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DATA IN BIOLOGY

m In Section 2.1 we explain the statistical meaning of ‘‘sample’’ and
populatlon ”* terms used throughout this book. Then we come to the types of
observations obtained from biological research material, with which we shall
perform the computations in the rest of this book (Section 2.2). In obtaining data
we shall run into the problem of the degree of accuracy necessary for recording
the data. This problem and the procedure for rounding off figures are discussed
in Section 2.3, after which we will be ready to consider in Section 2.4 certain
kinds of derived data, such as ratios and indices, frequently used in biologicat
_science, which present peculiar problems with respect to their accuracy and
distribution. Knowing how to arrange data as frequency distributions is impor-
tant, because such arrangements permit us to get an overall impression of the
shape of the variation present in a sample. Frequency distributions, as well as the
presentation of numerical data, are discussed in the last section (2.5) of this
chapter. '

2| SAMPLES AND POPULATIONS

‘We shall now define a number of important terms necessary for an understanding
of biological data. The data in a biometric study are generally based on individ-
ual observations, which are observations or measurements taken on the small-
est sampling unit. These smallest sampling units frequently, but not necessarily,
are algo individuals in the ordinary biological sense. If we measure weight in 100
rats, then the weight of each rat is an individual observation; the hundred rat
weights together represent the sample of observations, defined as a collection of
individual observations selected by a specified procedure. In this instance, one
individual observation is based on one individual in a biological sense—that is,
one rat. However, if we had studied weight in a single rat over a period of time,
the sampie of individual observations would be all the weights recorded on one
rat at successive times. In a study of temperature in ant colonies, where each
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colony is a basic sampling unit, each temperature reading for one colony is an
individual observation, and the sample of observations is the temperatures for all
the colonies considered. An estimate of the DNA content of a single mammalian
sperm cell is an individual observation, and the corresponding sample of obser-
vations is the estimates of DNA content of all other sperm cells studied in one
individual mammal. A synonym for individual observation is ‘‘item.”

Up to now we have carefully avoided specifying the particular variable being
studied because *‘individual observation’ and *‘sample of observations’” as we
just used them define only the structure but not the nature of the data in a study.
The actual property measured by the individual observations is the variable, or
character. The more common term employed in general statistics is variable. In
evolutionary and systematic biology however, character is frequently used syn-
onymously. More than one variable can be measured on each smallest sampling
unit, Thus, in a group of 25 mice we might measure the blood pH and the
erythrocyte count. The mouse (a biological individual) would be the smallest
sampling unit; blood pH and cell count would be the two variables studied. In
this example the pH readings and cell counts are individual observations, and
two samples of 25 observations on pH and erythrocyte count would result, Al-
ternatively, we may call this example a bivariate sample of 25 observations,
each referring to a pH reading paired with an erythrocyte count.

Next we define population. The biological definition of this term is well
known: It refers to all the individuals of a given species (pethaps of a given life
history stage or sex) found in a circumscribed area at a given time. In statistics,
population always means the fotality of individual observations about which
inferences are to be made, existing anywhere in the world or at least within
definitely specified sampling area limited in space and time. If you take five
humans and study the number of leucocytes in their peripheral blood and you are
prepared to draw conclusions about all humans from this sample of five, then the
population from which the sample has been drawn represents the leucocyte
counts of all humankind—that is, all extant members of the species Homo
sapiens. If, on the other hand, you restrict yourself to a more narrowly specified
sample, such as five male Chinese, aged 20, and you are restricting your conclu-
sions to this particular group, then the population from which you are sampling
will be leucocyte numbers of all Chinese males of age 20. The population in this
statistical sense is sometimes referred to as the universe. A population may refer
to variables of a concrete collection of objects or creatures—such as the tail
lengths of all the white mice in the world, the leucocyte counts of all the Chinese
men in the world of age 20, or the DNA contents of afl the hamster sperm cells in
existence—or it may refer to the outcomes of experiments— such as all the
heartbeat frequencies produced in guinea pigs by injections of adrenalin. In the
first three cases the population is finite. Although in practice it would be impos-
sible to collect, count, and examine all white mice, all Chinese men of age 20, or
all hamster sperm cells in the world, these populations are finite. Certain smaller
populations, such as all the whooping cranes in North America or all the pocket
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CHAPTER 5 BINOMIAL AND POISSON DISTRIBUTIONS

ch is the sum of the probabilities of having a positive test among those who
¢ cancer and among those who do not have cancer—each weighted by the
juencies of the two populations. Substituting these two results into Expres-
1{5.7) yields

PETICIPIC]
PITICIPIC] + P[TICE)P[CT]

PICIT] = (3.8)
“his expression is known as Bayes® theorem and can be generalized to allow
an event C having more than just two states (the denominator is summed over
events C; rather than just C and its complement). This famous formula,
lished posthumously by the eighteenth-century English clergyman Thomas
es, has led to much controversy over the interpretation of the quantity
HTI.

iarlier we defined “‘probability’” as the proportion that an event occurs out of
rge number of trials. In the current example we have only a single patient,
v either does or does not have cancer. The patient does not have cancer some
rortion of the time. Thus the meaning of P{CIT} in this case is the degree of
"s belief, or the likelihood that this patient has cancer, It is this alternative
rpretation of probability and the question of how it should be applied to
stics that is controversial. Kotz and Stroup (1983) give a good introduction
he idea that probability refers o uncertainty of knowledge rather than of
1ts.

