indicating a significant 
trend when the data are grouped into yean. For station 2 the Mann-Kendall 
test in Table 16.8 is smaller than in Table 16.7, indicating the test has less 
power to detect the trend amally present. The best strategy appean to be to 
not group data unnecessarily. The estimates of slope are now 0.080 and 0.467 
per year, whereas the Inre values are 0.0 and 0.40, respenively. 
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and estimating trends, intervention snalysis, and problems that arise when using 
regression methods to detect and estimate tlends. 

Next. the Mann-Kendall test for trend was described and illustrated in detail, 
including haw ta handle multiple observations per sampling time (or period). 
A chi-square test to test for homogenous trends at different stations within a 
basin was also illustrated. Finally, methods for estimating and placing confideme 
limits on the slope of a linear trend by Sen's nonparameter pmcedure were 
given and the Mann-Kendall ten on s simulated data sel was illustrated. 

EXERCISES 
16.1 	 Use the Mann-Kendall test to test far a rising trend over time, using the 

following.date obtained sequentially over time. 

Use u = 0.05. What problem is encountered in using Table A18? Use 
the normal approximate test statistic 2. 

16.2 	 Use the data in Excreise 16.1 to estimate the magnitude of the trend in 
the population. Handle NDs in two ways: (a) mat them as missing 
values, and (b) set them equal to one half the detection limit. Assume 
the detection limit is 0.5. What method do you prefer? Why? 

16.3 	 Compute a 90% confidence interval about the true slope, using the dala 
in pan (b) of Exercise 16.2. 

ANSWERS 
16.1 	 n = 7. The 2 NDs are treated as tied a1 a value less than I. I. S = 

16 - 4 = 12. since there is a tie, there is no probability value in Table 
A18 for S = +IZ, but the probability lics between 0.035 and 0.068. 
Using the large sample approximation gives Var(S) = 43.3 and Z = 
1.67. Since 1.67 > 1.645, we reject H, of no lrend. 

16.2 	 (a) The median of the 10 estimates ol slope is 0.23. (b) The median of 
the 21 estimates of slope is 0.33. 

Pros and Co,ls: Using one half of the detection limit assumes the 
actual measurement5 of ND values are equally likely to fall anywhere 
between zero and the detection limit. One M f  of the detection limit is 
the mean of that distribution. This method, though approximate, is 
referred to treating NDs as missing values. ., * - - 7s ? " & a m  = M.3. he comction for ties in Eq. 16.3 

&,.'." 
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Chapter 16 d i x w e d  trend detection and estimation methods that may be used 
when there are no cycles or seasonal effects in the data. H i d ,  Slack, and 
Smim (1982) pmposed the seasonal Kcndall fest when raaanality is p e n t .  
This chapter describes the seasonal Kendall test as well as the extention to 
multipk stations developed by van Belle and Hughes (1984). It also shows how 
to estimate the magnitude of a trend by using the nonparamctric seasonal KendaU 
slope estimator, which is appropriate when seasonality is p-nt. All thcn 
techniques are included in the computer code l i d  in Appendix 8. A mmplmr 
code that computes only the seasonal Kendall test and slope estimator is given 
in Smith, Hirsch, and Slack (1982). 

17.1 SEASONAL KENDALL TEST 
If seasonal cycles are present in the data, tests far trend that remove these 
cycles or are not affected by them should be used This section d iscurn  such 
a test: the seasonal Kendall test developed by Hiach, Slack, and ~ in i t h  (1982) 
and discussed furUler by Smith, Hirseh, and Slack (1982) and by van Belle and 
Hughes (19&2). This test may be used even though there aw missing, tied, or 
ND values. Furthermore, the validity of the test does not depend on the data 
being normally distributed. 

