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SUMMARY 
A review is given of the COnMpts of Baycs factors aad weights of evidence, indudins such 


aspects as tcrminology, uniqueness of the explicatum, history, how to make judgments, and 

the relationship to tail-area probabilites. 
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I. INTRODUCTION 
My purpose is to survey some of the work on weight of evidence because I think the 

topic is almost as important as that of probability itself. The survey willbe far from , .. - -

complete. 
"Evidence" and "information" are relatedbut do not have identical meanings. You 

might be interested in iqformation about Queen Anne but in evidence about whether she is 
dead. The expression "weight of evidence" is familiar in ordinary English and describes 
whether the evidence in favour or against some hypothesis is more or less strong. The 
Oxford English Dictionary quotes T.H.Huxley (1878, p. 100) as saying "The weight of 
evidence appears strongly in favour of the'claims of Cavendish", but C.S.Peirce used the 
expression in the same year so I suspect it was familiar before that date. The expression 
"The weight of the evidence" is even the title of a mystery story by Stewart or Michael 
Innes (1944). Moreover. Themis, the Greek goddess of justice is usually represented as 
carrying a pair of scales, these being for weights of evidence on the two sides of an 
argument. 

A jury might have to weigh the evidence for or against the guilt or innocence of an 
accused person to decide whether to recommend conviction; a detective has to weigh the 
evidence to decide whether to bring a cage to law; and a doctor has to weigh the evidence 
when doing a differential diagnosis between two diseases for choosing an appropriate 
treatment. A statistician can be said to weigh evidence in discrimination problems, and 
also, if he is not a Neyman-Pearsonian, when he applies a significance test. 

In all these examples it seems obvious that the weight of evidence ought to be 
expressible in terms of probabilities, although the appropriate action wiil usually or always 
depend on utilities as well. At least three books have both the words "probability" and 
"evidence" in their titles (Good, 1950; Ayer, 1972: Honvich, 1982), as well as Dempster's 
lecture at this conference, and this again shows the close relationship of the two topics. 

I believe that the basic concepts of probability and of weight of evidence should be the 
same for all rational people and should not depend on whether you are a statistician. There 



A Bayesian; of whatever kind, assumes that it is me&gful to talk about such 
as P(EIH&G), P(EJ G), and so on, where G denotes background information 

'such as that it is bad for the health to have guns fued at one. To economize in notation I 
shall usually take G for granted and omit it from the notation, so that the various 
probabilities will be denoted by P(EJH)etc. These probabilities might be logical 
probabilities, known as "credibilities", or they might be subjective (meaning personal) ?r 
multisubjective (multipersonal); and they might be partially ordered, that is interval- . . 

valued, with upper and lower values, or they might have sharp (numerical) values. 
Although I believe partially-ordered probabilities to be'more fundamental than sharp 
values, as I have said in about fifty publications (for example, Good, 1950, 1962a). I shall 
base my discussion on sharp values for the sake of simplicity. The discussion could be 
generalized to partially-ordered probabilities and weights of evidence hut only with some 
loss of clarity. Any such generalization, if it isvalid, should reduce to. the "sharp" case 
when the intervals are of zero width. I would just like to remind you that inequality 
judgments of weights of evidence can he combined with those of prohabilities, odds and 
other ratios of probabilities, expected utilities and ratios of them, etc., for improving a 
body of beliefs (for example, Good, 1%2a, p. 322). I have not yet understood Shafer's 
theory of evidence, which is based on Dempster's previous work on interval-valued 
probabilities. Aitchison (1968) seems to me to have refuted the approach that Dempster 

mistake of calling a credibility a "degree of confmation" thus leading philosophers into a 
quagmire of confusion into which some of them have sunk out of sight. This disaster 
shows the danger of bad terminology. Moreover, the expression "weight of evidence" is 
more flexible than the other two expressions because it allows such natural expressions as 
"the weight of evidence is against H".It would be linguistically unnatural to say "the 
degree of corroboration (qr confmation) is.qainst H". 

I intend presently (meaning "soon") to discuss the history of the quantitative 
explication of weight of evidence, but it will be convenient fxst to mention a method of 
deriving its so-called explicatum from compelling desiderata. Let W(N:E) denote the 
weight of evidence in favour of Hprovided by E,where the colon is read "provided by". 

. 	 If there is some background information G that is given all along, then we can extend the 
notation to W(H:EI G). I mentioned that partly to show that we cannot replace the colon 
by a vertical stroke. 

It is natural to assume that W(H:/$ is some function of P(EIH)and of &'(El%, say 
AP(EIH), P(Elfj)l. I cannot see how anything can be relevant to the weight of evidence 
other than the probability of the evidence given guilt and the probability given innocence, 



. . 

so the function f should be mathematically independent of RH),the initial probability of 
H. But P(HJE), the fmal probability of H, should depend only on the weight of evidence 
and on the initial probabiliiy, say 

P(H1.Q = gIw(H:E),P(HII. 

In other words we have the identity 

PWlb) = g(ffP(ElH). P(EIm1, P(M1 
On writingP(H) =x, PQ = y, andP(H(E) = z we havetheidentity: 

a' ?(I.-z)
z - g ( f I y .  l-x 1 . ~ 1 .  

It can be deduced from this functional equation that f is a monotonic function of 
P(EIH)/P(Elfi) (Good, 1968, p. 141) and of course it should be an incrkasing rather than 
a decreasing function. If Hand Rare simple statistical hypotheses, and if E is one of the 
possible experimental outcomes occurring in the defdtion of H and R, then 
P(EJH)/P(EJ@ is a simple likelihood ratio, but this is a very special case. In general this 
ratio is regarded as meaningful only to a Bayesian. It couldbe called a ratio of Bayesian 
likelihoods. 

