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Absrroct: This paper presents a review and critique of statistical null hypothesis testing in ecological studies 
in general, and wildlife studiesin pa%&, and describes an alternative. Our review of Ecology andthelmrnal 
of Wildl$e Management found the use of null hypothesis testing to be pervasive. The estimated number of P-
values appsanhg within e d e s  of Ecology exceeded 8.000 in 1991 and has exceeded 3,000 in each year since 
1984, whereas the estimatsd number of P-values in the Jmml of WildifeManagenrent exceeded 8.000 in 
1887 and has exceeded 3,000ip each year since 1994.We estimated, that 47% (SE = 3.9%) of the P-values 
in the larrnnl of WUd$e Magenrent lacked estimates' of me& or effect sizes or even the sign of the 
difference in means or other parameters. We find that null hypothesis testing is uninformative when no esti-
mates of means or effect size and their precision are given. Contrary to common dogma, tests of sta&tical 
null hypotheses have relatively littie utility in science and are not a fundamental q e c t  of the scientific method. 
We recommend their use be reduced in favor of more informative approaches. Towards this objective, we 
describe a relatively new paradigm of data analysis based on Kullback-Leibler information. This paradigm Is 
an extension of likelihood theory and, when used correctly, avoids many of the fundamental limitations and 
common misuses of null hypothesis testing. Information-theoretic methods focus on providmg a sbength of 
e-,idence for an a priori set of alternative hypotheses, rather than a statisticaltest of a null hypothesis. This 
paradigm allows the following tpes  of evidence far the altemative hypotheses: the rank of each hypothesis, 
exprsssed as a model; an estimate of the formal likelihood of each model, given the data; a measure of precision 
that incorporates model selection uncertainty: and simple methods to allow the use of the set of alternative 
madelr; in m a h g  formal inference. We provide an example ofthe information-theoretic approach using data 
on the effect of lead on survival in spectacled eider du& (Somatsria'$scheri). Regardlesr of the analysis 

used, we strongly remmrnend inferences based on a priori considemtions be clearly separated from 
those resulting from some fom of data dredging. 
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Theoretical and applied ecologists continually A test statistic is computed &om sample data 
strive for rigorous, objective approaches for and compared to its hypothesized null distri- 
malang valid inference concerning science bution to assess the consistency of the da:a with 
questions. The dominant, traditional approach the null hypothesis. More extreme values of the 
has been to frame the question in terms of 2 test statistic suggest that the sample data are not 
contrasting statisticd hypotheses: 1 represent- consistent with the null hypothesis. A substan-
ing no difference between population parame- ti* arbitrary level (a)is often preset to serve 
ters of interest (i.e., the null hypothesis, H.)and as a cutoff (i.e., the basis for a decision) for sta- 
the other representing either iunidirecti&l or tistically significant versus statistically nonsignif- 
bidirectional altemative lie.. the altemative hv- icant,results. This procedure has various names, . 
pothesis, H,).These hypotheses basically cdr- including null hypothesis testing, significance 
respond to different models. For example, testing, and null hypothesis s i e c a n c e  tesbbg. 
when comparing 2 groups of interest, the as- I n  fact, this procedure' is a hybridization of 
sumption is that they are from the same popu- Fisher's (1928) signiiicance testing and Neyman 
lation so that the  difference between their true 
means is 0 (i.e., H, is J L ~- JL)= 0, o r  111 = b2). 

and Pearson's (1928, 1933) hypothesis testing 
(Gigerenzer et al. 1989, Goodman 1993, Royall 

'Employed by U.S. Geological Survey, Division of 1997). 

Biological Resources. There are a number of problems with the ap- 
E-mail: anderson@picea.cnr.colostate.edu plication of the null hypothesis t e s ~ g  ap- 
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n is 	 ' poach, some of which we present herein (Cam-and i er 1978, Cohen 1994, Nester 1996). Although 1 of 
%is j doubts among statisticiansconcerning the utility 
ssis, I of null hypothesis testing are hardly new (Berk- 
sian : son 1838, 1942; Yates 1951; Cox 1958), criti- 
dive j 	 cisms have increased in the scienti6c literature 
&ta - in recent years (Fig. 1).Over 300 references lysis 
iom ! , 	 now exist in the scienii5c literature that wam 

of the limitations of statistical null hypothesis 
testing. A list of citations is located at http:N 

tistical usage in the ecological field as a whole. 
We chose the Juurnal of WiIdlrfe Management. 
as an applied journal for comparison. We review 
theoretical or philosophical problems with the 
null hypothesis testing approach as we11 as its 
common misuses. We offer a practical, theoret- 
ically sound alternative to null hypothesis test- 
ing and provide an example of its use. We con- 
dude with our views concerning data analysis 
and the presentation of scienac results, as well 
as our recommendations for changes in editolial 
and review policies of biological and ecological 

PROBLEMS WITH NULL HYPOTHESIS 
OR SIGNIFICANCE TESTING 

The fundamental problem with the null hy- 
pothesis testing paradigm is not that it is wrong 
(itis not), but that it is uninformative in most 
cases, and of relatively little use in model or 
variable selection. StaMcal tests of null hy- 
potheses are logically poor (e.g., the arbitrruy 
declaration of signiscance). Berhon (1938) was 
one of the h t  statisticians to object to the prac- 
tice. 