‘onsider the following example, in which Bayes theorem was applied to a
mostic test. The figures are based on Watson and Tang (1980). The sensitiv-
f the radioimmunoassay for prostatic acid phosphatase (RIA-PAP) as a test
prostatic cancer is 0.70. Its specificity is 0.94. The prevalence of prostatic
ser in the white male population is 35 per 100,000, or 0.00035. Applying
e values to Expression (5.8), we find )

PITICIPIC]
PITICIPIC] + P[TICC)IP[CT]
_ 0.70 X 0.00033
" (0.70 X 0.00035) + [(1 — 0.94)(1 — 0.00035)]
rather surprising result is that the likelihood that a white male who tests
tive for the RIA-PAP test actually has prostate cancer is only 0.41%. This

rability is known in epidemiclogy as the positive predictive value. Even if
test had been much more sensitive, say, 0.95 rather than 0.70, the positive

P[CIT] =

= 0.0041

_ lictive value would have been low—0.55 percent. Only for a perfect test

. sensitivity and specificity both = 1) would a positive test 1mply with cer-
 that the patient had prostate cancer.
he paradoxically low positive predictive value is a consequence of its de-
lence on the prevalence of the discase. Only if the prevalence of prostatic

5.2 THE BINOMIAL DISTRIBUTION

cancer were 7895 per 100,000 would there be a 50: 50 chance that a patient with
a positive test result has cancer. This is more than 127 times the highest preva-
lence ever reported from a population in the United States. Watson and Tang
(1980} use these findings (erroneously reported as 1440 per 100,000) and further
analyses to make the point that using the RIA-PAP test as a routine screening
procedure for prostate cancer is not worthwhile.

Readers interested in extending their knowledge of probability should refer to
general texts such as Galambo (1984) or Kotz and Stroup (1983) for a simple
introduction.

5.1 THE BINOMIAL DISTRIBUTION

For the discussion to follow, we will simplify our sample space to consist of only
two elements, foreign and American students, represented by {F, A}, and ignore
whether they are undergraduates or graduaies. Let us symbolize the probability
space by { p, g), where p = P[F), the probability of being a foreign student, and
g = P[A], the probability of being an American student. As before, we can
compute the probability space of samples of two students as follows:

{FF, FA, AA)

{p*.2pq, 4°}

If we were to sample three students independently, the probability space of the
sample would be

{FFF, FFA, FAA, AAA)

{P*.3p%.3p4% &}

Samples of three foreign or three American students can be obtained in only one
way, and their probabilities are p* and 4°, respectively. In samples of three,
however, there are three ways of obtaining two students of one kind and one
student of the other. As before, if A stands for American and F stands for foreign,
then the sampling sequence could be AFF, FAF, and FFA for two foreign stu-
dents and one American. Thus the probability of this outcome will be 3p2q.
Similarly, the probability for two Americans and one foreign student is 3pg®.

A convenient way to summarize these results is by the binomial expansion,
which is applicable to samples of any size from populations in which quects
occur independently in only two classes—students who may be foreign or
American, individuals who may be dead or alive, male or female, black or white,
rough or smooth, and so forth. This summary is accomplished by cxpandi‘n_g the
binomial term (p + ¢)%, where k equals sample size, p equals the probability of
occurrence of the first class, and g equals the probability of occurrence of the

/
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CHAPTER 5 BINOMIAL AND POISSON DISTRIBUTIONS

ad class. By definition, p + g = 1; hence ¢ s a function of p: g =1 —p
vill expand the expression for samples of & from 1 to 3:

Forsamplesof 1 (p+¢)'=p+g
For samplesof 2 (p+ g =p* + 2pg + 4°
For samples of 3 (p + ¢ = p® + 3p%¢ + 3pg* + ¢*

¢ expressions yvield the same outcomes discussed previously. The coeffi-
s {the numbers before the powers of p and g¢) express the number of ways a
zular outcore is obtained.

general formula that gives both the powers of p and g, as well as the
nial coefficients, is

k Y k=Y k! ¥, -
¥) P4 S P -t (1 —py=r (5.9)

is formula &, p, and g retain their earlier meaning, while ¥ stands for the
ser or count of ‘‘successes,’” the itemns that interest us and whose probability
:cuirence is symbolized by p. In our example, ¥ designates the number of

. k
gn students, The expression v stands for the number of combinations

can be formed from k jtems taken ¥ at a time. This expression can be
wated as kI/[¥I(k — ¥)!], where | means factorial. In mathematics, k facto-
s the product of all the integers from 1 up to and including k. Thus: 51 =
2 X 3 X 4 X35 = 120. By convention, 0! = 1. In working out fractions
uining factorials, note that a factorial always cancels against  higher facto-
Thus 51/3! = (5 X 4 X 31)/31 = 5 X 4. For example, the binomial coeffi-
for the expected frequency of samples of 5 smdents containing 2 foreign

nts is (;) =351213t = (5 X H)2 = 10.

ow let us turn to a biological example. Suppose we have a population of
13, exactly 40% of which are infected with a given virus X. If we take
des of k = 5 insects each and examine each insect separately for the pres-
of virus, what distribution of samples could we expect if the probability of
tion of each insect in a sample were independent from that of other insects
e sample? In this case p = 0.4, the proportion infected, and ¢ = 0.6, the
srtion not infected. The population is assumed to be so large that the ques-
»f whether sampling is with or without replacement is irrelevant for practical
ases. The expected frequencies would be the expansion of the binomial:

(p + g}t = (04 + 0.6y
the aid of Expression (5.9) this expansion is
p® + 5ptq + 10p3g? + 10p2é13 + 5pg* + ¢°

5.2 THE BINOMIAL DISTRIBUTION 13

or

T {04 + 5(0.4)0.6) + 10(0.47(0.68 + 1004)X0.6) + 5(04X0.6)* + (0.6¥

representing the expected proportions of samples of five infected insects, four
infected and one noninfected insecis, three infected and two noninfected insects,
and so on.

