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DATAIN BIOLOGY 


In Section 2.1 we explain the statistical meaning of "sample" and 

we shall run into the problem of the degree of accuracy necessary for recording 
the data. This problem and the procedure for rounding off figures are discussed 
in Section 2.3, after which we will be ready to consider in Section 2.4 certain 
kinds of derived data, such as ratios and indices, frequently used in biological 
science, which present peculiar problems with respect to their accuracy and 
distribution. Knowing how to arrange data as frequency distributions is impor- 
tant, because such arrangements permit us to get an overall impression of the 

2.1 SAMPLES AND POPULATIONS 

We shall now define a number of important tenns necessary for an understanding I 

of biological data. The data in a biometric study aregenerally based on individ- 1 
ual observations, which are observations or measurements taken on the small- 
est sampling unit. These smallest sampling units frequently, but not necessarily, 
are also individuals in the ordinary biological sense. If we measure weight in 100 
rats, then the weight of each rat is an individual observation; the hundred rat 
weights together represent the sample of observations, defined asa collection of 
individual observations selected by a spec8ed procedure. In this instance, one 
individual 0bse~afion is based on one individual in a biological sense-that is, 
one rat. However, if we had studied weight in a single rat over a period of time, 
the sample of individual observations would be all the weights recorded on one 
rat at successive times. In a study of temperature in ant colonies, where each 
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colony is a basic sampling unit, eacb temperature reading for one colony is an 
individual observation, and the sample of observations is the temperatures for all 

i the colonies considered. An estimate of the DNA content of n single mawnalian 
i sperm cell is an individual observation, and the corresponding sample of obser- I+ 
! vations is the estimates of DNA content of all other sperm cells studied in one 
! individual mammal. A synonym for individual observation is "item." 
i Up to now we have carefully avoided specifying the particular variable being 

studied because "individual observation" and "sample of observations" as we 
just used them define only the structure but not the nature of the data in a study. 

i The actual property measured by the individual observations is the variable, or 
character.The more common term employed in general statistics is variable. In 

i evolutionary and systematic biology however, character is frequently used syn- 
onymously. More than one variable can be measured on each smallest sampling 
unit. Thus, in a group of 25 mice we might measure the blood pH and the 

al meaning of "sample" and erythrocyte count. The mouse (a biological individual) would be the smallest 
sampling unit; blood pH and cell count would be the two variables studied. In 
this example the pH readings and cell counts are individual observations, and 
two samples of 25 observations on pH and erythrocyte count would result. Al- 

racy necessary for recording tematively, we may call this example a bivariate sample of 25 observations,
ing off figures are discussed each referring to a pH reading paired with an erythrocyte count. 
sider in Section 2.4 certain I Next we define population. The biological definition of this term is well 
quently used in biological I 	 known: It refers to all the individuals of a given species (perhaps of a given life 

history stage or sex) found in a circumscribed area at a given time. In statistics, 
population always means the totality of individual observations about which 
inferences are to be made, existing anywhere in the world or at leost within a 
definitely specified sampling area limired in space and time. If you take five 

i 	
humans and study the number of leucocytes in their peripheral blood and you are 
prepared to draw conclusions about all humans from this sample of five, then the 
population from which the sample has been drawn represents the leucocyte 
counts of alr humankind-that is, all extant members of the species Horno 
sapiens. If, on the other hand, you restrict yourself to a more narrowly specified 
sample, such as five male Chinese, aged 20, and you are restricting your conclu- 
sions to this paaicular group, then the population from which you are sampling 
will be leucoiyte numbers of all Chinese males of age 20. The population in this 
statistical sense is sometimes refemd to as the universe. A population may refer 
to variables of a concrete collection of objects or creatures-such as the tail 
lengths of all the wbite mice in the world, the leucocyte counts of all the Chinese 
men in the world of age 20, or the DNA contents of all the hamster spem cells in 
existence-or it may refer to the outcomes of experiments-such as all the 
heartbeat frequencies produced in guinea pigs by injections of adrenalin. In the 
first three cases the population is finite. Although in practice it would be impos- 
sible to collect, count, and examine all wbite mice, all Chinese men of age 20, or 
all hamster sperm cells in the world, these populations are finite. Certain smaller 
populations, such as all the whooping cranes in North America or all the pocket 

4 
0 -
0 
CY 
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ch is the sum of the probabilities of having a positive test among those who 
e cancer and among those who do not have cancer-each weighted by the 
luencies of the two populations. Substituting these two results into Expres- 
i(5.7) yields 

'his expression is known as Bayes' theorem and can be generalized to allow -
m event C having more than just two states (the denominator is summedover 
events C; rather than iust C and its comolement). This famous formula. 