'Rze most curious problem with null hpoth- 
esis testing, as the p~imary basis foi data anal-
ysis and inference, is that nearly all null hy- 
potheses are false on a priori grounds (Johnson 

-+ sonl.hhnl and http://www.cnr.colostate.edul

( -andemonlnestechtml. The former website also 

-	 ; includes a link to a list of papers supporting the 
: use of tests. We believe that few wiidlife biol- 

ogists and eco1ogiscE are aware of the debate iata j 
regarding null hypothesis testing among statis- 3 t r i - 1 ticians. Discussion and debate have been par- 

vith 1 titularly evident in the social sciences, where at 
the 

I least 3 special features ~ o u m lof Expefimpntal
not 

1 Education 61(4); Psychological Science 8(1); Ae-
tan- i search in the Schools 5(2))and 2 edited books 
:Ne 

i, (Morrison and Henkel 1970, Harlow et al. 
sta- i 1997) have debated the utility of null heothesis 

; tests in scientific research. The ecological sci- 
nes, ences have lagged behind other disuplines with 
nce I respect to awareness and discussion of problems 
ing. associated with null hpothesis testing (Fig. 1; 
1 of I Yoccoz 1991; Cheny 1998; Johnson 1999). 
nan I We present information concerning preva- 

; lence of null hypothesis testing by reviewing pa- 
byall , pers in Ecology and the Journal of Wildlge 

Management. We chose Ecology because it is 

www.~nr,colostate.edu/-anderson/thomp-1995). Considerthe null H.: 0, = 81 = B2 = . . . 
= Bs, where 6, is an expected control response 
and the others are ordered beament responses 
(e.g., different nitrogen levels applied to agri- 
cultural fields). Ths null hypothesis is almost 
surely false as stated. Even the application of 
sawdust would surely make some difference in 
respo,me. The rejection of this strawman hardly 
advances science (Savage 1857). nor does it give 
meanin@ insights for conservation, planning, 
management, or fixher reseafch. These issues 
should properly focus on the esbation of ef-
fects or differences and their precision and not 
on testing a ~  ~ a l(uninformative) null. Other 
general examples of a priori false null hypoth- 
eses Include (1)%: kc= !+ (mean growth rate 
is equal in control vs. aluminum-treated bull- 
frog, Rana cotesbeiana); (2) q:Slc = S,, (SUI-

vival probability in week j is the same for con- 
trol vs. lead-dosed gull chicks, Lams v.),and 
(3) H,:p, = 0 (zero correlation between vari- 
ables Y and X). Johnson (1999) provided addi- 
tional examples of null hypotheses that are 

http://www.cnr.colostate.edul
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is that a particular a-level is without theoretical 
basis and is therefore arbitrary except for the 
adoption of conventional values (commonly 0.1, 
0.05 or 0.01, but often 0.15 in stepwise variable 

ingless categories sigdcant and nonsislJ;cant 
and is relatively uninformative. This Neyman-
Pearson approach is an arbitrary reject or not 
reject decision when the substantive issue is one 
of strength of evidence concerning a scientific 
issue (Royal1 1997) or estimation of size of an 

Consider an example from a recent issue of 
the WildlifeSociety Bulldin, "Response rates 
did not v q  among areas ( ~ 2= 16.2, 9 df,P = 

the P-value been 0.01 lower, the conclusion 
would have been that sigdcant differences 
were found and the estimates & and their pre- 
cision given. Alternatively, had the arbitrary a 
level been 0.10 inidally, the result would have 
been quite different (i.e., response rates varied 
among areas, x2 = 16.2,9 df, P = 0.06). Here, 
as in most cases, the null hypothesis was false 
on a priori grounds. Many examples can be 
found where contradictory or nonsensical re- 
sults have been reported (Johnson 1999). Legal 
hearings conceming scientific issues are unpro- 
d u ~ v eand lead confusion when 1 party 
claims si@cance (based on a = 0.1), whereas 
the opposing party argues nonsignificance 
(based on a = 0.05). 