The seasonal Kendall test is a generalization of the Mann-Kendall test. It 
was pmpsed by Hirsch and colleagues for uae with 12 seasons (months). In 
brief, the test consists of computing the Mann-Kendalltest statistic S and its 
variance, VAR(S), separately for each month (season) with data collected over 
years. These seasonal slatistics are then summed, and a Z statistic is computed. 
If the number of seasons and years is sufficiently large, Uli Z valuc,may be 
referred to the standard n o m l  tables (Table Al) to test for a st~tisticslly 
significant trend. If there are 12 seasons (e.g., I2 months of data per year), 
Hirsch, Slack, and Smith (1982) show that Tabk A1 may be used long as. . .. 0 .  - . .. .-
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Table 17.1 Data for the Seasonal Kendall Test at One Sampling Statlon 

,%am" 

1 2 	 K 

I XIS . hl ... 'n 

? 112 112 
. .. ' n  

Yta. . . 
. ..1 1% x x  	 =rr 

exact test is important, the exact distribution of the seasonal Kcndali test statistic 
can be obtained on a wmputer for any combination of seasam and years by 
the Lechnique discussed by Hinch, Slack, and Smith (1982). 

Lei xz be the dahlm for the ith s e w  of the hh year, K the number of 
seasons, and L the number of years. The data for a given site (sampling statiation) 
are show in Tsblc 17.1. The null hypothesis, HO,is that the xj, are independent 
of the time (season and year) lhey were collected. The hypothesis H, is tested 
against the alternative hypothesis, HA,that for one or more s-ns the data 
are not independent of time. 

For each season we use data collected over years to compute the Mann-
Kendall statistic S. Let SF be this statistic computed for season i, that is, 
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where gi is the number of gmups of tied (equal-valued) data in s e w n  i, t, is 
the n u m k  of tied data in the pth gmup for season i, hi is the number of 
sampling times (or time periods) in -season i that wntain multiple data, aod u, 
is the number of multiple data in the 9th time period in season i. These 
quantities are illnstmted in Example 17.1. 

After the $ and Var(Si) are wmputed, we pwl acms the K sessons: 

and 

Next, compute 

l o  test [he null hypothesis. H,. of no mnd versus the alternative hypothesis, 
HA.of either an upward or downuanl trend (a two-miled test). we reject H,, if .,,. 2,is greater than Zofthe ahsolute value whm Z, .,-.is fmm Table AI. 
If the alternative hypothesis is far an upward trend at the ar level (a one-tailed 

-
 "I 

S, = C C sgn (4,- xjJ 17.1 
... Z,17.5) is gmtcr than (Eq.ZifHotest), we reject Reject Ho in favor of 

a downward trend (one-tailed test) if Z is negative and the absolute value of Z 
,-l z = i t + ,  

is gnater than 2,-..The wmputer code in Appendix B wmputes the seasonal 
Kendall ten far multiple or single observations per time period. Example 17.1 where I > k, n! is the number of data (aver years) for season i, and 
in the next section illustrates this test. The  + I  added to the S'  in Eq. 17.5 is 

sgn (I,,- xjk) = I if x,, - xek> 0 
a comction factor that makes Table Al more exact for tesling the null hypothesis. 

= 0 i fx ,  -1, = 0 This correction is not necessary if there are ten or more data for each season 
(?ti 2 LO). 

VAR(Si) is computed ss follows: 

17.2 	 SEASONAL KENDALL SLOPE 
ESTIMATOR 

The seasonal Kendall slope estimator is a genenlimtion of Sen's estimator 
of slope discussed in Section 16.5. First, compute the individual Nj slope 

)u estimates for the ith season:2 t. ( t .  	- - 2) z,utq(%q - I)(% - 2) 
+ P = l  jP ,P 

O".,". - l > f n  - 7> 
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estimates and find their median. This median is the seasonal Kenddl slope 
estimator. 

A 1 W 1  - a)% confidence interval about the tme slope is obtained in the 
same manner as in Section 16.5: 

1. Choose the desired confidence level a and find Z,., in Table AL. 
2. Compute C. = Z,.,[VAR(S')I'~. 
3. Computer MI = (N' - C.)n and M, = (N' + C,)12. 
4. The lower and upper confidence limits are the M,th largest and the (M2 + 

l)th largest of the N' ordered slope estimates, respectively. 

EXAMPLE 17.1 
We use a simple data set to illustrate the seasonal Kendall test and 
slope estidator. Since the number of data are small, the tests and 
confidence limits are only approximations. All computations are 
given in Table 17.2. Suppose data are collected twice a year (e.g., 
Deeember and June) for 3 yeas  at a givcn location. The data are 
listed below and plolted in Figure 17.1. 

sum 2 1 2 2 1 2  
On. 8 10 15 1220  18 1520  

Note that two observations were madein season 1 of year I and in 
season 2 of year 2. Also, there is I tied data value. 20, in season 
2. 

