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SUMMARY
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1. INTRODUCTION
My purpose is to survey some of the work on weight of evidence because I think the
- topic is almost as important as that of probability itself. The survey will’be [ar from
complete. )
“Evidence’” and “information’’ are related but do not have identical meanings. You
might be interested in information about Queen Anne but in evidence about whether she is
dead. The expression ‘‘weight of evidence’’ is familiar in ordinary English and describes

whether the evidence in favour or against some hypothesis is more or less strong. The

Oxford English Dictionary quotes T.H. Huxley (1878, p. 100) as saying ‘“The weight of
evidence appears strongly in favour of the claims of Cavendish’’, but C.8. Peirce used the
expression in the same year so 1 suspect it was familiar before that date. The expression
““The weight of the evidence’” is even the title of a mystery story by Stewart or Michael
Innes (1944). Moreover, Themis, the Greek goddess of justice is usually represented as
carrying a pair of scales, these being for weights of evidence on the two sides of an
argument. .

A jury might have to weigh the evidence for or against the guilt or innocence of an
accused person to decide whether to recommend conviction; a detective has to weigh the
evidence to decide whether to bring 2 case to law; and a doctor has to weigh the evidence
when doing a differential diagnosis between two diseases for choosing an appropriate
treatment, A statistician can be said to weigh evidence in discrimination problems, and
also, if he is not a Neyman-Péarsonian, when he applies a significance test.

In all these examples it seems obvious that the weight of evidence ought to be
expressible in terms of probabilities, although the appropriate action will usually or always
depend on utilities as well. At least three books have both the words *‘probability’’ and
“‘evidence’’ in their titles (Good, 1950; Ayer, 1972; Horwich, 1982), as well as Dempster’s
lecture at this conference, and this again shows the close relationship of the two topics.

I believe that the basic concepts of probability and of weight of evidence should be the
same for all rational peopie and should not depend on whether you are a statistician. There

s
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" should be a umty of rational thought applying, for example, to. statistics, science, law,and -
poht.lcs. This assurnption will set the tone of my survey. No concept is fundamental if on.ly -

statisticians use it. ‘
Suppose now that we have some hypothesis or theory, H and some event, endence,

or experimental result called E. For example, H, might be the hypothesis that an accused
person is guilty of some crime, and then the negation of X, denoted by H, means that he is

innocent, Of course H and H will seldom be simple statistical hypotheses in this legal .

example. A Bayesian, of whatever kind, assumes that it is meaningful to talk about such
probabilities as P(E | H&G), P{E|(3), and so on, where G denotes background information

‘such as.that it is bad for the health to have guns fired at one. To economize in notation I

shall usually take G for granted and omit it from the notation, so that the various
probabilities will be denoted by P(E|H) etc. These probabilities might be logical
probabilities, known as “‘credibilities’’, or they might be subjective (meaning personal) or
multisubjective (multipersonal); and they might be partially ordered, that is interval-
valued, with upper and lower values, or they might have sharp (numerical) values.
Although I believe partially-ordered probabilities to be more fundamental than sharp
values, as I have said in about fifty publications (for example, Good, 1950, 1962a), I shall
base my discussion on sharp values for the sake of simplicity. The discussion could be
generalized to partially-ordered probabilities and weights of evidence but only with some
loss of clarity. Any such generalization, if it is. valid, should reduce to.the “‘sharp’’ case
when the intervals are of zero width. I would just like to remind you that inequality
judgments of weights of evidence can be combined with those of probabilities, odds and
other ratios of probabilities, expected utilities and ratios of them, etc., for improving a

body of beliefs (for example, Good, 1962a, p. 322). I have not yet understood Shafer’s
" theory of evidence, which is based on Dempster’s previous work on interval-valued

probabilities, Aitchison (1968) seems to me to have refuted the approach that Dempster
took at this time, at least in some cu‘cumstances At any rate, as Isa.td the present paper is

~ hased oi sharp probablhtles." A e T e S e e o TR ARt e
Other possible names for weight of ev:dence dre ““degree’ of corrEBoratlon" and
- “*degree of confirmation”’, but the latter name was spoiit by Carnap because he made the:

mistake of callinga credibility a **degree of confirmation'’ thus leading philosophers into a
quagmire of confusion into which some of them have sunk out of sight. This disaster
shows the danger of bad terminology. Moreover, the expression “weight of evidence is
more flexible than the other two expressions because it allows such natural expressions as
‘‘the weight of evidence is against H™’. It would be linguisticaily unnatural to say ‘““‘the
degree of corroboration (or confirmation} is against A",

2. DERIVATION OF THE EXPLICATUM

I intend presently (meaning ‘‘scon’’) to discuss the history of the quantitative
explication of weight of evidence, but it will be convenient first to mention a method of
deriving its so-called explicatum from compelling desiderata. Let W{(H:E) denote the
weight of evidence in favour of H provided by E, where the colon is read ““provided by”.
If there is some background information G that is given all along, then we can extend the

notation to W(H:£|G). | mentioned that partly to show that we cannot replace the colon .

by a vertical stroke.

It is natural to assume that W(H:E) is some function of P(E|H) and of P(E|H), say
AP(E|H), P(E|E)). 1 cannot see how anything can be relevant to the weight of evidence
other than the probability of the evidence given guilt and the probability given innocence,
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so the function f should be mathematically independent of P(&), the initial probability of
F. But P(H| E), the final probability of H, should depend only on the weight of evidence
and on the initial probability, say

. P(H|\E) = gl W(H:E), P(H)].
" In other words we have the identity
P(H|E) = g{f IP(E|H), P(E| B, P(H)}
On writing P(H) =x, .P(E) ¥, and P(H | E} = z we have the identity:

rmg L, KDy .

It can be deduced from this functional equation that f is a monotonic function of
P(E|F/P(E|H)y (Good, 1968, p. 141) and of course it should be an increasing rather than
a decreasing function. If H and H are simple statistical hypotheses, and if £ is one of the
possible experimental outcomes occurring in the definitions of H and X, then
P(E|H)/PE|H) is & simple likelihood ratio, but this is a very special case. In general this
ratio is regarded as meaningful only to a Bayesian. It could be called a ratio of Bayesian
likelihoods.

We can think of weights of evidence like welghts in the scales of the Goddess of
Justice, positive weights in one scale and negative ones in the other. Therefore we would

like welght of evxdence to have the addmve property

provided that this does not force us to abandon the result already established that W{H:E}
is a function of P(E|H)/P(E|H). We can in fact achieve (1), uniquely up to a constant
factor, by taking

MHm=MsﬂJ— | @.