The cornerstone of null hypo&esis testing, 
the P-value, has problems as an inferential tool 
that stem from its very deiinition, its application 
in observational studies, and its interpretation 
(Chew 1998, J&mon 1999). The P-value is de-
fined as the probability of obtaining a test sta- 
tistic at least extreme as the observed one, 
conditional on the null hypothesis being true. 
There are 2 important points to consider about 
this definition. First, a P-value is based not only 
on the observed result (the data collected), but 
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that never occurred than it is a concise state- 

event (i.e., the data). Bayesians.(people maldng 
statistical inferences using Bayes' theorem; 
Gellman et al. 1995) find this propeq of P- 

;
1' values objectionable; they tend to avoid null hy-

a P-value is explicitly conditional on the null hy- i 
pothesis (i.e., it is computed based on the dis-
tribution of the test statisiic assuming the null 
hypothesis is true). The null distribution of the 
test statistic (e.g., often assumed to be F, t, z, 
or x2) may closely match the actual sampling 
distribution of that statistic in strict experi- 
ments, but this property does not hold in ob- 
servational studies. In these latter studies, the 
distribution of the test statistic is unknown be- 

der the null hypothesis is not deducible from 
the study design. Consequently, the form of the 
distribution is not known, only n@vely ass'umed, 
which makes interpretation of test resultr prob- 
lematic. 

It has long been hown and criticized that the 
P-value is dependent on sample size (Berkson 
1938). One can always reject a null hypothesis 
with a large enough sample, even if the h e  
difference is trivially small. This points to the 
difference between statistical significance and 
biological importance raised by Yoccoz (1991) 
and many others bdore and since. Another 
problem is that using a fixed a-level (e.g., 0.1) 
to decide to reject or not reject the null hy-
pothesis makes little sense as sample size in- 
creases. Here, even when the null hypothesis is 
b e  and sample size is infinite, a Type I error 
(rejecting a null that is true)' still occurs with 
probabiliv a (e.g., O.l), .and therefore this ap-
proach is not consistent (theoretically, a should 
go to zero n goes to idkity). Still another 

issue is that the P-value does not provide infor- 
mation about either the size or the precision of 
the estimated effect. The solution here is to 
merely present the estimate of effect size and a 
measure of its precision. 





A pervasive problem in the use of P-values is sets 
the 	 in their misinterpretation as mideuce for either 

the null or alternative hypothesis (see Ellison 
1996 for recent examples of such misuse). The 
proper interpretati'on of the P-value is based on rents 
the probability of the data given the null hy-tap-

rved pothesis, not the converse. We caMot accept or 
prove 'the null hypothesis, only fail to reject it. 

b g  The P-value cannot validly be taken as the prob- rem; 
d P- ability that the null hypothesis is h e ,  although 

I hy- this is often the interpretation given. Similarly, 
the magnitude of the P-value does not indicate 

that a proper strength of evidence for the alternative 

1 hy- hypothesis (i.e., the probabiliq of Ha, given the 

dis- data), but rather the degree of consistency (or 

null inconsistency) of the data with H. (Ellison 

l the 1996). Phrases such ashighly significant (often 
denoted as ** or even ***) only reinforce this t, z, 

>ling error in interpretation of P-values (RoyaU 1997). 

peri- Presentation of only P-values also limits the 

ob- effectiveness of (future) meta-analyses. There is 

the a strong publication bias whereby only si@- 
I be-	 cant P-values tend to get reported (accepted) in 

the literature (Hedges and O l h  1985:285-290,ence 
:tors Iyengar and Greenhouse 1988). Thus,the pub- 
~onal lished literature is itself biased in favor of re- 

sults arbitrarily deemed sigmficant. It is impor-:un-
lrom tant to present parameter estimates (effect size) 
E the and their precision from any well designed 
ned, study, regardless of the outcome; these become 
frob- the relevant data for a meta-analysis. 

A host of other problems &st in the null hy- 
t the pothesis testing paradigm, but we wiU, mention 
kson only a fav. We generally lack a rigorous theory 
hesis for testing null hypotheses when a model con- 
h e  tains nuisance parameters (e.g., sampling prob- 
the 	 abilities in capture-recapture studies). The dis-

r 

and 	 hibution of the likelihood ratio test statistic be- 
991) 	 tween models that are not nested is unknown 

and this makes comprehensive analysis prob- 
lematic. Given the prevalence of null hypothesis 

hy- testing, we warn against the invalid notion of 
? in- post-hoc or retrospective power analysis (Good- 
sis is man and Berlin 1994, Gerard etal. 1998) and 

note that this practice has become more com- 31TOI 

with mon in recent years. 
8 ap- The central issues here are twofold. First, sci- 
auld entists are fundamentally interested in esti-
~ther mates of the magnitude of the differences and 
nfor- their precision,the so-called effect size. Is the 
)n of difference trivial, small, medium, or large? IS 

is to this difference biologically meaningful? This is 
nd  a an estimation problem. Second, one often wants 

to know if the diiferences are large enough to 

just+ inclusion in a model to be used for in-
ference in more complex science settings. This 
is a model selection problem. These central is- 
sues that fnrther our understanding and howl- 
edge are not prop'erly addressed with statistical 
hypothesis testing. Statistical science is much 
more than merely significance testing, wen 
though many statistics courses are still offered 
with an unfounded emphasis on null hypothesis 
testing (Schmidt 1996). Many statisticians ques- 
tion the practical ntiiity of hypothesis testing 
(i.e., the arbitrary a-levels, the false n d  hy- 
potheses being tested, and the notion of signif- 
icance) and stress the value of estimation of ef- 
fect size and associated precision (Goodman 
and Royal1 1988, Graybill and Iyer. 199435). 

