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16 Detecting and
. Estimating Trends

An important objective of many environmental monitoring programs is to detect
changes or trends in pollution levels over time. The purpose may be to look
for increased environmental pollution resulting from changing land use practices
such as the growth of cities, increased erosion from farmland into rivers, or
the startup of a hazardous waste storage facility. Or the purpose may be to
determine if poliution levels have declined following the initiation of pollution
control programs.

The first sections of this chapter discuss types of trends, statistical complexities
in trend detection, graphical and regression methods for detecting and estimating
trends, and Box-Jenkins time series methods for modeling poltution processes.
The remainder of the chapter describes the Mann-Kendall test for detecting
monatonic trends at single or multiple stations and Sen’s {1968b) nonparametric
estimator of trend {slope). Extensions of the techniques in this chapter to handle
seasonal effects are given in Chapter 17. Appendix B lists a computer code that
computes the tests and trend estimates discussed in Chaptlers 16 and 7.

16.1 TYPES OF TRENDS

Figure 16.1 shows some comimnon types of trends. A sequence of measurements
with no trend is shown in Figure 16.1(a). The fluctuations along the sequence
are due to random {unassignable) causes. Figure 16.1(b) illustrates a cyclical

" pattem wih no long-term trend, and Figure 16.1(c) shows random fluctuations

about a rising linear trend line. Cycles may be caused by many factors including

seasonal climatic changes, tides, changes in vehicle traffic patterns during the .

day, production schedules of industry, and so on. Such cycles are not “‘trends™”
because they do not indicate fong-term change. Figure 16.1(d) shows a cycle
with a rising fong-term trend with random fuctuation about the cycle.
Frequently, polintion measurements taken close together in time or space are
positively comrelated, that is, high (low) values are likely to be followed by
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treatment plant, Finally, a sequence of random measurements fluctuating about
a constant ievet may be followed by 2 trend as shown in Figure 16.1(k). We
concentrate here on tests for detecting monotonic increasing or decreasing trends
as in {¢), (d), (2), and (h). .

16.2 STATISTICAL COMPLEXITIES

The detection and estimation of trends is complicated by problems associated
with characteristics of pollution data. In this section we review these problems,
suggest approaches for their alleviation, and reference pertinent literature for
additional information. Hamed et al. (1981) review the literature dealing with
statistical design and analysis aspects of detecting trends in water quality. Munn
(1981) reviews methods for detecting trends in air quality data.

16.2.1 Changes in Procedures

A change of analytical laboratories or of sampling and/or analytical procedures
may occur during 2 long-term study. Unfortunately, this may cause a shift in
the mean or in the varance of the measured valves. Such shifts could be
incomectly attributed to changes in the underlying natural or man-induced
processes generating the poflution,

When changes in procedures or laboratories occur abruptly, there may not
be time to conduct compatative studies to estimate the magnitude of shifts due
to these changes. This problem can sometimes be avoided by preparing duplicate
samples at the time of sampling: one is analyzed and the other is stored to be
analyzed if a change in laboratories or procedures is introduced later. The
paired, ofd-new data on dupficate samples can then be compared for shifts or
other inconsistencies. This method assumes that the pollutants in the sample do
not change while in storage, an unrealistic asswmption in many cases.

16.2.2 Seasonality

The variation added by seasonal or other cycles makes it more difficult to detect
long-term trends. This problem can be alleviated by removing the cycle before
applying tests or by using tests unaffected by cycles. A simple nonparametric
test for trend using the first approach was developed by Sen (1968a). The
seasonal Kendall test, discussed in Chapter 17, uses the latter approach.

16.2.3 Correlated Data

Pollution measurements taken in close proximity over time are Jikely to be
positively correlated, but most statistical tests require uncorrelated data. One
approach is to use test statistics developed by Sen (1963, 1965) for dependent

Ante Wnmotvar T attaamaiar (1078 manncte that narhane coveral hundead mes-

Methods 207

and provide tables of adjusted critical values for the Wilcoxon rank sum and
Spearman tests. Their paper summarizes the latest statistical techniques for trend
detection.

16.2.4 Corrections for Flow

“The detection of trends in stream water quality is more difficult when concen-

trations are related to stream flow, the vsnal sitwation. Smith, Hirsch, and Slack
(1982) obtain flow-adjusted concentrations by fitting a regression equation to
the concentration-flow relationship. Then the residuals from regression are tested
for trend by the seasonal Kendall test discussed in Chapter 17. Hamed, Daniel,
and Crawford (1981) illustrate two altemative methods, discharge compensation
and discharge-frequency weighting. Methods for adjusting ambient air quality
levels for meteorological effects are discussed by Zeldin and Meisel (1978).

16.3 METHODS

16.3.1 Graphical

Graphicat methods are very useful aids to fornmat tests for trends. The first siep
is to plot the data against time of collection. Veffeman and Hoaglin ([981)
provide a compater code for this purpose, which is designed for interactive use
on a computer terminal. They also provide a computer cede for “‘smoothing’”
time series to point out cycles and/or long-term trends that may otherwise be
obscured by variability in the data.

Cumulative sum {(CUSUM) charts are also an effective graphical tool. With
this methed changes in the mean are detected by keeping a cumuiative total of
deviations from a reference value or of residuals from a realistic stochastic

model of the process. Page (1961, 1963), Ewan (1963), Gibra (1975), Wetherill -

(1977), Berthovex, Hunter, and Pallesen (1978), and Vardeman and David
(1984) provide details on the method and additionat references.

16.3.2 Regression

If plots of data versus time suggest a simple linear increase or decrease over
time, a linear regression of the variable against time may be fit to the data. A
t test may be used to test that the true slope is not different from zero; see,
for example, Snedecor and Cochran (1980, p. 155). This ¢ test can be misleading
if seasonal cycles are present, the data are not normally distributed, and/or the
data are serially correlated. Hirsch, Slack, and Smith (1982} show that in these
sitnations, the ¢ test may indicate a significant slope when the true slope actually
is zero. They also examine the performance of linear regression applied to
deseasonalized data. This procedure {(called seasonal regression) gave a t test
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16.3.3 Intervention Analysis and
Box- Jenkins Models

If a long time sequence of equally spaced data is available, intervention analysis
may be used to detect changes in average level resulting from a natural or man-
induced intervention in the process. This approach, developed by Box and Tiao
(1975), is a generalization of the autoregressive integrated moving-average
(ARIMA) time series models described by Box and Jenkins (1976). Lettenmaier
and Murray (1977) and Lettenmaier (1978) study the power of the method to
detect trends. They emphasize the design of sampling plans to detect impacts
from polluting facilities. Examples of its use are in Hipel et al. (1975) and Roy
and Peilerin (1982).

Box-Jenkins modeling techniques are powerful tools for the analysis of time
series data. McMichaet and Hunter (1972) give a good introduction to Box-
Jenkins modeling of environmental data, using both deterministic and stochastic
components to forecast temperature flow in the Ohio River. Fuller and Tsokos
(1971) develop models to forecast dissolved oxygen in a stream. Carlson,
MacConnick, and Waits (1970) and McKerchar and Delienr (1974) fit Box-
Jenkins models to monthty river flows. Hsu and Hunter (1976) analyze annual
series of air pollution SO, concentrations. McCollister and Wilson (1975) forecast
daily maximum and hourly average total oxidant and carbon monoxide concen-
trations in the Los Angeles Basin. Hipel, McLeod, and Lennox {1977a, 19775)
illustrate improved Box-Jenkins techniques to simplify model construction.
Reinsel et al. (1981a, 19815} uwse Box-Jenkins models to detect trends in
stratospheric ozone data. Two introductory textbooks are McCleary and Hay
(1980) and Chatfield (1984). Box and Jenkins (1976} is recommended reading
for all users of the method.

Disadvantages of Box-Jenkins methods are discussed by Montgomery and
Johnson (1976). At least 50 and preferably 100 or more data collected at equal
(or approximately equal) time intervals are needed. When the purpose is
forecasting, we must assume the developed model applies to the future. Missing
data or data reported as trace or less-than values can prevent the use of Box-

. Jenkins methods. Finally, the modeling process is often nontrivial, with a

considerable investment in time ‘and resources required to build a satisfactory
model. Fortunately, there are several packages of statistical programs that contain
codes for developing time series models, including Minitab (Ryan, Joiner, and
Ryan 1982), SPSS (1985), BMDP (1983), and SAS (1985). Codes for personal
computers are also becoming available.