We can think of weights of evidence like weights in the scales of the Goddess of 
Justice, positive weights in one scale and negative ones in the other. Therefore we would 

. .. . .. . .~ 
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provided that this does not force us to abandon the result already established that w(H:h) 
is a function of P(EIH)/P(EIm. We can in fact achieve (I), uniquely up to a constant 
factor, by taking 

Now we can easily see, by four applications of the product axiom of the theory of 
probability, namely P(A&B) = P(A)P(B)A). that 

PLEIH) OI'HIQ 
P(Elm O(H) 

where 0denotes odds. The odds corresponding to a probability p are defined as p/(l -p). 
Some numerical examples of h e  relationship between probability and odds are shown in 
Table I. In ordinary betting terminology odds of 2are called odds of 2 to 1 on, and odds of 
M are called odds of 2 to 1 against, while odds of 1are called "wens". 

=ABLE 1. Probability ond Odds 

Probability Odds 

1/10 1/9 
1/3 1/2 
1/2 1 
2/3 2 
9/10 , 9 

1 



The right side of equation (3) can be described in words as the ratio of the fmai odds 
of H to its initial odds, or the ratio of the posterior to the prior odds, or the factor by 
which the initial odds of Hare multiplied to give the final odds. It is therefore natural t6 
call it the factor in favour of Hprovided by Eand this was the name given to it by A.M. 
Turing in a vital cryptanalytic application in WWII in 1941. He did not mention Bayes's 
theorem, with which it is of course closely related, because he always liked to work out 
everything for himself. When I said to him that the concept was essentially an application 
of Bayes's .theorem he said "I suppose so". In current Bayesian literature it is usually 
called the Bayes factor in favour of Hprovided by E. Thus weight of evidence is equal to 
the logarithm of the Bayes factor. TheBayes factor and weight of evidence are ~a~e 's ian 
concepts because the probabilities P(H). P(H1.Q. P(EIH), and P(EIm are all in general 
regarded as meaningless by anti-Bayesians. 

The additive property (1) simplifies if Eand Fare both independent given Hand given 
R. This condition usually requires that both H and W should be simple statistical 
hypotheses, a point of which Herman Rubin reminded me privately after the lecture. 

The formula (3) occurs in a paper by W h c h  and Jeffreys (1921, p. 387); and Jeffreys 
.(1936), calledweight of evidence "support", 	 but in this book, Jeffreys (1939). he dropped 
this expression because he always assumed *at O(H) = 1 so that there W(H:E) reduced to 
the logarithm of the final odds. His motive in concentrating on this special case must have 
been to try to sell fuced rules of inference: his original aim was to arrive at rules d e f ~ n g  
impersonal credibilities though his judgments of these were inevitably personal to him 
(Good, 1962b, p. 556). Whether they will become highly multipersonal is an empirical 

The basic property of weight of evidence can be expressed in words thus: 

"initial log-odds plus weight of evidence = fmal log-odds". 

Incidentally Barnard (1949). who, independently of Turing and of Wald, invented 


sequential analysis, called log-odds "lods". Good (1950). following a suggestion of J.B.S. 
. . . . .. . . ....Haldane, teed it '.'plau_sibility". but"log:oddsY is sh.ort eno~h,~sl1~t~~f:expLanatpg_. ..-._..-..;-. 
.. , ... ... .. . It is sometimes convenient to write W(H/H':E), read "the weight of-evidence in -.- : 

favour of H as compared with H' ,  provided by E', as a shorthand notation for 
W(H:EIHvH'). Of course, if H v H '  is given t h e n A = ~ ' .  

The Fisher-Neyman factorability condition for sufficiency (Fisher, 1925, p. 713; 
Neyman, 1925) can be expressed in terms of weight of evidence. I'll express it in terms of a 
class H of hypotheses instead of in terms of parameters. Let f (E) be some function of the 
evidence. If W[H/H'f(E)J = W(H/H':E) for all pairs H,H' of hypotheses in the class 
A,then f (E) is sufficient for the hypotheses. Here f (E) need not be a scalar or vector; it 
might be a proposition. This is a Bayesian generalization of the concept of sufficiency 
because W(H/H':E) is not always an acceptable concept for the non-Bayesian. It could be 
called Bayesian sufficiency or "efficaciousness" (Good, 1958). For legal purposes, f (E) is 
a possible interpretation of what is 'meant by "the whole truth and nothing but the truth", 
when there are two or more hypotheses to be entertained. Of course approximate Bayesian 
sufficiencyis all that can be demanded in a court of law. Anyone who swears to tell the 
whole truth has already committed pe jury. 

For applications of weight of evidence, apart from the many applications for Bayesian 
' tests Of standard statistical hypotheses, see Good (1983e. p. 161). 

3. SOME HISTORY 
In the draft of my talk I said that C.S. p e k e  (1878). is an obscurely written paper, 

had failed to anive at the correct definition of weight of evidence owing to a mistake (see 



Good, 1981b). But I intend to amend this comment in the discussion, in my reply to Dr. 
Seidenfeld. Levi (1982) agrees that Peirce made a mistake although he thinks it was 
different from the one I thought he made. Len points out that Peirce was anti-Bayesian 
and to some extent anticipated Neyman and Pearson. 

The d e f ~ t i o n  of weight of evidence as the logarithm of the Bayes factor was given 
independently of Good (1950) by Minsky and Selfridge (1961); and again independently 
Tribus (1969) used the term "evidence" for weight of evidence. Kemeny and Oppenheim 
(1952) used the expression "factual support for a hypothesis" (provided by evidence), and 
their desiderata led them to the formula 

This is an increasing function of W(H:E), namely sinh [W(H:E)/Z]. 
The philosopher Karl Popper (1954) proposed desiderata for corroboration and he 

said (1959, p. 394) "I regard the doctrine that the degree of corroboration or acceptibillty 
cannot be a probability as one of the most interesting findings of the philosophy of 
knowledge". This fundamental contribution to philosophy was taken for granted by a 
dozen British cryptanalysts eighteen years before Popper published his comment, the name 
used being "score" or "decibannage". Moreover we used the best explicatum, which is 