PREVALENCE OF FALSE NULL 
HYPOTHESES AND P-VALUES 

We randomly sampled 20 papers in the Ar-
.ticZes section from each volume of Ecology for 
years 1978-97 to assess the prevalence of trivial 
n d  hypotheses and associated P-values in pub-
lished ecological studies. We then randomly 
sampled 20 papers from each volume of the 
Joumal of Wildlife Management (JWM) for 
years 199498 for comparison. In each sampled 
article, we noted whether the null hypotheses 
tested seemed at all plausible In additiori, we 
counted the number of P-values and equivalent 
symbols, such as statistics with superscripted as- 
terisks or comparisons speci6cally marked non- 
significant. We tallied the number of cases 
where only a P-value was given (some papers 
also provided the test statistic, degrees of free- 
dom, or sample size), without an estimate of 
effect size, its sign or its precision, even in an 
associated table, for papers appearing in the 
JWM during the 1994-98 period. However, our 
counts did not include comparisons that were 
both nonsigdcant and unlabeled or uospeci- 
fied, nor did they include all possible statistical 
comparisons or tests. Consequently, ours is an 
underestimate of the total number of statistical 
tests and associated P-values contained within 
each article. 

In the 347 sampled articles in Ecology con-
taining null hypothesis tests, we found few ex- 
amples of null hypotheses that seemed biolog- 
ically plausible. Perhaps 5 of 95 articles in JWM 
contained 2 1  null hypothesis that could be con- 
sidered a plausible alternative. Only 2 of 95 ar- 
ticles in JWM incorporated biological impor- 
tance into the interpretations of results, the re- 
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Table 1. Median, mean (SE),and range of the number of P-values per article, and estimated total (SE)number of Rvalueo 
per year, based on a random sample of 20 papers each year from the Articlessectlonof Ecology for 1978-97. 

mainder merely used statistical significance. In 
the vast majority of cases, the null hypotheses 
we found in both journals seemed to be obvi- 
ously false on biological grounds even before 
these studies were undertaken. A major re-
search failing seems to be the exploration of un- 
interesting or even trivial questions. Common 
examples included null hypotheses assuming 
survival probabilities were the same between ju- 
veniles and adults of a species, assuming no cor- 
relation or relationship existed between vari-
ables of interest, assuming density of a species 
remained the same across time, assuming net 
primary production rates were constant across 
sites and years, and assuming growth rates did 
not differ among individuals or species. 

We estimate that there have been a minimum 
of several thousand P-values appearing in every 
volume of Ecology (Table 1)and J W M  (Table 
2) in recent vears. Given the conservatism of - ~- -~ --~ ~~~ 

ow counting procedure, the number of null hy- 
pothesis tests that were actually perfonned in 
each study was probably much larger. Approi- 
mately 47% (SE= 3.9%) of the P-values that 
we counted in JWM appeared alone, without 
estimated means, differences, effect sizes, or as- 
sociated measures of precision. Such results, we 
maintain, are paiiicukry uninfonnafive (e.g., 
not even the sign of the difference being indi-
cated). The key problem here is the general f d -  
w e  to explore more relevant questions and to 

report informative summary statistics (e.g., es- 
m t e s  of effect size and their precision), even 
when significance was, found. The secondary 
problem is not recognizing the arbitrariness of 
u,hence perpetuakg an arbitrary classification 
of results as sigdcant or not si$cant. 

A PRACTICAL ALTERNATIVE TO NULL 
HYPOTHESIS TESTING 

We advocate Charnberlin's (1890, 1966) con- 
cept of multiple working hypotheses rather than 
a single statistical null vs, an alternative-this 
seems like superior science. However, this ap-
proach leads to the mudtiple testing problem in 
statistical hypothesis testing, and arbitrariness in 
the choice of a-level and of which hypothesis to 
serve as the null. Although commonly used in 
practice, si@cance testing is a poor approach 
to model selection and variable selection in re-
gression analysis, .discriminant function analysis, 
and similar procedures. (Akaike 1974, Mc-
Quanie and Tsai 1898:427-428). 