16.4 MANN-KENDALL TEST

In this section we discuss the nonparamettic Mann-Kendall test for trend (Mann,
1945; Kendall, 1975). This procedure is particularly useful since missing values
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than their measured values. We note that the Mann-Kendall test can be viewed
as a nonparametric test for zero slope of the linear regression of time-ordered
data versus time, as illustrated by Hollander and Woife (1973, p. 201).

16.4.1 MNumber of Data 40 or Less

If n is 40 or less, the procedure in this section may be used. When n exceeds
40, use the normal approximation test in Section 16.4.2. We begin by considering
the case where only one datum per time period is taken, where a time period
may be a day, week, month, and so on. The case of muttiple data values per
time period is discussed in Section 16.4.3.

The first step is to list the datz in the order in which they were collected

over time: x,, X, . - . , X, where x; is the detum at time i. Then determine
the sign of all a(n — 1)/2 possible differences x; — x;, where j > k. These
differences are x, = Xy, X3 — Xpy o .., Xy — Xpa X3 — Xy, Xy — T3h - o 4 4 Xy

— Xp-2: X3 — X,._;. A convenient way of armanging the calculations is shown
in Table 16.1.

Let sgn{x; — x,) be an indicator function that takes on the values 1, 0, or
—1 according to the sign of x; — x:

sy —xg) = if 5—-—xu>0

0 it 45 —x=0

=—1 if ;-x<0 16.1
Then compute the Mann-Kendafl statistic
LR a
5= 2 -
R j_?.“ sga{y; — x) 16.2

which is the number of positive differcnces minus the number of negative
differences. These differences are easily obtained from the last two columns of
Table 16.1. If S is a large positive number, measurements taken later in time
tend to be larger than those taken earlier. Similarly, if § is a large negative
number, measurcments taken later in time tend to be smaller. If n is large, the
computer code in Appendix B may be used to compute S. This code also
computes the tests for trend discussed in Chapter 17.

Suppose we want to test the null hypothesis, Hy, of no trend against the
alternative hypothesis, H,, of an upward trend. Then Hj, is rejected in favor of
H, if § is positive and if the probability value in Table Al8 corresponding to
the computed § is less than the a prieri specified o significance level of the
test. Similarly, to test H,, against the alternative hypothesis H, of a downward
trend, reject H, and accept H), if S is negative and if the probability value in
the table corresponding to the absolute valwe of § is less than the a priori
specified o value. If a two-tailed test is desired, that is, if we want to detect
cither an upward or downward trend, the tabled probability level corresponding
to the absolute value of § is doubled and H, is rejected if that doubled value
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Lifferences in Data Values Needed for Computing the Mann-Kendall Statistic  to Test

Table 16.1

for Trend

Daia Values Listed in the Order Cotlected Over Time

No. of + No, of —
Signs Signs

X R Sy Xy

3

X2

X

o= X

Xy — X3
X — X3

Xp =Xy
Xy ™ Kz
X, — X3

Xp—y — X

e |
Xy = Xa

Xz

Xp—t T F2

Ky = X3

L ]
Xy = Ka—t

= Spm2

Xn-1

)

sum of
~ signs,

)« (

+ signg,

sum of

(
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Table 16.2 Computation of the Mann-Kendall Trend Statistic S for the Time
Ordered Data Sequence 10, 15, 14, 20

Time 7 2 3 4 No. of + No. of —
Data 10 15 4 20 Signs Signs

5-10° M-10 20-10 3 0
14-15 20-15 i !

20 - 14 1 0
5 = 3 - 1=4

significance level, For ease of illustration suppose only 4 meastre-
ments are collected in the following order over time or along a line
in space: 10, 15, 14, and 20. There are 6 differences to consider: .
15 — 10, 14 — 10, 20 -~ 10, 14 — 15, 20 — 15, and 20 — 14.
Using Eqs. 16.1 and 16.2, weobtain § = +1 + 1 +1 -1+ 1
+ 1 = +4, as illustrated in Table 16.2, (Mote that the sign, not
the magnitude of the difference is used.) From Table A18 we find
for n = 4 that the tabled probability for § = +4 is 0.167. This
number is the probability of obtaining a value of § equal to +4 or
larger when n = 4 and when no upward trend is present. Since this
value is greater than 0.10, we cannot reject Hy.

If the data sequence had been 18, 20, 23, 35, then § = +6, and
the tabled probability is 0.042. Since this value is less than 0.10,
we reject Hy and accept the alternative hypothesis of an wpward
trend.

Table A18 gives probability values only forn = 10. An extension
of this table up to r = 40 is given in Table A.21 in Hollander and
Wolfe (1973).

16.4.2 Number of Data Greater Than 40 7

When n is greater than 40, the normal approximation test described in this
section is used. Actually, Kendalt (1975, p. 55) indicates that this method may
be used for n as smalt as 10 unless there are many tied data values. The test
procedure is to first compute § using Eq. 16.2 as described before. Then
compute the variance of § by the following equation, which takes into account
that ties may be present:

q
VAR(S) = % [n(n -~ 120 + 5) — E.I 1L, — 2, + 5}] 16.3
where g is the number of tied groups and ¢, is the number of data in the pth
goup. For example, in the sequence {23, 24, trace, 6, trace, 24, 24, trace,
23} we have g = 3, f; = 2 for the tied value 23, 1, = 3 for the tied value
24, and t; = 3 for the three trace values (considered to be of equal but unknown
value less than 6).
Then S and VAR(S) are used to compute the test statistic Z as follows:

- .
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Figure 16.2 Concentrations of 24)) in ground water in well E at the former St.
Louis ﬁirport storage site for January 1981 through January 1983 (after Clark
and Berven, 1984).

A positive (negative) value of Z indicates an vpward (downward) trend. If the
qull hypothesis, Hy, of no trend is true, the statistic Z has a standard normal
distribution, and hence we use Table Al to decide whether to reject Hy. To
test for either upward or downward trend {2 two-tailed test) at the o level of
significance, H, is tejected if the absolute value of Z is greater than 2 _ .z,
where Z, _ o, is obtained from Table Al. If the alternative hypothesis is for an
upward trend (2 one-tailed test), Hp is rejected if Z (Eq. 16.4) is greater than
Zy _.. We rejéct Hp in favor of the altemative hypothesis of a downward trend
if Z is negative and the absolute value of Z is greater than Z; . n. Kendall
(1975) indicates that using the standard normal tables (Table Al) to judge the
statistical significance of the Z test will probably introduce little error as long
as n = 10 unless there are many groups of ties and many ties within groups.

EXAMPLE }6.2
Figure 16.2 is a plot of 7 = 22 monthly %] concentrations x;, Xa,
X3, . . . , Xpp obtained from a groundwater monitoting well from

January 1981 through January 1983 (reported in Clark and Berven,
1984). We use the Mann-Kendall procedure to test the null hypothesis
at the @ = 0.05 level that there is no trend in ***U groundwater
concentrations 2t this well over this 2-year period. The alternative
hvnaothesis is that an upward trend is present.
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VAR(S) = £ [22Q21){44 + 5)

— 6512 + 5) ~ AN + 5) ~ 2{)(& + 5)]
= 122733

or [VAR(5)]'? = 35.0. Therefore, since § > 0, Eq. 16.4 gives Z
= (108 — 1)/35.0 = 3.1. From Table Al we find Zyos = 1.645.
Since Z exceeds 1.645, we reject Hy and accept the alternative
1.1yp0lthesis of an upward trend. We note that the three missing values
in Flgure 16.2 do not enter info the calculations in any way. They
are simply ignored and constitute a regrettable Yoss of information
for evaluating the presence of trend.

16.4.3 Multiple Observations per Time
Period +

When lhen.: are multiple observations per time period, there are two ways to
pmceojd. First, we could compule a summary statistic, such as the median, for
each time !Jeriod and apply the Mann-Kendall test to the medians. An a.lterm;tive
app_mac.h is to consider the n; > | muliiple observations at time § (or time
period {) as ties in the time index. For this latter case the statistic S is still
computed by Eq. 16.2, where n is now the sum of the n,, that is, the total
number of observations rather than the number of time periods. The éiffemnces
between data obtained at the same time are given the score 0 no matter what
the data values may be, since they are tied in the time index.