~ ~ 

cancer were 7895 per 100,000would there be a 50: 50 chance that a patient with 
a positive test result has cancer. This is more than 127 times the highest preva- 
lence ever repolted from a population in the United States. Watson and Tang 
(1980) use these findings (erroneously reported as 1440 per 100,000)and fuaher 
analyses to make the point that using the RIA-PAP test as a routine screening 
omcedure for orostate cancer is not worthwhile. 

Readers interested in extending their knowledge of probability should refer to 
general texts such as Calambo (1984) or Kotz and Slroup (1983) for a simple 
inhoduction. 

- - ~ ~ ~ ~ ~ ~ .  
lished posthumously b; the eighteenth-ceniury ~ngl ish  clergyman Thoma: 
,es, has led to much controversy over the interpretation of the quantity 
:IT]. 
iadier we defined "probability" as the proportion that an event occurs out of 
rge number of trials. In the clllTent example we have only a single patient, 
I either does or does not have cancer. The patient does not have cancer some 
mrtion of the time. Thus the meaning of P[CITl in this case is the degree of 
's belief, or the likelihood that this patient has cancer. It is this alternative 
rpretation of probability and the question of how it should be applied to 
stics that is controversial. Kotz and Stroup (1983) give a good introduction 
he idea that probability refers to uncertainty of knowledge rather than of 
Its. 
:onsider the following example, in which Bayes' theorem was applied to a 
:nostic test. The figures are based on Watson and Tang (1980). The sensitiv- 
~f the radioimmunoassay for prostatic acid phosphatase (RIA-PAP) as a test 
prostatic cancer is 0.70. Its specificity is 0.94. The prevalence of prostatic 
:er in the white male population is 35 per 100,000, or 0.00035. Applying 
e values to Expression (5.8), we find 

rather surprising result is that the likelihood that a white male who tests 
tive for the RIA-PAP test actually has prostate cancer is only 0.41%. This 
,ability is known in epidemiology as the positive predictive value. Even if 

P 
test had been much more sensitive, say, 0.95 rather than 0.70, the positive 
ktive value would have been low-0.55 percent. Only for a perfect test 

h) , sensitivity and specificity both = 1) would a positive test imply with cer- 

-	 rD y that the patient had prostate cancer. 
he paradoxically low positive predictive value is a consequence of its de- 
lence on the prevalence of the disease. Only if the prevalence of prostatic 

W 

For the discussion to follow, we will simplify our sample space to consist of only 
two elements, foreign and American students, represented by [ F, A 1, and ignore. 
whether they are undergraduates or graduates. Let us symbolize the prnbab'llity 
space by (p, q),  wherep = P[F], the probability of being a foreign student, and 
q = P[A], the probability of being an American student. As before, we can 
compute the probability space of samples of two sNdents as follows: 

(FEFA, AAI 

(p2,  2 ~ 4 .  q2 I 
If we were to sample three students independently, the probability space of the 
sample would be 

(FFF,FFA, FAA, AAA) 

I p3 .3p2q, 3pq2, q3 I 
Samples of three foreign or three American students can he obtained in only one 
way, and their probabilities are p3 and q3, respectively. In samples of three, 
however, there are three ways of obtaining two students of one kind and one 
student of the other. As before, if A stands for American and F stands for foreign, 
then the sampling sequence could be AFF, FAF, and FFA for two foreign stu- 
dents and one American. Thus the probability of this outcome will be 3p2q. 
Similarly, the probability for two Americans and one foreign student is 3pq2. 

A convenient way to summarize these results is by the binomial expansion, 
which is applicable to samples of any size from populations in which objects 
occur independently in only two classes-students who may be foreign or 
American, individuals who may be dead or alive, male or female, black or white, ,
rough or smooth, and so forth. This summary is accomplished by expanding the . 
binomial term (p  + q)', where k equals sample size, p equals the probability of 
occurrence of the first class, and q equals the probahility of occurrence of the 

0 
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~d class. By definition, p + q = 1; hence q is a function ofp:  q = 1 - p. 
uill expand the expression for samples of k from 1 to 3: 

For samples of 1 (p  + q)' = p + q 

For samples of 2 (p + q)' = pZ+ 2pq + q' 

For samples of 3 (p + q)' = p3+ 3p2q + 3pq2 + q3 

e expressions yield the same outcomes discussed previously. The coeffi- 
s (the numbers before the powers of p and q) express the number of ways a 
:ular outcome is obtained. 
general fonnula that gives both the powers of p and q, as well as the 

nial coefficients, is 

(9...-.
= k! pY(l - p)k-y
Y!(k - Y)! 