PE|H)

Now we can easily see, by four applications of the product axiom of the theory of
probability, namely P(4&B) = P{A)P(B) A), that

PE\H) _ OfH|E) ) &)
PEH 0@
where O denotes odds The odds corresponding to a probability p are defined as p/(I— p).
Some numerical examples of the relationship between probability and odds are shown in
Table 1. In ordinary befting terminology odds of 2 are called odds of 2 to 1 on, and odds of
14 are called odds of 2 to | against, while odds of 1 are called “*evens®*.

TABLE 1. Probability and Odds

Probability . Qdds
] 0
1/10 - 1/9
1/3 172
1/2 1
2/3 2
9/10 9
[# -]

! 1
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The right side of equation (3) can be described in words as the ratio of the final odds
of H to its initial odds, or the ratio of the posterior to the prior odds, or the factor by
which the initial odds of H are multiplied to give the final odds. It is therefore natural to

" call it the facror in favour of H provided by E and this was the name given to it by A.M.

Turing in a vital ¢cryptanalytic application in WWII in 1941. He did not mention Bayes’s
theorem, with which it is of course closely related, because he always liked to work out
everything for himself. When I said to him that the concept was essentially an application
of Bayes's theorem he said “I suppose so''. In current Bayesian literature it is usually
called the Bayes factor in favour of H provided by E. Thus weight of evidence is equal to
the logarithm of the Bayes factor. The Bayes factor and weight of evidence are Bayesian
concepts because the probabilities P(H), P(H| E), P(E|H), and P(E|H) are all in general
regarded as meaningless by anti-Bayesians.

The additive property (1) simplifies if £ and F are both independent given H and given
H. This condition usually requires that both X and F should be simple statistical
hypotheses, a point of which Herman Rubin reminded me privately after the lecture.

The formula (3) occurs in a paper by Wrinch and Jeffreys (1921, p. 387); and Jeffreys

*{1936), called weight of evidence ‘‘support’’, but in this book, Jeffreys (1939), he dropped

this expression because he always assumed that O(H) = 1 so that there W{(FH:E) reduced to
the logarithm of the final odds. His motive in concentrating on this special case must have

“been to try to sell fixed ruies of inference: his original aim was to arrive at rules defining

impersonal credibilities though his judgments of these were inevitably personal to him
(Good, 1962b, p. 556). Whether they will become highly multipersonal is an empirical
matter, '

The basic property of weight of evidence can be expressed in words thus:

*‘initial log-odds plus weight of evidence = final log-odds’’. . _ )

Incidentally Barnard (1949), who, independently of Turing and of Wald, invented
sequential analysis, called log-odds ““lods’*. Good (1950), following a suggestion of J.B.S.
Haldane, called it *'plausibility’’, but *log-odds’” is short encugh and is self-explanatory,

It is-sometimes convenient to write W(H/H'.E), read *‘the weight of-evidence in--

favour of K as compared with A’, provided by E'*, as a shorthand notation for
WH:E|HvH"), Of course, if Hv H' is given then H=H", '

The Fisher-Neyman factorability condition for sufficiency (Fisher, 1925, p. 713;
Neyman, 1925) can be expressed in terms of weight of evidence. I'll express it in terms of a
class H of hypotheses instead of in terms of parameters. Let f(E) be some function of the
evidence. If WIH/H'.f (E)}] = W{H/H':E) for all pairs H,H' of hypotheses in the class
H, then f (E) is sufficient for the hypotheses. Here f (E) need not be a scalar or vector; it
might be a proposition. This is a Bayesian generalization of the concept of sufficiency
because W{H/H':£) is not always an acceptable concept for the non-Bayesian. It could be
called Bayesian sufficiency or ““efficaciousness’’ (Good, 1958). For legal purposes, f (£} is
a possible interpretation of what is meant by ““the whole truth and nothing but the truth”,
when there are two or more hypotheses to be entertained. Of course approximate Bayesian
sufficiency is all that can be demanded in a court of law. Anyope who swears to tell the
whole truth has already committed perjury.

For applications of weight of evidence, apart from the many applications for Bayesian
tests of standard statistical hypotheses, see Good (1983, p. 161).

3. SOME HISTORY
In the draft of my talk I said that C.S. Peirce (1878), is an obscurely written paper,

_ had failed to arrive at the correct definition of weight of evidence owing to a mistake (see
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Good, 1981b). But I intend to amend this comment in the discussion, in my reply to Dr.’
Seidenfeld. Levi (1982) agrees that Peirce made a mistake although he thinks it was
different from the one I thought he made. Levi points out that Peirce was anti-Bayesian

" and to some extent anticipated Neyman and Pearson.

The definition of weight of evidence as the logarithm of the Bayes factor was given
independently of Good (1950) by Minsky and Selfridge (1961); and again independently
Tribus (1969) used the term ‘“‘evidence” for weight of evidence. Kemeny and Oppenheim
(1952) used the expression ‘‘factual support for a hypothesis’’ (provided by evidence), and
their desiderata led them to the formula -

P(E|H)—P(E|B).
P(E|H) + P(E|R)
This is an increasing function of W(H.E), namely sinh {W(H:E)/2].

The philosopher Karl Popper (1954) proposed desiderata for corroboration and he
said (1959, p. 394) *‘I regard the doctrine that the degree of corroboration or acceptibility
cannot be a probability as one of the most interesting findings of the philosophy of
knowledge”. This fundamental contribution to philosophy was taken for granted by a
dozen British cryptanalysts cighteen years before Popper published his comment, the name
used being “‘score’ or ‘‘decibannage’”. Moreover we used the best explicatum, wh1ch is
.‘not mentioned by Popper although this explicatum satisfies his desiderata. -

said it had taken fifty years for his work with Dorothy Wrinch to be appreciated by the
statistical community, and he predicted that it would be another fifty years before the
philosophers were equally influenced (or words to that effect). Recently the slowness of
professional philosophers to use the correct explicatum for degree of confimation (or
corroboration), namely W(H:E), has been exemplified by Horwich (1982, p. 53). He
suggests two measures, P(F|E) - P(H) and P(H|E)/P(H), of which the latter had been
used by J.L. Mackie (1963). Although both these explicata satisfy the additive properfy
(1), neither is a function of W{H:E). To see that P(H|E)~ P(H)} is inappropriate as a
measure of degree of corroboration consider (i) a shift of probability of H from 1/2 to 3/4,

{ii) a shift from 3/4 tp 1, and (iii) a shift from .9 to 1.15. In each case P(H|E)— P(H) =

1/4, but the degres of corroboration seems entirely different in the three cases, especially
as case (1if) is impossible! A similar objection applies to Mackie’s suggestion P(H | E)/P(H)

. and to its logarithm, For further discussion of Horwich (1982) see the review by Good

(1983b). That review contains some other applications of the concept of weight of evidence
to philosophical problems such as that of induction.