. When there are multiple observations per time period, the variance of § is
computed by the following equation, which accounts for ties in the time index-

i

1 £
VAR(S) = 12 [ﬂ(r: - 1)@2n + 5) - PZ 1,0, ~ 121, + 5)

L]
- q§| uolee, — 12e, + 5-)]

£ h
E—.:. Kty ~ D1, — 2) E- nfu, — D, — 2)
4

9n(n — 1)(n — 2)
3

A
Pé:] 1,0, ~ 1) E‘ 1w, — 1)

+
pr— 165

wht_',re g and 7, are as defined following Eq. 16.3, A is the number of time
pen().ds that ‘contain multiple data, and u, is the number of multiple data in the
gth time period. Equation 16.5 reduces to Eq. 16.3 when there is one observation
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Figure 16.3 An arfificial dala set to illustrate the Mann-Kendall test for trend
when ties in both the data and time are present.

EXAMPLE 16.3

To illustrate the computation of § and VAR(S), consider the following
artificial data set:

{concentration, time period)
= (10, 1), 22, 1), {21, 1), (30, 2), (22, 3}, (30, 3), (40, 4), (40, 5)

as plotted in Figure 16.3. There are 5 time petiods and n = 8 data.
To illustrate computing S, we lay out the data as follows:

Time Period : 1 1 1 2 3 3 4 5
Data : 0 22 21 W 22 30 40 4

We shall test at the o = 0.05 level the null hypothesis, Hy, of no
trend versns the altemative hypothesis, H,, of an upward trend, a
one-tailed test.

Now, look at all 8(7)/2 = 28 possible data pairs, remembering
to give a scote of 0 to the 4 pairs within the same time index. The
differences are shown in Table 16.3. Ignore the magnitudes of the
differences, and sum the number of positive and negative signs to
obtain § = 19, It is ciear from Figure 16.3 that there are g = 3
tied data groups (22, 30, and 40) with #; = 1, = 13 = 2. Also,
there are i = 2 time index ties (times | and 3) with u, = 3 and
u; = 2. Hence,-Eq. 16.5 gives :

VAR(S) = = [8)(16 + 5 — HDIE + 5) = 3@)E + 5
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Table 16.3 Ilustration of Computing S for Example 16.3

Time Period | ! I 2 3 3 4 5  Sumof + Sum of -

Data w2 A 30 2 30 4 40 Signs Signs
NC NC 420 +12 420 +30 +30 5 Q
NC 4% L] +§ +18 +18 4 0
+9 I +9  +19  +19 5 o
-8 0 +10 +10 2 1
NC  +1B8 +18 2 0
+10  +10 2 0
6 _ 0 0
s =20 )
=19

NC = Not computed since both data values are within the same time period.

= 2.4, Referring to Table Al, we find Zgo; = 1.645. Since Z >

1.645, reject Hy and accept the alternative hypothesis of an upward
trend.

16.4.4 Homogeneity of Stations

Thus far only one station has been considered. If data over time have been
collected at M > 1 stations, we have data as displayed in Table 16.4 (assuming
one datum per sampling period). The Mann-Kendall test may be computed for
each station. Also, an estimate of the magnitude of the trend at each siation
can be obained using Sen’s (1968b) procedure, 2s described in Section 186.5.
When data are collected at several stations within a region or basin, there
may be interest in making a basin-wide statement about trends. A general
statement about the presence or absence of monotonic trends will be meaningful
if the trends at all stations are in the same directioh—that is, all vpward or all
downward. Time plots of the data at each station, preferably on the same graph
to make visual comparison easier, may indicate when basin-wide statements are
possible. In many situations an objective testing method will be needed to help
make this decision. In this section we discuss a method for doing this that

Table 16.4 Data Collected over Time at Multiple Stations

Siation 1 s Station M
Sampling Time . Sampling Time
H 2 - K 1 2 F 4
1 X Xy i Xenn 3 s Tamr nre Xperat
2 Xin Xane T Xz s 2 Xyzar Xam T 7
Year : .
L EiTA Xan oo Xkt st L Xiar Xzgar ot Xroar
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mnakes use of the Mann-Kendall statistic computed for each station. This
procedure was originally proposed by van Belle and Hughes (1984} to test for
homogeneity of trends between seasons (a test discussed in Chapter 17).
To test for homogeneity of trend direction at multiple stations, compute the
homogeneity chi-square statistic, x,z,o,,,og, where
M
Xiomog = Xt — Xioeod = E‘ zj - Mz 16.6

L A 16.7
% = WARG™ '

§; is the Mann-Kendall trend statistic for the jth station,

1 M
and Z = M'E:i Z

If the trend at each station is in the same direction, then Xhomop has a chi-
square distribetion with M — 1 degrees of freadom (df). This distribution is
given in Table A19. Fo test for trend homogeneity between stations at the o
significance level, we refer our calculated value of Xhomog 10 the o critical value
in Tabie Al19 in the row with M — 1 df. If xﬁ(,,,.os exceeds this critical valee,
we reject the H of homogeneous station trends. In that case no regional-wide
statements should be made about trend direction, However, a Mann-Kendall
test for trend at each station may be used. H xfk,,mg does not exceed the o
critical level in Table A19, then the statistic Xiesa = MZ’ is referred to the
chi-square distribution with 1 df to test the nuil hypothesis Hy that the (common)
trend direction is significantly different from zero.

The validity of these chi-square tests depends on each of the Z; values (Eq.
16.7) having 2 standard nommal distribution. Based on results in Kendall (1975),
this implies that the number of data (over time) for each station should exceed
10. Also, the validity of the ‘tests requires that the Z; be independent. This
requirement means that the data from different stations must be uncorrelated.
We note that the Mann-Kendall test and the chi-square tests given in this section
may be computed even when the number of sampling times, K, varies from
year to year and when there are multiple data collected per sampling time at
one or more times.

EXAMPLE 16.4

We consider a simple case to illustrate computations. Snppose the
following data are obtained:

Time
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Bad = -1 +0 -t -1 +1-1+0—-1~1+1=
2 — 6 = —4. Equation 16.3 gives

vares) = 2980 _ 16667 wna varesy
[5(4)(15) — 2(1)(9) — 2(1
- (1;( ) — 2D _ 14.667
Therefore Eq. 16.4 gives
- 7 _ =3
Z = W =171 and Z, = Gagen™ = —-0.783
Thus

- 2
Xiomog = 1712 + (—0.TE3Y — 2 (Luﬂ%) =31

Referring to the chi-square tables with M — 1 = 1 df, we find the
o = 0.05 fevel critical value is 3.84. Since Xjumoy < 3.84, we
cannot reject the null hypothesis of homogeneous trend direction
over time at the 2 stations. Hence, an overal! test of trend using the
statistic Xﬁ:..d can be made. [Note that the critical value 3.84 is only
approximate (somewhat too small), since the number of data at both
stations is less than 10.) xZ,4 = MZ? = 2(0.2148) = 0.43. Since
0.43 < 3.84, we cannot reject the null hypothesis of no trend at
the 2 stations.

We may test for trend at each station using the Mann-Kendall
test by referring $; = 8 and 5, = —4 to Table A18. The tabled
vatue for § = 8 when n = 5 is 0.042. Doubling this value to give -
a two-tailed test gives 0.084, which is greater than our prespecified
a = (.05, Hence, we cannot reject Hy of no trend for station 1 at
the o = 0.05 level. The tabled value for 5, = ~4 when n = 5 is
0.242. Since 0.484 > 0.05, we cannot reject Hy of no trend for
station 2. Thesc results are consistent with the x2.., test before.
I\_lote, however, that station 1 still appears to be incmasing over
time, and the reader may confinn it is significant at the & = 0.10

level. This result suggests that this station be carefully watched in
the future.,

165 SEN'S NONPARAMETRIC
ESTIMATOR OF SLOPE

As not_ed_in Section 16.3.2, if a linear trend is present, the troe slope (change
per unit time} may be estimated by computing the least squares estimate of the

tlana b hu linane sa 3 fomdn TT LA A I am2
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gross data emors or outliers, and it can be computed when data are missing.
Sen's estimator is closely related to the Mann-Kendall test, as illustrated in the
following paragraphs. The computer code in Appendiz B computes Sen’s
estimator.

