CHEMICAL ANALYSIS, TOXICITY EVALUATION AND BIOACCUMULATION EXPOSURE OF SEDIMENTS FROM HUMBOLDT BAY:

BASELINE SURVEY III

Fiscal Year 1995

FINAL REPORT

Prepared for:

U.S. ARMY ENGINEERING DISTRICT SAN FRANCISCO CORPS OF ENGINEERS San Francisco, California

Prepared by:

TOXSCAN INC. and KINNETIC LABORATORIES, INC. Watsonville, California

FEBRUARY 1996

F:\WP51\BIOASSAY\SFCOE\HUMBOLT5\HUMBOLT5.RPT:02/13/96:1344

gan ing kalunggan pangganggan pangganggan pangganggan pangganggan pangganggan pangganggan pangganggan panggan Panggan pangganggan pangganggan panggan panggan panggan panggan panggan panggan panggan panggan panggan panggan

n de la composition La composition de la La composition de la

CONTRACTOR OF THE PROPERTY OF THE PARTY OF T

ing Service by:

. Pag. V 7 Jaget

APATELERA (La Copie de parameter a la como de la como d

CHEMICAL ANALYSIS, TOXICITY EVALUATION AND BIOACCUMULATION EXPOSURE OF SEDIMENTS FROM

HUMBOLDT BAY:

BASELINE SURVEY III

Fiscal Year 1995

FINAL REPORT

Prepared for:

U.S. ARMY ENGINEERING DISTRICT SAN FRANCISCO CORPS OF ENGINEERS San Francisco, California

Prepared by:

TOXSCAN INC. and KINNETIC LABORATORIES, INC. Watsonville, California

FEBRUARY 1996

F:\WP51\BIOASSAY\SFCOE\HUMBOLT5\HUMBOLT5.RPT:02/13/96:1344

on the first of the second of

TABLE OF CONTENTS

LIST OF TABLES	ii
LIST OF FIGURES	ii
1.0 Introduction	1
2.0 Methods	
2.1 Sediment Collection	
2.1.1 Sample Handling	
2.2 Water Collection	
2.3 Chemical and Physical Sediment Analysis	
2.4 Bioassay and Bioaccumulation Test Procedures	
2.4.1.1 Bivalve Larvae (Mytilus edulis)	
2.4.1.2 Mysid (Holmesimysis costata)	
2.4.1.2 Mysid (Holmesimysis Costata)	
2.4.1.4 Initial Mixing Calculations	
2.4.2 Solid Phase (SP) Static Bioassay (Amphipod)	
2.4.3 Solid Phase (SP) Flow-through Bioassays (Mysid Shrimp and	Ŭ
Polychaete Worm)	9
2.4.4 Bioaccumulation Exposure	
	11
3.1 Sediment Physical Analysis	11
	11
3.3 Bioassay Test Results	15
3.3.1 Suspended Particulate Phase (SPP) Bioassays	15
	15
	16
	16
	17
	17
3.3.3 Solid Phase (SP) Flow-Through Bioassays: Mysid Shrimp and	
	18
3.3.4 Bioaccumulation Exposure (Clam and Worm)	19
DEEDENCES	20
REFERENCES	40
	21
A A A A A A A A A A A A A A A A A A A	٠.
FIGURES	37
APPENDICES:	
A: Scope of Services	
B: Field Sampling Log Sheets	
C: Sediment Chemistry and Physical Parameters	
D: QA/QC Plan	
E: Bioassay QC and LPC Calculations	
F: Chains of Custody	

LIST OF TABLES

Table 1.	Analyses Performed	23
Table 2.	Sediments Collected	24
Table 3.	Biological Assessments	26
Table 4.	Sediment Chemistry Summary	27
Table 5.	Bivalve SPP Bioassays	29
Table 6.	Mysid SPP Bioassays	31
Table 7.	Sanddab SPP bioassays	32
Table 8.	EC/LC ₅₀ values for SPP bioassays	33
Table 9.	Amphipod SP static bioassays	34
Table 10.	Mysid SP flow-through bioassays	35
Table 11.	Polychaete worm SP flow-through bioassays	36

LIST OF FIGURES

Figure	1.	Humboldt Bay FY 1995 sampling locations. Reference station.
Figure	2.	Humboldt Bay FY 1995 sampling locations. Stations FL1 through FL8, ENT1 ENT2, and BAR1.
Figure	3.	Humboldt Bay FY 1995 sampling locations. Stations NB1 through NB9.
Figure	4.	Humboldt Bay FY 1994 sampling locations. Stations EK1 through EK8 and SAM1 through SAM7.

CHEMICAL ANALYSIS, TOXICITY EVALUATION AND BIOACCUMULATION TESTING

OF SEDIMENTS FROM

HUMBOLDT BAY

BASELINE SURVEY III

1.0 Introduction

Under Contract No. DACW07-92-D-002 from San Francisco District, Army Corps of Engineers (SFACOE), ToxScan, Inc. collected and analyzed sediment samples from **Humboldt Bay** for FY 1995, **Baseline Survey III** as per the project Scope of Services (**Appendix A**). Sediments were sampled by Kinnetic Laboratories, Inc., and returned to the ToxScan, Inc. laboratory at Watsonville, CA where they were assigned laboratory number **T-12046** for physical, chemical and bioassay analyses. Bioaccumulation exposures were performed on the sediment composites, but the exposed tissues were not analyzed. Samples collected, composites and analyses are summarized in **Table 1**.

2.0 Methods

2.1 Sediment Collection

Sediment samples from **Humboldt Harbor** were collected March 30, 1995 through April 4, 1995 from the F/V Sally Kay. Thirty five discrete samples from six areas in Humboldt Harbor were collected using Vibra-core and Smith-MacIntyre Grab sampling equipment. Materials from individual sites with fine grained material were composited for analysis, and discrete samples from each site were archived. A grab sample was obtained from the reference area with a Smith-MacIntyre grab. Samples were held at 4°C until delivery to the ToxScan laboratory in Watsonville on April 4, 1995.

Sample location target positions were taken from the project Scope of Services. Core and grab samples were taken as close to target locations as possible. Sample locations are plotted and labelled in **Figures 1** through **4**. The details of each sample (time collected, depth, and location) are summarized in **Table 2** and documented in the field log sheets presented in **Appendix B**.

Horizontal positioning was established with a Trimble series 4000 Differential GPS navigation system with base stations set on Army Corps of Engineers survey markers. Vertical measurements were provided by a JVC 90 series dual frequency fathometer calibrated by leadline to 0.1 foot at the expected depth range. Tidal stage was determined using "Tide.1" software (Micronautics Inc.) and verified daily with USGS benchmarks.

The vibra-core consists of a vibrating aluminum head and a ten foot long aluminum core tube. The core tube is capped with a stainless steel cutting tip and a stainless steel core catcher. The vibra-core is lowered slowly into the sediment; the vibration allows entry into the sediment from the mudline to the sample depth. If a sample was not obtained on the first attempt, core attempts were repeated until a sample was secured. The Smith-Macintyre grab consists of a set of spring-loaded galvanized steel jaws, triggered by impact with the sediment surface, which collects sediment to 6" below the mudline.

All sample contacting surfaces of the Vibra-Core and sample handling equipment were cleaned between each site using the following EPA approved method:

- 1. Wash with 2% Micro Laboratory Soap.
- 2. Rinse three times with reagent grade deionized water.
- 3. Rinse with 2N nitric acid.
- 4. Rinse three times with clean water.
- 5. Rinse with reagent grade acetone.
- 6. Rinse with reagent grade hexanes and allow to air dry.
- 5. Store in cleaned containers until use.

The Smith-MacIntyre Grab was cleaned using steps 1 and 2 above.

2.1.1 Sample Handling. Vibracore and Smith Macintyre grab samples were taken during this project. Handling procedures for each sample type are summarized below:

Vibracore Samples. Each core sample was measured for total core length. If the core achieved penetration to project dredge depth the desired sample (from dredge depth to sediment surface) was extruded into the compositing container.

Grab Samples. Each grab sample was evaluated for grain size, composition, and penetration. Grabs which had "washed out", or which were determined to have insufficient penetration, were rejected.

The individual samples and area composites were placed in appropriate containers in precleaned coolers, on ice, to reduce the temperature to the prescribed 4°C. All samples were transported to ToxScan's chemistry and bioassay facilities in Watsonville under chain of custody at the prescribed temperature. Subsamples of the four composites were subsequently shipped at temperature under chain of custody to Alta Analytical Laboratory Inc., El Dorado Hills, CA for tetra to octa chlorinated dioxins and furans analysis.

2.2 Water Collection

Reference water for bioassay tests was collected at mid depth at the reference site using an EPA protocol-cleaned peristaltic pump and cleaned silicon and tefion hoses. The hose was lowered into the water at one end of the reference site, and the vessel drifted with the current through the reference site while sampling. The water was pumped into 5-gallon cubitainers which were then stored at 4°C until delivery to the ToxScan laboratory in Watsonville.

2.3 Chemical and Physical Sediment Analysis

Sediment samples for chemical and physical analysis were collected in glass containers; samples for grain size analysis were collected in polyethylene containers. Prior to analysis, samples were stored in the laboratory at 4°C. Analyses were conducted according to the following methods:

Sediment Grain Size was determined using the methods described in Plumb (1981).

Interstitial Water Salinity and Total Ammonia values were determined for centrifuge-extracted sediment pore waters by salinometer-calibrated refractometer (YSI Model 33 Conductivity/Salinity Meter and Atago S-10 or S-28 Hand Held Refractometer), and by pH meter / ammonia probe (Fisher Accumet Model 925 with Orion Ammonia Electrode Model 95-12). One hundred to two hundred grams of sediment were centrifuged at 7,000 to 8,000 rpm until supernatant was clear (15 - 30 minutes).

Total and Water Soluble Sulfides. This method was adapted from EPA Method 376.1 (EPA 1983) and Standard Method 4500-S⁻²-E (APHA 1992). Sediment samples were mixed with O₂-free DIW, and treated in a manner similar to aqueous samples. Hydrogen sulfide present in aqueous samples was purged into a zinc acetate trap using nitrogen gas. The sample pH was adjusted to about 4 if total sulfide was to be determined, or left unadjusted for free sulfide determinations. The zinc sulfide precipitate in the trap was oxidized with a known and excess amount of iodine, and the unreacted iodine was backtitrated with thiosulfate.

Oil and Grease, Total Petroleum Hydrocarbon. Samples were acidified to a low pH and extracted with fluorocarbon-113 in a separatory funnel. The fluorocarbon layer was separated from each sample, passed over sodium sulfate and collected for analysis of Oil and Grease using an Infrared spectrophotometer scanning the wavelengths from 3200 to 2700 cm⁻¹. To determine Total Petroleum Hydrocarbons, this above extract was passed through silica gel which extracted the vegetable oil fractions; the remaining petroleum fraction was then analyzed by Infrared spectrophotometric techniques as described below.

Total Organic Carbon (TOC). Analysis for total organic carbon followed the method of Gaudette, et al. (1974). One-to-two grams of sediment were placed in a 500 ml flask to which 10 ml of potassium dichromate ($K_2CR_2O_7$) had been added. Twenty ml of concentrated sulfuric acid (H_2SO_4) was then added while the flask was swirled. After 30 minutes, the sample was diluted to a volume of 200 ml with de-

ionized water (DIW), and 10 ml of phosphoric acid (H_3PO_4) and 0.2 g of sodium fluoride (NaF) were added. After more swirling, 15 drops of diphenylamine indicator was added and the sample was titrated with 0.5N ferrous ammonium sulfate.

Metals. Analyses for metals employed combinations of the following Varian spectrophotometers: SpectrAA 400P or 400Z with GTA 96 a Graphite Furnace and autosampler; or a SpectrAA 10 with VOA 76 hydride—cold vapor generator and flame autosamplers. Sample preparation prior to analysis by atomic absorption was accomplished by guidelines specified by Chapter 3, Sections 3.2 and 3.3, 7000 series (EPA 1986).

Organotins. Organotin species analysis was by the method of Uhler and Durrel (1989). Speciation was done by a n-pentyl derivatization using a Gas Chromatograph with a Flame Photometric Detector. A sediment sample was mixed with 5 ml of hydrobromic acid (HBr), converting cationic butyltins to the bromide complexes, which were then extracted with a toluene-tropolone mixture. Following this extraction a n-pentylmagnesium bromide was used to convert the butyltins to the n-pentyl derivatives. This extract was cleaned by passing it through a Florisil/Silica chromatograph column and then injected into the Gas Chromatograph with a FPD detector where butyltins were quantified.

Chlorinated Pesticides and PCB's. Analyses for these constituents were determined by Method 8080 (EPA 1986). A solid sample was mixed with anhydrous sodium sulfate, placed in an extraction thimble and extracted using acetone and hexane in a Soxhlet extractor. The extract was then dried, concentrated, and underwent a Florisil clean-up. The extract was analyzed by gas chromatograph with an electron capture detector.

Polynuclear Aromatic Hydrocarbons and Phthalates. Analyses for semivolatile compounds were by GC-MS techniques, following Method 8270 (EPA 1986). A solid sample was mixed with anhydrous sodium sulfate and sonicated in methylene chloride. The extract was concentrated and then cleaned up by gel permeation chromatography. The extracted sample was analyzed by gas chromatograph/ mass spectroscopy. The EPA 8270 method was modified slightly by the use of Varian Selective Ion Storage technique which eliminates interfering ions from the sample spectrum.

Dioxins and Furans. Sediment samples were analyzed for tetra to octa chlorinated dioxins and furans using EPA Method 8290. These analyses were performed by Alta Analytical Laboratory, Inc., El Dorado Hills. CA.

2.4 Bioassay and Bioaccumulation Test Procedures

Biological assessments of the Humboldt Bay sediments are summarized in Table 3.

2.4.1 Suspended Particulate Phase (SPP) Bioassays

Suspended particulate phase elutriates were prepared by procedures outlined in the "Green Book" (EPA/USACE 1991) using reference site water and test sediments. The test protocol for bivalves was as specified by ASTM (1989). Three concentrations (100%, 50%, 10%) of suspended particulate phase were tested. The lower concentrations were evaluated only if the 100% concentrations produced >50% inhibition of development. Three species were tested in suspended particulate phase bioassays: The larvae of a marine bivalve (the bay mussel, *Mytilus edulis*), a mysid (*Holmesimysis costata*), and a marine teleost fish (the speckled sanddab, *Citharichthys stigmaeous*).

Elutriate sanddab bioassays were performed at the Davenport laboratory, and elutriate bioassays with mysids and bivalve larvae were performed at the Watsonville laboratory. The positioning of test containers and other conditions in the laboratories were designed for uniform exposure to the controlled laboratory environment. Five replicates of test treatments were randomly assigned (complete random design) to the test containers by use of a random numbers generating program.

The sediment samples were placed in cleaned 5-gallon polyethylene buckets with laboratory seawater for elutriate preparation. The sediment to water ratio was 1:4 as specified in the Green Book. The mixtures were agitated by vigorous aeration for 30 minutes. After a one-hour settling period, the elutriates were siphoned off and used as suspended particulate phase media.

2.4.1.1 Bivalve Larvae (Mytilus edulis)

Mussels were induced to spawn by high-temperature stimulation. Eggs and sperm were collected in separate basins filled with aerated seawater at 20°C. Egg density was determined by microscopically counting several 1-ml aliquots taken from the well-mixed egg basin. Fertilization was accomplished by addition of an appropriate amount of sperm suspension, and confirmed by microscopic examination.

The control exposure, performed for quality assurance purposes, used seawater from our laboratory system. Five replicate dishes were used for each test exposure. Temperature, dissolved oxygen, pH and salinity were monitored in each test concentration and in controls at the beginning and end of the test.

Larvae were tested in 250 ml polyethylene beakers containing approximately 200 ml of test solution. After fertilization was confirmed an aliquot containing approximately 6000 fertilized eggs was pipetted into each test beaker. Gentle aeration was provided throughout the 48-hour duration of the test. Five extra beakers were prepared in addition to those required for test and control replicates. These

"extra" test containers were not incubated for 48 hours, but rather they were evaluated immediately after inoculation to provide the "initial recovery" data used to establish the mean number of embryos added to each experimental beaker.

At the end of the 48-hour exposure period the contents of each dish were poured through a 45 μ nytex screen. Surviving larvae were retained on the screen. The test beaker was rinsed three times with seawater and each successive rinse was poured through the screen to ensure complete transfer of larvae. Larvae were quantitatively transferred from the screen into a graduated cylinder and the volume was adjusted with a seawater-formalin mixture. Contents of the cylinder were mixed by inversion to ensure uniform distribution of larvae, and a 1 ml aliquot was transferred to a Sedgwick-Rafter counting slide for microscopic evaluation. Larvae were scored for evidence of internal tissue inside a complete larval shell. Larvae which had a complete larval shell containing tissue were counted as normal, whereas empty shells and larvae with incomplete shells were scored as abnormal. Data were reported as percent of initial embryos which survived, and percent of survivors which showed normal development, as calculated below.

The raw data resulting from these bioassays included the following:

- Counts of embryos added to five replicate test containers which were <u>not</u> incubated for 48 hours (= initial recovery).
- Counts of normal and abnormal embryos from test containers (five replicates per sample, reference and control) which were incubated for 48 hours.

The results were calculated from these data as follows:

% Survival =
$$\frac{No. normal larvae recovered}{N} \times 100$$

where N = the mean initial number of embryos added (from initial recovery data).

For each test chamber other than controls, % survival data were adjusted to correct for mortality observed in the control exposures by use of **Abbott's correction**:

Percent normal development data were similarly adjusted.

For the bioassay to be considered a valid test, an average of at least 70% of the exposed embryos must survive in the controls; abnormals were counted as mortalities as per the Testing Guidelines contained in SFACOE Public Notice No. 93-2: Response to Comments on Public Notice 92-5.

Following the Scope of Services, the 100% elutriate concentrations were evaluated initially. If Abbott's-corrected survival or normal development values were $\geq 50\%$, no further evaluations were performed. If these values were $\leq 50\%$, the 10% and 50% elutriate exposures were evaluated and EC₅₀ and/or LC₅₀ calculations were made using the Trimmed Spearman-Karber method. For LC₅₀ calculations, abnormal larvae and calculated mortalities were added; whereas for EC₅₀ calculations, separate abnormality counts were used, as per Public Notice 93-2 (see above).

A reference toxicant bioassay was also performed for quality assurance purposes, to verify the health and sensitivity of the test organism population. The reference toxicant used was cupric sulfate (CuSO₄•5H₂O) dissolved in laboratory seawater. A second reference toxicant test was performed using ammonia as the toxicant.

2.4.1.2 Mysid (Holmesimysis costata)

Adult mysids (*Holmesimysis costata*) were collected from kelp beds near Monterey, California. The animals were gently aggregated with a dip net, corralled into a submerged bucket without removing them from the water and transported directly to the bioassay lab. In transit, holding tank temperatures were maintained within 2°C of the ambient temperature at sampling. Gentle aeration was supplied from a bottle of compressed oxygen. Throughout testing, the mysids were fed about 50 brine shrimp (*Artemia salina*) nauplii per mysid per day to prevent mortality from starvation and cannibalism.

Mysids were tested in one-liter polycarbonate tanks containing one liter of test solution. To initiate testing, mysids were sorted into groups of 10 in small containers with very small volumes of seawater. Mysids were transferred to the test containers by submerging the containers and slowly tipping the animals into the test medium. During the bioassays, the number of survivors of the original 10 animals per tank were recorded as experimental data at 4, 8, 24, 48, 72, and 96 hours after test initiation. At each of these checkpoints, dead animals (i.e., those nonresponsive to mechanical stimulus) were removed from the test containers.

A reference toxicant bioassay was also performed on the mysids for quality assurance purposes, to verify the health and sensitivity of the test organism population. The reference toxicant used was Sodium Dodecyl Sulfate (SDS) dissolved in laboratory seawater.

2.4.1.3 Teleost Fish (Citharichthys stigmaeus)

Speckled sanddabs were collected by otter trawl from Tomales Bay and kept in holding tanks until transported to the laboratory via overnight delivery. They were allowed to acclimate to laboratory conditions prior to testing. Fish were fed a high protein pellet food during the holding period until 48 hours before test initiation; they were not fed thereafter.

Sanddabs were tested in 10-liter aquaria and were individually transferred from holding tanks to aquaria to start the test. During the bioassays, the number of survivors of the original 10 animals per tank was recorded as experimental data at 4, 8, 24, 48, 72, and 96 hours after test initiation. At each of these checkpoints, dead animals (i.e., those nonresponsive to mechanical stimulus) were removed from the test containers.

A reference toxicant bioassay was also performed on the sanddabs for quality assurance purposes, to verify the health and sensitivity of the test organism population. The reference toxicant used was Sodium Dodecyl Sulfate (SDS) dissolved in laboratory seawater. A second reference toxicant test was performed using copper as the toxicant.

2.4.1.4 Initial Mixing Calculations

In cases where an EC_{50} or LC_{50} was obtained, calculations of initial mixing were made using standardized formulae developed by the USACOE and EPA (EPA/ACOE 1977).

2.4.2 Solid Phase (SP) Static Bioassay (Amphipod)

Solid phase static bioassays were conducted on the harbor sediments simultaneously with control and reference sediments. The amphipod *Rhepoxynius abronius* was tested following procedures outlined in ASTM (1990).

Salinity and total ammonia measurements were made on sediment interstitial water as received; in addition, a final pore-water ammonia measurement was taken from one replicate of each test sediment at test termination. Pore waters were extracted by centrifugation. Interstitial water salinity was measured using a salinometer-calibrated refractometer. Interstitial water ammonia concentrations were measured with an ammonia probe calibrated to three concentration standards (see Sediment Chemical and Physical Analysis- Section 2.3).

In each test, five replicates of each station and reference treatment were randomly assigned to test jars. A 2-cm deep layer of appropriate sediment was added to each jar on the day prior to test initiation, and each test jar was provided with aeration via pasteur pipet. Each test was started on the following day by randomly assigning 20 amphipods to each jar, and continued for 10 days under static conditions with constant illumination and aeration. Daily measurements of environmental test conditions (temperature, salinity, pH, dissolved oxygen) were made in each test container, and the number of animals which had appeared on the sediment surface was noted.

At the end of the ten day exposure period, the contents of each jar were poured through a 0.5 mm sieve and the number of surviving amphipods counted. Survivors from each replicate were transferred into bowls containing control sediment and monitored for their ability to rebury within one hour. Test data for each replicate therefore include number of survivors and number of survivors able to rebury.

Reference toxicant bioassays were performed with each batch of test animals to verify the health and sensitivity of the test organism population. The reference toxicant used was cadmium chloride (CdCl₂) dissolved in laboratory seawater.

2.4.3 Solid Phase (SP) Flow-through Bioassays (Mysid Shrimp and Polychaete Worm)

Solid phase flow-through bioassays with mysids and worms were conducted on the harbor sediments simultaneously with control and reference sediments. Control sediments were collected from Tomales Bay. Testing for both species was performed at the Davenport facility where continuously flowing seawater is available, using testing procedures in EPA/COE (1991).

Mysids (*Holmesimysis costata*) were collected from kelp beds near Monterey, California. The animals were gently aggregated with a dip net, corralled into a submerged bucket without removing them from the water and transported directly to the bioassay lab. In transit, holding tank temperatures were maintained within 2°C of the ambient temperature at sampling. Gentle aeration was supplied from a bottle of compressed oxygen. Throughout testing, the mysids were fed about 50 brine shrimp (*Artemia salina*) nauplii per mysid per day to prevent mortality from starvation and cannibalism.

Polychaete worms (*Nephtys caecoides*) were collected from Tomales Bay and shipped overnight to the bioassay laboratory. They were kept in holding tanks with home sediment and overlying seawater until test initiation.

All sediments were sieved through a 1.0 mm screen to remove indigenous fauna, and a 3.0 cm layer of appropriate sediment was added to each test container. Tanks were then filled with lab seawater, and either twenty polychaete worms (*Nephtys caecoides*) or twenty mysids (*Holmesimysis costata*) were added to each container. Worms were tested in 31 L glass aquaria; mysids were tested in 1.5 L polycarbonate tanks fitted with small, screened drain holes. The small mysid containers were suspended

above the larger worm containers such that when the flow-through seawater system was activated, seawater passed through the mysid tanks, overflowed through the screened drain holes into the worm tanks, then drained to sea.

Solid Phase flow-through bioassays continued for 10 days. At least twice each day, environmental systems were checked for proper functioning. Once each day, the salinity and temperature of the system were measured. Dissolved oxygen and pH values of each tank were measured twice daily.

After the 10-day bioassay period, the contents of each tank were gently washed with seawater through a 0.5-mm nylon screen. The animals were retrieved from the screen and counted. Test data were the number of survivors of each species.

A reference toxicant bioassay was also performed on the mysids for quality assurance purposes, to verify the health and sensitivity of the test organism population. The reference toxicant used was Sodium Dodecyl Sulfate (SDS) dissolved in laboratory seawater. A second reference toxicant test was performed using ammonia as the toxicant.

2.4.4 Bioaccumulation Exposure

Clams (*Macoma nasuta*) and polychaete worms (*Nephtys caecoides*) were exposed to test and control sediments in an array of 31-liter flow-through glass aquaria, as follows: Five replicates of each harbor composite, reference composite and control sediments were randomly assigned to the test tanks. The control sediment was collected from Tomales Bay, CA. Sediments were screened through a 1.0 mm screen to remove indigenous fauna, and a 3.0 cm layer was added to each tank. Tanks were filled with water and 30 clams and 40 worms were added to each. After a one-hour settling time, the flow-through seawater system was activated and adjusted to a flow rate equivalent to 5 tank/volume changes per 24 hours (6.5 liters/hour).

Bioaccumulation exposures continued for 28 days. At least twice each day, environmental systems were checked for proper function. Each tank was monitored daily for temperature and D.O., and the seawater system was monitored daily for salinity and pH.

3.0 Results

Sediment physical, chemical and bioassay analyses are summarized in **Table 1**. Twelve samples from North Bay, Entrance and Bar were screened and analyzed for particle size distribution (PSD) only. Thirty-one samples were analyzed for bulk sediment chemistry: 26 discrete samples plus five harbor composites (SAMTB, EKUP, EKEX, FLTB, REF). Bioassay testing and bioaccumulation exposures were performed on the five composites and on the control sediment; subsamples of these sediments were analyzed for tetra to octa chlorinated dioxins and furans.

3.1 Sediment Physical Analysis

The particle size distributions of the sediment samples and composites are summarized in **Table 4**; details of grain size analyses are presented in **Appendix C**. Except for station NB9, the North Bay, Entrance and Bar samples each contained at least 90% coarse sediments by weight ($\Phi \le 4$); NB9 contained 11.7% fines. Coarse sediment composition of the three harbor composites were as follows: Samoa Turning Basin (SAMTB) = 79.3%; Eureka Upper Channel (EKUP) = 35.1%; Eureka Upper Channel Extension (EKEX) = 15.9; and Field's Landing Lower Channel and Turning Basin (FLTB) = 16.9%. The disposal site reference (REF) composite contained 4.3% coarse sediments.

3.2 Bulk Sediment Chemistry

Results of bulk sediment chemical analyses of the Humboldt Harbor sediment samples and composites are summarized in **Table 4**. The laboratory reports are presented in **Appendix C**, and the laboratory QA plan summary is presented in **Appendix D**. Chains of Custody are Presented in **Appendix F**. The discussion below is generally limited to analyses of the harbor and reference composites; please refer to **Appendix C** for results of analyses of the individual samples.

Metals. The Humboldt Harbor sediment composites were analyzed for ten metals. Metals concentrations in the Harbor composites were similar to those found in the Reference composite. Within the Harbor composites, composite SAMTB tended to have the lowest metals concentrations. Individual accounts of the ten metals analyzed in these sediments are as follows:

- Arsenic concentrations ranged from 3.7 ppm to 4.9 ppm in the harbor composites. None of the harbor composites exceeded the 5.2 ppm found in the reference composite.
- Cadmium concentrations ranged from 0.1 ppm to 0.2 ppm in the harbor composites. SAMTB, EKEX and FLTB exceeded (by 2.0x) the 0.1 ppm found in the reference composite. Cadmium concentrations found in these sediments were near the detection limit.
- Chromium concentrations ranged from 120 ppm to 130 ppm in the harbor composites. Harbor composites EKUP and EKEX exceeded (by 1.1x) the 120 ppm found in the reference composite.

- Copper concentrations ranged from 11 ppm to 30 ppm in the harbor composites. Only harbor composite EKEX exceeded (by 1.1x) the 28 ppm found in the reference composite.
- Lead concentrations ranged from 4.9 ppm to 15 ppm in the harbor composites. EKUP (1.5X) and EKEX (1.1X) exceeded the 10 ppm found in the reference composite.
- Mercury concentrations ranged from 0.096 ppm to 0.13 ppm in the harbor composites. Only EKEX exceeded (by 1.1x) the 0.12 ppm found in the reference composite.
- Nickel concentrations ranged from 86 ppm to 130 ppm in the harbor composites. None of the harbor composites exceeded the 130 ppm found in the reference composite.
- Selenium concentrations ranged from 0.1 ppm to 0.2 ppm in the harbor composites. None of the harbor composites exceeded the 0.2 ppm found in the reference composite.
- Silver concentrations ranged from 1.3 ppm to 1.6 ppm in the harbor composites. None of the harbor composites exceeded the 1.7 ppm found in the reference composite.
- Zinc concentrations ranged from 44 ppm to 94 ppm in the harbor composites. EKUP (1.2x) and EKEX (1.4x) exceeded the 69 ppm found in the reference composite.

Butyltins. Three organotins (tri-, di-, and mono-butyltin) were measured in the Humboldt Harbor sediment composites. Composite EKEX contained 10 ppb tributyltin; a small amount (2 ppb) of dibutyltin was detected in the EKUP and EKEX composites. The reference sediment contained no detectable butyltins.

Semivolatiles. Phthalate esters and seventeen polynuclear aromatic hydrocarbons (PAHs) were measured in the Humboldt Harbor sediment composites. Several samples in this set were overdried during extraction. As a consequence the surrogate recoveries for nitrobenzene-d5 were below QC limits. The affected samples were re-extracted and reanalyzed. However, the second extraction took place between 9 and 11 days beyond the 14 day holding time. Both sets of data are reported in **Table 4** and in **Appendix C**. The results for the other analytes were comparable in the two analyses, except for individual sample SAM 6-B which had a much higher PAH content in the second extract. This inconsistency may be attributed to a lack of homogeneity in the sample.

Among the harbor composites, SAMTB consistently contained the lowest concentrations of semivolatiles, and EKUP the highest. Phthalate concentrations ranged from 200 to 1700 ppb in the harbor composites; EKUP (4.6x) and FLTB (3.5x) exceeded the 370 ppb measured in the reference composite. Total PAH concentrations ranged from 96 ppb (SAMTB) to 890 ppb (EKUP) in the harbor composites compared to 390 ppb detected in the reference sediment. PAH detections were as follows:

<u>LPAHs.</u> Six low molecular weight PAHs were detected in the harbor or reference composites. Total LPAH concentrations in the harbor samples ranged from 51 ppb (SAMTB) to 240 ppb (FLTB); the reference sample contained 230 ppb total LPAH.

- 2-methylnaphthalene concentrations ranged from 14 ppb to 77 ppb in the harbor composites; FLTB (1.1x) exceeded the 71 ppb detected in the reference composite.
- Naphthalene concentrations ranged from 13 ppb to 44 ppb in the harbor composites;
 EKUP (1.6x), EKEX (1.4X) and FLTB (1.2x) exceeded the 27 ppb detected in the reference composite.
- Acenaphthene was detected only in composite EKUP (13 ppb); none was detected in the reference sample.
- Fluorene concentrations ranged from <13 ppb to 32 ppb in the harbor composites; the concentrations in EKUP, EKEX and FLTB exceeded by 1.2x to 1.3x the 24 ppb found in the reference sample. None was detected in composite SAMTB.
- Phenanthrene concentrations ranged from 31 ppb to 110 ppb in the harbor composites; none of the harbor composites exceeded the 110 ppb detected in the reference composite.
- Anthracene was found (17 ppb) only in composite EKUP; it was not detected in the reference sample.

<u>HPAHs</u>. Nine high molecular weight PAHs (HPAHs) were detected in the harbor or reference composites. Total HPAH concentrations ranged from 60 ppb (SAMTB) to 620 ppb (EKUP) in the harbor composites, compared to 160 ppb in the reference sediment.

- Fluoranthene concentrations ranged from 20 ppb to 160 ppb in the harbor composites;
 except for SAMTB, each of the harbor composites exceeded (by 1.3 to 4.6x) the 35 ppb detected in the reference composite.
- Pyrene concentrations ranged from 25 ppb to 150 ppb in the harbor composites; except for SAMTB, each of the harbor composites exceeded (by 1.3 to 4.3x) the 35 ppb detected in the reference composite.
- Chrysene concentrations ranged from <13 ppb to 59 ppb in the harbor composites; EKUP
 (1.7x) and EKEX (1.2x) exceeded the 35 ppb detected in the reference composite.
- Benzo(a)anthracene concentrations ranged from <13 ppb to 41 ppb in the harbor composites; EKUP (2.6x) and EKEX (1.4x) exceeded the 16 ppb detected in the reference composite.

- Benzo(b)fluoranthene concentrations ranged from <13 ppb to 51 ppb in the harbor composites; EKUP (2.2x), EKEX (1.6x) and FLTB (1.1x) exceeded the 23 ppb detected in the reference composite.
- Benzo(k)fluoranthene concentrations ranged from <13 ppb to 29 ppb in the harbor composites; EKUP and EKEX exceeded the <13 ppb detected in the reference composite.
- Benzo(a)pyrene concentrations ranged from <13 ppb to 51 ppb in the harbor composites; EKUP, EKEX and FLTB exceeded the <13 ppb detected in the reference composite.
- Indeno[1,2,3-CD]pyrene concentrations ranged from <13 ppb to 32 ppb in the harbor composites; EKUP and EKEX exceeded the <13 ppb detected in the reference composite.
- Benzo[ghi]perylene concentrations ranged from <13 ppb to 51 ppb in the harbor composites; EKUP (2.7x), EKEX (1.6x) and FLTB (1.2x) exceeded the 19 ppb detected in the reference composite.

Chlorinated Pesticides and PCBs. The Humboldt Harbor sediment composites were analyzed for the eighteen chlorinated pesticides and four polychlorinated biphenyls (PCBs as Aroclors). None of the harbor composites, reference or Tomales Bay control sediments contained detectable amounts of these substances.

Dioxins and Furans. The Humboldt Harbor composites were analyzed for tetra to octa chlorinated dioxins and furans by Alta Analytical Laboratories, (El Dorado Hills, CA). The harbor composites contained from 87.0 pg/g to 503 pg/g total dioxins and from 18.0 pg/g to 84.7 pg/g total furans; FLTB contained the lowest concentrations and EKEX the highest concentrations of each. The reference site sediment contained 621 pg/g total dioxins and 3.65 pg/g total furans. TEQ's ranged from 0.76 at the reference site to 3.5 at EKEX.

Sediment Conventionals. The sediments were tested for total and water soluble sulfides, oil and grease, petroleum hydrocarbons, total volatile solids, percent solids, and total organic carbon. Composite EKEX generally contained the highest concentrations and SAMTB the lowest.

<u>Total sulfides</u> ranged from 79 ppm to 300 ppm in the harbor sediment composites. The reference composite contained 1.3 ppm total sulfides. Except for a trace amount (0.3 ppm) in the EKUP composite, no <u>water soluble sulfides</u> were found in the harbor composites, nor in the reference composite.

Oil and Grease concentrations ranged from <20 ppm to 80 ppm in the harbor sediments; EKUP, EKEX and FLTB each contained higher concentrations than the <20 ppm in the reference composite. Petroleum hydrocarbons were detected only in FLTB (46 ppm). Volatile solids ranged from 2.0% to 4.3% in the harbor composites, and was 3.9% in the reference sediment.

<u>Percent solids</u> in the harbor composites ranged from 59% to 71% compared to 62% in the reference composite; <u>total organic carbon</u> ranged from 0.54% to 0.67% in the harbor composites, compared to 0.72% in the reference composite.

Sediment Chemistry Summary: Except for total sulfides (and possibly phthalate esters) the Humboldt Harbor sediments contained no particularly high concentrations of any of the tested substances or compounds when compared to the reference site sediments. Dioxin and furan concentrations were determined by EPA Region IX to be below levels of concern (USEPA Memorandum, 5/24/95). Although sulfide concentrations in the harbor composites (79 ppm to 300 ppm) were not particularly high for harbor sediments in general, they exceeded the very low reference site concentration of 1.3 ppm. Concentrations of some PAHs in the Eureka Upper Channel and Extension exceeded reference levels by 4.3x to 8.5x (calculating non-detects at 0.5 x D.L.), but again, the absolute concentrations (to 890 ppb total PAH) were not particularly high. Phthalate concentrations of 1700 ppb in Eureka upper Channel, and 1300 ppb in Field's Landing appear somewhat elevated (4.1x to 5.3x reference).

3.3 Bioassay Test Results

Six sediment toxicity evaluations were conducted on the Humboldt Harbor sediments. Suspended particulate phase (SPP) bioassays and solid-phase (SP) bioassays employed a total of five species, and bioaccumulation exposures were conducted with two species (**Table 3**). Bioassay test results and statistical evaluations are summarized in **Table 5** through **Table 11**. Water quality monitoring data summaries, and reference toxicant test results are tabularized, and Logs of test animal shipping, receiving, acclimation and holding are contained in **Appendix E**.

3.3.1 Suspended Particulate Phase (SPP) Bioassays

Suspended Particulate Phase bioassay testing of the Humboldt Harbor Baseline Survey II sediments comprised three species: a bivalve larva (*Mytilus edulis*), a teleost fish (*Citharichthys stigmaeous*) and a mysid shrimp (*Holmesimysis costata*). Results of these bioassays are summarized below, and in **Table 5** through **Table 8**.

3.3.1.1 Bivalve Larvae

Adult *Mytilus edulis* were purchased from Carlsbad Aquafarm Inc., Carlsbad, CA. Collection data were not available. The animals were shipped on 24 April 1995 and arrived at ToxScan's Watsonville laboratory on 25 April via Federal Express overnight; the test was initiated the same day. Results of the bivalve larvae tests are presented in **Table 5**.

Survival. Mean survival of bivalves in the laboratory seawater control was 94.6%, well above the ASTM (1989) protocol requirements of 70 percent. The reference site 100% elutriate produced 80.9% survival, Abbott's-corrected to 85.6%. Abbott's corrected mean survival in the 100% elutriates of the

Humboldt Harbor composites ranged from 0.0% in the EKEX composite to 72.0% in the FLTB composite. Three harbor sediment bivalve tests demonstrated enough toxicity to generate LC_{50} s: EKUP (9.8%), SAMTB (17.3%) and EKEX (5.1%).

Development. Mean normal development values (adjusted with Abbott's correction) for bivalve larvae exposed to 100% elutriates of the test sediment ranged from 0.0% in the EKEX composite to 78.2% in the FLTB composite. Normal development in the disposal site reference elutriate was 91.9%, Abbott's-corrected to 97.1%. Normal development in the laboratory seawater control was 94.6%. Three Harbor sediments tests demonstrated enough bivalve toxicity to generate EC₅₀s: SAMTB (18.6%), EKUP (9.8%) and EKEX (<10%; not calculable).

Reference Toxicant. The Abbott's-corrected bivalve reference toxicant LC₅₀ was 7.15 ppb Cu (95% CL: 6.46 - 7.92); the EC₅₀ for development was 7.88 ppb Cu (95% CL: 7.29 - 8.52). These values are within ± 2 SD of the mean of EC₅₀s calculated from previous *Mytilus*: copper reference toxicant tests. The ammonia reference toxicant test resulted in an LC₅₀ of 10.7 μ g/L (95% CL: 9.8 - 11.6) and an EC₅₀ of 10.8 μ g/L (95% CL: 10.0 - 11.7) total NH₃.