The unit in terms of which weight of evidence is measured depends on the base of its
logarithms. The original cryptanalytic application was an early example of sequential
analysis. It was called Banburismus because it made use of stationery printed in the town
of Batibury; so Turing proposed the name ‘‘ban’’ for the unit of weight of evidence when
the base of the logarithm is 10. Another possible name, especially in a legal context, would
be a “themis” partly because Themis was the goddess of justice, and partly because

- Themis is the name of the tenth satellite of Saturn. But ‘*ban’’ is shorter, more convenient,

and historically justified. Turing called one tenth of this a deciban by analogy with a
decibel in acoustics, and we used the abbreviation db. Just as a decibel is about the smaliest
unit of difference of loudness that is perceptible to human hearing, the deciban is about
the smallest unit of weight of evidence that is perceptible to human judgment. It
corresponds to a Bayes factor of 5/4 becanse log,,$ = .70 and log,d4 = .60. A bit is 3.01
db.
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‘When I arrived at Bletchiey the work on Banburismus had been going for some weeks
and the entries on the Banbury sheets were of the form 3.6 meaning 3.6 db. I proposed first -
that the decimal point should be dropped so that the entries would be in centibans, and
better still that the unit could be changed to a half-deciban or Adb with little loss of
accuracy. This very simple suggestion saved much writing and eyestrain, and probably
decreased the number of arithmetical errors. It may have cut the time for Banburismus by
a factor of 2 and time was of the essence. One of my colleagues, Alex Kendrick, suggested
the name ‘‘bonnieban'’ for the hdb.

The concept of weight of evidence is formally related to the logit
transformation, x = log [P/(1 - P)] , although here Pis a cdf. [ don’t think it explains why
the logit transformation is useful, but it might have suggested the transformation to Fisher
because Jeffreys was one of his students, Jeffreys (1936) discussed the logarithm of the
Bayes factor and Fisher & Yates (1938) suggested the logit transformation.

4, A SIMPLE EXAMPLE

As a simple example, suppose we are trying to discriminate between an unbiased die
and a loaded one that gives a 6 one third of the time. Then each occurrence of a 6 provides
a factor of % = 2, that is, 3 db, in favour of loadedness while each non-6 provides a

factor of ..?’/r_g = _‘;- , that is, 1 db, against loadedness. For example, if in twenty throws

. there are ten 6's and ten non-6’s then the total weight of evidence in favour of loadedness is

20 db, or a Bayes factor of 100. The corresponding tail-area probability for getting ten or
more 6's if the die is fair is about 1/1670. A Bayes factor is always smaller than the
reciprocal of a tail-area probability (Good, 1950, p. 94), and in this example it is smaller by
a factor of 16.7.

Cewdiae e -5, . HOW TO MAKE JUDGMENTS . ... =i oo

Even when H and H are simple statistical hypotheses, in WhicH ¢ase  Bayes factor s
equal to a likelihood ratio, the terminology of Bayes factors and weights of evidence has
more intuitive appeal, This intuitive appeal persists in the general case when the weight of
evidence i3 not the logarithm of a likelihood ratio. I conjecture that juries, detectives,
doctors, and perhaps most educated citizens, will eventually express their judgments in
these intuitive terms. In fact, in legal applications, it must be less difficult to judge
HE|H)/P(E|B) or O(H|E)/O(H), or its logarithm, than to judge P(E|H) and P(E|H)
separately because these probabilities are usually exceedingly small, often less than 10-100,
Of course the official responsibility of juries is more to judge P{H| | £} if they think in terms

- of probabilities. They are supposed to exclude some kinds of evidence, such as previous

convictions, but they probably do allow for these convictions when they know about them,
judging by some experiences of Hugh Alexander (c. 1955) when he served on a British jury.

A problem that arises both in legal and medical applications is in deciding what is
meant by the initial probability of H. For example, if the accused is regarded as a random
person in the world, his initial probability of guilt in much smaller than if he is known to
live in the town, or village, where the crime was committed. For this reason it might often
be easier to judge O(H | E) directly than to compute it as O(H)F(H:E) where F denotes the

Bayes factor. Perhaps the best judgmental technique is to split the evidence into pieces and

to check your judgments for consistency, For example, You could make separate
judgments of (i) O(H | E&E") and (ii) O(H| E)F(H:E’ | E}, while realizing that these should
be equal. Some people, after some training, might find it easier to work with the additive
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jogarithmic form, instead of or in addition to the multiplicative form, that is, to use log-
odds and weights of evidence (or log-factors) instead of odds and Bayes factors, It is

convenient that factors of 2, 4, 5, 8, 10.and 20 correspond closely to weights of evidence of .

3,6,7,9, 10 and 13 decibans respectively. Themis should be grateful to Zeus for giving us
just ten fingers.

I believe that this device of sphttmg the evidence into two or more groups corresponds
to a psychologically natural manner of evaluating evidence. First some evidence £ makes
you suspicious, and you estimate the odds of A as somewhere near evens; then some more
or less independent evidence arrives, perhaps in the form of a new witness, and this peps
up the odds by a factor that you can judge separately. (Similarly an antibayesian, unaware
that he is really a Bayesian, will choose null hypotheses of non-negligible prior
probabilities, and then test them). It.might help the judgment to recognize consciously that
the chronological order of hearing evidence is not entirely relevant, and to irnagine that it
had arrived in some other order. In legal applications, one example of a convenient piece
of evidence, that can be mentally separated from the rest, is the discovery of a strong
motivation for the crime. An alibi is another example, in the opposite direction.

6. EXPECTATIONS AND MOMENTS OF BAYES FACTORS
AND OF WEIGHTS OF EVIDENCE. ENTROPY

In 1941, or perhaps in 1940, Turing discovered a few simple properties of Bayes

factors and weights of evidence. One curious result, which was independently noticed by
Abrafiam Wald, was, jn Turing’s words. ““The expected factor in. favour of a .wrong
hypothesis is 1°*. This fact can be better understood from its very simple proof: Suppose
the possible outcomes of an experiment are E;, E,, Ey,... and that the hypothesis H is true,
If E, is an observed outcome the factor against Ff is
FHE) = RE|H) .