Akaike (1973, 1574) developed data analysis 
procedures that are now called infaGdionthk-
oretic because they are based on Kullback-Lei- 
bler (1951) information. Kullback-Leibler infor- 
mation is a fundamental quantity in the sciences 
and has earlier roots back to Boltzmm's con- 
cept of entrow. The Kullback-Leiblw infor- 
mation between conceptual truth, f, and ap- 
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jsion), even 
:secondary 
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:lassScation 
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, 1965) con- 
:rather than 
native-this 
ver, this ap-
problem in 

bitrhess in 
ypothesis to 
~nlyused in 
or approach 
:ction in re- 
ion analysis, 
1974, Mc- 

lata analysis 
mation the-
ullback-Lei-
eibler infor- 
the sciences 
man& con-
:ibler infor- 
f. and ap- 

proximating model g is defined for continuous Model Selection Criteria 
functions as the integral 	 Ak.aike (1973) found a formal relationship be- 

tween Kullback-Leibler information (a dominant 
I(f.g) = 1f ( x ) l o g e ( s )  4 paradigm in information and coding theory) and 

maximum likelihood (the dominant paradigm in 
wheref and g are n-dimensional probabiliv dis- staiisticli;deLeeiw 1992). This finding makes it 
bibutions. Kullback-Leibler information, denot- possible to combine estimation and model selec- 
ed I(f,g), is the information lost when model g tion under a single theoretical framework--op 
is used to approximate truth, f:The right hand *tion. Akaike's breakthrough W ~ Sderiving 
side looks difficult to understand, however it an estimator of the qec ted ,  relative Kullbd- 
can be viewed as a s t a ~ c d  expectation of the Leibler information, based on the maximized 
natural logarithm of the ratio off (full reality) log-likelihood function. This led to M e ' s  in- 
to g (approhating model). That is, Kullback- formation criterion (AIC), 
Leibler information could be written as

(*)I 	 AIC = -2lo&(t(8ldda)) + 2K, 

E'[lo geg(xle) ' .  where lo&4(6ldata) is the value of the m a w e d  
log-likelihood over the unknown parameters (e), 

where the expectation is taken with respect to given the data and the model, and K is the num- 
full reality,$ Using the property of logarithms, ber of parameters estimated in that approximat- 
this expression can be further simpNed as the ing model. Theye is a simple transformation of 
difference between 2 expectations, the estimated residual sum of squares (RSS) to 

obtain the value of lo&(t(8l&a)) when using 
I(f8g) = Ef[lOg.(f(x))l - Ef[lO&(g(rle))l. least squares, rather ]ikelihood 

Clearly, full reality is unlmom, but it is fixed The value of AIC for least squares models is 

across models, thus a further simpliiication c& merely, 
be written as 

AIC = n.i0&(6~)+ , .: 

I(f,g) = C - E~lo&(g(rl0))1, 
where n is sample size and b2 = RSSIn. Such 

where the expectation of the logarithm of full quantities are easy to compute once the RSS 
reality drops out into a simple scaling constant, values for each model are available using stan-
C. Thus,the focus in model selection is on the dard computer software. 
term glo&(g(x10))1. Assuming a set of a priori candidate models 

One seeks an approximating model (hypoth- (hypotheses) has been defined and well sup- 
esis) that loses as little information as possible ported, AIC is computed for each of the a p  
about truth; this is equivalent to minimizing I(f, proximating models in the set (i.e., g,, i = 1,2, 
g), over the set of models of interest (we assume . . . , R).The model where AIC is minimized is 
there are R a priori models, each representing selected as best for the empirical data at hand. 
an hypothesis, in the candidate set). Obviously This concept is simple, compelling, and is based 
Kullback-Leibler information, by itself will not on deep theoretical foundations (i.e., Kullback- 
aid in data analysis as both truth (f) and the Leibler information). The AIC is not a test in 
parameters (0) are unknown to us. any sense: no single hypothesis (i.e., model) is 
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made to be the null,. no arbitrary a level is set, 
and no notion of sigdcance is needed. Instead, 
there is the concept of a best inference, ,given 
the data and the set, of a priori models, and 
further developments provide a strength of ev- 
idence for each of the models in the set. 

It is ,jmportant to use a modified criterion 
(called AIC.) when K is large relative to sample 

4, AIC, = -2 log& (61 data)) + 2K + 2K(K + 1) 
(n - -

and this should be used unless nlK > about 40 
(Burnham and Anderson 1998).As sample size 
increases, AIC = AIC., thus,if in doubt, always 
use AIC. as the final term is also trivial to com- 
pute. Both AIC and AIC, are estimates of ex-
pected (relative) Kullback-Leibler information 
and are useful inthe analysis of real data in the 
"noj;' sciences. 

Ranking Models 
The evidence for each of the alternative mod- 

els can best be done by rescaling AIC values 
such that the model with the minimum AIC (or 
AIC,) has a value of 0,i.e., 

A, = AICi - m M C .  