3.3.1.2 Mysid Shrimp

Adult *Holmesimysis costata* were collected from kelp beds near Monterey, California by SP Aquatics on 26 April 1995 and transported directly to the bioassay lab. The mysid suspended particulate phase bioassay was initiated that afternoon.

Mean survival of the mysids was 100% in each of the Humboldt Harbor Baseline Survey II sediment elutriates (**Table 6**). Mean control survival was 100%; reference site survival was 88%. Mysid survival was significantly diminished from reference site survival in three harbor composites (EKUP, EKEX and FLTB) (Steel's Many-One Rank Test: p=0.05, k=4). Except for composite EKEX (LC_{50} = 51.2%) LC_{50} s of all composites were >100% elutriate.

Reference Toxicant. The mysid reference toxicant 96 hour LC_{50} was 8.00 mg/L SDS (95% CL: 5.61 - 11.4). This value is within ± 2 SD of the mean of LC_{50} s calculated from previous *Holmesimysis*: SDS reference toxicant tests.

3.3.1.3 Teleost Fish

Speckled sanddabs (*Citharichthys stigmaeus*) were collected from Tomales Bay by John Brezina & Associates; collection data was not available. The animals were delivered to ToxScan's Davenport laboratory on 5 May 1995 by the supplier. The sanddabs were held in 32.5 - 33.0% seawater at 10.5 - 14.5 °C until test initiation on 9 May.

Mean survival of the sanddabs in the Humboldt Harbor sediment 100% elutriates ranged from 0.0% in the EKEX composite to 96% in the SAMTB composite (**Table 7**). Mean control survival was 92%,

and the reference site survival was 88%. Survival in the EKEX and FLTB composites was significantly diminished from survival in the reference sediment (Steel's Many-One Rank Test: p=0.05, k=4). Composites EKEX ($LC_{50} = 61.6$

Reference Toxicant. The sanddab reference toxicant 96 hour LC₅₀ was 2.00 mg/L SDS (95% CL: 1.65 - 2.43). This value is within ± 2 SD of the mean of LC₅₀s calculated from previous *Citharichthys*: SDS reference toxicant tests. A second reference toxicant test using copper as the reference toxicant produced a 96 hour LC₅₀ of 0.37 mg/L (95% CL: 0.31 - 0.44 mg/L).

3.3.1.4 Initial Mixing Calculations

Calculations of initial mixing concentrations for disposal depths of 50m, 20m and 10m are detailed in **Appendix E** (**Table E1**). Three composites (SAMTB, EKUP and EKEX) generated EC₅₀ values from the bivalve test, composite FLTB also produced an LC₅₀ from the sanddab test, and composite EKEX produced LC₅₀s from all three species (**Table 8**). Except in one case (EKEX bivalve at 10 m depth) the factored EC₅₀s were each higher than the projected concentrations (C_{sp}) for the three calculated depths. Since the disposal site is greater than 20 m depth, the Limiting Permissible Concentrations (LPCs) were not exceeded for this sediment.

3.3.2 Solid Phase (SP) Static Bioassay (Amphipod)

Test amphipods (*R. abronius*) were collected on 26 April 1995 at Yaquina Bay, OR by Northwestern Aquatics, Inc.. They arrived via overnight delivery at ToxScan's bioassay facility in Watsonville, CA on 28 April. These amphipods did not require salinity acclimation; they were held at 32.9 to 33.2‰ until testing was initiated on 5 May with 31.4‰ - 32.6‰ overlying seawater.

Solid phase static bioassay results for the amphipod *Rhepoxynius abronius* are summarized in **Table 9**. Prior to initiation of the bioassay, analysis of interstitial waters found ammonia concentrations in the EKUP (35.8 mg/L) and EKEX (59.6 mg/L) composites exceeded the threshold limit of 20 mg/L for *Rhepoxynius* **(Table 4)**. Therefore, ammonia-purging procedures were initiated for these sediments, and a parallel (purged) control was set up using home sediments from Yaquina Bay. After two days of aeration and twice-daily renewals of overlying water, total ammonia levels in the pore waters was sufficiently reduced to begin the test. Twice daily renewals continued for these samples for the test duration. Final (end-test) concentration of total ammonia in the pore water was 2.1 mg/L (EKUP) and 5.2 mg/L (EKEX).

Survival. Mean survival of *R. abronius* in the Humboldt Harbor Baseline Survey III sediment composites ranged from 71.0% to 89.0% (versus 98.0% and 99.0% in the home sediment controls and 65.0% in the reference site composite). Amphipod survival in each of the harbor composites exceeded survival in the reference site; therefore statistical analyses were not performed.

Reference Toxicant. The amphipod reference toxicant 96 hour LC₅₀ was 1.04 mg/L Cd (95% CL: 0.82 - 1.32). This value is within ± 2 SD of the mean of LC₅₀s calculated from previous *Rhepoxynius*: Cd reference toxicant tests. A second reference toxicant test using ammonia as the toxicant resulted in an LC₅₀ of 97.0 mg/L (95% CL: 80.3 - 117.1)

3.3.3 Solid Phase (SP) Flow-Through Bioassays: Mysid Shrimp and Polychaete Worm

Mysid Shrimp Survival. Adult *Holmesimysis costata* were collected from kelp beds near Monterey, California by SP Aquatics on 12 May 1995. They were transported directly to the bioassay lab where the mysid SP bioassay was initiated that afternoon.

Mean survival of *H. costata* was 92% to 100% in the Humboldt Harbor composites, 96% in the home sediment control and 93% in the reference composite (**Table 10**). Mysid survival in the harbor composites was either greater than, or not significantly diminished from survival in the reference site composite.

Reference Toxicant. The mysid reference toxicant 96 hour LC_{50} was 12.7 mg/L SDS (95% CL: 10.8 - 15.0). This value falls above ± 2 SD of the mean of LC_{50} s calculated from previous *Holmesimysis*: SDS reference toxicant tests. This suggests that these mysids may be less sensitive indicators of sediment toxicity than mysids used in other sediment bioassays in our laboratory.

Polychaete Worm Survival. Adult *N. caecoides* were collected from Tomales Bay by John Brezina and Associates. Collection data were not available. They were delivered to the Davenport bioassay laboratory on 5 May 1995 by the supplier. These animals did not require salinity acclimation; they were held in home sediment with 32.5‰ - 33.0‰ overlying seawater at 10.7 °C - 14.5 °C until testing was initiated on 11 May.

Mean survival of *Nephtys caecoides* in the Humboldt Harbor sediment composites ranged from 90% to 95% (versus 95% in the home sediment control and 84% in the reference composite (**Table 11**). Worm survival in each of the harbor composites exceeded survival in the reference site composite; therefore statistical evaluation was not necessary.

Reference Toxicant. The polychaete reference toxicant 96 hour LC₅₀ was 99.7 μ g/L copper (95% CL not calculable). This value is within ± 2 SD of the mean of LC₅₀s calculated from previous *Nephtys*: copper reference toxicant tests.

3.3.4 Bioaccumulation Exposure (Clam and Worm)

Based on EPA and SFACOE review of the sediment chemistry results for the three harbor composites and the reference composite, no assessment of the exposed tissues was deemed warranted for either *Macoma nasuta* or *Nephtys caecoides*. The bulk sediment chemistry data revealed no detectable chlorinated pesticides or PCBs, while total detected organotins (<1 ppb) were close to detection limits. Dioxin/furan TEQs ranged from 0.81 to 3.5 in the harbor sediments. PAHs were detected at low concentrations (98 - 160 ppb) in the composites.

Bioassay Results Summary. SPP Bioassay testing of the Humboldt Bay Baseline Survey III sediments demonstrated significantly increased toxicity (compared to the disposal site reference) to mysids and sanddabs in the 100% elutriates from two to three of the four composites tested. Bivalve LC_{50} s and EC_{50} s in three of the composites ranged from 5.1% to 18.6% compared to EC/LC_{50} s >100% in the reference. The bivalve elutriate test LC_{50} in composite EKEX exceeded the LPC value for shallow water (10m depth) disposal. Some of the observed elutriate toxicity is probably attributable to ammonia: NH_3 concentrations in composites EKUP (11.5 mg/L NH_3) and EKEX (15.8 mg/L NH_3) each exceeded the bivalve 48h LC_{50} of 10.7 mg/L in a concurrent ammonia reference toxicant test. Solid phase testing with amphipods, mysids and worms did not find the harbor sediment toxicity significantly elevated compared to the reference sediment. The reference toxicant tests for both mysid bioassays produced LC_{50} s above our control chart limits which suggests the test animal population was less sensitive than usual.

REFERENCES

- APHA. 1992. Standard Methods for the Analysis of Water and Waste Water (18th Edition). American Public Health Assoc., American Water Works Assoc., Water Pollution Control Federation. Washington D.C.
- ASTM. 1989. Standard Guide for Conducting Acute Toxicity Tests Starting with Embryos of Four Species of Saltwater Bivalve Molluscs. ASTM Designation: E 724-89. American Society for Testing and Materials, Philadelphia, PA.
- ASTM. 1990. Standard Guide for Conducting 10-day Static Sediment Toxicity Tests with Marine and Estuarine Amphipods. ASTM Designation: E 1367-90. American Society for Testing and Materials, Philadelphia, PA.
- EPA. 1977. Analysis of Pesticide Residues in Human and Environmental Samples (Revised). Ed. J.F. Thompson. USEPA. Health Effects Research Laboratory. Environmental Toxicology Division. Research Triangle Park, N.C.
- EPA. 1983. Methods for the Chemical Analysis of Water and Wastes (Revised). U.S. EPA, Environmental Monitoring and Support Laboratory, Cincinnati, OH.
- EPA. 1986. Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. SW-846, 3rd Edition. U.S. EPA Office of Solid Waste and Emergency Response, Washington, D.C.
- EPA/USACE. 1977. Ecological Evaluation of Proposed Discharge of Dredged Material into Ocean Waters; Implementation Manual for Section 103 of Public Law 92-532 (Marine Protection, Research, and Sanctuaries Act of 1972). U.S. EPA/U.S.ACE Tech. Comm. on Criteria for Dredged and Fill Material, Environmental Effects Laboratory, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- EPA/USACE. 1991. Evaluation of Dredged Material Proposed for Ocean Disposal (Testing Manual). U.S. EPA Office of Marine and Estuarine Protection, and Department of the Army, U.S. ACE. Washington, D.C. EPA-503/8-91/001.
- Gaudette, et al. 1974. Titration method for the determination of organic carbon in marine Sediments. Journal of Sedimentary Petrology, Vol. 44, No. 1, pp. 249-253.
- Plumb, R.H., Jr. 1981. Procedures for Handling and Chemical Analysis of Sediment and Water Samples. Environmental laboratory. Tech. Rep. EPA/CE-81-1. U.S. Army Engineer Waterways Experiment Station. Vicksburg, MS.
- Uhler, A.D. and G.S. Durrel. 1989. Measurement of Butyltin Species in Sediments by n-Pentyl Derivatization with Gas Chromatography/Flame Photometric Detection (GC/FPD). Battelle Ocean Sciences Project #N-0519-6100, Duxbury, MA.

TABLES

Table 1. Analyses Performed, Humboldt Bay Baseline Survey III (FY 1995). Shaded samples composited; SP = Suspended Phase; SPP = Suspended Particulate Phase.

SAMPLE	Initial Grain Size	Sediment	SP + SPP	Bioaccumulation
North Bay Channel:	Grain Size	Chemistry	Bioassay	Exposure ¹
NB1	YES	NO	NO	NO
NB2	YES			NO
NB3	YES	NO NO	NO NO	NO
NB4	YES	NO		NO
NB5	YES		NO	NO
NB6	YES	NO	NO.	NO
NB7	YES	NO	NO	NO
NB8	YES	NO	NO:	NO
NB9	YES	NO NO	NO NO	NO NO
Samoa Turning Basin:	163	NO	NO	NO
SAM1	YES	YES	NO	NO
SAM2	YES	YES	NO	NO NO
SAM3	YES	YES	NO	NO S
SAM4	YES	YES	NO	NO NO
SAM5	YES	YES	NO	NO NO
Comp SAMTB:	YES	YES ²	YES	YES
SAM6-A	YES	YES	NO NO	
SAM6-B	YES	YES	NO NO	NO NO
SAM6-C	YES	YES	NO NO	NO NO
SAM7	YES	r∈s YES	NO NO	NO NO
Eureka Upper Channel:	I ES	150	NO	NO
EK1	YES	YES	NO 🕝	NO
Comp EKUP:	YES	YES ²	YES	YES
EK2	YES	YES	NO.	NO NO
EK3	YES	YES	NO NO	NO
EK4	YES	YES	NO	NO.
EK4A	YES	YES	NO NO	NO NO
Eureka Upper Channel Exte	nsion:			
Comp EKEX:	YES	YES ²	YES	YES
EK5	YES	YES	NO	NO
EK6	YES	YES	NO	NO
EK7	YES	YES	NO	NO
EK8	YES	YES	NO	NO
ield's Landing Lower Chan	nel and Turning Ba	nsin:		
Comp FLTB:	YES	YES ²	YES	YES
FL1	YES	YES	NO	NO
FL2	YES	YES	NO	NO
FL3	YES	YES	NO	NO
FL4	YES	YES	NO	NO
FL5	YES	YES	NO	NO
FL6	YES	YES	NO	NO .
FL7	YES	YES	NO	NO
FL8	YES	YES	NO	NO
ntrance Channel, Bar, Refe				
ENT1	YES	NO	NO	NO
ENT2	YES	NO	NO	NO
BAR1	YES	NO	NO	NO
REF	YES	YES ²	YES	YES
CONTROL	NO	NO	NO ³	YES

¹ Exposures only; no tissue analyses performed (see text). ³ Tetra to octa dioxins and furans only.

Table 2. Sediments Collected, Humboldt Bay Baseline Survey III (FY 1995). Samples collected by vibracore or Smith-Macintyre grab; shaded samples composited.

North Bay Channel: NB 1 NB 2 NB 3 NB 4 NB 5 NB 6 NB 7 NB 8 NB 9 Samoa Turning Basin (Sa	03/30/95 04/04/95 04/02/95 03/30/95 04/02/95 04/02/95 04/02/95 04/02/95 03/30/95 AMTB):	16:50 12:55 11:26 15:24 09:55 12:00 12:11 12:24 16:23	Grab 0.8 0.8 Grab 4.2 0.5 0.5 Grab Grab Grab	Grab Grab Grab 4.2 Grab Grab Grab Grab	525028 525717 527595 530564 531952 533740 535714 537125	1384350 1384680 1385835 1387808 1389996 1391373 1392302
NB 1 NB 2 NB 3 NB 4 NB 5 NB 6 NB 7 NB 8 NB 9	04/04/95 04/02/95 03/30/95 04/02/95 04/02/95 04/02/95 04/02/95 03/30/95	12:55 11:26 15:24 09:55 12:00 12:11 12:24	0.8 0.8 Grab 4.2 0.5 0.5	Grab Grab 4.2 Grab Grab	525717 527595 530564 531952 533740 535714	1384680 1385835 1387808 1389996 1391373 1392302
NB 2 NB 3 NB 4 NB 5 NB 6 NB 7 NB 8 NB 9	04/04/95 04/02/95 03/30/95 04/02/95 04/02/95 04/02/95 04/02/95 03/30/95	12:55 11:26 15:24 09:55 12:00 12:11 12:24	0.8 0.8 Grab 4.2 0.5 0.5	Grab Grab 4.2 Grab Grab	525717 527595 530564 531952 533740 535714	1384680 1385835 1387808 1389996 1391373 1392302
NB 3 NB 4 NB 5 NB 6 NB 7 NB 8	04/02/95 03/30/95 04/02/95 04/02/95 04/02/95 04/02/95 03/30/95	11:26 15:24 09:55 12:00 12:11 12:24	0.8 Grab 4.2 0.5 0.5 Grab	Grab Grab 4.2 Grab Grab	527595 530564 531952 533740 535714	1385835 1387808 1389996 1391373 1392302
NB 4 NB 5 NB 6 NB 7 NB 8	03/30/95 04/02/95 04/02/95 04/02/95 04/02/95 03/30/95	15:24 09:55 12:00 12:11 12:24	Grab 4.2 0.5 0.5 Grab	Grab 4.2 Grab Grab	530564 531952 533740 535714	1387808 1389996 1391373 1392302
NB 5 NB 6 NB 7 NB 8 NB 9	04/02/95 04/02/95 04/02/95 04/02/95 03/30/95	09:55 12:00 12:11 12:24	4.2 0.5 0.5 Grab	4.2 Grab Grab	531952 533740 535714	1389996 1391373 1392302
NB 6 NB 7 NB 8 NB 9	04/02/95 04/02/95 04/02/95 03/30/95	12:00 12:11 12:24	0.5 0.5 Grab	Grab Grab	533740 535714	1391373 1392302
NB 7 NB 8 NB 9	04/02/95 04/02/95 03/30/95	12:11 12:24	0.5 Grab	Grab Grab	533740 535714	1391373 1392302
NB 7 NB 8 NB 9	04/02/95 04/02/95 03/30/95	12:11 12:24	0.5 Grab	Grab	535714	1392302
NB 8	04/02/95 03/30/95	12:24	Grab			
NB 9	03/30/95			Glab	337123	1393099
		10.23		Grab	538749	1393646
	AWID):		-145	Glab	330743	1393040
•	04/04/05					
SAM 1	04/01/95	09:00	2.5	2.5	541987	1394449
SAM 2	04/01/95	17:51	Grab	Grab	544424	1395575
SAM 3	04/01/95	10:20	5.5	1.8	545539	1396198
SAM 4	04/01/95	17:26	0.5	Grab	546765	1396342
SAM 5	03/31/95	16:35	3.3	3.3	547455	1397822
SAM 6-A	04/01/95	11:25	3.9	3.6	548132	1397179
		12:02 12:25	3.0 4.8	3.0 3.6		
SAM 6-B	04/01/95	13:55	6.7		F 4000 4	4007050
DAIN 0-D	04/01/95	14:38	4.0	4.5 4.0	548384	1397352
		15:10	6.4	4.5		
SAM 6-C	04/01/95	16:00	5.1	3.6	548546	1397592
		16:22	4.6	3.6		
		16:50	6.1	3.6		
SAM 7	03/31/95	17:50	2.4	1.2	548109	1398059
ureka Upper Channel (E	EKUP):					
K 1	04/03/95	16:38	3.5	3.5	541497	1394908
K 2	04/03/95	17:24	0.9	Grab	543132	1397078
		17:32	5.2	3.8		
		17:50	3.6	3.6		
		18:02 18:22	2.8 3.7	2.8 3.7		
:K 3	04/04/95	09:42	3.3	3.0	543794	1397913
	5410413 3	VV.74	0.0	3.0	J4J134	Continued

			Core Pe (Fe			nia Grid ordinates
SAMPLE	DATE	TIME	ACHIEVED	SAMPLED	NORTH	EAST
EK 4	04/04/95	08:14	0.5	Grab	543786	1398977
		08:22	3.6	2.5		
		08:38	3.0	2.5		
		08:50	2.4	2.4		
EK 4-A	04/04/95	10:22	3.5	2.3	543749	1398822
		10:42	5.0	2.3		
		10:55	0.8	0.8		
		11:05	3.6	2.3		
Eureka Upper Cl	hannel Extension:					
EK-5	04/03/95	14:16	9.8	8.0	543912	1399478
EK-6	04/03/95	12:55	10.0	9.8	544050	1399545
EK-7	04/03/95	11:55	8.3	8.3	543993	1399779
EK-8	04/03/95	10:55	9.0	9.0	544098	1400130
Fields Landing L	ower Channel and	Turning Basin (F	LTB):			
FL-1	04/02/95	15:17	2.8	2.8	513810	1383995
		15:42	2.6	2.6		
		16:00	3.1	2.8		
FL-2	04/02/95	16:22	2.7	2.5	514037	1384139
		16:42	2.5	2.5		
	,	17:00	2.8	2.5		
FL-3	04/02/95	17:30	2.5	2.5	513846	1384313
		18:00	5.8	3.8		
		18:15	4.0	3.8		
		18:30	4.4	3.8		
FL-4	04/02/95	14:00	0.8	Grab	517329	1385130
	0 17 0 117 0 0	14:12	0.8	Grab	317323	1000100
FL-5	04/02/95	13:43	0.8	Grab	519655	1384129
FL-6	04/02/95	13:30	0.8	Grab	521141	1383493
	04/04/95	12:20	4.0	3.8	321141	1000490
FL-7	04/02/95	13:10	0.5	Grab	523228	1384574
Entrance Channe	el, Bar and Referenc	e Site:				
ENT-1	03/30/95	17:02	0.8	Grab	525995	1382030
ENT-2	03/30/95	17:14	0.8	Grab	529195	1379874
BAR-1	03/30/95	14:02	0.5	Grab	530955	1377446
RF	03/30/95	11:18-13:00	8 Grabs	8 Grabs	552952	1361615

¹ Field measurements of station locations were made in latitude × longitude (see Field Logs, Appendix A), and converted here to California State Plane Coordinates.

² Grab samples (except Entrance and Bar) were taken only where depth from bottom to project depth was less than 1.5 ft; Entrance and Bar stations were grab sampled due to wind and sea conditions.

Table 3. Biological Assessments, Humboldt Bay Baseline Survey III (FY 1995).

st Species:	SP	SPP	BA
R. abronius	X		_
M. edulis	-	X	_
H. costata	X	X	•
C. stigmaeus	-	X	· ·
N. caecoides	X		E
M. nasuta	-	<i>13</i> 45 ° −	Е

X = test performed; E = exposure only, no tissue evaluation

SP = Solid Phase; SPP = Suspended Particulate Phase; BA = Bioaccumulation.

Table 4. Sediment Chemistry Summary, Humboldt Bay Baseline Survey III (FY 1995): Composites only; for individual sample results, see Appendix C.

		Sampling	Sections	2.75		
Analyte	SAMTB	EKUP	EKEX	FLTB	Ref.	Detection Limit
Chlorinated Pesticides (ppb,	dry weight)					
Aldrin	ND	ND	ND	ND	ND	2.0
alpha-BHC	ND	ND	ND	ND	ND	2.0
beta-BHC	ND	ND	ND	ND	ND	2.0
delta-BHC	ND	ND	ND	ND	ND	2.0
gamma-BHC (lindane)	ND	ND	ND	ND	ND	2.0
	ND	ND	ND	ND	ND	2.0
aipha-Chlordane	ND ND	ND	ND ND	ND	ND	2.0
gamma-Chlordane				ND	ND	2.0
4,4'-DDD	ND	ND	ND	ND ND	ND	2.0
4,4'-DDE	ND ND	ND	ND			2.0
4,4'-DDT	ND	ND	ND	ND	ND	
Dieldrin	ND	ND	ND	ND	ND	2.0
Endosulfan I	ND	ND	ND	ND	ND	2.0
Endosulfan II	ND	ND	ND	ND	ND	2.0
Endosulfan sulfate	ND	ND	ND	ND	ND	10
Endrin	ND	ND	ND	ND	ND	2.0
Heptachlor	ND	ND	ND	ND	ND	2.0
Heptachlor epoxide	ND	ND	ND	ND	ND	10
Toxaphene	ND	ND	ND	ND	ND	30
Dioxins (PCDD) and Furans	(PCDF): Tetra- to Oc	cta- Chlorinated	d° (pg/g)			
Total PCDD	274	342.4	502.9	87.03	621.49	0.17-0.36
Total PCDF	33.7	63.1	84.7	18	3.65	0.048-0.45
TEQs	1,4	2.7	3.5	0.81	0.76	
PCBs (ppb, dry weight)						
PCB 1242	ND	ND	ND	ND	ND	20
						20
PCB 1248	ND	ND	ND	ND	ND	
PCB 1254	ND	ND	ND	ND	ND	20 20
PCB 1260	ND	ND	ND	ND	ND	20
total PCBs	ND	ND	ND	ND	ND	
PAHs (ppb, dry wt)						
2-Methylnaphthalene	ND/14	51	39/64	77	71	11-13
Naphthalene	ND/13	44	ND/37	32	27	11-13
2-Chloronaphthalene	ND/ND	ND	ND/ND	ND	ND	11-13
Acenaphthylene	ND/ND	ND	ND/ND	ND	ND	11-13
Acenaphthene	ND/ND	13	ND/ND	ND	ND	11-13
Fluorene	ND/ND	30	32/27	28	24	11-13
Phenanthrene	31/24	110	110/81	100	110	11-13
Anthracene	ND/ND	17	ND/ND	ND	ND	11-13
total detectable LPAHs	31/51	270	180/210	240	230	11-13
Elucranthono	25/20	160	90/63	47	35	11-13
Fluoranthene	25/20 35/25	150	73/59	46	35 35	11-13
Pyrene						11-13
Chrysene	ND/ND	59	42/31	33	35 46	
Benzo(a)anthracene	ND/ND	41	22/17	16	16	11-13
Benzo(b)fluoranthene	ND/ND	51	37/24	25	23	11-13
Benzo(k)fluoranthene	ND/ND	29	19/ND	ND	ND	11-13
Benzo(a)pyrene	ND/ND	51	22/16	16	ND	11-13
Indeno[1,2,3-CD]pyrene	ND/ND	32	19/ND	ND	ND	11-18
Dibenzo(a,h)anthracene	ND/ND	ND	ND/ND	ND	ND	11-18
Benzo[ghi]perylene	ND/ND	51	31/22	23	19	11-18
total detectable HPAHs	60/45	620	360/230	210	160	11-18
		000	E40/440	450	390	11-18
total detectable PAHs	91/96	890	540/440	450	390	11-10
total detectable PAHs Phthalates (ppb, dry wt)	91/96	890	540/440	450	390	11-10

^a See Appendix C-1 for PCDD and PCDF congener identifications.

Table 4 (continued). Bulk Sediment Chemistry Summary: Humboldt Bay Baseline Survey III (FY1995): Composites only; for individual sample results, see Appendix C.

.*			Sampling	Sections			
Δ	nalyte	SAMTB	EKUP	EKEX	FLTB	Ref.	Detectior Limit
Grain Size (% d		0, 111.1.5					
	-	1.1	0.2	0.0	0.0	0.0	
Coarse Sand/Grav		78.24	34.90	15.94	16.90	4.26	
Sand (-1 $\leq \Phi \leq 4$	"),	76.2 4 12.7	43.94	54.64	54.29	74.57	and the Estate
Silt $(5 \le \Phi \le 8)$		7.93	20.93	29.41	28.8	21.16	
Clay (Φ ≥ 9)		7.93	20.93	25.41	20.0	21.10	
Sediment Conv						4.0	
Total sulfides (ppn		79	170	300	160	1.3	0.1
Water soluble sulfi		ND	0.3	ND	ND	ND	0.1
Oil & Grease ^a (ppr		ND	23	80	27	ND	20
Petroleum Hydroca		ND	ND	46	ND	ND	20
Total Volatile Solid	ls (%)	2.0	4.0	4.3	3.7	3.9	0.1
% Solids (%)		71	63	59	57	62	1.0
TOC (%)		0.54	0.67	0.66	0.62	0.72	0.1
Metals (ppm, dry	wt)	•					
Arsenic		3.7	4.0	4.7	4.9	5.2	0.1
Cadmium		0.2	0.1	0.2	0.2	0.1	0.1
Chromium		120	130	130	120	120	0.1
Copper		11	27	30	25	28	0.1
Lead		4.9	15	11	8.6	10	0.1
Mercury		0.096	0.10	0.13	0.10	0.12	0.02
Nickel		86	120	130	120	130	0.1
Selenium		0.1	0.2	0.2	0.2	0.2	0.1
Silver		1.4	1.4	1.6	1.3	1.7	0.1
Zinc		44	81	94	56	69	0.1
Organotins (pp	b dry weight)						
	-, -,g,	ND	ND	ND	ND	ND	1.0
Monobutyltin		ND	2	2	ND	ND	1.0
Dibutyltin		ND	ND ·	10	ND	ND	1.0
Tributyltin		ND	ND	F 1 1 3 4	NO	ND	1.0
SP Bioassay I	nterstitial Water			Ann defi			
Salinity (‰):	Initial	25	23.4	28.6	30.3	32.0	-
	Day 0	33	31	33	32	32	-
	Day 10	32	32	32	32	32	
	* *** I	0.4	7.5		7.4	7.0	The state of
pH:	Initial	8.1	7.5	8.0	7.4	7.3 7.5	
	Day 0	7.8	7.1	7.2	7.3		· . —
	Day 10	7.6	7.0	7.1	7.2	7.4	
Total NH ₃ (ppm):	Initial	8.9	35.8	59.6	18.7	4.9	
i 3 (bb.,).	Day 0	6.1	14.5	21.5b	11.6	3.7	
	Day 10	3.3	2.1	5.2	7.3	1.7	
SPP Rinassav	Elutriate Water						
•		0.4	14 5	4 <i>E</i> 0	5.9	1.8	. <u>.</u> .
Total NH ₃ (pp	om):	2.1	11.5	15.8	J.5	1.0	

^{*} Freon*-extractable

ND = None Detected

^b Remeasured after Day 0 renewal; Total NH₃ = 9.9 mg/L.

Table 5. Summary of bivalve larvae (*M. edulis*) suspended particulate phase bioassays for Humboldt Bay Baseline Survey III, FY1995 Maintenance dredging project. See text for explanation of calculations (Mean initial recovery = 5319).

					ı	Ī				I	ı				1					ı				I	ı				ı
Normal Development Abbotts Mean Sorrected Corrected Value			4				97.1	+1	2.81			7.4	#1	9.29			0.0	, 11	0.00		82.1	#1	27.12			0.3	#1	0.56	
Normal De Abbotts Corrected Value						100.4	97.0	0.76	98.4	92.8	19.8	2.2	14.8	0.0	0.0	0.0	0.0	0.0	0.0	89.0	8.96	94.6	33.9	.96.3	0.0	0.0	0.0	0.0	1.3
val Mean Corrected Value	:	•					92.6	+1	90.9			8.9	+1	8.92		-	0:0	+1	0:00		77.6	+1	26.85	-		0.5	+1	0.43	
Survival Abbotts n Corrected Co						9.06	81.4	82.3	91.5	82.0	19.8	8.	12.4	0.0	0.0	0.0	0.0	0.0	0.0	78.6	101.8	89.7	32.0	85.9	0.0	0:0	0.0	0.0	1.0
Mean % Normal Development ± S.D.		94.6	+1	2.45			91.9	+	2.65			7.0	+1	8.79			0.0	++	0.00		77.7	+	25.65			0.2	+1	0.53	
% Normal Develop- E	93.1	91.6	98.1	94.8	95.2	95.0	91.8	91.8	93.1	87.8	18.8	2.1	14.0	0.0	0.0	0.0	0.0	0.0	0.0	84.2	91.6	89.5	32.1	91.1	0:0	0.0	0.0	0.0	1.2
Mean % Survival ± S.D.		94.6	++	2.45			80.9	+1	4.79			6.4	+1	8.44			0.0	+1	0.00		73.4	+1	25.39			0.2	+1	0.40	
% Survival	85.7	96.3	93.8	82.2	89.3	85.7	0.77	8.77	9.98	77.6	18.8	1.7	11.7	0.0	0.0	0.0	0.0	0.0	0.0	74.3	96.3	84.8	30.3	81.3	0.0	0.0	0.0	0.0	6.0
Total # Normal Larvae Recovered	4560	5123	4992	4370	4750	4560	4094	4139	4606	4128	866	95	624	0	0	0	0	0	0 0	3953	5123	4512	1610	4324	0	0	0	0	48
Resuspended Volume	48	47	48	47.5	47.5	48	46	46.5	49	48	47.5	46	48	48	46	47	48	46	47	46.5	47	48	46	47	47	49	46	48	48
Total Recovered per 1 Mi	102	119	106	26	105	901	26	97	5	98	112	97	93	94	108	84	93	92	70	3 5	119	105	109	101	118	96	105	117	84
Number Abnormal	7	10	8	2	5	5	80	œ		12	91	92	8	94	108	81	93	92	70	16	. 0	=	74	6	118	94	105	117	8
Number Normal		109	5	92	100	96	68	88	94	98	21	7	13	0	0	ó	0	0	0	85	109	9	35	92	0	0	0	0	
Rep	-	7	က	4	5	-	7	က	4	5	1	7	ო	4	5	1	7	က	4 4	7	~ ~	ო	4	5	-	7	ဗ	4	2
Sample ID			CONTROL					REF.		,		SAMTB	100%				SAMTB	20%			SAMTB	10%		44	7	EKUP	100%		

Table 5, continued. Summary of bivalve larvae (*M. edulis*) suspended particulate phase bioassays for Humboldt Bay Baseline Survey III, FY1995 Maintenance dredging project. See text for explanation of calculations (Mean initial recovery = 5319).

:			0%)	(12.10%, 26.50%) (4.62%, 19.96%) sulable	= 18.55% (12 : 9.85% (4.62 : Not Calculab	$EC_{50} = 18.55\%$ (12.1 $EC_{50} = 9.85\%$ (4.62% $EC_{50} = Not$ Calculable	24.90%); 19.47%); lculable;	7.26% (10.89%, 9.81% (4.66%, 1 (: LC _{so} = Not ca	AMTB: LC ₅₀ = 17.26% ₃ EKUP: LC ₅₀ = 9.81% For sample EKEX: LC ₅₀	For sample SAMTB: For sample EKUP: For sam	For san		
:		85.0		78.4		80.4	4277	47	116	25	91	5	
10.36		74.1	4.43	69.2	9.80	70.0	3726	46	117	36	81	4.	
+		76.7	+	78.8	ı +	72.6	3861	49.5	99	21	78	ω	100%
72.0		57.6	73.9	72.5	68.1	54.5	2900	50	8	22	58	Ν.	FLTB
		66.8		70.7		63.2	3360	48	99	29	70	<u>, , , , , , , , , , , , , , , , , , , </u>	
		0.9		0.9		0.9	47	47	111	110	1	5	
10.87	_	5.8	10.87	7.4	10.28	5.5	294	49	81	75	6	4	
H		22.9	l +	25.8	H+	21.7	1152	48	93	69	24	ယ	10%
12.2		24.8	13.0	23.2	11.5	23.5	1248	48	112	86	26	2	EKEX
		6.5		7.9	· .	6.2	329	47	89	82	7	_	
		0.0		0.0		0.0	0	46	105	105	0	5	
. <u>.</u>	_	0.0	0.00	0.0	0.00	0.0	0	47.5	89	89	0	4	
l +		0.0	l+	0.0	1+	0.0	0	48	96	96	0	ω	50%
0.0		0.0	0.0	0.0	0.0	0.0	0	48	87	87	0	2	EKEX
		0.0		0.0	-	0.0	0	48.5	95	95	0		
		0.0		0.0		0.0	0	48	94	94	0	5	
0.00	0	0.0	0.00	0.0	0.00	0.0	0	47	99	99	0	4	
l+ 	_	0.0	i+	0.0	H+	0.0	0	48.5	99	99	0	ω	100%
0.0	_	0.0	0.0	0.0	0.0	0.0	0	47	104	104	0	2	EKEX
		0.0		0.0		0.0	0	47.5	104	104	0	1	
		8.3		7.0		7.9	419	46.5	129	120	9	5	
29.45	29	0.0	30.95	0.0	27.86	0.0	0	47	109	109	0	4	
1+		31.5	H	30.8	I+	29.8	1584	48	107	74	33	ω	10%
∞	31.8	73.0	33.6	67.5	30.1	69.1	3674	46.5	117	38	79	ν	EKUP
		46.2		62.5		43.7	2325	46.5	80	30	50		
	:	0.0		0.0		0.0	0	47	103	103	0	տ	
93	35.93	26.7	30.76	32.9	33.99	25.3	1344	48	85	57	28	4	
H		74.6	1+	69.9	l+	70.5	3753	47.5	113	34	79	ယ	50%
49.8	46	87.7	47.6	70.3	47.1	83.0	4414	45.5	138	41	97	2	EKUP
		59.8		64.6		56.6	3008	47	99	35	64	_	
Value	Va	(*************************************	± S.D.	ment	± S.D.	Survival	Recovered	Volume	per 1 mL	Abnormal	Normal	Rep	ē
cted	Corrected	$\overline{}$	Development	Develop-	Survival	%	Larvae	Resuspended	Recovered	Number	Number		Sample
3	ેં ≅	Abbotts	Normal	% Normat	Mean %		Normal		Total				
Survival ts Mean	200000 B	Su Abbotts	Mean % Normal	% Normal	Mean %		Total # Normal		Total				
1													AMAZZA MARKANIA

Table 6. Mysid SPP Bioassays, Humboldt Bay Baseline Survey III (FY 1995).

Holmesimysis costata Suspended Particulate Phase Bioassay Results Humboldt Harbor Sediments

NUMBER OF SURVIVORS (Start n = 10)

Rep#	Control	REF	SAMTB	EKUP	EKEX	FLTB
1	10	10	10	5	0	7
2	10	10	10	5	0	7
3	10	8	10	8	0	5
4	10	8	10	3	0	4
5	10	8	9	5	0	8
Mean	10.0	8.8	9.8	5.2	0.0	6.2
SD	0.0	1.10	0.447	1.79	0.00	1.64
Mean % Survival	100	88.0	98.0	52.0	0.0	62.0

1. Data PASS SHAPIRO-WILKS TEST for normality at P=0.01:

W=0.947

$$D = 29.20$$

Critical $W_{(25, 0.01)} = 0.888$

- 2. Data **FAIL** BARTLETT'S TEST for homogeneity of variance at α =0.01: At least one group has zero variance.
- 3. Steel's Many-One Rank test shows **EKUP**, **EKEX**, **and FLTB** with significantly diminished survival compared to disposal site reference:

	SAMTB	<u>EKUP</u>	<u>EKEX</u>	<u>FLTB</u>
Rank Sum:	34.0	16.5	15.0	16.5
	Critical	value = 17 (0.05.	k=4)	

Table 7. Sanddab SPP bioassays, Humboldt Bay Baseline Survey III (FY 1995).

Citharichthys stigmaeus Suspended Particulate Phase Bioassay Results (100% only) Humboldt Harbor Sediments

NUMBER OF SURVIVORS (Start n = 10)

Rep#	Control	REF	SAMTB	EKUP	EKEX	FLTB
1	9	8	10	9	0	1
2	9	10	. 9	8	0	1
3	9	7	10	9	0	0
4	9	10	10	9	0	6
5	10	9	9	8	0	0
Mean	9.2	8.8	9.6	8.6	0.0	1.6
SD	0.45	1.30	0.55	0.55	0	2.51
Mean % Survival	92	88	96	86	0	16

1. Data FAIL SHAPIRO-WILKS TEST for normality at P=0.01:

W = 0.813

$$D = 34.4000$$

Critical
$$W_{(30, 0.01)} = 0.888$$

- 2. Data **FAIL** BARTLETT'S TEST for homogeneity of variance at **a**=0.01: At least one group has zero variance.
- 3. Steel's Many-One Rank test shows **EKEX and FLTB** as significantly different from the disposal site reference composite.

	<u>SAMTB</u>	<u>EKUP</u>	<u>EKEX</u>	<u>FLTB</u>
Rank Sum:	32.0	25.5	15.0	15.0
	Critica	l value = 17 (0.05	, k=4)	

Table 8. EC/LC₅₀ values for SPP bioassays, Humboldt Bay Baseline Survey III, FY 1995.