First, compute the N' slope estimates, Q, for each station:

Xy — X

Q= P 16.3
where x;. and x; are data values at times (or during time petiods) i and i,
respectively, znd where i' > i; N' is the pumber of data pairs for which i* >
i. The median of these N' values of { is Sen’s estimator of slope. If there is
only one datum in each time period, then N' = n(n — 1)/2, where n is the
number of time periods. If there are multiple observations in one or more time
petiods, then N’ < n(n — 1)/2, where n is now the total number of cbservations,
not time periods, since Eq. 16.8 cannot be computed with two data from the
same time period, that is, when i = i. If an x; is below the detection limit,
one half the detection limit may be used for x;.

The median of the N' slope estimates is obtained in the usual way, as
discussed in Section 13.3.1. That is, the N' values of Q are ranked from
smallest 1o largest (denote the ranked valves by @y < Qpy = - -+ =
Q"u"_“ = QlN']) and we cotnpute

Sen’s estimator = median slope

= Gy +nm if N'is odd

=4 @wm + Quv+any If N'iseven 16.9

A 100(1 — o)% two-sided confidence interval about the tre slope may be
obtained by the nonpatametric technique given by Sen (1968b). We give here
a simpler procedure, based on the nommal distribution, that is valid for n as
small as 10 unless there are many ties. This procedure is a generalization of
that given by Hollander and Wolfe (1973, p. 207) when ties and/or multiple
observations per time period are present.

1. Choose the desired confidence coefficient o and find Z _ s, in Table Al.

2. Compute C, = Z,_G,Z[VAR(S)]'”, where VAR(S) is computed from Egs.

16.3 of 16.5. The latter equation is used if there are multiple observations
pet time period. - ’

3. Compute M; = (N' — C Y2 and My = (N' + G)/2.

4. The lower and upper limits of the confidence interval are the M th largest
and (M, + )th largest of the N' ordered slope estimates, respectively.

EXAMPLE 16.5

We nca the data set in Fxamole 16.3 to illustrate Sen’s procedure. -
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Table 16.5 INustration of Computing an Estimate of Trend Slope Using Sen’s
(1968b) Nonparametric Procedure (for Example 16.5). Tabled Values Are
Individuat Slopa Estimates, Q

Time Period i 1 ! 2 3 3 4 5
Data 10 22 2! 30 22 3o 40 40
NC NC +20 +6 +10 +10 +7.5
NC +8 0 +4 +6 +4.5
+2 +0.5 +4.5 +6.33 +4.75
-8 1] +5 +3.33
NC +18 +9
+10 +5
[1}

NC = Cannot be compated since both data values are within the same time peried.

slope estimates’' (J for these pairs are oblained by dividing the
differences in Table 16.3 by i" — i. The 24 Q values are given in
Table 16.5. ’

Ranking these ¢ values from smallest to largest gives

—8,0,0,0,05,3.33, 4,45, 45,475, 5,5 6,6 633,75 8,9,9,10, 10,
10, 18, 20

Since N' = 24 is even, the median of these Q values is the average
of the 12th and 13th largest values (by Eq. 16.8), which is 5.5, the
Sen estimate of the true slope. That is, the average {median) change
is estimated to be 5.5 units per time period.

A 90% confidence interval about the true slope is obtaied as
follows. From Table Al we find Z, o5 = 1.645. Hence,

C, = LE45[VAR(S)]'" = 1.645[58.1}' = 12.54

where the value for VAR(S) was obtained from Example 16.3. Since
N =24 wehave M, = (24 - 1254)2 =573 and My + 1 =
(24 + 12.54)/2 + 1 = 19.27. From the list of 24 ordered stopes
given eadier, the lower limit is found to be 2.6 by interpolating
between the 5th and 6th largest values. The upper limit is similardy

found to be 9.3 by interpolating: between the 1%th and 20th largest
values,

16.6 CASE STUDY

This section iliustrates the procedures presented in this chapter for evaluating
trends. The computer program in Appendix B is used on the hypothetical data
fisted in Table 16.6 and plotted in Figure 16.4. These data, generated on a
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Table 16.6 Simulated Monthly Data at Two Stations over a Four-Year Period

NUMBER OF YEARS =4
NUMBER OF STATIONS = 2

NUMBER OF MUMBER GF
STATION DATA POINTS STATION BATR POINTS
1 48 2 48
YEAR MONTH STATION 1 YEAR MONTH STATION 2
1 1 &.00 1 1 5.09
1 2 5.41 1 2 5.07
i 3 4.58 1 3 &.93
1 4 4.34 1 4 4.94
1 S 4.77 1 5 5.15
1 & 4.54 1 6 11.82
1 % 4.50 1 7 5.48
A a 5.02 i 8 5.18
1 9 4.38 1 ¢ 5.7%
1 10 4.27 1 10 5.1
1 11 4.33 1 " 5.10
1 12 L.33 1 12 5.94
2 13 5.00 2 13 5.91
82 14 5.02 2 14 7.11
s 13 b4 2 135 5.40
2 16 5.16 2 16 6.77
2 17 633 z 17 5.35
2 13 5.49 2 18 4.04
2 19 L.54 2 19 5.45
2 29 6.62 z 20 6.95
2 21 4.64 2 21 5.54
2 22 4.45 Z 22 5.71
H 23 6,57 2 23 6.14
2 24 4.09 2 24 7.13
3 25 5.06 3 25 5.80
3 6 4.83 3 26 5.91
3 27 4.92 3 27 5.88
3 28 6.02 3 28 7.21
3 2% 4,77 3 29 3.29
3 30 5.03 3 30 4.00
3 31 7.15 3 3 6.28
3 32 4.30 3 32 5.69
3 33 .15 3 33 6.52
3 34 5.143 3 34 6.27
3 35 5.28 3 35 6.46
3 36 4.31 3 36 6.5%6
4 37 6.53 4 37 6.28
4 38 3.1 & 38 6.74
4 39 4.3% 4 39 6.91
4 40 4 .64 L 40 7.3
& 41 4.87 4 at é6.53
4 42 4.89 & 42 6.26
4 43 4.92 4 43 7.01
. ’a voar I3 Lk 747

* $TATION |
& STATION 2

48 MONTH

YEAR

Figure 16.4 Data at two stations each month for four years. Data were simulated
using the lagnormal Independent model given by Hirsch, Slack, and Smith (1982,

Eq. 14b). Simulated data were obtained by D. W. Engel,
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and the data for station 2 are lognormal with a trend of 0.4 uuits per year or
1.0333 units per month. These models were among those used by Hirsch, Slack,
and Smith (1982) to evaluate the power of the seasonal Kendall test for trend,
a test we discuss in Chapter 17.

The results obtained from the computer code in Appendix B are shown in
Table 16.7. The first step is to decide whether the two stations have trends in
the same direction. In this example we know it is not so, since one station has
a trend and the other does not. But in practice this a priori information will
net be available. .

Table 16.7 shows that the chi-square test of homogeneity (Bq. 16.6) is highly
significant (X Zome = 10.0; computed significance level of 0.002). Hence, we
ignore the chi-square test for trend that is automatically compnted by the program
and turn instead to the Mann-Kendall tgst results for each station. This test for
station ! is nonsignificant (P value of 0:70), indicating no strong evidence for
trends, but that' for station 2 is highly significant. All of these test results agree
with the true situation. Sen’s estimates of slope are 0.002 and 0.041 per month
for stations 1 and 2, whereas the true values are 0.0 and 0.0333, respectively.
The computer code computes 100(1 — «)}% confidence limits for the true slope
for « = 0.20, 0.10, 0.05, and 0.01. For this example the 95% confidence
Jimits are —0.009 and 0.012 for station 1, and 0.030 and 0.050 for station 2.