The 4 values are easy to interpret and allow a 

Likelihood oi a Model, Given the Data 

functions $I the same sense that S(8ldda. g,) 
is the likelihood of the parameters 8, given the 
data ( x )  and the model (gJ.It is convenient to 
normalize these values such that they sum to 1, 

J. Wild. Manage. 64(4):2000 

The w,, called tlkaike weigbts, can be inter- 
~ re t edas approximate probabilities that model 
i is, in fact, the Kullback-Leibler best model in 
the set of models considered. Akaike weights 
are a measure of the weight of evidence that 
model i is the actual Kullback-Leibler best 
model in the set. The relative likelihood of 
model i versus model j is just WJW? Inference 
here is conditional on both the data and the set 
of a priori models considered. 

Unconditional Sampling Variance 

Typically, estimates of sampling variance are 
conditional, on a given model. When model se- 
lection has been done, a variance component 
due to uncertainty in model selection should be 
incorporated into esihates of precision such 
that these estimates are unconditional on the 
selected model, but still conditional on the 
models i n  the set. An estimator of the uncon- 
ditional variance for the parameter 8 from the 
selected (best) model is, 

where 
R 


6 = c w;&. 
i-1 

methods, 

Multi-model Inference 
Rather than base inferences on a single se-

lected best model from an a priori set of mod- 
els, inference can be based on the entire set of 
models (multi-model inference, MMI). Such in-
ferences can be made if a parameter, 8 ,  is in 
common over all models (as 8, in model gt), or 
o w  goal is re diction. Then by using the 
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i. 	 Table 3. Example of multl-model Inference based an models and results presented in Tables 3 and 4 In Grand st al. (1898) 
on enect of lead poisoning on spsotacied eider annual survival pmbabiilty; + denotes annual survival pmbabillty: subscripb e 

1. 	 and o denoted exposed or unexposed to lead, respectively. From each model we get an estimate of lead.enect on survival 
(sffecf- dU- 63, and estlrneted cond~lonal standard ermr, Se(BffecfIg,), glven the model: see text for furher axplanation. I. 

Mdslgr X AS wi L e d  cIfeot 6,,-b Se(lfjecfI~1. 

~ + I P . ]  3 0.00 0.613 
;i (+,+I p.1 4 2.07 0.239 

(%.I p.1 5 4.11 0.086 
$ i+.p. l  2 12.71 0.001 
1; (+*p.I 3 14.25 0.001 
1 	 model averaged 

atio ion idam thst of Lebnron et nl. (1982); r - I - Irduponue; . - con-, 

0.331 0.105 

0.335 0.148 

0.330 0.216 

0.000 0.000 

0.000 0.000 

0.335 0.125 


8 sod I; p - rrcnp-i 	 ~ m r  pmbnbufy.ye-. 

weighted average, 8 = Xw16i. we are basing 
point inference on the entire set of models. This 
approach has both practical and philosophical 
advantages (Gardner and Altman 1986, Hen- 
derson 1993, Goodman and Berlin 1994). 
Where a model-averaged estimator can be used, 
it often has. better precision and reduced bias 
compared to the estimator of that parameter 
from only the selected best model. 

An Example: Lead-Effect on Spectacled 
Eider Survival 

Grand et al. (1998) evaluated the effect .of 
lead exposure on annual survival probability (+) 
of female spectaded eiders. Data were from 3 
years of a larger capture-recapture study at 2 
sites on the Yukon-Kuskokwim Delta in Alaska. 
Nesting female eiders were capturedin May- 
June of 1994-96. At capture in 1994 and 1995, 
blood was drawn to use in determining lead ex- 
posure (assumed to be from ingested lead pel- 
lets). Grand et al. (1998) &&ed each female 
either as exposed or unexposed to lead. For 
analysis of lead-effect on annual survival they 
used 5 models determined a prioli (but partly 
based on analysis of the larger data set). They 
used program MARK (White and Bumham 
1999, White et al. 2000) to model the capture- 
recapture data and estimate model parameters. 

The parameterization of all 5 models was 
structurally similar in that each model was 
based on an annual probability of survival (+) 
and a recapture probability (p), conhtional on 
a bird being alive at the beginning of year j. 
Grand et al. (1998) let the recapture probabil- 
ities be constant across years, denoted asp., and 
let the survival probabilities vary by lead expo- 
sure ( 1 )  and site (s). The notation is standard in 
the capture-recapture literature (Lebreton et al. 
1902). Thus, model {+I, p . )  represents the hy- 
pothesis that annual sunival probability varied 

by lead exposure, but not year or site, wbile 
recapture probability was constant over years, 
sites, and exposure. Model (+s+~,p . )  represented 
the hypothesis that annual survival was constant 
across years, but varied by site and exposure but 
with no interactions. Model {+,.I, +.I represent- 
ed the hypothesis that survival was constant 
across years, varied by site and exposure, but 
with an interaction term, s X 1. Model {+., p.) 
assumed that both survival and recapture prob- . 
abilities were constant across years, site, and ex-
posure, while model (+,, p.] assumed that sur- 
vival varied by site, but not year or exposure. 
Thus, empirical supporl for a hypothesized lead 
effect must stem from models {+I,p.1, i+s+~,21.1, 
and (+,.I. p.1. 

