Proposed Amendment to the Water Quality Control Plan - Los Angeles Region

to Incorporate the

Total Maximum Daily Load for Metals and Selenium in the Calleguas Creek, its Tributaries and Mugu Lagoon

Adopted by the California Regional Water Quality Control Board, Los Angeles Region on June 8, 2006

Amendments

Table of Contents Add:

Chapter 7. Total Maximum Daily Loads (TMDLs)

7-19 Calleguas Creek Watershed Metals and Selenium TMDL

List of Figures, Tables, and Inserts Add:

Chapter 7. Total Maximum Daily Loads (TMDLs) Tables

- 7-19 Calleguas Creek Watershed Metals and Selenium TMDL
- 7-19.1. Calleguas Creek Watershed Metals and Selenium TMDL: Elements

7-19.2. Calleguas Creek Watershed Metals and Selenium TMDL: Implementation Schedule

Chapter 7. Total Maximum Daily Loads (TMDLs) Calleguas Creek Watershed Metals and Selenium TMDL

This TMDL was adopted by:

The Regional Water Quality Control Board on June 8, 2006.

This TMDL was approved by:

The State Water Resources Control Board on [Insert date]. The Office of Administrative Law on [Insert date]. The U.S. Environmental Protection Agency on [Insert date].

The elements of the TMDL are presented in Table 7-19.1 and the Implementation Plan in Table 7-19.2

Table 7-19.1. Calleguas	Creek Watershed Meta	als and Selenium TMDL: Elements
-------------------------	-----------------------------	---------------------------------

TMDL Element	Calleguas Cree	k Watershed	Metals and	Selenium TMDL
Problem Statement	Three of fourteen real including Revolon SI Mugu Lagoon are ide 303(d) list of water-q elevated levels of met which were approved February 2003, requin Loads (TMDLs) to es body can receive with for listed metals and s because, as a class of chemical properties th in the environment.	ches in the Ca ough, Lower (entified on the uality limited tals and seleni by the State V re the develops tablish the ma nout exceeding selenium are p compounds, the nat influence the	lleguas Creek Calleguas Creek 2002 Clean V segments as in um in water. Vater Resource ment of <u>Total</u> ximum amou y water quality resented hereighey possess sin heir persistence	Watershed (CCW) ek – Reach 2, and Vater Act Section mpaired due to The 303(d) listings, ees Control Board in <u>Maximum Daily</u> nt of pollutants a water v standards. TMDLs in in one document milar physical and ce, fate, and transport
Numeric Targets	This TMDL establish	es four types o	of numeric tar	gets: (1) California
	copper, nickel, and zin selenium; (2) Ffish ti mercury and selenium nickel, and zinc for 30 quality targets will be data, if available. 1.Copper Targets	nc, and in tota ssue targets fo i; and (4) <u>Ss</u> ed 03(d) listed rea evaluated in c	l recoverable or mercury; (3 liment quality aches. Attain combination v	form for mercury and) <u>Bb</u> ird egg targets for guidelines for copper, ment of sediment with sediment toxicity
		Water Qua	lity Target	
	Subwatershed	(ug dissolve	d Copper/L)	Sediment Target'
	Subwatershei	Dry Weather	Wet Weather	(SQUIRTS, ERL)
	Marcal	CCC	CMC	(PF=)
	Mugu Lagoon	3.1*WER'	4.8*WER'	34000
	Calleguas Creek 2	3.1*WER	4.8*WER	34000
	Revolon/Reardsley	2 1*WED1	20.5 4 0*W7ED1	NA*
	Coneio	27.0	4.0 WER	NA ²
	Arroyo Simi/Las Posas	20.3	20.9	NA NA2
	The water quality targets for from the federal California Ti by a water-effect ratio (WER approved. To use a WER oth USEPA's WER guidance and process. A WER study for M (Reach 4) and Beardsley Was Board approves site-specific in accordance with all legal a approved WERs using the en-	copper in the TMDL oxies Rule (CTR). Th). The WER has a de or than the default of I adopted by the Regi ugu Lagoon (Reach 1 th (Reach 5) has been WERs for copper in t and regulatory require unitions set for the in Th	are expressed as the ose criteria include : fault value of 1.0 un 1.0, a study must be onal Board through), lower Calleguas C submitted to the Re hese waterbodies, th ments and implement	copper water quality criteria a numerical threshold multiplied less a site-specific WER is conducted consistent with the state's basin plan amendment creek (Reach 2), Revolon Slough gional Board. If the Regional e TMDL targets will be modified ted in accordance with the

Cuneguus ere	K Water sheu	Mictais and St	ciciliam TMDE
 ² – Sediment targets were not s <u>Sediment targets are based</u> <u>Administration (NOAA) in th</u> <u>reference the source fof the S</u> 	elected as alternative on screening levels en eir Screening Quick F ediment Targets in the	target for this reach as <u>dorsed by the Nationa</u> <u>Reference Tables (SQu</u> <u>Hable</u>	s it is not on the 303(d) list. <u>al Oceanic and Atmospheric</u> <u>aiRTs) (Buchman, 1999)foot n</u>
2-Mercury Targets			а.
Media		Та	irget
Fish Tissue (Human He	alth) 0.3 n	ng methylmercury	/kg wet weight
Fish Tissue (Wildlife)			
* Trophic Level (TL	$3^{1} < 50 \text{ mm} 0.03$	mg methylmercur	v/kg wet weight
* TL3 50-150 mm	0.05	mg methylmercur	y/kg wet weight
* TL3 150-350 mm	0.1 n	ng methylmercury	/kg wet weight
Bird Egg (Wildlife)	less t	han 0.5 mg total r	nercury/kg wet weight
Water Column	0.051	ug total mercury	/L
a)Fish-Tissue (Human-He	alth): 0.3 mg me	thylmercurv/ko v	vet weight
b)Fish Tissue (Wildlife):			
∃Trophic Level (TL) 31-	50 mm: 0.03 mg	methylmercury/k	g wet weight
∃TL3 50-150mm:	0.05-mg	-methylmercury/l	kg wet weight
⊟TL3 150-350mm:	0.1 mg	methylmercury/kg	g wet weight
c)Bird Egg (Wildlife):	less than 0	.5 mg total mercu	rry/kg wet weight
dillator Column Toracti			
¹ _Tropic Level 3: Predators (e fleas)	.g., minnows, sunfish	otal mercury/L	anism (e.g., copepods and wat
¹ _Tropic Level 3: Predators (e fleas) 3-Nickel Targets	.g., minnows, sunfish	otal mercury/L) on tropic level 2 org	anism (e.g., copepods and wat
¹ _Tropic Level 3: Predators (e fleas) 3-Nickel Targets	.g., minnows, sunfish Water Qu (ug dissolv	otal mercury/L) on tropic level 2 org ality Target ed Nickel/L)	anism (e.g., copepods and wat
a) water Continue rarget: ¹ _Tropic Level 3: Predators (e fleas) 3.Nickel Targets Subwatershed	0.051 ug to .g., minnows, sunfish) Water Qu (ug dissolv Dry Weather	otal mercury/L) on tropic level 2 org ality Target ed Nickel/L) Wet Weather	anism (e.g., copepods and wat Sediment Target ¹ (SQuiRTs, ERL)
 a) water Column Target: ¹ _Tropic Level 3: Predators (e fleas) 3-Nickel Targets Subwatershed 	0.051 ug to .g., minnows, sunfish) Water Qu (ug dissolv Dry Weather CCC	otal mercury/L) on tropic level 2 org ality Target ed Nickel/L) Wet Weather CMC	anism (e.g., copepods and wat Sediment Target ¹ (SQuiRTs, ERL) (ppb)
 d) water Column Target: ¹ _Tropic Level 3: Predators (effeas) 3-Nickel Targets Subwatershed Mugu Lagoon 	0.051 ug to .g., minnows, sunfish) Water Qu (ug dissolv Dry Weather CCC 8.2	ality Target ed Nickel/L) Wet Weather CMC 74	anism (e.g., copepods and wat Sediment Target ¹ (SQuiRTs, ERL) (ppb) 20900
 d) water Column Target: ¹ _Tropic Level 3: Predators (effeas) 3-Nickel Targets Subwatershed Mugu Lagoon Calleguas Creek 2 	0.051 ug to .g., minnows, sunfish) Water Qu (ug dissolv Dry Weather <u>CCC</u> 8.2 8.2 8.2	otal mercury/L on tropic level 2 org ality Target ed Nickel/L) Wet Weather <u>CMC</u> 74 74 74	anism (e.g., copepods and wat Sediment Target ¹ (SQuiRTs, ERL) (ppb) 20900 NA ²
 d) water Column Target: ¹ _Tropic Level 3: Predators (e fleas) 3.Nickel Targets Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3 	0.051 ug to .g., minnows, sunfish) Water Qu (ug dissolv Dry Weather CCC 8.2 8.2 8.2 149	ality Target ed Nickel/L) Wet Weather CMC 74 74 856	anism (e.g., copepods and wat Sediment Target ¹ (SQuiRTs, ERL) (ppb) 20900 NA ² NA ²
 a) water Column Target: ¹ _Tropic Level 3: Predators (e fleas) 3-Nickel Targets Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3 Revolon/Beardsley 	0.051 ug to .g., minnows, sunfish) Water Qu (ug dissolv Dry Weather CCC 8.2 8.2 149 8.2 149 8.2	ality Target ed Nickel/L) Wet Weather CMC 74 74 856 74	anism (e.g., copepods and wat Sediment Target ¹ (SQuiRTs, ERL) (ppb) 20900 NA ² NA ² NA ²
 a) water Column Target: ¹ _Tropic Level 3: Predators (efleas) 3-Nickel Targets Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3 Revolon/Beardsley Conejo 	0.051 ug to .g., minnows, sunfish) Water Qu (ug dissolv Dry Weather CCC 8.2 8.2 149 8.2 149 8.2 160	ality Target ed Nickel/L) Wet Weather CMC 74 74 856 74 1292	anism (e.g., copepods and wat Sediment Target ¹ (SQuiRTs, ERL) (ppb) 20900 NA ² NA ² NA ² NA ² NA ²
 a) water Column Target: ¹ _Tropic Level 3: Predators (efleas) 3-Nickel Targets Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3 Revolon/Beardsley Conejo Arroyo Simi/Las Posas 	0.051 ug to .g., minnows, sunfish) Water Qu (ug dissolv Dry Weather CCC 8.2 8.2 149 8.2 160 168	otal mercury/L on tropic level 2 org ality Target ed Nickel/L) Wet Weather <u>CMC</u> 74 74 856 74 1292 958	anism (e.g., copepods and wat Sediment Target ¹ (SQuiRTs, ERL) (ppb) 20900 NA ² NA ² NA ² NA ² NA ² NA ²
 a) water Column Target: ¹ _Tropic Level 3: Predators (effeas) 3-Nickel Targets 3-Nickel Targets 3-Nickel Targets a-Nickel Targets are based on Administration (NOAA) in the a-Sediment targets were not sele a-Study to support a g-submitted to the Reginal Board and U the Bargional Board and U 	0.051 ug to .g., minnows, sunfish) Water Qu (ug dissolv Dry Weather <u>CCC</u> 8.2 8.2 149 8.2 149 8.2 160 168 screening levels endo cir Screening Quick R screed as alternative tar, site specific ob onal Board and J.S. EPA staff.	ality Target ed Nickel/L) Wet Weather CMC 74 74 856 74 1292 958 rsed by the National C reference Tables (SQu get for this reach as it jective (SSO) for the second	anism (e.g., copepo Sediment Tan (SQuiRTs, E (ppb) 20900 NA ² NA