: not mentioned by Popper although this explicatum satisfies his desiderata. 
.. -"-...-. h.19'10:'at the Second World' Congress of theEconotnetri~Society, HWaM JeErWS;- 

said.it had taken fifty years for his work with Dorothy Wrinch to be appreciated by the 
statistical community, and he predicted that it would be another fifty years before the 
philosophers were equally influenced (or words to that effect). Recently the slowness of 
professional philosophers to use the correct explicatum for degree of confiation (or 
corroboration), namely W(EI:E), has been exemplified by Horwich (1982, p. 53). He 
suaaests two measures, P(HIE) - P(H) and P(HIE)/P(H), of which the latter had been 
used by J.L.Mackie (1963). Although both these explicata satisfy the additive p r o p ' y  
(I), neither is a function of W(H:E). To see that P(HIE)-P(H) is inappropriate as a 
measure of degree of corroboration consider (i) a shift of probability of H from 1/2 to 3/4, 
(ii) a shift from 3/4 to I, and (iii) a shift from :9 to 1.15. In each case P(HIE)-P(H) I 
1/4, but the degkee of corroboration seems entirely different in the three cases, especially 
as case (iii) is impossible1A similar objection applies to Mackie's suggestion P(HIE)/P(H) 
and to its logarithm. For further discussion of Horwich (1982) see the review by Good 
(1983b). That review contains some other applications of the concept of weight of evidence 
to philosophical problernssuch as that of induction. 

The unit in terms of which weight of evidence is measured depends on the base of its 
logarithms. The original cryptanalytic application was an early example of sequential 
analysis. It was called Banburismus because it made use of stationery printed in the town 
of Banbury; so Turing proposed the name "ban" for the unit of weight of evidence when 
the base of the logarithm is 10. Another possible name, especially in a legal context, would 
be a "themis" partly because Themis was the goddess of justice, and partly because 
Themis is the name of the tenth satellite of Saturn. But "ban" is shorter, more convenient, 
and historically justified. Turing called one tenth of this a deciban by analogy with a 
decibelin acoustics, and we used the abbreviation db. Just as a decibel is about the smallest 
unit of difference of loudness that is perceptible to human hearing, the deciban is about 
the smallest unit of weight of  evidence that is perceptible to human judgment. It' 
corresponds to a Bayes factor of 5/4 because log,a = .70 and log,& = .60. A bit is 3.01 
db. 

. ... . -~ 

. '  '-' '~ 



When Iarrived at Bletchley the work on Banb,urismus had been going for some weeks 
and the entries on the Banbury sheets were of the form 3.6 meaning 3.6 db. Iproposed fmt , 
that the decimal point should be dropped so that the entries would be in centibans, and 
better still that the unit could be changed to a half-deciban or hdb with little loss of 
accuracy. This very simple suggestion saved much writing and eyestrain, and probably 
decreased the number of arithmetical errors. It may have cut the time for Banburismus by. 

the name "bonnieban" for the hdb. 
The concept of weight of evidence is formally related to the logit 

transformation,x = log [P/(l -P)],although here Pis a cfl. I don't think it explains why 
the logit transformation is useful, but it might have suggested the transformation to Fisher 

4. A SIMPLE EXAMPLE 
As a simple example, suppose we are trying to discriminate between an unbiased die 

and a loaded one that gives a 6 one third of the time. Then each occurrence of a 6 provides 

more 6's if the die is fair is about 1/1670. A Bayes factor is always smaller than the 
reciprocal of a tail-area probability (Good, 1950, p. 94). and in this example it is s y e r  by 
a factor of 16.7. 

.:. . . . . . . . .. . 5. .HOWTO.MAKE.JUDGMENTS.- .,;, ?.,. .,.. ~. :,>. 

Even when Hand  Rare simple statistical hypotheses,in wXich~~<asK%~BayeSfBctor'iS-
equal to a likelihood ratio; the terminology of Bayes factors and weights of evidence has 
more intuitive appeal. This intuitive appeal persists the general case when the weight of 
evidence is not the logarithm of a likelihood ratio. I conjecture that juries, detectives, 
doctors, and perhaps most educated citizens, will eventually express their judgments in 
these intuitive terms. In fact, in legal applications, it must be less difficult to judge 
P(EIH)/P(EI@ or MHIE)/O(a, or its logarithm, than to judge P(EIH) and P(EIB 
separately because these probabilities are usually exceedingly small, often less than 10-lOO. 
Of course the official responsibility of juries is more to judge P(X1.Q if they think in terms 
of.probabilities. They are supposed to exclude some kinds of evidence, such as previous 
convictions, but they probably do allow for these convictions when they know about them, 
judging by some experiences of Hugh Alexander (c. 1955) when he served on a British jury. 

A problem that arises both in legal and medical applications is in deciding what is 
meant by the initial probability of H. For example, if the accused is regarded as a random 
person in the world, his initial probability of guilt in much smaller than if he is known to 
live in the town, or village, where the crime was committed. For this reason it might often 
be easier to judge O(HIE) directly than to compute it as O(H)F(H:E) where Fdenotes the 
Baycs factor. Perhaps the best judgmental technique is to split the evidence into pieces and 
to check your judgments for consistency. For example, you could make separate 
judgments of (i) O(HIE&E') and (ii) O(HIE)F(H:E' IE), while realizing that these should 
be equal. Some people, after some training, might find it easier to work with the additive 



odds and weights of evidence (or log-factors) b t ead  of odds and Bayes factors. It is 
convenient that factors of 2,4,5,8, loand 20 correspond closely to weights of evidence of 
3,6,7, 9, 10and 13 decibans respectively. Themis should be grateful to Zeus for giving us 
just tenfwers. 

you suspicious, and you estimate the odds of H as somewhere near evens; then some more 
or less independent evidence arrives, perhaps in the form of a new witness, and this peps 
up the odds by a'factor that you can judge separately. (Similarly an antibayesian, unaware 
that he is really a Bayesian, will choose null hypotheses of non-negligible prior 
probabilities, and then test them). 1t.might help the judgment to recognize consciously that 
the chronological order of hearing evidence is not entirely relevant, and to imagine that it 
had arrived in some other order. In legal applications, one example of a convenient piece 
of evidence, that c h  be mentally separated from the rest, is the discovery of a strong 

6. 	EXPECTATIONS AND MOMENTS OF BAYES FACTORS 
AND OF WEIOJ3TS OF EVIDENCE. ENTROPY 

In 1941, or perhaps in 1940, Turing discovered a few simple properties of Bayes 
factors and weights of evidence. One curious result, which wasindependently notic~d by 

.. , -.. ...nfiIr;-,W&d i,:ya~~_fn~Tgrin8is. IiThe expected factor in favour of a -wrong ..vor$. 
hypothesis is 1". This fact can be better understood from its very simple proof: Suppose 
the possible outcomes of an experiment are E,. E,, E,,..! and that the hypothesis His  true. 
If E, is an observed outcome the factor against His 

flR:.E,) E E @
W I H )  ' 

Its expectation given the truehypothesis His 

we expect the Bayes factor in its favour to be less than 1 in most experiments. The only way 
to get an expected value of 1 is if the distribution of the Bayes factor is skewed to the right, 
that is, when the factor against the truth exceeds 1it can be large. 