By now you have probably realized that the terms of the binomial expansion
yield a type of frequency distribution for these different ontcomes. Associated
with each outcome, such as “*five infected insects,’”” is a probability of
occurrence —in this case (9.4)° = 0.01024. This is a theoretical frequency dis-
tribution, or probability distribution, of events that can occur in two classes. It
describes the expected distribution of outcomes in random samples of five in-
sects, 40% of which are infected. The probability distibution described here is
known as the binomial distribution; the binomial expansion yields the expected
frequencies of the classes of ihe binomial distribution.

A convenient layout for presentation and computation of a binomial distribu-
tion is shown in Table 5.1, based on Expression (5.9). In the first column, which
lists the number of infected insects per sample, note that we have revised the
order of the terms to indicate a progression from Y = 0 successes (infected
insects) to ¥ = k successes. The second column features the binomial coefficient
as given by the combinatorial portion of Expression (5.9). Column 3 shows

; ’;5 EXPECTED FREQUENCIES OF INFECTED INSECTS IN

5 ka i SAMPLES OF S INSECTS SAMPLED FROM AN INFINITELY
LARGE POPULATION WITH AN ASSUMED INFECTION RATE OF 40%.
(Y (2} 3) @ 5} (6) 0

Number of . i .

infected Binomial Relative Absolute
insects  cvefficients  powere  Powers  expected expected Observed
per sample k of of frequencies  frequencies  frequencies
Y Y p=04 g=06 Fu 7 f
0 1 1.00000 0.07776 0.07776 188.4 202
1 5 040000 0.12960  0.25920 628.0 643
2 16- 0.16000 0.21600 0.34560 8374 817
3 16 0.06400 0.36000 0.23040 558.3 535
4 0.02560  0.60000 0.07680 186.1 197
5 0.01024 1.00080 0.01024 24.8 29
Sfor Tf(=n) 100000 24230 2423
Mean 2.00000 2.00004 1.98721
Standard deviation 1.09545 1.09543 1.11934
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CHAPTER 5 BINOMIAL AND POISSON DISTRIBUTIONS

reasing powers of p from p® to p*, and column (4) shows decreasing powers of
rom g° ta ¢°. The relative expected frequencies, which are the probabilities
the various outcomes, are shown in column (5). We label such expected
quencies f,,. They are the product of columns (2), (3), and (4), and their sum is
1al to 1.0, since the events in column (1) exhaust the possible outcomes. We
from column (5} that only about 1% of the samples are expected to consist of
afected insects, and 25.9% are expected to contain 1 infected and 4 nonin-

ted insecis. We will now test whether these predictions hold in an actual
eriment, :

>ERIMENT 5.1, Simulate the case of the infected insects by using a table of
dom numbers such as Statistical Table FF. These are randomly chosen one-digit
wbers in which each digit 0 through 9 has an equal probability of appearing. The
wbers are grouped in blocks of 25 for convenience. Such numbers can also be obtained
n random number keys on some pocket calculators and by pseudorandom number-
zrating algorithms in computer programs. Since there is an equal probability for any
digit to appear, you can let any four digits (say 0, 1, 2, 3) stand for the infecied insects
the remaining digits {4, 5, 6, 7, 8, 9) stand for the noninfected insects. The probability
any one digit selected from the table represents an infected insect (thatis, a 0, 1, 2, or
. therefore 40% or 0.4, since these are four of the ten possible digits. Also, successive
ts are assumed to be independent of the values of previous digits. Thus the assump-
5 of the binomial distribution should be met in this experiment. Enfer the table of
om numbers at an arbitrary point (not always at the beginning?) and look ar succes-
groupsof five digits, noting in each group how many of the digits are 0, 1, 2, or 3,
7 as many groups of five as you can find time to do, but no fewer than 100 groups,
sons with computer experience can easily generate the datz required by this exercise
out using Table FF. There are also some programs that specialize in simulating
Jling experimenis.) :

olumn (7) in Table 5.1 shows the results of such an experiment by a bio-
'y ¢lass. A total of 2423 samples of five nambers were obtained from Statis-
Table FF, and the distribution of the four digits simulating the percentage of:
:tion is shown in this column. The observed frequencies are labeled f. To
nlate the expected frequencies for this example, we multiplied the relative
scted frequencies, f4, of column (5) by n = 2423, the number of samples
0. These calculations resulted in absolute expected frequencies, 7 shown
Ylumn (6). When we compare the observed frequencies in column (7) with
:xpected frequencies in colomn (6), we note general agreement between the
columns of fignres. The two distributions sre ilustrated in Figure 5.2. If the
rved frequencies did not fit expected frequencies, we might believe that the
of fit was due to chance alone. Or we might be led to reject one or more of
ollowing hypotheses: (i) that the true proportion of digits 0, 1, 2, and 3 is 0.4
ction of this hypothesis would normally not be reasonable, for we may rely
1e fact that the proportion of digits 0, 1, 2, and 3 in a table of random

5.2 THE BINOMIAL DISTRIBUTION . .,s

fg} Obscrved frequencies
[ Expected frequencies

Frequency

 EEEE88REE

1
&
.
0 1 2 4 5
Number of infected insecis per sample

FIGURE. 5.2 Bar diagram of observed and expected frequencies given it Table 5.1.