	Biva	ilve	Mysid	Sanddab
Sample	EC ₅₀	LC ₅₀	LC ₅₀	LC ₅₀
Control	>100	>100	>100	>100
Reference	>100	>100	>100	>100
SAMTB	18.6	17.3	>100	>100
EKUP	9.8	9.8	>100	>100
EKEX	<10.0	5.1	51.2	61.6
FLTB	>100	>100	>100	65.6

Table 9. Amphipod SP static bioassays, Humboldt Bay Baseline Survey III (FY 1995). Home A and composites EKUP and EKEX (**bold** typeface) were ammonia-purged (daily renewals) as per EPA/ACOE memo of 21 December 1993.

Rhepoxynius abronius Solid Phase Static Bioassay Results Humboldt Harbor Sediments

NUMBER OF SURVIVORS (Start n = 20)

Rep#	Home A	Home B	REF	SAMTB	EKUP	EKEX	FLTB
1	19	19	14	17	19	15	19
2	20	20	12	19	17	14	18
3	20	20	13	16	11	16	18
4	20	20	14	19	14	19	17
5	19	20	12	18	10	11	17
Mean	19.6	19.8	13.0	17.8	14.2	15.0	17.8
SD	0.55	0.45	1.00	1.30	3.83	2.92	0.84
Mean % Survival	98.0	99.0	65.0	89.0	71.0	75.0	89.0
Mean % Reburial	100	100	98.5	96.5	93.5	97.4	92.0

Statistical analyses unnecessary: mean survival in harbor composites exceeded survival in reference.

Table 10. Mysid SP flow-through bioassays, Humboldt Bay Baseline Survey III (FY 1995).

Holmesimysis costata Solid Phase Flow-Through Bioassay Results Humboldt Harbor Sediments

NUMBER OF SURVIVORS (Start n = 20)

Rep#	Home	REF	SAMTB	EKUP	EKEX	FLTB
1	18	18	20	17	20	19
2	20	18	19	18	20	19
3	20	19	19	19	20	19
4	18	19	20	19	20	19
5	20	19	20	19	20	20
Mean	19.2	18.6	19.6	18.4	20	19.2
SD	1.10	0.55	0.55	0.89	0,	0.45
Mean % Survival	96	93	98	92	100	96

1. Data PASS SHAPIRO-WILKS TEST for normality at P=0.01:

W = 0.931

$$D = 6.400$$

Critical
$$W_{(25, 0.01)} = 0.888$$

- 2. Data FAIL BARTLETT'S TEST for homogeneity of variance at a=0.01:
- 3. ANOVA test shows NO significant difference among sample means and disposal site reference:
- 4. STEEL'S MANY-ONE RANK TEST (Mean Comparison Test) shows **NO Humboldt Harbor sample** composite with lower survival than the Humboldt reference composite at P = 0.05:

	SAMTB	EKUP	<u>EKEX</u>	<u>FLTB</u>
Rank Sum:	37.0	26.5	40.0	34.0
	Critica	value = 17 (0.05,	k=4)	

Table 11. Polychaete worm SP flow-through bioassays, Humboldt Bay Baseline Survey III (FY 1995).

Nephtys caecoides Solid Phase Flow-Through Bioassay Results Humboldt Harbor Sediments

NUMBER OF SURVIVORS (Start n = 20)

		`				
Rep#	Home	REF	SAMTB	EKUP	EKEX	FLTB
1	18	18	19	18	20	18
2	18	16	18	17	18	19
3	19	17	18	:18	19	20
4	20	17	18	20	19	18
5	20	16	17	₃ 19	19	19
Mean	19.0	16.8	18.0	18.4	19.0	18.8
SD	1.00	0.84	0.71	1.14	0.71	0.84
Mean % Survival	95	84	90	92	95	94

Statistical analyses unnecessary: mean survival in harbor composites exceeded survival in reference.

FIGURES

		•			
					Processor
				`	
					Months of the control
					A contract of the contract of
					e george de consensión de la consensión de
					Section of the sectio
					Accompany (Accompany)
					pathoretelespical billioperativistal
					Positional designation of the second section of the s
					Secretal Secretary
					para para bankalan Tarih
					general genera
					A Section of the sect
					Secretary and the second secon
					Mestadata e de la constitución d
		,			of Polices percent

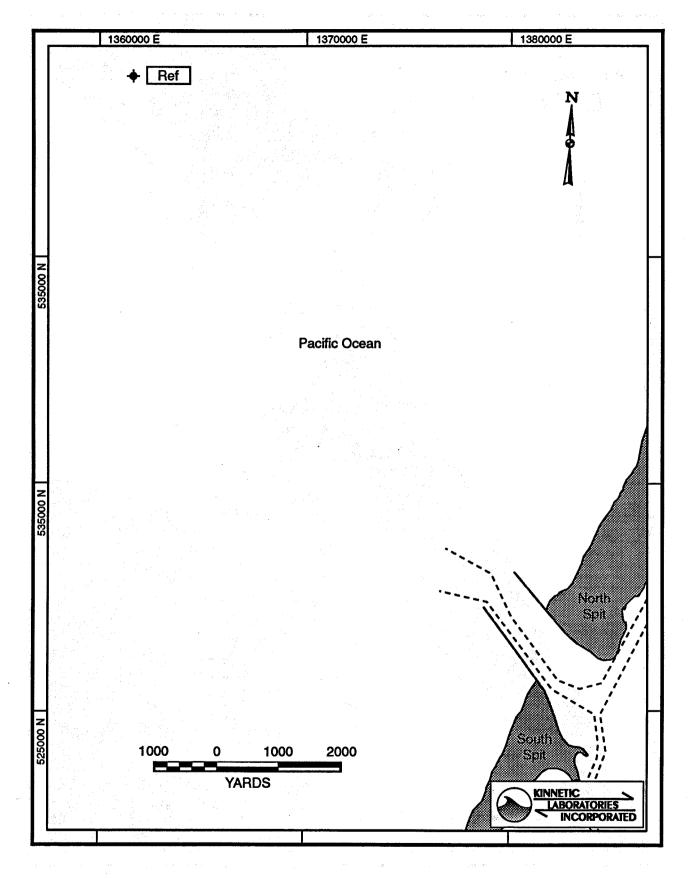


Figure 1. Humboldt Bay FY 1995 sampling locations. Reference station (solid) composite of eight grab samples.

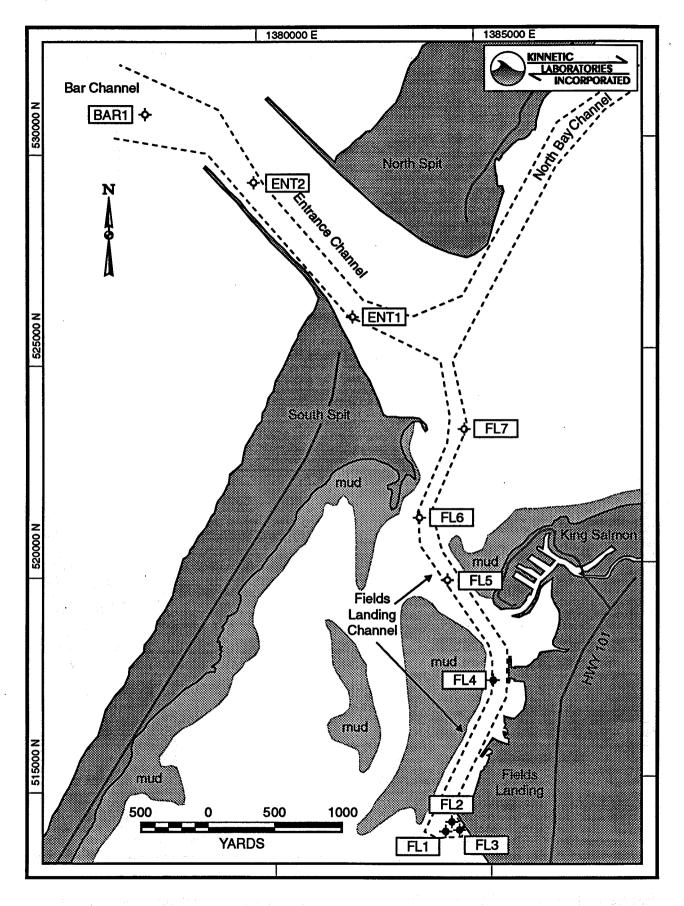


Figure 2. Humboldt Bay FY1995 sampling locations. Stations FL1 through FL8, ENT1, ENT2, and BAR1. Solid stations indicate those used in Fields Landing Lower Channel and Turning Basin (FLTB) composite.

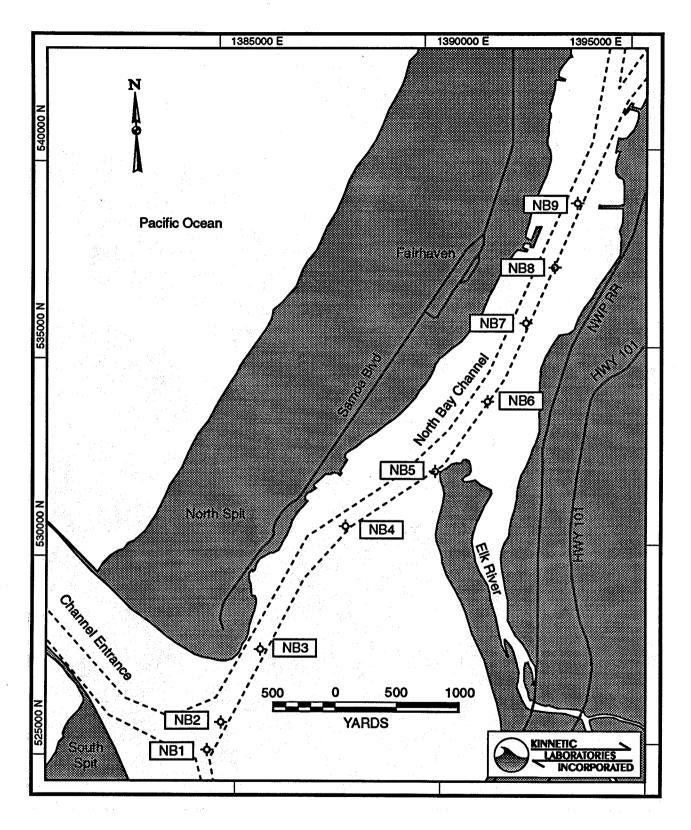


Figure 3. Humboldt Bay FY1995 sampling locations. Stations NB1 through NB9.

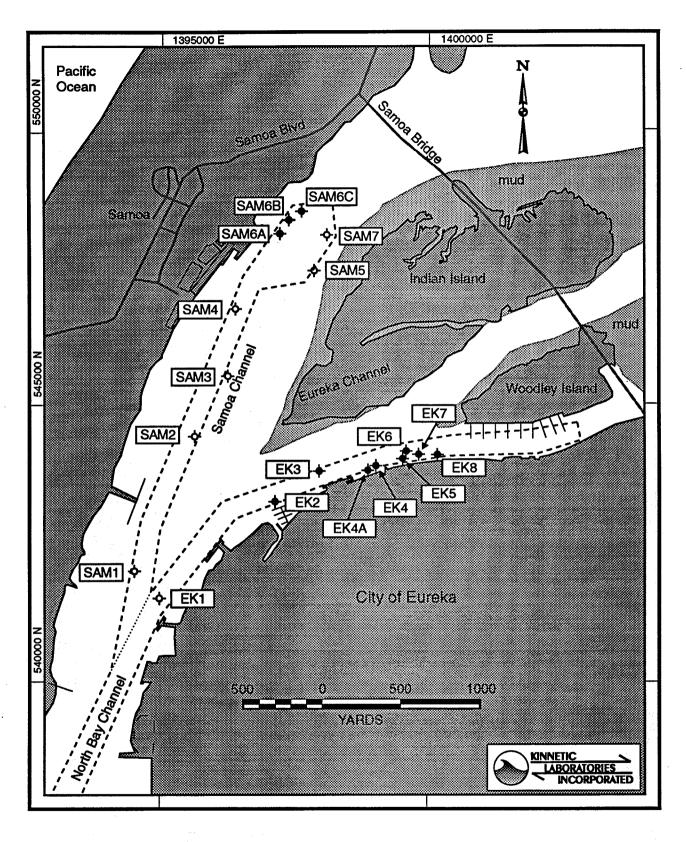


Figure 4. Humboldt Bay FY 1995 sampling locations. Stations EK1 through EK8 and SAM1 through SAM7. Solid stations indicate those used in Eureka Upper Channel (EK2 through EK4 = EKUP), Eureka Upper Channel Extension (EK5 through EK8 = EKEX), and Samoa Turning Basin (SAMTB) composites.

	Participant of the second of t
	Section 1 to 1994
	Sections of
	American and the state of the s
	gottonere state. En en
	(American AVS) Newyddiaddiadd
	Paris Communication
	A Section of the Sect
	Marie of the state
	Statement Control of the Statement of th
	State of the state
	e de la company
	gestelenskassen gestelenskassen gestelenskassen gestelenskassen gestelenskassen gestelenskassen gestelenskasse
	South Production and and angular section of the sec
	Part of the second seco
	Section 20 may be seen to the second section 20 may be seen to the second second section 20 may be seen to the second sec

Appendix A

Scope of Services

			# *
			Reconstruction of the second o
	•		Marco Control of the
			by the second se
			gganatatan
			Port of the second seco
•			Patauspiassa Recommended Re
	•		Economic Company
			Section of the sectio
		•	State of the state
			section and adding
			en e

Scope of Services Sediment Chemical, Bioassay and Bioaccumulation Testing Humboldt Harbor FY 95 Maintenance Dredging March 29, 1995

- 1. <u>PURPOSE</u>. The purpose of this contract is to perform bulk sediment analyses, suspended particulate bioassays, solid phase bioassays, and bioaccumulation testing of sediments collected from Humboldt Harbor and Bay. This testing episode is the third and final year of a three year baseline survey by the Corps to determine background levels of contaminants of concern in Humboldt Harbor dredged material. The results of the baseline survey will assist the Corps and EPA in determining (1) whether dredged material from Humboldt Harbor and Bay federal channels is suitable for aquatic disposal in compliance with Section 103 of the Marine Protection Research and Sanctuaries Act; and (2) what future testing requirements will be required to monitor dredged material disposal operations.
- THE CONTRACTOR'S RESPONSIBILITY. The Contractor shall furnish all 2. necessary labor, facilities, equipment, and materials to perform the work described under this contract. The Contractor's representative shall be available to meet with Government personnel as requested by the USACE San Francisco District. The Contractor shall perform the services in accordance with this statement of work and the general Any modifications in equipment and/or methodology from those outlined in this Scope of Services must be approved by the San Francisco District (SFD). In order to adhere to the project schedule, all requests for modification or variations in equipment or procedures shall be forwarded to the SFD at the earliest date/time to ensure a timely review. The Contractor shall comply with all pertinent provisions of the U.S. Army Corps of Engineers Safety and Health Requirements Manual EM-385-1-1, date October 1984. The Contractor shall provide transportation and access from shore to the sampling vessel to a representative of the U.S. Army Corps of Engineers who may be present during sampling.

SEDIMENT SAMPLING LOCATIONS

- a. <u>Samoa</u>, <u>Eureka</u>, <u>Fields Landing</u>, <u>North Bay</u>, <u>Bar and Entrance Channels</u>. Sediment samples shall be taken at those sites listed in Table 1 (shown in Figure 1). A total of three composites shall be made according to the compositing scheme in Table 2.
- b. A sufficient amount of sediment shall be collected from each location specified in Table 1, so that a representative amount of sediment is included from each sampling location in each composite, and that there is sufficient composited sediment to run the initial suite of sediment chemistry, bioassays and bioaccumulation and also one additional sediment chemistry, suspended particulate phase, and solid phase toxicity bioassay on each composite should a re-test be necessary. Sufficient individual sediment from each sediment location within a composite area shall be taken to conduct individual sediment chemistry analyses.

- c. All of the samples shall have their containers physically marked as to area, sample location, and purpose of sampling. The Contractor shall furnish SFD an inventory of all samples taken and delivered, and their respective labels.
- d. Sediment samples shall be placed in appropriate containers and stored following methodologies described in the manual. Care shall be taken to ensure that the containers are completely filled by the samples and that air bubbles are not trapped in the containers. All samples shall be stored immediately at 4°C and not frozen or dried. The Contractor shall provide the ice and ice chests or chest freezers to be used in the field to maintain samples at 4°C. These samples shall be stored at 4°C until testing initiated.
- e. That portion of each individual sediment sample remaining after analyses shall be archived at 4°C. for possible additional chemical analyses until completion of the work and acceptance of the final report. Disposal of all sediments remaining at the end of testing shall be the Contractor's responsibility.
- f. The Contractor shall provide the mudline elevations at each sample gathering location in reference to mean lower low water.
- g. The Contractor shall maintain a daily field activity log listing the beginning and ending time for every and all phases of operation.
- h. Formal chain-of-custody procedures shall be followed and documented.

4. SEDIMENT SAMPLING EQUIPMENT

- a. Sediments in the Samoa, Eureka, Fields Landing, and North Bay channels shall be sampled with vibracore equipment. Each of the sampling locations within Humboldt Bay and Harbor sampled by vibracore shall be sampled from mudline to project depths (MLLW) listed on Table 1. Material below the required depths listed on Table 1 shall not be used for testing. Where there is less than a foot of sediment at the sampling location or attempts to sample with the Vibracore equipment has failed, sediment samples at that location shall be obtained with either a Van Veen Grab sampler or a pipe dredge sampler. Samples from the Bar and Entrance channels, reference site, and control site shall be sampled using either a Van Veen Grab Sampler or equivalent, or a pipe dredge.
- b. A fathometer shall be used to ensure vertical control of sampling. Horizontal positioning equipment with an accuracy of ten (10) feet is required to locate sampling points within the harbor. An accuracy of fifty (50) feet is required to locate the sampling site of the reference area.

- C. Each individual sediment core sample taken in the Humboldt channels shall be taken within an area bounded by a 50-foot radius having its center located at the coordinates provided above or as approved by the government representative. In the event that there is insufficient sediment to sample between mudline elevation and the sampling depth listed above, with either the vibracore or grab sampler, the contractor shall locate as close as possible to the original sampling site, a new sampling location (inside the channel lines) which will provide sufficient sediment for sampling.
- d. Care shall be taken during sampling to avoid contamination of sediment. All coring devices, if possible, shall be composed of or lined with a noncontaminating material such as cellulose buterate or lexan. If this is not possible, the Contractor must document what steps will be taken to prevent contamination of sediments during sampling as well as during storage prior to initiation of testing. Any samples indicating external contamination due to handling shall require resampling at no additional cost to the SFD.

5. SEDIMENT CHEMICAL, PHYSICAL AND GEOLOGICAL CHARACTERIZATION.

- a. Grain size analyses shall be completed for all individual sediment samples taken in each of the Humboldt Harbor and Bay channels. Individual sediment samples taken in the Bar, Entrance, and North Bay channels, which are found to not be predominantly sand (if <80% retained on #200 sieve), and are not included in a compositing area, shall be analyzed for the parameters specified in Table 3. All composited sediments from Humboldt Harbor channels, the reference site, and the control, and all individual sediments sampled within the Fields landing, Samoa, and Eureka channels, shall be analyzed for the parameters specified in Table 3. In addition, for each composited sediment, Dioxin/Furan analyses shall be conducted. The required detection limits are also given in Table 3. The results shall be reported in dry weight.
- b. All analyses must be conducted using EPA approved methodologies that are suitable for marine sediments and which yield the required detection limits with good precision and accuracy. Appropriate clean-up procedures shall be employed that remove as much of the interfering material as possible from the sample without compromising the integrity of the sample or increasing the detection limits.
- c. The presence of major "unknown" analytes on gas chromatograms or reconstructed ion chromatography (GC/MS) should be noted.
- d. Grain size analysis and hydrometer readings shall be performed in accordance with the grain size procedure found in "Procedures for Handling and Chemical Analysis of Sediment and Water Samples, U.S. Army Corps of Engineers Technical Committee on Criteria for Dredged and Fill Material (Plumb 1981)".

TABLE 1. Humboldt Sampling Locations

CHANNEL	SAMPLE	EASTING	NORTHING	Estimated depth to mudline (MLLW)	Sample Depth of (MLLW)	Sample to maximum Depth of (MLLW)
North Bay						
	NB1	1,384,200	525,070	35.0	37	2.0
-	NB2	1,384,640	525,740	33.5	37	35
	NB3	1,385,810	527,580	32.0	37	5.0
	NB4	1,387,800	530,600	38.0	37	Grab
	NB5	1,390,000	531,950	29.5	37	7.5
	NB6	1,391,365	533,710	37.5	37	Grab
	NB7	1,392,300	535,690	37.0	37	Grab
	NB8	1,393,100	537,165	36.0	37	Grab
	NB9	1,393,630	538,680	35.5	37	Grab
SAMOA						
	SAM1	1,394,550	542,000	34.0	37	3.0
	SAM2	1,35,600	544,510	34.5	37	2.5
	SAM3	1,396,210	545,550	34.0	37	3.0
	SAM4	1,396,390	546,800	36.0	37	Grab
	SAM5	1,397,700	547,340	32.0	37	5.0
	SAM6-A	1,397,210	548,120	34.2	37	2.8
	SAM6-B	1,397,400	548,370	32.9	37	4.1
	SAM6-c	1,397,400	548,370	32.8	37	4.2
	SAM7	1,398,120	548,000	33.5	37	3.5
EUREKA			1	4		
	EK1	1,394,910	541,500	33.9	37	3.1
	EK2	1,397,080	543,120	24.6	28	3.4
	ЕК3	1,397,900	543,800	22.6	28	3.4
	EK4	1,398,985	543,790	21.0	28	7.0
	EK5	1,399,500	543,920	18.0	28	10.0
	EK6	1,399,500	544,030	20.0	28	8.0
	EK7	1,399,770	544,000	15.0	28	10.0
	EK8	1,400,100	544,100	13.5	28	10.0

CHANNEL	SAMPLE	EASTING	NORTHING	Estimated depth to mudline (MLLW)	Sample Depth of (MLLW)	Sample to maximum Depth of (MLLW)
FIELDS - LANDING				<u>-</u>		
	FL1	1,384,000	513,800	23.0	28	5.0
	FL2	1,384,130	514,070	26.0	28	2.0=-
	FL3	1,384,240	513,810	24.5	28	3.5
	FL4	1,385,100	517,305	27.0	28	Grab
	FL5	1,384,130	519,650	23.5	28	4.5
	FL6	1,383,510	521,140	22.0	28	6.0
	FL7	1,384,500	523,300	30.0	28	Grab
ENTRANCE	ENT1	1,382,040	526,110	Grab	·	45
	ENT2	1,379,860	529,240	Grab		45
						v a nd.
BAR _	BAR1	1,377,490	531,010	GRAB		45
D 6						
Reference site	RF	124°18'34"	40°49'41 "	GRAB OR PIPE DREDGE		165-165' or 26.5- 27.0 fathoms
Control Site	Tomales Bay	172057'40 "	38°13'50			

Table 2. Silt/Clay Material Compositing Plan for Toxicity and Bioaccumulation Evaluations

DIOGEOGRAPHICA CALCALON E	valuations
Composite	SAMPLE
EKUP	EK2
EKUP	ЕКЗ
EKUP	EK4
EKEX	EK5
EKEX	EK6
EKEX	EK7
EKEX	EK8
4.	
SAM	SAM6-A
SAM	SAM6-B
SAM	SAM6-C
FLTB	FL1
FLTB	FL2
FLTB	FL3
Ref	Reference

^{*} Only placed in composte if >80% passes through #200 sieve

<u>Parameters</u>

	Sediment (mg/kg dry wt) ^(a)	Tissue (mg/kg wet wt) ^g
Conventionals		· · · · · · · · · · · · · · · · · · ·
TOC Oil and Grease TPH Grain Size Total Solids Total Volatile Solids Total and Water Soluble Sulfides	0.1% 20 20 NA 0.1% 0.1%	NA NA NA NA NA NA
<u>Metals</u>		
Ag As Cd Cr Cu Hg Ni Pb Se Zn	0.1 0.1 0.1 0.1 0.02 0.1 0.1 0.1	0.1 0.1 0.1 1.0 4.0 0.02 1.0 1.0
Ommonia	2.0	35.0
Organic Compounds		
Phthalate esters	0.01	
Butyltins(b)	0.01 0.001	0.02
PCBs(c)	0.02	0.001
Pesticides- (e) Aldrin		0.02
Alpha-BHC	0.002	0.002
Beta-BHC	0.002 0.002	0.002
Delta-BHC	0.002	0.002
Gamma-BHC	0.002	0.002
Alpha-Chlordane	0.002	0.002
Gamma-Chlordane	0.002	0.002 0.002
4.4'-DDD	0.002	0.002
4.4'-DDE	0.002	0.002
4.4'-DDT	0.002	0.002
Dieldrin	0.002	0.002
Endosulfan I	0.002	0.002
Endosulfan II	0.002	0.002
Endosulfan Sulfate Endrine	0.01	0.002
Heptochlor	0.002	0.002
Heptochlor Epoxide	0.002	0.002
Toxaphene	0.01	0.01
	0.03	0.03
TCDD/TCDF-Full Screen(f)	0.5-1 (part per trillion)	0.2-0.1 (ppt)

Table 3 Designation of Parameters for Analysis and Detection Limits

Parameters

	Sediment (mg/kg dry wt) ^(a)	Tissue (mg/kg wet wt) ⁹
PAHs (d)		
NAPHTHALENE	0.02	0.02
ACENAPHTHYLENE	0.02	0.02 =
ACENAPHTHENE	0.02	0.02
FLUORENE	0.02	0.02
PHENANTHRENE	0.02	0.02
ANTHRACENE	0.02	0.02
FLUORANTHENE	0.02	0.02
PYRENE	0.02	0.02
CHRYSENE	0.02	0.02
BENZO (A) ANTHRACENE	0.02	0.02
BENZO (B) FLUORANTHENE	0.02	0.02
BENZO (K) FLUORANTHENE	0.02	0.02
BENZO(A) PYRENE	0.02	0.02
INDENO(1,2,3-CD)PYRENE	0.02	0.02
DIBENZ (A, H) ANTHRACENE	0.02	0.02
BENZO (GHI) PERYLENE	0.02	0.02

⁽a) Report as mg/kg dry wt., unless otherwise noted.
(b) Mono-, Di-, and Tributyltin.
(c) Reported as Aroclor equivalents 1242, 1248, 1254, and 1260 and total PCB.
(d) All compounds on EPA Method 610 list.
(e) All compounds on EPA Method 608 list.
(f) Full screen- 17 isomers, use EPA method 8290 and report TEQ for each sample.
(g) Although detection limit is in wet wt., report as dry wt.

Note: Throughout the following discussions on bioassays the term Manual refers to the Evaluation of Dredged Material for Ocean Disposal, Testing Manual (EPA-503/8-91/001, February 1991) developed by the EPA Office of Marine and Estuarine Protection and U. S. Army Corps of Engineers, available through the Corps of Engineers' Waterways Experiment Station, Telephone (601)634-2571.

6. <u>SUSPENDED PARTICULATE PHASE BIOASSAYS</u>.

a. <u>Sediment and Water Collection</u>. The Contractor shall collect and preserve all sediment samples as described in sections 3 and 4 above and in the Manual. Water shall be clean, uncontaminated—seawater of appropriate salinity, pH and temperature. Sufficient water shall be collected to perform the required tests. Seawater from any suitable location may be used provided it does not exceed applicable EPA quality criteria for marine waters and is of constant quality. Contractors shall be able to provide evidence that water meets these criteria, if necessary. Testing shall be conducted on the composited samples as specified in sections 3 and 4 above.

b. Preparation of the Bioassay Phase.

- (1) <u>Suspended Particulate Phase Bioassay</u>. Phase preparation shall follow the procedure in the Manual for the suspended phase.
- (2) <u>Water Samples</u>. Preparation of water samples shall
- (3) <u>Sediment Sample</u>. Composited sediment samples from Humboldt Bay and Harbor shall be prepared according to the manual. In addition to the treatment composites, there shall be the control water, reference water, and reference sediments. The control and reference water may be the same if the animals are being held before testing in the same water to be used for the bioassays.

c. Collection and Maintenance of Test Species.

- (1) <u>Species Selection</u>. Three species shall be used: (1) Larvae of (pacific oyster) <u>Crassostraea gigas</u> or (bay mussel) Mytilus edulis (% normal development to D stage) (2) (mysid shrimp) <u>Holmesimysis sculpta</u>, and (3) (juvenile sanddab) <u>Citharicthys stigmaeus</u>.
- (2) Organism Handling and Holding. Organisms shall be held no longer than two weeks. The SFD must approve additional holding time. Experiments shall be designed and performed so that organisms are handled as minimally as possible. Procedures for handling are found in the Manual. The physiological and biological needs of the test organisms must be met at all times.
- d. <u>Bioassay Testing of the Suspended Phase</u>. Five replications of each treatment (including control) shall be performed. If greater than 10% of the control dies during any test, that test must be repeated at no additional expense to the SFD. However, control mortalities of 30% are acceptable in zooplankton bioassays. Conditions and procedures shall follow those found in the Manual, unless otherwise noted.

- e. <u>Deviations From the Manual</u>. If there is an odor of hydrogen sulfide, the water shall be aerated until the odor of hydrogen sulfide is no longer detected. The Contractor shall measure NH₃ in the test containers. If the NH₃ concentration is elevated, the water shall be aerated until the concentration is adequately reduced before introducing the test organisms.
- f. Experimental Design. The design is a completely randomized design with three dilutions per dredging area per species, three reference sediments, and a control.

Suspended Particulate As a Reference As a Control ___ Treatments For each dredge area: (1) 100% marine (1) 100% culture water water 100% Suspended (1) Note: May be Particulate (The following use the same as Phase reference sediment) reference (2) 50% suspended (2) 100% suspended particulate particulate phase phase (3) 10% suspended (3) 50% suspended particulate particulate phase phase (4) 10% suspended particulate phase

The test organisms and treatment shall be randomly assigned to test containers. The variable measured shall be percent survival except for the bivalve larvae test for which both survival and percent normal development are measured. The EC50 and LC50 shall both be calculated according to ASTM E724-89. Each species shall be considered a separate test. The 100% suspended particulate phase may be run first. If mortalities (or abnormal development) of 50% or less occur by 48-96 hours, the 50% and 10% dilutions need not be run. If greater than 50% mortality (or abnormal development) occurs by 48-96 hours, the test must be rerun at the Contractor's expense using the full series of dilutions (100%, 50%, 10% and control).

g. Data Analysis for Suspended Particulate Bioassays.

- (1) If total survival or percent normal development in the test medium is equal to or higher than survival in the reference or control, visual inspection of the data is adequate and no statistical analyses are needed.
- (2) A table or tables shall be provided for each species tested, giving the number of organisms tested, the total number of surviving organisms for each time period and each treatment, the mean, and the standard deviation.
- (3) If mean percent survival or normal development in the control is greater than any of the other treatments, for the bioassays, than additional statistical analyses shall be performed.

The statistical analyses shall be as described in the Manual. Any deviations from the Manual must be approved by the Government. The results of all statistical analyses shall be presented in tabular form.

(4) If 50 percent or greater mortality or abnormal development occurs in the highest concentration of test medium, than a LC50 or EC50 must be calculated as described in the Manual.

7. SOLID PHASE BIOASSAY

a. Sediment and Water Collection. The Contractor shall collect and preserve all sediment and water samples as described in sections 3 and 4 above and in the Manual. Composited sediment samples shall be prepared and handled according to the Manual. For control sediment, the Contractor shall procure unpolluted sediment that is compatible with the test organisms and preferably from where they were The control sediment must meet the needs of the organisms. The bioassays shall be conducted with a flow-through seawater system except for the test using the amphipod. Seawater of approximately 15°C, 30-32 ppt salinity should be passed through a sand filter and flow into each aquarium at a rate that will replace the aquarium volume at least once every 12 hours. The flow should be directed to achieve good mixing without disturbing the layer of sediment on the aquarium bottom. Water for all bioassays will be clean. uncontaminated seawater of appropriate salinity, pH and temperature. Seawater from any suitable location may be used provided it does not exceed applicable EPA quality criteria for marine waters and is of constant quality.

b. Collection and Maintenance of Test Species.

- (1) <u>Species Collection</u>. It is recommended that collection of species should include at least 20% more than the minimum requirement.
- (2) <u>Species Selection</u>. Three species shall be used: (1) (Amphipod) Rhepoxynius abronius; (2) (burrowing polychaete) Nepthys caecoides, and (3) (mysid shrimp) Holmesimysis costata.
- (3) Organism Handling and Holding. Organisms shall be held no longer than two weeks. The SFD must approve additional holding time. Experiments shall be designed and performed so that organisms are handled as minimally as possible. Procedures for handling are found in the Manual. The physiological and biological needs of the organisms must be met at all times.
- c. Solid Phase Preparation and Experimental Design. The test treatments shall consist of the dredged material samples, a reference, and a control. Five replications of each treatment shall be performed. Each replicate shall consist of at least 20 organisms of each of these species. The dredged material treatments, references, and control shall be prepared as described in the Manual. However, only whole sediments shall be used in the solid phase tests. Layering of test sediments or control sediments over reference sediments is no longer acceptable. The purpose of the control is to verify the health of test organisms and the acceptability of test conditions. It also provides for quality assurance. If the mean survival in the control is less than 90 percent, the test must be repeated at no additional

cost to the SFD. The variable measured shall be percent survival. Each species shall be considered a separate test.

d. <u>Solid Phase Testing</u>. Conditions and procedures for the 10-day solid phase bioassay shall follow ASTM (E 1367-90), 1991 and the Manual. In the event of a discrepancy between the ASTM and the Manual the Contractor shall contact the Corp's Contracting Officer for clarification.

(1) The following table contains test condition acceptability ranges for organisms used to evaluate dredged material.

MARINE AND ESTUARINE AMPHIPOD TOXICITY TEST APPLICATION CONDITIONS

Parameter	<u>Rhepoxynius</u>	<u>Ampelisca</u>	Eohaustorius	Leptocheirus	
Temperature (°C)	15 0 1	20	15	25	
Overlying Salinity (ppt)	>25	>20	2-34	2-32	
Grain Size (% silt/clay)	<90	>10	full range	full range	
Ammonia (total mg/L, ph 7.7)*	<30	<30	<60	<60	
Ammonia (UI** mg/L, ph 7.7)*	<0.4	<0.4	<0.8	<0.8	
Sulfides A framework for decidi	***	**	**	***	

A framework for deciding whether observed sediment (or elutriate) toxicity may be due to ammonia is presented in EPA/USACE (1993: Appendix F). This document should be consulted if ammonia is suspected to be a contaminant of concern.

(2) The contractor shall conduct measurements of interstitial ammonia, ph, and salinity on the sediments prior to the beginning and end of each bioassay test. Whenever chemical evidence of ammonia is present at toxicologically important levels prior to initiation of the test, ammonia in the interstitial water shall be reduced to below 15 mg/l before adding the benthic test organism. Ammonia levels in the interstitial water can be reduced by sufficiently aerating the sample at saturation and replacing two volumes of water per day. During the test, the contractor shall ensured that ammonia concentrations remain within the acceptable range by conducting the toxicity test with continuous flow or volume replacement not to exceed two volumes per day.

e. Data Analysis For Solid Phase Bioassay.

(1) If total survival in the test medium is equal to or higher than in the reference, visual inspection of the data is adequate and no statistical analyses are needed for that test.

[&]quot;Unionized

[&]quot;Hydrogen Sulfide is not likely to be a problem in these tests if adequate oxygen levels are maintained in the overlying water.

- (2) A table or tables shall be provided for each species tested, giving the number of organisms tested, the total number of surviving organisms for each treatment, the means, and the standard deviation.
- (3) If mean percent survival in the reference is greater than any of the other treatments, for the bioassays, then additional statistical analyses shall be performed. The statistical analyses shall be as described in the Manual except that multiple t-test shall not be used. Alternative statistical methods must be approved by the SFD. The results of all statistical analyses shall be presented in tabular form.

8. BIOACCUMULATION.

a. Sediment and Water Collection. The Contractor shall collect and preserve all sediment and water samples as described in sections 3 and 4 above and in the Manual. Composited sediment samples shall be prepared and handled according to the Manual. For control sediment, the Contractor shall procure unpolluted sediment that is compatible with the test organisms and preferably from where they were collected. The control sediment must meet the needs of the organisms. The bioassays shall be conducted with a flow-through seawater system except for the test using the amphipod. Seawater of approximately 15°C, 30-32 ppt salinity should be passed through a sand filter and flow into each aquarium at a rate that will replace the aquarium volume at least once every 12 hours. The flow should be directed to achieve good mixing without disturbing the layer of sediment on the aquarium bottom. Water for all bioassays will be clean, uncontaminated seawater of appropriate salinity, pH and temperature. Seawater from any suitable location may be used provided it does not exceed applicable EPA quality criteria for marine waters and is of constant quality.

b. Collection and Maintenance of Test Species.

- (1) <u>Species Collection</u>. It is recommended that collection of species should include at least 20% more than the minimum requirement.
- (2) <u>Species Selection</u>. Two species shall be used: (1) <u>Macuma nasuta</u> and (2) <u>Nephtys caecoides</u>
- (3) Organism Handling and Holding. Organisms shall be held no longer than two weeks. The SFD must approve additional holding time. Experiments shall be designed and performed so that organisms are handled as minimally as possible. Procedures for handling are found in the Manual. The physiological and biological needs of the organisms must be met at all times.
- c. Solid Phase Preparation and Experimental Design. The test treatments shall consist of the dredged material samples, a reference, and a control. Five replications of each treatment shall be performed. Each replicate shall consist of at least 20 organisms of each of these species. The dredged material treatments, references, and control shall be prepared as described in the Manual. However, only whole sediments shall be used in the solid phase tests. Layering of test sediments or control sediments over reference sediments is no longer acceptable. The purpose of the control is to verify the health

of test organisms and the acceptability of test conditions. It also provides for quality assurance. If the mean survival in the control is less than 90 percent, the test must be repeated at no additional cost to the SFD. This data must be reported to the SFD The variable measured shall be percent survival. Each species shall be considered a separate test.

(1) <u>Tissue Analyses.</u>

At the end of the bioassay, surviving individuals of the bivalve are placed in separate aquaria in clean, flowing sediment-free water for sufficient time to void the digestive tracts. If the test animal requires that material be ingested to void its digestive tract, they should be purged in aquaria with clean sand. The Contractor shall provide rationale for the voiding times selected.

It is possible that tissue samples shall require analyses for some or all of the analytes specified in Table 3. It is the responsibility of the contractor to ensure that sufficient tissue is available at the end of the bioaccumulation tests to conduct the full suite of analytes in Table 3. EPA, NRWQCB, and the Corps shall review the sediment chemistry and provide the required tissue analyses to the contractor. It will be the responsibility of the contractor to provide the sediment data to the Corps at the earliest time possible for this purpose.

Based on the 1993 and 1994 baseline surveys, it is anticipated that minimal organic contaminants will be present in the sediment and that chemical analyses for organics will not be required. It is also anticipated that levels of metals shall be similar to the reference site and not require tissue analyses to be completed. However, it may be possible that elevated levels of an organic contaminant or metal listed on Table 3 is present in a sediment composite. If this occurs and results in a determination by the agencies that chemical analyses is required on the tissues for this sediment, then this shall be outside of this scope and shall be considered additional work. A pre-exposure sample of tissue shall be archived for possible analyses. All tissue samples shall be archived for future organic analyses for a period of one year. Required tissue detection limits are specified in Table 3.

- (2) <u>Number of Samples</u>. Five replicates from each of the treatments shall be tested for the parameters listed in Table 3. Survivors within each replicate shall be pooled as necessary to provide sufficient tissue for testing. The treatments shall consist of the dredged material samples, the references, and the control.
- a. The results shall be reported in dry weight. Percent moisture shall also be reported.
- b. <u>Procedure</u>. Suggested procedures for specific constituents are given in the Manual. The method selected must yield the required detection limits with good precision and accuracy.
- c. <u>Solid Phase Testing</u>. Conditions and procedures shall follow those found in the Manual for the 28-day solid phase bioassay. Observations and water quality measurements (temperature, pH salinity, dissolve oxygen shall be made daily.