Model selection resultr presented by Grand 
et al. (1998) in their Table 3 are basically iust . "  
the AIC differences, 4; they bare inference 
about the lead-effect (their Table 4) only on tile 
selected best model. Here we extend their re- 
sults to incorporate multi-model inference 
(MMI; Burnham and Anderson 1998). First, we 
have the Akaike weights, w,, shown in our Table 
3. The best model bas +.wrying by lead expo- 
sure, but only has wl = 0.673 as a strength of 
evidence for this best model. This weight siig- 
gests that model (41,p.) is not convincingly the 
best model if other replicate data sets were 
available. The next two models add little sup- 
po* for a site-effect, either with or without in- 
teraction terms. This can be seen by consider- 
ing AIC, 

AIC = -21og&$'(+, p)) + 2K. 

AJC is an estimator of Kullback-Leibler infor-, 
mation loss and embodies the prinaple of par- 
simony as a byproduct, not in its derivation. The 
first term in AIC is a lack of 6t component and 
gets smaller as more parameters are fitted in the 
model, however, the second component gets 
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larger as a penalty for adding additional param- 
eters. Thus, it can be seen that AIC enforces a 
eade-off between bias and variance as the num- 
ber of parameters is increased. From Table 3, 
one can see that 4 for model p.) with K 
= 4 parameters increased by 2 units over the 
best model, while model p.]  witb K = 5 
parameters increased by 4 units over the best 
model. The fit of the 6rst 3 models in Table 3 
is nearly identical; the additional hypothesized 
effect of site, with or without an interaction 
term, is not supported by the data. In each case, 
the 4 values increase by about 2 as the number 
of parameters increases by one. In total, the ev- 
idence for a lead-effect is vev strong in that 
the sum of the Akaike weights for these 3 mod- 
els is 0.9Q8. Empirical support for the 2 models 
without a lead-effect is lacldng (Table 3) as both 
models have w, = 0.001. The evidence strongly 

: suggests the presence of an effect on annual 
survival caused'by ingestion of lead. 

The evidence that model (42, p . )  is the best 
over replicated data sets can be easily judged 
by the ratio of the M  e  weights of the best 
model'and the second ranked model. This evi-
dence (e.g., wl/ws= 0.673/0.238 = 2.8) is in- 
suf6cient to justify ignoring issues of model se- 
lection uncertaint,, Hence, from the Akake 
weights, it is clear that a lead-effen on sunival 
is required for a model (hypothesis) to be plau- 

Finalty, rather than ignore model selection 
uncei-taiuty, we can use the model-averaged es- 
timate of lead-effect on annual sumival and its 
unconditional standard error (from Table 3). As 
is often the case, the model averaged estimate 
of effect size is vely similar to the estimate from 
just the best model (0.335 vs. 0.337). However, 
the unconditional standard error, 0.125, is about 
20% larger than the conditional standard error, 
0.105, from the best model. This increase re- 
fleas model selection uncertainty and is an hon- 
est measure of uncertainty in the estimated ef- 
fect of lead on eider survival probabilities. 

~umrnaryof the Information-Theoretic 

The principle of parsimony, or Occam's razor> 
provides a philosophical basis for model selec- 
tion; Kullback-Leibler information provides an 
objective target based on deep, fundamental 
theory; information criteria (AIC and AIC,), 
along with likelihood-based inference, provide 
a practical, general methodology for use in data 
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analysis. Objective data analysis can be rigor- 
ously based on these principles without having 
to assume that the true model is contained in 
the set of candidate models. There are surely 
no true models in the biological sciences. Pa-
hers using information-theoretic approaches are 
beginning to appear in theoretical and applied 
journals in the biological sciences. 

At a conceptual level, reasonable data and a 
good model allow a separation of information 
and noise. Here, information relates to the 
structure of relationships, estimates of model 
parameters, and components of variance. Noise 
then refers to the residuals: variation left un-
erplained. We can use the information exbacted 
from the data to make proper inferences. The 
goal here is an approximating model that min-
imizes information loss, If$ g), and properly 
separates noise (non-information or entropy) 
from structural information. In an impomt  
sense, we are not trying to model the data, but 
rather we want to model the information in the 
data. 