J .
numbers is 0.4 or very close to it); (2) that sampling was random; and (3) that
independent. ) )
cv?ll"lttli:; Zttiwm?:nts can be reinterpreted in terms of the original infection model
with which we started this discussion. If, instead of a sampling experiment of
digits by a biometry class, this had been a real sampling experiment of insects,
we would conclude that the insects had indeed been randqmly sa_mpled apd that
we had no evidence to reject the hypothesis that the proportion of infected insects
was 40%. If the observed frequencies had not fit the ex‘pectcd frequencies, the
lack of fit might be atrributed to chance or to the conclusion that the true propor-
tion of infection is not 0.4, ot we would have to reject one or both the following
assumptions: (1) that sampling was at random, and (2) that the cccurrence of
infected insects in these samples was independent. '
Experiment 5.1 was designed to yield random sa_zmple_s and independent
events. How could we simulate a sampling procedure in which the occurrences
of the digits 0, 1, 2, and 3 were not independent? We could, for example, instruct
the sampler to sample as indicated previously, but every time he found a ::‘., to
search through the succeeding digits until he found anoth.er'one of the four digits
standing for infected individuals and to incorporate this in the samp']e. .Thus,
once a 3 was found, the probability would be 1.0 that another one of thc indicated
digits would be included in the sample. After repeated samples, this procedure
would result in higher frequencies of classes of_ twao or more u!dlca'ted_ dlg}ts and
in tower frequencies than expected (on the basis of the binomial distribution) of
classes of one event. Many such sampling schemes cguld be devnsed_. It should be
clear that the probability of the second event occurring would be different from
and dependent on that of the first. :
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CHAPTER 5 BINOMIAL AND POISSON DISTRIBUTIONS

How would we interpret a large departure of the observed frequencies from
pected frequencies in another example? We have not yet learned techniques
t testing whether observed frequencies differ from those expected by more
an can be attributed to chance alone. This topic will be taken up in Chapter 17,
ssumne that such a test has been carried out and that it has shown that our
served frequencies are significantly different from the expected frequencies.
Vo rrfain types of departure from expectation are likely: (1) clumnping and (2)
pulsion, shown in fictitious examples in Table 5.2. In real examples we would
ve no a priori notions about the magnitude of p, the probability of one of the
0 possible outcomes. In such cases it is customary to obtain p from the ob-
ved sample and to calculate the expected frequencies using the sample p. This
n}ld mean that the hypothesis that p is a given value cannot be tested, since by
sign the expected frequencies will have the same p value as the observed
quencies. Therefore, the hypotheses tested are whether the samples are ran-
m and the events independent.

The clumped frequencies in Table 5.2 have an excess of observations at the
Is of the frequency distribution and consequently a shortage of observations at
s center. Such a distribution is also called contagious. Remember that the total
mber of items must be the same in both observed and expected frequencies in
ler to make lth«em comparable. In the repulsed frequency distribution there are
e observations than expected at the center of the distribution and fewer at the
's. These discrepancies are most obvious in columas (4) and (6) of Table 52,

ARTIFICIAL DISTRIBUTIONS TO ILLUSTRATE CLUMPING
¢ AND REPULSION.

rected frequencies from Table 5.1

- (2) 3) (4) 3) (6)
Number.of Absolute Clumped
fecied insecis eapecied  (comtagious) Deviation  Repalsed Deviation
per sample frequencies  frequencies . from frequencies from

¥ f expectation f expectation

0 188.4 225 + 143 -

| 628.0 703 + 613 i -

2 8374 663 - 943 +

3 5583 558 o 548 -

4 186.1 227 + 157 -

5 24.8 47 + 14 -

Sforn 24230 2423 2473
Mean 2.00004 2.00000 2.00000

wdard deviation 1.09543 1.20074 1.01435

5.2 THE BINOMIAL DISTRIBUTION 11

where the deviations of observed from expected frequencies are shown as plus or
minus signs. (These two types of distributions are also called overdispersed and
underdispersed, but there has been some confusion in the literature about the
meaning of these terms, so we will not use them here.)

What do these phenomena imply? In the clumped frequencies more samples
were entirely infected (or largely infected) and similarly more samples were
entirely noninfected (or largely noninfected) than you would expect if probabili-
fies of infection were independent. This result could be due to poor sampling
design. If, for example, the investigator, in collecting samples of five insects,
always tended to pick out like ones—that is, infected ones or noninfected
ones—then such a result would ltikely appear. If the sampling design is sound,
however, the results become mote interesting. Clumping would then mean that
the samples of five are in some way related—that is, if one insect is infected,
others in thé same sample are more likely to be infected, This relation could be
true if the insects came from adjacent locations in a situation in which neighbors
are easily infected. Or the insects could be siblings exposed simultanecusly to a
source of infection. Or the infection could spread among members of a sample
between the time thie insects are sampled and the time they are examined.

The opposite phenomenon, repulsion, is more difficult to interpret biologi-
cally. There are fewer homogeneous groups and more mixed groups in such a
digtribwtion, which implies 4 compensatory phenomenon: If some of the insects
in a sample are infected, the others in the sample are less likely to be. If the
infected insects in the sample could transmit immusity to their associates in the
sample, such a situation could arise logically, but it is biologically improbable. A.
more reasonable interpretation of such a finding is that for each sampling unit
there are 2 limited number of pathogens available and that once several insects
have become infected, the others go free of infection simply because there is no
more infectious agent. This situation is unlikely in microbial infections, but in
sitnations in which a limited number of parasites enter the body of the host,
repulsion is more reasonable.