(1) If the test sediment has an odor of hydrogen sulfide or has elevated ammonia levels, prior to introducing the organisms let the sediment settle in tank and then aerate until the ammonia concentration is sufficiently reduced and there is sufficient oxygen (approximately 4ppm) at the sediment-water interface being careful not to oxidize the sediment. One hour after the addition of the organism, the water in the tank shall be analyzed for hydrogen sulfide, ammonia, and dissolved oxygen. This information shall be included in the final report.

d. Data Analysis and Presentation.

- (1) If the mean tissue concentration of a parameter in one or more of the dredged material samples is less than or equal to that in the reference, visual inspection of the data is adequate and no statistical analyses are required, for that parameter.
- (2) A table or tables shall be provided for each species and each contaminant giving the tissue concentration for each treatment and each replicate, the mean, and the standard deviation.
- (3) If mean tissue concentration of any parameter in any of the dredged material samples is higher than that in the reference, then additional statistical analyses comparing the test tissue concentration to the reference tissue concentration shall be performed. The statistical analyses shall be as described in the Manual except that multiple t-tests shall not be used. Alternative statistical procedures shall be approved by the SFD. The results of all statistical analyses shall be presented in tabular form.

9. QUALITY ASSURANCE AND QUALITY CONTROL.

- a. The Contractor and subcontractors shall have an established quality control plan which is based on Environmental Protection Agency's quality control program as outlined in <u>Handbook for Analytical Quality Control in Water and Wastewater Laboratories</u>, USEPA 600/4-79-019, March 1979, EPA Office of Research and Development, Cincinatti, Ohio (Handbook). This plan shall also comply with the manual.
- b. Quality control charts will be used for precision and accuracy (see section 6.1-6.3 of the Handbook). Percent recovery will be the control chart statistic for controlling accuracy. The industrial statistic "I" will be the control chart statistic for controlling precision. When it is discovered that any analysis is out of control from the standpoint of either precision or accuracy, all analyses since the last in control point will be repeated.
- c. Upon completion of the analyses, the laboratory shall prepare a quality control report which includes the precision and accuracy of data generated on the analyzed samples.
- d. As an absolute minimum, the following quality control measures shall be taken with each group of samples analyzed:

- (1) A reagent blank per batch of samples shall be analyzed.
- (2) One duplicate analyses per 10-20 samples shall be made, and precision data shall be reported in the quality control report.
- (3) At least one audit or reference sample (EPA, NBS or other EPA- acceptable sources) for each constituent (if available) shall be analyzed (per batch or one per 10-20 samples whichever is less) and reported in the quality control report. This audit sample (marine or estuarine sediment and tissue) shall be within the same concentration range as the samples that are being analyzed.
- (4) Spiked samples shall be analyzed in order to address analytical accuracy. At least one per 10-20 samples must be spiked with an appropriate standard in order to address accuracy. The concentration of the spike shall be within 200% of the detection limit.
- (5) Printouts from all AA and GC analyses shall be kept on file in the event that any concerns arise with the data.
- e. All laboratory analyses shall be completed within the recommended holding time for each analytical method.
- f. In addition to following quality control procedures described in the Handbook, quality control procedures described for specific analytical methods shall also be followed.
- g. All GC analyses require confirmation using a second column which is different from the one used in the initial GC analysis.
- h. Standard reference toxicant tests shall be conducted on all species. The results shall be reported in the report.

10. RELEASE OF DATA.

All data, reports, and materials obtained as a result of this contract shall become the property of the U.S. Government and shall be turned over to the SFD upon completion of this work. No data shall be released by the Contractor to any other party other than the SFD without expressed written permission from the SFD.

11. RESPONSIBILITY FOR FIELD WORK.

The Contractor shall be responsible for all damages to persons and property that occur as a result of actions by the Contractor's employees in connection with execution of the work.

12. REPORT PREPARATION.

- a. The contractor shall prepare a project report according to the following format.
 - (1) Introduction. This section shall include a discussion of the purpose and a description of the project.
 - (2) Materials and Methods. This section shall include:

- a. Narrative description of the material, methods and equipment used to perform the project tasks.
- b. Daily field activity log which includes tidal stage and weather conditions.
- c. Inventory of all samples taken and explanation of how used in the tests.
- d. Diagrams and figures as appropriate including location map of the sampling areas and sample locations within each area.
- (3) Results. The Contractor shall include a narrative of the chemical characterization test results as well as the tables and graphs as described earlier. Any unusual laboratory or field observations shall also be described.
- (4) References.
- (5) Include appendixes

Appendix A -Scope of Work
Appendix B- Field Sampling Log Sheets/Field Notes
Appendix C- Grain Size data/graphs
Appendix D- QA/QC Data Plan and Report

- (6) Text material shall be typed on good quality 8 1/2 by 11 inch bond paper with a 1 1/2-inch margin on the right, and 1-inch at the top and bottom.
- (7) Drawings or plates shall be no larger than 20 inches by 11 inches with sufficient margin for binding on the left side and shall include a geographical scale.
- (8) Each draft report shall be reviewed by the Corps of Engineers and comments returned to the Contractor. The Contractor shall address comments, correct typographical errors, and otherwise revise the document in accordance to the Contracting Officer's or his Authorized Representative's comments and questions.

Period of Service

Check Point One:

Pre-sampling Conference

Within 2 days of receiving the notice to proceed the contractor shall contact the Corps contract representative and provide the proposed dates for sampling.

Check Point Two:

Within 15 workdays of receiving the notice to proceed the contractor shall complete the sampling.

Check Point Three:

Within 60 workdays following the sampling the contractor shall submit 3 copies of the draft report.

Check Point Four:

Within 10 workdays of receiving the Corps comments on the draft report, the contractor shall submit 10 copies of the final report.

Appendix B

Field Sampling Log Sheets

			ggggdelenere)
			Service and the service and th
		·	
		·	Because of
			in the second se
			alle Vinnesses
			Section of the sectio
			recommended by the second of t
			· ·
			Security and the second security of the second seco
			Mon
·			State of the state
·			Section - the section of the section
			General Control of the Control of th
			generalisticans Quinter in the control
			gestälvenement Viintenement Liite
			A Commence of Applications of
			Americans and Am

	0222	MENT SAMPL	HIO DOG DI	HEE1		
STATION NE	VESSEL: F/V SAUY KAY					
IDENTIFICATION NE	CAPTAIN:	MC				
DATE: 3-30-0	CREW: _5	EA, Wi	= 5 , T ,			
WEATHER:CLIA &				EQUIPMENT:		GRAS
SEAS: A CA			NAVIGATI	ON TYPE:	iff GPS	
TIME: 165	50		DESC	CRIPTION OF MA	TERIAL	DEPTH
	10.78		FINE	TO MED 6	MAN SAND	
COORDINATES: 124° 13			_	*		
WATER DEPTH: 36.	3		_	en e		
TIDAL STAGE:		· · · · · · · · · · · · · · · · · · ·	4			
DEPTH (MLLW): - 35.	 		-			
TARGET SAMPLING DEPTH	1.7		1			
SAMPLE LENGTH NEEDED: PENETRATION/RECOVERY:				•		
CORE LENGTH SAMPLED:	GRAB					+ + *- +
SAMPLE ID. #	ТҮРЕ	QUANTITY	VOLUME	CONTAINER	ANALYSIS	PRES.
HUM 95 PSD 0003	DISCRETE	(250 m.f.	HDPE	PSP	15
				<u> </u>	<u> </u>	
COMMENTS: DISCRET	E PSD	ONLY				
COMMENTS: DISCRET	E PSD	ONLY				12
COMMENTS: DISCRET	E PSD	ONLY				49
COMMENTS: DISCRET	e PSD	ONLY				430 - 23 - 23 - 23 - 23 - 23 - 23 - 23 - 23
COMMENTS: DISCRET	e PSD	ONLY				
COMMENTS: DISCRET	E PSD	ONLY				
COMMENTS: DISCRET	E PSD	ONLY				
COMMENTS: DISCRET	E PSD	ONLY				
COMMENTS: DISCRET	E PSD	ONLY				
COMMENTS: DISCRET	E PSD	ONLY				

	SEDIN	MENT SAMPL	ING LOG SI	HEET		
STATION IDENTIFICATION	VESSEL: SALLY KAY					
ibertification //	CAPTAIN:	MC				
DATE: <u>4-4-9</u>	5		CREW: <u>5</u>	EA WF	SJ	
WEATHER: FAIR	winds	W 0)5	SAMPLING	GEQUIPMENT: _	SMITH MAC C	DA/S
SEAS: CALM			NAVIGATI	ON TYPE:) IFF 6PS	
TIME: 1255			DESC	CRIPTION OF MA	TERIAL	DEPTH
COORDINATES: 10 45	17.67					
COORDINATES: 121°13	21.11		=1,VR =	MED GRAIN.	SANO	
WATER DEPTH: - 38.5			19	SHELL HAST		
TIDAL STAGE: 4 2, 3	}		GREY	catal		
DEPTH (MLLW): 35.	3 ′		18	2000		
TARGET SAMPLING DEPTH	: -37.0					
SAMPLE LENGTH NEEDED:	1.2'					
PENETRATION/RECOVERY:	0,8					
CORE LENGTH SAMPLED:	GRAB	·				
SAMPLE ID. #	ТҮРЕ	QUANTITY	VOLUME	CONTAINER	ANALYSIS	PRES.
HUM 45 PSD 0024	DISLACTE	1	250 MR	HOPE	PSD	8
	"					
COMMENTS: DREDGE	PROBABLY	ALRIADY	PASSED 0	JER MIS :	ate	
PSD	ONLY					
						1

KINNETIC LABORATORIES INC. OCEANOGRAPHIC RESEARCH SANTA CRUZ, CA 408-457-3950

SEDIMENT SAMPLI	ING LOG SHEET
STATION NB3	VESSEL: SALLY KAY CAPTAIN: MC
WEATHER: CLEAR WIND N @ 3 SEAS: O CHOP / SOME SWELL FROM ENTERANCE	CREW: 3FA W.F. S.J. SAMPLING EQUIPMENT: SMITH MAC GRAB NAVIGATION TYPE: DIFF GPS
TIME: 11 Z 6 COORDINATES: 40° 45′ 36.5′ COORDINATES: 124° 13′ 04.73″ WATER DEPTH: 38,1′ TIDAL STAGE: + Z.8 DEPTH (MLLW): - 35.3 TARGET SAMPLING DEPTH: -37.0 SAMPLE LENGTH NEEDED: 1.7 PENETRATION/RECOVERY: 0.8′ CORE LENGTH SAMPLED: GPAR	DESCRIPTION OF MATERIAL DEPTH MED GRAIN SAND GREY COLOR NO ODOR
SAMPLE ID. # TYPE QUANTITY MUM9 5 PSD 0013 DISCRETE 1	VOLUME CONTAINER ANALYSIS PRES. 250 M & HDPE GRAW SIZE &
COMMENTS:	

PSD ONLY

KINNETIC LABORATORIES INC. OCEANOGRAPHIC RESEARCH SANTA CRUZ, CA 408-457-3950

	SEDIM	IENT SAMPL	ING LOG SE	HEET		
STATION NB	6		VESSEL: CAPTAIN: _	SANY KA	No. 1	
DATE: 4-2-95 WEATHER: CLEAR SEAS: CALM			SAMPLING	EQUIPMENT: ON TYPE:	SMITH MAL	GRAB
COORDINATES: 124 11	38.60 56.77 .z .5 .7 -37.0 Ø		FINE SILT MED GRA - SHELL - ST.CL WORN - GRAS NO	. 5	rop of	DEPTH:
SAMPLE ID. #	TYPE	QUANTITY	VOLUME	CONTAINER	ANALYSIS	PRES.
HUM 95 PSD 0015	DISCRUTE		250 MC	HOPE	GMIN SIZE	N .
				·		
COMPARATE.	San			* * * * * * * * * * * * * * * * * * *		18

COMMENTS:

PSD ONLY

	SEDI	MENT SAMPL	ING LOG S	HEET		
STATION IDENTIFICATION	i	VESSEL: F/V SALLY KAM				
10	CAPTAIN:	Mike Count	NC NA			
DATE: <u>4 - 2</u>	CREW: _5	EA WF	5.7	<u> </u>		
"WEATHER: CLAR	WIA	UD N 9.5		GEQUIPMENT:	_	DAB.
SEAS: CAM			NAVIGATI	ION TYPE: ರಿ	ife GPS	
TIME: /2 //			DESC	CRIPTION OF MA	ATERIAL	DEPTH
COORDINATES: 40° 46				r h.		
COORDINATES: 12 1 1			5000	W/ SHELL FR	ARMENTS	
WATER DEPTH: -4	Z. 0 ')+//00	907 377 222 17		
TIDAL STAGE: +	3,7		4			
DEPTH (MLLW): - 3	8.3		4			
TARGET SAMPLING DEPTH	: -37.0		<u>.</u>	e e e		
SAMPLE LENGTH NEEDED:	A		_		** **	
PENETRATION/RECOVERY:	0.5		-			
CORE LENGTH SAMPLED:	GRAB					
SAMPLE ID. #	ТҮРЕ	QUANTITY	VOLUME	CONTAINER	ANALYSIS	PRES.
HUM 95 PSD 0016	DISCRETE	/	250 AAR	HOPE	PSIS	Ø
	7					
	.9 jan 1-1 - n -					
COMMENTS: EARLIER	TEST GR	AB ON 3	-30-95	ONTHINGS A Q	MANTITY OF	FINE
GRAINED SILTY A	AUD HOW	EVER TO D	AYS GRAN	3 Does N	IOT CONTA	-3 <i>A</i> J
ANY SIGNIFICANT	QUANTIT	Y OF M	OUR AND	NO SHOALIN	6 OUER TARG	ET DE PAG
50, 0.						
P:	50 01	uny				

SEDIMENT SAMPLING LOG SHEET						
STATION NB 8	VESSEL: SACLY KAY CAPTAIN: M. CUNNINGMAN					
DATE: 4-2-95 WEATHER: 619AR WINE NO 5 SEAS: 6ACM	CREW: SE ADAMS UFICIOS S. JOHNSON SAMPLING EQUIPMENT: SMITH MAL GAAS NAVIGATION TYPE: PIFF GPS					
TIME: 12 2 4 COORDINATES: 40 947 12,47	DESCRIPTION OF MATERIAL DEPTH					
WATER DEPTH: 41, 7	MED SAND WITH SHELL HASH					
TIDAL STAGE: 3, 9 DEPTH (MLLW): 37, 9						
SAMPLE LENGTH NEEDED:						
CORE LENGTH SAMPLED: GRAB						
SAMPLE ID. # TYPE QUANTITY HUM 95 850 0017 DISCOTE /	VOLUME CONTAINER ANALYSIS PRES. 250 ml HOPE GRANSIZE /					
HUM 95 PSO 0017 DISECTE /	250 ME HOUSE GRANSTEEL &					
COMMENTS: PSD ONLY						

SEDI	MENT SAMPL	ING LOG SI	HEET				
STATION NB - 9		VESSEL: 1/2 SALLY KAM CAPTAIN: MC					
DATE: 3 - 30 - 95			EA , W	F., S.T.			
WEATHER: <u>clear</u>	· · · · · · · · · · · · · · · · · · ·		EQUIPMENT:		· · · · · · · · · · · · · · · · · · ·		
SEAS:		NAVIGATI	ON TYPE:り」	FF GPS			
TIME: 1623	·	DESC	CRIPTION OF MA	TERIAL	DEPTH		
COORDINATES: 40 47 28.64		SHELLS			-		
COORDINATES: 124 (1 28.97		SHELL FR	as muts				
WATER DEPTH: ~ 37, 2	:	SHEW HA	and the second second second				
TIDAL STAGE: 1, 3		MED 3	- w - +	e en e			
DEPTH (MLLW): - 35, 9	·	SOME FIR	NC S				
TARGET SAMPLING DEPTH: -37,0			en e	$(1-\frac{2(k+1)}{k+1})^{\frac{k}{2}} (1-k+1)^{\frac{k}{2}} (1-k+1)$	ang sa		
SAMPLE LENGTH NEEDED: 1.1				en de la companya de La companya de la co			
PENETRATION/RECOVERY: CRAB	· ;						
CORE LENGTH SAMPLED: GRAS							
SAMPLE ID. # TYPE	QUANTITY	VOLUME	CONTAINER	ANALYSIS	PRES.		
HUMPS PSD OOD 2 DISEASTE	1	075	HDPE	PS D	Ø		
COMMENTS: SHELL MATTRIAL KEPT GRAB FROM CLOSING COMPLETELY FINE MATERIAL WAS VISIBLY WASHING OUT OF GRAB AT SURFACEING							
SAMPLED PSD ONLY							
<i>*</i>							

PSD ONLY

SEDIMENT SAMPL	LING LOG SHEET
STATION IDENTIFICATION SAM I	VESSEL: 5/1 SAWY KAY
	CAPTAIN: MINE CLANINGHAM
DATE: 4-1-95	CREW: S.E. ADAMS, W. FILIDS, S. JOHNSON
WEATHER: PARTIMICY CLOURY, WIND NEGS	SAMPLING EQUIPMENT: VIBRACOAE
SEAS: 6" CHOR FLUOR CHARNAT	NAVIGATION TYPE: DIFF, GPS
TIME: 0900	DESCRIPTION OF MATERIAL DEPTH
COORDINATES: 40°49' 2083"	FINE GREY SAND
COORDINATES: 124° 11′ 月、円、円	
WATER DEPTH: 34.9	SHELL FRAGMENTS
TIDAL STAGE: 1.6	VERY LITTLE FINE GRAIN
DEPTH (MLLW): 33.3	
TARGET SAMPLING DEPTH: - 3 7 0	NO OPOR THE MEMORY AND
SAMPLE LENGTH NEEDED: 3 7	
PENETRATION/RECOVERY: 2.5	
CORE LENGTH SAMPLED: 2.5	e to the second of the second
SAMPLE ID. # TYPE QUANTITY	VOLUME CONTAINER ANALYSIS PRES.
HUM 95 PSD 0008 DISCRETE 1	250 MR HOPE PSD &
COMMENTS: CORE IS A LITTLE SHORT BUT	
. NEARLY ALL SAND	Į.

	SEDI	MENT SAMPL	ING LOG SI	HEET			
STATION SAM Z			VESSEL: SALLY KAY				
IDENTIFICATION STATE			CAPTAIN:	ML	·	- 1	
DATE: 4-1-95			CREW: _5	EA WF	55		
	MIND H	180,5	SAMPLING	EQUIPMENT:	SMITH MAC C	12A/3	
SEAS: < 6 ''			NAVIGATI	ON TYPE:	FF GPS		
TIME: 175			41	RIPTION OF MA		DEPTH	
COORDINATES: 40° 48'	25,18"			THE MUD IN TACE			
COORDINATES: 124° 11'	05.63"		OUE				
WATER DEPTH: - 39.	1		FINE -MEG	SAND W			
TIDAL STAGE:	9		FIN	E SHELL HA	15H		
DEPTH (MLLW): - 37				e de la companya de l			
TARGET SAMPLING DEPTH							
SAMPLE LENGTH NEEDED:							
PENETRATION/RECOVERY:				,			
CORE LENGTH SAMPLED:	GRAB T			I			
			· ·				
SAMPLE ID. #	TYPE	QUANTITY	VOLUME	CONTAINER	ANALYSIS	PRES.	
SAMPLEID. # HUM 95 PSD 0011	O ISCRETE.	QUANTITY (250 M C	HDPE -	PSD ANALYSIS	PRES.	
	t	QUANTITY (<u> </u>		·····	
	t	QUANTITY (<u> </u>		·····	
	t	QUANTITY		<u> </u>		·····	
HUM 95 PSD OOII	DISCRETE	CHOAL TABI	250 Ml	HOPE	PSD	6	
HUM 95 PSD 0011	DISCRETE	CHOAL TABI	250 Ml	HOPE	PSD	6	
COMMENTS: COULD NO WALL TAKE	DISCRETE.	CHOAL TABI	250 Ml	HOPE	PSD	6	
HUM 95 PSD OOII	DISCRETE.	CHOAL TABI	250 Ml	HOPE	PSD	6	
COMMENTS: COULD NO WALL TAKE	DISCRETE.	CHOAL TABI	250 Ml	HOPE	PSD	6	
COMMENTS: COULD NO WALL TAKE	DISCRETE.	CHOAL TABI	250 Ml	HOPE	PSD	6	
COMMENTS: COULD NO WALL TAKE	DISCRETE.	CHOAL TABI	250 Ml	HOPE	PSD	6	
COMMENTS: COULD NO WALL TAKE	DISCRETE.	CHOAL TABI	250 Ml	HOPE	PSD	6	
COMMENTS: COULD NO WALL TAKE	DISCRETE.	CHOAL TABI	250 Ml	HOPE	PSD	6	

SEDIMENT SAMPLING LOG SHEET							
STATION IDENTIFICATION SAM	VESSEL: SALLY KAT CAPTAIN: M C						
DATE: 4-1-95	CREW:	EA WE					
SEAS: >6 CHOP , FLOOD FURRINT			NAVIGATIO	•			
TIME: /0 20 COORDINATES: 40° 48′ 36 35′′ COORDINATES: 124° /0′ 57.89′′			DESCRIPTION OF MATERIAL _35.2 DEPTH SOME SILTY MUB IN TOP 1" FINE WET SAND & SHELL HASH				
WATER DEPTH: - 3 9 0 TIDAL STAGE: 3,8			FINE SILTY MUD BALL NEAR -				
DEPTH (MLLW): - 35.2 TARGET SAMPLING DEPTH: -37.0 SAMPLE LENGTH NEEDED: 1.8 PENETRATION/RECOVERY: 5.5			FINE GREY SAND AND SOME FINE SHELL HASH				
CORE LENGTH SAMPLED:	1.8						
SAMPLE ID. #	TYPE	QUANTITY	VOLUME	CONTAINER	ANALYSIS	PRES.	
HUM 95 PSD 0009	DISCHETE	/	250 MQ	HOPE	P50:	Ġ.	
						· ·	
COMMENTS: SOME	FINES IN	CORE HO	WEUER A	PLARS LESS	THAN 20?		

	 						
	SEDIN	MENT SAMPL	ING LOG SI	HEET			
STATION SAM U			VESSEL: SALLY KAY				
			CAPTAIN:	MC			
DATE: 4-1-95	· · · · · · · · · · · · · · · · · · ·		CREW: 💅	A WF	5 J		
WEATHER: PARTALL	www.	NE@7	SAMPLING	EQUIPMENT: _	SMITH MAC		
SEAS: _ < G			NAVIGATI	ON TYPE: _ D	FF GPS		
TIME: 17 20		·	DESC	CRIPTION OF MA	TERIAL	DEPTH	
COORDINATES: ५० भ	B 48,50"		43	SILT IN TOP			
COORDINATES: 1240 10	56,42	· ,	OULR		GMEN	l with	
WATER DEPTH: 38.	3		FINE TO	MED SAND			
TIDAL STAGE: 2.	2				•		
DEPTH (MLLW): 36.	Į .						
TARGET SAMPLING DEPTH	: -37.0						
SAMPLE LENGTH NEEDED:	0.9	:					
PENETRATION/RECOVERY:	0.5					1.	
CORE LENGTH SAMPLED:	GRAB	T		T	25 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3		
SAMPLE ID. #	ТҮРЕ	QUANTITY	VOLUME	CONTAINER	ANALYSIS	PRES.	
HUM 95 PS A 0010	DUCKETE	\ \	250 MQ.	HORE	P5D	Ø	
COMMENTS:							
PSD or	VL4						
				•			
• •							
	•						

SEDIMENT SAMPLING LOG SHEET								
STATION SAM	STATION IDENTIFICATION SAM - 5				VESSEL: SALLY KAY CAPTAIN: MIKE CUMUNGHAM			
7 - 21-	25-		CREW: SE, ADAMS, W. FILLOS, S JOHNSON					
DATE: 3-31-				/	, , , , , , , , , , , , , , , , , , ,			
WEATHER: RAIN,		current		EQUIPMENT: _				
SEAS: 1' CHOP		ON TYPE:`D						
TIME:	1635		 {	RIPTION OF MA		DEPTH		
COORDINATES: 40° 4		:	SOME SILT	y mud on sur	FACL MYBUN			
COORDINATES: 12년 1	ن 37.40		11	DIVAC TOW				
WATER DEPTH: -	34.5		DARK	GREK LOL	٠٠٠ ن			
TIDAL STAGE:	1,9		NO 00					
DEPTH (MLLW): -	37.6							
TARGET SAMPLING DEPTH			•					
SAMPLE LENGTH NEEDED: 4 ् ५								
PENETRATION/RECOVERY:	3,3							
CORE LENGTH SAMPLED:	3,3					11		
SAMPLE ID. #	ТҮРЕ	QUANTITY	VOLUME	CONTAINER	ANALYSIS	PRES.		
HUM 75 PSD 0006	DISCRETE	1.	250 M.C.	HOPE	GRAIN-SIZE	Ø.		
	·							
COMMENTS: MATERIAL	Appears	TO BE <	80% 5AA	one W	SURFACE	SILT		
\$5D	ONLY							
	• •							
						1		
					•			
				•				

	SEDIN	MENT SAMPL	NG LOG SE	HEET			
STATION	/ ^		VESSEL: SAWY KAY				
IDENTIFICATION SAM	6 - H		CAPTAIN: M.C.				
DATE: 4-1-95			CREW: SEA W.F. ST.				
WEATHER: MOSTRY SUNNY WIND NEW 8				EQUIPMENT: _			
SEAS: ~ 6" (FOP, FLOOD CURRENT			NAVIGATIO	ON TYPE:	IFF GPS		
TIME: 112	5, 1202,	DESC	RIPTION OF MA	TERIAL	DEPTH		
COORDINATES: 40°49	02.21"		5 12 TY 1	FINE - MED GA	LAIN SAND -		
COORDINATES: 124° 10	' 45.97"		PARK GRE	t color			
WATER DEPTH: 38.1			NO 000	R			
TIDAL STAGE: 4, 7			MOIST	FINE SAND			
DEPTH (MLLW): 33. (DRY	PINE SAIN			
TARGET SAMPLING DEPTH	NO SAMPLE TAKE						
SAMPLE LENGTH NEEDED: 3. 6			DRY PACKED FINE SAND				
PENETRATION/RECOVERY:	3.9,3,	0,4.8	DRT	THEREDY TIME	3 that in		
CORE LENGTH SAMPLED:	3,6,3,0	3.6					
SAMPLE ID. #	ТҮРЕ	QUANTITY	VOLUME	CONTAINER	ANALYSIS	PRES.	
HUM94 SED 0002	DISCRATE	1	Litia	wmG-	SCO CHEM	B	
HUMAS ARL DOD 2	DISCRETE.	1	500 ml	wm6	ARCHIVE	6	
COMMENTS: OBTAINE	3 core	sample s					
SUBSAMPLED EA	CH CORE	FOR DISCRE	TE (SITE) A	NO COMPOSITE	(AREA SAMG)	INTO	
TEFLOW LINED TRAY							
saved bemaining	NATERIAL	FOR 8	110 ACCUM/A	SSAY COMP	bSITE #1		
			**			4 4	
						1	

KINNETIC LABORATORIES INC. OCEANOGRAPHIC RESEARCH SANTA CRUZ, CA 408-457-3950

SEDIM	ENT SAMPLI	ING LOG SHEET			
STATION IDENTIFICATION SAM 6-B		VESSEL: NINE CUMMING HAM			
DATE: 4-1-95	CREW: S.E. ADAMS, W. FILIDS S. JOHNSON				
WEATHER: MOSTLY SUNNY WIND !	SAMPLING	EQUIPMENT: _	V. BRACORE	· · · · · · · · · · · · · · · · · · ·	
SEAS: 6' CHOP	NAVIGATI(ON TYPE: Dif	f GPS		
TIME: 1255 ,1438	DESC	RIPTION OF MA	TERIAL	DEPTH	
COORDINATES: 40°49' 5474"		LACK SAND			
COORDINATES: 124° 10' 4381"	SILTY M	OF DEPOSITS			
WATER DEPTH: - 38,8	MOIST				
TIDAL STAGE: + 6,3		TO) HZS ODOR			
DEPTH (MLLW): - 32.5					
TARGET SAMPLING DEPTH: -37.0		-37			
SAMPLE LENGTH NEEDED: 4.5		DRY FINE BLACK SAND			
PENETRATION/RECOVERY: 6,구 바, c	\$.4				
CORE LENGTH SAMPLED: ५,5 ५,०	45				
SAMPLE ID. # TYPE	QUANTITY	VOLUME	CONTAINER	ANALYSIS	PRES.
HUM 95 528 000 3 DISCRETE	ı	CITTAL	wM6	SED CHEM	d
HUM95 ARC DOOS DISCRETS	!	500 MP	wm6	ARCHIVE	

COMMENTS:

3 CORES FOR VOLUME
SUBSAMPLED EACH FOR DISCRETES
ADDED MATERIAL TO COMPOSITE #/

	SEDIN	MENT SAMPL	ING LOG SI	HEET				
STATION IDENTIFICATION SA	STATION IDENTIFICATION SAM 6-C				VESSEL: SALLY KAY CAPTAIN: MC			
DATE: 4-1-9	15		CREW: SEA WF ST					
WEATHER: MOSTLY SUNU		EQUIPMENT:						
SEAS: 6 6" cmoi ,		ON TYPE: D						
TIME:		RIPTION OF MA		DEPTH				
	06.40							
COORDINATES: 122° 10'			FINE TO	MED SANC) W/			
WATER DEPTH: 3			SILTY	DEPOSITS FINE	SHELL HASH			
TIDAL STAGE:	MOIST (SUME	PETRITUS						
DEPTH (MLLW): - 39	TO	H ₂ S oper						
TARGET SAMPLING DEPTH	DRY SAND		-37,0					
SAMPLE LENGTH NEEDED:	BELOW SAMPLANG LINE							
PENETRATION/RECOVERY:	5.1 4	1.6 6.1	DRY SANY					
CORE LENGTH SAMPLED:	3.6 3	16 3.6						
SAMPLE ID. #	ТҮРЕ	QUANTITY	VOLUME	CONTAINER	ANALYSIS	PRES.		
HUM95 SEC 0004	DISCRETE	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	SOO ME	WMB	SEO CHEM	-6		
HUM 95 SED 0005	COMPOSITE	1	e	WM6	SEO CHEM	ø .		
HUM 95 BIO 0001	Compesite	2	10 GAL	WM6	BIO ACCHASS	8		
DIOXIN DOOZ	COMPOSITE	1	500 ml	wm G	איאטוס	Ø		
COMMENTS: SUB SAMPLE 3 CORES FOR DISCRETE CHEM + ARCHIVE SUB SAMPLE SAME CORES FOR COMPOSITE CHEM ADD REMAINING MATERIAL TO BIO ACCUMULATION/ASSAT COMPOSITE #/								
HOMOGONIZE MA AND SAM 6-C	TERIAL F.	mpll Fuh	9 cores	FROM SITE	COMPOSITE	sam 6-B,		

KINNETIC LABORATORIES INC. OCEANOGRAPHIC RESEARCH SANTA CRUZ, CA 408-457-3950

	SEDIM	IENT SAMPLI	NG LOG SI	IEET		
STATION SAM	VESSEL: SAWY KAY					
DEMINISTRICK 2 FILE	51111					
DATE: 3-31-95	5		CREW: 55	A WF 5	<u> </u>	
WEATHER: RAIN	WIND SOUT	40 10	SAMPLING	EQUIPMENT: _	VI BRACOPE	·
SEAS: No company	F ESS CV	22 SUT	NAVIGATI	ON TYPE:	ee ges	
TIME:	735	1750	DESC	RIPTION OF MA	TERIAL	DEPTH
COORDINATES: 40°	49 02.0	15 02,20	23	TH TAN MUD	. ~ 1 "	ng i dayar dayar Qaraba
COORDINATES: 1240	10 34,6	37.52			$\mathcal{S}_{i} = \mathcal{S}_{i} = \frac{\mathcal{S}_{i}}{1 + i \mathcal{S}_{i}}$	
WATER DEPTH: - 30	o . B	37,1	FINE WET SAND			
TIDAL STAGE:	W/ SHELL HASH					
DEPTH (MLLW): - 3	5 ,4	35, 8	WOOD FRAGMINTS			
TARGET SAMPLING DEPTH:	-37,0	-37.0	•			
SAMPLE LENGTH NEEDED:	1.6	1.2				
PENETRATION/RECOVERY:		2,4				
CORE LENGTH SAMPLED:	<u>Ø</u>	1.2			e in programme e in programme	
SAMPLE ID. #	TYPE	QUANTITY	VOLUME	CONTAINER	ANALYSIS	PRES.
+1069 D29 2PMUH	DISCRETE	1	250 Ml	HOPE	P50	Ø
COMMENTS: 15T COR	E- LOST	LORE TI) _ REA50	N NUKNOWN		

PSD ONLY

			1				
	SEDIN	MENT SAMPL	ING LOG S	HEET			
STATION IDENTIFICATION		19	VESSEL: SALLY KAY				
IDENTIFICATION E	KI		CAPTAIN: M C				
DATE: 4-3-9	5	**************************************	CREW: _5	EA WF	57	·	
WEATHER: PAGE AUT	SAMPLING	GEQUIPMENT: _	VIBRACORS	,			
SEAS: CALM			NAVIGATI	ON TYPE: D	FF GPS		
TIME: 16.3	39	4	DESC	CRIPTION OF MA	TERIAL	DEPTH	
COORDINATES: 46°47'	. V. C 1 #	IN GREY					
COORDINATES: 124° 11'	13.	w, TVI					
WATER DEPTH: 39.	it .	il HASH		en kritige in de Grand am de			
TIDAL STAGE: 4 5.6							
DEPTH (MLLW): - 33, Y				en de la companya de		ra e dia	
TARGET SAMPLING DEPTH: -37.0			Language Services				
SAMPLE LENGTH NEEDED: 3.6							
PENETRATION/RECOVERY:	3,5 ′						
CORE LENGTH SAMPLED:	3,5					100 mg/mm / 100 mg	
SAMPLE ID. #	ТҮРЕ	QUANTITY	VOLUME	CONTAINER	ANALYSIS	PRES.	
HUM 95 PSD 6021	DISCRETE	1 .	250 ml	HOPE	PSD	<i>O O</i>	
COMMENTS:							
					at .		
PSD	ONLY			a de la companya de l			
•							
						Ì	

SEDIMENT SAMPLING LOG SHEET								
STATION			VESSEL: SAUY KAY					
IDENTIFICATION EK	2		CAPTAIN: MC					
DATE: 4-3-9	5			SEA W	F ST	de la company		
WEATHER: _ AND AGT		EQUIPMENT: _		W asse				
SEAS: CALA	NAVIGATI	ON TYPE: 🕎	100 GP	s				
TIME: 17 24	1732	, 1750, 险机 1824	DESC	RIPTION OF MA	TERIAL	DEPTH		
COORDINATES: 中面 13.			NANT (BOO	שר דעונ מש	~ Z4 ·			
COORDINATES: 124" 10" 4566" 4567"			LIGHT BROWN SILTY TOP - 25					
WATER DEPTH: 30.5 29.0		DARN GIRLY SOFT MVD 26-						
TIDAL STAGE: 5.0 4.8		DARK BROY DRY MUD =7						
DEPTH (MLLW): 25.5 24.2			DARK BRE SAND 28					
TARGET SAMPLING DEPTH:	-28.0			SAMPLIAIC		Market Apply		
SAMPLE LENGTH NEEDED:	2.5 3,	8		CHAR				
PENETRATION/RECOVERY:	0.9 5.	2, 3,6,2,8,3,7				The state of the s		
CORE LENGTH SAMPLED:	0 3.9	8,36,28, 37						
SAMPLE ID. #	ТҮРЕ	QUANTITY	VOLUME	CONTAINER	ANALYSIS	PRES.		
HUM95 550 0016								
HUM95 ARE 0013								
·								
COMMENTS: FIRST CO	2RI - 6RA	אווד פאנץ	- TOO LIT	ILL SAMPLE		i i		
ZNO CORE - VIBRATE -					÷			
		TOR CO						
4 cures AT This	SITE							
		<i>;</i>						

	SEDIN	MENT SAMPL	ING LOG SE	HEET			
	< 3		VESSEL: SAILY KAM CAPTAIN: MC				
DATE: 4-4-	15			FA WF	55		
WEATHER: FAIR	wwo 5 6	0) 3	SAMPLING EQUIPMENT: VBM-CORE				
SEAS: LAVA			NAVIGATI	ON TYPE: D	iff GPS		
TIME: 0942			RIPTION OF MA		DEPTH		
COORDINATES: 40°48'	2" BLACK 5	MUDLIA MUD TET	25,0				
COORDINATES: 127° 10	JUEN						
WATER DEPTH: 25.4	MED 6241	N SAND WI HASH	TH 26 -				
TIDAL STAGE: 0, 4	12						
DEPTH (MLLW): 25.0			DARK GR	267 COLO/\	77		
TARGET SAMPLING DEPTH	24.	UG LIMIT -					
SAMPLE LENGTH NEEDED:	3.0	**************************************	SAMICOUS COMMENTS				
PENETRATION/RECOVERY:							
CORE LENGTH SAMPLED:	3.0					1 J. T. 1 J. J.	
SAMPLE ID. #	ТҮРЕ	QUANTITY	VOLUME	CONTAINER	ANALYSIS	PRES.	
HUM95 PSD 0022	DISCRATE	1	250 ml	HOPE	P50	gd .	
•							
COMMENTS:		•				e f	
	N/						
f50 ONLY	•						
					•		
]	

	SEDIN	IENT SAMPL	ING LOG SH	LLLI				
STATION E					VESSEL: Flu SALLY KAT CAPTAIN: MIKE CUNNINGHAM			
DATE: 4-4-	1 5		CREW: Swi	TE. ADAMS, 11	VACTFILIS, STE	ICER JOHNSON		
WEATHER: FAIR		EQUIPMENT: _	, ,					
SEAS: CALM	SLIMAT	SBB		ON TYPE: Dif				
TIME: 0814,0	1922, 0838	0850	DESC	RIPTION OF MA	TERIAL	DEPTH		
COORDINATES: पठे पठे '	19.72"		moisT	MUDLIN E	25.5 -			
COORDINATES: 124° 10'	21.19"		/ CONSOLID	ATED SILTY M				
WATER DEPTH: - 26.6	/s /	·	DARK GA	rey -> BLACK				
TIDAL STAGE: 4 1,	Π230							
DEPTH (MLLW): - 25.5	5				27 —			
TARGET SAMPLING DEPTH:	-28.0		DRY					
SAMPLE LENGTH NEEDED:	2.5 '		SAMPLING LIMIT - 28					
PENETRATION/RECOVERY:	0.5, 3,6	, 3.0 , 2.4	WARD G3M	PACKED BLACK SE		- 2		
				K MOOCH (1		
CORE LENGTH SAMPLED:	8 12.51	12,5, 2,4						
CORE LENGTH SAMPLED: SAMPLE ID. #	TYPE	QUANTITY	VOLUME	CONTAINER	ANALYSIS	PRES.		
			VOLUME VITER	CONTAINER WM G	ANALYSIS CHEM	ø ø		
SAMPLE ID. #	ТҮРЕ							
SAMPLE ID. # HVM95 SED 0017	TYPE DIXECTE		RITER	WM G	CHEM	ø ø		
SAMPLE ID. # HVM95 SED 0017	TYPE DIXECTE		RITER	WM G	CHEM	ø ø		