Table 17.2, Part A, gives the N; + Ni = 5 + 5 = 10 individual 
slope estimates for the 2 seasons and their ranking from smallest to 
largest. The seasonal Kendall slope estimate, 2.75, is the median of 
these LO values. In Table 17.2, Pan B, the seasonal Kendall Z 
statistic is calculated to be 2.1 by Eqs. 17.3-17.5. To test for an 
upward trend (one-tailed test) at the a = 0.05 level, we reject the 
null hypothesis, H,, of no trend if Z > &,,, that is, if Z > 1.645. 
Since Z = 2.10, we reject H, and accept lhat an upward trend is 
present. 

A 90% confidence intetval on the true slope is obtained by 
computing C. = 1.645[vAR(S')]'~ = 1.645(3.808) = 6.264, M, 
= (LO - 6.264)12 = 1.868, and M, + I = (LO + 6.264)12 + I 
= 9.132, Hence, the lower limit is found by interpolating between 
the fint and second largest values to obtain 1.7. The upper limit is 
similarly found to be 4.1. 
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Table 17.2 lllustrallon 01 the Seasonal Kendall Tesl and Slops Estimator 

Tabled Values Are Individual Slops Enrmates Oblained from Eq. 17.6 


.. .-
PO~?A. czv#uiuig rhe Smonol Kmdndll Sop miiii 

Ordered vvalw of indivzdvsl slope ufimatu: 
0 ,2 .2 ,2 .5 ,2 .5 ,3 ,3 ,3 .5 .1 .5  

Mcdian: h n . 1  Kmd.11 slap utirnste F 2.75 
80% Limis: 0.936 and 4.53 

"Canmot h mmpuled sin= bnh d n .  valvcr arc viUlin Ik umc Limc p k d .  
'ncrcrring th'b vslve ~o 'rnblc AI in appo~ims!e~n ror #hicismp~c. ,in- ", 
I!, .re rlnall and thuc arc only tuo season,. 

pmcedure developed by van Belle and Hughes (1984) to test for homogemity 
of trend dimtion in different seasons at a given station. This latter test is 
important, since if the trend is upward in one season and downward in awther, 
the seasonal Kmdall lest and slope estimator will be misleading. 

The pmcedure is to compute 

where 
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~('"1'1
I 2 1 2 1 2 S E A S O N  

I 2 3 YEAR 

Figure 17.1 Anificial data set to illustrala computation of the seasonal Kendall 
slope estimator. 

If X&s exceeds the a critical value for the chi-square distribution with K 
- I df, we reject the null hypothesis, H,,of homogeneous seasonal trends over 
time (trends in the same direction and of the same magnitude). In that case the 
seasonal Kendall test and slope estimate are not meaningful, and it is best ta 
compute the Mann-Kcndall test and Sen's slope estimator for each individual 
season. If x2- docs not exceed the critical value in the chi-square tables (Table 
A19), calculated value of x:d = KZ' is refemd to the chi-square distribution 
wilh 1 df to test for a common trend in all seasons. 

The critical value obtained fmm the chi-square tables will tend to be t w  

small unless (1) the number of data used to compute each 5 is 10 or more, 

and (2) the data are spaced far enough apm in time so that the data in different 

seasons are not correlated. For some water quality variables Lenenmaier (1978) 

found that this implies that sampling should be at least two weeks apan 


Van Belle end Hughes (1984) show how to test whether there is a pattern 

to the uend heterngeneity when xzMC is significantly large. They iUusmte by 

showing how to test whether trends in summer and winter months are significantly 

different. 


17.4 SEN'S TEST FOR TREND 
~.. . . , .. . . --- ....... :I. .-A .,,;,h ,hp
1-
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when then are missing values, and the test is inexact in that ease. Given these 
facts, Sen's test is preferred to the seasonal Kendall test when no data are 
missing. The computer code in Appendix B also computes S d s  test. Com-
putational procedures a n  given in van Belle and Hughes (1984). 