P(E,|H)

Its expectation given the frue hypothesis H is

PE|H)
E[RH:E)|H] = L HE | H)
IH1 i PE|H) |

u%m_1 )

" This result seems surprising at first sight, and not just because of its simplicity. If His false
we expect the Bayes factor in its favour to be less than 1 in most experiments, The only way
to get an expected value of 1 is if the distribution of the Bayes factor is skewed to the right,
that is, when the factor against the truth exceeds 1 it can be large. .

To exemplify (4), let’s consider the example concerning a die that we considered
before and suppose that the die is reaily a fair one. Then, on one throw of the die, thereisa

probability of 1/6 that the factor in favour of loadedness is ijg 2 and a probability of

5/6 that the factor in favour of loadedness will be 4/5. Hence the expected factor in favour
of loadedness when the die is unloaded is 1/6 x 2 + 5/6 x 4/5 = 1/3 + 2/3 = 1. Thus
Turing’s theorem can be used as a check of the calculation of a Bayes factor.

It is disturbing that one can get a large factor against the truth. This point will emerge
agam later in this talk.
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Let f = F(H:E). Then the nth moment of fabout the origin given H'is equa.l to the
(n + 1)st moment of fgiven H; that is,

E(f|H) = E(|B. ©

The case n = 0is Turing’s resuit, just discussed. It can be further proved that E(/*{ A) is an
increasing function of « for & > 0. Better results will be published elsewhere.

This follows from an algebraic inequality that might daté back to Duhame! &
Reynaud (1823, p. 155); see Hardy, Littlewood, and Polya, (1934 p. 26). By letting o —
+0 we find, as I shall show in a moment, that

EIWHE|H =0 ®

or in words, the expécted weight of evidence in favour of the truth is non-negative, and
vanishes only when W{H:E) = 0 for all E of positive probability. This is of special interest

because weight of evidence is additive so its expected value is more meaningful than that of °

a Bayes factor. This inequality was pointed out to me by Turing in 1941, with a different
praof. Regarded as a piece of algebra it is merely an elementary inequality. What makes it
interesting is its interpretation in terms of human and therefore statistical inference. That
is why [ regard it as reasonable to attribute it to Turing although it was also applied to
statistical mechanics by Gibbs (1902, p. 136). '

The monotonic property of E(f*| H) can be written

v p(ﬂ‘l

pye increases witha (o = Q) N
¢
wherep, = P(E,|H), q, = P(E.|B).
But the left sideis ] whena = 0, 50

e TP Bty Lo

e e s . (_..-...-_“ G e s
that i59

Ep. exple log 2 Y= 1.
q:
Therefore
ol +ozlog + .2z 1.
Qi
By taking o small we get
Tpdog 28 =0 ' (8)

i

which states that Eflog | H) = 0. Thus (7) can be regarded as a generalization of (6) or (8).
The fact that (8) is an algebraic theorem confirms that weight of evidence is correctly
explicated, although I hope you are already convinced. See also Good (1983d).

One way to interpret (6) or (8) is that in expectation it pays to acquire new evidence, if
arriving at the truth is your objective. An explicit proof in terms of decision theory, that it
pays in your own expectation to acquire new information, without reference to weight of

evidence, was given by Good (1967, 319-321); but see also Good (1974) (where it wa:

shown that, in some ons else’s expectation, it does not necessarily pay you). The principle
is related to what Carnap (1947) called ‘the principle of total evidence’’: Locks’
recommendation to use all the available evidence when estimating a probability.

Turing’s inequality can of course be interpreted in terms of discrimination between
two multinomials, a familiar problem in cryptanalysis. If p,, ps,...,0, are the category
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probabilities under the true hypothesis X, and are ¢y, g3,...,g» under hypothesis &, then
- the expression (8) is equal to the expected weight of evidence *“per letter’* in favour of H.

Sometimes one of the hypotheses is that of equiprobability, say that gy = ¢, = ... =

g» = 1/n.Then the expected weight of evidence becomes Lp, log(np,) and this is equal to

 logn + Ip, log p.. The expression — Ep, log p, is usually called “entropy” because itis a
form that entropy often takes in statistical mechanics (Boltzmann, 1964, p. 50; Gibbs,
1902, p. 129). That is because it is convenient for some purposes to divide phase space into
equal volumes, in virtue of Liouville's theorem. (In thermodynamics, which is explained
by statistical mechanics, the entropy has a different definition). The entropy expression
—Lp, log p, occurs prominently in Shannon’s theory of communication, but his coding
theorems can be somewhat better expressed in terms of expected weight of evidence in my
opinion (Good & Toulmin, 1968).

Apart from its central position in human inference, one reason that expected weight
of evidence is more fundamental than entropy is that it is applicable to continuous
variables without ambiguity. This fact is related to its “‘splitative’” property in the discrete
case. That is, Zp, log(p./¢;) is unchanged if one of the categories is split into two categories
in a random manner such as by spinning a coin. Among its names apart from ‘‘expected
weight of evidence'' are *“‘relative entropy™, ‘‘cross-entropy’’, ‘‘dinegentropy’’, and
“*discrimination information’’. (Shouid this one be *“discrimination evidence''?)

The symmetrized expression Z(p,—g)log(p./q,), called *‘divergence’ by Kullback
(1959), had: been used also by Boltzrnann (1964, p. 54) in statistical mechanics, Jeffreys

... .{1948) in- his theory of invariant pnors,- and by me for discrimination problems in L i
veu-—rcryptanalysis-during World-War II. et e R S P TREC R R

For deciding in advance whether Banbunsmus was hkely to be successfu.l *{unng oo
estimated the expected weight of evidence. Whﬂe doing so he discovered another theorem
which I shall now state.

Suppose that the weight of evidence in favour of H, when H is true, has a normal
distribution with mean g and variance ¢%, and suppose our unit is the *‘natural ban"’, Then
o? = 2. In other words ’

var{WW(H:E) | H} = 2 E(W(H:E) | H). ' ©)
E(WE:E) | H) = ~E(MEE)|H) = ~4. 10)

Moreover

Thls result was later pubhshed by Peterson, Birdsall and Fox (1954) in connection w1th
radar, The result is surprising so I shall give the proof. -

Let x be an observed weight of evidence in natural bans. Since the weight of evidence :
tells us just as much as E does about the odd of H, we have '

W(H:E} = WH:W(H:E)] = W(H:x).