From the expected and observed frequencies in Table 5.1, we inay calculate
the mean and standard deviation of the number of infected insects per sample.
These values are given at the bottom of columns (3), (6), and (7) in Fable 5.1. We
note that the means and standard deviations_ in columns (5) and (6) are almost
identical and differ only trivially because of rounding errors. Column (7), how-
ever, being a sample from a population whose parameters are the same as those
of the expected frequency distribution in columns (5) or (6), differs. The mean is
stightly smaller and the standard deviation is slightly greater than in the expected
frequencies. If we wish to know the mean and standard deviation of expected
binomial frequency distributions, we need not go through the computations
shown in Table 5.1, The mean and standard deviation of a binomial frequency
distribution are, respectively,

p=kp  o=kpq
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astituting the values k = 5, p = 0.4, and g = 0.6 from the example above, we
ain g = 2.0 and o = 1.09543, which are identical to the values computed
m column (5) in Table 5.1. Note that we use the Greek parametric notation
‘e because u and o are parameters of an expected frequency distribution, not
nple statistics, as are the mean and standard deviation in column (7). The
sportions p and g are parametric values also and strictly speaking should be
tinguished from sample proportions. In fact, in later chapters we resort to j
1 4 for parametric proportions (rather than 7, which conventionally is used as
. ratio of the circumference to the diameter of a circle). Here, however, we
sfer to keep our notation simple.

It is interesting to look at the standard deviations of the clumped and repulsed
guency distributions of Table 5.2. We note that the clumped distribution has a
ndard deviation greater than expected, and that of the repulsed one is less than
sected. Comparison of sample standard deviations with their expected values
1 useful measure of dispersion in such instances. If we wish to express our
iable as a proportion rather than as a count—that is, to indicate mean inci-
1ce of infection in the insects as 0.4, rather than as 2 per sample of 5— we can
: other formulas for the mean and standard deviation in a binomaial distribu-
a: : :

m=p o=1pglk

We will now use the binomial distribution to solve a biologicat problem. On
: basis of our knowledge of the cytology and biology of species A, we expect
: 5eX ratjo among its offspring to be 1: 1. The study of a litter in nature reveals
it of 17 offspring, 3 were males and 14 were females. What conclusions can
draw from this evidence? Assuming that p ; (the probability of being a mate
spring) = 0.5 and that this probability is independent among the members of
: sample, the pertinent probability disteibution is the binomial for sample size
= 17. Expanding the binomial to the power 17 is a nontrivial task, which, as
: shall see, fortunately need not be done in its entirety.
The setup of this example is shown in Table 5.3. For the purposes of our
blem, we need not proceed beyond the term for 4 males and 13 females.
lculating the relative expected frequencies in column (3), we note that the
sbability of 3 males and 14 females is 0.005,183,40, a very small value. If we
1 to this value all ““worse” outcomes—-that is, all outcomes that are even
e unlikely than 14 females and 3 males on the assumpiion of a I : 1 hypothe-
-—we obtain a probability of 0.006,363,42, still a very small \raluc In statis-
s one often needs to ca]cufate the probabllnty of observing a dcvlataon as large
larger than a given value.! | b
On the basis of these ﬁndlngs ohe or more of the following assumptions is
likely: (1) that the true sex ratio in species A is 1: 1; (2) that we have sampled
random in the sense of obtaining an unbiased sample; or (3) that the sexes of
: offspring are independent of one another. Lack of independence of events
ty mean that although the average sex ratio is 1: 1, the individual sibships, or

5.2 THE BINOMIAL DiISTRIBUTION ]9

T b SOME EXPECTED FREQUENCIES OF MALES AND
Table 53! crmaies ror sampies oF 17 OFFSPRING ON THE
ASSUMPTION THAT THE SEX RATIO IS 1:1 [p; =05, q; = 05;

(ps + go¥ = (0.5 + 0.5)"7].

n 2 3)

Relative
expected
Y k—Y frequencies
dé 29 fu

17 0.000,007,63
16 0.000,129,71
15 (:001,037,68
14 0.005,188,40
i3 0.018,15791

0.006,363,42

2w =0

litters, are largely unisexual —that is, the offspring from a given mating tend to
be all (or largely) males or all (or largely) females. To confirm this hypothesis we
would need to have more samples and then examine the distribution of samples
for clumping, which would indicate a tendency for unisexual sibships,

We must be very precise about the questions we ask of our data. There are
really two guestions we can ask about the sex ratio: (1) Are the sexes unequal in
frequency so that females appear more often than males? and (2) Are the sexes
unequal in frequency? We may be concerned with only the first of these ques-
tions, since we know from past experience that in this particular group of orga-
nisms the males are never more frequent than females_ In such a case the reason-
ing followed above is appropriate. However, if we know very little about this
group of organisms and if our question is simply whether the sexes among the
offspring are unequal in frequency, then we have to consider both tails of the
binomial frequency distribution; departures from the I:1 ratio could occur in
either direction. We should then consider not only the probabilities of samples
with 3 males and 14 females (and all worse cases) but also the probability of
samples of 14 males and 3 females (and all worse cases in that direction). Since
this probability distribution is symmetrical (becavse p; = ¢ = 0.5), we simply
doubie the cumulative probability of 0.006,363,42 obtained previously, which
results in 0.012,726,84. This new value is still very small, making it quite un-
likely that the true sex ratiois 1:1.

This is your first experience with one of the most important applications of
staiistics—hypothesis testing. A formal introduction to this field will be de-
ferred until Section 7.8. We simply point out here that the two approaches just
described are known as one-tailed tests and two-tailed tests, respectively. Stu-
denis sometimes have difficulty knowing which of the two tests to apply. In
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uture examples, we will try to explain why a one-tailed or a two-tailed test is
eing used.