17.5 TESTING FOR GLOBAL TRENDS 
In Seetion 17.3 the X& statistic was used to lest for homogeneity of vend 
dimtion in different seasons at a given sampling station. This test is a special 
case of that doreloped by van BeUe and H u g h  (1984) for M > I stations. 
Their procedures allow one to test for homogeneity of Umd dimion a* diEemnt 
stations when seasonality is present. The test for homogeneity givm in Senion 
16.4.4 is a spgial case of this test. Van BeUe and Hughes illusvate the tests, 
using temperature and biological oxygen demand data at two stations on Ulc 
Willamern Rinr.  

The q u i d  data are illustrated in Table 17.3. The first step is to compute 
the Mann-Kendall statistic for each season at each station by Eq. 17.1. Let S,= 
denote [his statistic for the ith season at the mth station. Then compute 

where VAR(S,J is obtained by using Eq. 17.2. (For this application all quantities 
in Eq. 17.2 relate to the data set for Ule ith season and rnUl slation.) Note &st 
missing values, NDs, or multiple obsclvations per time period ar t  allowed, as 
discussed in Seetion 17.1. Also, note that the c o r n i o n  for continuity (fl 
added to S in Eq. 16.5 and S' in Eq. 17.5) is not used in Eq. 17.6 for -ns 
discussed by van Belle and Hughes (1984). 

Next, compute 

1zj.=-CGm:,,
i = l , Z ; . . . K
M m - !  


= mean over M stations for the ith season 

Table 17.3 Data to Test lor Trends Using the Procedure of van Belle and 

Hughes (1984) 


-

I =,,, 2 , . . . X X , ,  - . - 1 4,. *z," ... I rnw 
2 =,,, 4 2 1  . . . 1r2, .'. I,.. X," ... xx W 

Year , 

i =,,, a,, - . . I_I . . . L I,, I,, ... 'rw 
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- l X
Z. ,=-CZ, ,  r n = l , 2 ; . . , M

K t = ,  

= mean over K m  m  for the mth station 

= grand mean over all KM stations and seasons 

Now, mmplte the chi-square smtistics in Table 17.4 in the following order: 
x$,. x k ,  xLar--. and xZnan. Then mmpute 

x& = x L  - x L  
and 

- x& . - iz-"X L h - - 8t.W.7 

Rcfer xLtrn,,, xL.and X&,ion-n to the u level critical values in the chi- 
square tables with M - I, K - I, and (M - I)(K - I) df, respectively. 

If all three tests are nonsignificant, refer xtd to the chisquare distribution 
with I df to test for global trend. If x>, is significant, but xk, is not. 
that is, if trends have significantly diffetent dimions in different seaxlns but 
not at differentstatiom, then test for a different trend direction in each season 
by computing the K seasonal statistics 

M?:. i = 1, 2, . . . ,K seasons 17.7 

and teferring each to the a-level critical value of the chi-square distribution 
with I d t  

If X:ucion is significant, but X:,n is not, that is, if trends have significantly 
different directions at diffetent stations but not in different seasons, then test 
for a significant trend at each station by computing the M station statisties 

Table 17.4. Testing for Trends Using the Procedure of van Belle and 

Huohes 11984) 
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K m = l , z  , . . . ,  M&&N 

and refer to the u-level critical value of ihe chi-square disoibution with I d t  
If both x L .  and x k are significant or if X' . is significant, then 

I the x2 trend tesf should not be done. The only mend tests in Ulat --I 
case are those for individual station-seasons. 'These tests are made by referring 
each Z, statistic (see Table 17.3) to the a-level critical value of the standard 
normal table (Table All, as discussed in Section 16.4.2 (or Senion 16.4.3 if 
multiple obsemtions per season have been mlleeled). For t h e  individual 
Mann-Kendall tests, ihe &* should be recomputed so asm indude the eomction 
for continuity (*I) as givcn in Eq. 16.4. 

The computer code l i i  in Appmdu B eompucs all the tats we have 
described as well as Sen's esfimator of s l o ~ c  for each slation-season mmbinatinn~ 

~ - . 
In addition, it  computes ihe seasonal enda all tcrt. Sm'r aligned rcsl for mnds. 
the seasonal Kcadall slope estimator for each slation, the uplivalent slope 
estimator (the "station Kcndall slope estimator") f a &  season, and confidence 
limits on the slope. 