Therefore the ratio of the probability densities
P.D.(x| H)
P.D.(x|H)

Asgnme that x (or rather the corresponding random variable) has the distribution N,

so that the probability density of x, given H, is

, L ey — | Gop)
o -[5]

. ‘ (11).
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Then by (11)

— 3
P.D.(x|H) = cr-\}fi' exp [— --(izaz—“)-— --x]. d
Therefore ' :
1 B Cinl) s PO
puy = _?m exp [ 5t x]a'x I

and from this it follows that ¢® = 25 and also that the distribution of x given H is
N(—p,0%).

If we use decibans the formula ¢ = 2u becomes converted 10 o = u20log,ee =
~/8.686; = 3/u. Thus the standard deviation is much larger than one might have guessed,
a fact that in the application to radar is disturbing. For example, if the expectation is 16
db, which corresponds to a Bayes factor of 40, there is a probability of 1/6 that the weight
of evidence will exceed 16 + 3/I6 = 28 db, corresponding to a factor of 600, and a -
probability of 1/6 that it will be less than 4 db, corresponding to a factor of only 214. Also
there is a chance of 1/740 that the Bayes factor against the truth will exceed 100.

For generalizations of this theorem of Turing’s to the more realistic case where it is
assumed that the weight of evidence is only approximately normally distributed near its
mean see Good (1961), which dealt with false-alarm probabilities in signal detection. The
results can then be even more disturbing than in the case of strict normality and I hope this
fact is well known to the defence departments of all countries that are civilized enough to
possess an atom bomh,

Good & Toulmin (1968, Appendix B) and Good (1983f) give other relationships
between the moments and cumulants of weight of evidence for the general case. Such
identities can be deduced from the elegant formal identity ¢(t +i} = &(f) where ¢ and &
denote the characteristic functions of W{H:E) given H and H respectively. For example,
when the moments ex1.st

i = EO( 1Y plulel = e'”.u.. w=" EO e/ vl = €5,
ye=

where x,/and pu,denote moments about 0, and where I, just here, denotes the suffix-raising
operator. There are similar identities for the cumulants, The cases s = Gands = 1 are of
special interest.

When Turing judged the value of Banburismus by estimating an expected weight of
evidence he was in effect treating weight of evidence as if it were a utility. It may be
tegarded as a guasi-utility, that is, an additive substitute for utility expressed in terms of
probabilities. If you recall Wald's theorem that a minimax procedure is one that can be
regarded as using a least favourable prior, you are led to the idea of minimizing expected
weight of evidence or maximizing entropy in the selection of & prior. {(Compare Good,
1969; Bernardo, 1979). Although minimax procedures in statistical inference are
controversial they have the advantage of having invariant properties. The idea of using
maximum entropy for choosing a prior was suggested by Jaynes (1957), though without
mentioning the minimax property. For a recent statement of my views on maximum
entropy see Good (1983c).

In the design of an experiment the entire distribution of weight of evidence, and in -
particular its variance, is of interest, and not just its expectation. In this respect weight of
evidence, like money, is not an exact substitute for utility.

Expected weight of evidence is basm to the non-Bayesian approach to significance
testing of Kullback (19359).
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For some relationships between expected weight of evidence and errors of the first and
second kinds see Good (1980). Other properties of weight of ewdence can be located
through the indexes of Good (1983e).

7. TAIL-AREA PROBABILITIES

A Fisherian might try to interpret weight of evidence, in its ordinary English sense, in
terms of tail-area probabilities in tests of significance, Suppose then that a client comes to
a Fisherian with experimental results E and he wants to know how much evidence this
provides against some null hypothesis H, or even whether H is supported if that is possible.
The client does not want to reject A too readily for he considers it to be simpler than its
rivals and so easier to work with. For example, if he did not have experimental results he
would have ““‘accepted’” H in the sense of assuming that its observational implications were
approximately correct. (Should this be the definition of a null hypothesis?) The situation
occurs, for example, when other hypotheses involve additional parameters. This by the
way explains why it is not always better to replace a significance test by an estimation
procedure. This point was made, for example, by Arnold Zellner in discussion at the 21~
SREB-NSF Meecting on Bayesian Inference in Econometrics in 1980 in response to
someone who was trying to knock significance tests. For several of my own views
concerning significance tests see Good (1981a).

-Suppose you .apply a significance test and get a tail-area probability or P-value of o
04557 (1t is irrelevant to most of my discussion whether this is-a single or double-tail,) ow - -~ - = v w0 oo

should you report this to your client? The answer is not as simple as it seems. You might
report this result to the client in one of the following ways, depending on your philosophy
and on the client’s philosophy, and on the practical background of the problem:

(i} *“The hypothesis is 20 to 1**, as in the lines from War of the Worlds; ‘‘The chances
of anything coming from Mars are a million to one. But still they come!”’ I hope it’s not a
million to one on!

(ii) “The odds against the hypothesis are about 20 to 1" (a familiar fallacy
perpetrated by reputable scientists).

(iii) **The probability of getting so extreme an outcome is .0455 if the null hypothesis
is true’’, where the meaning of ‘‘more extreme'’ needs to be stated. It can’t mean that the
probability density is small because the density can be made arbitrarily small, even where
the mode originally occurred, by applying a suitable transformation to the independent
variable. (Compare the usual attack against ‘‘Bayes’s postulate’” of a uniform
distributionl).

(iv) “The probability of getting so extreme a result is less than .05 if the null
hypothesis is true.’

(v) “Reject H.”

(vi) “‘Reject H becauseP < ,05.”

(vii) “‘I wouldn't reject H (as a good approximation) because H is @ priori so
probable.”” For example, suppose a coin gave 61 heads and 39 tails, H being the hypothesis
that the coin is fair. (Here the double-tail-area, allowing for a continuity correction, is
.036.)

{viii) *‘I wouldn’t reject F because the cost to you of assuming & is too great.”

(ix) *‘The result is not decisive: collect more data if it is practicable.”

"(x) ““You should have consulted me in advance so that we could have decided on a
rejection procedure in the Neyman-Pearson fashion.’”
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(xi) Ask the client ‘At what threshold P.value would you reject H?** Or arrive at a
rejection level by discussion with the client.
(xii) None of the above.