We have said that a tendency for unisexual sibships would result in a clumped
istribution of observed frequencies. An actual case of this phenomenon in na-
ire is a classic in the literature, the sex ratio data obtained by Geissler (1889)
‘om hospital records in Saxony. Table 5.4 shows the sex ratios of 6115 sibships
f 12 children, each from the more extensive study by Geissler. All columns of
1¢ table should by now be familiar. To keep you on your toes, and to conform to
1€ layout of the original publication, the meaning of p and g have been reversed
‘'om that in the earlier sex ratio example. Now p, is the proportion of females
nd q 4 that of males. In a binomial, which of the two ontcomes is p and which is

is simply a matter of convenience. )

The expected frequencies in this example were not caiculated on the basis of

1:1 hypothesis, since it is known that in human populations the sex ratio at
irth iz not 1:1. Because the sex ratio varies in different human populations,
1e best estimate of it for the population in Saxony was obtained simply by
sing the mean proportion of males in these data. This value can be obtained by

Table 5.4 e atios I 6115 SIBSHIPS OF {2 IN SAXONY.

ey @ () @ (5) 6)
Relative Absolute Deviation
expected expected Observed from

Y ° k—Y frequencies frequencies frequencies expectation

°? 3¢ Fu ;o s £-1

0 2 0.000384 23 7 +
I 11 0.004264 26.1 45 +
2 i0 0.021725 132.8 181 +
3 9 0.067041 410.0 478 +
4 8 0.139703 854.3 829 -
5 7 0.206973 1265.6 1112 -
6 6 0.223590 13673 1343 -
7 5 0.177459 1085.2 1033 -
8 4 0.102708 628.1 670 +
9 3 0.042280 2585 286 +

10 2 0.011743" ;L8 104 +

11 1 0.001975 i 121 24 +

12 ¢, 0.000153 0.9 _3 +

Tatal 0.999998 61150 6115

¥ = 576942 s = 3.48985

URCE! Data from Geissler (1889).

5.3 THE PD1S550N DISTRIBUTION s‘

calculating the average number of females per sibship (¥ = 5.76942) for the
6115 sibships and converting this into a proportion. This vaiue is 0.480,785.
Consequently, the proportion of males = .519,215. In the deviations of the
observed frequencies from the absolute expected frequencies shown in column
{6) of Table 5.4, we notice considerable clurping. There are many more in-
stances of families with all female or all male children (or nearly so) than
independent probabilities would indicate. The genetic basis for this is not clear,
but it is evident that there are some families that “‘run 1o girls™ and similarly
others that ‘‘run to boys.’” Other evidence of clumping is the fact that s2 is
much larger than we would expect on the basis of the binomial distribution
[o2 = kpg = 12(0.480785)0.519215 = 2 99357].

There is a distinct contrast between the data in Table 5.1 and those in Table
5.4. In the insect infection data of Table 5.1, we had a hypothetical proportion of
infection based on outside knowledge. In the sex ratio data of Table 5.4 we had
no such knowledge; we used an empirical value of p obtained from the data,
rather than a hypothetical value external to the data. The importance of this
distinction will become apparent later. In the sex ratio data of Table 5.3, as in
much work in Mendelian genetics, a hypothetical value of p is used.

An alternative, efficient method for calculating expected binomial frequen-
cies is given in Box 5.1. The instructions are self-explanatory. Program BIOM-
pe includes an option for computing expected binomial frequencies.

5.3 THE Po1SSON DISTRIBUTION

In the typical application of the binomial, we had relatively small samples (2
students, 5 insects, 17 offspring, 12 siblings), in which two alternative states
occurred at varying frequencies (American and foreign, infected and nonin-
fected, male and female). Quite frequently, however, we study cases in which
sampte size k is very large, and one of the events (represented by probability ¢) is
much more frequent than the other (represented by p). We have seen that the
expansion of the binomial (p + g)* is quite tiresome when £ is large. Suppose
you had to expand the expression (0.001 + 0.999)!™_ In such cases we are
generally interested in one tail of the distribution only. This is the tail represented

by the terms :
K\ k K
0k 1,k-1 2 k=2 3 k3
Pq’(l)pq :(2)Pq 1(3)Pq PR

The first tecm represents no rare events and k frequent events in a sample of k£
events, the second term represents 1 rare event and & — 1 frequent events, the
third term 2 rare eventsrand & — 2 frequent events, and so forth. The expressions

of the form ( ) are the binomial coefficients, discussed in the previous section.
l .
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concern yourself with these, but it might be well for you to be familiar by name at
least with those we will discuss here briefly.

The hypergeometric distribution is the distribution equivalent to the bino-
mial case but sampled from a finite population without replacement. In Section
5.1 we estimated the probability of finding a second foreign student in Matchless
University. We pointed out that if there are 10,000 students at Matchless Uni-
versity, 400 of whom are foreign, then the probability of sampling one foreigner

1is indeed 0.04. Once a foreign student has been sampled, however, the probabil-

ity of sampling another foreign student is no longer 0.04 (even when indepen-
dent) but is 399/9999, or 0.0399. This probability would be 0.04 only with
replacement—that is, if we returned the first foreign student sampled to the
university population before we sampled again.

The binomial distribution is entirely correct only in cases of sampling with
replacement or with infinite population size (which amounts to the same thing).
For practical purposes, when small samples are taken from large populations, as
in the case of Matchless University, these populations can be considered infinite.
But if you have a population of 100 animals, 4% of which carry a mutation, a
sample of one mutant reduces the population to 3 out of 99, or from 4% to 3.03%.
Thus repeated samples of 5 from this population would follow not the binomial
distribution but a different distribution, the hypergeometric distribution. The
individual terms of the hypergeometric distribution are given by the expression

(L)
()

which gives the probability of sampling  items of the type represented by prob-
ability p out of a sample of k items from a population of size N. The mean and
variance of a hypergeometric distribution are kp and kpg(N — E)/(N — 1).