The computer code allows one to split up the 48 ohservations at each station
into meaningful groups that contain multiple observations. For instance, suppose

Table 16.7 Chi-Square Tests for Homogeneity of Trends at the Two Stations,
and Mann-Kendall Tests for Each Station

HOMOGEHEITY TEST RESULTS

PROB. OF A

CHI-SQUARE STATISTICS df LARGER VALUE
TOTAL 23.975358 Z o.000 Trend not equal
HOMOGENEITY 1003524 t 0.002 - et the 2 stations
TREND 13.94034 1 0.000 «— Not meaningful
PROB. OF EXCEEDING
MANN- THE ABSOLUTE VALUE
KENDALL OF THE 2 $TATISTIC
H 2 (Two«TAILED TEST)
STATION SEASON STATISTIC STATISTIC n IFn> 10
1 1 4£5.00 0.39121% [ %] 0.696
2 1 549.00 4.87122 48 . 0.000
SEN SLOPE
CONFIDENCE INTERVALS
STATION SEASON ALPHA LOWER LIMIT SLOPE UPPER LIMIT
1 1 0.07% -0.013 0.002 0.016
n nsn -0.00% 0.062 0.012

Summary 223

Table 16.8 Analyses .of the Data in Table 16.6 Considering the Data as
Twelve Multiple Observations in Each of Four Years

HUMBER OF YEARS =4
NUMBER OF SERSONS =1
HUMBER OF STATIONS = 2

HOMOBENEITY TEST RESULTS

PROB. OF A
SOURCE CHI~SQUARE df LARGER VALUE
ToTAL 21.45448 2 9.00
HOMOGENEITY - 5.79732 1 0.016
TREND 15.65736 1 Q:Bno
PROB. OF EXCEEDING
MAKN- THE ABSOLUTE VALUE
KENOALL OF THE Z STATISTIC
s z (TWO-TAILED TEST)
STATION SEASON ° STATISTIC STATISTIC n IFn> 10
1 1 119.00 1.08423 48 ‘ 0.277
2 1 489.00 5.49132 48 0.000
) SEN SLOPE
CONFIDENCE INTERVALS
STATION SEASON ALPHA LOWER LINIT SLOPE UPRER LINIT
1 1 0.ate -0.120 0.080D 0.225
0.050 =0.0865 0.0230 0.190
0.100 =-0.037 0.030 0.178
0.200 -0.014 0.050 0.153
2 1 0.010 0.2%0 0.487 0.670
0.050 0.353 0.467 0.620
0.100 0.370 D.467 0.400
0.200 0.390 0.467 0.575

.

we regard the data in this example as 12 multiple data points in each of four
z’eﬁa;s. Applying the code using this interpretation gives the results in Table

The conclusions of the tests are the same as obtained in Table 16.7 when
th? data were considered as one time series of 48 single observations. However
this may not be the case with other data sets or groupings of multipie observations:
Indee_d, the Mann-Kendall fest statistic Z for station 1 is larger in Table 16.3
than in ‘Table 16.7, so that the test is closer to (falsely) indicating 2 significant
trenq when the data are grouped into years. For station 2 the Mann-Kendall
test in Table 16.8 is smaller than in Table 16.7; indicating the test has less
power fo detect the trend actvally present. The best strategy appears to be to
not group data unnecessarily. The estimates of slope are now 0.080 and 0.467
per year, whereas the true values are 0.0 and 0.40, respectively.




z8ZTL

224 Detecling and Estimating Trends

and estimating trends, intervention analysis, and problems that arise when using
regression methods to detect and estimate trends. ’

Next, the Mann-Kendall test for trend was desctibed and illustrated in detaif,
including how to handle multiple observalions per sampling time (or period).
A chi-square test to test for homogenous trends at different stations within a
basin was also illustrated. Finally, methods for estimating and placing confidence
limits on the slope of a linear trend by Sen’s nomparameter procedure were
given and the Mann-Kendall test on a simulated data set was illustrated.

EXERCISES

16.1 Use the Mann-Kendall test to test for a rising trend over time, using the
following data obtained sequentiaily over time.

Tiee 1 2 3 4 5 6 1
Dta ND I ND 3 15 . E2 4

Use ¢ = 0.05. What problem is encountered in using Table A18? Use
the normal approximate test statistic Z.

16.2 Use the data in Exercise 16.1 to estimate the magnitude of the trend in
the population. Handle NDs in two ways: (a} teat them as missing
values, and (b) set them equal to one half the detection limit. Assume
the detection limit is 0.5, What method do you prefer? Why?

16.3 Compute a 90% confidence interval about the true slope, using the data
in part (b) of Exercise 16.2.

ANSWERS

16.1 n = 1. The 2 NDs are treated as tied at a vaive Jess than 1.1. § =
16 — 4 = 12. Since there is a tie, there is no probability value in Table
Al8 for § = +12, but the probability lies between 0.035 and 0.068.
Using the large sample approximation gives Var{§) = 43.3 and Z =
1.67. Since £.67 > 1.645, we reject Hy of no trend.

16.2 (a) The median of the 10 estimates of slope is 0.23. (b) The median of

the 21 estimates of slope is 0.33,
Pros and Cous: Using one half of the detection limit assumes the

actual measurements of NI values are equally likely to fall anywhere
between zero and the detection limit. One half of the detection limit is
the wmean of that distribution. This method, though approximate, is
preferred to weating NDs as missing values.

174 e Ba 167 VAR(SY = 44.3, (The correction for ties in Egq. 16.3

e

17 Tends and Seasonality

Chapter 16 discussed trend detection and estimation methods that may be used
wh_en there are no cycles or seasonal effects in the data. Hirsch, Slack, and
Smith (1982) proposed the seasonal Kendall test when seasonality is present
TI‘IIS. chapter describes the seasonal Kendall test as well es the extention tc.'
mult:?le stations developed by van Belle and Hughes (1984). 1t also shows how
to est:_mat.e the magnitude of a trend by using the nonparametric seasonal Kendall
slope.esumator, which is appropriate when seasonality is present. All these
techniques are included in the computer code listed in Appendix B. A computer
?ode t_hat computes only the seasonal Kendall test and slope estimator is given
in Smith, Hirsch, and Slack (1982). ®

17.1 SEASONAL KENDALL TEST

If seasonal cycles ate present in the data, tests for trend that remove these
cycles or are not affected by them should be used. This section discusses such
a test:. the seasonal Kendall test developed by Hirsch, Slack, and Smith (1982)
and discussed further by Smith, Hirsch, and Stack (1982) and by van Belle and

. Hughes (1984). This test may be used even though there ate missing, tied, or .

ND values. Furthermore, the validit
being morally y of the test does not depend on the data
The seasonal Kendall test is a generalization of the Mann-

was proposed by Hirsch and colleagues for use with 12 seas[:miel(‘izlitgt‘ IIr:
bn?f, the test consists of computing the Mann-Kendall test statistic § anci its
vanance, VAR(S), separately for each month (season) with data collected over
years. These seasonal statistics are then summed, and a Z statistic is computed
If the number of seasons and years is sufficiently large, this Z value may be
r?felzred to the standard normal tables (Table Al} to test for a sté{isticall

sngmﬁcam trend. If there are 12 seasons (e.g., 12 months of data per year)}r
fl:rsch, S!aci!c, aud- Sutith (1982} show that Table AF may be used as long as’
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Table 17.1 Data for the Seasonal Kendall Test at One Sampling Station

Season
1 2 K
1 Iy N xn I
2 Xz Xaz 2
Year
L Li13 X2 Fre
5 5 et Sx

K X
F=55 Var(S) = E;. Var(s)

im

exact test is important, the exact distribution of the scasoral Kendall test statistic
can be obtained on a computer for any combination of seasons and years by
the technique discussed by Hirsch, Slack, and Smith (1982).

Let x; be the datum for the ith season of the [th year, K the numbeE' of
seasons, and L the number of years. The data for a given site (sampling station)
are shown in Table 17.1. The null hypothesis, Hy, is that the x; are independent
of the titne (season and year) they were collected. The hypothesis Hp is tested
against the altetnative hypothesis, H,, that for one or more seasons the data
are not independent of time. 7

For each season we use data collected over years to compute the Mann-
Kendall statistic §. Let §; be this statistic computed for season /, that is,

w1

S =2 2 sgnlry—xy) 17.1
k=1 I=k+1
where ! > k, m, is the number of data {over years) for season i, and
sgn (ry — x) = 1 ifxy =x, >0
=0 fxy~x, =0
= ~1 fxy —x <0
VAR(S,} is computed as follows:

F-
VAR(S;) = ﬁ [ne(n.- = D@ +5) = B tylty ~ DO + 9

hi )

- Zl w g — Dy + 5)]
o
g

By
2 Iip('ip - D, — 2) q§| u"q(uiq - ])(uf'q' -2

+ An.in. — Trin. — 1
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where g, is the number of groups of tied (equat-valved) data in season i, 1, is
the number of tied data in the pth group for seasom i, k; is the number of
sampling times (or time periods) in season i that contain multipte data, and Hy
is the number of multiple data in the gth time period in season i. These
quantities are illustrated in Example 17.1.