	SEDIN	IENT SAMPL	ING LOG SI	HEET		
STATION			VESSEL: SALLY KAT			
IDENTIFICATION EK	(4 A		CAPTAIN: MC			
DATE: 4 - 4	-95		CREW:	FA W	= 55	····
WEATHER: FAIR	WIND 5	@ 3	SAMPLING	GEQUIPMENT: _	VIBRACORS	
SEAS: CALM	NAVIGATI	ON TYPE:	ef GPS			
TIME: 1022	DESC	CRIPTION OF MA	TERIAL	DEPTH		
COORDINATES: 40 48 1		MUDLING -	25,7 '			
COORDINATES: 124 10 2	3.20"		SOFT TO F	RM TY BLACK MU	26 -	
WATER DEPTH: - 26.	1		بر کی جست			
TIDAL STAGE: 6			<u> </u>			
DEPTH (MLLW): - 25.	BOTTOM 3" SAND SAND IT 21					
TARGET SAMPLING DEPTH: - 28.0 SAMPLE LENGTH NEEDED: 2.3			MED	CRAIN SAND +	HASH	
SAMPLE LENGTH NEEDED:		recovery by	MIT 29 -			
PENETRATION/RECOVERY:	3.5,50	0,0.8,3.6				
CORE LENGTH SAMPLED:	2.3 2.	3,08,23		T	 	
SAMPLE ID. #	TYPE	QUANTITY	VOLUME 500	CONTAINER	ANALYSIS ARCHIUE	PRES.
HUM95 320 00 18	DISCRATE	/	RITIR	WMG	CHEM	· · · (f
-	COMPOSITE		10 GAL	UNED COOLERS		0
Humas sep 00 19	COMPOSITE		21TER	WM6	CHEM	1
DIOXAN 005	Compos its	1	500 M L	WM 6	DIOXIN	ø
COMMENTS: ADDITION		-	_	COMPOSITE		
SIR IS BETWEEN	EK 4	AND EK	2.		•	
SUB SAMPLS	- 4 co	PRES FOR	DISCRE	TES S		
HOMOBENIZE.	MATERIAL	FROM E	K-2, E	KY, EK	1 A FOR COI	NAS)TE
(COMP # Z)			,	*	•	

KINNETIC LABORATORIES INC. OCEANOGRAPHIC RESEARCH SANTA CRUZ, CA 408-457-3950

SEDIMENT SAMPLING LOG SHEET							
STATION E	CAPTAIN: M. Cumingran						
DATE: 4-3-95	CREW: 51	ZA WF	35				
WEATHER: ONERCAST WIND NU 33			·	EQUIPMENT:			
SEAS: CALM	NAVIGATI(ON TYPE:	FF 645				
TIME: 141			4)	RIPTION OF MA	-	DEPTH	
COORDINATES: 40248 21.09"			BEOWN SI	("SK) 90T TI	20		
	0 14.72		DARK GIES	SOFT MUD	- 22 -		
WATER DEPTH: 25.			21				
TIDAL STAGE: + 54			LIGHT GREY MUD				
DEPTH (MLLW): - 20	,0		22				
TARGET SAMPLING DEPTH:	-28.0		DARK GREY-DRY MVD - 28 -				
SAMPLE LENGTH NEEDED:	8,0		NO SAMPLINE				
PENETRATION/RECOVERY:	10,5/9.8						
CORE LENGTH SAMPLED:	8.0						
SAMPLE ID. #	TYPE	QUANTITY	VOLUME	CONTAINER	ANALYSIS	PRES.	
HUM95 ARE OOIS	DISCRETE		500 ML	一切所有	ARCHIVE	~ O	
HVM95 SED 0015	Composite	1	line	WMG.	cm em	0	
HUMAS BIO 0003	COMPOSITE	م	10 GAL	LINED CONIA	BIO ALL/455	Ø.	
DIOXIN OOY	COMPOSITE	J	500 ML	wm f	DIOXIN	6	
COMMENTS: SUBSAMPLE CORE FOR DISCRETES							
HOMOGENIZE MATERIAL FROM EKS, EKG, EKT, EKB FOR COMPOSITES							

COMP #3

SAMPLE

	SEDI	MENT SAMPL	ING LOG SI	HEET	 		
STATION IDENTIFICATION E			VESSEL: SALLY KAY CAPTAIN: MC				
DATE: 4-3-95			CREW: _55	A WF	35		
WEATHER: PARTIE WIND W (3) 3			SAMPLING	EQUIPMENT: _	VIBRACORE		
SEAS: CACA			NAVIGATI	ON TYPE: 🔻 🔈	FF GPS		
TIME:	255		DESC	CRIPTION OF MA		DEPTH	
COORDINATES: 40 48	22,46"		BROWN 5	MUDLINE SILTY TO!	78,7		
COORDINATES: 124" 10"	13, 89 "				- 20 -	100	
WATER DEPTH: 22 8			6254 30F	et mud			
TIDAL STAGE: 3. 8			<u>]</u>		22 -	-	
DEPTH (MLLW): - 18.2			GREY FIRA	A MUP	- 24 -	-	
TARGET SAMPLING DEPTH			- 26 -				
SAMPLE LENGTH NEEDED: 9,8			LT. GREY MUD/ELAY - 29				
PENETRATION/RECOVERY:	11.0/10.	9		MANYSTAL	- 23 -		
CORE LENGTH SAMPLED:	9.8					1.1	
SAMPLE ID. #	ТҮРЕ	QUANTITY	VOLUME	CONTAINER	ANALYSIS	PRES.	
HUM 95 520 00 13	DISCRETE)	P.TER	WM &	CHEM	d	
HUM 95 ARC 0011	DISCRETE.	1	500 ML	wma	ARCHIVE	0	
		·					
COMMENTS: SUBSAN	wece core	FOR D	13 CRETES				
		- , 3 , 6, 1-					
APD TO C	HOM + B	O COMPOS	ITES (con	mp#3)			
						4	

	SEDIA	MENT SAMPL	ING LOG SE				
STATION	SEDII.	ALINA SPAINAEA	VESSEL: SALLY KAY				
HARNTIEIC ATION	<-7		CAPTAIN: MC				
DATE: 4-3-95	-		-	FA WF	57		
WEATHER: PARTALL. CLO		N 🕾 3	-	EQUIPMENT: _			
SEAS:CALM	<i>'</i>		NAVIGATIO	ON TYPE: _ D is	≥ GPS		
TIME:	TIME: 1155			RIPTION OF MA		DEPTH	
COORDINATES: 40 48 21,96			DARK GREY	SILTY SOFT	MUD 15,4-		
COORDINATES: 124 0 10 10, 83"							
WATER DEPTH: = 18.	. \ '		DARK GRE	4 FIRM M	un 18-		
TIDAL STAGE: + 2	· **			1 6 50 6	20		
DEPTH (MLLW): - 15	ે, પ '			to sook	25 -	-	
TARGET SAMPLING DEPTH:	-28 [']		MED GREY DRY MUD				
SAMPLE LENGTH NEEDED:	12.6	10' MAX					
PENETRATION/RECOVERY:	11.0 / 8.	3				region of an	
CORE LENGTH SAMPLED:	8.3			·		and the second s	
SAMPLE ID. #	TYPE	QUANTITY	VOLUME	CONTAINER	ANALYSIS	PRES.	
HUM95 550 0012	DISCRETE	1	E.BA	WM6	CHEM	6	
MUM95 ARC 0010	DISCRETE	, ,	500 MR	WMG	ARCHIVE		
COMMENTS: SUE SA	wrece FOR	DISCRETE S	•				
AOD TO CA	rend a G	lia compos	ITES (com	p#3)			

	SEDI	MENT SAMPL	ING LOG S	HEET				
STATION IDENTIFICATION E	K - 8		VESSEL: _ CAPTAIN:	SALLY MC	KAY			
DATE: 4-3-9	5		CREW: _5	EA WF	55			
WEATHER: <u>OLRIAST</u>	SAMPLING	G EQUIPMENT: _	V. BRA CORE	· · · · · · · · · · · · · · · · · · ·				
SEAS: CALM			NAVIGATI	NAVIGATION TYPE:				
TIME:	55		DESC	CRIPTION OF MA		DEPTH		
COORDINATES: 40° 4		hight Bi	ROWN SILT	13,0-				
COORDINATES: 124° 10 06, 31"			n -	irey SILTY	MUD (SOFT)			
WATER DEPTH: 14,5								
TIDAL STAGE: +	DARK GREY FIRM MUD							
DEPTH (MLLW):	3.0 1		13					
TARGET SAMPLING DEPTH	: - ১৪							
SAMPLE LENGTH NEEDED:	15.0 /1	D MAX FER COE.			- 20			
PENETRATION/RECOVERY:	11.0/9.	<u>.</u>		e de la companya de l	7.22	To any or the second se		
CORE LENGTH SAMPLED:	٩.٥			•				
SAMPLE ID. #	TYPE	QUANTITY	VOLUME	CONTAINER	ANALYSIS	PRES.		
HUM453E0.0011	DISCRETE		LITER	wm6	CHEM	, 1d 1s		
HUM 95 ARC 0009	DISCRETZ	,	500 MQ	wm6	ARCHIVE	ø		
		DISCRETES		N.		. Piw r		
BESIN O	OM POSITES	FOR CHE	m and	310 Comp	#3)			
						l l		

	SEDIMENT SAMPLING LOG SHEET									
STATION IDENTIFICATION			VESSEL: SALLY RAY							
IDENTIFICATION FL.	-		CAPTAIN: M. C.							
DATE: 4-2-95	5		CREW: <u>≤€</u>	A WF	55					
WEATHER: CLEAR WIND NO 7				EQUIPMENT: _						
SEAS: < 6 ' emach			NAVIGATI	ON TYPE: 🔃 🔀	iff GPS					
TIME: 15	17,1542	, 1600	4)	RIPTION OF MA		DEPTH				
COORDINATES: 40°43	19.87"		-11:	TY BROWN T	06 - 52.5-					
COORDINATES: 124 13	26,07"		. o√e		-2.6.0	i i i i i i i i i i i i i i i i i i i				
WATER DEPTH: - 30	ユ ′		H	BACK SILTY		**************************************				
TIDAL STAGE: + 5.5			-/5	STR ITUS	2.7					
DEPTH (MLLW): - 25	.2 '	Total Control of the	H25 :	soon	28 o -					
TARGET SAMPLING DEPTH:	-28.0				29.9					
SAMPLE LENGTH NEEDED:	र . 8									
PENETRATION/RECOVERY:	2.3,2	6,3.1								
CORE LENGTH SAMPLED:	2,8,2	6,2.8								
SAMPLE ID. #	ТҮРЕ	QUANTITY	VOLUME	CONTAINER	ANALYSIS	PRES.				
HUM 95 3E0 0007	DISCRATE	/	·L	wma	CHEM	<i>S</i> -				
HUM 95 ARC 0006	DISCHETS	()	500MR	WMG	ARCHIVE	Ø				
COMMENTS: 3 co25	s FOR V	own E								
SUB SAMPLE SAL	H CORE	FOR DISC	RETES							
BEGAN COMP	OS ITE	· 4	·							
				•						

	SEDIN	MENT SAMPL	ING LOG SI	HEET			
STATION IDENTIFICATION FL	Z		VESSEL: SAUY KAY CAPTAIN: M.C.				
DATE: 4-2-0	5		CREW: _5.	EA. W.E.	55		
WEATHER: CLEAR	MINIO	NO 7	SAMPLING	EQUIPMENT: _	VIBRALLES	<u> </u>	
SEAS: <a>			NAVIGATI	ON TYPE:	DIFF GPS		
TIME: 1622, 1647, 1700			DESC	CRIPTION OF MA		DEPTH	
COORDINATES: 40 43 22 15"			· · · · · · · · · · · · · · · · · · ·		INE - 25.5 -		
COORDINATES: 13 4 1	3' 24,28"		14	FT 51LTY TOP			
WATER DEPTH: 30.	3	÷			.		
TIDAL STAGE: + 4.	8		BLACK SO	T SILTY MUL		<	
DEPTH (MLLW): - 25.	5	·					
TARGET SAMPLING DEPTH	: -2 है.0		-29.0				
SAMPLE LENGTH NEEDED:	2.5		N	o SAMPE E			
PENETRATION/RECOVERY:							
CORE LENGTH SAMPLED:	2.5 - 2	2,5' 2,5					
SAMPLE ID. #	ТҮРЕ	QUANTITY	VOLUME	CONTAINER	ANALYSIS	PRES.	
HUM 95 520. 0008	DISCRETE		LITER	wmG	CHEM	Ø	
HUM95 ARC 0007	DISCRETE	1	500ml	WMG	ARCHIUS	, add	
		·					
	9, %						
COMMENTS: SUB SAM	npes From	FULL LENGTH	POF ALL	3 CORE	FUR		
DISCRETES							
				.			
ADD REMAINING	MATCRIA	- To Car	MPOSITE 4	4			
						!	

SEDIMENT SAMPLING LOG SHEET								
STATION IDENTIFICATION F L	-3		VESSEL: SALLY KAT					
DATE: 4 - 2 - 4	15		CREW: _5	EA, WF	SJ			
WEATHER: CLEAR WIND N @ 5			SAMPLING	EQUIPMENT:	V.BRACORE			
SEAS:				ON TYPE:D#				
TIME: 17	30 , 1800	, 1815, 1830		RIPTION OF MA	TERIAL	DEPTH		
COORDINATES: 40° 43		, , , , , , , , , , , , , , , , , , ,	BECOUN SO	ופד אונוץ דפו	p -24.2 -	7722		
COORDINATES: /240/3	21.96"			OVER				
WATER DEPTH: ~ 27,	9		DARK GA	EN TO BLAC	×			
TIDAL STAGE: 3.	7		SOFT	SILTY MUD	_			
DEPTH (MLLW): - 2 나	/			H25 DOOR				
TARGET SAMPLING DEPTH					~			
SAMPLE LENGTH NEEDED:	3.8				28.0			
PENETRATION/RECOVERY:	2,5,5	8,40,44	BLACK MUD W/DETAITUS					
CORE LENGTH SAMPLED:	2,5,3	8,3,8, 3.8	BLACK MUD W/DETAITUS					
SAMPLE ID. #	ТҮРЕ	QUANTITY	VOLUME	CONTAINER	ANALYSIS	PRES.		
HUM 95 ARC 0008 HUM 95 SED 0009	DISCRITE		500 ml	WMG	CHEM	Ø		
HVM 95 550 0010	COMPOSITE	/	12	WM6	CHEM	Ø.		
HUM 95 B10 0004	COMPOSITE	2	10 GAE.	LINED. COOLERS	BIO AGLASS	Ø		
DIOXIN 003	COMPOSITE	/	500 MR	WMG	DIOXIN	0		
		ME + MID		A 41/2	FIRST COAL	•		
- 42ED WE	D VIBRATE	(40%) + SU	IN LOWER	146 ON 27	งช			
4 CORES AT P	115 5178			asts came	75			
SUBSAMPLED PERTINE	NT LINGTH	of 54ch	FUR 1113C	KILL CAPPER				
ADDED REMAINER	TO COMP	05/TE #4 FOR	CHEM	+ 310				
Annea								
						1		

	SEDIM	MENT SAMPL	ING LOG SI	HEET		\
STATION IDENTIFICATION FL 4 DATE: 4-2-95 WEATHER: CLEAR			VESSEL: SALLY KAY CAPTAIN: M.C. CREW: SEA INF SJ SAMPLING EQUIPMENT: SMITH MAC			
SEAS: CALM			NAVIGATI	ON TYPE: DI	FF GPS	
COORDINATES: 40 43 COORDINATES: 127 13 WATER DEPTH: — 33	TES: 121 13 12.50 TH: - 33.3 E: 5.0 W): - 20.3 MPLING DEPTH: -29.0 NGTH NEEDED: Ø DN/RECOVERY: 0.8 '			DESCRIPTION OF MATERIAL SOFT SILTY MUD TAN COLOR NO ODOR		
SAMPLE ID. #	ТҮРЕ	QUANTITY	VOLUME	CONTAINER	ANALYSIS	PRES.
HUM955800006	D1561261E		L	wm 6	CHEM	ø
HUM95 ARC 0005	DISCRETE		500	una	ARCHIVE	Ø .
COMMENTS: SITE B Z GRABS BEGIN FELD	- SUBSA	mple F	or Disc	RETES + C	HEN COMPO	s i TE

	SEDIN	MENT SAMPL	ING LOG SE	HEET			
STATION FL	-5		VESSEL: SALLY KAY CAPTAIN: M.C.				
DATE: 4-7	-95		CREW: SEA WE ST				
WEATHER: SUNNY	SAMPLING	EQUIPMENT:	SMITH MAC C	MACS .			
SEAS: CALM	NAVIGATI(ON TYPE:O	FF 6PS				
TIME: 13		RIPTION OF MA	and the second s	DEPTH 3770			
COORDINATES: 40°	· · · · · · · · · · · · · · · · · · ·						
COORDINATES: 1240 1 WATER DEPTH: 32.0					er se		
WATER DEPTH: 32 of TIDAL STAGE: 4				SAND	The second secon		
		***************************************		m så urmanni	-27. <u>9</u>		
DEPTH (MLLW): - 27,					-28.0		
TARGET SAMPLING DEPTH:							
SAMPLE LENGTH NEEDED:							
PENETRATION/RECOVERY: CORE LENGTH SAMPLED:	GRAG						
					1371777070		
SAMPLE ID. #	TYPE	QUANTITY	VOLUME	CONTAINER	ANALYSIS	PRES.	
HUM 95 PSD 0020	DISCRETE_	\	250 MR	HOPE	GATIN SIZE.	Ø	
	,						
COMMENTS: COULD	NOT F	WHE CION	AL INO	cated on co	70 1160 Y 31878	- Y	
SMITH MAC	GRAB						
SMALL SILTY	uoo la ye	R NEAR	surfac				
PSO ONLY							

SEDIMENT SAMPLING LOG SHEET									
STATION IDENTIFICATION			VESSEL: _	VESSEL: SALLY KAK					
'	L-6		CAPTAIN:	MC					
DATE:	15 4	1-4-95	CREW: 5	EA WF	SUT I				
WEATHER: CUAR PARTALL CALM			SAMPLING	EQUIPMENT: _	MAC				
SEAS: CACM			NAVIGATI	ON TYPE:					
TIME: 1330 / 1220			DESC	RIPTION OF MA	ATERIAL	DEPTH			
COORDINATES: 40 44 3	2.16"	12.16"	GRAG	८०२६					
COORDINATES: (24 13'	į	5.01	MED SANG) Men	SAND				
WATER DEPTH: 28.	2 2	26.2	WED SHAR	WIT	y e				
TIDAL STAGE: 4.7		2,0	SHELL HAS	H SHELL	HAST				
DEPTH (MLLW): 23.		4, 2							
TARGET SAMPLING DEPTH		28.0							
SAMPLE LENGTH NEEDED:	4,5	3.8							
PENETRATION/RECOVERY:		4.0							
CORE LENGTH SAMPLED:	GAAB	3,&	-						
SAMPLE ID. #	ТҮРЕ	QUANTITY	VOLUME	CONTAINER	ANALYSIS	PRES.			
HUM95 PSD OO19	DIERETE		250 ml	HOPE	PSO	ممين			
HVM95 ASD 0023	. v & .	t.e.,	i t	rl	λ .	1 4			
y									
Maria de la Maria de la Caracteria de la									
	COMMENTS: PSD OF GRAB FOR NOW (HUM95 PSD DOIS) WILL RETVAN TO VIBRACORE								
The second secon	gan (gantaran - 1990) da digining sal distribution da distribution de la constitución de la constitución de la	A CONTRACTOR OF THE PROPERTY O		The same of the sa		*			
4-4-95		A. r & A. A.E.	Λ						
VIBRACOF	<u>ر</u> و	ALL SAN	√ ⊋						
	DSD	ONLY							
	1	·							
						1			

			<u> </u>				
	SEDIM	IENT SAMPLI	NG LOG SH	EET		<u> </u>	
STATION			VESSEL: SALLY KAY				
IDENTIFICATION F	L 7		CAPTAIN: _	MC			
DATE: 4-2-95	,		CREW:5	EA WE	SJ		
WEATHER: SUNNY			SAMPLING	EQUIPMENT:	SMITH MAC G	RAG	
SEAS: " / ENTERANCE SINCE			NAVIGATIO	ON TYPE: O : 6	r GPS		
TIME: \3		DESC	RIPTION OF MA	TERIAL	DEPTH		
COORDINATES: 40 44	53.05	,		L CLUMPS OF	POT MO NIM		
COORDINATES: 124° B' 21.66"			OVER				
WATER DEPTH: 36			MEDIUM	GRAIN SAN	A .		
TIDAL STAGE: +					•		
DEPTH (MLLW): - 31							
TARGET SAMPLING DEPTH:							
SAMPLE LENGTH NEEDED:							
PENETRATION/RECOVERY:							
CORE LENGTH SAMPLED:	BASS	·					
SAMPLE ID. #	ТҮРЕ	QUANTITY	VOLUME	CONTAINER	ANALYSIS	PRES.	
Huma 95 PSD 0018	DISLECTE	(250 ml	HOPE	GRAIN SIZE	Ø	
COMMENTS:							
COMMENTS.							
PSD ONLY		•		•			

		SEDIN	MENT SAMPLI	NG LOG SE	IEET			
STATION IDENTIFICATION	EN	1 7		VESSEL: F/V SAUY KAY CAPTAIN: MC				
DATE: 3	-30 -	95		CREW: SEA WF SJ				
WEATHER: <u>cue</u>	AR			SAMPLING EQUIPMENT: SMITH MAC GRAB				
SEAS:	^			NAVIGATION TYPE: DIFF GPS				
TIME:	17.0	5		DESC	DEPTH			
COORDINATES:	40 4	5 19.75			SAND			
COORDINATES:	124 1	3 55,63						
WATER DEPTH: אָרָ, ו					SHEW HA	317		
TIDAL STAGE:					e e e e e e e e e e e e e e e e e e e			
DEPTH (MLLW):							y y en	
TARGET SAMPLI	TARGET SAMPLING DEPTH: 47.0							
SAMPLE LENGTH	NEEDED:	0.9	·					
PENETRATION/RI	ECOVERY:	0,8					V 1	
CORE LENGTH SA	AMPLED:	GRAB						
SAMPLE ID. #		ТҮРЕ	QUANTITY	VOLUME	CONTAINER	ANALYSIS	PRES.	
HUM 95 PSD	1000	DISCRETE	<u> </u>	250	HOPE	PS-D	<u>8</u>	
COMMENTS:	950	oney						
	(30							
,								

KINNETIC LABORATORIES INC. OCEANOGRAPHIC RESEARCH SANTA CRUZ, CA 408-457-3950

	SEDIN	MENT SAMPLI	NG LOG SE	IEET			
STATION IDENTIFICATION EN	VESSEL: SALLY KAY CAPTAIN: M. CUMMINICHAN						
DATE: 3-30-9	.5		CREW: SE ADAMS, FILIDS, JOHNSON				
WEATHER: CLAR	WIND		SAMPLING	EQUIPMENT:	SMTH MAC	GRAB	
SEAS: 40ω 5ωειε	, SWIFT	CUERSAIF	NAVIGATI(ON TYPE:	FF 6PS		
TIME: 143	-	17 14	DESC	RIPTION OF MA	TERIAL	DEPTH	
COORDINATES: 40 45)	50.82"					
COORDINATES: (24)4	1	24.70"	FINE - MED	SAND + SHE	LI HASLA		
WATER DEPTH:	· į	31.5					
TIDAL STAGE: 3.	4 !	0,9					
DEPTH (MLLW):	*> #7*41.	38.6					
TARGET SAMPLING DEPTH:	GRAB	GRAB					
SAMPLE LENGTH NEEDED:	V. 70 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0				•		
PENETRATION/RECOVERY:	Ø	0.8					
CORE LENGTH SAMPLED:	NONE	GLAB				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
SAMPLE ID. #	ТҮРЕ	QUANTITY	VOLUME	CONTAINER	ANALYSIS	PRES.	
HUM95 PSD 0005	DISCRETE.		250 MG	H0 € E	PSD	Ø	
COMMENTS: SWIFT	EBB cur	IREALT - NO S	AMPLE - DIS	FFICULTY RET	eleviale GRA	8	
- WILL RETURN							
PENETRATION/RECOVERY: CORE LENGTH SAMPLED: SAMPLE ID. # HUM 95 PSD 0005 COMMENTS: SWIFT	NOWE TYPE DISCRETE.	QUANTITY , CENT - NO S	250 MG AMPLE - DI	но?Е	ps.D.	&	

RETURNED - PSO ONLY

HUMBOLDT SEDIMENT SAMPLING SAN FRANCISCO CORPS OF ENGINEERS MAINTENANCE DREDGING FY '95

KINNETIC LABORATORIES INC. OCEANOGRAPHIC RESEARCH SANTA CRUZ, CA 408-457-3950

	SEDIMENT SAMPLING LOG SHEET						
STATION IDENTIFICATION B DATE: 3-30-9 WEATHER: CLARE	VESSEL: F/V SALLY KAY CAPTAIN: MIKE CUNNING HAM CREW: SE ADAMS, W. FILIOS, S. TOHAUSUN SAMPLING EQUIPMENT: SMITH MAC CIRAB						
SEAS: < 1 WAVE O	WIND LIGH		NAVIGATION TYPE: DIFF 695				
TIME: 1402 COORDINATES: 40°46'07.59" COORDINATES: 24°14'56.83" WATER DEPTH: 50 7 TIDAL STAGE: + 3.9 DEPTH (MLLW): TARGET SAMPLING DEPTH: GRAGS SAMPLE LENGTH NEEDED: PENETRATION/RECOVERY: 0.5'			DESCRIPTION OF MATERIAL MED FINE SAND GREY COLOR NO ODOR			DEPTH	
CORE LENGTH SAMPLED: SAMPLE ID. #	TYPE	QUANTITY	VOLUME	CONTAINER	ANALYSIS	PRES.	
HUM95 PER 0001	T) I SCRETE		250ml	норе	PSD	6	
COMMENTS:	ONLY						

HUMBOLDT SEDIMENT SAMPLING SAN FRANCISCO CORPS OF ENGINEERS MAINTENANCE DREDGING FY '95

KINNETIC LABORATORIES INC. OCEANOGRAPHIC RESEARCH SANTA CRUZ, CA 408-457-3950

ZOMPOSITE

(~ Z.5 GALLOUS) TO BID

COMPOSITE RF

SEDIMENT SAMPLING LOG SHEET						
STATION RF			VESSEL: F/U SALLY KAY CAPTAIN: MIKE CONNINGNAM			
DATE: 3-30-95 WEATHER: CLEAR, WIND LIGHT			CREW: SE Agams, W. FILLOS S. JOHNSON SAMPLING EQUIPMENT: SMIM MAL GRAB NAVIGATION TYPE: DIFF. GPS			
SEAS: < WAVES	00 6	ع س ور ر	NAVIGATI	JN TYPE:	IFF. GTS	
TIME: 1118 - 1300			DESC	RIPTION OF MA	TERIAL	DEPTH
COORDINATES: 40°	49 40,8	ع ' '				
			1)	ILTY MUD W		
			A LITTLE	- VERLY PINE	CIMAZ	
	FATHOM	<u> </u>	TAN TO DLIVE GREY COLOR			
TIDAL STAGE: 5.6	FLET					
DEPTH (MLLW):	.•		NO 000 P			
TARGET SAMPLING DEPTH:						
SAMPLE LENGTH NEEDED:						
PENETRATION/RECOVERY:						
CORE LENGTH SAMPLED:	TOP 10" sue	FACL GAAS		. *		
SAMPLE ID. #	ТҮРЕ	QUANTITY	VOLUME	CONTAINER	ANALYSIS	PRES.
HUM 95 \$50 0001	COMPOSITE		10	WMG	CHEMISTRY	a 31
HUM 95 ARC 0001		-	12	WMG	archive	<u> </u>
HUM 95 BIO 0009		2	10 GAL	PLASTIC BAGS IN COOKSE	BIO ALL/ASS	g ⁱ
DIDXIN 0001	A	l	12	WMG	NIXON	Ľ
COMMENTS: 8 TOTAL GRASS						

SPOONED A SUB- SAMPLE OF EACH GRAS FOR CHEMISTRY

REMAINDER OF FACH

ADDEA

CAAB

Appendix C

Sediment Chemistry and Physical Parameters

•

May 11, 1995

ToxScan Number: T-12046

ToxScan Bioassay Division 42 Hangar Way Watsonville, CA 95076

Attn: Ray Markel

PROJECT NAME:

San Francisco Army Corps of Engineers; Humboldt COE

DATE SAMPLED:

March 30 - April 3, 1995

DATE RECEIVED:

April 6, 1995

MATRIX:

Sediment

Please find the enclosed test results for the parameters requested for analysis. Samples were analyzed within holding time using the following methods:

Percent Solids by EPA 160.3 Total Volatile Solids by EPA 160.4 Arsenic by EPA/SW-846 7060 Chromium by EPA/SW-846 7190 Mercury by EPA/SW-846 7471 Nickel by EPA/SW-846 7520 Selenium by EPA/SW-846 7741 Silver by EPA/SW-846 7761 All other metals by EPA/SW-846 6020

Total and Dissolved Sulfides by EPA 9030

Total Oil and Grease by SM5520C

Total Petroleum Hydrocarbons by SM5520F

Speciated Butyltins by Gas Chromatograph with Flame Photometric Detector

Total Organic Carbon by Gaudette, et al.¹

Particle Size by Plumb²

Pesticides/PCBs by EPA 8080

Semivolatiles by modified EPA 8270

Samples were received intact and were handled with the proper chain-of-custody procedures. Appropriate QA/QC guidelines were employed during the analyses on a minimum of a 5% basis. QC results were within limits and are reported with or following the data for each analysis.

¹ Henri E. Gaudette, Wilson R. Flight, Lois Toner and David W. Folger; Determination of Organic Carbon in Recent Sediments in Journal of Sedimentary Petrology, Vol. 44, No. 1, p. 249-253; 1974.

² Russell H. Plumb, Jr.: Procedures for Handling and Chemical Analysis of Sediment and Water Samples, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

ToxScan Number: T-12046

Semivolatile Analysis:

Several samples in this set were overdried during extraction. As a consequence the surrogate recoveries for nitrobenzene-d5 were below QC limits. The affected samples were reextracted and reanalyzed. However, the second extraction took place between 9 to 11 days beyond the 14 day holding time.

Both sets of data are reported here. The data from the second extraction are labelled as such. The analytes lost during the first extraction were primarily naphthalene and 2-methylnaphthalene. The results for the other analytes were comparable in the two analyses, except for sample SAM 6-B which had a much higher PAH content in the second extract. This inconsistency may be attributed to a lack of homogeneity in the sample. The reextracted samples are listed below:

- HUM95SED0002-0006
- HUM95SED0008-0009
- HUM95SED0011-0012
- HUM95SED0014-0015

If you have any questions or require any additional information, please feel free to call.

Sincerely,

Philip D. Carpenter, Ph.D.

Philip D. Carpente

President

Enclosures

This cover letter is an integral part of the report.

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-1

Method:

EPA 160.3

Date Analyzed:

April 14, 1995

Matrix:

Sediment

Units:

Sample ID	Percent Solids	
T-12046-16 HUM95SED0001, RF	62	
T-12046-17 HUM95SED0002, SAM 6-A	73	
T-12046-18 HUM95SED0003, SAM 6-B	70	en e
T-12046-19 HUM95SED0004, SAM 6-C	73	
T-12046-20 HUM95SED0005, COMP # 1	71	
T-12046-21 HUM95SED0006, FL4	64	
T-12046-22 HUM95SED0007, FL-1	57	1 44 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
T-12046-23 HUM95SED0008, FL-2	56	n NAS Najastina
T-12046-24 HUM95SED0009, FL-3	52	
T-12046-25 HUM95SED0010, Comp # 4	57	And the second of the second o
Reporting Limit	1	

San Francisco Army Corps of Engineers

Method:

EPA 160.3

Date Analyzed:

April 14, 1995

Matrix:

Sediment

Units:

percent (%)

Sample ID	Percent Solids
T-12046-26 HUM95SED0011, EK8	62
T-12046-27 HUM95SED0012, EK7	63
T-12046-28 HUM95SED0013, EK6	61
T-12046-29 HUM95SED0014, EK5	57
T-12046-30 HUM95SED0015, COMP #3	59
T-12046-31 HUM95SED0016, EK2	63
T-12046-32 HUM95SED0017, EK4	63
T-12046-33 HUM95SED0018, EK4-A	62
T-12046-34 HUM95SED0019, COMP #2	63
T-12046-40 HUM95PSD0006, SAM 5	69
Reporting Limit	1

ToxScan Number: T-12046

IN-2

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-3

Method:

EPA 160.3

Date Analyzed:

April 14, 1995

Matrix:

Sediment

Units:

the state of the s	
Sample ID	Percent Solids
T-12046-41 HUM95PSD0007, SAM 7	80
T-12046-42 HUM95PSD0008, SAM 1	80
T-12046-43 HUM95PSD0009, SAM 3	80
T-12046-44 HUM95PSD0010, SAM 4	75
T-12046-45 HUM95PSD0011, SAM 2	79
T-12046-52 HUM95PSD0018, FL7	77
T-12046-53 HUM95PSD0019, FL6	81
T-12046-54 HUM95PSD0020, FL5	73
T-12046-55 HUM95PSD0021, EK1	81
T-12046-56 HUM95PSD0022, EK3	75
T-12046-57 HUM95PSD0023, FL6	80
Reporting Limit	1

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-4

Method:

EPA 160.4

Date Analyzed:

April 26 - May 8, 1995

Matrix:

Sediment

Units:

Sample ID	Total Volatile Solids wet weight	Total Volatile Solids dry weight
T-12046-16 HUM95SED0001, RF	2.4	3.9
T-12046-17 HUM95SED0002, SAM 6-A	1.4	1.9
T-12046-18 HUM95SED0003, SAM 6-B	2.0	2.8 · · · · · · · · ·
T-12046-19 HUM95SED0004, SAM 6-C	1.3	1.7 - 1.7 - 1.7
T-12046-20 HUM95SED0005, COMP # 1	1.4	
T-12046-21 HUM95SED0006, FL4	1.9	3.0
T-12046-22 HUM95SED0007, FL-1	2.3	4.0
T-12046-23 HUM95SED0008, FL-2	2.3	4.0
T-12046-24 HUM95SED0009, FL-3	2.2	4.2
T-12046-25 HUM95SED0010, Comp # 4	2.2	3.7
Reporting Limit		0.1

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-5

Method:

EPA 160.4

Date Analyzed:

April 26 - May 8, 1995

Matrix:

Sediment

Units:

Sample ID	Total Volatile Solids wet weight	Total Volatile Solids dry weight
T-12046-26 HUM95SED0011, EK8	2.8	4.5
T-12046-27 HUM95SED0012, EK7	2.7	4.3
T-12046-28 HUM95SED0013, EK6	2.3	3.8
T-12046-29 HUM95SED0014, EK5	3.3	5.8 A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
T-12046-30 HUM95SED0015, COMP #3	2.5	4.3
T-12046-31 HUM95SED0016, EK2	3.0	4.7
T-12046-32 HUM95SED0017, EK4	3.1	4.9
T-12046-33 HUM95SED0018, EK4-A	2.5	3.9
T-12046-34 HUM95SED0019, COMP #2	2.5	4.0
T-12046-40 HUM95PSD0006, SAM 5	1.8	2.4
Reporting Limit		0.1

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-6

Method:

EPA 160.4

Date Analyzed:

April 26 - May 8, 1995

Matrix:

Sediment

Units:

Sample ID	Total Volatile Solids wet weight	Total Volatile Solids dry weight
T-12046-41 HUM95PSD0007, SAM 7	1.0	1.2
T-12046-42 HUM95PSD0008, SAM 1	0.9	1.1
T-12046-43 HUM95PSD0009, SAM 3	1.2	1.4
T-12046-44 HUM95PSD0010, SAM 4	1.5	1.9
T-12046-45 HUM95PSD0011, SAM 2	0.9	1.1
T-12046-52 HUM95PSD0018, FL7	0.8	,1.0
T-12046-53 HUM95PSD0019, FL6	0.6	0.7
T-12046-54 HUM95PSD0020, FL5	1.3	1.7 · · · · · · · · · · · · · · · · · · ·
T-12046-55 HUM95PSD0021, EK1	0.6	0.7
T-12046-56 HUM95PSD0022, EK3	1.2	1.5
T-12046-57 HUM95PSD0023, FL6	0.8	0.9
Reporting Limit		0.1

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-7

Method:

EPA 9030

Date Analyzed: Matrix:

May 3-8, 1995

Units:

Sediment mg/Kg (ppm)

Sample ID		Total Sulfides wet weight	Total Sulfides <u>dry weight</u>	Water Soluble Sulfides wet weight	Water Soluble Sulfides <u>dry weight</u>
T-12046-16 HUM95SED0001,	RF	0.8	1.3	ND	ND
T-12046-17 HUM95SED0002,	SAM 6-A	84	120	ND	ND A
T-12046-18 HUM95SED0003,	SAM 6-B	51	140	ND	ND
T-12046-19 HUM95SED0004,	SAM 6-C	16	22	0.1	0.2
T-12046-20 HUM95SED0005,	COMP # 1	56	79	ND .	ND
T-12046-21 HUM95SED0006,	FL4	0.8	1.3	ND	ND
T-12046-22 HUM95SED0007,	FL-1	110	200	0.1	0.2
T-12046-23 HUM95SED0008,	FL-2	120	210	0.3 () ()	0.5
T-12046-24 HUM95SED0009,	FL-3	270	510	ND	ND
T-12046-25 HUM95SED0010,	Comp # 4	89	160	ND	ND
Reporting Limit			0.1		0.1

San Francisco Army Corps of Engineers

Method:

EPA 9030

Date Analyzed:

May 3-8, 1995

Matrix:

Sediment

Units:

mg/Kg (ppm)

Sample ID	Total Sulfides <u>wet weight</u>	Total Sulfides <u>dry weight</u>	Water Soluble Sulfides wet weight	Water Soluble Sulfides <u>dry weight</u>
T-12046-26 HUM95SED0011, EK	8 45	73	0.1	0.2
T-12046-27 HUM95SED0012, EK	7 150	230	ND	ND
T-12046-28 HUM95SED0013, EK	6 100	170	ND	ND
T-12046-29 HUM95SED0014, EK	5 190	320	ND	ND
T-12046-30 HUM95SED0015, CO	MP #3 180	300	ND	ND
T-12046-31 HUM95SED0016, EK	2 310	490	ND	ND
T-12046-32 HUM95SED0017, EK	4 68	110	0.2	0.3
T-12046-33 HUM95SED0018, EK	4-A 140	220	0.2	0.3
T-12046-34 HUM95SED0019, CO	MP #2 110	170	0.2	0.3
T-12046-40 HUM95PSD0006, SA	M 5 110	160	ND	ND
Reporting Limit	•	0.1		0.1

ToxScan Number: T-12046

IN-8

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-9

Method:

EPA 9030

Date Analyzed:

May 3-8, 1995

Matrix:

Sediment

Units:

mg/Kg (ppm)

Sample ID	Total Sulfides <u>wet weight</u>	Total Sulfides dry weight	Water Soluble Sulfides wet weight	Water Soluble Sulfides dry weight
			<u></u>	<u> </u>
T-12046-41 HUM95PSD0007, SAM 7	81	100	ND	ND
T-12046-42 HUM95PSD0008, SAM 1	1.6	2.0	ND ·	ND:
T-12046-43 HUM95PSD0009, SAM 3	6.6	8.3	ND ·	ND
T-12046-44 HUM95PSD0010, SAM 4	4.5	6.0	ND , and	segui e la
T-12046-45 HUM95PSD0011, SAM 2	3.1	3.9	ND	ND
T-12046-52 HUM95PSD0018, FL7	0.7	0.9	ND	ND
T-12046-53 HUM95PSD0019, FL6	0.2	0.2	ND	ND
T-12046-54 HUM95PSD0020, FL5	0.3	0.4	ND	ND
T-12046-55 HUM95PSD0021, EK1	0.2	0.2	ND	ND
T-12046-56 HUM95PSD0022, EK3	10	13	ND	ND
T-12046-57 HUM95PSD0023, FL6	ND	ND	ND :	ND
Reporting Limit		0.1		0.1

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-10

Method:

Gaudette, et al.1

Date Analyzed:

April 13, 1995

Matrix: Units:

Sediment percent (%)

Sample ID		Total Organic Carbon wet weight	Total Organic Carbon dry weight
T-12046-16 HUM95SED0001	l, RF	0.45	0.72
T-12046-17 HUM95SED0002	2, SAM 6-A	0.36	0.49
T-12046-18 HUM95SED0003	3, SAM 6-B	0.46	0.66
T-12046-19 HUM95SED0004	1, SAM 6-C	0.27	0.37
T-12046-20 HUM95SED0005	5, COMP # 1	0.38	0.54
T-12046-21 HUM95SED0006	6, FL4	0.45	0.70
T-12046-22 HUM95SED0007	7, FL-1	0.38	0.66
T-12046-23 HUM95SED0008	3, FL-2	0.36	0.65
T-12046-24 HUM95SED0009	9, FL-3	0.39	0.74
T-12046-25 HUM95SED0010), Comp # 4	0.35	0.62
Reporting Limit			0.1

¹ Henri E. Gaudette, Wilson R. Flight, Lois Toner and David W. Folger; Determination of Organic Carbon in Recent Sediments in Journal of Sedimentary Petrology, Vol. 44, No. 1, p. 249-253; 1974.