is fonnula k, p, and q retain their earlier meaning, while Y stands for the 
Ier or count of "succeises," the items that interestis and whose probability 
:currence is symbolized by p. %,our example, Y designates the number of 

gn students. The expression (9stands for the number of combinations . , 
can be formed from k items taken Y at a time. This expression can be 
~atedas k!l[Y!(k - Y)!], where ! means factorial. In mathematics, k facto-
s the pmduct of all the integers from 1 up to and including k. Thus: 5! = 
2 X 3 X 4 X 5 = 120. By convention, O! = I. In working out fractions 
lining factorials, note that a factorial always cancels against a higher facto- 
Thus 5!/3! = (5 X 4 X 3!)/3! = 5 X 4. For example, the binomial coeffi- 
for the expected frequency of samples of 5 students containing 2 foreign 

/c\ 


3w let us turn to a biological example. Suppose we have a population of 
ts, exactly 40% of which are infected with a given virus X. If we take 
riles of k = 5 insects each and examine each insect separately for the pres- 
of virus, what distribution of samples could we expect if the probability of 
don of each insect in a sample were independent from that of other insects 
e sample? In this case p = 0.4, the proportion infected, and q = 0.6, the 
xtion not infected. The population is assumed to be so large that the aues- 

P 	 ,f whclher sampling is wirhor witltout replacement is inrlc;ant for prac.~ical 
~ s .  expected frequencies would b: the expansion o i  [he binomial: l l ~ e

L .
N 


(p  + q)t = (0.4 + 0.6)5 
- 10 
0 	 the aid of Expression (5.9) this expansion is 

Ln 	 p5 + 5~~~ + 1op3q2+ ~ o p ~ q ~+pq4+ q5 
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representing the expected proportions of samples of five infected insects, four 
infected and one noninfected insects, three infected and two noninfected insects, 
and so on. 

By now you have probably realized that the t e r n  of the binomial expansion 
yield a type of frequency distribution for these different outcomes. Associated 
with each outcome, such as "five infected insects," is a probability of 
occurrence-in this case (0.4)5 = 0.01024. This is a theoretical frequency dis- 
tribution, or probability distribution, of events that can occur in two classes. It 
describes the expected distribution of outcomes in random samples of five in- 
sects, 4 0 6  of which are infected. The probability distribution described here is -
known as the binomial distribution; the binomial expansion yields the expected 
frequencies of the classes of the binomial distribution. 

A convenient layout for presentation and computation of a binomial disuibu- 
tion is shown in Table 5.1, based on Expression (5.9). In the fint column, which 
lists the number of infected insects per sample, note that we have revised the 
order of the terms to indicate a progression from Y = 0 successes (infected 
insects) to Y = k successes. The second column features the binomial coefficient 
as given by the combinatorial portion of Expression (5.9). Column 3 shows 

EXPECTED FREQUENCIES OF INFECTED INSECTS IN 
SAMPLES OF 5 INSECTS SAMPLED FROM AN INFINITELY 

LARGE POPULATION WITH AN ASSUMED INFECTION RATE OF 40%. 

(1) (2) (3) (4) (5) (6) (7) 
Number of

infected Binomial Relative Absolute 
insects Powers Powers expected expected Obrewed 

per sample of fq?encies fqutncies frequencies 
Y (a, 2 . . 	 f f0 &, 

0 1 	 I.OMXX) 0.07776 0.07776 188.4 202 
1 5 	 0.4W00 0.12960 0.25920 628.0 643 
2 10 	 Cl.16000 0.21600 0.34560 837.4 817 
3 10 	 0.06400 0.36000 0.23040 558.3 535 
4 5 	 0.02564 0.6W00 0.07680 186.1 197 
5 1 	 0.01024 1.m 0.01M4 24.8 29 

~ o o r ~ ( = n )  1.OW00 2423.0 2423 

Mean 2.WWO 2.00004 1.98721 
Standard deviation 	 1.09545 1.09543 1.11934 
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reasingpowers ofp  frompO top5, andcolumn (4) shows decreasing powers of 
rom qsto qO.The relative expected frequencies, which are the probabilities 
the various outcomes, are shown in column (5). We label such expected 
qnenciesf,,. They are the product of columns (2), (3), and (4). and their sum is 
lal to 1.0, since the events in column (1) exhaust the possible outcomes. We 
from column (5) tbat only about I% of the samples are expected to consist of 

nfected insects, and 25.9% are expected to contain 1 infected and 4 nonin- 
ted insects. We will now test whether these predictions bold in an actual 
leriment. 