After the §; and Var(S5;) are computed, we pool across the X seasons:

K
=25 17.3
i=1 -
and
X
VAR(S) = § VAR(S) 17.4
Next, compute
' -1 .
- "> 0
ARG y? TS
=0 if §'=0Q
IR .
= —[VAR(S')}'” if S<0 17.5

To test the null hypothesis, Hy, of no trend versus'the altemative hypothesis,

. Hy, of cither an upward or downward trend (a two-tailed test), we reject Hy if

the absolute value of Z-is greater than Z, _,,,, where Z,_ ., is from Table Al.
If the allemative hypothesis is for an upward trend at the « level (a one-tailed
test), we reject Hy if Z (Eq. 17.5) is greater than Z, _ .. Reject H, in favor of
a downward trend (one-tailed test) if Z is negative and the absolute value of Z
is greater than Z, . ,. The computer code in Appendix B computes the seasonal
Kendall test for multiple or single observations per time peried. Example 17.1
in the next section illustrates this test. The +1 added to the 5’ in Eq. 17.5 is
a correction factor that makes Table A1 more exact for testing the null hypothesis.

This correction is not necessary if there are ten or more data for each season
(= 10).

17.2 SEASONAL KENDALL SLOPE
ESTIMATOR
The seasonal Kendall slope estimator is a generalization of Sen’s estimator
of slope discussed in Section 16.5. First, compute the individual N, slope
estimates for the ith season:

0 = Xip — Xix
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estimates and find their median. This median is the seasonal Kendall slope

estimator.
A 100(1 — )% confidence interval about the true slope is obtained in the

same manner as in Sectien 16.5:

. Choose the desired confidence level o and find Z, _ in Table Al.

. Compute C, = Z, _.o[VAR(S ' )

. Computer M, = (N* — C,)/2 and M, = (N' + C 2.

. The lower and upper confidence limits are the Mth largest and the M, +
1)th largest of the N* ordered slope estimates, respectively.

E- IR ]

EXAMPLE 171

We use a simple data set to illustrate the seasonal Kendall test and
stope estimator. Since the number of data arc small, the tests and
confidence limits are only approximations. All computations are
given in Table 17.2. Suppose data are collected twice a year (e.g.,
December and June) for 3 years at a given location. The data are
listed below and plotted in Figure 17.1.

Year .
1 b2 3
Season 1 1 2 1 2 2 1 2
Data 3 10 15 12 20 18 15 20

Note that two observations were made in season 1 of year | and in
season 2 of year 2. Also, thete is 1 tied data value, 20, in season
2.

Table 17.2, Part A, gives the N{ + N3 = 5 + 5 = 10 individual
slope estimates for the 2 seasons and their ranking from smallest to
largest. The seasonal Kendall slope estimate, 2.75, is the median of
these 10 values. In Table 17.2, Pant B, the seasonal Kendall Z
statistic is calculated to be 2.1 by Egs. 17.3-17.5. To test for an
upward trend {one-tajled test) at the ¢ = 0.05 level, we reject the
nufl hypothesis, Hy, of no trend if Z > Zg g5, that is, if Z > 1.645.
Since Z = 2.10, we reject Hy and accept that an upward trend is
present. '

A 90% confidence interval on the true slope is obtained by
computing €, = LE45[VAR(S)N'? = 1.645(3.808) = 6.264, M,
= {10 — 6.264%/2 = 1.868, and M, + 1 = (10 -+ 6.264)2 + 1
= ¢.132. Hence, the lower limit s found by interpolating between
the first and second targest values to obtain 1.7. The upper limit is
similarly found to be 4.1.
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Table 17.2 Itustration of the Seasonal Kendall Test and Slope Estimator.
Tabled Values Are Individual Slope Estimates Obtained from Eq. 17.6

FPart A. Compuiing the Seasonal Kendall Slope Estimare

Season I Season 2
Year 1 1 2 3 Sumof Sum of I-2 2 3 Smmof Sum of
Data 8 1 12 15 + Signs — Signs 15 20 18 20 + Signs — Signs
a +4 435 2 )] +5 43 +2.5 3 0
+2 425 2 L] a o 0 o
+3 1 0 +2 1 5]
Si= 5 + 0 =3 Si= 4+ 0 =4

Ordered values of individual slope estimates:

0,2,2,25,253,3,35, 4,5
Median: Seasonal Kendall slope estimate = 2.75
80% Limits: 0.936 and 4.53

Part B. Computing the Seasonal Kendall Test

n=4 n =4
H="0 s=Lln=2
hM=1lLua,=2 hy=lu =2
N=5 M=5

Var(S;) = fa [43)X(13) — 201)(9)] + 0 + 0 = 7.667
Var(S;) = f BENIH — 201x9) — 2(1N] + 0 + IHBIADYS3)
= 6.667 + 0.1667 = 6.334 :
(Var(S)1'2 = 2.8 [VARGS)]™ = 2.6
SF=5+5=5+4=9
VAR(S") = VAR(S,) + VAR(Sy) = 7.667 + 6.834 = 14,5
M2 - G- _,p
{VAR(S"] 1808 Z o = 2!

“Cannot be computed sitice both data values are within the same time period,

*Referring this value to Table Al is only an approximate test for this example, since m, and

ny are smell and there arc only two seasons.

procedure c_:leve_loped by van Belle and Hughes (1984) to test for homogeneity
?f trend direction in different seasons at a given station, This latter test is
important, since if the trend is upward in one season and downward in another,

the seasonal Kendall test and slope estimator will be misleading.
The procedure is to compute

K
Xlomog = X — Xowa = 21 27 — K27

where
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Figure 17.1 Artificial data set to illusirate computation of the seasonal Kendall
slope estimator,

If Xhomog CXcceds the e critical vahue for the chi-square distribution with K
— 1 df, we reject the null hypothesis, Hy, of homogeneous seasonal trends over
time (trends in the same direction and of the same magnitude). In that case the
seasonal Kendall test and slope estimate are not meaningful, and it is best to
compute the Mann-Kendall test and Sen’s slope estimator for each individual
season. If xfmog does not exceed the critical value in the chi-square tables (Table
Al19), our calculated value of X2 = KZ? is referred to the chi-square distribution
with 1 df to test for a comimon trend in all seasons.

The critical value oblained from the chi-square tables will tend to be to
small unless (1) the number of data used 1o compute each Z; is 10 or more,
and (2) the data are spaced far enough apart in time so that the data in different
seasons are not correlated. For some water quality variables Lettenmaier (1978}
found that this implies that sampling should be at least two weeks apart.

Van Belle and Hughes (1984) show how to test whether there is 2 pattern
to the trend heterogeneity when Xhomog i8 significantly large. They illustrate by
showing how to test whether trends in summer and winter months are significantly
different. i

17.4 SEN’S TEST FOR TREND

- [ R v ta nea with the |
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when there are missing vatues, and the test is inexact in thaf i

> . s t case. Given these
faf:ts_, Sen's test is preferred to the seasonal Kendall test when no data are
missing. The computer code in Appendix B also computes Sen’s test. Com-
pmtational procedures are given in van Belle and Hughes (1984).