The code will compute and print the K seasonal aatistich (Eq.17.7) to test 
for equal t& at diffemt sites fm each ma,only if (I) the computed P 
value of the x$, test is less than up,  and (2) the computed P value of the 
dusmexceeds a', where a' is an a priori specified significance level, say 
u' = 0.01, 0.05, or 0.10, chosen by the investigator. Similarly, the M station 
statistics (Eq. 17.8) ate computed only if the computed P value of xr, is 
Iws than u' and that for XLis greater than a'. Thc user of the code can 
specify the desimd value of u'. A default value of u' = 0.05 is used if no 
value is specified. 

EXAMPLE 17.2 

Table 17.5 gives a set of data collected monthly at 2 stations for 4 
years (plotted in Fig. 17.2). These data were simulated an a computer 
using the lognormal, autoregnssive, seasonal cycle model given in 
Hineh,>lack, and Smith (1982, p. 112). The data at station 1 have 
no long-term trend (i.e., they have a slope of zero),whereas slation 
2 has an upward trend of 0.4 units per year for each season. Hence, 
seasonal trend directions are homogeneous, but the smion trend 
directions arc not. 
The chi-square tests are given in Table 17.6. We obtain that 

x&, = 8.16 has a P value of 0.004. That is, the pmbability is 
only 0 . W  of obtaining a x:&, value this large when trends over 
time at the 2 stations are in the same direction. Hence, the data 
suggest trend directions are different at the 2 stations, which is the 
hue situation. Both x&.. and xkti,.,. statisties (8.48 and 2.63) 
are small enough to be nonsignificant. This result is also expected, 
since trend d imian  dws not change with season. 

W ,  = nn%c;,,, ,,2 -...:--:c..-. , ~.8 
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Table 17.5 Simulated Water Qualiw Using a Lognormal Autoregressive, 

Seasonal Cycle Model Owen by Hinch. Slack. and Smith (1982. Eq. 140 


I U R B E R  OF " F I R S  = 4 
NUMBER OF S E A S O I S  = 12 
NUMBER OF S T A T I O M S  = 2 

IUblBLR OF WUlBfR OF 

STLTIDY o ~ i rPOINTS S T I T ~ O U  D A T A  POINTS 
1 n = 4 8  2 n = 48 

r r l l  SEASON S ~ A T I O W1 YELR SEASON STATION 2 

1 1 6.32 1 1 6.29 .1 2 6.08 1 2 6.11 m C 

1 3 5.16 1 3 5.66 -6" 
--0 ax-1 4 1.17 1 1 5.16 =E s0 

1 5 1.13 1 5 4.75 *m;

1 6' 3.65 1 6 6.79 

1 7 3.48 1 7 4.51 --:z*k% 
1 8 3.78 1 8 1.37 sE9 
1 9 3.94 1 9 4.95 0" :s 
1 10 4.40 1 10 5.22 --a = 0 
1 11 4.94 1 11 5.73 %2: 
1 12 5.32 1 12 6.72 
 !zz: 
2 1 5.82 2 1 7.42 - - e r n  a - m  
2 2 5.76 2 2 7.56 
 r" $2 
2 3 4.88 2 3 6.13 e E g
2 4 4.84 2 4 6.24 

--0 C -
2 5 4.87 2 5 5.07 z 2 2 
2 6 4.13 2 6 1.95 g 8 
2 7 3.51 2 7 4.59 
 --?2 5 z g
2 8 1.32 2 8 5.22 
 m r r  
2 9 1.06 2 9 5.13 

2 10 1.47 2 10 5.69 

2 11 5.05 2 11 6.41 

2 12 5.20 2 12 7.53 

3 1 5.83 3 1 7.02 

3 2 5.65 3 2 6.93 

3 3 5.32 3 3 6.55 m--, 

222:
3 1 5.33 3 4 6.66 
3 5 4.20 3 5 6.69 -..0 2 $8  
3 6 3.85 3 6 5.23 N BG 
3 7 1.45 3 7 5.11 <; E- - -c=.  