Subwatershed Try Weather CCC Wet Weather CMC (ug/g) Mugu Lagoon 71 290 6 Calleguas Creek 2 5 290 6 Calleguas Creek 3 5 NA ¹ 6 Revolon/Beardsley 5 290 6 Coñejo 5 NA ¹ 6 Arroyo Simi/Las Posas 5 NA ¹ 6 ¹ "NA" indicates that a target is not available for this constituent as because criterion for fresh w defined in the CTR. 6 Subwatershed Ug dissolved Zinc/L) (SQuiRTs, ERL) Dry Weather Wet Weather CCC (Mugu Lagoon Mugu Lagoon 81 90 150000 Calleguas Creek 2 81 90 NA ² Calleguas Creek 3 338 214 NA ² Conejo 365 324 NA ² Conejo 365 324 NA ² Arroyo Simi/Las Posas 382 240 NA ² Conejo 365 324 NA ² Conejo <th></th> <th></th> <th>ality Target</th> <th>Bird Egg</th>			ality Target	Bird Egg		
Mugu Lagoon 71 290 6 Calleguas Creek 2 5 290 6 Calleguas Creek 3 5 NA ¹ 6 Revolon/Beardsley 5 290 6 Conejo 5 NA ¹ 6 Arroyo Simi/Las Posas 5 NA ¹ 6 "NA" indicates that a target is not available for this constituent as because criterion for fresh we defined in the CTR. 6 Subwatershed Water Quality Target (sQuiRTs, ERL) (SQuiRTs, ERL) Dry Weather Wet Weather (ppb) (SQuiRTs, ERL) Mugu Lagoon 81 90 150000 Calleguas Creek 2 81 90 NA ² Calleguas Creek 3 338 214 NA ² Revolon/Beardsley 81 90 NA ² Conejo 365 324 NA ² Arroyo Simi/Las Posas 382 240 NA ² Arroyo Simi/Las Posas 382 240 NA ² -Sediment targets were not selected as alternative target for this reach as <u>because</u> it is not on th list. * <th></th> <th>Subwatershed</th> <th>Dry Weather CCC</th> <th>Wet Weather CMC</th> <th colspan="2">(ug/g)</th>		Subwatershed	Dry Weather CCC	Wet Weather CMC	(ug/g)	
Calleguas Creek 2 5 290 6 Calleguas Creek 3 5 NA ¹ 6 Revolon/Beardsley 5 290 6 Conejo 5 NA ¹ 6 Arroyo Simi/Las Posas 5 NA ¹ 6 "WA" indicates that a target is not available for this constituent as because criterion for fresh waterine defined in the CTR. 6 Subwatershed Water Quality Target (ug dissolved Zinc/L) Sediment Target (SQuiRTs, ERL) Dry Weather Wet Weather (ppb) Mugu Lagoon 81 90 150000 Calleguas Creek 2 81 90 NA ² Calleguas Creek 3 338 214 NA ² Revolon/Beardsley 81 90 NA ² Conejo 365 324 NA ² Arroyo Simi/Las Posas 382 240 NA ² Arroyo Simi/Las Posas 382 240 NA ² Administration (NOAA) in their Screening Quick Reference Tables (SQuiRTs) (Buchman, 1 - Sediment targets were not selected as alternative target for this reach as-because it is not on th list. -		Mugu Lagoon	71	290	6	
Calleguas Creek 3 5 NA ¹ 6 Revolon/Beardsley 5 290 6 Coñejo 5 NA ¹ 6 Arroyo Simi/Las Posas 5 NA ¹ 6 ¹ "NA" indicates that a target is not available for this constituent as because criterion for fresh we defined in the CTR. 6 Subwatershed Water Quality Target (ug dissolved Zinc/L) Sediment Target? Mugu Lagoon 81 90 150000 Calleguas Creek 2 81 90 NA ² Calleguas Creek 3 338 214 NA ² Revolon/Beardsley 81 90 NA ² Conejo 365 324 NA ² Arroyo Simi/Las Posas 382 240 NA ² Arroyo Simi/Las Posas 382 240<		Calleguas Creek 2	5	290	6	
Revolon/Beardsley 5 290 6 Coñejo 5 NA ¹ 6 Arroyo Simi/Las Posas 5 NA ¹ 6 ¹ "NA" indicates that a target is not available for this constituent as because criterion for fresh we defined in the CTR. 6 5.Zinc Targets Subwatershed Water Quality Target (ug dissolved Zinc/L) Sediment Target (sQuiRTs, ERL) Dry Weather Wet Weather (ppb) Mugu Lagoon 81 90 150000 Calleguas Creek 2 81 90 NA ² Calleguas Creek 3 338 214 NA ² Revolon/Beardsley 81 90 NA ² Conejo 365 324 NA ³ Arroyo Simi/Las Posas 382 240 NA ² Arroyo Simi/Las Posas 382 240 NA ² Arroyo Simi/Las Posas 382 240 NA ³ * Sediment targets are based on screening levels endorsed by the National Oceanic and Atmosp Administration (NOAA) in their Screening levels endorsed by the National Oceanic and Atmosp * Sediment targets were not selected as alternative target for this reach as-because. It is not on th 15. <td></td> <td>Calleguas Creek 3</td> <td>5</td> <td>NA¹</td> <td>6</td>		Calleguas Creek 3	5	NA ¹	6	
Conejo 5 NA ¹ 6 Arroyo Simi/Las Posas 5 NA ¹ 6 "NA" indicates that a target is not available for this constituent as because criterion for fresh w defined in the CTR. 5.Zinc Targets Subwatershed Water Quality Target (ug dissolved Zinc/L) Sediment Target (ug dissolved Zinc/L) Dry Weather Wugu Lagoon 81 90 150000 Calleguas Creek 2 81 90 NA ² Calleguas Creek 3 338 214 NA ² Revolon/Beardsley 81 90 NA ² Conejo 365 324 NA ² Arroyo Simi/Las Posas 382 240 NA ² - Sediment targets are based on screening levels endorsed by the National Oceanic and Atmosp Administration (NOAA) in their Screening Quick Reference Tables (SQuiRTS) (Buchman, 1 - Sediment targets were not selected as alternative target for this reach as-because it is not on th list.		Revolon/Beardsley	5	290	6	
Arroyo Simi/Las Posas 5 NA ¹ 6 "NA" indicates that a target is not available for this constituent as because criterion for fresh w defined in the CTR. 5.Zinc Targets Subwatershed Water Quality Target (ug dissolved Zinc/L) Sediment Target (SquiRTs, ERL) Dry Weather Wet Weather (sQuiRTs, ERL) Mugu Lagoon 81 90 150000 Calleguas Creek 2 81 90 NA ² Calleguas Creek 3 338 214 NA ² Revolon/Beardsley 81 90 NA ² Conejo 365 324 NA ² Arroyo Simi/Las Posas 382 240 NA ² - Sediment targets are based on screening levels endorsed by the National Oceanic and Atmosp Administration (NOAA) in their Screening levels endorsed by the National Oceanic and Atmosp Administration (NOAA) in their Screening levels for this reach as because it is not on th list.		Conejo	5	NA	6	
NA indicates that a target is not available for this constituent as because criterion for fresh we defined in the CTR. 5.Zine Targets Subwatershed Water Quality Target (ug dissolved Zinc/L) Sediment Target (SQuiRTs, ERL) Dry Weather Wet Weather (ppb) Mugu Lagoon 81 90 150000 Calleguas Creek 2 81 90 NA2 Calleguas Creek 3 338 214 NA2 Revolon/Beardsley 81 90 NA2 Conejo 365 324 NA2 * Sediment targets are based on screening levels endorsed by the National Oceanic and Atmosp Administration (NOAA) in their Screening Quick Reference Tables (SQuiRTs) (Buchman, I * Sediment targets were not selected as alternative target for this reach as because it is not on th list.		Arroyo Simi/Las Posas	5	NA'	6	
Szinc Targets Water Quality Target (sediment Target (ug dissolved Zinc/L) (SQuiRTs, ERL) Dry Weather Wet Weather (ppb) Mugu Lagoon 81 90 150000 Calleguas Creek 2 81 90 NA ² Calleguas Creek 3 338 214 NA ² Revolon/Beardsley 81 90 NA ² Conejo 365 324 NA ² Arroyo Simi/Las Posas 382 240 NA ² Sediment targets are based on screening levels endorsed by the National Oceanic and Atmosp Administration (NOAA) in their Screening Quick Reference Tables (SQuiRTs) (Buchman, I Sediment targets were not selected as alternative target for this reach as-bocause it is not on th list.		¹ "NA" indicates that a target is r defined in the CTR.	not available for this	constituent as becau	use criterion for fresh w	
5-Zinc Targets Water Quality Target (Sediment Target (ug dissolved Zinc/L) Subwatershed Water Quality Target (SQuiRTs, ERL) Dry Weather Wet Weather (ppb) Mugu Lagoon 81 90 150000 Calleguas Creek 2 81 90 NA ² Calleguas Creek 3 338 214 NA ² Revolon/Beardsley 81 90 NA ² Conejo 365 324 NA ² Arroyo Simi/Las Posas 382 240 NA ² - Sediment targets are based on screening levels endorsed by the National Oceanic and Atmosp Administration (NOAA) in their Screening Quick Reference Tables (SQuiRTs) (Buchman, 1 * Sediment targets were not selected as alternative target for this reach as-because it is not on th list.						
Seliment Targets Subwatershed Water Quality Target (SQuiRTs, ERL) Dry Weather Wet Weather (ppb) Mugu Lagoon 81 90 150000 Calleguas Creek 2 81 90 NA ² Calleguas Creek 3 338 214 NA ² Revolon/Beardsley 81 90 NA ² Conejo 365 324 NA ² Arroyo Simi/Las Posas 382 240 NA ² ^1 Sediment targets are based on screening levels endorsed by the National Oceanic and Atmospi Administration (NOAA) in their Screening Quick Reference Tables (SQuiRTs) (Buchman, 1) ^2 Sediment targets were not selected as alternative target for this reach as because it is not on the list.						
5-Zinc Targets Water Quality Target (ug dissolved Zinc/L) Sediment Target ¹ (SQuiRTs, ERL) Dry Weather Wet Weather (ppb) Mugu Lagoon 81 90 150000 Calleguas Creek 2 81 90 NA ² Calleguas Creek 3 338 214 NA ² Revolon/Beardsley 81 90 NA ² Conejo 365 324 NA ² Arroyo Simi/Las Posas 382 240 NA ² - Sediment targets are based on screening levels endorsed by the National Oceanic and Atmospi Administration (NOAA) in their Screening Quick Reference Tables (SQuiRTs) (Buchman, 1) - Sediment targets were not selected as alternative target for this reach as-because it is not on the list.						
Seliment Targets Water Quality Target (Sediment Target) (SQuiRTs, ERL) Dry Weather Wet Weather (ppb) Mugu Lagoon 81 90 150000 Calleguas Creek 2 81 90 NA ² Calleguas Creek 3 338 214 NA ² Revolon/Beardsley 81 90 NA ² Conejo 365 324 NA ² Arroyo Simi/Las Posas 382 240 NA ² * Sediment targets are based on screening levels endorsed by the National Oceanic and Atmosp Administration (NOAA) in their Screening Quick Reference Tables (SQuiRTs) (Buchman, 1 * Sediment targets were not selected as alternative target for this reach as-because it is not on th list.						
5-Zinc Targets Water Quality Target (sediment Target) (sQuiRTs, ERL) Dry Weather Wet Weather (ppb) Mugu Lagoon 81 90 150000 Calleguas Creek 2 81 90 NA ² Calleguas Creek 3 338 214 NA ² Revolon/Beardsley 81 90 NA ² Conejo 365 324 NA ² Arroyo Simi/Las Posas 382 240 NA ² - Sediment targets are based on screening levels endorsed by the National Oceanic and Atmosp Administration (NOAA) in their Screening Quick Reference Tables (SQuiRTs) (Buchman, 1 - Sediment targets were not selected as alternative target for this reach as-because it is not on th list.						
Subwatershed Water Quality Target (ug dissolved Zinc/L) Sediment Target (SQuiRTs, ERL) Dry Weather Wet Weather (ppb) Mugu Lagoon 81 90 150000 Calleguas Creek 2 81 90 NA ² Calleguas Creek 3 338 214 NA ² Revolon/Beardsley 81 90 NA ² Conejo 365 324 NA ² Arroyo Simi/Las Posas 382 240 NA ² '_Sediment targets are based on screening levels endorsed by the National Oceanic and Atmosp Administration (NOAA) in their Screening Quick Reference Tables (SQuiRTs) (Buchman, 1 '_Sediment targets were not selected as alternative target for this reach as-because it is not on th list.						
Water Quality Target (ug dissolved Zinc/L)Sediment Target (SQuiRTs, ERL)SubwatershedWater Quality Target (ug dissolved Zinc/L)Sediment Target (SQuiRTs, ERL)Dry Weather CCCWet Weather (ppb)Mugu Lagoon8190150000Calleguas Creek 28190NA2Calleguas Creek 3338214NA2Revolon/Beardsley8190NA2Conejo365324NA2Arroyo Simi/Las Posas382240NA2' Sediment targets are based on screening levels endorsed by the National Oceanic and Atmosp Administration (NOAA) in their Screening Quick Reference Tables (SQuiRTs) (Buchman, 1)'- Sediment targets were not selected as alternative target for this reach as-because it is not on th list.		5.Zinc Targets				