'ERIMENT 5.1. Simulate the case of the infected insecrs by using a table of 
]om numbers such as Statistical Tabk FF. These are randomly chosen one-digit 
lbm in which each digit 0 Ulrough 9 has an equal probability of appearing. The 
lben are grouped in blmb of 25 for convenience. Such numberscan also beobtained 
n random number keys on some pocket calculators and by pseudorandom number- 
:rating algorithms in wmputer programs. Since there is an equal pmbabilitv for anv 
d~gnto appear. youcanIctany four digils(say 0.1.2.3)standforihe infectid inwr;s 
the remainmy, d~giLi (4,5.6,7,8,9~ stand for ihe noninfecrcd insects The prub;rbilily 
An) o w  Jug selected from ihc tsblt: rcprescnu an infcc~ed insect (that is, a 0.I. 2. or. . .  
therefore 40% or 0.4, since thcse are fuur of the ten possible digits. Alw. successive 

1s arc acsumed w he independenl of the values of previou, drgils Thus the assump- 
iof the I~inornlal dismbulion should be met in 1111s cxncrimcnt Pnlcr the table of ~~- --

om numbers at an arbitrary point (not always at the beginning!) and loak ar succer 
p u p s  of five digils, noting in each gmup how many of the digits are 0, 1.2, or 3. 

3 as many groups of five as you can find time to'&. hut no fewer than I100 m n n r- ----r-.
sons with cim&ter experience can easily generate the data required by this exercise 
out using Table FF.There are also some pmxrams that specialize in sirnulatine. - -
>ling experiments.) 

'olumn (7) in Table 5.1 shows the results of such an expeliment by a bio- 
y class. A total of 2423 samples of five numbers were obtained from Statis- 
Table FF, and thedistdbution of the four digits simulating the percentage of 
:tion is shown in this column. The observed frequencies are lakledf. To 
ulate the expectedfrequencies for this example, we multiplied the relative 
rted frequencies, f,,, of column (5) by n = 2423, the number of samples 
n. These calculations resulted in absolute expected frequencies, j; shown 
)lumn (6).When we compare the obsewed frequencies in column (7) with 
:xpected frequencies in column (6), we note general agreement between the 
solunlns of tigurcs. 'The two disvibut~ons are~illusrral~d in Figure 5.2. if ths 
rvcd frequenctes did not fi t  expected freauencies. we mieht believe that tlar  

~ ~~ ~~~ .... -
of fit was due to chance alone: Or we might be led to rejectone or more of 
ollowing hypotheses: (1) Ulat the true proportion of digits 0,1.2, and 3 is 0.4 
ction of this hypothesis would normally not be reasonable, for we may rely 
le fact that the proportion of digits 0, 1, 2, and 3 in a table of random 
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Number of infecmd inwas per sample 

FIGURE 5.2 Bar diagram of observednndqectedfnquencies given in Table 5.1. 

J 

numbers is 0.4 or very close to it); (2) that sampling was random; and (3) that 
events are independent. 

These statements can be reinterpreted in terms of the origiml infection mode.1 
urirh which we slsned this discussion. If, insread of a sampling experiment of ~ ~ ~ . ~ .~-

digits by a biometry class, this had been a real sampling experiment of insects, 
we would conclude that the insects had indeed been randomly sampled and that 
we had no evidence to reject the hypothesis that the proportionof infected insects 
was 40%. If the observed frequencies had not fit the expected frequencies, the 
lack of fit might be atuibuted to chance or to the conclusion that the m e  propor- 
tion of infection is not 0.4, or we would have to reject one or both the following 
assumptions: (1) that sampling was at random, and (2) that the occurrence of 
infected insects in these samples was independent. 

Experiment 5.1 was designed to yield random samples and independent 
events. How could we simulate a sampling procedure in which the occurrences 
of the digits 0,1,2, and 3were not independent? We could, fore x a m p k , i m c t  
the sampler to sample as indicated previously, but every time he found a 3, to 
search though the succeeding digits until he found another one of the four digits 
standing for infected individuals and to incorporate this in the sample. Thus, 
once a 3 was found, the probability would be 1.0 that another one of the indicated 
digits would be included in the sample. After repeated samples, this procedure 
would result in higher frequencies of classes of two or more indicated digits and 
in lower frequencies than expected (on the basis of the binomial disuihution) of 
classes of one event. Many such sampling schemes could be devised. It shouldbe 
clear that the probability of the second event occurring would be different from 
and dependent on that of the first. 





h) 
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How would we interpret a large departure of the observed frequencies from 
pected frequencies in another example? We have not yet learned techniques 
r testing whether observed frequencies differ From those expected by more 
an can be attributed to chance alone. This topic will be taken up in Chapter 17. 
sume that such a test has been carried out and that it has shown that our 
,served frequencies are significantly different kom the expected frequencies. 
vo main types of departure from expectation are likely: (1) dumping and (2) 
pulsion, shown in fictitious examples in Table 5.2. In real examples we would 
ve no a priori notions about the magnitude ofp, the probability of one of the 
o possible outcomes. In such cases it is customary to obtain p from the ob- 
ved sample and to calculate the expected frequencies using the samplep. This 
~uldmean that the hypothesis thatp is a given value cannot be tested, since by 
sign the expected frequencies will have the same p value as the observed 
quencies. Therefore, the hypotheses tested are whether the samples are ran- 
m and the events independent. 
The clumped frequencies in Table 5.2 have an excess of observations at the 
Is of the frequency distribution and consequently a shortage of observations at 
:center. Such a distribution is also called contagious. Remember that the total 
mber of items must be the same in both observed and expected frequencies in 
Ier to make them comparable. In the repulsed frequency distribution there are 
,re observations than expected at the center of the distribution and fewer at the 
's. These discrepancies are most obvious in columns (4) and (6) of Table 5.2, 