Information-theoretic methods are relatively 
simple to undersL=d and practical to employ 
acmss a large class of empizical situations and 
scientific disciplines. The methods can be com- 
puted by hand ifnecessary (assuming one has 
the parameter estimates, maximized log-likeli- 
hood values, and vZ?($lg,) for each of the A a 
priori models). The information-theoretic me&- 
ods are easy to understand and we believe it is 
important that people understand the methods 
they employ. Further material on information- 
theoretic methods can be found in recent books 
by Burnham and Anderson (1998) and Mc- 
Quame and Tsai (1998). M e ' s  collected 
work.,have been recently published by P q e n  
et al. (1998). 

CONCLUSloNS 
The overwhelming occurrence of fahe null 

hypotheses in our sample of d c l e s  from Ecol-
ogy and JWM seems sobering. Why are such 
strawmen being continually tested and the re- 
sults accepted as science? We believe research- 
e n  in the applied sciences have been indoctri- 
nated into thinking that statistical null hypoth- 
esis tes'dng is a fundamental component of the 
scient&c method. Researchers commonly treat 
scienfi6c hypotheses and statistical null hypoth- 
eses as one in the same, which they are no* 
(Romesburg 1981, Ellison 1996). As a result, 
ecologists live or die by the arbitrarily assigned 
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siflcant P-value (see Nester 1996 for a col- 
orful description of the different types of emo- 
tional response to significance testing results). 

In the worst, but common, case, only a P- 
value is presented, without even the sign of the 
supposed difference. Null hypothesis testing 
does not represent a fundamental aspect of the 

-scientificmethod; but -rather a pseudoscientSc 
approach that provides a false sense of objedv- 

. 	ity and rigor to. analysis and interpretation of 
research data. Carver (1978:394) offers the ex-
treme statement, ". .. statistical significance 
testing usually involves a corrupt form of the 
scien&c method and, at best, is of trivial im-
portance . . . ." Much of the statistical software 
currently available aggravates this situation by 
computing and displaying quantities related to 
various tests. 

Results from null hypothesis testing lead to 
relatively little increase in understanding and 
divert attention from the important issues-es- 
timation of effect size, its sign and its precision, 
and meaningful mechanistic modeling of Pre- 

and causal relationships. We urge re-
searchers to avoid using the words signi6cant 

nonsigni6cant as these meant 
something of biological importance. Do not rely 
on statistical hypothesis tests in the analysis of 
data from Obsenrational studies, not 
only P-values, and avoid reliance on arbitray rr-
levels to judge significance. Editors and referees 
should be wary of tivial null hypotheses being 
tested, the related P-values, and the implication 
of supposed significance. 

There are alternatives to the traditional null 
hypothesis testing approach in data analysis. For 
example, the standard likelihood ratio pr&des 
a more realistic basis for strength of evidence 
(Edwards 1972, 1992; Royall 1997). There is a 
great deal of current research on Bayesian 
methods and practical approaches are forth-
coming for uie in the sciences. However, the 
Bayesian approaches seem computationally dif-
ficult and there may continue to be objections 
of a fundamental nature (Foster 1995, Dennis 
1gg6, all 1997)to heuse ofBayesian 
ods in strength-of-evidence assessments and 
conclusion-oriented, empirical science. 

Information-theoretic methods offer a more 
useful, general approach in the analysis of em- 
pirical data than the mere te*g of hy-
potheses. The information-theoretic paradigm 
avoids statistical hypothesis testing concepts and 
focuses on relationships of variables (via model 
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sele&on) and on the estimation of effect size 
and measures of its precision. These relatively 
new approaches are conceptually simpler and 
easily computable, once the model s tawcs  are 
available. This paradigm is useful in providing 
evidence and madng inferences from either a 
single (best) model or from many models (e.g., 
using-MMI based 'weigbg). M o t -  
mation-theoretic approaches cannot be used 
unthinkingly; a good set of a priori models is 
essential and this involves professional judg- 
ment and integration of the science of the issue 
into the model set. 

Increased attention 'is needed to separate 
those inferincesthat rest on a priori consider- 
ations from those resulting from some degree 
of data dredging. Essentially no justifiable the- 
ory exists to estimate precision (or test bypoth- 
eses, for those & so inched) when data 
dredging has taken place (the theory (-)used 
isfor a prio,j analyses, assuming the model was 
the only one fit to the &h).-j-his glaring fact is 
either not understood by praditioners and joy- 
nal editors or issimply ignored. Two types of 
datadredging (1)an iterative 
where patterns and differences obseAd after 
initial analysis are chased by repeatedly building 
new with these effeds in~uded, and (2) 
analysis of all possible models (unless, perhaps, 
if model averaging is used), Data dredging is a 
poor approach tomakingreliable inferences 

the sample-, pop&tion. Both types of 
data dredging are best reserved for mpre ex-
ploratory investigations that probably should of- 
ten remain unpublished, The incorporation of a 
priori considerations is of paramount impor- 
tance and, as such, editors, referees, and au- 
thors should pay much closer attention to these 
issues and be wary of inferences obtained from 
post hoc data dredging. 
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