Subwatershed(ug dissolved Zinc/L) Dry Weather CCC(SQuiRTs, ERL) (ppb)Mugu Lagoon8190150000Calleguas Creek 28190NA2Calleguas Creek 3338214NA2Revolon/Beardsley8190NA2Conejo365324NA2Arroyo Simi/Las Posas382240NA2^			Water Qua	Sediment Target		
Subwatershed Dry Weather CCC Wet Weather CMC (ppb) Mugu Lagoon 81 90 150000 Calleguas Creek 2 81 90 NA ² Calleguas Creek 3 338 214 NA ² Revolon/Beardsley 81 90 NA ² Conejo 365 324 NA ² Arroyo Simi/Las Posas 382 240 NA ² '_Sediment targets are based on screening levels endorsed by the National Oceanic and Atmosp Administration (NOAA) in their Screening Quick Reference Tables (SQuiRTs) (Buchman, 1 '_Sediment targets were not selected as alternative target for this reach as-because it is not on th list.		Cubwatawahad	(ug dissolv	ed Zinc/L)	(SQuiRTs, ERL)	
CCCCMC(ppb)Mugu Lagoon8190150000Calleguas Creek 28190NA2Calleguas Creek 3338214NA2Revolon/Beardsley8190NA2Conejo365324NA2Arroyo Simi/Las Posas382240NA2^Sediment targets are based on screening levels endorsed by the National Oceanic and Atmosp Administration (NOAA) in their Screening Quick Reference Tables (SQuiRTs) (Buchman, 12-Sediment targets were not selected as alternative target for this reach as-because it is not on th list.		Subwatersned	Dry Weather	Wet Weather		
Mugu Lagoon 81 90 150000 Calleguas Creek 2 81 90 NA ² Calleguas Creek 3 338 214 NA ² Revolon/Beardsley 81 90 NA ² Conejo 365 324 NA ² Arroyo Simi/Las Posas 382 240 NA ² ^1_Sediment targets are based on screening levels endorsed by the National Oceanic and Atmosp Administration (NOAA) in their Screening Quick Reference Tables (SQuiRTs) (Buchman, 1 2_ Sediment targets were not selected as alternative target for this reach as-because it is not on th list.			CCC	CMC	(ppp)	
Calleguas Creek 2 81 90 NA ² Calleguas Creek 3 338 214 NA ² Revolon/Beardsley 81 90 NA ² Conejo 365 324 NA ² Arroyo Simi/Las Posas 382 240 NA ² ^1_Sediment targets are based on screening levels endorsed by the National Oceanic and Atmosp Administration (NOAA) in their Screening Quick Reference Tables (SQuiRTs) (Buchman, 1) ^2_Sediment targets were not selected as alternative target for this reach as because it is not on the list.		Mugu Lagoon	81	90	150000	
Calleguas Creek 3 338 214 NA ² Revolon/Beardsley 81 90 NA ² Conejo 365 324 NA ² Arroyo Simi/Las Posas 382 240 NA ² ¹ _Sediment targets are based on screening levels endorsed by the National Oceanic and Atmosp Administration (NOAA) in their Screening Quick Reference Tables (SQuiRTs) (Buchman, 1 ² _Sediment targets were not selected as alternative target for this reach as-because it is not on the list.		Calleguas Creek 2	81	90	NA ²	
Revolon/Beardsley 81 90 NA ² Conejo 365 324 NA ² Arroyo Simi/Las Posas 382 240 NA ² 'Sediment targets are based on screening levels endorsed by the National Oceanic and Atmosp Administration (NOAA) in their Screening Quick Reference Tables (SQuiRTs) (Buchman, 1 'Sediment targets were not selected as alternative target for this reach as-because it is not on the list.		Calleguas Creek 3	338	214	NA ²	
Conejo 365 324 NA ² Arroyo Simi/Las Posas 382 240 NA ² ¹ Sediment targets are based on screening levels endorsed by the National Oceanic and Atmosp Administration (NOAA) in their Screening Quick Reference Tables (SQuiRTs) (Buchman, 1 ² Sediment targets were not selected as alternative target for this reach as-because it is not on th list.		Revolon/Beardsley	81	90	NA ²	
Arroyo Simi/Las Posas 382 240 NA ² ¹ Sediment targets are based on screening levels endorsed by the National Oceanic and Atmosp Administration (NOAA) in their Screening Quick Reference Tables (SQuiRTs) (Buchman, 1 ² Sediment targets were not selected as alternative target for this reach as-because it is not on the list.		Conejo	365	324	NA ²	
 <u>Sediment targets are based on screening levels endorsed by the National Oceanic and Atmosp Administration (NOAA) in their Screening Quick Reference Tables (SQuiRTs) (Buchman, 1</u> <u>Sediment targets were not selected as alternative target for this reach as because it is not on the list.</u> 		Arrovo Simi/Las Posas	382	240	NA ²	
Administration (NOAA) in their Screening Quick Reference Tables (SQuiRTs) (Buchman, 1 ² Sediment targets were not selected as alternative target for this reach as because it is not on th list.	· · · · ·	¹ Sediment targets are based on	screening levels end	orsed by the Nation	al Oceanic and Atmosp	
Events and the second selected as alternative target for this reach as because it is not on the list.		Administration (NOAA) in th	neir Screening Quick	Reference Tables (SQuiRTs) (Buchman, 1	
1151.		Sediment targets were not sele list	ected as alternative ta	arget for this reach a	s-because it is not on th	
		list.				
	-	agricultural runoff, gr	oundwater see	page, and PC	DTW effluent. F	
agricultural runoff, groundwater seepage, and POTW effluent, F		mercury, open space y	vas also a sig	ificant source	e Sources wer	
agricultural runoff, groundwater seepage, and POTW effluent. F		analyzed as a function	of wet and d	ny weather U	igher loads wer	
agricultural runoff, groundwater seepage, and POTW effluent. F mercury, open space was also a significant source. Sources were applyzed as a function of wet and dry weather. Higher loads were		delivered during such	i of wet and u	l y weather. If	due to the seco	
agricultural runoff, groundwater seepage, and POTW effluent. F mercury, open space was also a significant source. Sources were analyzed as a function of wet and dry weather. Higher loads were delivered dwine wet weather for all constituents, due to the	1	delivered during wet	weather for all	constituents	, due to the asso	
agricultural runoff, groundwater seepage, and POTW effluent. F mercury, open space was also a significant source. Sources wer analyzed as a function of wet and dry weather. Higher loads wer delivered during wet weather for all constituents, due to the asso		between metals and pa	articulate mat	ter . .		
agricultural runoff, groundwater seepage, and POTW effluent. F mercury, open space was also a significant source. Sources were analyzed as a function of wet and dry weather. Higher loads wer delivered during wet weather for all constituents, due to the asso between metals and particulate matter.		The course analysis in	dicates natur		moroumin call	
agricultural runoff, groundwater seepage, and POTW effluent. F mercury, open space was also a significant source. Sources were analyzed as a function of wet and dry weather. Higher loads were delivered during wet weather for all constituents, due to the asso between metals and particulate matter.		The source analysis in	iurcates natura	iny occurring	mercury in sol	
agricultural runoff, groundwater seepage, and POTW effluent. F mercury, open space was also a significant source. Sources were analyzed as a function of wet and dry weather. Higher loads were delivered during wet weather for all constituents, due to the asso between metals and particulate matter. The source analysis indicates naturally occurring mercury in soil		be a significant source	e, and that nat	urally occurri	ng nickel, copp	
agricultural runoff, groundwater seepage, and POTW effluent. F mercury, open space was also a significant source. Sources wer analyzed as a function of wet and dry weather. Higher loads wer delivered during wet weather for all constituents, due to the asso between metals and particulate matter. The source analysis indicates naturally occurring mercury in soil be a significant source, <u>and that</u> naturally occurring nickel, copp		and selenium in soil n	hay be a contr	ibuting sourc	e, and that natur	
agricultural runoff, groundwater seepage, and POTW effluent. F mercury, open space was also a significant source. Sources wer analyzed as a function of wet and dry weather. Higher loads wer delivered during wet weather for all constituents, due to the asso between metals and particulate matter. The source analysis indicates naturally occurring mercury in soil be a significant source, <u>and that</u> naturally occurring nickel, copp and selenium in soil may be a contributing source, and <u>that</u> natur		occurring selenium in	groundwater	may be a sign	nificant source.	
agricultural runoff, groundwater seepage, and POTW effluent. F mercury, open space was also a significant source. Sources wer analyzed as a function of wet and dry weather. Higher loads wer delivered during wet weather for all constituents, due to the asso between metals and particulate matter The source analysis indicates naturally occurring mercury in soil be a significant source, <u>and that</u> naturally occurring nickel, copp and selenium in soil may be a contributing source, and <u>that</u> natur occurring selenium in groundwater may be a significant source.		TMDL Implementatio	n Plan also-in	cludes specie	l studies to furt	
agricultural runoff, groundwater seepage, and POTW effluent. F mercury, open space was also a significant source. Sources were analyzed as a function of wet and dry weather. Higher loads were delivered during wet weather for all constituents, due to the asso between metals and particulate matter. The source analysis indicates naturally occurring mercury in soit be a significant source, <u>and that</u> naturally occurring nickel, copp and selenium in soil may be a contributing source, and <u>that</u> nature occurring selenium in groundwater may be a significant source. TMDL Implementation Plan also-includes special studies to furt			+ a main to the local of the			
agricultural runoff, groundwater seepage, and POTW effluent. F mercury, open space was also a significant source. Sources were analyzed as a function of wet and dry weather. Higher loads wer delivered during wet weather for all constituents, due to the asso between metals and particulate matter . . The source analysis indicates naturally occurring mercury in soil be a significant source, <u>and that</u> naturally occurring nickel, copp and selenium in soil may be a contributing source, and <u>that</u> natur occurring selenium in groundwater may be a significant source. TMDL Implementation Plan also -includes special studies to <u>furt</u> assesseddress natural sources of metals in soil		accesseddress natural	sources of mo	tale in soil		