I'm going to consider an example where «None of the abovey is appropriate because
the null hypothesis should be clearly accepted, not rejected. Let’s imagine that the
following game is being played at a gambling casino. An urn is known to contain 100 black
and white balls. You pay an entrance fee, and the game consists in extracting one ball at a
time. You win a doilar whenever a black ball is extracted. After each gamble the ball is
returned to. the urn and the urn is well shuffled, so the sampling is with replacement,
Assume that each ball has probability 1/100 of being selected. Suppose that the game is
played N times and that there are r successes and N - r failures. We formulate the null
hypothesis that there are 50 balls of each colour. ' '

We are dealing with a binomial sample, and the standard deviation of r, given the null
hypothesis, is VfINY%2(1 — 14)] = V2+/N. For convenience assume that N is a perfect square
and that r = AN + +/N. Thus the bulge is 20 and the double tail-area probability P =
L0455 so the result is «significant at the 5 % level», (I’'m ignoring the continuity
correction). 1 am now going to prove uncontroversially and without explicit Bayesianity
that if NV is large enough this outcome does not undermine the nuil hypothesis, in fact it
supports it. This shows that it is incorrect to say that a null hypothesis can never be
supported but can only be refuted, as one so often hears, '

In this problem, the possible values of the binomial parameter p are 0, .01, .02,...,.99,
1,00, though the values 0 and 1 will have been ruled outif r # Qor N,

o | B

ht3 a3
£ad 7

a X
7 e

A
49 50 31 52

_In this diagram the possible values.of p are.marked with crosses.. The observed fraction . _ ..

r/N of successes is marked by an arrow-at the point A..The null hypothesis corresponds to
the point O and the closest possible value for p, to the right of p = ¥, is at B wherep =
.51,
The point A corresponds to a fraction r/N = 12 + N-1‘% Thus, if N is large enough, the
distance OA is much shorter than the distance AB, 1t is therefore obvious that if NV js large
enough our tail-area probability of .0455 supports the null hypothesis and the null
hypothesis becomes more and more convincing as N — oo, corresponding to this fixed tail-
area probability. A similar argument can be used even if the binomial parameter is
continuous but it is not so clear-cut. It shows that a given P-value means less for large N.
(Jeffreys, 1948, p. 222; 1961, p. 248; Hill, 1982; Good, 1983a). A possible palliative is to
use standardized tail-areas. That is, if a small tail-area probability P occars with sample
size N we could say it is equivalent to a tail-area probability of P\JI00/N for a sample size
of 104 if this is also small (Good, 1982b). The topic is closely related to the possibility of
“sampling to a foregone conclusion’ by using optional stopping when tail-area
probabilities are ysed without any Bayesian underpinning. The earliest reference I know
for this form of cheating is Greenwood (1938) and other references are given by Good
(1982a). ' .

Here is a Bayesian solution to the problem of the one hundred black and white balls in
an urn, If there were only one rival A, to the null hypothesis H,,,, the Bayes factor against
H,,; would be
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N -r
RAH\Hyp = 2 PP oy @—2ppr
&y 2

={1+gy(1—-g)y* (whereg =2p—1I)

= exp[rlog (1 +g)+(N—r)log (1-q)]

= explr{g— Vag? +...)~(N—r}g+ %g?+...)]

= exp2qVN - Yig?N)  (whenr=1¥N+/N).

If we wanted to compute an exact Bayes factor against H,,, we would need to take a
weighted average of the Bayes factors corresponding to each p (or g} the weights forming a
prior distribution 2(H,). But we don’t need to do this in the present case because we obtain
the maximum weight of evidence against H,, by ignoring ail values of g except
2 x .51-1 = .02. Thus the factor against H,, is af most exp(izsﬂ - -5-6—1\66 ),

corresponding to a weight of evidence of \%v - 57% natural bans. Here is a small tabfe:

TABLE 2. Evidence in favour of H,;, if P = .0455

40,000 =20 =1
90,000 = 6 nat. bans = 400
1,000,000 = 160 nat. bans =3 x 10%

Thus in this example it is possible to get a lot of evidence in favour of the null hypothesis
under circumstdnces where a dogmatic use of the 5 % rejection level would be ludicrous.

The primary lesson to be learnt from this example is that tail-area probabilities need to
be used cautiously, If you use tail-area probabilities, perhaps you should always make an
honest effort to judge whether your use of them is in violent conflict with your judgment
of the Bayes factor or weight of evidence against the null hypothesis. In human thought,
weight of evidence is a more fundamental concept than a tail-area probability. There was
no Greek goddess who rejected hypotheses at the 5 % level with one tail in each scale!

Berkson (1942) criticised the view that a small P-value is evidence against a null
hypothesis. He adimnits that he used to adopt the usual view but argues, without mentioning
Bayes or Jeffreys, that (i) a small P-value is not evidence against the null hypothesis unless
an alternative can be suggested that would make this low value more probable; (ii) values
of P in the range (.3, .7) can support the null hypothesis for large samples. There is an
error on page 333 where he says that “‘small P's are more or less independent, in the weight
of the evidence they afford, of the numbers in the sample’’. (See also page 332). Otherwise
Berkson's paper was largely Bayesian although he didn’t notice it. Everybody is to some
extent a Bayesian especially when using common sense.
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H. RUBIN (Purdue University)

Possibly some of my difficulties with philosophy are due 10 my allergy to horseradish
(see Professor Seidenfeld’s comments). However, some philosophy is necessary,

The consideration of situations in which the state of nature is highly restrictéd is
necessary to clarify thinking. However, one must resist the temptation, made 99,99 % of
the time by users of statistics, to believe the model. There is no conceivable way that I can
state my prior or posterior probabilities in the last example in the paper; all that can be said
is that it is reasonable (or unreasonable) to act as if the results come from Bernoulli trials
with probability .5. I completely agree with Professor Good that a **significant difference’*
is not the proper criterion here. If there was a relative frequency of 50.1 % in 10° trials, on
this evidence I personally would ‘“accept’ the hypothesis; with 102 trials I would reject it;
and with 10° trials I would think hard about the matter.

The model given is, in practice, never correct. Thus we can only use the evidence to
decide which actions or statements to make. If a hypothesis is broad enough, it.can be true;
if it is too specific, it must be false, but it may still be appropriate and reasonable io act as
if it is true.