ARTIFICIAL DISTRIBUTIONS TO ILLUSTRATE CLUMPING 
AND REPULSION. 

~ 

(I) : (2) (3) (4) (5) (6)
Numberof Absolute Clumped 
Fectedimcts expected (contaaous) Eviai~on Repulsed Deviation 
per sample frequencies frequencies . horn frequencies from 

Y f f exmtation f exnecmtinn 

5 	 24.8 47 + 14 . 

2 o r . n  2423.0 2423 2423 

Mean 2.00004 2.00000 2.0OMJO 
)daddeviation 1.09543 1.20074 1.01435 
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where the deviations of observed From expected frequencies are shown as plus or 
minus signs. (These two types of disttibntions are also called overdispersed and 
underdispersed, but there has been some confusion in the literature about the 
meaning of these terms, so we will not use them here.) 

What do these phenomena imply? In the clumped frequencies more samples 
were entirely infected (or largely infected) and similarly more samples were 
entirely noninfected (or largely noninfected) than yon would expect if probabili- 
fies of infection were independent. This result could be due to poor sampling 
design. If, for example, the investigator, in collecting samples of five insects, 
always tended to pick out like ones-that is, infected ones or noninfected 
ones-then such a result would likely appear. If the sampling design is sound, 
however, the results become more interesting. Clumping would then mean that 
the samples of five are in some way related-that is, if one insect is infected, 
others in the same sample are more likely to be infected. This relation could be 
m e  if the insects came from adjacent locations in a situation in which neighbors 
are easily infected. Or the insects could be siblings exposed simultaneously to a 
source of infectiou. Or the infection could spread among members of a sample 
between the time the insects are sampled and the time they are examined. 

The opposite phenomenon, repulsion, is more difficult to interpret biologi- 
cally. There are fewer homogeneous groups and more mixed groups in such a ,
distribution, which implies a campensataq phenamenon: Ifsome of the insects . 

in a sample are infected, the others in the sample are less likely to be. If the 
infected insects in the sample could transmit immunity to their associates in the 
sample, such a situation could arise logically, but it is biologically improbable. A 
more reasonable interpretation of such a finding is that for each sampling unit 
there are a limited number of pathogens available and that once several insects 
have become infected, the others go free of infection simply because there is no 
more infectious agent. This situation is unlikely in microbial infections, but in 
situations in which a limited number of parasites enter the body of the host, 
repulsion is more reasonable. 

From the expected and observed frequencies in Table 5.1, we may calculate 
the mean and standard deviation of the number of infected insects per sample. 
These values are given at the bottom of columns (5), (6), and (7)in Table 5.1. We 
note that the means and standard deviationsin columns (5) and (6) are almost 
identical and differ only trivially because of rounding emrs. Column (7). how-
ever, being a sample from a population whose parameters are the same as those 
of the expected frequency disuibution in columns (5) or (6). differs. The mean is 
slightly smaller and the standard deviation is slightly greater than in the expected 
frequencies. If we wish to know the mean and standard deviation of expected 
binomial frequency distributions, we need not go thmugh the computations 
shown in Table 5.1. The mean and standard deviation of a binomial frequency 
distribution are, respectively, 

p = k p  @=?I& 
0 





19 C H A P T E R  5 B l N O M l A L  A N D  P O l S S O N  D I S T R l B U T I O N S  

xtituting the values k = 5 ,p  = 0.4, and q = 0.6 from the example above, we 
:aio p = 2.0 and u = 1.09545, wluch are identical to the values computed 
m column (5) in Table 5.1. Note that we use the Greek parametric notation 
.e because p and u are parameters of an expected frequency distribution, not 
nple statistics, as are the mean and standard deviation in column (7). The 
,portions y and q are parametric values also and strictly speaking should be 
tinguished from sample proportions. In fact, in later chapters we resort to 6 
18 for parametric proportions (rather than ?r, which conventionally is used as 
ratio of the circumference to the diameter of a circle). Here, however, we 