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

N-11

Method:

Gaudette, et al.1

Date Analyzed: Matrix:

April 13, 1995

Units:

Sediment percent (%)

Sample ID	Total Organic Carbon wet weight	Total Organic Carbon dry weight
T-12046-26 HUM95SED0011, EK8	0.35	0.56
T-12046-27 HUM95SED0012, EK7	0.36	0.57
T-12046-28 HUM95SED0013, EK6	0.32	0.52
T-12046-29 HUM95SED0014, EK5	0.43	0.75
T-12046-30 HUM95SED0015, COMP #3	0.39	0.66
T-12046-31 HUM95SED0016, EK2	0.38	0.60°
T-12046-32 HUM95SED0017, EK4	0.43	0.69
T-12046-33 HUM95SED0018, EK4-A	0.40	0.64
T-12046-34 HUM95SED0019, COMP #2	0.42	0.67 a 75 d 7
T-12046-40 HUM95PSD0006, SAM 5	0.21	0.30 and 1.5 a
Reporting Limit		• • • • • • • • • • • • • • • • • • •

¹ Henri E. Gaudette, Wilson R. Flight, Lois Toner and David W. Folger; *Determination of Organic Carbon in Recent Sediments* in *Journal of Sedimentary Petrology*, Vol. 44, No. 1, p. 249-253; 1974.

Client: Method:	San Francisco Army Corps of Engineers Gaudette, et al. ¹	ToxScan Number: T-12046 IN-12
Date Analyzed:	April 13, 1995	
Matrix:	Sediment	
Units:	percent (%)	

Sample ID	Total Organic Carbon Total Organic Org	
T-12046-41 HUM95PSD0007, SAM 7	0.14	0.17
T-12046-42 HUM95PSD0008, SAM 1	0.18	0.23
T-12046-43 HUM95PSD0009, SAM 3	0.18	0.23
T-12046-44 HUM95PSD0010, SAM 4	0.26	0.34 Harrist Art 19
T-12046-45 HUM95PSD0011, SAM 2	0.12	0.15
T-12046-52 HUM95PSD0018, FL7	0.17	0.23
T-12046-53 HUM95PSD0019, FL6	0.09	• 44.44 0.11 (1.44) (1.44)
T-12046-54 HUM95PSD0020, FL5	0.29	0.39
T-12046-55 HUM95PSD0021, EK1	0.11	0.13
T-12046-56 HUM95PSD0022, EK3	0.36	0.48
T-12046-57 HUM95PSD0023, FL6	0.13	0.16
Reporting Limit		0.1

¹ Henri E. Gaudette, Wilson R. Flight, Lois Toner and David W. Folger; Determination of Organic Carbon in Recent Sediments in Journal of Sedimentary Petrology, Vol. 44, No. 1, p. 249-253; 1974.

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-13

Method:

SM5520C

Date Analyzed:

April 19, 1995

Matrix:

Sediment

Units:

mg/Kg (ppm)

Sample ID	Total Oil & Grease wet weight	Total Oil & Grease dry weight
T-12046-16 HUM95SED0001, RF	ND	ND ·
T-12046-17 HUM95SED0002, SAM 6-A	ND	ND
T-12046-18 HUM95SED0003, SAM 6-B	ND	ND
T-12046-19 HUM95SED0004, SAM 6-C	ND	ND
T-12046-20 HUM95SED0005, COMP # 1	ND	ND ND
T-12046-21 HUM95SED0006, FL4	ND	ND
T-12046-22 HUM95SED0007, FL-1	16	28
T-12046-23 HUM95SED0008, FL-2	15	, 27 - ,
T-12046-24 HUM95SED0009, FL-3	23	44 gazina a
T-12046-25 HUM95SED0010, Comp # 4	15	27 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -
Reporting Limit		20

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-14

Method:

SM5520C

Date Analyzed:

April 19, 1995

Matrix:

Sediment

Units:

mg/Kg (ppm)

Sample ID	Total Oil & Grease wet weight	Total Oil & Grease dry weight
T-12046-26 HUM95SED0011, EK8	36	59 · · · · · · · ·
T-12046-27 HUM95SED0012, EK7	39	62
T-12046-28 HUM95SED0013, EK6	27	44
T-12046-29 HUM95SED0014, EK5	28	49
T-12046-30 HUM95SED0015, COMP #3	47	80
T-12046-31 HUM95SED0016, EK2	30	48 ° ° 2000
T-12046-32 HUM95SED0017, EK4	17	27 (2.7)
T-12046-33 HUM95SED0018, EK4-A	ND	ND
T-12046-34 HUM95SED0019, COMP #2	14	23 - 11.3
T-12046-40 HUM95PSD0006, SAM 5	ND	ND **
Reporting Limit		20

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-15

Method:

SM5520C

Date Analyzed:

April 19, 1995

Matrix:

Sediment

Units:

mg/Kg (ppm)

Sample ID	Total Oil & Grease wet weight	Total Oil & Grease dry weight
T-12046-41 HUM95PSD0007, SAM 7	ND	ND
T-12046-42 HUM95PSD0008, SAM 1	ND	ND
T-12046-43 HUM95PSD0009, SAM 3	ND	ND = 1 · · ·
T-12046-44 HUM95PSD0010, SAM 4	ND	ND (** 1,24 *), (*)
T-12046-45 HUM95PSD0011, SAM 2	ND	ND
T-12046-52 HUM95PSD0018, FL7	ND	ND ND
T-12046-53 HUM95PSD0019, FL6	ND	* ND
T-12046-54 HUM95PSD0020, FL5	ND	ND ND
T-12046-55 HUM95PSD0021, EK1	ND	ND
T-12046-56 HUM95PSD0022, EK3	ND	ND
T-12046-57 HUM95PSD0023, FL6	ND	ND
Reporting Limit		20

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-16

Method:

SM5520F

Date Analyzed:

April 19, 1995

Matrix:

Sediment

Units:

mg/Kg (ppm)

Sample ID	Total Petroleum Hydrocarbons wet weight	Total Petroleum Hydrocarbons dry weight
T-12046-16 HUM95SED0001, RF	ND	ND
T-12046-17 HUM95SED0002, SAM 6-A	ND	ND
T-12046-18 HUM95SED0003, SAM 6-B	ND	ND
T-12046-19 HUM95SED0004, SAM 6-C	ND	ND
T-12046-20 HUM95SED0005, COMP # 1	ND	ND 4
T-12046-21 HUM95SED0006, FL4	ND	ND ND
T-12046-22 HUM95SED0007, FL-1	ND	ND
T-12046-23 HUM95SED0008, FL-2	ND **	ND
T-12046-24 HUM95SED0009, FL-3	ND	ND
T-12046-25 HUM95SED0010, Comp # 4	ND	ND Program
Reporting Limit		20

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-17

Method:

SM5520F

Date Analyzed:

April 19, 1995

Matrix:

Sediment

Units:

mg/Kg (ppm)

Sample ID	Total Petroleum Hydrocarbons <u>wet weight</u>	Total Petroleum Hydrocarbons dry weight
T-12046-26 HUM95SED0011, EK8	23	38
T-12046-27 HUM95SED0012, EK7	27	43 v v v v 1 v 1 v 1 v 1 v 1 v 1 v 1 v 1
T-12046-28 HUM95SED0013, EK6	25	42
T-12046-29 HUM95SED0014, EK5	16	• 27 - • • • • • • •
T-12046-30 HUM95SED0015, COMP #3	27	46° 24° - 46° 24° 36° 36° 36° 36° 36° 36° 36° 36° 36° 36
T-12046-31 HUM95SED0016, EK2	17	27 27 28 444
T-12046-32 HUM95SED0017, EK4	ND	ND ND
T-12046-33 HUM95SED0018, EK4-A	ND	ND (1) (2) (3)
T-12046-34 HUM95SED0019, COMP #2	ND	ND
T-12046-40 HUM95PSD0006, SAM 5	ND	ND
Reporting Limit		20

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-18

Method:

SM5520F

Date Analyzed:

April 19, 1995

Matrix:

Sediment

Units:

mg/Kg (ppm)

Sample ID	Total Petroleum Hydrocarbons wet weight	Total Petroleum Hydrocarbons dry weight
T-12046-41 HUM95PSD0007, SAM 7	ND	ND and a second
T-12046-42 HUM95PSD0008, SAM 1	ND	ND
T-12046-43 HUM95PSD0009, SAM 3	ND	ND
T-12046-44 HUM95PSD0010, SAM 4	ND	ND *
T-12046-45 HUM95PSD0011, SAM 2	ND	ND .
T-12046-52 HUM95PSD0018, FL7	ND	ND
T-12046-53 HUM95PSD0019, FL6	ND	ND
T-12046-54 HUM95PSD0020, FL5	ND	ND
T-12046-55 HUM95PSD0021, EK1	ND	ND
T-12046-56 HUM95PSD0022, EK3	ND	ND
T-12046-57 HUM95PSD0023, FL6	ND	ND
Reporting Limit		20
ND = None Detected		

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-19

Method:

GC/FPD1

Date Extracted:

April 19, 1995

Date Analyzed:

April 21, 1995

Matrix:

Sediment

Units:

μg/Kg (ppb), as received

Sample ID		Monobutyltin	<u>Dibutyltin</u>	<u>Tributyltin</u>	% TPT SUR
T-12046-16 HUM95SED0001,	RF	ND	ND	ND	47
T-12046-17 HUM95SED0002,	SAM 6-A	ND	ND	ND	54
T-12046-18 HUM95SED0003,	SAM 6-B	ND	ND	ND	.52
T-12046-19 HUM95SED0004,	SAM 6-C	ND	ND	ND	56
T-12046-20 HUM95SED0005,	COMP # 1	ND	ND	ND	59
T-12046-21 HUM95SED0006,	FL4	ND	ND	ND	52
T-12046-22 HUM95SED0007,	FL-1	ND	ND	ND ,	55
T-12046-23 HUM95SED0008,	FL-2	ND	1	2	54
T-12046-24 HUM95SED0009,	FL-3	ND	ND	1	57

TPT SUR = Tripropyltin surrogate recovery as percent

ND = None Detected

¹ Quantitative chemical analysis for tributyltin by pentyl derivatization using a Gas Chromatograph with a Flame Photometric Detector.

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

Method:

GC/FPD1

Date Extracted:

April 19, 1995 April 21, 1995

Date Analyzed: Matrix:

Sediment

Units:

μg/Kg (ppb), as received

Sample ID	Monobutyltin	<u>Dibutyltin</u>	<u>Tributyltin</u>	% TPT SUR
T-12046-25 HUM95SED0010, Comp # 4	ND	ND	ND	68
T-12046-26 HUM95SED0011, EK8	ND	ND	ND	63
T-12046-27 HUM95SED0012, EK7	ND	ND	ND	60
T-12046-28 HUM95SED0013, EK6	ND	ND	ND .	55
T-12046-29 HUM95SED0014, EK5	ND	ND	ND	61
T-12046-30 HUM95SED0015, COMP #3	ND	1	6	62
T-12046-31 HUM95SED0016, EK2	ND	ND	ND	52
T-12046-32 HUM95SED0017, EK4	ND	ND	ND	53
T-12046-33 HUM95SED0018, EK4-A	ND	ND	ND	56
Reporting Limit	1	1	1	NA

¹ Quantitative chemical analysis for tributyltin by pentyl derivatization using a Gas Chromatograph with a Flame Photometric Detector.

TPT SUR = Tripropyltin surrogate recovery as percent

ND = None Detected

NA = Not Applicable

San Francisco Army Corps of Engineers

Method:

GC/FPD1

Date Extracted:

May 1, 1995

Date Analyzed:

May 2, 1995

Matrix:

Sediment

Units:

 μ g/Kg (ppb), as received

Sample ID	Monobutyltin	<u>Dibutyltin</u>	<u>Tributyltin</u>	% TPT SUR
T-12046-34 HUM95SED0019, COMP #2	ND ·	1 - 5.	ND	64
T-12046-40 HUM95PSD0006, SAM 5	ND	ND	ND ALLEY	54
T-12046-41 HUM95PSD0007, SAM 7	ND	ND	ND	50
T-12046-42 HUM95PSD0008, SAM 1	ND	ND	ND	58
T-12046-43 HUM95PSD0009, SAM 3	ND	ND	ND	50
T-12046-44 HUM95PSD0010, SAM 4	ND	ND	ND and	49
Reporting Limit	. 1	1	1 :	NA

ToxScan Number: T-12046

IN-21

TPT SUR = Tripropyltin surrogate recovery as percent

ND = None Detected

¹ Quantitative chemical analysis for tributyltin by pentyl derivatization using a Gas Chromatograph with a Flame Photometric Detector.

San Francisco Army Corps of Engineers

GC/FPD1

Method:

Date Extracted: Date Analyzed: May 1, 1995 May 2, 1995

Matrix:

Sediment

Units:

μg/Kg (ppb), as received

				% TPT
Sample ID	<u>Monobutyltin</u>	<u>Dibutyltin</u>	<u>Tributyltin</u>	SUR
T-12046-45 HUM95PSD0011, SAM 2	ND	ND	ND	58
T-12046-52 HUM95PSD0018, FL7	ND	ND	ND	43
T-12046-53 HUM95PSD0019, FL6	ND	ND	ND	54
T-12046-54 HUM95PSD0020, FL5	ND	ND ·	ND	58)
T-12046-55 HUM95PSD0021, EK1	ND	ND	ND	56
T-12046-56 HUM95PSD0022, EK3	ND	ND	ND .	49
T-12046-57 HUM95PSD0023, FL6	ND	ND	ND	53
Reporting Limit	1	1	1	NA

ToxScan Number: T-12046

IN-22

TPT SUR = Tripropyltin surrogate recovery as percent

ND = None Detected

¹ Quantitative chemical analysis for tributyltin by pentyl derivatization using a Gas Chromatograph with a Flame Photometric Detector.

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-23

Method:

GC/FPD1

Date Extracted:

April 19, 1995

Date Analyzed:

April 21, 1995

Matrix:

Sediment

Units:

 μ g/Kg (ppb), dry weight basis

Sample ID	<u>Monobutyltin</u>	<u>Dibutyltin</u>	<u>Tributyltin</u>	% TPT <u>SUR</u>
T-12046-16 HUM95SED0001, RF	ND	ND	ND	47
T-12046-17 HUM95SED0002, SAM 6-A	ND	ND	ND	54
T-12046-18 HUM95SED0003, SAM 6-B	ND	ND	ND	52
T-12046-19 HUM95SED0004, SAM 6-C	ND	ND	ND ·	56
T-12046-20 HUM95SED0005, COMP # 1	ND ·	ND	ND	59
T-12046-21 HUM95SED0006, FL4	ND	ND	· ND	52
T-12046-22 HUM95SED0007, FL-1	ND	ND	ND	55
T-12046-23 HUM95SED0008, FL-2	ND	2	4 (X):	54
T-12046-24 HUM95SED0009, FL-3	ND	ND 1	2	57
Reporting Limit	1	1	1 ::	NA

¹ Quantitative chemical analysis for tributyltin by pentyl derivatization using a Gas Chromatograph with a Flame Photometric Detector.

TPT SUR = Tripropyltin surrogate recovery as percent

ND = None Detected

NA = Not Applicable

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-24

Method:

GC/FPD1

Date Extracted: Date Analyzed: April 19, 1995 April 21, 1995

Matrix:

Sediment

Units:

 μ g/Kg (ppb), dry weight basis

Sample ID	<u>Monobutyltin</u>	Dibutyltin	<u>Tributyltin</u>	% TPT <u>SUR</u>
T-12046-25 HUM95SED0010, Comp # 4	4 ND	ND	ND	68
T-12046-26 HUM95SED0011, EK8	ND	ND	ND	63
T-12046-27 HUM95SED0012, EK7	ND	ND	ND	60
T-12046-28 HUM95SED0013, EK6	ND	ŅD	ND	55
T-12046-29 HUM95SED0014, EK5	ND	ND	ND	61
T-12046-30 HUM95SED0015, COMP #5	3 ND	2	10	62
T-12046-31 HUM95SED0016, EK2	ND	ND	ND	52
T-12046-32 HUM95SED0017, EK4	ND	ND	ND	53.14
T-12046-33 HUM95SED0018, EK4-A	ND	ND ·	ND	· 56 · .
Reporting Limit	1	1	1	NA

¹ Quantitative chemical analysis for tributyltin by pentyl derivatization using a Gas Chromatograph with a Flame Photometric Detector.

TPT SUR = Tripropyltin surrogate recovery as percent

ND = None Detected

NA = Not Applicable

San Francisco Army Corps of Engineers

GC/FPD1

Method: Date Extracted:

Date Analyzed:

May 1, 1995

Matrix:

May 2, 1995

Sediment

Units:

μg/Kg (ppb), dry weight basis

Sample ID	<u>Monobutyltin</u>	Dibutyltin	Tributyltin	% TPT <u>SUR</u>
T-12046-34 HUM95SED0019, COMP #2	ND	2	ND	64
T-12046-40 HUM95PSD0006, SAM 5	ND	ND	ND	54
T-12046-41 HUM95PSD0007, SAM 7	ND	ND	ND	50
T-12046-42 HUM95PSD0008, SAM 1	ND	ND	ND .	58
T-12046-43 HUM95PSD0009, SAM 3	ND	ND	ND	50
T-12046-44 HUM95PSD0010, SAM 4	ND	ND:	ND	49
Reporting Limit	1 .	1	1	NA

ToxScan Number: T-12046

IN-25

TPT SUR = Tripropyltin surrogate recovery as percent

ND = None Detected

¹ Quantitative chemical analysis for tributyltin by pentyl derivatization using a Gas Chromatograph with a Flame Photometric Detector.

San Francisco Army Corps of Engineers

GC/FPD1

Method: Date Extracted:

Date Analyzed:

May 1, 1995 May 2, 1995

Matrix:

Sediment

Units:

μg/Kg (ppb), dry weight basis

Sample ID	Monobutyltin	<u>Dibutyltin</u>	<u>Tributyltin</u>	% TPT SUR
T-12046-45 HUM95PSD0011, SAM 2	ND	ND	ND	58
T-12046-52 HUM95PSD0018, FL7	ND	ND	ND	43
T-12046-53 HUM95PSD0019, FL6	ND	ND	ND	54
T-12046-54 HUM95PSD0020, FL5	ND	ND	ND	58
T-12046-55 HUM95PSD0021, EK1	ND	ND	ND	56
T-12046-56 HUM95PSD0022, EK3	ND	ND	ND	49
T-12046-57 HUM95PSD0023, FL6	ND	ND	ND	53
Reporting Limit	1	1	1	NA

ToxScan Number: T-12046

IN-26

TPT SUR = Tripropyltin surrogate recovery as percent

ND = None Detected

¹ Quantitative chemical analysis for tributyltin by pentyl derivatization using a Gas Chromatograph with a Flame Photometric Detector.

San Francisco Army Corps of Engineers

ToxScan Number: T-12046 IN-27

Method:

GC/FPD1

Matrix:

Sediment

Units:

μg/Kg (ppb), dry weight basis

QA/QC REPORT: Spike recoveries/laboratory blank

Date Extracted: April 19, 1995 Date Analyzed: April 21, 1995

<u>Identification</u>	Monobutyltin	<u>Dibutyltin</u>	Tributyltin	% IPI SUR
Blank	ND	ND	ND	60
Blank Spike (% recovery)	65	82	93	63
Spike (% recovery) ²	7	75	90	55
Spike Duplicate (% recovery) ²	5	72	84	60

Date Extracted: May 1, 1995 Date Analyzed: May 2, 1995

				% TPT
<u>Identification</u>	Monobutyltin	<u>Dibutyltin</u>	<u>Tributyltin</u>	SUR
Blank	ND	ND	ND	51
Blank Spike (% recovery)	71	97	110	51
Spike (% recovery) ³	5	84	100	55
Spike Duplicate (% recovery) ³	4	88	107	51

TPT SUR = Tripropyltin surrogate recovery as percent

ND = None Detected

¹ Quantitative chemical analysis for tributyltin by pentyl derivatization using a Gas Chromatograph with a Flame Photometric Detector.

² Spike of sample number T-12066-01.

³ Spike of sample number T-12046-57 (FL6).

San Francisco Army Corps of Engineers

Method:

EPA/SW-846 6020/7000 series

Matrix:

Date Completed: May 11, 1995 Sediment

Units:

mg/Kg (ppm), as received

ToxScan Number: T-12046 IN-28

Client Sample ID: Client Site ID: ToxScan Lab ID:	HUM95SED0001 RF <u>T-12046-16</u>	HUM95SED0002 SAM 6-A <u>T-12046-17</u>	HUM95SED0003 SAM 6-B <u>T-12046-18</u>
Element			
Arsenic	3.2	2.7	2.7
Cadmium	0.1	0.1	0.1
Chromium	76	77	81
Copper	17	10	9.2
Lead	6.2	3.8	4.0
Mercury	0.08	0.09	0.06
Nickel	81	65	60
Selenium	0.1	0.1	0.1
Silver	1.1	0.9	0.8
Zinc	43	31	38

Client Sample ID:	HUM95SED0004	HUM95SED0005	HUM95SED0006
Client Site ID:	SAM 6-C	COMP # 1	FL4
ToxScan Lab ID:	T-12046-19	<u>T-12046-20</u>	<u>T-12046-21</u>
<u>Element</u>			
Arsenic	2.3	2.6	3.0
Cadmium	0.1	0.1	0.1
Chromium	81	84	74
Copper	6.2	8.0	16
Lead	3.6	3.5	5.5
Mercury	0.05	0.06	0.07
Nickel	52	61	83
Selenium	0.1	0.1	0.1
Silver	0.9	1.0	1.0
Zinc	22	31	31

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-29

Method:

EPA/SW-846 6020/7000 series

Matrix:

Date Completed: May 11, 1995

Sediment

Units:

mg/Kg (ppm), as received

Client Sample ID: Client Site ID: ToxScan Lab ID:	HUM95SED0007 FL-1 <u>T-12046-22</u>	HUM95SED0008 FL-2 <u>T-12046-23</u>	HUM95SED009 FL-3 <u>T-12046-24</u>
Element			
Arsenic Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver Zinc	2.8 0.1 74 16 5.5 0.07 83 0.1 1.0 31	2.5 0.1 72 16 5.2 0.06 72 0.1 0.8 39	2.6 0.1 69 12 4.7 0.06 71 0.1 0.8 34
Client Sample ID:	HUM95SED0010	HUM95SED0011	HUM95SED012
Client Site ID:	Comp # 4	EK8	EK7

Chem Sample 1D.	UCMISSSEDUCTO	HOMBOSEDOOLI	HOMES SEDOL
Client Site ID:	Comp # 4	EK8	EK7
ToxScan Lab ID:	T-12046-25	T-12046-26	<u>T-12046-27</u>
<u>Element</u>			
Arsenic	2.8	1.3	2.1
Cadmium	0.1	ND	0.1
Chromium	69	61	80
Copper	14	13	19
Lead	4.9	4.9	7.5
Mercury	0.06	0.07	0.08
Nickel	71	64	83
Selenium	0.1	0.1	0.1
Silver	0.7	0.8	0.9
Zinc	32	40	49

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-30

Method:

EPA/SW-846 6020/7000 series

Date Completed: May 11, 1995

Matrix:

Sediment

Units:

mg/Kg (ppm), as received

Client Sample ID: Client Site ID: ToxScan Lab ID:	HUM95SED0013 EK-6 <u>T-12046-28</u>	HUM95SED0014 EK-5 <u>T-12046-29</u>	HUM95SED0015 Comp # 3 <u>T-12046-30</u>
Element			
Arsenic	3.0	2.9	2.8
Cadmium	0.2	0.1	0.1
Chromium	80	76	77
Copper	17	15	18
Lead	6.8	6.4	6.5
Mercury	0.10	0.07	0.08
Nickel	81	72	74
Selenium	0.1	0.1	0.1
Silver	1.0	0.9	0.9
Zinc	51	41	56
Client Sample ID:	HUM95SED0016	HUM95SED0017	HUM95SED018
Client Site ID:	EK2	EK4	EK4-A
ToxScan Lab ID:	T-12046-31	<u>T-12046-32</u>	T-12046-33
Element			
Arsenic	2.5	2.8	2.9
Cadmium	ND	0.1	0.2
Chromium	76	86	78
Copper	12	/ · 17	14
Lead	5.4	7.3	7.4
Mercury	0.07	0.07	0.07
Nickel	73	83	73
Selenium	0.1	0.1	0.1
Silver	0.9	0.8	0.8
Zinc	42	47	33

San Francisco Army Corps of Engineers

HUM95PSD0006

ToxScan Number: T-12046

HUM95PSD0007

ND

0.7

27

IN-31

Method:

EPA/SW-846 6020/7000 series

Matrix:

Client Sample ID:

Date Completed: May 11, 1995

Sediment

HIIM95SED0019

ND

0.6

28

Units: mg/Kg (ppm), as received

Client Sample ID:	HUM95SED0019	HUMASASDOOO	HUM95PSD000/
Client Site ID:	COMP #2	SAM 5	SAM 7
ToxScan Lab ID:	T-12046-34	<u>T-12046-40</u>	<u>T-12046-41</u>
<u>Element</u>			
Arsenic	2.5	2.3	2.5
Cadmium	0.1	ND	ND
Chromium	80	73	57
Copper	17	8.2	6.1
Lead	9.5	3.8	3.7
Mercury	0.06	0.06	0.04
Nickel	77	60	42
Selenium	0.1	ND	ND
Silver	0.9	0.7	0.8
Zinc	51	39	. 37
Client Sample ID:	HUM95PSD0008	HUM95PSD0009	HUM95PSD0010
Client Site ID:	SAM 1	SAM 3	SAM 4
ToxScan Lab ID:	<u>T-12046-42</u>	T-12046-43	T-12046-44
5.			
<u>Element</u>			
Arsenic	4.1	2.2	2.6
Cadmium	ND	ND	ND
Chromium	73	52	73
Copper	4.4	5.6	6.0
Lead	2.5	3.5	2.9
Mercury	0.04	0.04	0.05
Nickel	47	43	48
TAICKEL	7/	73	10

ND = None Detected

Selenium

Silver

Zinc

ND 0.8

23

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-32

Method:

EPA/SW-846 6020/7000 series

Date Completed: May 11, 1995

Matrix:

Sediment

Units:

mg/Kg (ppm), as received

Client Sample ID:	HUM95PSD0011	HUM95PSD0018	HUM95PSD0019
Client Site ID:	SAM 2	FL7	FL6
ToxScan Lab ID:	<u>T-12046-45</u>	<u>T-12046-52</u>	<u>T-12046-53</u>
Element			
Arsenic	3.0	2.6	2.4
Cadmium	0.1	0.1	ND
Chromium	67	72	67
Copper	5.4	5.8	2.2
Lead	3.6	3.4	1.7
Mercury	0.04	0.04	0.03
Nickel	44	56	47
Selenium	ND	ND	ND
Silver	0.6	0.6	0.5
Zinc	33	34	13
Client Sample ID:	HUM95PSD0020	HUM95PSD0021	HUM95PSD0022
Client Sample ID: Client Site ID:	HUM95PSD0020 FL5	HUM95PSD0021 EK1	HUM95PSD0022 EK3
-			
Client Site ID: ToxScan Lab ID:	FL5	EK1	EK3
Client Site ID:	FL5	EK1	EK3
Client Site ID: ToxScan Lab ID:	FL5	EK1	EK3
Client Site ID: ToxScan Lab ID: <u>Element</u>	FL5 <u>T-12046-54</u>	EK1 <u>T-12046-55</u>	EK3 <u>T-12046-56</u>
Client Site ID: ToxScan Lab ID: Element Arsenic	FL5 <u>T-12046-54</u> 2.4	EK1 <u>T-12046-55</u>	EK3 <u>T-12046-56</u> 2.3
Client Site ID: ToxScan Lab ID: Element Arsenic Cadmium Chromium	FL5 <u>T-12046-54</u> 2.4 ND	EK1 <u>T-12046-55</u> 1.3 ND	EK3 <u>T-12046-56</u> 2.3 0.1
Client Site ID: ToxScan Lab ID: Element Arsenic Cadmium	FL5 <u>T-12046-54</u> 2.4 ND 78	EK1 T-12046-55 1.3 ND 66	EK3 T-12046-56 2.3 0.1 60
Client Site ID: ToxScan Lab ID: Element Arsenic Cadmium Chromium Copper	FL5 T-12046-54 2.4 ND 78 11	EK1 T-12046-55 1.3 ND 66 3.3	EK3 T-12046-56 2.3 0.1 60 6.1
Client Site ID: ToxScan Lab ID: Element Arsenic Cadmium Chromium Copper Lead	FL5 <u>T-12046-54</u> 2.4 ND 78 11 4.0	EK1 T-12046-55 1.3 ND 66 3.3 3.0	EK3 T-12046-56 2.3 0.1 60 6.1 5.1
Client Site ID: ToxScan Lab ID: Element Arsenic Cadmium Chromium Copper Lead Mercury	FL5 T-12046-54 2.4 ND 78 11 4.0 0.06	EK1 T-12046-55 1.3 ND 66 3.3 3.0 0.05	EK3 T-12046-56 2.3 0.1 60 6.1 5.1 0.07
Client Site ID: ToxScan Lab ID: Element Arsenic Cadmium Chromium Copper Lead Mercury Nickel	FL5 T-12046-54 2.4 ND 78 11 4.0 0.06 65	EK1 T-12046-55 1.3 ND 66 3.3 3.0 0.05 42	EK3 <u>T-12046-56</u> 2.3 0.1 60 6.1 5.1 0.07 45
Client Site ID: ToxScan Lab ID: Element Arsenic Cadmium Chromium Copper Lead Mercury Nickel Selenium	FL5 T-12046-54 2.4 ND 78 11 4.0 0.06 65 ND	EK1 T-12046-55 1.3 ND 66 3.3 3.0 0.05 42 ND	EK3 <u>T-12046-56</u> 2.3 0.1 60 6.1 5.1 0.07 45 ND

ND = None Detected

San Francisco Army Corps of Engineers

Method:

EPA/SW-846 6020/7000 series

Matrix:

Date Completed: May 11, 1995

Sediment

Units:

mg/Kg (ppm), as received

Client Sample ID:

HUM95PSD0023

ToxScan Number: T-12046

IN-33

Client Site ID:

FL6

ToxScan Lab ID:

T-12046-57

Element

Arsenic	2.6
Cadmium	ND
Chromium	68
Copper	3.7
Lead	3.0
Mercury	0.05
Nickel	48
Selenium	ND
Silver	0.6
Zinc	23

ND = None Detected

San Francisco Army Corps of Engineers

Method:

EPA/SW-846 6020/7000 series

Date Completed: May 11, 1995

Matrix: Units:

Sediment mg/Kg (ppm), dry weight basis

ToxScan Number: T-12046 IN-34

Client Sample ID: Client Site ID: ToxScan Lab ID:	HUM95SED0001 RF <u>T-12046-16</u>	HUM95SED0002 SAM 6-A <u>T-12046-17</u>	HUM95SED0003 SAM 6-B <u>T-12046-18</u>	Reporting <u>Limits</u>
<u>Element</u>				
Arsenic Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver Zinc	5.2 0.1 120 28 10 0.12 130 0.2 1.7 69	3.7 0.1 110 13 5.3 0.13 88 0.1 1.2 4.2	3.9 0.1 120 13 5.8 0.09 86 0.1 1.2 55	0.1 0.1 0.1 0.1 0.02 0.1 0.1 0.1
Client Sample ID: Client Site ID: ToxScan Lab ID:	HUM95SED0004 SAM 6-C <u>T-12046-19</u>	HUM95SED0005 COMP # 1 <u>T-12046-20</u>	HUM95SED0006 FL4 <u>T-12046-21</u>	Reporting <u>Limits</u>
Arsenic Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver Zinc	3.2 0.1 110 8.5 4.9 0.07 72 0.1 1.2 30	3.7 0.2 120 11 4.9 0.09 86 0.1 1.4	4.8 0.1 120 24 8.6 0.11 130 0.2 1.6 49	0.1 0.1 0.1 0.1 0.02 0.1 0.1 0.1

San Francisco Army Corps of Engineers

Method:

EPA/SW-846 6020/7000 series

Date Completed: May 11, 1995

Matrix:

Sediment

Units:

mg/Kg (ppm), dry weight basis

Client Sample ID: Client Site ID: ToxScan Lab ID:	HUM95SED0007 FL-1 <u>T-12046-22</u>	HUM95SED0008 FL-2 <u>T-12046-23</u>	HUM95SED009 FL-3 <u>T-12046-24</u>	Reporting Limits
Element		·		
Arsenic	4.9	4.5	4.9	0.1
Cadmium	0.2	0.2	0.4	0.1
Chromium	130	120	140	0.1
Copper	27	22	33	0.1
Lead	9.2	8.3	10	0.1
Mercury	0.11	0.10	0.12	0.02
Nickel	130	130	140	0.1
Selenium	0.3	0.24	0.3	0.1
Silver	1.4	1.5	1.6	0.1
Zinc	68	60	96	1.0

ToxScan Number: T-12046

IN-35

Client Sample ID: Client Site ID: ToxScan Lab ID:	HUM95SED0010 Comp # 4 <u>T-12046-25</u>	HUM95SED0011 EK8 <u>T-12046-26</u>	HUM95SED012 EK7 <u>T-12046-27</u>	Reporting <u>Limits</u>
Element			·	
Arsenic	4.9	2.1	3.3	0.1
Cadmium	0.2	ND	0.1	0.1
Chromium	120	99	130	0.1
Copper	25	··. 21	30	0.1
Lead	8.6	8.0	12	0.1
Mercury	0.10	0.11	0.13	0.02
Nickel	120	100	130	0.1
Selenium	0.2	0.2	0.2	0.1
Silver	1.3	1.3	1.5	0.1
Zinc	56	64	78	1.0

ND = None Detected

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-36

0.02

0.1

0.1

0.1

1.0

Method:

EPA/SW-846 6020/7000 series

Date Completed: May 11, 1995

Matrix:

Sediment

Units:

mg/Kg (ppm), dry weight basis

0.12

120

0.2

1.4

66

Client Sample ID: Client Site ID: ToxScan Lab ID:	HUM95SED0013 EK-6 <u>T-12046-28</u>	HUM95SED0014 EK-5 <u>T-12046-29</u>	HUM95SED0015 Comp # 3 <u>T-12046-30</u>	Reporting <u>Limits</u>
<u>Element</u>				1.40.1
Arsenic Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver Zinc	5.0 0.3 130 28 11 0.16 130 0.2 1.6 84	5.1 0.2 130 26 11 0.13 130 0.2 1.6 72	4.7 0.2 130 30 11 0.13 130 0.2 1.6 94	0.1 0.1 0.1 0.1 0.1 0.02 0.1 0.1 0.1
Client Sample ID: Client Site ID: ToxScan Lab ID: Element	HUM95SED0016 EK2 <u>T-12046-31</u>	HUM95SED0017 EK4 <u>T-12046-32</u>	HUM95SED018 EK4-A T-12046-33	Reporting Limits
Arsenic Cadmium Chromium Copper Lead	3.9 ND 120 19 8.6	4.4 0.1 140 26 12	4.6 0.3 130 22 12	0.1 0.1 0.1 0.1

ND = None Detected

Mercury

Selenium

Nickel

Silver

Zinc

0.12

130

0.2

1.3

75

0.11

120

0.2

1.3

53

San Francisco Army Corps of Engineers

Method:

EPA/SW-846 6020/7000 series

Date Completed: May 11, 1995

Sediment

Matrix: Units:

mg/Kg (ppm), dry weight basis

Client Sample ID: Client Site ID: ToxScan Lab ID:	HUM95SED0019 COMP #2 <u>T-12046-34</u>	HUM95PSD0006 SAM 5 <u>T-12046-40</u>	HUM95PSD0007 SAM 7 <u>T-12046-41</u>	Reporting Limits
Element				
Arsenic	4.0	3.4	3.1	0.1
Cadmium	0.1	ND	ND	0.1
Chromium	130	110	71	0.1
Copper	27	12	7.6	0.1
Lead	15	5.6	4.6	0.15
Mercury	0.10	0.09	0.06	0.02
Nickel	120	87	52	0.1
Selenium	0.2	ND	ND	0.1
Silver	1.4	1.0	1.0	0.1
Zinc	81	56	46	1.0

ToxScan Number: T-12046

IN-37

Client Sample ID: Client Site ID: ToxScan Lab ID:	HUM95PSD0008 SAM 1 <u>T-12046-42</u>	HUM95PSD0009 SAM 3 <u>T-12046-43</u>	HUM95PSD0010 SAM 4 <u>T-12046-44</u>	ReportingLimits
Element				
Arsenic	5.1	2.8	3.5	0.1
Cadmium	ND	ND	ND	0.1
Chromium	91	64	97	0.1
Copper	5.6	7.0	8.1	0.1
Lead	3.2	4.3	3.9	0.1
Mercury	0.05	0.06	0.07	0.02
Nickel	59	53	64	0.1
Selenium	ND	ND	ND	0.1
Silver	0.7	1.0	1.0	0.1
Zinc	35	29	36	1.0

ND = None Detected

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-38

Method:

EPA/SW-846 6020/7000 series

Date Completed: May 11, 1995 Matrix:

Sediment

Units:

mg/Kg (ppm), dry weight basis

Client Sample ID: Client Site ID: ToxScan Lab ID:	HUM95PSD0011 SAM 2 <u>T-12046-45</u>	HUM95PSD0018 FL7 <u>T-12046-52</u>	HUM95PSD0019 FL6 <u>T-12046-53</u>	Reporting _Limits
Element				
Arsenic Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver Zinc	3.7 0.1 85 6.9 4.6 0.05 56 ND 0.8 42	3.3 0.1 94 7.6 4.4 0.06 72 ND 0.8 44	3.0 ND 82 2.7 2.2 0.04 58 ND 0.6 17	0.1 0.1 0.1 0.1 0.1 0.02 0.1 0.1 1.0
Zinc	72	***		1.0
Client Sample ID: Client Site ID: ToxScan Lab ID:	HUM95PSD0020 FL5 <u>T-12046-54</u>	HUM95PSD0021 EK1 <u>T-12046-55</u>	HUM95PSD0022 EK3 <u>T-12046-56</u>	Reporting <u>Limits</u>
Element				428/15 T
Arsenic Cadmium Chromium Copper Lead Mercury Nickel	3.2 ND 110 15 5.5 0.09 89	1.6 ND 81 4.1 3.6 0.06 52	3.0 0.1 80 8.1 6.8 0.10 60	0.1 0.1 0.1 0.1 0.02 0.1
Selenium	ND	ND	ND	0.1

ND = None Detected

Silver

Zinc

0.7

26

8.0

41

0.1 1.0

1.0

51

San Francisco Army Corps of Engineers

Method:

EPA/SW-846 6020/7000 series

Matrix:

Date Completed: May 11, 1995 Sediment

Units:

Zinc

mg/Kg (ppm), dry weight basis

ToxScan Number: T-12046 IN-39

Client Sample ID: Client Site ID: ToxScan Lab ID:	HUM95PSD0023 FL6 <u>T-12046-57</u>
<u>Element</u>	
Arsenic	3.3
Cadmium	ND
Chromium	85
Copper	4.6
Lead	3.7
Mercury	0.06
Nickel	60
Selenium	ND
Silver	0.7

ND = None Detected

29

San Francisco Army Corps of Engineers

Method:

EPA/SW-846 6020/7000 series

Date Completed: May 11, 1995

Matrix: Units:

Sediment mg/Kg (ppm), dry weight basis

QA/QC REPORT: Laboratory Blank Summary

	Method	Reporting
Element	Blank	<u>Limits</u>
Arsenic	ND	0.1
Cadmium	ND	0.1
Chromium	ND	0.1
Copper	ND	0.1
Lead	ND	0.1
Mercury	ND	0.02
Nickel	ND	0.1
Selenium	ND	0.1
Silver	ND	0.1
Zinc	ND	1.0

ToxScan Number: T-12046

San Francisco Army Corps of Engineers

Method:

EPA/SW-846 6020/7000 series

Date Completed: May 11, 1995

Matrix:

Sediment

QA/QC REPORT: Matrix Spike/Matrix Spike Duplicate Summary

QA/QC on sample T-12046-53 (HUM95PSD0019, FL6)

	Spike	% Recovery	% Recovery	
Element	Amount*	Spike 1	Spike 2	RPD
Arsenic	0.28	97	94	3
Cadmium	0.028	102	89	14
Chromium	2.86	92	92	.0
Copper	2.86	79	77	3: 25
Lead	1.43	100	99	1
Mercury	0.028	96	85	12
Nickel	1.43	120	120	20
Selenium	0.14	85	86	. 1
Silver	0.28	79	87	10
Zinc	2.86	112	115	3

ToxScan Number: T-12046

IN-41

QA/QC on sample T-12074-05

	Spike	% Recovery	% Recovery	
Element	Amount*	Spike 1	Spike 2	RPD
Arsenic	0.28	96	88	9
Cadmium	0.028	96	95	1
Chromium	2.86	92	109	17
Copper	2.86	103	89	15
Lead	1.43	92	91	1
Mercury	0.028	290	91	1
Nickel	1.43	108	102	6
Selenium**	0.14	93	97	4
Silver	0.28	79	83	5
Zinc	2.86	125	92	30

RPD = Relative Percent Difference

^{*} Spike amount given in μ g/mL. ** QA/QC on sample T-12046-26 (HUM95SED0011, EK8) for Selenium only.