17.5 TESTING FOR GLOBAL TRENDS

In Section 17.3 the Xbomog Statistic was used to test for homogeneity of trend
direction in different seasons at a given sampling station. This test is a special
case of that developed by van Belle and Hughes (1984) for M > | stations
'1110.=er procedures allow. one to test for homogeneity of trend direction at di!féten.t
stauons.when se:vusonallty is present. The test for homopeneity given in Section
16'.4.4- t;s a special at;a;e of this test. Van Belle and Hughes illustrate the tests,
usitg temperature biological oxygen demand data at t i
Willamette River. e o two stations on fhe
The requited data are illustrated in Table 17.3. The fi i
3. st step is to compute
the Mann:Kendall statistic for each season at each station by E:; 17.1 Ll:tp ;
denote this statistic for the ith season at the mth station. Then oomput'c -
oS
-~ WiRGoT™® T 1,2,---,KE m=1,2---,M 116

yvhere VAR(S,,} is obtained by using Eq. 17.2. (For this application all quantities
in Eq 17.2 relate to the data set for the ith season and mih station.) Note that
missing values, NDs, or multiple observations per time period are allowed, as
discussed in Section 17.1. Also, pote that the correction for continuity (!:I:l

added to § in Eq. 16.5 and §* in Eq. 17.5) is not used in reaso
d 17, . 17.6 fi
discussed by van Belle and Hughes (1984). B > "
Next, compute
. ~ | u R
7, = — . = .-
=g 2 T B2 1,2, K

= mean over M stations for the ith season

" Table 17.3 Data to Test for Trends Using the Procedure of van Belle and
Hughes (1984}

Starion 1 " Swation M
Season 1 2 see K . 1 2 La K
; Xine L LI X Ut I S X X
Xz Xan x M e
Year L] 2 X2 Xz Txam
L Xie Xar Tt Xxp1 T L Tiwr Xorw Xt
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1 & -
2.,,,=E§z,.,,,, m=1,2,"".M

= mean over K seasons for the mih station
Z.=— E Z} Zim

EMi=1m=1
= grand mean over all KM stations and seasons

Now, compute the cln-squam statistics in Table 17.4 in the following order:
X:oul- Xnend! Xm-nm and Xm Then compute
Xnuno; = Xlnul - Xmaa
and
2 — 2 ? _ .2
" Xsution-season — Xhomog — Xstation — Xseason
Refer 3o X asons A8 X Zationscason 10 the o fevel critical values in the chi-
square tables with M — 1, K — I, and (M — N(K — 1) df, respectively.

If all three 1ests are nonsignificant, te{er %2 em 10 the ch\—squafe distribution
with 1 df to test for global trend. If x2..0q is stgmﬁcant bt x20a iS nOt,
that is, if trends have significantly different directions in different seasons but
not at different stations, then test for a different trend direction in each season
by computing the K scasonal statistics

MZ2  i=1,2,..., Kseasons 17.7

and referring each to the o-level critical value of the chi-square distribution
with 1 df. o o

If %2mi0n 15 significant, but xLoeon is not, that is, if trends have significantly
different directions at different stations but not in different seasons, .thz':n test
for a significant trend at each station by computing the M station statistics

Table 17.4. Testing for Trends Using the Procedure of van Belle and
Hughas (1984)

' Degrees of
Chi-Square Statistics : Freedom Remarks |
X M KM
Y = L & I,
i om=1
Tk n . KM — 1 Obtained by subtraction
= ? =
i = £ 5 70 - o2
LA . -1 “Test for seasonal
oo = M‘):‘ Z7 - KkMZ2. heterogencity
Mo _ M-1 Test for station
Kmion = K & 2%, — KMZZ, heterogencity
mel
LI LS M- 1D(K -1  Tes for interaction
Khatonseam = L L Zh — M T ZL itmined e subimaction
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KZ, m=1,2, ..., Mstations

and refer to the cz-level critical value of the chj-square distribution with 1 df.

If both Xaiion and X2ason 2T significant or if x,,mn season 15 Significant, then
the x” trend test should not be done. The only meaningful trend tests in that
case are those for individual station-seasons. These tests are made by referring
cach Z,, statistic (see Table 17.3) to the o-level critical valve of the standard
normal table (Table Al), as discussed in Section 16.4.2 (or Section 16.4.3 if
multiple observations per season have been collected). For these individual
Mann-Kendall tests, the Z,, should be recomputed so as to include the correction
for continuity (41} ag given in Eq. 16.4.

The computer code listed in Appendix B computes all the tests we have
described as well as Sen’s estimator of slope for each station-season combination.
In addition, it computes the seasonal Kendall test, Sen's aligned test for trends,
the seasonal Kendall .slope estimator for each station, the equivalent slope
estimator (the **station Kendall slope estimator™) for each season, and confidence
limits on the slope.

The code will compute and print the X seasonal statistics (Eq. 17.7) to test
for equal tm\ds at different sites for each seasom uniy if {1) \he computed P
va!ue of the Xm test is less than o, and (2) the computed P value of the
x,,_,w,, exceeds o', where o' is an a priori spectfied significance level, say

= 0.01, 0.05, or 0.10, chosen by the investipator. Similarly, the M statlon
stahsucs (Eq 17.8) are compuled only if the compuled P value of 2. is
less than o' and that for Xm is greater than o'. The user of the code can
specify the desired value of o’. A default value of o' = 0.05 is used if no
value is specified.

EXAMPLE 17.2

Table 17.5 gives a set of data collected monthly at 2 stations for 4
years {plotted in Fig. 17.2). These data were simulated on a computer
using the lognormal, autoregressive, seasonal cycle model given in
Hirsch, Slack, and Smith (1982, p. 112). The data at station 1 have
no long-term trend (i.e., they have a slope of zero), whereas station
2 has an upward trend of 0.4 units per year for each season. Hence,
seasonal trend directions are homogcneous, but the station trend
diréctions are not.

The chi-square tests are giver in Table 17.6. We obtain that
Xiwion = 8.16 has a P value of 0.004. That is, the probability is
only 0.004 of obtaining a xs,,m value this large when trends over
time at the 2 stations are in the same direction. Hence, the data
suggest trend dlrectlons are dlﬂ‘ere.nl at the 2 stations, which is the
true sitwation. Both 2 and Xationsemson Statistics (8.48 and 2. 63)
are small enough to be nonsignificant. This result is also expected

since trend direction does not change with season.
We chore o' = QA O8 Qinca 2 R ST~ S JOIPRY



L8CT L

234 Trends and Seasonalily

Table 17.5 Simulated Water Quality Using a Lognormal Autoregressive,
Seasonal Cycle Model Given by Hirsch, Stack, and Smith (1982, Eq. 14f)

NUMBER OF YEARS = 4

NUMBER OF SEASONS =12

HUMBER OF STATIONS = 2

NUMBER OF NUMBER OF

STATION DATA POINTS STATION BATA POINTS

1 n =48 2
YEAR SEASON STATION 1 YEAR SEASCON STATION 2

1 1 6.32 1 1 6.29
1 2 6.08 1 2 &.11
1 3 5.16 1 3 53.66
1 4 447 1 4 5.16
1 5 £.13 1 5 4.75
1 Ly 3.65 1 6 6.7%
1 7 3.48 1 T 4.51
1 8 3.78 1 a &.37
1 ? 3.94 1 9 4,95
1 10 4.40 1 10 5.22
1 1" 4.94 1 " 5.73
1 12 5.32 1 12 &.72
2 1 5.82 [ 1 7.42
2 2 5.76 2 2 7.56
E4 3 4.88 2 3 6.13
2 4 4.84 2 4 6.24
2 5 4,87 2 5 5.07
2 [} 4.13 2 & 4.95
F4 7 3.51 F4 7 4.59
2 8 .32 2 8 5.22
2 9 4.06 2 9 5.13
F 10 4,47 2 0 3.69
2 1 5.0% 2 11 4.41
2 12 5.20 2 2 7.53
3 1 5.83 3 1 7.02
3 2 5.65 3 2 6.93
3 3 5.32 3 3 6.53
3 4 5.33 3 4 6.66
3 5 4,20 3 5 6.49
3 & 3.85 3 L] 5.23
3 7 4.45 3 7 5.14%
3 8 3.54 3 8 5.06
3 k4 3.85 3 b4 5.71
3 10 5.72 3 10 6.17
3 1" 5.38 3 1t 6.78
3 12 5.33 3 12 7.64
& 1 6.59 & 1 7.486
& 2 5.93 & 2 7.36
4 3 L.98 & 3 7.30
4 4 4,61 & & 7.2¢
4 -] 4.18 4 5 6.07
4 & 3.79 4 L) 5.53

* STATION 1
® STATION 2

12 MONTH

T
9

Figure 17.2 Data at two stations each month for four years. Data were simulated
using the lognormal autoregressive seasonal model given by Hirsch, Siack, and

Smith (1982, Eq. 14f), Simulated data wers obtained by D. W. Engel.
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'
Table 17.6 Chi-Square Tests for Homogeneity of Trends over Time between
Seasons and beiween Stalions

HOHOGEHMEITY TEST RESULTS
PROB. OF A

df LARGER VALUE

CHI-SQUARE STATISTILS

TOTAL 45.02007 24 0.006
HOROGENEITY 19.26657 23 0.686
SEASOM g.4820 11 0.4670 Trends not equal
“STATION 8.15647 1 0,005 at the 2 statians
STATION-SEASON 2.62789 11 0.995

TREND 25.7534% 1 0.000 ¢—— Hot meaningful

INDIVIDUAL STATIOR TREND

’ . PROB. OF A
STATION CH1-SQUARE df LARGER VALUE
"1 2.46156 1 0.117
2 31.44863 1 0.000

evidence of a trend at station 1 (P level = 0.117) and a definite
trend at station 2 (P level = 0.000).