:fer to keep our notation simple. 
It is interesting to look at the standard deviations of the clumped and repulsed 
quency distributions of Table 5.2. We note that the clumped distribution has a 
ndard deviation greater than expected, and that of the repulsed one is less than 
~ected. Comparison of sample standard deviations with their expected values 
a useful measure of dispersion in such instances. If we wish to express our 
iable as a proportion nther than as a count-that is, to indicate mean inci- 
Ice of infection in the insects as 0.4, rather than as 2 per sample of 5-we can 
:other fonnnlas for the mean and standard deviation in a binomial distribu- 
n: 

p = p  (T=W 
We will now use the binomial distribution to solve a biological problem. On 
:hasis of our knowledge of the cytology and biology of species A, we expect 
:sex ratio among its offspring to be 1 :1. The study of a litter in nature reveals 
tt of 17 offspring, 3 were males and 14 were females. What conclusions can 
draw from this evidence? Assuming that pd  (the probability of being a male 

spring) = 0.5 and that this probability is independent among the members of 
: sample, the pertinent probability distribution is the binomial for sample size 
= 17. Expanding the binomial to the power 17 is a nontrivial task, which, as 
shall see, fortunately need not be done in its entirety. 

The setup of this example is shown in Table 5.3. For the purposes of our 
>blem, we need not pmceed beyond the term for 4 males and 13 females. 
lculating the relative expected frequencies in column (3), we note that the 
~bability of 3 males and 14 females is 0.005,188,40, a very small value. If we 
i to this value all "worse" outcomes-that is, all outcomes that are even 
,I= unlikely than 14 females and 3 males on the assumption of a 1 : 1, hypothe- 
-we obtain a probabilitj of 0.006363,42, still a very small value.: In statis- 

c.' 	 s one often needs to calcuiate the probability of observink a deviation as large 
larger than a given valud.! 1 1 1 

h) 	 On the basis of these findings one or more of the following assumptions is 
-	 'a likely: (I) that the hue sex ratio in species A is 1 : 1; (2) that we have sampled 

P random in the sense of obtaining an unbiased sample; or (3) that the sexes of 
:offspring are independent of one another. Lack of independence of events 

C'L ~y mean that although the average sex ntio is 1 :1, the individual sibships, or 
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.-.';"':i SOME EXPECTED FREQUENCIES OF MALES AND ?j&h?&g&FEMALES FOR SAMPLES OF 17 OFFSPRING ON THE 
ASSUMPTION THAT THE SEX RATIO IS 1 :1 [pa  = 0.5, q, = 0.5; 
(pa + qnY = (0.5 + 0.5)"l. 

(1) 	 (2) (3)
Relative 
expected 

y t - -u.encii.. 
66 2 9  	 fa 

litters, are largely unisexual-that is, the offspring from a given mating tend to 
be all (or largely) males or all (or largely) females. To confirm this hypothesis we 
would need to have more samples and then examine the distribution of samples 
for clumping, which would indicate a tendency for unisexual sibships. 

We must be very precise about the questions we ask of our data. There are. 
really two questions we can ask about the sex ratio: (1)Are the sexes unequal in 
frequency so that females appear more often than males? and (2) Are the sexes 
unequal in frequency? We may he concerned with only the first of these ques- 
tions, since we know from past experience that in this particular group of mga- 
nisms the males are never more frequent than females. In such a case the reason- 
ing followed above is appropriate. However, if we know very little about this 
group of organisms and if our question is simply whether the sexes among the 
offspring are unequal in frequency, then we have to consider both tails of the 
binomial frequency distribution; departures from the 1 :1 ratio could occur in 
either direction. We should then consider not only the probabilities of samples 
with 3 males and 14 females (and all worse cases) hut also the probability of 
samples of 14 males and 3 females (and all worse cases in that direction). Since 
this probability distribution is symmetrical (becausep, = q p  = 0.5). we simply 
double the cumulative probability of 0,006,363.42 obtained previously, which 
results in 0.012,726,84. This new value is still very small, making it quite nn- 
likely that the hue sex ratio is 1 :1. 

This is your first experience with one of the most important applications of 
statistics-hypothesis testing. A formal introduction to this field will be de-
fmed until Section 7.8. We simply point out here that the two approaches just 
described are known as one-tailed tests and two-tailed tests, respectively. Stu- 
dents sometimes have difficulty knowing which of the two tests to apply. In 
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uture examples, we will try to explain why a one-tailed or a two-tailed test is 
eing used. 