1

TMDL Element	Calleguas Creek Watershed Metals and Selenium TMDL
Linkage Analysis	Linkage between sources and instream pollutant concentrations was established through a dynamic water quality Hydrologic Simulation Program – FORTRAN (HSPF). The model output generally resulted in a conservative estimate of receiving water concentrations for metals. The model was used to calculate load reductions necessary to meet <u>the Numeric numeric Targetstargets</u> . The load and waste load allocations were calculated based on the load reductions required to meet the numeric targets. The load reductions were used to calculate the load and waste load allocations.
Waste Load Allocations	In the case of copper, nickel, and selenium, waste load allocations (WLAs) are-were developed for both wet and dry-weather. The dry- weather WLAs apply to days when flows in the stream are less than the 86 th percentile flow rate for each reach. The wet-weather WLAs apply to days when flows in the stream exceed the 86 th percentile flow rate for each reach. Annual mass loads of mercury in suspended sediment were developed according to low, medium, and high annual flow categories. A margin of safety of 15% was included in the WLAs for copper and nickel.
	Concentration-based and mass-based WLAs are established -for copper, and nickel, and selenium in total recoverable forms, and are applied to POTWs during both wet and dry weather. Mass-based WLAs are developed for mercury for POTWs. Zinc allocations are not set because current information indicate that numeric targets for zinc are attained. The TMDL Implementation Plan includes a task to provide State Board data to support delisting of zinc. Waste load allocations for selenium are not set for POTWs because POTWs do not discharge to reaches listed for selenium. A margin of safety of 15% was included in the WLAs for copper and nickel. Interim limits are included to allow time for dischargers to put in place implementation measures necessary to achieve final waste load allocations. The daily maximum and monthly average interim limits are set equal to the 99 th and 95 th percentile of available discharge data, respectively.
	1. Interim and Final WLAs for Total Recoverable Copper in Water Column

TMDL Element	Callegu	as Creek V	Watershe	ed Metals	and Seler	nium TMD	L
	ſ	Interim			Final ¹		
	РОТЖ	Daily Maximum (ug/L)	Monthly Average (ug/L)	Daily Maximum (ug/L) ²	Monthly Average (ug/L) ²	lb/day	
	Hill Canyon WWTP	20.0	16.0	(a)	(a)	0.11*WER - 0.04	
	Simi Valley WQCP	(b)	(b)	31.0	30.5	(c)	
	Moorpark WTP	(b)	(b)	31.0	30.5	(d)	
	Camarillo WRP	57.0	20.0	: (a)	(a)	0.12*WER - 0.04	
	Camrosa WRP	(b)	(b)	27.4	27.0	(d)	, - ,
	 <u>.</u>	in accordance wi ERs, total coppe s shall not exceed tition-based targe tor of 0.96 -based final limi nts, but are not of are not required or Simi Valley V Monitoring will Simi/Las Posas es not contribute then discharges of rgets are not met	approved by a tith the approve r loading shall d the performa- tis have been of ts will be incl calculated as p because the d WQCP do not be conducted or downstrear loading durin occur. Monito t in receiving	ne Regional Bo ed WERs using I not exceed cu ance standards of converted to tot uded in the peri- part of the TMD ischarger is me reach lower Ca and mass-based m reaches. Ig dry weather. oring will be co water and/or do	ard, IMDL wa the equations a rrent loading. 1 of current treats al recoverable a mits in accorda oL. etting the final 1 illeguas Creek a t WLAs will be Concentration- nducted and ma winstream react	ste load allocation set forth above. R In addition, effluer ment technologies. allocations using the nce with NPDES g imits. and Mugu lagoon of evaluated if targe based WLAs appl ass-based WLAs w hes.	is shall be egardless nt he CTR guidance during tts are not ly during vill be

2-Interim and Final WLAs for Total Recoverable Nickel in Water Column

Monthly Average (ug/L)	Daily Maximum (ug/L)1	Monthly Average	lb/day
		(ug/L)2	_
6.4	(a)	(a)	0.3
(b)	960.0	169.0	(c)
(b)	960.0	169.0	(d)
6.2	(a)	(a)	0.2
(b)	858.0	149.0	(d)
	(b)	(b) 858.0	(b) 858.0 149.0 ets have been converted to total recoverable allocation

- Concentration-based targets have been converted to total recoverable allocations using the CTF default translator of 0.998.

²_Concentration-based targets have been converted to total recoverable allocations using the CTR default translator of 0.997.

(a) Concentration-based final limits will be included in the permits in accordance with NPDES

TMDL Element	Calleguas Creel	Watershed	Metals and	Selenium TMDL						
	 guidance and requirement (b) Interim limits are not requirement (c) Discharges from Simi Va dry weather. Monitoring not met in Arroyo Simi/Li (d) Discharger does not contr during wet weather when 	s, but are not calcul irred because the dis lley WQCP do not r will be conducted an as Posas or downstru- ibute loading during discharges occur.	ated as part of the scharger is meeting each lower Callegu nd mass-based WL eam reaches. g dry weather. Cond Aonitoring will be	TMDL. the final limits. tas Creek and Mugu lagoon during As will be evaluated if targets are centration-based WLAs apply conducted and mass-based WLAs						
	will be evaluated if targets are not met in receiving water and/or downstream reaches.									
	A study to support a SSO for nickel has been submitted to the									
	Regional Board and is currently under reviewed by the Regional									
	Board and U.S. EPA staff. If a SSO for nickel is approved, the									
	Regional Board will consider revision to the final WLAs for nickel									
	based on the approved SSO.									
	3.Interims and Final WLAs for Mercury in Suspended Sediment									
	0071	Interim	Final							
	POTW	(lb/month)	(lb/month)							
	Hill Canyon WWTP	0.23	0.022							
	Simi Valley WQCP	0.18	0.031							
	Moorpark WTP	N/A	N/A							
	Camarillo WRP	0.03	0.015							
	Camrosa WRP	Camrosa WRP N/A N/A								
	mercury effluent concentrations which are currently more stringent than the numeric targets multiplied by the design flow where the total load in water is assumed equal to the suspended sediment load. Interim WLAs for <u>mercury</u> are based on <u>the 90th</u> percentile concentration observed in effluent discharge and <u>multiplied by the</u> design flow, and apply to all flow conditions									
		Interim	Final							
	POTW	(lb/month)	(lb/month)							
	Hill Canyon WWTP	0.23	0.022							
	Simi Valley WQCP	0.18	0.031							
· · · · · ·	Moorpark WTP	N/A	N/A	· · ·						
	Camarillo WRP	0.03	0.015							
	Camrosa WRP	N/A	N/A							
			-							
	-									
	Urban Runoff Permit	ted Stormwa	ter Dischar	gers (PSDs)						
	PSDs include mMa	ss-based WI	As are-establ	ished for copper.						
	nickel and selenium	in total reco	verable form	s. Mass-based WI As						
	are developed for m	ercury in sug	nended sedin	nent Interim limits are						
	included to allow the	ne for discha	raere to mut :	n place implementation						
		to ophisme for		d allocations. The della						
	measures necessary	to achieve fit	ial waste loa	d allocations. The daily						