San Francisco Army Corps of Engineers

Method:

EPA/SW-846 6020/7000 series

Matrix:

Date Completed: May 11, 1995

Units:

Sediment mg/Kg (ppm), dry weight basis

QA/QC REPORT: SRM Summary

Element	SRM Value Found	Certified SRM Value	<u>+/-</u>	% Recovery
Arsenic	21.0	23.4	0.2	90
Cadmium	3.40	3.45	0.22	99
Chromium	81.0	135	. 5	60
Copper	91.0	98.6	5	92
Lead	144	161	17	89
Mercury	1.58	1.47	0.07	107
Nickel	42	44	3	95
Selenium	1.33	1.12	0.05	119
Zinc	414	438	12	95

ToxScan Number: T-12046

IN-42

SRM = National Institute of Standards and Technology, Buffalo River Sediment, 2704

San Francisco Army Corps of Engineers

Method:

Plumb¹

Date Analyzed: Matrix:

April 25, 1995

Sediment

Client Sample ID:

HUM95SED0001

Client Site ID:

RF

ToxScan Lab ID:

T-12046-16

SIZE INTERVAL			
Phi mm	INTERVAL WT	INTERVAL %	CUMULATIVE %
. 5	0.00	0.0	0.0
<-5 >32	0.00	0.0	0.0
-4 32 - 16	0.00	0.0	0.0
-3 16-8	0.00	0.0	0.0
-2 8-4	0.00	0.0	0.0
-1 4-2	0.00	0.0	0.0
0 2-1	0.04	0.2	0.2
1 1-0.5	0.06	0.3	0.6
2 0.5-0.25	0.08	0.5	1.0
3 0.25-0.125	0.14	0.8	1.8
4 0.125-0.062	0.43	2.4	4.3
5 0.062-0.031	2.97	16.9	
6 0.031-0.016	5.28	30.0	5 51.1
7 0.016-0.008	3.55	20.2	71.3
8 0.008-0.004	1.33	7.5	78.8
9 0.004-0.002	1.17	6.6	85.5
>9 < 0.002	2.56	14.5	100.0
	total wt	coarse wt	fine wt
	17.6	0.8	16.9
	% sand	% silt	% clay
	4.26	74.57	21.16

ToxScan Number: T-12046

¹ Russell H. Plumb, Jr.; Procedures for Handling and Chemical Analysis of Sediment and Water Samples, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-44

Method:

Plumb¹

Date Analyzed:

April 25, 1995

Matrix:

Sediment

Client Sample ID:

HUM95SED0002

Client Site ID:

SAM 6-A

ToxScan Lab ID:

SIZE INTERVAL			
Phi mm	INTERVAL WT	INTERVAL %	CUMULATIVE %
		• •	0.0
<-5 >32	0.00	0.0	0.0
-4 32-16	0.00	0.0	0.0
-3 16 -8	0.00	0.0	0.0
-2 8-4	0.00	0.0	0.0
	0.00	0.0	0.0
-1 4-2			0.2
0 2-1	0.05	0.2	0.2
1 1-0.5	0.11	0.5	0.8
2 0.5-0.25	0.68	3.2	4.0
3 0.25-0.125	11.81	56.4	60.4
4 0.125-0.062	2.00	9.6	70.0
5 0.062-0.031	1.82	8.7	78.7
6 0.031-0.016	1.08	5.1	83.8
0 0.031-0.010	1.00	J.1	05.0
7 0.016-0.008	0.89	4.3	88.1
8 0.008-0.004	0.50	2.4	90.4
9 0.004-0.002	0.45	2.1	92.6
>9 < 0.002	1.55	7.4	100.0
	total sut	coarse wt	fine wt
	total wt		6.3
	20.9	14.7	
	% sand	% silt	% clay
·	69.98	20.47	9.55

¹ Russell H. Plumb, Jr.; Procedures for Handling and Chemical Analysis of Sediment and Water Samples, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-45

Method:

Plumb1

Date Analyzed:

April 25, 1995

Matrix:

Sediment

Client Sample ID:

HUM95SED0003

Client Site ID:

SAM 6-B

ToxScan Lab ID:

SIZE INTERVAL			
Phi mm	INTERVAL WT	INTERVAL %	CUMULATIVE %
< 5 > 22	0.00	0.0	0.0
<-5 >32	0.00	0.0	0.0
-4 32-16	0.00	0.0	0.0
-3 16-8	0.00	0.0	0.0
-2 8-4	1.11	5.6	5.6
-1 4- 2	0.00	0.0	5.6
0 2-1	0.07	0.4	6.0
1 1-0.5	0.12	0.6	6.6
2 0.5-0.25	0.48	2.4	9.0
3 0.25-0.125	11.24	56.9	65.9
4 0.125-0.062	2.07	10.5	76.3
5 0.062-0.031	1.16	5.9	82.2
6 0.031-0.016	0.56	2.8	85.0
7 0.016-0.008	0.78	3.9	89.0
8 0.008-0.004	0.51	2.6	91.6
9 0.004-0.002	0.42	2.1	93.7
>9 < 0.002	1.25	6.3	100.0
	total wt	coarse wt	fine wt
	19.8	15.1	4.7
	% sand	% silt	% clay
	70.71	15.23	8.45

¹ Russell H. Plumb, Jr.; Procedures for Handling and Chemical Analysis of Sediment and Water Samples, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-46

Method:

Plumb¹

Date Analyzed:

April 25, 1995

Matrix:

Sediment

Client Sample ID:

HUM95SED0004

Client Site ID:

SAM 6-C

ToxScan Lab ID:

SIZE INTERVAL			
Phi mm	INTERVAL WT	INTERVAL %	CUMULATIVE %
<-5 >32	0.00	0.0	0.0
-4 32 - 16	0.00	0.0	0.0
-3 16-8	0.00	0.0	0.0
-2 8-4	0.20	0.9	0.9
-1 4-2	0.00	0.0	0.9
0 2-1	0.37	1.7	2.6
1 1-0.5	0.58	2.7	5.3
2 0.5-0.25	1.33	6.2	11.5
3 0.25-0.125	14.88	69.1	80.7
4 0.125-0.062	1.14	5.3	86.0
5 0.062-0.031	0.74	3.4	89.4
6 0.031-0.016	0.25	1.2	90.5
	0.40	• •	00.4
7 0.016-0.008	0.63	2.9	93.4
8 0.008-0.004	0.27	1.3	94.7
9 0.004-0.002	0.30	1.4	96.1
>9 < 0.002	0.84	3.9	100.0
	total wt	coarse wt	fine wt
			3.0
	21.5	18.5	
	% sand	% silt	% clay
·	85.04	8.74	5.30

¹ Russell H. Plumb, Jr.; Procedures for Handling and Chemical Analysis of Sediment and Water Samples, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-47

Method:

Plumb¹

Date Analyzed:

April 25, 1995

Matrix:

Sediment

Client Sample ID:

HUM95SED0005

Client Site ID:

COMP # 1

ToxScan Lab ID:

SIZE INTER	VAL			
Phi m	ım INT	ERVAL WT	INTERVAL %	CUMULATIVE %
		0.00	0.0	0.0
<-5 >3		0.00	0.0	0.0
-4 32-1		0.00	0.0	0.0
-3 16-	8	0.00	0.0	0.0
-2 8-	4	0.25	1.1	1.1
-1 4-		0.00	0.0	1.1
0 2-		0.17	0.8	1.9
1 1-0).5	0.32	1.5	3.4
2 0.5-0		0.94	4.3	7.6
3 0.25-0		14.04	63.8	71.4
4 0.125-0	0.062	1.75	8.0	79.4
5 0.062-0		1.04	4.7	84.1
6 0.031-0		0.65	3.0	87.0
7 0.016-0	0.008	0.70	3.2	90.2
8 0.008-0		0.41	1.9	92.1
9 0.004-0		0.36	1.6	93.7
	0.002	1.39	6.3	100.0
		total wt	coarse wt	fine wt
		22.0	17.5	4.5
		% sand	% silt	% clay
		78.24	12.70	7.93

¹ Russell H. Plumb, Jr.; *Procedures for Handling and Chemical Analysis of Sediment and Water Samples*, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-48

Method:

Plumb¹

Date Analyzed:

April 25, 1995

Matrix:

Sediment

Client Sample ID:

HUM95SED0006

Client Site ID:

FL4

ToxScan Lab ID:

SIZE IN	NTERVAL			
Phi	mm	INTERVAL WT	INTERVAL %	CUMULATIVE %
- 5	>20	0.00	0.0	0.0
<-5	>32		0.0	0.0
-4	32-16	0.00		
-3	16- 8	0.00	0.0	0.0
-2	8- 4	0.00	0.0	0.0
-1	4- 2	0.00	0.0	0.0
0	2- 1	0.00	0.0	0.0
1	1-0.5	0.04	0.2	0.2
2	0.5-0.25	0.45	2.6	2.8
		1.77	10.1	12.9
3	0.25-0.125	1.//	10.1	12.9
4 0	.125-0.062	1.11	6.3	19.3
5 0	.062-0.031	3.06	17.5	36.7
6 0	.031-0.016	2.90	16.5	53.2
7.0	.016-0.008	2.18	12.5	65.7
	.008-0.004	1.55		74.5
	.004-0.002	1.22		81.5
>9.0 >9.	< 0.002	3.25	18.5	100.0
<i>79.</i>	< 0.002	3.23	10.5	100.0
		total wt	coarse wt	fine wt
		17.5	3.4	14.1
		% sand	% silt	% clay
		19.25	55.27	25.48

¹ Russell H. Plumb, Jr.; Procedures for Handling and Chemical Analysis of Sediment and Water Samples, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-49

Method:

Plumb¹

Date Analyzed: Matrix:

April 25, 1995

Sediment

Client Sample ID:

HUM95SED0007

Client Site ID:

FL-1

ToxScan Lab ID:

SIZE IN	ITERVAL						
Phi	mm	INT	ERVAL WI	IN'	TERVAL %	6 CUM	ULATIVE %
	>22		0.00	•	0.0		0.0
	>32		0.00				
-4	32-16		0.00		0.0		0.0
-3	16- 8		0.00		0.0		0.0
-2	8- 4		0.00		0.0		0.0
-1	4- 2		0.00		0.0		0.0
.0	2- 1		0.03		0.2		0.2
.0	2- 1		0.05		0.2		0.2
1	1-0.5		0.06		0.4		0.5
2	0.5-0.25		0.12	4 4	0.7		1.3
	0.25-0.125		0.29		1.7		3.0
J . ,	0.120		0.25		~~~		0.,0
4 0.	.125-0.062		1.96		11.7		14.6
5 0.	.062-0.031		3.77		22.4		37.1
6 0.	.031-0.016		2.54		15.1		52.2
7 0.	.016-0.008		2.44		14.5		66.7
8 0.	.008-0.004		1.39		8.2		74.9
9 0.	.004-0.002	1 .	1.19		7.1		82.0
>9	< 0.002		3.02		18.0		100.0
					2010		
		1:4	total wt		coarse wt		fine wt
			16.8		2.5		14.3
			% sand		% silt		% clay
			14.64				25.06
					20.00		

Russell H. Plumb, Jr.; Procedures for Handling and Chemical Analysis of Sediment and Water Samples, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

San Francisco Army Corps of Engineers

Plumb¹

Date Analyzed:

April 25, 1995

Matrix:

Sediment

Client Sample ID:

HUM95SED0008

Client Site ID:

FL-2

ToxScan Lab ID:

T-12046-23

SIZE INTERVAL			
Phi mm	INTERVAL WT	INTERVAL %	CUMULATIVE %
	0.00	0.0	0.0
<-5 >32	0.00	0.0	0.0
-4 32-16	0.00	0.0	0.0
-3 16-8	0.00	0.0	0.0
-2 8-4	0.00	0.0	0.0
-1 4- 2	0.00	0.0	0.0
0 2-1	0.03	0.2	0.2
1 1-0.5	0.04	0.2	0.4
2 0.5-0.25	0.09	0.6	1.0
3 0.25-0.125	0.28	1.7	2.7
•			
4 0.125-0.062	1.60	9.9	12.6
5 0.062-0.031	2.63	16.3	29.0
6 0.031-0.016	3.23	20.0	48.9
7 0.016-0.008	2.35	14.6	63.5
		9.4	72.9
8 0.008-0.004	1.52		
9 0.004-0.002	1.14	7.0	79.9
>9 < 0.002	3.24	20.1	100.0
	total wt	coarse wt	fine wt
	16.1	2.0	14.1
	% sand	% silt	% clay
	12.65	60.26	27.09

ToxScan Number: T-12046

¹ Russell H. Plumb, Jr.; Procedures for Handling and Chemical Analysis of Sediment and Water Samples, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-51

Method:

Plumb¹

Date Analyzed: Matrix:

April 25, 1995

Sediment

Client Sample ID:

HUM95SED0009

Client Site ID:

FL-3

ToxScan Lab ID:

SIZE II	NTERVAL			
Phi	mm	INTERVAL WT	INTERVAL %	CUMULATIVE %
_				
<-5	>32	0.00	0.0	0.0
-4	32-16	0.00	0.0	0.0
-3	16- 8	0.00	0.0	0.0
-2	8- 4	0.00	0.0	0.0
-1	4- 2	0.00	0.0	0.0
0	2- 1	0.00	0.0	0.0
1	1-0.5	0.02	0.1	0.1
2	0.5-0.25	0.10	0.6	0.8
	0.25-0.125	0.14	0.9	1.7
4 0),125-0.062	1.26	8.1	9.8
	0.062-0.031	2.82	18.2	28.0
	0.031-0.016	2.72	17.5	45.5
7 0	0.016-0.008	2.41	15.5	61.0
	0.008-0.004	1.50	9.7	70.7
	0.004-0.002	1.27	8.2	78.9
>9	< 0.002	3.28	21.1	100.0
		total wt	coarse wt	fine wt
		15.5	1.5	14.0
		% sand	% silt	% clay
		9.80	60.90	29.30

¹ Russell H. Plumb, Jr.; Procedures for Handling and Chemical Analysis of Sediment and Water Samples, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-52

Method:

Plumb¹

Date Analyzed:

April 25, 1995

Matrix:

Sediment

Client Sample ID:

HUM95SED0010

Client Site ID:

Comp # 4

ToxScan Lab ID:

SIZE INTERVAL			
Phi mm	INTERVAL WT	INTERVAL %	CUMULATIVE %
. 5 22	0.00	0.0	0.0
<-5 >32	0.00	0.0	0.0
-4 32-16	0.00	0.0	0.0
-3 16-8	0.00	0.0	0.0
-2 8-4	0.00	0.0	0.0
-1 4-2	0.00	0.0	0.0
0 2-1	0.02	0.1	0.1
0 24 1	0.02	0.1	0.1
1 1-0.5	0.05.	0.3	0.5
2 0.5-0.25	0.21	1.4	1.9
3 0.25-0.125	0.55	3.8	5.7
4 0.125-0.062	1.62	11.2	16.9
5 0.062-0.031	2.26	15.6	32.5
6 0.031-0.016	2.23	15.4	47.8
7 0.016-0.008	2.04	14.0	61.8
8 0.008-0.004	1.36	9.3	71.2
9 0.004-0.002	1.05	7.2	78.4
>9 < 0.002	3.13	21.6	100.0
	4-4-14		£
	total wt	coarse wt	fine wt
	14.5	2.5	12.0
	% sand	% silt	% clay
	16.90	54.29	28.80

¹ Russell H. Plumb, Jr.; Procedures for Handling and Chemical Analysis of Sediment and Water Samples, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-53

Method:

Plumb¹

Date Analyzed:

April 25, 1995

Matrix:

Sediment

Client Sample ID:

HUM95SED0011

Client Site ID:

EK8

ToxScan Lab ID:

SIZE INTERVAL			
Phi mm	INTERVAL WT	INTERVAL %	CUMULATIVE %
_			0.0
<-5 >32	0.00	0.0	0.0
-4 32 - 16	0.00	0.0	0.0
-3 16-8	0.00	0.0	0.0
-2 8-4	0.00	0.0	0.0
-1 4-2	0.00	0.0	0.0
0 2-1	0.04	0.2	0.2
1 1-0.5	0.05	0.3	0.5
2 0.5-0.25	0.06	0.3	0.8
3 0.25-0.125	0.14	0.8	1.6
4 0.125-0.062	1.22	6.8	8.5
5 0.062-0.031	3.07	17.2	25.7
6 0.031-0.016	2.89	16.2	41.9
7 0.016-0.008	2.42	13.6	55.5
8 0.008-0.004	1.70	9.5	65.0
9 0.004-0.002	1.62	9.1	74.1
>9 < 0.002	4.63	25.9	100.0
	total wt	coarse wt	fine wt
	17.8	1.5	16.3
	% sand	% silt	% clay
	8.47	56.52	35.01

¹ Russell H. Plumb, Jr.; *Procedures for Handling and Chemical Analysis of Sediment and Water Samples*, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-54

Plumb¹

Date Analyzed:

lumo

Matrix:

May 1, 1995 Sediment

Client Sample ID:

HUM95SED0012

Client Site ID:

EK7

ToxScan Lab ID:

Phi mm INTERVAL WT INTERVAL % CUMULATIVE % <-5 > 32	SIZE INTERVAL			
-4 32-16	Phi mm	INTERVAL WT	INTERVAL %	CUMULATIVE %
-4 32-16	. 5	0.00	0.0	0.0
-3 16- 8 0.00 0.0 0.0 -2 8- 4 0.00 0.0 0.0 -1 4- 2 0.23 0.8 0.8 0 2- 1 0.25 0.9 1.8 1 1-0.5 0.14 0.5 2.3 2 0.5-0.25 0.24 0.9 3.2 3 0.25-0.125 0.72 2.6 5.8 4 0.125-0.062 2.28 8.4 14.2 5 0.062-0.031 3.86 14.2 28.4 6 0.031-0.016 3.70 13.6 41.9 7 0.016-0.008 3.95 14.5 56.4 8 0.008-0.004 2.85 10.5 66.9 9 0.004-0.002 2.31 8.5 75.4 >9 < 0.002 6.70 24.6 100.0 total wt coarse wt fine wt 27.2 3.9 23.4 % sand % silt % clay				
-2 8-4 0.00 0.0 0.0 0.0 0.8 0.8 0.8 0.8 0.2-1 0.25 0.9 1.8 1 1-0.5 0.14 0.5 2.3 2.3 2.4 0.9 3.2 3.2 3.2 3.2 5.0.125 0.72 2.6 5.8 4 0.125-0.062 2.28 8.4 14.2 2.8.4 6 0.031-0.016 3.70 13.6 41.9 7 0.016-0.008 3.95 14.5 56.4 8 0.008-0.004 2.85 10.5 66.9 9 0.004-0.002 2.31 8.5 75.4 >9 < 0.002 6.70 24.6 100.0 total wt coarse wt fine wt 27.2 3.9 23.4 % sand % silt % clay				
-1 4- 2 0.23 0.8 0.8 0.8 0 2- 1 0.25 0.9 1.8 1 1-0.5 0.14 0.5 2.3 2 0.5-0.25 0.24 0.9 3.2 3 0.25-0.125 0.72 2.6 5.8 4 0.125-0.062 2.28 8.4 14.2 28.4 6 0.031-0.016 3.70 13.6 41.9 7 0.016-0.008 3.95 14.5 56.4 8 0.008-0.004 2.85 10.5 66.9 9 0.004-0.002 2.31 8.5 75.4 >9 < 0.002 6.70 24.6 100.0 total wt coarse wt fine wt 27.2 3.9 23.4 % sand % silt % clay	-3 16-8	0.00	0.0	0.0
-1 4- 2 0.23 0.8 0.8 0.8 0 2- 1 0.25 0.9 1.8 1 1-0.5 0.14 0.5 2.3 2 0.5-0.25 0.24 0.9 3.2 3 0.25-0.125 0.72 2.6 5.8 4 0.125-0.062 2.28 8.4 14.2 28.4 6 0.031-0.016 3.70 13.6 41.9 7 0.016-0.008 3.95 14.5 56.4 8 0.008-0.004 2.85 10.5 66.9 9 0.004-0.002 2.31 8.5 75.4 >9 < 0.002 6.70 24.6 100.0 total wt coarse wt fine wt 27.2 3.9 23.4 % sand % silt % clay	-2 8-4	0.00	0.0	0.0
0 2- 1 0.25 0.9 1.8 1 1-0.5 0.14 0.5 2.3 2 0.5-0.25 0.24 0.9 3.2 3 0.25-0.125 0.72 2.6 5.8 4 0.125-0.062 2.28 8.4 14.2 5 0.062-0.031 3.86 14.2 28.4 6 0.031-0.016 3.70 13.6 41.9 7 0.016-0.008 3.95 14.5 56.4 8 0.008-0.004 2.85 10.5 66.9 9 0.004-0.002 2.31 8.5 75.4 >9 < 0.002				
2 0.5-0.25 0.24 0.9 3.2 3 0.25-0.125 0.72 2.6 5.8 4 0.125-0.062 2.28 8.4 14.2 5 0.062-0.031 3.86 14.2 28.4 6 0.031-0.016 3.70 13.6 41.9 7 0.016-0.008 3.95 14.5 56.4 8 0.008-0.004 2.85 10.5 66.9 9 0.004-0.002 2.31 8.5 75.4 >9 < 0.002				
2 0.5-0.25	1 1-0.5	0.14	0.5	23
3 0.25-0.125 0.72 2.6 5.8 4 0.125-0.062 2.28 8.4 14.2 5 0.062-0.031 3.86 14.2 28.4 6 0.031-0.016 3.70 13.6 41.9 7 0.016-0.008 3.95 14.5 56.4 8 0.008-0.004 2.85 10.5 66.9 9 0.004-0.002 2.31 8.5 75.4 >9 < 0.002				
5 0.062-0.031 3.86 14.2 28.4 6 0.031-0.016 3.70 13.6 41.9 7 0.016-0.008 3.95 14.5 56.4 8 0.008-0.004 2.85 10.5 66.9 9 0.004-0.002 2.31 8.5 75.4 >9 < 0.002				
5 0.062-0.031 3.86 14.2 28.4 6 0.031-0.016 3.70 13.6 41.9 7 0.016-0.008 3.95 14.5 56.4 8 0.008-0.004 2.85 10.5 66.9 9 0.004-0.002 2.31 8.5 75.4 >9 < 0.002		• • •		140
6 0.031-0.016 3.70 13.6 41.9 7 0.016-0.008 3.95 14.5 56.4 8 0.008-0.004 2.85 10.5 66.9 9 0.004-0.002 2.31 8.5 75.4 >9 < 0.002 6.70 24.6 100.0 total wt coarse wt fine wt 27.2 3.9 23.4 % sand % silt % clay				
7 0.016-0.008 3.95 14.5 56.4 8 0.008-0.004 2.85 10.5 66.9 9 0.004-0.002 2.31 8.5 75.4 >9 < 0.002 6.70 24.6 100.0 total wt coarse wt fine wt 27.2 3.9 23.4 % sand % silt % clay	5 0.062-0.031			
8 0.008-0.004 2.85 10.5 66.9 9 0.004-0.002 2.31 8.5 75.4 >9 < 0.002	6 0.031-0.016	3.70	13.6	41.9
8 0.008-0.004 2.85 10.5 66.9 9 0.004-0.002 2.31 8.5 75.4 >9 < 0.002	7 0.016-0.008	3.95	14.5	56.4
9 0.004-0.002 2.31 8.5 75.4 >9 < 0.002 6.70 24.6 100.0 total wt coarse wt fine wt 27.2 3.9 23.4 % sand % silt % clay		2.85	10.5	66.9
>9 < 0.002 6.70 24.6 100.0 total wt coarse wt fine wt 27.2 3.9 23.4 % sand % silt % clay				
27.2 3.9 23.4 % sand % silt % clay				
27.2 3.9 23.4 % sand % silt % clay		total wt	coarse wt	fine wt
% sand % silt % clay				
· ·				
		14.19	52.70	33.11

¹ Russell H. Plumb, Jr.; Procedures for Handling and Chemical Analysis of Sediment and Water Samples, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-55

Plumb¹

Date Analyzed:

Matrix:

May 1, 1995 Sediment

Client Sample ID:

HUM95SED0013

Client Site ID:

EK6

ToxScan Lab ID:

SIZE I	NTERVAL							
Phi	mm	IN	TERVAL W	T/	INTERVAL 9	% CUM	IULATIVE %)
<-5	>32		0.00		0.0		0.0	
-4	32-16		0.00		0.0		0.0	
-3	16-8		0.00		0.0		0.0	
-2	8- 4		0.05		0.2		0.2	
-1	4- 2		0.16		0.7		0.9	
0	2- 1		0.20		0.9		1.8	
_								
1	1-0.5		0.15		0.6		2.4	
2	0.5-0.25		0.19		0.8		3.2	
3	0.25-0.125		0.86		3.7		6.9	
4 0	.125-0.062		3.38		14.4		21.3	
	.062-0.031		4.48		19.1		40.4	
	.031-0.016	٠	3.37		14.4			
	.016-0.008		2.89		12.3		67.1	
	.008-0.004		1.81	:	/./			
9 0	.004-0.002		1.48		6.3		81.1	
>9	< 0.002		4.43		18.9		100.0	
			total wt		coarse wt		fine wt	
			23.4		5.0		18.4	
			% sand		% silt		% clay	
	•		21.09		53.50		25.19	
			41.07		33.30		43.17	

¹ Russell H. Plumb, Jr.; Procedures for Handling and Chemical Analysis of Sediment and Water Samples, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-56

Plumb¹

Date Analyzed:

Matrix:

May 1, 1995 Sediment

Client Sample ID:

HUM95SED0014

Client Site ID:

EK5

ToxScan Lab ID:

SIZE INTERVAL			
Phi mm	INTERVAL WT	INTERVAL 9	% CUMULATIVE %
<-5 >32	0.00	0.0	0.0
-4 32-16	0.00	0.0	0.0
-3 16-8	0.00	0.0	0.0

-2 8-4	0.00	0.0	0.0
-1 4-2	0.02	0.1	0.1
0 2-1	0.28	1.1	1.2
1 105	0.00	0.0	2.1
1 1-0.5	0.23	0.9	2.1
2 0.5-0.25	0.29	1.2	3.3
3 0.25-0.125	0.58	2.3	5.6
4 0.125-0.062	3.20	12.8	18.3
5 0.062-0.031	3.88	15.5	33.8
6 0.031-0.016	3.95	15.7	49.5
7 0.016-0.008	3.47	13.8	63.3
	2.21	8.8	72.1
8 0.008-0.004			
9 0.004-0.002	1.87	7.4	79.6
>9 < 0.002	5.13	20.4	100.0
	total wt	coarse wt	fine wt
	25.1	4.6	20.5
	% sand	% silt	% clay
	18.33	53.81	27.86

¹ Russell H. Plumb, Jr.; Procedures for Handling and Chemical Analysis of Sediment and Water Samples, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

San Francisco Army Corps of Engineers

Method:

Plumb¹

Date Analyzed: Matrix:

May 1, 1995

Sediment

Client Sample ID:

HUM95SED0015

Client Site ID:

COMP #3

ToxScan Lab ID:

T-12046-30

SIZE IN	NTERVAL						
Phi	mm	INT	ERVAL V	VΤ	INTERVAL 9	6 CUM	ULATIVE %
_							
	>32		0.00		0.0		0.0
-4	32-16		0.00		0.0	* .	0.0
-3	16- 8		0.00		0.0		0.0
-2	8- 4		0.00		0.0		0.0
-1	4- 2		0.00		0.0		0.0
0	2- 1		0.16		0.7		0.7
1	1-0.5		0.13		0.6		1.2
2	0.5-0.25		0.19		0.8		2.1
_	0.25-0.125		0.57		2.5		4.5
4 0	.125-0.062		2.65		11.4		15.9
	.062-0.031		4.11				33.6
	.031-0.016		3.68	,	15.9		49.5
7 0	.016-0.008		2.93		12.6		62.1
	.008-0.004		1.97		8.5		
	.004-0.002		1.77		7.6		
	< 0.002		5.06		21.8	1.5	100.0
			total wt		coarse wt		fine wt
					3.7		19.5
			23.2				
			% sand		% silt		% clay
			15.94		54.64		29.41

ToxScan Number: T-12046

¹ Russell H. Plumb, Jr.; *Procedures for Handling and Chemical Analysis of Sediment and Water Samples*, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

San Francisco Army Corps of Engineers

Method:

Plumb¹

Date Analyzed: Matrix:

May 1, 1995 Sediment

Client Sample ID:

HUM95SED0016

Client Site ID:

EK2

ToxScan Lab ID:

T-12046-31

SIZE INTERVAL					
Phi mm	IN	TERVAL W	T I	NTERVAL 9	% CUMULATIVE %
		0.00			
<-5 >32		0.00		0.0	0.0
-4 32-16		0.00		0.0	0.0
-3 16-8		0.00		0.0	0.0
-2 8-4		0.00		0.0	0.0
-1 4-2		0.06		0.3	0.3
0 2-1		0.18			1.0
1 1-0.5		0.21		0.9	1.9
2 0.5-0.25		0.81		3.4	5.3
3 0.25-0.125		3.38		14.3	19.6
4 0.125-0.062		4.69		19.8	39.5
		3.68		15.6	55.0
5 0.062-0.031					
6 0.031-0.016		2.30		9.7	64.7
7 0.016-0.008	· ·	2.38		10.1	74.8
8 0.008-0.004	136	1.41		5.9	80.7
9 0.004-0.002		1.14		4.8	9. 4. 4.7. 85.5
>9 < 0.002		3.42		14.5	100.0
		total wt		coarse wt	fine wt
		23.6		9.3	14.3
					% clay
		% sand			
and the second s		39.46		41.28	19.26

ToxScan Number: T-12046

¹ Russell H. Plumb, Jr.; Procedures for Handling and Chemical Analysis of Sediment and Water Samples, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

San Francisco Army Corps of Engineers

Method:

Plumb¹

Date Analyzed:

May 1, 1995

Matrix:

Sediment

Client Sample ID:

HUM95SED0017

Client Site ID:

EK4

ToxScan Lab ID:

T-12046-32

SIZE INTERVAL			
Phi mm	INTERVAL WT	INTERVAL %	CUMULATIVE %
<-5 >32	0.00	0.0	0.0
-4 32 - 16	0.00	0.0	0.0
-3 16-8	0.00	0.0	0.0
-2 8-4	0.22	0.8	0.8
-1 4-2	0.23	0.8	1.6
0 2-1	0.32	1.1	2.8
0 2 1	0.52	***	2.0
1 1-0.5	0.17	0.6	3.4
2 0.5-0.25	0.37	1.3	4.7
3 0.25-0.125	1.22	4.4	9.1
4 0.125-0.062	3.16	11.3	20.4
5 0.062-0.031	6.74	24.1	44.5
6 0.031-0.016	2.20	7.9	52.3
7 00160000	2.41	10.0	CA 5
7 0.016-0.008	3.41	12.2	64.5
8 0.008-0.004	2.40	8.6	73.1
9 0.004-0.002	1.93	6.9	80.0
>9 < 0.002	5.58	20.0	100.0
	total wt	coarse wt	fine wt
	27.9	5.7	22.3
	% sand	% silt	% clay
•	19.58	52.77	26.86

ToxScan Number: T-12046

¹ Russell H. Plumb, Jr.; *Procedures for Handling and Chemical Analysis of Sediment and Water Samples*, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-60

Method:

Plumb¹

Date Analyzed:

May 1, 1995

Matrix:

Sediment

Client Sample ID:

HUM95SED0018

Client Site ID:

EK 4-A

ToxScan Lab ID:

SIZE INTERVAL			
Phi mm	INTERVAL WI	INTERVAL 9	6 CUMULATIVE %
<-5 >32	0.00	0.0	0.0
-4 32-16	0.00	0.0	0.0
-3 16-8	0.00	0.0	0.0
-2 8-4	0.00	0.0	0.0
-1 4-2	0.13	0.5	0.5
0 2-1	0.22	0.9	1.4
1 1-0.5	0.30	1.2	2.6
2 0.5-0.25	0.99	4.0	6.6
3 0.25-0.125	2.26	9.1	15.7
4 0.125-0.062	3.54	14.2	29.9
5 0.062-0.031	4.70	18.8	48.7
	3.39	13.6	62.3
6 0.031-0.016	3.39	13.0	02.3
7 0.016-0.008	2.65	10.6	72.9
8 0.008-0.004	1.62	6.5	79.4
9 0.004-0.002	1.22	4.9	84.3
>9 < 0.002	3.91	15.7	100.0
er se ³	total wt		fine sut
		coarse wt	fine wt
A second of the	24.9		17.5
	, , , ,	% silt	% clay
	29.87	49.56	20.57

¹ Russell H. Plumb, Jr.; *Procedures for Handling and Chemical Analysis of Sediment and Water Samples*, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

San Francisco Army Corps of Engineers

Method:

Plumb¹

Date Analyzed:

May 1, 1995

Matrix:

Sediment

Client Sample ID:

HUM95SED0019

Client Site ID:

COMP #2

ToxScan Lab ID:

T-12046-34

SIZE INTERVAL			
Phi mm	INTERVAL WT	INTERVAL %	CUMULATIVE %
. 5	0.00	0.0	0.0
<-5 >32	0.00	0.0	0.0
-4 32-16	0.00	0.0	0.0
-3 16-8	0.00	0.0	0.0
-2 8-4	0.06	0.2	0.2
-1 4-2	0.09	0.3	0.6
0 2-1	0.25	1.0	1.5
0 2-1	0.23	1.0	1.5
1 1-0.5	0.23	0.9	2.4
2 0.5-0.25	0.86	3.3	5.8
3 0.25-0.125	3.13	12.1	17.9
4 0.125-0.062	4.47	17.3	35.1
5 0.062-0.031	4.05	15.7	50.8
6 0.031-0.016	3.26	12.6	63.4
7 0.016-0.008	2.25	8.7	72.1
8 0.008-0.004	1.82	7.0	79.1
9 0.004-0.002	1.31	5.0	84.1
>9 < 0.002	4.11	15.9	100.0
			_
	total wt	coarse wt	fine wt
	25.9	9.1	16.8
	% sand	% silt	% clay
	34.90	43.94	20.93

ToxScan Number: T-12046

¹ Russell H. Plumb, Jr.; *Procedures for Handling and Chemical Analysis of Sediment and Water Samples*, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-62

Method:

Plumb¹

Date Analyzed:

May 1, 1995

Matrix:

Sediment

Client Sample ID:

HUM95PSD0001

Client Site ID:

BAR 1

ToxScan Lab ID:

SIZE IN	TERVAL						
Phi	mm	INT	TERVAL W	VΤ	INTERVAL	% CUM	ULATIVE %
_							
	>32		0.00		0.0		0.0
-4	32-16		0.00		0.0		0.0
-3	16-8		0.00		0.0	20 g	0.0
-2	8- 4		0.00		0.0		0.0
-1	4- 2		0.00		0.0		0.0
0	2- 1		0.03		0.1	F 1	0.1
1	1-0.5		0.01		o. 0.0		0.1
	0.5-0.25		1.21		3.1		
).25-0.125		36.99				
4 0.	125-0.062		0.95		2.4		100.0
	062-0.031		0.00		0.0		100.0
	031-0.016		0.00		0.0	100	100.0
7 0.	016-0.008		0.00		0.0		100.0
	008-0.004		0.00		0.0		
	004-0.002		0.00		0.0		
	< 0.002	4	0.00		0.0	No.	100.0
		and the second	total wt		coarse wt		fine wt
			39.2	1 °	39.2		0.0
			% sand				% clay
			100.00				0.00

¹ Russell H. Plumb, Jr.; *Procedures for Handling and Chemical Analysis of Sediment and Water Samples*, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

San Francisco Army Corps of Engineers

Method:

Plumb¹

IN-63

ToxScan Number: T-12046

Date Analyzed: Matrix:

May 1, 1995 Sediment

Client Sample ID:

HUM95PSD0002

Client Site ID:

NB9

ToxScan Lab ID:

SIZE I	NTERVAL			
Phi	mm	INTERVAL WT	INTERVAL %	CUMULATIVE %
<-5	>22	0.00	0.0	0.0
	>32	0.00	0.0	0.0
-4	32-16	0.00	0.0	0.0
-3	16- 8	0.00	0.0	0.0
-2	8- 4	14.67	38.1	38.1
-1	4- 2	7.28	18.9	57.1
0	2- 1	2.55	6.6	63.7
1	1-0.5	2.82	7.3	71.0
2	0.5-0.25	4.20	10.9	82.0
	0.25-0.125	1.74	4.5	86.5
4 0	.125-0.062	0.70	1.8	88.3
	.062-0.031	1.44	3.7	92.0
	.031-0.016	1.15	3.0	95.0
7 0	.016-0.008	0.59	1.5	96.6
8 0	.008-0.004	0.35	0.9	97.5
	.004-0.002	0.28	0.7	98.2
>9	< 0.002	0.70	1.8	100.0
		total wt	coarse wt	fine wt
*		38.5	34.0	4.5
		% sand	% silt	% clay
		50.16	9.17	2.54
			· · · ·	

¹ Russell H. Plumb, Jr.; Procedures for Handling and Chemical Analysis of Sediment and Water Samples, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

San Francisco Army Corps of Engineers

.