Table 17.7 gives the seasonai Kendall and Sen aligned rank tests
at both stations. These mesults agree with the true situation. The
seasonal Kendall slope estimates are 0.042 and 0.440, which are
slightly larger than the actual values of 0.0 and 0.4, respectively.
The lower and upper confidence limits on the true slope are also
given in Table 17.7. Finally, Table 17.8 gives the individual Mann-
Kendall tests for trend over time for each season-station combination.
Since # is only 4 for each test, the P values are approximate because
they were obtained from the normal distribution (Table Al). The
exact P values obtained from Table A18 are also shown in the table.
The approximate levels are guite close to the exact. None of the
tests for station 1 are significant, and the 12 slope estimates vary
from —0.08 to 0.208 (the true value is zero).. Seven of the 12 tests
for station 2 ate significant at the & = 0.10 2-tailed level. If # were
greater than 4, more of the tests for station 2 would have been

 significant. The 12 slope estimates range from —0.070 to 0.623 with
a mean of 0.414. Since n is so small, ‘these estimates are quite
variable, but their mean is close to the true 0.40. Confidence intervals

" for the true slope for 4 station-season combinations are shown in
Table 17.9. The computer code computes these for afl KM combi-
nations.
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Table 17.7 Seasonal Kendall and Sen Aligned Ranks Tests for Trend over

Time
PROB. OF EXCEEDING
THE ABSOLUTE VALUE
. OF THE KENDALL
SEASO
STATrON NAL STATISTIC
KEMDALL n (TUO-TAILE® TEST)
1 ~1.47087 48 0.141
4 5.51784 48 o-nou
PROB. OF EXCEEDING
THE ABSOLUTE VALUE
craion sen v OF THE SEN T STATISTIC
n €TMO-TAILED TEST)
1 1.02473 48
2 4.57814 48 g':g;

SEASONAL-KENDALL SLOPE
CONFTDENCE INTERVALS

STATION ALPRA LOWER LIMIT SLOPE UPPER LINIT
1 0.010 =0.060 0.842 0.111
D.0s50 -0.020 0.042 0.08%
¢.100 ~0.004 0.042 0.081
0.200 0.o07 0.042 0.070
2 0.010 . 0.345 D.450 0.525
0.050 0.365 0.440 0.499
0.100 0.377 0.440 0.486
0.200 0.380 0.440 0.478

by outliers and gross emors, and missin, ; ‘
: s, g data or ND values are allowed,
However, the tests still require the data to be independent. If they are not, the

tests tend to indicate that trends are present more th:
st tone P ore than the allowed 100a% of

EXERCISES

17.1 Use the following data to test for no trend versus a rising trend, using
the seasonal Kendall test. Use o« = 0.01. |

Season

Year I 2 3 4 5 P
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Table 17.8 Mann-Kendall Tests for Trend over Time for Each Season al . Table 17.9 Sen Slope Eslimales and Confidence Inlervals for Each Statio
Each Station Season Combination "
PROB. OF EXCEEDING SEN SLOPE
: THE ABSOLUTE : CONFIDENCE INTERVALS
MANN- VALUE OF THE Z . -
KENDALL STATISTIC STATION SEASDN ALPHA LOWER LINIT SLOPE UPPER LINIT
s z* (TRO-TAILED SEN
STATION SEASOM STATISTIC STATISTIC n TEST) 1E n > 10 SLOPE 1 1 0.010 n too smaltl’ 0.850  ptoo small?
G.050 7 too small 0.050 0.087
1 1 2 0.33968 & 0.734 0.7500*  0.050 0.100 n too small 0.050 0.440
2 -2 -0.33958 4 0.734 t0.750) -0.080 0.200 -0.471 £.050 a.718
3 0 0.00600 &  1.000 €1.000>  -0.005 2 0.0
4 2 0.33968 & 0.736  €0.7507  0.208 0.050  n tes seeli 0.080  ntoosmany
s o 0.00000 4 1.000  (1.000)  -0.002 ey htoosmalt D080 0.032
5 0 0.00000 & 1.000 (1.000)  -~0.007 0. 200 5. 308 -0.080 0.162
7 4 1.01905 &  0.308 €0.334) 5.059 : . ~0.080 0.258
8 -2 -0.33968 &  0.734 (0.750) -0.057 2 .. 0.010 ntoo smatl 0.378 ntoo swall
9 o 0.00000 &  1.000 1.000} 0.015 0.050 n too saall 0.378 -0.171
10 4 1.01905 4  0.308 €0.334) 0.052 0.%00 n too small 0.378 6.511
1" 4 1.01905 &  0.308 €0.334) 0.090 0.200 -0.353 0.378 1.052
12 & 1.01905 4  0.308 (D.334) 0.107 3 0.010 n too swall 0.447 oo small
2 1 4 1.01905 4 0.308 (0.334) 0.378 0.050 n too small 0.447 0.251
2 3 0.72232 4  0.470 ¢ ¥e 0.847 0.100 n too smalt 0447 0.98%
3 6 1.69842 &  0.089 (0.086) 0.508 i 0.200 -0.488 0.447 1.265
4 6 1.69842 &  0.08% €0.084) 0.623 P o ——
5 4 5.01905 & 0.308  (0.334)  0.470 The lower and upper limits cannot be conputed if n s too small.
6 o 0.00000 4 1.000 (1.000)  -0.070
7 4 1.69842 & 0.089 (0.084) 0.445 Test fi i irecti
8 ‘ 101905 4  0.308 0.334) 0.442 ‘ statiton:r :s"-’inm%lﬁneltl):_ of trend dlre_chon between scasons and between
9 6 1.69842 & 0.089  (0.084)  0.578 for a st g the chi-square tests in Table 17.4 with & = 0.01, Test
10 s 1.69842 4  0.089 (0084 0.435 or a significant common trend at the 2 stations, if appropriate.
1 6 1.69842 4  0.089 - (D.084) 0.413
12 6 1.69842 &  0.089 0.084) 0.300
- - ANSWERS
41 correction factor used to compute the Z statistic.
fixact two-tailed significance levels for the S statistic using Table A1S. 17.1 Var(§;) = 3Q(1D/18 = 3.667 F
! " ) . = 3, or each season. §' = Tf, |5 = 18
“Cannot be determined from Table ALS since § = 3 resulted because of two tied data in the 'y [l *
season, Var(§') = 6(3.667) = 22. From Eq. 17.5, Z = 171422 = 3.62. Since
@ = 0.00 (one-tailed test), Zog = 2.326. Since 3.62 > 2.326, we
accept the hypothesis of a rising trend.
17.3 Use the results in Exercises 17.1 and 17.2 to compute an 80% confidence 17.2 The median of the 18 slope estimates is 1.09 units per year
interval about the true slope. = )
) 12.3 Z_on = Zysy = 1.282, Var(§') = 22 from Exercise 17.1. Therefore,
17.4 Test for equal trend directions in different seasons, using the data in : C, = 1.2824/22 = 6.0131, M, = 6, M, + 1 = 13. Lowes limit =
Exercise 17.1. Use o = 0.01. If the trends in the 6 seasons are 0.81; upper limit = .4 _
homogeneous, use chi-square to test for a statistically significant trend at .
the ag= 0.05’ level. e ' y e 17.4 From Exercise 17.1 we have Z, = 1.567 = Z, = Z, = Z, = Z,
T.herefor“'e Z = 1.567; then o = 147, xhey = 147, 12 =0
17.5 Suppose the data in Exercise 17.1 were collected at station 1 and the Since Xhomog < 13.09 (from Table A19), we cannot reject: the nult
following data were collected at station 2. hypothesis of homogencous trend direction in all seasons. Hence, test for
. . 2 " . ]
: trend, using Xy = 14.7. Since 14.7 > 3.84 (from Table Al9), we