2= C =E45 

-- rn 
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Table 17.6 Chiaquare Tests for Homogeneityof Trends over Time between 
S a n s  and between Stations 

HoWOPEYllTI TEST RESULTS 
PROB. OF A 

CHI -SQUARE ITLTISTICS df LLRbER VALUE 

TOTAL 65.02007 24 0.006 
80106EIElTY 19.26657 23 0.686 

SEASON 

SrArlON 
8.18201 
8.15667 

11 
1 

0.670 
0.001 J 

Trend. n.t.qu.1 
a t t h e  2 s t a t i o n .  

I T A T I O N - S E L S O N  

TREND 

2.62789 
25.75349 

11 
I 

0.995 
O.OOOt"ot .eaningfu1 

l W D l Y l D U l L S T A T I O W  TREND 

PROB.  OF A 

S T A T I O N  C H I - S Q U A R E  d f  LARGER VALUE 

1 2.46154 1 0.117 

.2 31.14863 1 0.000 

evidence of a trend at station 1 (P level = 0.117) and a definite 
trend at station 2 (P level = 0.W). 

Table 17.7 gives the seasonal Kendall and Sen aligned rank tests 
at both stations. These results agree with the uue situation. The 
seasonal Kendall slope estimates are O.M2 and 0.440, which are 
slighuy larger than the actual values of 0.0 and 0.4, respectively. 
The lower and upper confidence limits on the true slope are also 
given in  Table 17.7. Finally, Table 17.8 gives the individual Mann-
Kendall tests for trend over time for each season-station combination. 

* 	 Since n is only 4 for each test, the P values are appmximate because 
they were obtained fmm the normal distribution (Table Al). The 
exact P values obtained fmm Table A18 are also shown in the table. 
The appmximate levels are quite dose to the exact. None of the 
tests for station 1 are significant, and the 12 slope estimates vary 
fmm -0.08 to 0.208 (the true value is zem). Seven of the I 2  tests 
for station 2 are significant at the a! = 0.10 2-tailed level. I f  n were 
greater tha? 4, more of the tests for station 2 would have been 
signifreant. The 12 slope estimates range fmm -0.070 to 0.623 with 
2.mean of 0.414. Since n is so small, these estimates are quite ~~~~~~~~ 	 ~ 

variable, but their mean is close to the true 0.40. Confidence intervnls 
for the true slope for 4 stationseason combinations are shown in 
Table 17.9. The computer code computes these for all KM combi-
nations. 
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Table 17.7 Seasonal Kendall and Sen Aligned Ranks Tests for Trend over 
Tim*. ....- 

PROS. OF E X C E L D I N 6  

THE A8SOLUTE VALUE 


OF THE KElDALL 

SEASON11 STlrrSTIc 

S T A T I O N  KENDILL n ITYO-TAILEOTEST> 

1 1.47087 48 0.141
2 5.51784 48 0.000 

THE ABSOLUTE Y l l U l  
OF THE S E N T  S T A T I S T I C  

S T 1 T I O M  SEN T n ITYO-TAILED T E S T )  

1 1.02473 48 0.3062 1.57811 48 0.000 

SEASONAL-KENDILL SLOPE 
C O W F I D E I C I  IIITERVALS 

STAT101 hLPHA LOWER L I M I T  SLOPE UPPER LIMIT 

1 0.010 -0.060 0.042 0.111 
0.050 
0.100 
0.200 

-0.020 
-0.004 
0.001 

0.042 
0.042 
0.042 

0.085 
0.081 
0.070 

by outliers and gross emn ,  and missing data or ND values are allowed. 
Hawever, the tests still require the data to be independent. I f  they are not, the 
tests tend to indicate that trends are present more than the allowed lo&% of 
the time. 

EXERCISES~ --. 