To exemplify (4), let's wnsider the example concerning a die that we considered 
before and suppose that the die is really a fair one. Then, on one throw of the die, there is a 

= 2 and a probability of 

of loadedness when the die is unloaded is 1/6 x 2 + 5/6 x 4/5 = 1/3 + 2/3 = 1. Thus 
Turing's theorem canhe used asa check of the calculation of a Bayes factor. 

. .. . 
. ~~ 



Let f = F(H:E). Then the nth moment off about the origin given H i s  equal to fhe 
(n + 1)st moment off given B;that is, 

WIH) = WIIrn. (5) 

The w e n  = Ois Turing's result, just discussed. It can be further proved that E(P.IH) is an 
increasing function of a for a > 0. Better results will be published elsewhere. 

This follows from an algebraic inequality that might date back to Duhamel & 
Reynaud (1823, p. 155); see Hardy, Littlewood, and P6lya. (1934, p. 26). By letting a -
+Owe fmd, as I shall show in a moment, that 

E[w(H:-QlHI = 0 (6) 

or in words, the expected weight of evidence in favour of the truth is non-negative, and 
vanishes only when W(H:E) = 0 for allEof positive probability. This is of special interest 
because weight of evidence is additive so its expected value is more meaningful than that of 
a Bayes factor. This inequality was pointed out to me by Turing in 1941, with a different 
proof. Regarded as a piece of algebra it is merely an elementary inequality. What makes it 
interesting is its interpretation in terms of human and therefore statistical inference. That 
is why I regard it as reasonable to attribute it to Turing although it was also applied to 
statistical mechania by Gibbs (1902, p. 136). 

The monotonic property of E(f"IH) can be written 

E- PP" increases with a (a 2 )
4'-

wherep, = P(E,IH),q, = p(E,I@. 
But the left side is 1 when a = 

Therefore 

By taking a small we get 

0,so 

Zp, exp(a log P2 ) 2 1. 
9, 

Zp,[l+alog 2P + ...) 2 1. 
'21 

log 2P 
2 0~ p ,  

9, 

(7) 

...-. .. 
. ..~ 

(8) I 
I 

which states that E(log fJH);1:0. Thus (7) can be regarded as a generalization of (6)or (8). ! 
The fact that (8) is an algebraic theorem confirms that weight of evidence is correctly 
explicated, although I hope you are already convinced. See also Good (1983d). 

One way to interpret (6) or (8) is that in expectation it pays to acquire new evidence, if 
arriving at the tmth is your objective. An explicit proof in terms of decision theory, that it 

. . pays in your own expectation to acquire new information; without reference to weight of 
evidence, was given by Good (1967, 319-321); but see also Good (1974) (where it wa. 
shown that, in some one else's expectation, it does not necessarily pay you). The principle 
is related to what Carnap (1947) called "the principle of total evidence": Locks' 
recommendation to use all the available evidence when estimating a probability. 

Turing's inequality can,of course be interpreted in terms of discrimination between 
two multinomials, a familiar problem in cryptanalysis. If p,, p,; ...g.are the category 



probabilities under the true hypothesis H, and are q,, q,,...,q, under hypothesis Zi, then 
the expression (8) is equal to the expected weight of evidence "per letter" in favour of H. 

Sometimes one of the hypotheses is that of equiprobability, say that q, = q, = ... = 
q. = l/n. Then the expected weight of evidence becomes Ep, log(np,) and this is equal to 
logn + Ep, log p,. The expression -Zp,logp, isusually cailed "entropy" because it is a 
form that entrOpy often takes in statistical mechanics (Boitmann, 1964, p. 50; Gibbs, 
1902, p. 129). That is because it is convenient for some purposes to divide phase space into 
equal volumes, in virtue of Liouville's theorem. (In thermodynamics, which is explained 
by statistical mechanics, the entropy has a different definition). The entropy expression 
-Ep, log p, occurs prominently in Shannon's theory of communication, but his coding 
theorems can be somewhat better expressed in terms of expected weight of evidence in my 
opinion (Good & Toulmin, 1968). 

Apart from its central position in human inference, one reason that expected weight 
of evidence is more fundamental than entropy is that it is applicable to continuous 
variables without ambiguity. This fact is related to its "spiitative" property in the discrete 
case. That is, Ep,log@,/q,) is unchanged if one of the categories is split into two categories 
in a random manner such as by spinning a coin. Among its names apart from "expected 

. . . ( 1 9 ~ .in his theory o f  invariant priors,. and by me for discriminat 

which I shall now state. 
Suppose that the weight of evidence in favour of H, when H i s  true, has a normal 

distribution with mean p and variance 8,and suppose our unit is the "natural ban". Then 
9 = &. In other words 

varIW(H:EJ IM = 2 E(W(H:EJ (H). 

Moreover 


EIW(R:E)IW= -EIW(H:EJIH) = - p .  


'h is  result was later published by Peterson, Birdsall and Fox (1954) in connection with 
radar. The result is surprising so I shall give the proof. 

Let x be an observed weight of evidence in natural bans. Since the weight of evidence 
tells us just as much asEdoes about the odd of H, we have 

W(H:EJ = w[H: W(H:EJ] = W(H:x). 

