GEOMORPHOLOGY AND SEDIMENTOLOGY OF MAPLE CREEK DELTAIC MARSH IN BIG LAGOON, HUMBOLDT COUNTY, CALIFORNIA

by

John T.C. Parker

A Thesis

Presented to

The Faculty of Humboldt State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

March, 1988

GEOMORPHOLOGY AND SEDIMENTOLOGY OF MAPLE CREEK DELTAIC MARSH IN BIG LAGOON, HUMBOLDT COUNTY, CALIFORNIA

by

John T. C. Parker

APPROVED BY THE MASTER'S THESIS COMMITTEE

Garv A. Carver

K.R. Aalto

Raymond M. Burke

Andre^rK. Lehre

APPROVED BY THE DEAN OF GRADUATE STUDIES

Allan M aillesn

TABLE OF CONTENTS

Pages

List of figures and table	iv
Abstract	vi
Introduction	1
Regional setting	2
Previous work	5
Methods	6
Field investigation	6
Sedimentologic analysis	8
Descriptive geomorphology and sedimentology	10
Main channel	10
Planform and geometry	10
Hydrology	14
Channel sediments	16
Floodplain	18
Levees	19
Flood basins	28
Flood channels	32
Channel fill	36
Crevasse splay deposits	41
Delta front	44

i

Alluvial islands	44			
Subaqueous delta	48			
Peat bog	49			
Pools	50			
Peat stratigraphy	52			
Aerial photograph analysis				
1931 photograph	58			
1940 photograph	59			
1958 photograph	60			
1978 photograph	61			
Since 1978	62			
Discussion	67			
Alluvial history	67			
Magnitude of event and system response	72			
Tectonic controls	75			
Upper drainage basin conditions	77			
Intrinsic conditions	79			
Lagoon water level	79			
Floodplain physiography	81			
Floodplain vegetation	85			
Conclusions	87			
Acknowledgments	89			

1

San and the second states

ii

References cited	92
Appendix I-A Descriptions of cores	98
Appendix I-B Auger hole descriptions	110
Appendix I-C Trench and exposure descriptions	111
Appendix I-D Grab sample descriptions	111
Appendix I-E Caltrans core descriptions	112
Appendix II Estimate of bankfull discharge	114

LIST OF FIGURES AND TABLE

1	m	_	_	_	_
	~	a	Q	е	S

Figure 1: Location map	3
Figure 2: Topographic map	Envelope
Figure 3: Map of geomorphic features and surficial sediments	Envelope
Figure 4: Channel fill in Maple Creek	12
Figure 5: Upstream view of reach 1 of main channel	12
Figure 6: Vegetated slump block in semi-active channel	13
Figure 7: Downstream view of reach 2	13
Figure 8: Downstream view of reach 3	15
Figure 9a, b: Cross-sections A-A' and B-B'	21
Figure 9c: Cross-section C-C'	22
Figure 10a, b: Views of levee deposits	23
Figure 11a-c: Levee cores	24
Figure 11d-f: Levee cores	25
Figure 12: Flood basin cores	30
Figure 13: Auger holes	31
Figure 14: Abandoned channel	35
Figure 15a-c: Channel fill cores	39
Figure 15d-f: Channel fill cores	40
Figure 16: Crevasse splay cores	43
Figure 17: Aerial view of alluvial islands	46

Figure 18: Alluvial island cores	47
Figure 19: Peat bog pool	51
Figure 20: Peat bog cores	55
Figure 21a: 1931 aerial photograph overlay	63
Figure 21b: 1940 aerial photograph overlay	64
Figure 21c: 1958 aerial photograph overlay	65
Figure 21d: 1978 aerial photograph overlay	66
Figure 22: Profile of main channel levee crests	82
Figure 23: Profile of West Branch levee crests	83
Table 1: Particle size distribution of Maple Creek marsh sediments	9

v

· ·

ABSTRACT

Geomorphic and sedimentologic processes have been little studied in northwest California coastal fluvial depositional environments such as the 81-ha Maple Creek deltaic marsh in Big Lagoon, Humboldt County. Numerous investigators have documented effects of land use practices and large, destructive floods on northwest California upper drainage basin slopes and channels including widespread landsliding,coarse-grained overbank deposition, channel aggradation and bank erosion. An investigation of Maple Creek marsh employing detailed mapping of marsh physical features and surficial sediments; examination of 70 cores and borings; and analysis of aerial photographs shows that the effect of large floods and watershed disturbance has been quite limited in that fluvial system.

Depositional environments of Maple Creek marsh include the active channel, the floodplain, flood channels and paleochannels, a peat bog and the delta plain. Coarse-grained sediments are generally confined to channels, but sands and fine gravels episodically deposited in interdistributary bays near the distal margin of the subaerial marsh and at the mouth of the main channel are important elements of floodplain vertical accretion. The Maple Creek floodplain is constructed primarily from overbank deposits resulting from moderate, frequent floods. The minimum age of the marsh within the study area is 315 years based on historic progradation rates, but that age is probably considerably underestimated due to increased sedimentation rates resulting from watershed disturbance in the 20th century. At least 3, and probably 4, generations of channel development and floodplain formation are preserved as paleochannels on the floodplain surface showing the northeastward migration of Maple Creek until a reversal in migration direction occurred and the channel entered its present course.

Intrinsic geomorphic and sedimentologic agents are more important in governing floodplain formation, channel morphology and migration and distribution of sediments than extrinsic factors. Most important intrinsic conditions seem to be the water level in Big Lagoon, floodplain physiography and floodplain vegetation. Fluctuating water levels in Big Lagoon produce sudden, large changes in Maple Creek base level thereby affecting the geomorphic effectiveness of any given stream discharge. In particular, high lagoon water levels damp the impact of high flood discharges on marsh channels and floodplain surfaces. Floodplain physiography controls the distribution of coarse overbank deposits and affects the rate of vertical accretion. As the floodplain grows by vertical accretion, overbank deposition becomes less frequent and rate of accretion slows. Coarse-grained deposits are not deposited on surfaces above about 0.5 m above mean sea level. Width of the Maple Creek floodplain results in spreading and lowering of flood

vii

discharge energy and low gradient of the channel through the study area produces lower stream velocities. Floodplain vegetation stabilizes marsh landforms and promotes deposition on floodplain surfaces and in paleochannels by increasing roughness.