Note that the mean is the same as that of the binomial distribution, and the
variance is that of the binomial multiplied by (N — k)/(N — 1). When N is very
large as compared with , this term is approximately 1, expected since the hyper-
geometric distribution approximates the binomial. The expected frequencies for
any sizable distribution are tedious to compute. We suggest using a digital com-
puter with facilities for double-precision arithmetic to evaluate expected hyper-
geometric frequencies for a sizable distribution,

In biclogy, sampling of small samples from a finite distribution occurs in
certain problems of evolutionary genetics. Another application is in mark—
recapture studies, in which a certain proportion of a population is caught,
marked, released, and subsequently recaptured, leading to estimates of the num-
ber of the entire population,

A number of probability distributions have been employed as underlying
mathematical models for cases of contagious distribution. The difficulty of

12915

RSENESRS |




12916



95

tririg these varies with the distribution. G:i'eig-Sqﬁﬂa {1964) gives a nont'ec!mi-
account . of the application of these distributions to ecology and provides
ferences that may lead the interested reader deeper into the subject. More-
3 5quanutam'e accounts are given by Pielou (1977) and Krebs (1989). Many eco-
Jogical examples of the application of contagious distributions are given in Wil-
jams (1964).
We have used the binomial and Poisson distributions to test whether given
dataare random or whether they show marked departure from random
expectauons-—enher clumping or repulsion. In some ¢ases it may Seem unrea-
sonable to assume random occurrences. In social organisms, for example, aggre-
gation is a given. Statisticians and biologists have developed models for such
cases which lead to the so-called contagious distributions. Although we cannot
~ discuss these in detail in this volume, we mention two here briefly.
. The negative binomial distribution has been vsed probably more frequently
. than any other contagious distribution. The theoretical conditions that would
' give rise to a negative binomial distribution are discussed by Bliss and Calhoun
(1954), who also give methods of calculating expected frequencies. The account
in Bliss and Fisher (1953) is somewhat more rigorous. Krebs (1989) describes
“methods for estimation and significance testing and provides computer software
for the calculations.

The logarithmic distribution (or logarithmic series) has been used exten-
sively in studying the distribution of taxonomic units in faunal samples. This
distribution has been employed frequently by C. B. Williams (see Williams,
1964). Johnson and Kotz (1969) give general information on many types of -
discrete distributions.

5.1 In humans the sex ratio of newbom infants is about 1009 € : 1053 &. If we were to

take 10,000 random samples of 6 newborn infants each from the total population of
E such infants for one year, what would be the expected frequency of groups of 6
1 males, 5 males, 4 males, and so on? Answer: For 4 males f = 2456.5.

8 5.2 Show algebraically why the computational method of Box 5.1 works.

5.3 The two columns below give fertility of eggs of the CP strain of Drosophila melano-
gaster raised in 100 vials of 10 eggs each (data from R. R. Sokal). Find the expected
frequencies, assuming that the mortality for each egg in a vial is independent. Use the
abserved mean. Calculate the expected variance and compare it with the observed
variance. Interpret the results, knowing that the eggs of each vial are siblings and that
the different vials contain descendants from different parent pairs. Answer:
o? = 2417, s* = 6.628.

EXERCISES B . .vvvroonsancortoncinsonscossinssasesennnonmnconnnns eneansanens
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intended anova, must be employed. These are the nonparametric or distribution-
free techniques, which are sometimes used by preference even when the para-
metric method (anova in this case) can be legitimately employed. Ease of com-
putation and a preference for the generally simple assumptions of the
nonparametric analyses cause many research workers to tum to them. When the
assumptions of the anova are met, however, these methods are less powerful than
analysis of variance. Section 13.11 examines several nonparametric methods in
lieu of single-classification anova and Section 13.12 features nonparametric
methods in lien of two-way anova,

3.1 A FUNDAMENTAL ASSUMPTION

All anovas require that sampling of individuals be random. Thus, in a study of
the effects of three doses of a drug (plus a control) on five rats each, the five rats
allocated to each treatment must be selected at random. If the five rats employed
as controls are either the youngest or the smallest or the heaviest rats, while those
allocated to some other treatment are selected in some other way, the results are
not apt to yield an unbiased estimate of the true treatment effects. Nonrandom-
ness of sample selection may well be reflected in lack of independence of the
items (see Section 13.2), in heterogeneity of variances (Section 13.3), or in
“nonnormal distribution (Section 13.4). Adequate safeguards to ensure random
- sampling during the design of an experiment or when sampling from natural
populations are essential.

3.2 INDEPENDENCE

An assumption stated in each explicit expression for the expected value of a
variate [for example, Expression (8.2) was ¥;; = p + a; + €] is that the error
term ¢, is a random normal variable. In addition, for completeness we should add

. that it is assumed that the €'s are independently and identically (see Section 13.3)

distributed.

Thus, if the variates within any one group are arranged in a logical order
independent of their magnitude (such as the order in which the measurements
were obtained), we expect the €;’'s to succeed each other in a random sequence.
Consequently, we assume a long sequence of large positive values followed by
an equally long sequence of negative values to be quite unlikely. We would also
not expect positive and negative values to alternate with regularity.

How could departures from independence axise? An obvious example is an
experiment in which the experimental units are plots of ground laid out in a field.
In such a case adjacent plots of ground often give similar yields. It would thus be
important not to group alt the plots containing the same treatment into an adja-
cent series of plots, but rather to randomize the allocation of treatments among

12919



12920



39" CHAPTER 13 ASSUMPTIONS OF ANALYSIS OF VARIANCE

the experimental plots. The physical process of randomly allocating the treat-
ments to the experimental plots ensures that the €’s will be independent.

Lack of independence of the ¢'s can result from correlation in time rather than
in space. In an experiment we might measure the effect of a treatment by record-
ing weights of ten individuals. The balance we use may suffer from a maladjust-
ment that results in giving successive underestimates, compensated for by sev-
eral overestimates. Conversely, compensation by the operator of the balance may
result in regularly alternating over- and underestimates of the true weight. Here
again randomization may overcome the problem of nonindependence of errors,
For example, we may determine the sequence in which individuals of the various
groups are weighed according to some random procedure.