Therefore the ratio of the probability densities 

Assume that x (or rather the corresponding random variable) has the distribution 

so that the probability density ofx, givenH, is 




and from this it follows that oZ = 2/1 and also that the distribution of x given R is 
N(-p,a. 

If we use decibans the formula ol = 'Zp becomes converted to o = ./- = 
= 3 4 .  Thus the standard deviation is much larger than one might have guessed, 

a fact that in the application to radar is disturbing. For example, if the expectation is 16 
db, which corresponds to a Bayes factor of 40, there is a probability of 1/6 that the weight 
of evidence will exceed 16 + 3Jia = 28 db, corresponding to a factor of a,and a 
probability of 1/6 that it will be less than 4 db, corresponding to a factor of only 2%. Also 
there is a chance of 1/740 that the Bayes factor against the truth will exceed 100. 

For generalizations of this theorem of Turing's to the more realistic case where it is 
assumed that the weight of evidence is only approximately normally distributed near its 
mean see Good (1961), which dealt with false-alarm probabilities in signal detection. The 
results can then be even more disturbing than in the &e of strict normality and I hope this 
fact is well known to the defence departments of all countries that are civilized enough to 
possess an atom bomh. 

Good & Toulmin (1968, Appendix B) and Good (1983f) give other relationships 
between the moments and cumulants of weight of evidence for the general case. Such 
identities can be deduced from the elegant formal identity +(t+i) = $it)where and 3 
denote the characteristic functions of W(H:E)given H and I7 respectively. For example, 
when the moments exist, ... .. . . . .. .-.~ ~ 

- 0) 0)

p,'= E (- l).p:Jv! = e-"p:. , '  ' &/v !  = eEi;:, 
v = o  v = O  

wberep:and &'denote moments about 0, and where E,just here, denotes the suffvt-raising 
operator. There are similar identities for the cumulants. The cases s = 0and s = 1 are of 
special interest. 

When Turing judged the value of Banburismus by estimating an expected weight of 
evidence he was in effect treating weight of evidence as if it were a utility. It may be 
regarded as a quasi-utility,that is, an additive substitute for utility expressed in terms of 
probabilities. If you recall Wald's theorem that a minimax procedure is one that can be 
regarded as using a least favourable prior, you are led to the idea of minimizing expected 
weight of evidence or maximizing entropy in the selection of a prior. (Compare Good, 
1969: Bernardo, 1979). Although minimax procedures in statistical inference are 
controversial they have the advantage of having invariant properties. The idea of using 
maximum entropy for choosing a prior was suggested by Jaynes (1957). though without 
mentioning the mi- property. For a recent statement of my views on maximum 
entropy see Good (1983~). 

In the design of an experiment the entire distribution of weight of evidence, and in 
particular its variance, is of interest, and not just its expectation. In this respect weight of 
evidence, like money, is not an exact substitute for utility. 

Expected weight of evidence is basic to the non-Bayesian approach to significance 
testing of Kullback (1959). 



For some relationships between expected weight of evidence and errors of the fust and 
second k ids  see Good (1980). Other properties of weight of evidence can he located 
through the indexes of Good (1983e). 

7. TAILAREA PROBABILITIES 

A Fisherian might try to interpret weight of evidence, in its ordinary English sense, in 
terms of tail-area probabilities in tests of significance. Suppose then that a client comes to 
a Fisherian with experimental results E and he wants to know how much evidence this 
provides against some null hypothesis H, or even whether His supported if that is possible. 
The client does not want to reject H too readily for he considers it to be simpler than its 
rivals and so easier to @ark with. For example, if he did not have experimental results he 
would have "accepted" Hin the sense of assuming that its obsewational implications were 
approximately correct. (Should this be the definition of a null hypothesis?) The situation 
occurs, for example, when other hypotheses involve additional parameters. This by the 
way explains why it is not always better to replace a significance test by an estimation 
procedure. This point was made, for ekample, by h o l d  ZeIlner in discussion at the 21" 
SREB-NSF Meeting on Bayesian Inference in Econometrics in 1980 in response to 
someone who was trying to knock significance tests. For several of my own views 
concerning significance tests see Good (1981a). 

should you report this to your client? The answer is not as simple as it seems. You might 
report this result to the client in one of the following ways, depending on your philosophy 
and ori the client's philosophy, and on the practical background of the problem: 

(i) "The hypothesis is 20 to 1". as in the lines from War of the Worlds: "The chances 
of anlthing coming from Mars are a million to one. But still they comel" I hope it's not a 
million to one on1 

(ii) "The odds against the hypothesis are about 20 to 1" (a familie fallacy 
perpetrated by reputable scientists). 

(iii) "The probability of getting so extreme an outcome is ,0455 if the null hypothesis 
is true", where the meaning of "more extreme needs to be stated. It can't mean that the 
probability density is small because the density can he made arbitrarily small, wen where 

! 	 the mode originally occurred, by applying a suitable transformation to the independent 
variable. (Compare the usual attack against "Bayes's postulate" of a uniform 

(vi) "Reject Hbecause P < .05." 
(vii) "I wouldn't reject H (as a good approximation) because H is a priori so 

probable." For example, suppose a coin gave 61 heads and 39 tails. Hbeing the hypothesis 
that the coin is fair. (Here the double-tail-area, allowing for a continuity correction, is 

(ix) "The result is not decisive: collect more data if it is practicable." 
' (x) "You should have consulted.me in advance so that we could have decided on a 

rejection procedure in the Neyman-Pearson fashion." 



. .. .. . . . . 
.. .-.~.. 

. 

(xii) None of the above. 

I'm going to consider an example where <<None of the above)) is appropriate because 
the null hypothesis should be clearly accepted, not rejected. Let's imagine that the 
following game is being played at a gambling casino. An urn is known to contain 100 black 
and white balls. You pay an entrance fee, and the game consists in extracting one ball at a 
time. You win a dollar whenever a black ball is extracted. Aft- each gamble tht ball is 
returned to. the urn and the urn is well shuffled, so the sampling is with replacement. 
Assume that each ball has probability 1/100 of being selected. Suppose that the game is 
played N times and that there are r successes and N - r failures. We formulate the null 
hypothesis that there are 50 balls of each colour. 