T. SEIDENFELD (Washington University, St. Louis)

As a philosopher interested. in-“‘foundations’’, I take delight in-the opportunity to -~ - -

comment on the papers of our distinguished speakers, Let e preface these rémarks, more -
in the form of questions, with an admission of my perception of the role of philosophy in a
session titled ‘‘Probability and Evidence’’. To paraphrase Larisa in Pasternak’s Dr.
Zhivago (chapter 13, §16), philosophy is like horseradish, It is good if taken in small
amounts in combination with other things. But it is not good in large amounts by itseif.
The risk with philesophy, as with horseradish, is the temptation to use ever stronger
concentrations to maintain the sensation of that first taste. Soon you are serving up pure
horseradish!

Professor Good’s savory recipe calls for a dash of philosophy in the form of an
explication of *‘weight of evidence” . Explication, you recall, is the business (rnade into an
industry thanks to Carnap) of making clear and precise an inexact concept (the
explicandum) taken from everyday language. The explicandum has all the obscurity typical
of presystematic talk. In explication, the vague explicandum is replaced by an explicatum
which, though similar to the original notion, must be exact, fruitful and simple.
Explication is Carnap’s (1950) explicatum for the explicandum “‘philosophical analysis™.

Carnap begins his Logical Foundations in the hope of providing an explication of
“probability™. In 600 pages that follow, he struggles to defend the thesis of probability as
a logical relation. In so far as Carnap’s attempt at explication is not successful, I think it
fair to say he does not meet the requitement of usefulness. Carnap’s effort with logical
probability fails to vield productive conceptual tools for reconstructing, e.g. statistical
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" inference. For one, he misses completely the important problem of the “‘reference class”™
for direct probability: how do we reconcile information from different statistical
*“*populations’’ concerning some common *‘individual’’?

I have a parallel concern with Good’s explication, His account is exact and, no doubt,
simple enough. But how does “‘weight of evidence’ serve a useful purpose in solving
problems of inference or decision? Let me argue, briefly, that two natural, candidate roles
for an explication of weight are not fulfilled by Good’s explicatum. Then it will be up to
the auther, himself, to point out what he intends for his creation.

J.M. Keynes, in chapter 6 of his Treafise (1921), raises the subject of weight of
evidence along with the caveat that he remains uncertain how much importance to attach
to the question. For Keynes, weight of evidence cannot be defined by probability as he sees
weight monotonically increasing with increasing evidence. To use Keynes’ metaphor
{p. 77y weight measures the sum of favourable and unfavourable evidence whereas
probability indicates the difference between these two. Keynes suspected that this hazy
notion of weight plays a role in decisions separate from the role of probability. I do not
think what Keynes had in mind requires a violation of expected utility theory. One
interpretation of his query is to ask for a measure of weight of evidence that would help
determine when a decision maker has adeguate evidence for a (terminal) choice. That is, I
propose we understand Keynes’s problem with weight as his groping for a formulation of
the stopping problem to which weight would offer the key to a solution.

In discussing the requirement of total evidence he writes,

sy = ~Rurnonlli’s second Tnaxine, that we must take into account all- the information we- -

have, amounts to an injunction that we should be guided by the probability of that
argument, amongst those of which we know the premisses, of which the evidential weight
is greatest. But should not this be reenforced by a further maxim, that we ought to make
the weight of our arguments as great as possible by getting all the information we can? It is
difficult to see, however, to what point the strengthening of an argument’s weight by
increasing the evidence ought to be pushed, We may argue that, when our knowledge is
slight but capable of increase, the course of action, which will, relative to such knowledge,
probably produce the greatest amount of good, will often consist in the acquisition of
more knowledge. But there clearly comes a point when it is no longer worth while to spend
trouble, before acting, in the acquisition of further information, and there is no evident
principle by which to determine how far-we ought to carry our maxim of strengthening the
weight of our argument, A little reflection will probably convince the reader that thisisa
very confusing problem. (pp. 76-77).

- Some sixteen years ago, Good published a philosophical note (1967) in which he, like
Keynes before him, connected the requirement of total evidence with the stopping
problem. The upshot of that note is the result (also reported in Savage (1954, pp. 125-126))
that procrastination is best when observations are cost-free and not (almost surely)
irrelevant, But, that finding as well as the general theory of optimal stopping is tangential
to Good’s concept of weight. Of course, with enough weights we recover the likelihood
function. Hence, the weights are sufficient {though hardly a reduction of the data), Except
in special cases, however, the stopping rule is not a function merely of the weights. Is there
some reason to think Keynes was on the right track when he posited weight of evidence to
.solve optimal stopping? It seems to me current wisdom would label this a dead-end
approach. Nor does Good’s explicatum serve such a purpose.
A second role weight of evidence might conceivably play is in fixing belief, When is it
reasonable to add a consistent belief on the basis of new evidence? An informal reply is:
you are justified in coming to believe a proposition when the weight of the new evidence is
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strong enough in its favor. Unfortunately, it seems Good’s exphcatum does nothing to
- defend this intuition.

The point is simple. Total evidence requires we respect eqtuva]ences implied by all we
know. If h, and h, are equivalent given all our evidence, then whatever epistemic stance
we take toward the one we take toward the other. To believe the one is to believe the other.
But weight of evidence (here, of a kind with relevant measures of ‘‘support’’) does not
conform to the needed invariance. =

For example, let X,=0,! (i=1,2) be two Bernoulli trials. Suppose the personal
probability is symmetric and exchangeable and satisfies: p(X,=0) = .Sand p(X, + X, =

0) = .05, Hence, p(X, + X; = 2) = .05 and p(X;+X,=1) = .9. Let e be the new
evidence; X; = 1.

Let h, be the hypothesis that X, 4+ X, =2 and h, the hypothesis that X,= 1. Given e,
b, and h, are equivalent. But e has positive weight for h, and negative weight for h,, If we
use weight to account for our presystematic talk {weight measures reason for/against
adding belief), then we have the incoherent conclusion that, given all we know, e is
evidence for and zgainst the same belief, It is an elementary and familiar exercise to show
this phenomenon ubiguitous.

In a recent paper with D.Miller, Sir Karl Popper (1983) expresses concern over failure
of ‘‘positive relevance’’ to respect such equivalences, Thus, I do not agree with Good (p. 8)
when he speculates that weight satisfies Popper’s desiderata for degree of corroboration ot
acceptability.

In short, my question to Professor Good is this one. What shall I do with weight of
evidence?