TMDL Element	Calleg	uas Creek	Waters	ned Meta	ls and S	elenium	TMDL	
	maximum	and mont	hly avera	ge interin	n limits a	re set equ	al to the 9	9 th
	and 95 th pe	ercentile o	f availabl	e dischar	ge data.	-		
	• • •							
	H.Interim	Limits an	d Final A	Vaste Lo	ad Alloc	ations _W	<u>LAs</u> for	
	Total Rec	overable	Copper, 1	Nickel, a	nd Selen	ium		
	Interim lin	nits and w	aste load	allocation	is are app	plied in <u>to</u>	receiving	3
	water.			•				
	· · · - ·							
	A.A. Int	erim Lim	its					-
	0	Callegu	as and Cone	ojo Creek		Revolon Sid	ugh	
	Constituents	Dry CMC	Dry CCC	Wet CMC	Dry CM		Wet CMC	
	Connert	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	-
	Copper	23	19	204	23	19	204	-
	Solonium	15 (b)	13 (b)	(a) (b)	15	13	(a)	-
	(a) The current loa	(D) ads do not exce	(D) red the TMDI	under wet co	14	erim limits are	(a)	
	(b) Selenium alloc	ations have no	t been develop	bed for this rea	ich as it is no	t on the $303(d)$	list.	
	(b) Implementatio	n actions inclu-	des considerat	ion of watersh	ed wide sele	nium impacts	a data if avail	oble
	(c) realisticate of	interint intuts y	will be evaluat	cu ili consider	ation of back	ground loading	g data, 11 avail	401C.
	B.<u>B.</u>Fin	al WLAs	for Tota	Recover	able Co	pper, Nic	<u>kel, and</u>	
	<u>Seleniun</u>	<u>n</u>						
	1.Dry-W	eather W	LAs in V	Vater Co	lumn (ll	s/day)		
	Flow	Callegua	as and Cone	ojo Creek	Re	volon Sloug	h	
	Range	Low Flow	Average Flow	Elevated Flow	Low Flow	Average	Elevated	
	Copper1	0.04*WER	0.12*WER	0.18*WER	0.03*WER	0.06*WER 0	13*WER	
	(lbs/day)	0.02	0.02	0.03	- 0.01	- 0.03	0.02	
*	Nickel	0.100	0.120	0.440	0.050	0.069	0.116	
	(IDS/day) Selenium							
	(lbs/day)	(a)	(a)	(a)	0.004	0.003	0.004	
	(lbs/day)	(a)	(a) are approved	(a) by the Region	0.004 al Board, TN	0.003 IDL waste load	0.004 allocations sl	nall
	(lbs/day) 	(a) specific WERs mented in acco ss of the final V	(a) are approved rdance with th WERs, total co	(a) by the Region the approved W opper loading	0.004 al Board, TM ERs using the shall not exce	0.003 IDL waste load ac equations set	0.004 allocations sl forth above.	nall
	(lbs/day) -1- 	(a) specific WERs mented in acco ss of the final V	(a) are approved rdance with th WERs, total co	(a) by the Region approved W opper loading	0.004 al Board, TM ERs using the shall not exce	0.003 IDL waste load the equations set eed current load	0.004 allocations sl forth above. ling.	nall
	(Ibs/day) <u>-1</u> If site-s be implea Regardle (a) Selenium Implement	(a) specific WERs mented in acco ss of the final V allocations ha intation actions	(a) are approved rdance with th WERs, total co ve not been do include consid	(a) by the Region le approved W opper loading eveloped for the deration of the	0.004 al Board, TM ERs using th shall not exce tis reach as it watershed	0.003 IDL waste load a equations set ced current load is not on the 3 wide selenium i	0.004 l allocations sl forth above. ling. 03(d) list.	nall
	(lbs/day) <u> </u>	(a) specific WERs mented in acco ss of the final W allocations have nutation actions	(a) are approved rdance with th WERs, total co we not been de include consid	(a) by the Region the approved W opper loading eveloped for the deration of the	0.004 al Board, TM ERs using th shall not exce his reach as it watershed w	0.003 IDL waste load at equations sele eed current load is not on the 3 vide selenium i	0.004 allocations sl forth above. ding. 03(d) list. mpacts.	nall
	(Ibs/day) 1- If site-s be implex Regardle (a) Selenium Implement	(a) specific WERs mented in acco ss of the final V allocations have nation actions	(a) are approved rdance with th WERs, total co we not been do include consid	(a) by the Region the approved W opper loading eveloped for the deration of the	0.004 al Board, TM ERs using th shall not excu- is reach as it watershed w	0.003 IDL waste load a equations set eed current load is not on the 3 wide selenium i	0.004 allocations sh forth above. ling. 03(d) list. mpacts.	nall ·
	(Ibs/day) <u> </u>	(a) specific WERs mented in acco ss of the final V allocations has nation actions	(a) are approved rdance with th WERs, total co ve not been de include consid	(a) by the Region is approved W opper loading eveloped for the deration of the	0.004 al Board, TM ERs using th shall not exce is reach as it watershed v	0.003 IDL waste load at equations set eed current load is not on the 3 wide selenium i	0.004 allocations sh forth above. ding. 03(d) list. mpacts.	nall
	(Ibs/day) <u> </u>	(a) specific WERs mented in acco ss of the final W allocations ha ntation actions	(a) are approved rdance with th WERs, total co we not been do include consi	(a) by the Region the approved W opper loading eveloped for the deration of the	0.004 al Board, TM ERs using th shall not excu is reach as it watershed v	0.003 IDL waste load at equations sel eed current load is not on the 3 wide selenium i	0.004 allocations sl forth above. ding. 03(d) list. mpacts.	nall
	(Ibs/day) <u>-1</u> If site- be imple Regardle (a) Selenium Implement	(a) specific WERs mented in acco ss of the final V allocations har ntation actions	(a) are approved rdance with th WERs, total co ve not been do include consid	(a) by the Region is approved W opper loading eveloped for the deration of the	0.004 al Board, TM ERs using th shall not excu- is reach as it watershed w	0.003 IDL waste load are equations set eed current load is not on the 3 wide selenium i	0.004 allocations sl forth above. ling. 03(d) list. mpacts.	nall
	(ibs/day) 	(a) specific WERs mented in acco ss of the final V allocations has nation actions	(a) are approved rdance with th WERs, total co ve not been de include consid	(a) by the Region is approved W opper loading eveloped for the deration of the	0.004 al Board, TM ERs using th shall not exce is reach as it watershed w	0.003 IDL waste load the equations set eed current load is not on the 3 wide selenium i	0.004 allocations sh forth above. ding. 03(d) list. mpacts.	nall ·
	(ibs/day) 	(a) specific WERs mented in acco ss of the final W allocations ha ntation actions	(a) are approved rdance with th WERs, total co ve not been do include consider VLAs in	(a) by the Region is approved W opper loading tweloped for the deration of the	0.004 al Board, TM ERs using th shall not exce is reach as it watershed w	0.003 IDL waste load the equations set eed current load is not on the 3 wide selenium i	0.004 allocations sh forth above. ling. 03(d) list. mpacts.	nall .

Calleguas Creek Watershed Metals and Selenium TMDL							
Constituent	Ca	alleguas	Creek		Revolon Sic	ough	
Copper ¹ (Ibs/day)	(0.00054*Q^ 0.06	2*0.032*	*Q - 0.17)*W	ER - (0.000)	2*Q2+0.0005	*Q)*WER	
Nickel ² (lbs/dav)	0.014*Q^2+().82*Q		0.027*	Q^2+0.47*Q		
Selenium ²	(a)			0.027*	0^2+0 47*0		
exceed load (a) Selenium all Implementa Q: Daily storm H.Interim I Sediment-(I Final WLAs Interim limi	s presented in the ocations have re- tion actions have re- volume.	d Fina 80%:	developed for ideration of t al WLAs reduction a suspend	this reach as i the watershed- for Merce from-of	t is not on the : wide selenium cury in Su HSPF load ent are sel	an roads canno 303(d) list. Ispended I estimat t equal to	
highest annu output for th	al load wi	ithin e 993-20	ach flow 003.	category.	, based on	HSPF	
Flow Ran	ge Int (Ib	erim s/yr)	s Greek Final (Ibs/yr)	Interim (lbs/yr)	Final (lbs/yr)		
0-15,000 MGY		3.3	0.4	1.7	0.1		
15,000-25,000	MGY 1	0.5	1.6	4	0.7		
Above 25.000 I		4.6	0.2	10.2			
MGY: million ga	llons per year.		9.5	10.2	1.8		

lement		Calleguas (Creek Wa	tershed Me	etals and S	Selenium I	MDL
	ne ver alle la						
			. •				
	t Bressan Gillion						
6							
(34) (34) (34)							
		· . ·					
6.83							
10193	124.00						
1							
	Final	WLAs for	Other NP	DES Disch	argers		
			<u>ouior</u> nui	D HO paiden			
	LFina	WI As fo	r Total R	ecoverable	Conner 1	Nickel and	Selenin
	I. I'IIIa	Con	ner ¹	Nic	copper, 1	Seler	nium
	1.1.1	000			Wet Delle		
	Reach	Dry Monthly Everage	Wet Dally Maximum	Dry Monthly Average	Wet Daily Maximum	Dry Monthly	Wet Dai
		(ug/L) ²	(ug/L) ²	(ug/L) ³	(ug/L) ³	(ug/L)	(ug/L)
1		3.7*WER	5.8*WER	8.2	74	ക്ര	(b)
: I	2	3.7*WER	5.8*WER	8.2	74	(b)	(b)
	3	27.0	27.4	149	859	(b)	(b)
	4	3.7*WER	5.8*WER	8.3	75	5	290
	5	3.7*WER	5.8*WER	8.3	75	5	290
		(a)	31.0	(a)	958	(D) (b)	(D) (b)
	8	(a)	31.0	(a)	958	(b) (b)	(b)
	9	29.1	43.3	160	1296	(b)	(b)
·]	10	29.1	43.3	160	1296	(b)	(b)
	11	29.1	43.3	160	1296	(b)	(b)
.]	12	29.1	43.3	160	1296	(b)	(b)
		29.1	43.3	100	1290	(D)	(D)
	imple	mented in accord	lance with the a	pproved WERs u	sing the equation	ons set forth abov	e. Regardle
	the fir	nal WERs, total o	copper loading s	shall not exceed c	urrent loading.	In addition, efflu	ent
	² -2 ² C	ntrations shall no	ed targets have l	rtormance standa	rds of current to total recoverab	reatment technologies using the allocations using the second seco	gies
	defau	It translator of 0.	96 for freshwate	er reaches and 0.8	3 for saltwater	reaches.	ing the CTI
	<u></u> C	oncentration-bas	sed targets have	been converted t	o total recovera	ble allocations us	ing the CTI
	(a) Disch	It translator of 0. arges from these	997 for freshwa reaches do not	ter reaches and 0 reach lower Calle	.99 for saltwate	r reaches. 1 Mugu I agoon d	wring dry
	weath	er. Allocations	are not required	for these reaches		a widgo Lagoon o	uning ury
	(b)(b)_Se	lenium waste loa	ad allocations h	ave not been deve	loped for this r	each as it is not o	n the 303(d)
	impiemen	tation actions inc	ciude consideral	tion of the waters	ned-wide seleni	ium impacts.	
.1	** ***						
	H.Fin	ai WLAs f	or Mercu	ry			
- 1							