We have said that a tendency for unisexual sibships would result in a clumped 
istribution of observed frequencies. An actual case of this phenomenon in na- 
re is a classic in the literature, the sex ratio data obtained by Geissler (1889) 

-om hospital records in Saxony. Table 5.4 shows the sex ratios of 61 15 sibships 
f I2 children, each from the more extensive study by Geissler. AU columns of 
le table should by now be familiar. To keep yon on your toes, and to conform to 
le layout of the original publication, the meaning ofp  and q have been reversed 
om that in the earlier sex ratio example. Now ppis the proportion of females 
nd q, that of males. In a binomial, which of the two outcomes is p and which is 
is simply a matter of convenience. 
The expected frequencies in this example were not calculated on the basis of 

1:1 hypothesis, since it is known that in human populations the sex ratio at 
ilth is not I: I. Because the sex ratio varies in different human populations, 
le best estimate of it for the population in Saxony was obtained simply by 
ring the mean proportion of males in these data. This value can be obtained by 

Tah!~&iSEX RATIOS IN 61 15 SIBSHIPS OF 12 I N  SAXONY. 

(1) 	 (2) (3) (4) (5) (6)
Relative Absolute Deviation 
expected expected Observed from 

Y k - Y frequencies frequencies frequencies erpectr!ion 
9 9  dd /%I f f f - f  

1 1  1 0001975 , 12 1 24 + 
12 0 0000153 0 9  -3 + 

Total 0 999998 61150 6115 
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calculating the average number of females per sibship (P = 5.76942) for the 
61 15 sibships and converting this into a proportion. This value is 0.480,785. 
Consequently. the propoflion of males = 0.519.215. In the deviations of the 
observed frequencies from the absolute expected frequencies shown in column 
(6) of Table 5.4, we notice considerable clumping. There are many more in- 
stances of families with all female or all male children (or nearly so) than 
independent probabilities would indicate. The genetic basis for this is not clear, 
but it is evident that there are some families that "run to girls" and similarly 
others that "run to boys." Other evidence of clumping is the fact that s2 is 
much larger than we would expect on the basis of the binomial dishibution 
[u2= kpq = l2(0.480785)0.519215 = 2.995571. 

There is a distinct contrast between the data in Table 5.1 and those in Tahle 
5.4. In the insect infection data of Tahle 5.1, we had a hypothetical propoflion of 
infection based on outside knowledge. In the sex ratio data of Table 5.4 we had 
no such knowledge; we used an empirical value of p obtainedfrorn the data, 
rather than a hypothetical value exfemal to rhe &In. The importance of this 
distinction will become apparent later. In the sex ratio data of Table 5.3, as in . . 
much work ~n Mendelian genetics, a hypothetical value o f p  is used. 

Ao altern3r1vc. efficient method for calculatinc cxwted binomial freauen- , 

cies is given in s o x  5.1. The iustmctions are self-explanatory. Program B~OM-
pc includes an option for computing expected binomial frequencies. 

5.3 THE POISSON DISTRIBUTION 

In the typical application of the binomial, we had relatively small samples (2 
students, 5 insects, 17 offspring, 12 siblings), in which two alternative states 
occurred at varying frequencies (American and foreign, infected and nonin- 
fected, male and female). Quite frequently, however, we study cases in which 
sample size k is very large, and one of the events (represented by probability q) is 
much more frequent than the other (represented by p). We have seen that the 
expansion of the binomial (p  + q)' is quite tiresome when k is large. Suppose 
you had to expand the expression (0.001 + 0.999)'m0. In such cases we are 
generally interested in one tail of the distribution only. Thisis the tail represented 
by the terms 

The first term represents no rate events and k frequent events in a sample of k 
events, the second term represents 1 rare event and k - 1 frequent events, the 
third tern 2 rare events and k - 2 frequent events, and so forth. The expressions 

of the form C)are the binomial coefficients, discussed in the previous section. 
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intended anova, must be employed. These are the nonparametric or distribution- 
free techniques, which are sometimes used by preference even when the para- 
metric method (anova in this case) can be legitimately employed. Ease of com- 
putation and a preference for the generally simple assumptions of the 
nonparametric analyses cause many research workers to turn to them. When the 
assumptions of the anova are met, however, these methods are less powerful than 
analysis of variance. Section 13.1 1 examines several nonparamehic methods in 
lieu of single-classification anova and Section 13.12 features nonparametric 
methods in lieu of two-way anova. 

13.1 A FUNDAMENTAL ASSUMPTION 

All anovas require that sampling of individuals be random. Thus, in a study of 
the effects of three doses of a drug (plus a control) on five rats each, the five rats 
allocated to each treatment must be selected at random. If the five rats employed 
as controls are either the youngest or the smallest or the heaviest rats, while those 
allocated to some other treatment are selected in some other way, the results are 
not apt to yield an unbiased estimate of the true treatment effects. Nomandom- 
ness of sample selection may well be reflected in lack of independence of the 
items (see Section 13.2), in heterogeneity of variances (Section 13.3). or in 
nonnormal distribution (Section 13.4). Adequate safeguards to ensure random 
sampling during the design of an experiment or when sampling from natural 
populations are essential. 