We are dealing with a binomial sample, and the standard deviation of r, given the null 
hypothesis, is m'/t(l- %)] = '/t\JN. For convenience assume that Nis a perfect square 
and that r = %N + JN.Thus the bulge is 20 and the double tail-area probability P = 
.0455 so the result is <<significant at the 5 % level)). (I'm ignoring the continuity 
correctioq). I am now going to prove uncontroversially and without explicit Bayesianity 
that if N is large enough this outcome does not undermine the null hypothesis, in fact it 
supports it. This shows that it is incorrect to say that a null hypothesis can never be 
supported but can only be refuted, as one so often hears. 

In this problem, the possible values of the binomial parameterp are 0, .01. .02,.. .,.99, 
1.00, though the values 0 and1 will have been ruledout if r f 0or N. 

0 1  B 

In this diagram. the possihle ~alues.of.p aremarked.witb crosses., The nbserved fraction .-
r/Nof successes is marked by an mow at the point A. The null hypothesis corresponds to 

The point A corresponds to a fraction r/N = % + N-'I2. Thus, if Nis large enough, the 
distance OA is much shorter than the distance AB. It is therefore obvious thatifNis large 
enough our tail-area probability of ,0455 supports the null hypothesis and the null 
hypothesis becomes more and more convincing as N - m, corresponding to this fxed tail- 
area probability. A similar argument can be used even if the binomial parameter is 
continuous but it is not so clear-cut. It shows that a given P-value means less for large N. 
(Jeffreys, 1948, p. W,1961, p. 248; Hill, 1982; Good, t983a). A possible palliative is to 
use standardized fail-areas. That is, if a small tail-area probability P ooclirs with sample 
size N we could say it is equivalenf fo a fail-areaprobability of PJIWTNfor a sample size 
of100 if this is also small (Good, 1982b). The topic is closely related to the possibility of 
"sampling to a foregone conclusion" by using optional stopping when tail-area 
probabilities are used without any Bayesian underpinning. The earliest reference I know 
for this form of ;heating is Greenwood (1938) and other references are given by Good 
(1982a). '.

Here is a Bayesian solution to the problem of the one hundred black and white balls in 
a~!urn. If there were only one rival H, to the null hypothesis HI,,, the Bayes factor against 
HII2would be 



N 

( r ) P' (1 -p)N-' 

= (Zp)'(2-2 p y  

= (1 +&(I- q)"-, (where q = 2p- I) 
= exp[rlog (1 +q) + (N- r) log (I -q)] 
= exp[r(q- %q2+ ...)-(N-r)(q+ %ql+ ...)] 
= exp(2qm- %q2N) (whenr= %N+JN). 

If we wanted to Eompute an exact Bayes factor against HI,, we would need to take a 
weighted average of the Bayes factors corresponding to eactip (or q) the weights forming a 
prior distribution P(H..). But we don't need to do this in the present case because we obtain 

corresponding to a weight of evidence of -a natural bans. Here is a small table: 
25 50M) 

TABLE 2. Evidence in favour of H,,, if P = .MSS 
. . ~ ~ 

-..,.,.& -, ----. . ~. . .~ 

Weight of evidence infavour of H,,, 

90.000 	 a 6 nat. bans > 400 
a 160 nat. bans 2 3 x lo6' 

Thus in this example it is possible to get a lot of evidence in favour of the null hypothesis 
under circumstances where a dogmatic use of the 5 % rejection level would be ludicrous. 

The primary lesson to be learnt from this example is that tail-area probabilities need to 
be used cautiously. If you use tail-area probabilities, perhaps you should always make an 
honest effort to judge whether your use of them is in violent conflict with your judgment 
of the Bayes factor or weight of evidence against the null hypothesis. In human thought, 
weight of evidence is a more fundamental concept than a tail-area probability. There was 
no Greek goddess who rejected hypotheses at the 5 % level with one tail in each scale1 

Berkson (1942) criticised the new that a small P-value is evidence against a null 
hypothesis. He admits that he used to adopt the usual view but argues, without mentioning 
Bayesor Jeffreys, that (i) a small P-value is not evidence against the null hypothesis unless 
an alternative can be suggested that would make this low value more probable; (ii) values 
of P in the range (.3, .7) can support the null hypothesis for large samples. There is an 
error on page 333 where he says that "small Ps are more or less independent, in the weight 
of the evidence they afford, of the numbers in the sample". (See also page 332). Otherwise 
Berkson's paper was largely Bayesian although he didn't notice it. Everybody is to some 
extent a Bayesian especially when using common sense. 
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H. RUBIN (Purdue University) 

Possibly some of my difficulties with philosophy are due to my allergy to horseradish 
. (see Professor Seidenfeld's comments). However, some philosophy is necessary. 

The consideration of situations in which the state of nature is highly restricted is 
necessary to clarify thinking. However, one must resist the temptation, made 99.99 % of 
the time by users of  statistics, to believe the model. There is no conceivable way that I can 
state my prior or posterior probabilities in the last example in the paper; all that can be said 
is that it is reasonable (or unreasonable) to act as if the results come from Bernoulli trials 
with probability .5. I completely agree with Professor Good that a "significant difference" 
is not the proper criterion here. If there was.a relative frequency of 50.1 olo in 10d trials, on 
this evidence I personally would "accept" the hypothesis; with 10" trials I would reject it; 
and with 109trials I would think hard about the matter. 

The model given is, in practice, never correct. Thus we can only use the evidence to 
decide which actions or statements to make. If a hypothesis is broad enough, it.can be true; 
if i t  is too specific, it must be false, but it may still be appropriate and reasonable to act as 
if it is true. 