TMDL Element	Callegu	as Creek	Watersh	ed Metals	and Sele	enium T	MDL		
	There is insut sources. The equal to 0.05 water column organism only	fficient inf refore con 1 (ug/L) fo 1 target for y.	formation acentration or other N protection	to assign in-based wa PDES diston of huma	mass base aste loads chargers b n health f	ed WLAs allocatio based on from cons	to these ns are set the CTR sumption		
Load Allocation	 Open space represents background loads from ambient sources (i.e. natural soil concentrations, atmospheric deposition, and natural groundwater seepage) discharged from undeveloped open space, but not ambient sources that are discharged from developed land, such as agricultural and urban areas. LAs are developed for both wet and dryweather. The dryweather LAs apply to days when flows in the stream are less than 86th percentile flow rate for each reach. The wet-weather LAs apply to days when flows in the stream are less than 86th percentile flow rate for each reach. The wet-weather LAs apply to days when flows in the stream exceed 86th percentile flow rate for each reach. Annual mass loads of mercury in suspended sediment were developed according to low, medium, and high annual flow categories. A margin of safety of 15% was included in the LAs for copper and nickel. HInterims and Final Load Allocations for Total Recoverable Copper, Nickel, and Selenium Interim limits are included to allow time for dischargers to put in place implementation measures necessary to achieve final load allocations. The daily maximum and monthly average interim limits are set equal to the 99th and 95th percentile of available discharge data. Interim limits and final load allocations are applied in receiving water at the compliance points. 								
	in receivi	ing water e	n me con	ipitatice pr	uns.				
	A. Interi	m Limits	as and Cono	io Crock	D	volon Slov	ab		
	Constituents	Dry CMC	Dry CCC	Wet CMC	Dry CMC	Dry CCC	Wet CMC		
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)		
	Copper*	24	19	1390	24	19	1390		
	Nickel	43	42	(a)	43	42	(a)		
	Selenium	(b)	(b)	(b)	6.7	6	(a)		
	 (a) The current lo (b) Selenium allo Implementation (c) Attainment of available. 	eads do not exc cations have no on actions inclu interim limits	eed the TMDI of been develo ides considera will be evalua	under wet con ped for this reac tion of watershe ted in considera	ditions, interir ch as it is not o ed-wide seleni tion of backgr	n limits are no on the 303(d) um impacts. round loading	ot required. list. data, if		
	B.<u>B.</u>Fin: 1. Dry W	al Load A eather LA	llocation As in Wat	er Colum	n (lbs/da	y)			

Calleguas Creek Watershed Metals and Selenium TMDL						1DL
	Ca	leguas Cre	ek	Revolon Slough		
tuent	Low Flow	Average Flow	Elevated Flow	Low Flow	Average Flow	Elevated Flow
Agriculture	0.07* WER- 0.03	0.12* WER- 0.02	0.31*WER - 0.05	0.07*WER 0.03	0.14*WER- 0.07	0.35*WER 0.07
Open Space	0.150	0.080	0.130	0.050	0.120	0.110
Agriculture	0.420	0.260	0.970	0.390	0.690	1.600
pen Space	0.450	0,420	0.560	0.010	0.020	0.020
Agriculture	(a)	(a)	(a)	0.008	0.007	0.018
pen Space	(a)	(a)	(a)	0.180	0.310	0.490
u.						
Weather	LAs in V	Vater C	olumn-(l	bs/day) Povolon Sl	ough
	(0.00047	*OA2*0 04*) dek	10.0010	2*042+0.00	ougn
Agriculture	0.051*14/		2 -	(0.0012	3°Q°2+0.00	(34°Q)"
Open Space	0.000053	7*002+0.02	1321*0	0.00004	32*042+0 (00765*0
Agriculture	0.014*0/	2+0 82*0	002100	0.00004	A2+0 47*0	00705 Q
Open Space	0.014*0/	2+0.82*0		0.027*0	^2+0.47*O	
Agriculture	(2)	2.0.02 0		0.1*0^2	+1.8*0	
Open Space	(a)			0.027*0	^2+0 47*0	
open opnee	(4)			0.027 0	L. 0.41 Q	
······································	C	alleguas C	reek	R	evolon Slo	ugh
Agriculture	(0.00017 0.05)*WE	Q^2*0.01*0	2 -	(0.00123 WER	*Q^2+0.003	34*Q)*
Open Space	0.000053	7*Q^2+0.00	321*Q	0.000043	32*Q^2+0.0	00765*Q
Agriculture	0.014*Q^	2+0.82*Q		0.027*Q	2+0.47*Q	
Open Space	0.014*Q^	2+0.82*Q		0.027*Q	2+0.47*Q	
Agriculture	(a)			0.1*Q^2+	1.8*Q	
Open Space	(a)			0.027*Q	2+0.47*Q	
in accordance v ads do not exce ed in the table ocations have no ation actions ind volume and Final As are set limits for	LAs for at 80% r mercury	ved WERs apacity durin oped for this ration of the Mercur reduction	using the equ g wet weath reach as it is watershed w ry in Sus a from of ended see	ations set f er. Sum of not on the spended	all loads can 303(d) list. mimpacts. d Sedimo load esti are set ec	ent mates. qual to
t	As are set limits for test annua for the yea	As are set at 80% i limits for mercury lest annual load wi for the years 1993-	As are set at 80% reduction limits for mercury in suspe- nest annual load within eac for the years 1993-2003	As are set at 80% reduction from of limits for mercury in suspended set test annual load within each flow ca for the years 1993-2003	As are set at 80% reduction from of HSPF limits for mercury in suspended sediment a nest annual load within each flow category, for the years 1993-2003	As are set at 80% reduction from of HSPF load esti- limits for mercury in suspended sediment are set ed test annual load within each flow category, based of for the years 1993-2003

TMDL Element	Calleg	uas Cr	eek Wa	tershee	I Meta	ls and S	eleniu	n TMI)L
	Calleguas Creek Revolon Slough								
21		Agriculture Open Space		Agriculture Open S		Space			
	Flow Range	Interim (Ibs/yr)	Final (Ibs/yr)	Interim (Ibs/yr)	Final (Ibs/yr)	Interim (Ibs/yr)	Final (Ibs/yr)	Interim (Ibs/yr)	Final (Ibs/yr)
Sec.	0-15,000 MGY1	3.9	0.5	5.5	0.7	2		2.9	0.2
2	15,000-25,000 MGY	12.6	1.9	17.6	2.7	4.8	0.8	6.7	1.1
- 1	Above 25,000 MGY	77.5	11.2	108.4	17.9	12.2	2.2	17.1	2
	⁴ —MGY: million g	gallons per	year.						12
Margin of Safety	A margin of uncertainty i in the water this TMDL. assumptions ensure suffice methods em assigned to t implementate reductions for never exceed once in three CTR. Calcu Lagoon are i and Revolor which over p explicit MO uncertainty in the median f explicit MO category, bu average cate	million gallons per year. gin of safety (MOS) for the TMDL is designed to address any ainty in the analysis that could result in targets not being achieved water bodies. Both implicit and explicit MOS are included for MDL. The implicit MOS stems from <u>1</u>) the use of conservative ptions made during development of multiple numeric targets to sufficient protection under all conditions, and <u>2</u>) conservative ds employed in developing the TMDL. Background loads are ed to the TMDL and assumed to remain constant throughout nentation of the TMDL. This results in higher required ions for the other sources. Calculation of allocations is based on exceeding numeric target concentrations rather <u>more</u> than the n three years <u>as specified in the CTR</u> -exceedance referenced in the Calculations of current loads and loading capacity for Mugu en are based on the combined discharges from Calleguas Creek evolon Slough (without any dilution provided by tidal flushing), over predicts actual concentrations in the Lagoon. A 15% it MOS is also included for copper and nickel to account for the ainty resulting from the calculation of the allowable load based on edian flow rate and translator of each flow category. The 15% it MOS is determined sufficient to address the elevated flow ory, but still account for the more conservative nature of low and ge category.							
Future Growth	Ventura Cou residents with analysis of the for the CCW According to (SCAG), group from 1900-2 1960s. Signi near present	inty acc th a pop he 2000 7, which o the So owth in 000; wi ficant p city lin	ounts for pulation census n equals outhern (Ventura ith grow opulation nits unti	or slight of 753, data yid about 4 Californ County th exce on grow l at leas	ly more 197 (US elds a p 4% of ia Asso y avera eding 7 th is ex t 2020.	e than 2 th S Censu opulation the court ociation ged abo 0% in the pected of Future	% of the s Burea on estim ty popu of Gov ut 51% he 1920 to occur growth	e state's au, 2000 hate of 3 ulation. ernmen per dec 0s, 1950 r within may in). GIS 34,000 ts ade s, and and itially

TMDL Element	Calleguas Creek Watershed Metals and Selenium TMDL					
	increase loadings as construction activities expose bare soil and increase erosion-related discharges to receiving water. However, once development has been completed the presence of impermeable land surface and landscaped areas may reduce the amount of natural soils that are eroded and carried to the stream. For copper, future growth could increase loadings from urban areas and POTWs due to increased traffic (i.e., brake pad residues), architectural copper use and corrosion of copper pipes. Selenium loading may increase if increased irrigation raises the groundwater table and increases high selenium groundwater seepage to surface waters. However, if increased growth results in increased water demand and high selenium groundwater is pumped and treated to supply this demand, the selenium could decrease.					
Seasonal	Seasonal variations are addressed for copper, nickel, and selenium by					
Critical	conditions for copper, nickel, and selenium are-were developed using					
Conditions	model results to calculate the maximum observed 4-day average dry					
	as a whole, is defined as a critical condition. For mercury, there is no					
	indication that mercury contamination in Mugu Lagoon is consistently					
	effects of mercury are related to bioaccumulation in the food chain over					
	a long period time, any other short term variations in concentration					
	beneficial uses. Therefore, seasonal variations do not affect critical					
	conditions for the Calleguas Creek watershed mercury TMDL.					
Special Studies and Monitoring	Special Studies					
Plan	Several special studies are planned to improve understanding of key					
	aspects related to achievement of WLAs and LAs for the Metals and Selenium TMDL					
	1. Special Study #1 (Optional) – Evaluation and Initiation of Natural					
	Sources Exclusion					
	The TMDL technical report has identified ambient sources as the					
	primary significant selenium and mercury loadings in the watershed and					
	all ambient sources associated with open space runoff and natural					
	groundwater seepage is accounted for in this TMDL as "background					
	for each constituent qualify for natural source exclusion. This study					