REPLY TO THE DISCUSSION

Teddy Seidenfeld was kind enough to send a copy of his comments before the
meeting, His main question was ‘“What shall I do with weight of evidence”. I think there
must be some misunderstanding because my answer is so simple. My answer is that the

weighi of evidence provided by E should-be-added to-the-initial log-odds of the hypothesis - -~ . -

to obtain the final log-odds. Or equivaléntly, the Bayes factoris multiplied by the initial
odds to give the final odds. The final odds are then combined with utilities to make
rational decisions., Weights of evidence and Bayes factors resemble likelihood, they have
the merit of being independent of the initial probability of the hypothesis. Moreover the
technical meaning of weight of evidence captures the ordinary linguistic meaning and that
is miy main thesis.

In the example, used by Seidenfeld to question the explication of weight of evidence,
he had effectively the table of probabilities,

X, Xz 0 1
0 05 48
A5 05 .
5 et 1
with  HpX,=X;=1 P(H) = .05, O(H) = 1/19
Hp X;=1 PH) = 4, O(H} =1
E: X, =1 (M, and H, are logically equivalent, givenE}.
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'Bayes Sfactor provided by E Initial odds Final odds
H, 19/9 1/19 1/9
H, ) 1/9 1 1/9

The fact that the final odds of A, and Ff; are equal, given E, is consistent with the fact that
H, and H, are equivalent given E, The evidence E, that X; = 1, supported H by increasing
its odds to 1/9, and undermined f, by decreasing its odds to 1/9. Before E was known, H,
and H; were not equivalent and their initial odds were not equal. The ocurrence of E has
simply changed the situation. Seidenfeld seems to have confused W(H:E) with W{H:E|E).
The latter expression is equal to zero. That is, once E is given it supplies no further weight
of evidence. To imagine that it does is like trying to double the true weight of evidence.
The error is prevented by noticing the distinction between the vertical stroke which means
“‘given’ and the colon which means *‘provided by"’.

Popper made a different mistake when he apparently equated corroboration with
acceptability, and when I said that his remark about corroboration had been previously
taken for granted I should have made it clear that I was referring only to his statement that'
degree of corroboration cannot be a probability. My definition of weight of evidence does
essentially satisfy all the desiderata for corroboration laid down by Popper in the
Appendix dealing with the topic in his Logic of Scient{fic Discovery (Popper, 1959, pp.

~.400-401). The meaning of *‘essentially’’ here is. spelt out in Good (1960, p. 321); for -
- example; 4 replace Popper’s bounds-of = I on-degree of correboration, by + . Perhaps

Popper has since shifted his position,

The alleged proof by Popper & Miller (1983) of the impossibility of inductive
probability is unconvincing, and I have written a note to Nature arguing this (Good,
1983h).

A special case of weight of ¢vidence was used by Peirce (1878) although he did not
express it in Bayesian terms; in fact, as Isaac Levi has pointed out, Peirce anticipated the
Neyman-Pearson theory to some extent. Incidentally, when a Neyman-Pearsonian asserts
& hypothesis &, he unwiitingly provides a Bayes factor of (1 —a)/8 in favour of H; and,
when he rejects H, he similarly provides a Bayes factor of (1 —8)/« against H. (See Good,
1983g; Wald, 1947, p. 41). These results are based on the assumption that we know the
values of o« and 5, and we know what recommendation is made by the Neyman-

Pearsonian, and nothing else. We can achieve this state of ignorance by employing a _

Statistician’s Stooge who, by definition, is shot if he tells us more than we ask him to.

I have referred to practical applications in my paper, such as to sequential analysis, an
example of which was Banburismus. The Bayes factor is also used throughout Harold
Jeffreys’s book on probability, though he nearly always assumes that the initial odds are 1.
Every Bayesian test of a hypothesis can be regarded as an application of the concept of
weight of evidence. Perhaps the most important applications, like those of probability, are
the semiquantitative ones in the process of rational thinking as an intelligence amplifier.

Keynes’s definition of weights of arguments, in which he puts all the weights in one
scale, whether they are positive or negative, is like interpreting weight of evidence as the
weight of the documents on which they are printed. I think, if not horseradish, it is at least

- a crummy concept in comparison with the explicatum of weight of evidence that § support.

Keynes himself said of his discussion (1921, p. 71) ‘... after much consideration I remain
uncertain as to how much importance to attach to it. The magnitude of the probability of
an argument ... depends upon a balance between what may be termed the favourable and
the unfavourable evidence...”’. In other words he clearly recognizes that Themis is right to
use both scales. It is a standard English expression that the weight of evidence favours such

e

7311



i ——s

268

and such. Of course this refers to the balance of the evidence, not to the sum of all the
pieces irrespective of their signs.

If you must have a quantitative interpretation of Keynes’s ‘‘weight of arguments”,
just compute the weights of evidence in my sense for each *“‘piece’” of evidence and add
their absolute values. This then is. yet another application of my explicatum, to give a
somewhat quantitative interpretation to the crummy one. But Keynes’s discussion of this
matter is purely qualitative.

Seidenfeld raises the question of whether weight of evidence can be used for deciding
when t0 stop experimentation. My answer is that weight of evidence is only a quasiutility,
as I stated in my paper. When vou have a large enough weight of evidence, diminishing
returns set in, where the meaning of *‘large enough’’ depends on the initial probability and
on the utilities. Weight of evidence is a good quasiutility, and it is fine that the expected
weight of evidence from an observation is nonnegative. But it cannot entirely replace
expected utility as a stopping rule. When a judge’s estimate of the odds that an accused
person is guilty or innocent reaches a million-to-one on, the judge is apt 1o say ““Finis"’ and
bang down his gavel, This is because, in his implicit or explicit opinion, the expected gain
in utility from seeking new evidence is not worth the expected time it would take to
acguire. .

I turn now to the public comments made by Herman Rubin. He stated that P(E|H) is
not well defined if # is a composite hypothesis. This is certainly true in non-Bayesian
statistics but in ‘‘sharp’ Bayesian statistics it is assumed to have a sharp value. For the
sake of simplicity most of my exposition was based on the sharp Bayesian position. My
aim was to discuss weight of evidence without going into the foundations of probability.
-Dr. Rubin mentioned that, in my example of sampling with replacement from a bag
of 100 black and white balls, if he obtained 50.1 % white drawings in a sample of a trillion,
he would reject the model. So would I, but my example was based on a fixed P-value of
0.045. I deliberately selected not too smaIl a P—value 50 that the model 1tse1f would not
come under suspicion, - - . TR -

I agree further that precise models are seldom exact, but they aré often useful on

grounds of simplicity. Compare, for example, Good, 1950, p. 90; 1983e, p. 135,
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