T. SEIDENFELD (Washington University, St. Louis) 

As a philosopher intere-sted.in."foundations", I take delight k t h e  opportunity .to. :~ 

comment on the papers of our distinguished speakers.-Lei me preface these temarks, more 
in the form of questions, with an admission of my perception of the role of philosophy in a 
session titled "Probability and Evidence". To paraphrase Larisa in Pasternak's Dr. 
Zhivago (chapter 13, #16), philosophy is like horseradish. It is good if taken in small 
amounts in combination with other things. But it is not good in large amounts by itself. 
The risk with philosophy, as with horseradish, is the temptation to use ever stronger 
concentrations to maintain the sensation of that fvst taste. Soon you are serving up pure 
horseradish1 

Professor Good's savory recipe calk for a dash of philosophy in the form'of an 
explication of "weight of evidence". Explication, you recall, is the business (made into an 
industry thanks to Carnap) of making clear and precise an inexact concept (the 
erplicandum) taken from everyday language. The explicandum has all the obscurity typical 
of presystematic talk. In explication, the vague explicandum is replaced by an explicatum 
which, though similar to the original notion, must be exact, fruitful and simple. 
Ewplication is Carnap's (1950) explicatum for the explicandum "philosophical analysis". 

Camap begins his Logical Foundations in the hope of providing an explication of 
"probability". In 600 pages that follow, he struggles to defend thethesis of.probability as 
a logical relation. In so far ascarnap's attempt at explication is not successful, I think it 
fair to say he does not meet the requirement of usefulness. Carnap's effort with logical 
probability fails to neld ~roductive conceptual tools for reconstructing, e.g. statistical 



inference. For one, he misses completely the important problem of the "reference class" 
for direct probability: how do we reconcile information from different statistical 
"populations" wncerning some c o h o n  "individual"? 

I have a parallel concern with Good's explication. His account is exact and, no doubt, 
simple enough. But how does "weight of evidence" serve a useful purpose in solving, 
problems of inference or decision? Let me argue, briefly, that two natural, candidate roles 
for an explication of weight are not fulfffled by Good's explicatum. Then it will be up to 
the author, himself, to point out what he intends for his creation. 

J.M. Keynes, in chapter 6 of his Treatire (1921), raises the subject of weight of 
evidence along with the caveat that he remains uncertain how much importance to attach 
to the question. For Keynes, weight of evidence cannot be defined by probability as he sees 
weight monotonically increasing with increasing evidence. To use Keynes' metaphor 
@. 77) weight measures the sum of favourable and unfavourable evidence whereas 
probability indicates the difference between these two. Keynes suspected that this hazy 
notion of weight plays a role in decisions separate from the role of probability. I do not 
think what Keynes had in mind requires a violation of expected utility theory. One 
interpretation of his query is to ask for a measure of weight of evidence that would help 
determine when a decision maker has adequate evidence for a (terminal) choice. That is, I 
propose we understand Keynes's problem with weight as his groping for a formulation of 
the stopping problem to which weight would offer the key to a solution. 

In discussing the requirement of total evidence he writes. 
.. . . . . -~. . -

argument, amongst those of which we know the prnisses, of which the evidential weight 
is greatat. But should not this be reenforced by a further maxim, that we ought to make 
the weight of ow arguments as great as possibleby getting all the information we can? It is 
difficult to see, howwcr, to what point the strengthening of an argument's weight by 
increasing the evidence ought to be pushed. We may argue that, when our knowledge is 
slight but capable of increase. the course of action, which will, relative to such knowledge, 
probably produce the greaten amount of good, will often wnsin in the acquisition of 
more knowledge. But thcre clearly comes a point when it is no longer worth while to spend 
troubl, before acting, in the acquisition of further information, and there is no evident 
principle by which to determine howfa~weought to carry our maxim of strengthening the 
weight of our argument. A tittle reflettion will probably convince the reader that this is a 
very confusing problem. (pp.76-77). 

Some sixteen years ago. Good published a philosophical note (1%7) in which he, like 
Keynes before him, connected the requirement of total evidence with the stopping 
problem. The upshot of that note is the result (also reported in Savage (1954, pp. 125-126)) 
that procrastination is best when observations are cost-free and not (almost surely) 
belevant. But, that fmding as well as the general theory of optimal stopping is tangential 
to Good's concept of weigh!. Of course, with enough weights we recover the likelihood 
function. Hence, the weigdtsare sufficient (though hardly a reduction of the data). Except 
in special cases, however, the stopping rule is not a function merely of the weights. Is there 
some reason to think Keynes was on the right track when he posited weight of evidence to 

.solve optimal stopping? It seems to me current wisdom would label this a dead-end 
approach. Nor does Good's explicatwn serve such a purpose. 

A second role weight of evidence might conceivably play is in fixing belief. When is it 
reasonable to add a consistent belief on the basis of new evidence? An informal reply is: 
you are justified in coming to believe a proposition when the weight of the new evidence is 

i 



strong enough in its favor. Unfortunately, it seems Good's explicatum d o e  nothing to 
defend this intuition. 

know. If'h, and h, are equivalent given all our evidence, then whatever epistemic stance 
we take toward the one we take toward the other. To believe the one is to believe the other. 
But weight of evidence (here, of a kind with relevant measures of "support") does not 
conform to the needed invariance. 

For example, let X,=0,1 (i= 1.2) be two Bernoulli trials. Suppose the personal 
probability is symmetric and exchangeable and satisfies: p(X,=O) 5 .5 andp(Xl + X, = 
0) = .OS. Hence, p(X$ + Xz = 2) = .O5 and pCY,+Xz=l) = .9. Let e be the new 
evidence: XI = 1. 

Let hl be the hypothesis that Xl+X2=2 and hz the hypothesis that X,= 1. Given e, 
b, and h, are equivalent. But e has positive weight for h, and negative weight for h,. If we 
use weight to account for our presystematic talk (weight measures reason for/against 
adding belief), then we have the incoherent conclusion that, given all we know, e is 
evidence for and against the same belief. It is an elementary and familiar exercise to show 
this phenomenon ubiquitous. 

In a recent paper with D.Miller. Sir Karl Popper (1983) expresses concern over failure 
of "positive relevance" to respect such equivalences. Thus, I do not agree with Good (p. 8) 
when he speculates that weight satisfies Popper's desiderata for degree of corroboration or 
acceptability. 