TMDL Element	Calleguas Creek Watershed Metals and Selenium TMDL
	will also consider whether or not any portion of the ambient source contribution for agricultural or urban runoff loads qualify for natural source exclusions and/or provide a basis for site specific objectives. The presence of natural sources makes achievement of selenium and mercury targets during all conditions unlikely. For copper, achievement of the CTR targets or the WER based targets (if approved) in Revolon Slough may not be feasible due to the magnitude of background loads. Completion of site specific objectives and/or a use attainability analysis shall be required to review any potential change to water quality objectives for these constituents. This special study will be used to develop the necessary information to revise- the water quality objectives for selenium and mercury and possibly for copper and nickel.
	2. Special Study #2 – Identification of selenium contaminated Groundwater Sources
	The purpose of this special study will be to identify groundwater with high concentrations of selenium that is either being discharged directly to the stream or used as irrigation water. The investigation will focus on areas where groundwater has a high probability of reaching the stream and identify practical actions to reduce the discharge of the groundwater to the stream. The analysis will include an assessment of the availability of alternative water supplies for irrigation water, the costs of the alternative water supplies and the costs of reducing groundwater discharges.
	3. Special Study #3– Investigation of Soil Concentrations and Identification of "Hot Spots"
	The purpose of this special study will be to identify terrestrial areas with high concentrations of metals and/or selenium, either due to anthropogenic sources or resulting from high natural concentrations in soils. Use of detailed soil maps for the watershed in combination with field survey and soil sampling may lead to identification of areas important for reducing overall loads reaching the stream. Identification of any areas with elevated soil concentrations of metals and/or selenium would create an opportunity for efficient and targeted implementation actions, such as remediation or erosion control.
	4. Special Study #4 (Optional) – Determination of Water Effect Ratio for Copper in Revolon Slough

TMDL Element	Calleguas Creek Watershed Metals and Selenium TMDL
	The purpose of this optional special study would be to calculate a WER for copper that is specific to Revolon Slough. A WER was not previously developed for Revolon Slough because it was not listed for copper. Subsequent monitoring demonstrated that the saltwater copper CTR criterion was exceeded in the Revolon Slough. This Study would parallel the developed WER for Mugu Lagoon and Calleguas Creek. This is an optional special study to be conducted if desired by the stakeholders or determined necessary by the Executive Officer.
	5. Special Study #5 (Optional) – Determination of Site-Specific Objectives for Mercury and Selenium
	Special Study #1 will evaluate whether a natural source exclusion is appropriate for background loads of mercury and selenium or any portion of the ambient source contributions to non-background loads in the Calleguas Creek watershed. This special study will develop any SSOs deemed necessary to account for the background conditions and/or site-specific impacts of mercury and selenium (and possibly for copper and nickel) on wildlife and humans in the watershed. This is an optional special study to be conducted if desired by the stakeholders or determined necessary for establishing a natural source exclusion.
	<u>Monitoring Plan</u>
	The Calleguas Creek Watershed TMDL Monitoring Plan (CCWTMP) is designed to monitor and evaluate the implementation of this TMDL and refine the understanding of metal and selenium loads. CCWTMP is intended to parallel efforts of the Calleguas Creek Watershed Nutrients TMDL, Toxicity TMDL, and OC Pesticide, PCBs, and Sediment TMDL monitoring programs. The proposed CCWTMP shall be made available for public review before approval by the Executive Officer.
	The goals of the CCWTMP include: (1) to determine compliance with copper, mercury, nickel, and selenium numeric targets at receiving water monitoring stations and at POTWs discharges; (2) to determine compliance with waste load and load allocations for copper, mercury, nickel, and selenium at receiving water monitoring stations and at POTWs discharges; (3) to monitor the effect of implementation action by urbanPSDs, POTW, and agricultural dischargers, and other NPDES permittees on in-stream water and the complement the CCWTMP in a manner consistent with other TMDL implementation plans and regulatory actions within the Calleguas Creek watershed.
	Monitoring conducted through the Conditional Waiver for Disharges

TMDL Element	Calleguas Creek Watershed Metals and Selenium TMDL
	from Irrigated Lands (Conditional Waiver Program) may meet part of the needs of the CCWTMP. To the extent monitoring required by the Metals and Selenium TMDL Implementation Plan parallels monitoring required by the Conditional Waiver Program, it-monitoring shall be coordinated with the Conditional Waiver Program monitoring conducted by individuals and groups subject to the term and conditions of the Conditional Waiver Program.
	Monitoring will begin within one year of the effective date of the TMDL. For the first year, Iin-stream water column samples will be collected monthly for analysis of general water quality constituents (GWQC), copper, mercury, nickel, selenium, and zinc for the first year. After the first year, the Executive Officer will review the monitoring report and revise the monitoring frequency as appropriate. In-stream water column samples will be generally be collected at the base of Revolon Slough and Calleguas Creek, and in Mugu Lagoon (collection of flow-based samples will occur above the tidal prism). Additionally, sediment samples will be collected semi-annually in Mugu Lagoon and analyzed for sediment toxicity resulting from copper, mercury, nickel, selenium, and zinc. At such a time as numeric targets are consistently met at these points, an additional site or sites will be considered for monitoring to ensure numeric targets are met throughout the lower watershed.
	Additional samples will be collected concurrently at <u>stations that are</u> representative <u>of</u> agricultural and urban runoff land use stations as well as at POTWs in each of the subwatersheds and analyzed for GWQCs, copper, mercury, nickel, selenium, and zinc. The location of the <u>se</u> land use stations will be determined before initiation of the CCWTMP. Environmentally relevant detection limits will be used for metals and selenium (i.e. detection limits lower than applicable target), if available at a commercial laboratory.
	Compliance sampling station locations:

TMDL Element	Callegua	s Creek V	Vatershed Metals	and Selenium TMDL	
	Subwatershed	Station ID	Station Location	Constituent	
	Mugu Lagoon	01-11-BR	11th Street Bridge	Water Column: Cu, Ni, Hg, Se, Zn Bird Egg: Hg, Se Fish Tisue: Hg, Se Sediment: Cu, Ni, Hg, Se, Zn	
	Revolon Slough	04-WOOD	Revolon Slough East Side of Wood Road	Water Column: Cu, Ni, Hg, Se, Zn Fish Tisue: Hg, Se	
		03-CAMAR	Calleguas Creek at University Drive	Water Column: Cu, Ni, Hg, Se, Zn	
	Calleguas Creek	03D-CAMR	Camrosa Water Reclamation Plant	Water Column: Cu, Ni, Hg, Se, Zn	
		9AD-CAMA	Camarillo Water Reclamation Plant	Water Column: Cu, Ni, Hg, Se, Zn Bird Egg: Hg, Se Fish Tisue: Hg, Se Sediment: Cu, Ni, Hg, Se, Zn Fish Tisue: Hg, Se Water Column: Cu, Ni, Hg, Se, Zn Fish Tisue: Hg, Se Water Column: Cu, Ni, Hg, Se, Zn ent Water Column: Cu, Ni, Hg, Se, Zn mitted stormwater discharges, accordance with the 7-19.2. The Regional Board nal information developed g conducted as part of this schedule was developed with d a SSO for nickel will loption and approvals of the nplementation actions could be des discussion of conditions. OTWs Simi Valley WQCP, nis TMDL will be implemented nee working towards Conejo Creek. If this plan is the watershed will be achieved stream. The implementation to be implemented. However,	
	Conejo Creek	10D-HILL	Hill Canyon Wastewater Treatment Plant	Water Column: Cu, Ni, Hg, Se, Zn	
	 POTWs, and other NPDES discharges in accordance with the compliance schedules provided in Table 7-19.2. The Regional Board may revise these WLAs based on additional information developed through special studies and/or monitoring conducted as part of this TMDL. In addition, the implementation schedule was developed with the assumption that a WER for copper and a SSO for nickel will proceed following the TMDL. Should adoption and approvals of the WER and SSO not proceed, additional implementation actions could be required. The implementation plan includes discussion of implementation actions to address these conditions. WLAs established for the three major POTWsSimi Valley WQCP, Camrosa WRP, and Moorpark WTP in this TMDL will be implemented through NPDES permit limits. Compliance will be determined through monitoring of final effluent discharge as defined in the NPDES permit. The Hill Canyon and Camarillo WRPs are working towards discontinuing the discharge of effluent to Conejo Creek. If this plan is implemented, the POTW allocations for the watershed will be achieved by reduction of effluent discharges to the stream. The implementation plan includes sufficient time for this plan to be implemented. However, if this plan is altered, the POTWs will need to meet allocations through other methods such as source control activities. The Regional Board will need to ensure that permit conditions are consistent with the assumptions of the WLAs. Should federal, state, or regional guidance or practice for implementing WLAs into permits be revised, the Regional Board may reevaluate the TMDL to incorporate such guidance. 				