17.1 	 Use the following data to test for no trend Venus a rising trend, using 
the seasonal Kendall test. Use er = 0.01. 
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able 17.8 ~ann- end all Tests for Trend over Time for Each Season at 
Each Station 

* R O B .  OF E X C E E D I N G  
THE l8SOLUTE 

"A"*- Y&LUE O F  THE I 

X E l D L L L  S T A T I S T I C  

I 2. (TYO-rAlLED SEN 

S T A T I O N  SEASO" S T A T I S T I C  S T L T I S T I C  0 TEST)  I F  n > 10 SLOPE-
1 1 

2 
3 
4 

2 
- 2  

0 
2 

0.33968 
-0.33968 

0.00000 
0.33968 

4 
1 
4 
4 

0.731 
0.731 
1.000 
0.731 

(0.750)' 
(0.750) 
(1.0001 
10.7501 

5 0 0.00000 4 1.000 <1.000> 
6 
? 
8 
9 

10 
1 1 

0 
4 

-2 
0 
4 
4 

0.00000 
1.01905 

-0.3396% 
0.00000 
1.01905 
1.01905 

4 
4 
4 
4 
1 
6 

1 .ooo 
0.308 
0.731 
1.000 
0.308 
0.308 

(1 .000) 
(0.334) 
(0.750) 
(1.000) 
(0.334) 
(0.3341 

1 2  1 1.01905 1 0.308 (0.334) 

.- ..... -

.+I -lion factor u d  to cornpee fhc Z sulirtie. 

"exact two-failcd si8nificame kvcls for the 5 smtistis using Table A18. 

'Cannot be delemined fmm Table A18 rincc S = 3 rcsulltd bcauv or two ticd 


17.3 	 Use the results in Exercises 17.1 and 17.2 to compute an 80% confidence 
interval about the true s l o p .  

17.4 	 Test for equal trend directions in diflennt seasons, using the data in 
Exercise 17.1. Use a = 0.01. If the trends in the 6 seasons are 
honnogeneous, use chi-square to test for a statistically significant trend at 
the a = 0.05 level. 

17.5 	 Suppose the data in Exercise 17.1 were collected at statian I and the 
following data were collected at station 2. 
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Table 17.9 Sen Slope Eslimates and Confidence Intervals for Each Station. 
Season Combination 

SEN SLOPE 
C O I F I D E I L E  l l T l R Y I L I  

IT1TIOW SEASON A L P H A  LOWER L I M I T  SLOPE UOP-D ? f u r *~-
n too  s.s11. n t o o  %.all. 
n too  =.at1 0.0117 
n t o e  r.all 

-0.171 

n t o o  r..11 n t o o  s.all 
n t o o  S..II 0.032 
n too Ina l l  0.162 

-0.308 0.258 
" t o o  r.sll n t o o-0.171%.all 
o too  rm.11 
n t o o  r.s11 0.511 

-0.353 1.052 
" t o o  S..LI n too  r..11 
" t o o  r..11 
n too  small .. . 

0.200 -0.188 0.147 1.265 

.The 1-r and v w r  IimiU cannot be mmpvlcd if n it (m small. 

Test for homogeneity of trend direction betwssn seasons and between 
stations, using the chi-square tests in Table 17.4 with a = 0.01. Test 
for a significant common trend at the 2 stalions, if appmpriate. 

ANSWERS 

17.1 	 Var(S,) = 3(2)(11)/18 = 3.667 for each season. S' = $-,St = 18, 
Var(S') = 6(3.667) = 22. Fmm Eq. 17.5. 2 = 1 7 1 a  =,3.62. S inn  
a = 0.01 (one-tailed test), &,, = 2.326. Since 3.62 > 2.326, we 
accept the hypothesis of a rising trend. 

17.2 	 The median of the 18 slope estimates is 1.09 units per year. 

17.3 	 Z,., = &, = 1.282, Var(S') = 22 fmm Exercise 17.1. Therefon, 
C. = 1 . 2 8 2 a  = 6.0131, M, = 6, M2 + 1 = 13. Lower. limit = 
0.81; upper limit = 1.4. 

17.4 	 From Exercise 17.1 we have Z, = 1.567 = Z, = .q = 2, = ~ g .  
Therefore Z = 1.567; then x&, = l4.7,& = 14.7, x2,, = 0. 
Since x& < 15.09 (fmm Table A19). we cannot reject the null 
hypothesis of homogeneous trend dimtion in all seasons. Hence, test for 
trend, using x:,, = 14.7. Since 14.7 > 3.M (from Table A19), we 