Both of these examples—the spatial and the temporal—are instances of
positive autocorrelation, the self-similarity of variates adjacent in space or time.
Regular alternation of positive and negative errors is a manifestation of negative
autocorrelation, ' ,

Independence of errors in a sequence of continuous variates may be tested as
first proposed by the well-known mathematician John von Neumann (von Neu-
mann et al., 1941), with critical values tabulated by Young (1941). The test is

‘based on successive differences between normal variates, d, = ¥, — Y;, which

are squared. In Section 15.3 you will learn why the expected sum of such squared
differences is twice the sum of squares of variable Y if the variates are indepen-
dent. Thus in the case of independent errors the ratio n = Zd?%2y? should ap-
proximate 2. If there are sequences of similar variates, their differences will be
less than what they would have been if the variates were randomly ordered, and
the ratio 7 will be less than 2. Conversely, if there is a nonrandom alternation of
the magnitudes of the variates, the variance of the differences will be greater than
expected and 1 will be greater than 2. In Statistical Table HH we expanded a
shorter table of critical values of [ 1 — 7/2 by Young (1941) up to a sample size
of n = 50. When n > 50 we can use the normal approximation

;= 11— =52l
N = D = 1)

The computations are summarized in Box 13.1, where we examine the se-
quence of 25 numbers representing the aphid stem mother femur lengths from
Box 2.1. We compute first differences to match all but the last observation; then
we square and sum these d’s. The result is an estimate of 242 = 9.3700. When
we divide this value by the sum of squares of the femur lengths (Zy? = (0.1337),
we obtain 7 = 2.9194. Since, 1 > 2, a nonrandom alternation of variates is
indicated. Computing |1 — /21, we obtain (.459683, which in Table HH yields
atwo-tailed P < 0.02 for n = 25. Had this example been based on more than 50
observations, we could have tested it by using the normal approximation. If we
do so in any case, we obtain r, = 2.394, which yields 0.01 < P < 0.02, We
conclude that the observations occur in a sequence that appears to be nonrandom,
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m CONTINUOUS VARIABLE.

tu---'...cooo...------ooco...-ss---q-coc'oo.oo-o---.-vcc-..oooo-n-v-—--n-.coo..-a-.--:cn-c

Twenty-five aphid stem mother femur lengths. Data from Box 2.1.

¥, di= (¥, =P
38 0.04
3.6 0.49
4.3 0.64
35 0.64
4.3 1.00
3.3 1.00
4.3 0.16
39 0.16
43 0.25
3.8 0.01
3.9 0.25
4.4 0.36
38 0.81
4,7 1.21
36 0.25
4.1 0.09
4.4 0.01
4.5 0.81
3.6 0.04
3.8 0.36
4.4 0.09
4.1 - 0.25
36 0.36
4.2 0.09
3.9

Zy? = 3.2096 Zd? = 9.3700

Computation

[

N

[

. Make a column of the observations. Construct a second column of first differences

between the observations and square them as shown.

ences (shown at the bottom of the columns).

. Compute n = Zd%/Zy? = 9,3700/3.2096 = 2.9194.

» Compute the sum of squares of the observations and the sum of the squared differ-
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396 CHAPTER 13 ASSUMPTIONS OF ANALYSIS OF VARIANCE

Box 13.1 CONTINUED

4, Evaluate Il — n/2l = 0.459683, If n = 50, consult Statistical Table HH for signifi-
cance. In our case the twe-tailed probability is 0.01 < P < 0.02. For illustrative
purposes we also evaluate :

i1 — g2
(n — 20/(n* =~ 1)

and compare with £,,_. This is the approximation we would use with n > 50, Since n
for this example is 25, the approximation should be close. We find that ¢, =
0.459683/423/(252 — 1) = 2.394348, which in Statistical Table B is signiticant at
0.01 < P < 0.02. The observations are not serially independent. The fact that 7 is
greater than 2 suggests a nonrandom alternation of the observations. Values of
7 <X 2 indicate serial correlation (= autocorrelation) between adjacent variates.

We used a two-tailed significance test here, since we had no a-priori notion of the
nature of the departure from serial independence. In some instances our alternative
hypothesis would be one-tailed, in which case the probabilities at the head of the
columns of Table HH, or of Table B when using the normal approximation, should
be halved. . . ’ :

L R N R I R R T L L N R R R

Y Y N T Y
R I N O T R R N R Y Y N

so we question the assumption of independence in these data. Recent work has
indicated that the femur lengths may have come from a dimorphic sample. Pos-
sibly the technician mounting the aphids on slides for measurement alternated
between the two types of galls in a conscious (but misguided) attempt to strike a
balance. A ratio of 7 significantly less than 2 would have indicated some seriai
correlation (= aotocomrelation)—succeeding variates would be more similar to
each other because of technician or instrument bias.

For a nonparameitric serial correlation test of continuous variates, or when the
variates are nominal, employ a runs test (see Section 18.2),

There is no simple adjustment or transformation 1o overcome the lack of
independence or errors. The basic design of the experiment or the way in which it
was performed must be changed. We have seen how a randomized-blocks design
often overcomes lack of independence of error by randomizing the effects of
differences in soils or cages. Similarly, in the experiment with the biased balance
we could obtain independence of errors by redesigning the experiment, using
different times of weighing as blocks. Of course, if a source of error is suspected
or known, attempts can be made to remove it; if we know, for example, that the
balance is biased, we may have it fixed. If the €'s are not independent, the
validity of the usual F-test of significance can be seriously impaired.

3.3 HOMOGENEITY OF VARIANCES

In Section 9.4 and Box 9.6, in which we described the ¢-test for the difference
between two means, we said that the statistical test was valid only if we could
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