TMDL Element	Calleguas Creek Watershed Metals and Selenium TMDL
	has been developed for all permitted stormwater discharges, including municipal separate storm sewer systems (MS4s), Caltrans, general industrial and construction stormwater permits, and Naval Air Weapons Station Point Mugu. MS4 WLAs will be incorporated into the NPDES permit as receiving water limits measured in-stream at the base of Revolon Slough and Calleguas Creek, and in Mugu Lagoon and will be achieved through the implementation of BMPs as outlined in the implementation plan. The Regional Board will need to ensure that permit conditions are consistent with the assumptions of the WLAs. If BMPs are to be used, the Regional Board will need to detail its findings and conclusions supporting the use of BMPs in the NPDES permit fact sheets. Should federal, state, or regional guidance or practice for implementing WLAs into permits be revised, the Regional Board may reevaluated the TMDL to incorporate such guidance. The Regional Board may revise these WLAs based on the collection of additional information developed through special studies and/or monitoring conducted as part of this TMDL.
	LAs will be implemented through the State's Nonpoint Source Pollution Control Program (NPSPCP) and Conditional Waiver for Discharges from Irrigated Lands adopted by the Los Angeles Regional Water Quality Control Board on November 3, 2005. Compliance with LAs will be measured in-stream at the base of Revolon Slough and Calleguas Creek and in Mugu Lagoon and will be achieved through the implementation of BMPs consistent with the NPSPCP and the Conditional Waiver Program.
	The Conditional Waiver Program requires the development of an agricultural water quality management plan (AWQMP) to address pollutants that are exceeding receiving water quality objectives as a result of agricultural discharges. Therefore, implementation of the load allocations will be through the development of an AWQMP for metals and selenium. Implementation of the load allocations will also include the coordination of BMPs being implemented under other required programs to ensure metal discharges are considered in the implementation. Additionally, agricultural dischargers will participate in educational seminars on the implementation of BMPs as required under the Conditional <u>Waiver</u> Program. Studies are currently being conducted to assess the extent of BMP implementation and provide information will be integrated into the AWQMP that will guide the implementation of agricultural BMPs in the Calleguas Creek watershed. After implementation of these actions, compliance with the allocations and TMDL will be evaluated and the allocations reconsidered if

TMDL Element	Calleguas Creek Watershed Metals and Selenium TMDL
	the implementation plan Agricultural and <u>urban PSDs</u> dischargers will have a required 25%, 50% and 100% reduction in the difference between the current loadings and
	the load allocations at 5, 10 and 15 years after the effective date, respectively. Achievement of required reductions will be evaluated based on progress towards BMP implementation as outlined in the UWQMPs, AWQMP, Conditional Waiver <u>Programfor Irrigated Lands</u> , and in consideration of background loading information, if available. If the interim reductions are not met, the dischargers will submit a report to the Executive Officer detailing why the reductions were not met and the steps that will be taken to meet the required reductions.
	As shown in Table 7-19.2, implementation of LAs will be conducted over a period of time to allow for implementation of the BMPs, as well as coordination with special studies and implementation actions resulting from other TMDL Implementation Plans (Nutrient, Historic Pesticides and PCBs, Sediment, Metals, Bacteria, etc.)for the Calleguas Creek watershed. The Regional Board may revise the LAs based on the collection of additional information developed through special studies and/or monitoring conducted as part of this TMDL.

Item	Implementation Action ¹	Responsible Party	Completion Date
1	Effective date of interim Metals and Selenium TMDL waste load allocation (WLAs), and final WLAs for other NPDES permittees	POTWs, Permitted Stormwater Dischargers ² (PSD), Other NPDES Permittees	Effective date of the amendment
2	Effective date of interim Metals and Selenium TMDL load allocation (LAs)	Agricultural Dischargers	Effective date of the amendment
3a	Submit Calleguas Creek Watershed Metals and Selenium Monitoring Program	POTWs, PSD, Agricultural Dischargers	Within 3 months after the effective date of the amendment
3Ъ	Implement Calleguas Creek Watershed Metals and Selenium Monitoring Program	POTWs, PSD, Agricultural Dischargers	Within 3 months of Executive Officer approval of the monitoring program
3c	Re-calibrate HSPF water quality model based on first year of monitoring data	POTWs, PSD, Agricultural Dischargers	1 year after submittal of first annual monitoring report
4a	Conduct a source control study, develop and submit an Urban Water Quality Management Program (UWQMP) for copper, mercury, nickel, and selenium	MS4s	Within 2 years after the effective date of the amendment
4b	Conduct a source control study, develop and submit an UWQMP for copper, mercury, nickel, and selenium	Caltrans	Within 2 years after the effective date of the amendment
4c	Conduct a source control study, develop and submit an UWQMP for copper, mercury, nickel, and selenium	NAWS point Mugu (US Navy)	Within 2 years after the effective date of the amendment
5	Implement UWQMP	PSD	Within 1 year of approval of UWQMP by the Executive Officer
6	Develop and submit an Agricultural Water Quality Management Program (AWQMP) as described in the Conditional Waiver Program	Agricultural Dischargers	Within 2 years after the effective date of the amendment
7	Implement AWQMP	Agricultural Dischargers	Within 1 year of approval of AWQMP by the Executive Officer
8	Develop WLAs and LAs for zinc if impairment for Mugu Lagoon is maintained on the final 2006 303(d) list	Regional Board or USEPA	Within 1 year of the final 2006 303(d) list
9	Submit progress report on salinity management plan, including status of reducing WRP effluent discharges to Conejo and Calleguas Creek reaches of the watershed	POTWs	Within 3 years after the effective date of the amendment
10	If progress report identifies the effluent discharges reduction is not progressing, develop and	POTWs	Within 4 years after the effective date of the

 Table 7-19.2 Calleguas Creek Watershed Metals and Selenium TMDL:

 Implementation Schedule

¹ The Regional Board regulatory programs addressing all discharges in effect at the time this implementation task is due may contain requirements substantially similar to the requirements of these implementation tasks. If such requirements are in place in another regulatory program including other TMDLs, the Executive Officer may revise or eliminate this implementation task to coordinate this TMDL implementation plan with other regulatory programs.

² Permitted Stormwater Dischargers (PSD) include MS4s, Caltrans, the Naval Air Weapons Station at Point Mugu, and general industrial and construction permittees.

Item	Implementation Action ¹	Responsible Party	Completion Date
	implement source control activities for copper, mercury, nickel, and selenium		amendment
11	Re-evaluation of POTW interim waste load allocations for copper, mercury, and nickel	POTWs	Within 5 years after the effective date of the amendment
12a	Evaluate the results of the OCs TMDL, Special Study – Calculation of sediment transport rates in the Calleguas Creek watershed for applicability to the metals and selenium TMDL	Agricultural Dischargers, PSD	Within 6 months of completion of the study
12Ь	Include monitoring for copper, mercury, nickel, and selenium in the OC pesticides TMDL, special Study – Monitoring of sediment by source and land use type	Agricultural Dischargers, PSD	Within 2 years after the effective date of the amendment
12c	Expand scope of the OC Pesticide TMDL, Special Study – Examination of food webs and accumulation in the Calleguas Creek watershed to ensure protection of wildlife to include mercury	Interested parties	If necessary, prior to end of the implementation period
12d	Evaluate the results of the OC Pesticides TMDL, Special Study – Effects of BMPs on Sediment and Siltation to determine the impacts on metals and selenium	Agricultural Dischargers, PSD	Within 6 months of completion of the study
13a	Submit work plan for Special Study #1 (Optional) – Identification of Natural Sources Exclusion	Agricultural Dischargers, PSD	Within 1 year after the effective date of the amendment
14b <u>1</u> 4a13 b	Submit results of Special Study #1 (Optional) – Identification of Natural Sources Exclusion	Agricultural Dischargers, PSD	Within 3 years of approval of workplan by Executive Officer
14a	Submit work plan for Special Study #2 – Identification of selenium Contaminated Groundwater Sources	POTWs, PSD, and Agricultural Dischargers	Within 1 year after the effective date of the amendment
14b	Submit results of Special Study #2 – Identification of selenium Contaminated Groundwater Sources	POTWs, PSD, and Agricultural Dischargers	Within 1 year of approval of workplan by Executive Officer
15a	Submit work plan for Special Study #3 – Investigation of Metals' "Hot Spot" and Natural Soil	PSD and Agricultural Discharger	Within 1 year after the effective date of the amendment
. 15b	Submit results of Special Study #3 – Investigation of metals' "Hot Spot" and Natural Soil	PSD and Agricultural Discharger	Within 2 years of approval of workplan by Executive Officer
16	Special Study #4 (Optional) – Determination of WER for copper in Revolon Slough	PSD and Agricultural Dischargers	If necessary, prior to end of the implementation period
17	Special Study #5 (Optional) – Determination of Site Specific Objective for Mercury and Selenium	PSD and Agricultural Dischargers	If necessary, prior to end of the implementation period
18	Evaluate effectiveness of BMPs implemented under the AWQMP and UWQMP in controlling metals and selenium discharges	PSD and Agricultural Dischargers	6 years after the effective date of the amendment
19	Evaluate the results of implementation actions 14 and 15 (Special Study #2 & #3) and implement actions identified by the studies	POTWs, PSD, and Agricultural Dischargers	Within 1 year after the completion of the studies
20	If needed, implement additional BMPs or revise existing BMPs to address any issues not covered by	Agricultural Dischargers	7 years after the effective date of the amendment

Item	Implementation Action ¹	Responsible Party	Completion Date
	implementation efforts of related Calleguas Creek watershed TMDLs (Nutrients, Toxicity, OC Pesticides, PCBs, and Siltation) and the Conditional Waiver Program		
21	Consider nickel SSO proposed by stakeholders	Regional Board	1 years after the effective date of the amendment
22	Publicly notice tentative copper water effects ratio for Regional Board consideration, if deemed appropriate based on peer review	Regional Board Staff	Within 2 months of receipt of peer review comments
23	Based on the result from items 1-23, Regional Board will consider re-evaluation of the TMDLs, WLAs, and LAs if necessary	Regional Board	2 years from submittal of information necessary for re-evaluation
24	POTWs will be required to reduce loadings by 50%, and 100% of the difference between the current loading and the WLAs at- $8-$, and 10 years after the effective date, respectively.	POTWs	8_7 and 10 years after the effective date of the amendment
25	Re-evaluation of Agricultural and Urban load and waste load allocations for copper, mercury, nickel, and selenium based on the evaluation of BMP effectiveness. Agricultural and urban dischargers will have a required 25%, 50%, and 100% reduction in the difference between the current loadings and the load allocations at 5, 10, and 15 years after the effective date, respectively.	Agricultural and Urban Dischargers<u>PSDs</u>	5, 10, and 15 years after the effective date of the amendment
26	Stakeholders and Regional Board staff will provide information items to the Regional Board, including: progress toward meeting TMDL load reductions, water quality data, and a summary of implementation activities completed to date	Regional Board	2 years after the effective date, and every 2 years following
27	Achievement of Final WLAs and attainment of water quality standards for copper, mercury, nickel, and selenium	POTWs	Within 10 years after the effective date of the amendment ³
28	Achievement of Final WLAs and LAs and attainment of water quality standards for copper, nickel, mercury and selenium	Agricultural Dischargers, PSD	Within 15 years after the effective date of the amendment ³

³ Date of achievement of WLAs and LAs based on the estimated timeframe for educational programs, special studies, and implementation of appropriate BMPs and associated monitoring. The Conditional Waiver Program will set timeframes for the BMP management plans.