13.2 INDEPENDENCE 

Thus, if the variates within any one group are arranged in a logical order 
independent of their magnitude (such as the order in which the measurements 
were obtained), we expect the ej;s to succeed each other in a random sequence. 
Consequently, we assume a long sequence of large positive values followed by 
an equally long sequence of negative values to be quite unlikely. We would also 

h such a case adjacent plots of ground often give similar yields. It would thus be 
imponant not to group all the plots containing the same treatment into an adja- 
cent series of plots, but rather to randomize the allocation of treatments among 
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the experimental plots. The physical process of randomly allocating the treat- 
ments to the experimental plots ensures that the 6's will be independent. 

Lack of independence of the E'S can result from correlation in time rather than 
in space. In an experiment we might measure the effect of a treatment by record- 
ing weights of ten individuals. The balance we use may suffer from a maladjust- 
ment that results in giving successive underestimates, compensated for by sev- 
eral overestimates. Conversely, compensation by the operator of the balance may 
result in regularly alternating over- and underestimates of the true weight. Here 
again randomization may overcome the problem of nonindependence of e m s .  
For example. we may determine the sequence in which individuals of the various 
groups are weighed according to some random procedure. 

Both of these examples-the spatial and the temporal-are instances of 
positive autocorrelation, the self-similarity of vatiates adjacent in space or time. 
Regular alternation of positive and negative errors is a manifestation of negative 
autocorrelation. 

Independence of errors in a sequence of continuous variates may be tested as 
first proposed by the well-known mathematician John von Neumann (von Neu- 
mann et al.. 1941), with critical values tabulated by Young (1941). The test is 
based on successive differences between normal variates, d, = Y,,, - Y,, which 
are squared. In Section 15.3 you will learn why the expected sum of such squared 
differences is twice the sum of squares of variable Y if the variates are indepen- 
dent. Thus in the case of independent errors the ratio v = Zd2/Zy2 should ap- 
proximate 2. If there are sequences of similar variates, their differences will be 
less than what they would have been if the variates were randomly ordered, and 
the ratio 7 will be less than 2. Conversely, if there is a nonrandom alternation of 
the magnitudes of the variates, the variance of the differences will be greater than 
expected and v will be greater than 2. In Statistical Table HH we expanded a 
shorter table of critical values of I I - 7/21 by Young (1941) up to a sample size 
of n = 50. When n > 50 we can use the normal approximation 

I1 - 7/21
r, = 

J(n - 2)l(n2 - 1) 

The computations are summarized in Box 13.1, where we examine the se- 
quence of 25 numbers representing the aphid stem mother femur lengths from 
Box 2.1. We compute first differences to match all but the last observation; then 
we square and sum these d's. The result is an estimate of Zd2 = 9.3700. When 
we divide this value by the sum of squares of the femur lengths (2y2= 0.1337), 
we obtain 7 = 2.9194. Since, > 2, a nonrandom alternation of variates is 
indicated. Computing I 1  - 7/21. we obtain 0.459683, which in Table HH yields 
a two-tailed P < 0.02 for n = 25. Had this example been based on more than 50 
observations, we could have tested il by using the normal approximation. If we I 

do so in any case, we obtain r, = 2.394, which yields 0.01 < P < 0.02. We 
conclude that the observations occur in a sequence that appears to be nonrandom, I 
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I1 - ql2l 

d(n - 2)/(n2 - I )  

so we question the assumption of independence in these data. Recent work has 
indicated that the femur lengths may have come from a dimorphic sample. Pos- 
sibly the technician mounting the aphids on slides for measurement alternated 
between the two types of galls in a conscious (but misguided) attempt to strike a 
balance. A ratio of 7 significantly less than 2 would have indicated some serial 
correlation (= autocornlation)-succeeding variates would be more similar to 
each other because of technician or instrument bias. 

For a nonparametfic serial correlation test of continuous variates, or when the 
variates are nominal, employ a runs test (see Section 18.2). 

There is no simple adjustment or transformation to overcome the lack of 
independence or errors. The basic design of the experiment or the way in which it 
was petformed must be changed. We have seen how a randomized-blocks design 
often overcomes lack of independence of error by randomizing the effects of 
differences in soils or cages. Similarly, in the experiment with the biased balance 
we could obtain independence of errors by redesigning the experiment, using 
different times of weighing as blocks. Of course, if a source of error is suspected 
or known, attempts can be made to &move it; if we know, for example, that the 
balance is biased, we may have it fixed. If the E'S are not independent, the 
validity of the usual F-test of significance can be seriously impaired. 

13.3 HOMOGENEITY OF VARIANCES 

In Section 9.4 and Box 9.6, in which we described the t-test for the difference 
between two means, we said that the statistical test was valid only if we could 