In short, my question to Professor Good is this one. What shall I do with weight of 

REPLY TO THE DISCUSSION 

meeting. His main question was "What shall I do with weight of evidence". I think there 
must be some misunderstanding because my answer is so simple. My answer is that the 
weight of evidence.provided by Eshould.be.addw3 to.thcinitiel log-odds of the hypothesis 
to obtain the final log-odds. Or equivaleiltly, the Bayes factoris multiplied by the initial 
odds to give the final odds. The finat odds are then combined with utilities to make 
rational decisions. Weights of evidence and Bayes factors resemble likelihood, they have 
the merit of being independent of the initial probability of the hypothesis. Moreover the 
technical meaning of weight of evidence captures the ordinary linguistic meaning and that 
ismy main thesis. 

In the example, used by Seidenfeld to question the explication of weight of evidence, 
he had effectively the tableof probabilities, 

with H,:X, = X, = 1 P(HJ = .05,0(HJ = 1/19 

P(H3 = %, O(HJ = 1 

E : X l  = 1 (HI and Hzare logically equivalent, given%). 

.- - . -7 



FinaloddsBayes factor provided by E Initial odds 

The fact that the fmal odds of H, and H, are equal, given E, is consistent with the fact that 
HI and Hzare equivalent given E. The evidence E, that X,= 1, supported Hby increasing 
its odds to 1/9, and undermined Hzby decreasing its odds to 1/9. Before Ewas known, H, 
and H2 were not equivalent and their initial odds were not equal. The ocurrence of E has 
simply changed the situation. Seidenfeld seems to have confused W(H:E)with.W(H:EIE). 
The latter expression is equal to zero. That is, once E is given it supplies no further weight 
of evidence. To imagine that it does is like trying to double the true weight of evidence. 
The error is prevented by noticing the distinction between the vertical stroke which means 

acceptability, and when I said that his remark about corroboration had been previously 
taken for granted I should have made it clear that I was referting only to his statement that 
degree of corroboration cannot be a probability. My definition of weight of evidence does 
essentially satisfy all the desiderata for corroboration laid down by Popper in the 
Appendix dealing with the topic in his Logic of Scienfifie Discovery (Popper, 1959, pp. 

-..400401). Themeaning..of "essentially" here is spelt out in Good (1960, p. 321); for .~~~ 

- n;ampk;3replaoePopper's boundsof &I- on degree ofcorreboration, by im. Perhaps- . . :-c 
Popper has since shifted his position. 

The alleged proof by Popper & Miller (1983) of the impossibility of inductive 
probability is unconvincing, and I have written a note to Nature arguing this (Good, 

A special case of weight of evidence was used by Peirce (1878) although he did not 
express it in Bayesian terms; in fact, as Isauc Len has pointed out, Peirce anticipated the 
Neyman-Pearson theory to some extent. Incidentally, when a Neyman-Pearsonian asserts 
a hypothesis H, he unwittingly provides a Bayes factor of (1 -a)@ in favour of N; and, 
when he rejects H, he similarly provides a Bayes factor of (1 -8)/m against H. (See Good, 
1983g; Wald, 1947, p. 41). These results arebased on the assumption that we know the 
values of ol and 8, and we know what recommendation is made by the Neyman- 
Pearsonian, and nothing else. We can achieve this state of ignorance by employing a 
Statistician's Stooge who, by definition, is shot if he tells us more than we ask him to. 

,
I 

I have referred to practical applications in my paper, such as to sequential analysis, an 
example of which was Banburismus. The Bayes factor is also used throughout Harold 
Jeffreys's book on probability, though he nearly always assumes that the initial odds are 1. 
Every Bayesian test of a hypothesis can be regarded as an application of the concept of 
weight of evidence. Perhaps the most impoitant applications, like those of probability, are 
the semiquantitative ones in the process of rational thinking as an intelligence amplifier. 

Keynes's definition of weights of arguments, in which he puts all the weights in one 
scale, whether they are positive or negative, is like interpreting weight of evidence as the 

I 
weight of the documents on which they are printed. I think, if not horseradish, it is at least 
a crummy concept in comparison with the explicatwn of weight of evidence that I support. 
Keynes himself said of his discussion (1921, p. 71) "... after much consideration I remain 
uncertain as to how much importance to attach to it. The magnitude of the probability of 
an argument ...depends upon a balance between what may be termed the favourable and 
the unfavourable evidence...". In other words he clearly recognizes that Themis is right to 
use both scales. It is a standard English expression that the weight of evidence favours such 



and such. Of course this refers to the balance of the evidence, not to the sum of all the 
pieces irrespective of their signs. 

If you must have a quantitative interpretation of Keynes's "weight of arguments", 
just compute the weights of evidence in my sense for each "piece" of evidence and add 
their absolute values. This then is yet anofher appTicafion of my explicatum, to eve  a 
somewhat quantitative interpretation to the cnmmy one. But Keynes's discussion of this 
matter is purely qualitative. 

Seidenfeld raises the question of whether weight of evidence can be used for deciding 
when to stop experimentation. My answer is that weight of evidence is only a quasiutility, 
as I stated in my paper. When you have a large enough w~ight of evidence, diminishing 
returns set in, where the meaning of "large enough" depends on the initial probability and 
on the utilities. Weight of evidence is a good quasiutility. and it is fme that the expected 
weight of evidence from an observation is nonnegative. But it cannot entirely replace 
expeaed utility as a stopping rule. When a judge's estimate of the odds that an accused . ' 

person is guilty or innocent reaches a million-t&ne on, the judge is apt to say "Finis" and 
bang down his gavel. This is because, in his implicit or explicit opinion, the expected gain 
in utility from seeking new evidence is not worth the expected time it would take to 

I turn now to the public comments made by Herman Rubin. He stated that P(EIH) is 
not well defined if H is a composite hypothesis. This is certainly true in non-Bayesian 
statistics but in "sharp" Bayesian statistics it is assumed to have a sharp value. For the 
sake of simplicity most of my exposition wasbased on the sharp Bayesian position. My 
a& was to discuss weight of evidence without going into the foundations of probability. 

Dr. Rubin mentioned that, in my example of sampling with replacement from a bag 

I agree further that precise models are seldom exact, but they are often usef"1 on 
pounds of simplicity. Compare, for example, Good, 1950, p. 90; 1983e, p. 135. 
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