ToxScan Number: T-12046

IN-64

Method:

Plumb¹

Date Analyzed:

May 1, 1995

Matrix:

Sediment

Client Sample ID:

HUM95PSD0003

Client Site ID:

NB1

ToxScan Lab ID:

SIZE IN	NTERVAL			
Phi	mm	INTERVAL WT	INTERVAL %	CUMULATIVE %
<-5	>32	0.00	0.0	0.0
-4	32-16	0.00	0.0	0.0
-3	16-8	0.00	0.0	0.0
-2	8- 4	0.00	0.0	0.0
-1	4- 2	0.00	0.0	0.0
0	2- 1	0.03	0.1	0.1
1	1-0.5	0.08	0.2	0.3
2	0.5-0.25	12.92	37.4	37.7
3	0.25-0.125	20.43	59.1	96.9
4 0	.125-0.062	1.08	3.1	100.0
5 0	.062-0.031	0.00	0.0	100.0
6 0	.031-0.016	0.00	0.0	100.0
7 0	.016-0.008	0.00	0.0	100.0
8 0	.008-0.004	0.00	0.0	100.0
9 0	.004-0.002	0.00	0.0	100.0
>9	< 0.002	0.00	0.0	100.0
	•			
		total wt	coarse wt	fine wt
		34.5	34.5	0.0
		% sand	% silt	% clay
		100.00	0.00	0.00

¹ Russell H. Plumb, Jr.; Procedures for Handling and Chemical Analysis of Sediment and Water Samples, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-65

Method:

Plumb¹

Date Analyzed:

May 1, 1995

Matrix:

Sediment

Client Sample ID:

HUM95PSD0004

Client Site ID:

ENT 1

ToxScan Lab ID:

SIZE INTERVAL			
Phi mm	INTERVAL WT	INTERVAL %	CUMULATIVE %
<-5 >32	0.00	0.0	0.0
-4 32-16	0.00	0.0	0.0
-3 16-8	0.00	0.0	0.0
-2 8-4	0.00	0.0	0.0
-1 4-2	0.00	0.0	0.0
0 2-1	0.01	0.0	
0 2-1	0.01	0.0	0.0
1 1-0.5	0.28	0.8	0.8
2 0.5-0.25	19.61	56.0	56.8
3 0.25-0.125	15.03	42.9	99.7
4 0.125-0.062	0.09	0.3	100.0
5 0.062-0.031	0.00	0.0	100.0
6 0.031-0.016	0.00	0.0	100.0
0 0.031-0.010	0.00	0.0	100.0
7 0.016-0.008	0.00	0.0	100.0
8 0.008-0.004	0.00	0.0	100.0
9 0.004-0.002	0.00	0.0	100.0
>9 < 0.002	0.00	0.0	100.0
	total wt	coarse wt	fine wt
	35.0	35.0	
			0.0
	% sand	% silt	% clay
	100.00	0.00	0.00

¹ Russell H. Plumb, Jr.; *Procedures for Handling and Chemical Analysis of Sediment and Water Samples*, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

San Francisco Army Corps of Engineers

Plumb¹

Date Analyzed:

May 1, 1995

Matrix:

Sediment

Client Sample ID:

HUM95PSD0005

Client Site ID:

ENT 2

ToxScan Lab ID:

T-12046-39

SIZE INTERVAL			
Phi mm	INTERVAL WT	INTERVAL %	CUMULATIVE %
<-5 >32	0.00	0.0	0.0
-4 32-16	0.00	0.0	0.0
-3 16-8	0.00	0.0	0.0
8-2 8- 4	0.00	0.0	0.0
-1 4- 2	0.00	0.0	0.0
0 2-1	0.01	0.0	0.0
1 1-0.5	0.06	0.2	0.2
2 0.5-0.25	15.58	44.9	45.1
3 0.25-0.125	18.98	54.7	99.9
4 0.125-0.062	0.05	0.1	100.0
5 0.062-0.031		0.0	100.0
6 0.031-0.016	0.00	0.0	100.0
7 0.016-0.008	0.00	0.0	100.0
8 0.008-0.004	0.00	0.0	100.0
9 0.004-0.002	0.00	0.0	100.0
>9 < 0.002	0.00	0.0	100.0
	total wt	coarse wt	fine wt
	34.7	34.7	0.0
	% sand	% silt	% clay
•	100.00	0.00	0.00
*			

ToxScan Number: T-12046

¹ Russell H. Plumb, Jr.; Procedures for Handling and Chemical Analysis of Sediment and Water Samples, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-67

Method:

Plumb¹

Date Analyzed: Matrix:

May 1, 1995

Sediment

Client Sample ID:

HUM95PSD0006

Client Site ID:

SAM 5

ToxScan Lab ID:

SIZE IN	ITERVAL			
Phi	mm	INTERVAL WT	INTERVAL %	CUMULATIVE %
<-5	>32	0.00	0.0	0.0
-4	32-16	0.00	0.0	0.0
-3	16- 8	0.00	0.0	0.0
-2	8- 4	0.09	0.3	0.3
-1	4- 2	0.11	0.4	0.7
0	2- 1	0.08		
U	2- 1	0.08	0.3	1.0
1	1-0.5	0.09	0.3	1.3
2	0.5-0.25	0.82	2.9	4.2
3 (0.25-0.125	18.90	66.3	70.4
4 0	.125-0.062	1.68	5.9	76.3
	.062-0.031	0.75	2.6	79.0
	.031-0.016	1.15	4.0	83.0
0 0.	.031-0.010	1.13	4.0	63.0
7 0.	.016-0.008	1.29	4.5	87.5
8 0.	.008-0.004	0.88	3.1	90.6
9 0.	.004-0.002	0.39	1.3	91.9
>9	< 0.002	2.30	8.1	100.0
		total wt	coarse wt	fine wt
		28.5	21.8	6.8
		% sand	% silt	% clay
		76.02	14.25	9.41
		/0.02	14.43	7.41

¹ Russell H. Plumb, Jr.; Procedures for Handling and Chemical Analysis of Sediment and Water Samples, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

Client: Method: San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-68

Plumb¹

Date Analyzed:

Piulilo

Matrix:

May 4, 1995 Sediment

Client Sample ID:

HUM95PSD0007

Client Site ID:

SAM 7

ToxScan Lab ID:

SIZE INTERVAL			
Phi mm	INTERVAL WT	INTERVAL %	CUMULATIVE %
<-5 >32	0.00	0.0	0.0
-4 32-16	0.00	0.0	0.0
-3 16-8	0.00	0.0	0.0
-2 8-4	0.34	0.9	0.9
-1 4-2	2.00	5.4	6.3
0 2-1	2.57	6.9	13.2
1 1-0.5	6.85	18.4	31.7
2 0.5-0.25	17.48	47.1	78.7
3 0.25-0.125	5.17	13.9	92.6
4 0.125-0.062	0.35	0.9	93.6
5 0.062-0.031	0.28	0.7	94.3
6 0.031-0.016	0.44	1.2	95.5
7 0.016-0.008	0.39	1.1	96.6
8 0.008-0.004	0.34	0.9	97.5
9 0.004-0.002	0.29	0.8	98.3
>9 < 0.002	0.65	1.7	100.0
	total wt	coarse wt	fine wt
	37.1	34.8	2.4
	% sand	% silt	% clay
A. A	92.68	3.89	2.52

¹ Russell H. Plumb, Jr.; *Procedures for Handling and Chemical Analysis of Sediment and Water Samples*, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-69

Plumb¹

Method: Date Analyzed:

Matrix:

May 5, 1995 Sediment

Client Sample ID:

HUM95PSD0008

Client Site ID:

SAM 1

ToxScan Lab ID:

SIZE INTERVAL			
Phi mm	INTERVAL WT	INTERVAL %	CUMULATIVE %
<-5 >32	0.00	0.0	0.0
-4 32-16	0.00	0.0	0.0
-3 16-8	0.00	0.0	0.0
-2 8-4	2.25	6.3	6.3
-1 4-2	1.40	3.9	10.3
0 2-1	1.12	3.2	13.4
0 2-1	1.12	3.2	13.4
1 1-0.5	1.55	4.4	17.8
2 0.5-0.25	13.65	38.5	56.3
3 0.25-0.125	13.15	37.1	93.4
4 0.125-0.062	0.46	1.3	94.7
		1.2	95.9
5 0.062-0.031	0.43		
6 0.031-0.016	0.32	0.9	96.8
7 0.016-0.008	0.30	0.8	97.6
8 0.008-0.004	0.16	0.4	98.0
9 0.004-0.002	0.21	0.6	98.6
>9 < 0.002	0.49	1.4	100.0
	_		_
	total wt	coarse wt	fine wt
	35.5	33.6	1.9
	% sand	% silt	% clay
	88.33	3.37	1.96

¹ Russell H. Plumb, Jr.; Procedures for Handling and Chemical Analysis of Sediment and Water Samples, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-70

Method:

Plumb¹

Date Analyzed:

May 5, 1995

Matrix:

Sediment

Client Sample ID:

HUM95PSD0009

Client Site ID:

SAM 3

ToxScan Lab ID:

SIZE INTERVAL			
Phi mm	INTERVAL WT	INTERVAL %	CUMULATIVE %
<-5 >32	0.00	0.0	0.0
-4 32-16	0.00	0.0	0.0
-3 16-8	0.00	0.0	0.0
-2 8-4	0.00	0.0	0.0
-1 4-2	0.40	1.0	1.0
0 2-1	2.86	7.3	8.3
1 1-0.5	7.91	20.2	28.6
2 0.5-0.25	16.70	42.7	71.3
3 0.25-0.125	7.11	18.2	89.5
4 0.125-0.062	0.28	0.7	90.2
5 0.062-0.031	0.44	1.1	91.4
6 0.031-0.016	0.57	1.4	92.8
7 0.016-0.008	0.55	1.4	94.2
8 0.008-0.004	0.38		95.2
9 0.004-0.002	0.67	1.7	96.9
>9 < 0.002	1.22	3.1	100.0
	total wt	coarse wt	fine wt
<i>3</i> *	39.1	35.3	3.8
	% sand	% silt	% clay
•	90.24	4.94	4.82

¹ Russell H. Plumb, Jr.; Procedures for Handling and Chemical Analysis of Sediment and Water Samples, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-71

Method:

Plumb¹

Date Analyzed:

May 5, 1995

Matrix:

Sediment

Client Sample ID:

HUM95PSD0010

Client Site ID:

SAM 4

ToxScan Lab ID:

SIZE IN	TERVAL			
Phi	mm	INTERVAL WT	INTERVAL %	CUMULATIVE %
<-5	>32	0.00	0.0	0.0
-4	32-16	0.00	0.0	0.0
-3	16-8	0.00	0.0	0.0
-2	8- 4	0.00	0.0	0.0
-1	4- 2	0.00	0.0	0.0
0	2- 1	0.35	1.3	1.3
U	2- 1	0.55	1.3	1.3
1	1-0.5	0.93	3.4	4.7
2	0.5-0.25	4.07	15.0	19.7
3 0	0.25-0.125	17.48	64.3	84.0
4 0	125-0.062	1.20	4.4	88.5
	062-0.031	0.70	2.6.	91.0
	031-0.016	0.70	1.9	92.9
0 0.	031-0.010	0.51	1.9	94.9
7 0.	016-0.008	0.50	1.8	94.7
8 0.	008-0.004	0.36	1.3	96.0
9 0.	004-0.002	0.30	1.1	97.1
>9	< 0.002	0.79	2.9	100.0
.*.		total wt	coarse wt	fine wt
		27.2	24.0	3.1
		% sand	% silt	
				% clay
		88.46	7.56	3.98

¹ Russell H. Plumb, Jr.; *Procedures for Handling and Chemical Analysis of Sediment and Water Samples*, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

San Francisco Army Corps of Engineers

Method:

Plumb¹

Date Analyzed:

May 5, 1995

Matrix:

Sediment

CIGE DIFFERMAL

Client Sample ID:

HUM95PSD0011

Client Site ID:

SAM 2

ToxScan Lab ID:

T-12046-45

SIZE II	NTERVAL								
Phi	mm	IN]	TERVAL	WT		INTERVAL 9	% CUN	<i>I</i> ULATIVE %)
<-5	>32		0.00			0.0		0.0	
-4	32-16		0.00			0.0		0.0	
-3	16-8		0.00			0.0		0.0	
· -2	8- 4		0.33			0.9		0.9	
-1	4- 2		0.23			0.6		1.5	
0	2- 1		0.38			1.0		2.5	
1	1-0.5		1.94			5.1		7.6	
2	0.5-0.25		18.24			47.8		55.4	
3	0.25-0.125		15.50			40.7		96.1	
4 0	0.125-0.062		0.30			0.8	1.3	96.9	
5 0	0.062-0.031		0.30			0.8		97.6	
6 0	0.031-0.016		0.14			0.4		98.0	
7 0	.016-0.008		0.22			0.6		98.6	
8 0	.008-0.004		0.10			0.3		98.8	
.9 0	.004-0.002		0.12		·	0.3		99.1	
>9	< 0.002		0.33			0.9		100.0	
			total wt			coarse wt		fine wt	
			38.1			36.9		1.2	
			% sand			% silt		% clay	
	•		95.99			1.97		1.18	

ToxScan Number: T-12046

IN-72

¹ Russell H. Plumb, Jr.; Procedures for Handling and Chemical Analysis of Sediment and Water Samples, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-73

Method:

Plumb¹

Date Analyzed:

May 5, 1995

Matrix:

Sediment

Client Sample ID:

HUM95PSD0012

Client Site ID:

NB5

ToxScan Lab ID:

SIZE INTERVAL			
Phi mm	INTERVAL WT	INTERVAL %	CUMULATIVE %
<-5 >32	0.00	0.0	0.0
- 4 32 - 16	0.00	0.0	0.0
-3 16-8	0.00	0.0	0.0
-2 8-4	0.00	0.0	0.0
-1 4-2	0.06	0.2	0.2
0 2-1	0.09	0.3	0.4
1 1-0.5	0.89	2.5	2.9
2 0.5-0.25	19.65	54.7	57.6
3 0.25-0.125	14.76	41.1	98.8
4 0.125-0.062	0.14	0.4	99.2
5 0.062-0.031	0.04	0.1	99.2
6 0.031-0.016	0.00	0.0	
010.01-0.010	0.00	0.0	99.3
7 0.016-0.008	0.07	0.2	99.5
8 0.008-0.004	0.01	0.0	99.5
9 0.004-0.002	0.02	0.1	99.5
>9 < 0.002	0.17	0.5	100.0
	total wt		6
		coarse wt	fine wt
	35.9	35.6	0.3
,	% sand	% silt	% clay
	99.15	0.33	0.55

¹ Russell H. Plumb, Jr.; Procedures for Handling and Chemical Analysis of Sediment and Water Samples, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

San Francisco Army Corps of Engineers

ToxScan Number: T-12046 IN-74

Method:

Plumb1

Date Analyzed:

May 5, 1995

Matrix:

Sediment

Client Sample ID:

HUM95PSD0013

Client Site ID:

NB3

ToxScan Lab ID:

SIZE I	NTERVAL				
Phi	mm	INTERVAL	WT	NTERVAL 9	% CUMULATIVE %
<-5	>32	0.00		0.0	0.0
-4	32-16	0.00		0.0	0.0
-3	16- 8	0.00		0.0	0.0
-2	8- 4	0.00		0.0	0.0
-1		0.02		0.1	0.1
0		0.01		0.0	0.1
. 1	1-0.5	0.21		0.6	0.7
2	0.5-0.25	19.43		53.0	53.6
3	0.25-0.125	16.79		45.8	99.4
4	0.125-0.062	0.21		0.6	100.0
	0.062-0.031	0.00		0.0	100.0
	0.031-0.016	0.00		0.0	100.0
7	0.016-0.008	0.00		0.0	100.0
	0.008-0.004	0.00		0.0	100.0
	0.004-0.002	0.00		0.0	100.0
>9	< 0.002	0.00		0.0	100.0
		total wt		coarse wt	fine wt
		36.7		36.7	0.0
		% sand	. *	% silt	% clay
		100.00		0.00	0.00

¹ Russell H. Plumb, Jr.; Procedures for Handling and Chemical Analysis of Sediment and Water Samples, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-75

Method:

Plumb¹

Date Analyzed: Matrix:

May 5, 1995

Sediment

Client Sample ID:

HUM95PSD0014

Client Site ID:

NB4

ToxScan Lab ID:

SIZE INTERVAL			
Phi mm	INTERVAL WT	INTERVAL %	CUMULATIVE %
<-5 >32	0.00	0.0	0.0
-4 32 - 16	0.00	0.0	0.0
-3 16-8	0.00	0.0	0.0
-2 8-4	0.00	0.0	0.0
-1 4-2	0.56	1.6	1.6
0 2-1	0.65	1.9	3.5
1 1-0.5	1.09	3.1	6.6
2 0.5-0.25	22.08	63.6	70.3
3 0.25-0.125	7.38	21.3	91.5
4 0.125-0.062	0.28	0.8	92.3
5 0.062-0.031	0.25	0.7	93.1
6 0.031-0.016	0.59	1.7	94.8
7 0.016-0.008	0.49	1.4	96.2
8 0.008-0.004	0.29	0.8	97.0
9 0.004-0.002	0.32	0.9	97.9
>9 < 0.002	0.73	2.1	100.0
	total wt	coarse wt	fine wt
	34.7	32.0	2.7
	% sand	% silt	% clay
•	92.35	4.65	3.00
			5.00

¹ Russell H. Plumb, Jr.; Procedures for Handling and Chemical Analysis of Sediment and Water Samples, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-76

Method:

Plumb¹

Date Analyzed:

May 5, 1995

Matrix:

Sediment

Client Sample ID:

HUM95PSD0015

Client Site ID:

NB6

ToxScan Lab ID:

SIZE IN	ITERVAL						
Phi	mm	IN	TERVAL WT	· I	NTERVAL %	6 CUM	ULATIVE %
<-5	>32		0.00		0.0		0.0
-4	32-16		0.00		0.0		0.0
-3	16- 8		0.00		0.0		0.0
-2	8- 4		4.07		12.5		12.5
-1	4- 2		5.59		17.2		29.7
0	2- 1		2.84		8.7		38.4
- 1	1-0.5		2.41		7.4		45.8
2	0.5-0.25		9.71		29.8	v.	75.6
3 (0.25-0.125		6.06		18.6		94.2
4 0	.125-0.062		0.46		1.4		95.6
5 0	.062-0.031		0.31		1.0		96.6
6 0	.031-0.016		0.25		0.8		97.3
7.0	.016-0.008		0.24		0.7		98.1
	.008-0.004		0.16		0.5		98.5
	.004-0.002		0.10		0.3		98.8
>9 U	< 0.002		0.10		1.2		100.0
79	< 0.002		0.36		1.2		100.0
			total wt		coarse wt		fine wt
			32.6		31.1		1.4
			% sand		% silt		% clay
	•		83.13		2.90		1.47

¹ Russell H. Plumb, Jr.; *Procedures for Handling and Chemical Analysis of Sediment and Water Samples*, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

San Francisco Army Corps of Engineers

Method:

Plumb¹

Date Analyzed:

May 5, 1995

Matrix: Sediment

Client Sample ID:

HUM95PSD0016

Client Site ID:

NB7

ToxScan Lab ID:

T-12046-50

SIZE IN	ITERVAL			
Phi	mm	INTERVAL WT	INTERVAL %	CUMULATIVE %
<-5	>22	0.00	0.0	0.0
	>32	0.00	0.0	0.0
-4	32-16	0.00	0.0	0.0
-3	16- 8	0.00	0.0	0.0
-2	8- 4	1.43	4.2	4.2
-1	4- 2	3.61	10.5	14.7
0	2- 1	3.03	8.8	23.5
1 -	1-0.5	6.25	18.2	41.8
	0.5-0.25	15.17	44.3	86.0
	0.25-0.125	2.85	8.3	94.3
4 0.	125-0.062	0.31	0.9	95.2
	062-0.031	0.59	1.7	97.0
6 0.	031-0.016	0.11	0.3	97.3
7 0.	016-0.008	0.24	0.7	98.0
	008-0.004	0.15	0.4	98.4
	004-0.002	0.16	0.5	98.8
>9	< 0.002	0.40	1.2	100.0
		total wt	coarse wt	fine wt
		34.3	32.7	1.6
		% sand	% silt	% clay
		91.07	3.15	1.60
		71.07	3.13	1.00

ToxScan Number: T-12046

IN-77

¹ Russell H. Plumb, Jr.; *Procedures for Handling and Chemical Analysis of Sediment and Water Samples*, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-78

Method: Plu

Date Analyzed:

Plumb¹

Matrix:

May 5, 1995 Sediment

Client Sample ID:

HUM95PSD0017

Client Site ID:

NB8

ToxScan Lab ID:

SIZE INTERVAL			
Phi mm	INTERVAL WT	INTERVAL %	CUMULATIVE %
<-5 >32	0.00	0.0	0.0
-4 32-16	0.00	0.0	0.0
-3 16-8	0.00	0.0	0.0
-2 8-4	0.23	0.6	0.6
-1 4-2	2.97	8.0	8.6
0 2-1	4.41	11.9	20.5
1 1-0.5	10.75	28.9	49.4
2 0.5-0.25	16.53	44.4	93.8
3 0.25-0.125	1.73	4.7	98.5
4 0.125-0.062	0.10	0.3	98.7
5 0.062-0.031	0.06	0.2	98.9
6 0.031-0.016	0.00	0.0	98.9
7 0.016-0.008	0.20	0.6	99.5
8 0.008-0.004	0.03	0.1	99.6
9 0.004-0.002	0.00	0.0	99.6
>9 < 0.002	0.18	0.4	100.0
	total wt	coarse wt	fine wt
	37.2	36.7	0.5
	% sand	% silt	% clay
	98.12	0.90	0.40

¹ Russell H. Plumb, Jr.; Procedures for Handling and Chemical Analysis of Sediment and Water Samples, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

Client: Method: San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-79

Plumb¹

Date Analyzed:

Matrix:

May 5, 1995 Sediment

Client Sample ID:

HUM95PSD0018

Client Site ID:

FL7

ToxScan Lab ID:

SIZE II	NTERVAL			
Phi	mm	INTERVAL WT	INTERVAL %	CUMULATIVE %
. ~	. 22			
<-5	>32	0.00	0.0	0.0
-4	32-16	0.00	0.0	0.0
-3	16- 8	0.00	0.0	0.0
-2	8- 4	0.00	0.0	0.0
-1	4- 2	0.12	0.3	0.3
0	2- 1	0.17	0.4	0.8
. 1	1-0.5	0.44	1.2	1.9
2	0.5-0.25	16.91	44.6	46.5
	0.25-0.125	17.66	46.6	93.1
4. 0	.125-0.062	0.99	2.6	05.7
	.062-0.031			95.7 96.5
		0.29	0.8	96.5
6 0	.031-0.016	0.25	0.6	97.1
7 0	.016-0.008	0.32	0.8	98.0
8 0	.008-0.004	0.19	0.5	98.5
9 0	.004-0.002	0.15	0.4	98.9
>9	< 0.002	0.44	1.1	100.0
		total wt	coarse wt	fine wt
		37.9	36.3	1.6
		% sand	% silt	% clay
		95.73	2.73	1.54

¹ Russell H. Plumb, Jr.; Procedures for Handling and Chemical Analysis of Sediment and Water Samples, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-80

Method:

Plumb¹

Date Analyzed:

May 5, 1995

Matrix:

Sediment

Client Sample ID:

HUM95PSD0019

Client Site ID:

FL6

ToxScan Lab ID:

SIZE INTERVAL			
Phi mm	INTERVAL WT	INTERVAL %	CUMULATIVE %
<-5 >32	0.00	0.0	0.0
-4 32-16	0.00	0.0	0.0
-3 16-8	0.00	0.0	0.0
-2 8-4	0.00	0.0	0.0
-1 4-2	0.06	0.1	0.1
0 2-1	0.45	1.1	1.2
1 1-0.5	2.24	5.3	6.5
2 0.5-0.25	23.92	56.7	63.3
3 0.25-0.125	11.74	27.8	91.1
4 0.125-0.062	3.11	7.4	98.5
5 0.062-0.031	0.20	0.5	98.9
6 0.031-0.016	0.12	0.3	99.2
7 0.016-0.008	0.05	0.1	99.3
8 0.008-0.004	0.01	0.0	99.3
9 0.004-0.002	0.04	0.1	99.4
>9 < 0.002	0.24	0.6	100.0
	total wt	coarse wt	fine wt
	42.2	41.5	0.6
	% sand	% silt	% clay
	98.48	0.87	0.65

¹ Russell H. Plumb, Jr.; Procedures for Handling and Chemical Analysis of Sediment and Water Samples, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-81

Method:

Plumb¹

Date Analyzed: Matrix:

May 5, 1995

Sediment

Client Sample ID:

HUM95PSD0020

Client Site ID:

FL5

ToxScan Lab ID:

SIZE I	NTERVAL			
Phi	mm	INTERVAL WT	INTERVAL %	CUMULATIVE %
<-5	>32	0.00	0.0	0.0
-4	32-16	0.00	0.0	0.0
-3	16-8	0.00	0.0	0.0
-2	8- 4	0.00	0.0	0.0
-1	4- 2	0.01	0.0	0.0
		0.09	0.0	
0	2- 1	0.09	0.3	0.3
· 1	1-0.5	0.09	0.3	0.6
2	0.5-0.25	2.98	8.9	9.5
3	0.25-0.125	19.88	59.5	69.0
4 (0.125-0.062	1.75	5.2	74.3
	0.062-0.031	1.72	5.1	79.4
	0.031-0.016	1.72	5.2	84.5
0 (7.031-0.010	1.72	5.2	64.3
7 (0.016-0.008	1.40	4.2	88.7
8 (0.008-0.004	0.93	2.8	91.5
9 (0.004-0.002	0.77	2.3	93.8
>9	< 0.002	2.07	6.2	100.0
		total wt	coarse wt	fine wt
		33.4	24.8	8.6
	,	% sand	% silt	% clay
		74.26	17.26	8.47

¹ Russell H. Plumb, Jr.; Procedures for Handling and Chemical Analysis of Sediment and Water Samples, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

Matrix:

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-82

Method:

Plumb¹

Date Analyzed:

May 8, 1995 Sediment

Client Sample ID:

HUM95PSD0021

Client Site ID:

EK1

ToxScan Lab ID:

SIZE INTERVAL			
Phi mm	INTERVAL WT	INTERVAL %	CUMULATIVE %
<-5 >32	0.00	0.0	0.0
-4 32-16	0.00	0.0	0.0
-3 16-8	0.00	0.0	0.0
-2 8-4	2.45	5.9	5.9
-1 4- 2	0.52	1.3	7.2
0 2-1	0.56	1.4	8.5
0 2-1	0.30	1.4	0.5
1 1-0.5	4.57	11.0	19.5
2 0.5-0.25	18.69	45.1	64.7
3 0.25-0.125	14.22	34.3	99.0
4 0.125-0.062	0.18	0.4	99.4
5 0.062-0.031	0.04	0.1	99.5
6 0.031-0.016	0.02	0.0	99.5
0 0.031-0.010	0.02	0.0	99.3
7 0.016-0.008	0.00	0.0	99.5
8 0.008-0.004	0.03	0.1	99.6
9 0.004-0.002	0.00	0.0	99.6
>9 < 0.002	0.17	0.4	100.0
	total wt	coarse wt	fine wt
	41.4	41.2	0.2
	0/ 1	% silt	% clay
	93.50	0.21	0.40
	33.30	0.21	0.40

¹ Russell H. Plumb, Jr.; *Procedures for Handling and Chemical Analysis of Sediment and Water Samples*, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-83

Method:

Plumb¹

Date Analyzed: Matrix:

May 8, 1995

Sediment

Client Sample ID:

HUM95PSD0022

Client Site ID:

EK3

ToxScan Lab ID:

SIZE INTERVAL			
Phi mm	INTERVAL WT	INTERVAL %	CUMULATIVE %
<-5 >32	0.00	0.0	0.0
-4 32-16	0.00	0.0	0.0
-3 16-8	0.00	0.0	0.0
-2 8-4	0.19	0.5	0.5
-1 4-2	0.55	1.5	2.0
0 2-1	0.97	2.6	4.7
	0.57	2.0	7.7
1 1-0.5	1.85	5.0	9.7
2 0.5-0.25	11.14	30.3	40.0
3 0.25-0.125	16.00	43.6	83.6
4 0 105 0 060	1.67		
4 0.125-0.062	1.67	4.5	88.2
5 0.062-0.031	0.83	2.3	90.4
6 0.031-0.016	1.20	3.3	93.7
7 0.016-0.008	0.42	1.1	94.8
8 0.008-0.004	0.49	1.3	96.1
9 0.004-0.002	0.32	0.9	97.0
>9 < 0.002	1.10	3.0	100.0
	total wt	coarse wt	fine wt
	36.7	32.4	4.3
	% sand	% silt	% clay
•	87.65	7.98	3.85

¹ Russell H. Plumb, Jr.; *Procedures for Handling and Chemical Analysis of Sediment and Water Samples*, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-84

Method:

Plumb¹

Date Analyzed:

May 8, 1995

Matrix:

Sediment

Client Sample ID:

HUM95PSD0023

Client Site ID:

FL6

ToxScan Lab ID:

SIZE INTERVA	L						
Phi mm	IN	TERVAL WT	IN	ΓERVAL %	6 CUM	IULATIVE %	6
		0.00		0.0	•	0.0	
<-5 >32		0.00		0.0		0.0	
-4 32-16		0.00		0.0		0.0	
-3 16-8		0.00	`.	0.0		0.0	
-2 8-4		0.00		0.0		0.0	
		0.00		0.0		0.0	
0 2-1		0.26		0.6		0.6	
1 1-0.5		1.00		2.4		3.0	
2 0.5-0.25		20.87		50.1		53.1	
3 0.25-0.12		17.19		41.2		94.3	
4 0.125-0.06		0.82		2.0		96.3	
5 0.062-0.03		0.32		1.2		97.5	
6 0.031-0.01	6	0.28		0.7		98.1	
7 0.016-0.00	8	0.19	= "	0.4		98.6	
8 0.008-0.00	4	0.10		0.2	14, 141	98.8	
9 0.004-0.00	2	0.13		0.3		99.1	
>9 < 0.00		0.37		0.9		100.0	
		total wt		coarse wt		fine wt	
		41.7		40.1		1.5	
		% sand		% silt		% clay	
		96.32	•	2.51		1.18	

¹ Russell H. Plumb, Jr.; *Procedures for Handling and Chemical Analysis of Sediment and Water Samples*, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

IN-85

Method:

Plumb¹

Date Analyzed: Matrix:

May 8, 1995

Sediment

Client Sample ID:

HUM95PSD0024

Client Site ID:

NB2

ToxScan Lab ID:

SIZE INTERVAL			
Phi mm	INTERVAL WT	INTERVAL %	CUMULATIVE %
<-5 >32	0.00	0.0	0.0
-4 32-16	0.00	0.0	0.0
-3 16-8	0.00	0.0	0.0
-2 8-4	0.00	0.0	0.0
-1 4-2	0.00	0.0	0.0
0 2-1	0.02	0.1	0.1
1 1-0.5	0.02	0.1	0.1
2 0.5-0.25	8.19	20.9	21.0
3 0.25-0.125	29.42	75.2	96.2
4 0.125-0.062	1.03	2.6	98.9
5 0.062-0.031	0.08	0.3	99.2
6 0.031-0.016	0.00	0.0	99.2
7 0.016-0.008	0.00	0.0	99.2
8 0.008-0.004	0.14	0.4	99.6
9 0.004-0.002	0.10	0.2	99.8
>9 < 0.002	0.12	0.2	100.0
	total wt	coarse wt	fine wt
	39.1	38.7	0.4
	% sand	% silt	% clay
•	98.88	0.68	0.40

¹ Russell H. Plumb, Jr.; *Procedures for Handling and Chemical Analysis of Sediment and Water Samples*, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station; 1981.

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

P-1

Method:

EPA 8080

Date Extracted:

April 11, 1995

Date Analyzed:

April 22-23, 1995

Matrix:

Sediment

Units:

 μ g/Kg (ppb)

Client Sample ID: HUM95SED0001

Client Site ID: RF	We	t Wt.	Dry Wt.		
ToxScan Lab ID: 12046-16	Sample	Detection	Sample	Detection	
<u>Analyte</u>	<u>Value</u>	<u>Limit</u>	<u>Value</u>	Limit	
Aldrin	ND	1.2	ND	2.0	
alpha-BHC	ND	1.2	ND	2.0	
beta-BHC	ND	1.2	ND	2.0	
delta-BHC	ND	1.2	ND	2.0	
gamma-BHC (lindane)	ND	1.2	ND	2.0	
alpha-Chlordane	ND	1.2	ND	2.0	
gamma-Chlordane	ND	1.2	ND	2.0	
4,4'-DDD	ND	1.2	ND	2.0	
4,4'-DDE	ND	1.2	ND	2.0	
4,4'-DDT	ND	1.2	ND	2.0	
Dieldrin	ND	1.2	ND	2.0	
Endosulfan I	ND	1.2	ND	2.0	
Endosulfan II	ND	1.2	ND	2.0	
Endosulfan sulfate	ND	6.2	ND	10	
Endrin	ND	1.2	ND	2.0	
Heptachlor	ND	1.2	ND	2.0	
Heptachlor epoxide	ND	6.2	ND	10	
Toxaphene	ND	19	ND	30	
PCBs:					
PCB 1242	ND	12	ND	20	
PCB 1248	ND	12	ND	20	
PCB 1254	ND	12	ND	20	
PCB 1260	ND	12	ND	20	
TOTAL PCBs	ND	12	ND	20	

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

P-2

Method:

EPA 8080

Date Extracted:

April 11, 1995

Date Analyzed:

April 22-23, 1995

Matrix:

Sediment

Units:

μg/Kg (ppb)

Client Sample ID: HUM95SED0002

Client Site ID: SAM 6-A	We	t Wt.	Dry Wt.		
ToxScan Lab ID: 12046-17	Sample	Detection	Sample	Detection	
<u>Analyte</u>	<u>Value</u>	<u>Limit</u>	<u>Value</u>	<u>Limit</u>	
Aldrin	ND	1.5	ND	2.0	
alpha-BHC	ND	1.5	ND	2.0	
beta-BHC	ND	1.5	ND	2.0	
delta-BHC	ND	1.5	ND	2.0	
gamma-BHC (lindane)	ND	1.5	ND	2.0	
alpha-Chlordane	ND	1.5	ND	2.0	
gamma-Chlordane	ND	1.5	ND	2.0	
4,4'-DDD	ND	1.5	ND	2.0	
4,4'-DDE	ND	1.5	ND	2.0	
4,4'-DDT	ND	1.5	ND	2.0	
Dieldrin	ND	1.5	ND	2.0	
Endosulfan I	ND	1.5	ND	2.0	
Endosulfan II	ND	1.5	ND	2.0	
Endosulfan sulfate	ND	7.3	ND	10	
Endrin	ND	1.5	ND	2.0	
Heptachlor	ND	1.5	ND	2.0	
Heptachlor epoxide	ND	7.3	ND	10	
Toxaphene	ND	22	ND	30	
PCBs:					
PCB 1242	ND	15	ND	20	
PCB 1248	ND	15	ND ·	20	
PCB 1254	ND	15	ND	20	
PCB 1260	ND	15	ND	20	
TOTAL PCBs	ND	15	ND	20	

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

Method:

EPA 8080

Date Extracted:

April 11, 1995

Date Analyzed:

April 22-24, 1995

Matrix:

Sediment

Units:

μg/Kg (ppb)

Client Sample ID: HUM95SED0003

Client Site ID: SAM 6-B	We	t Wt.	Dry Wt.		
ToxScan Lab ID: 12046-18	Sample	Detection	Sample	Detection	
<u>Analyte</u>	<u>Value</u>	<u>Limit</u>	<u>Value</u>	<u>Limit</u>	
Aldrin	ND	1.4	ND	2.0	
alpha-BHC	ND	1.4	ND	2.0	
beta-BHC	ND	1.4	ND	2.0	
delta-BHC	ND	1.4	ND	2.0	
gamma-BHC (lindane)	ND	1.4	ND	2.0	
alpha-Chlordane	ND	1.4	ND	2.0	
gamma-Chlordane	ND	1.4	ND	2.0	
4,4'-DDD	ND	1.4	ND	2.0	
4,4'-DDE	ND	1.4	ND	2.0	
4,4'-DDT	ND	1.4	ND	2.0	
Dieldrin	3.9	1.4	5.6	2.0	
Endosulfan I	ND	1.4	ND	2.0	
) ID) ID	• •	
Endosulfan II	ND	1.4	ND	2.0	
Endosulfan sulfate	ND	7.0	ND	10	
Endrin	ND	1.4	ND	2.0	
Heptachlor	ND	1.4	ND	2.0	
Heptachlor epoxide	ND	7.0	ND	10	
Toxaphene	ND	21	ND	30	
PCBs:					
PCB 1242	ND	14	ND	20	
PCB 1248	ND	14	ND	20	
PCB 1254	ND	14	ND	20	
PCB 1260	ND	14	ND	20	
TOTAL PCBs	ND	14	ND	20	

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

Method:

EPA 8080

Date Extracted: Date Analyzed:

April 11, 1995

Matrix:

April 22-23, 1995 Sediment

Units:

μg/Kg (ppb)

Client Sample ID: HUM95SED0004

Client Site ID: SAM 6-C	W	et Wt.	Dry Wt.	
ToxScan Lab ID: 12046-19	Sample	Detection	Sample	Detection
Analyte	<u>Value</u>	<u>Limit</u>	<u>Value</u>	<u>Limit</u>
Aldrin	ND	1.5	ND	2.0
alpha-BHC	ND	1.5	ND	2.0
beta-BHC	ND	1.5	ND	2.0
delta-BHC	ND	1.5	ND	2.0
gamma-BHC (lindane)	ND	1.5	ND	2.0
alpha-Chlordane	ND	1.5	ND	2.0
Chlandata	ND	1.5	ND	2.0
gamma-Chlordane	ND	1.5	ND	2.0
4,4'-DDD	ND	1.5	ND	2.0
4,4'-DDE	ND	1.5	ND	2.0
4,4'-DDT	ND	1.5	ND	2.0
Dieldrin	ND	1.5	ND	2.0
Endosulfan I	ND	1.5	ND	2.0
Endosulfan II	ND	1.5	ND	2.0
Endosulfan sulfate	ND	7.3	ND	10
Endrin	ND	1.5	ND	2.0
Heptachlor	ND	1.5	ND	2.0
Heptachlor epoxide	ND	7.3	ND	10
Toxaphene	ND	22	ND	30
PCBs:				
PCB 1242	ND	15	ND	20
PCB 1248	ND	15	ND	20
PCB 1254	ND	15	ND	20
PCB 1260	ND	15	ND	20
TOTAL PCBs	ND	15	ND	20

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

P-7

Method:

EPA 8080

Date Extracted: Date Analyzed:

April 11, 1995 April 22-23, 1995

Matrix:

Sediment

Units:

μg/Kg (ppb)

Client Sample ID: HUM95SED0007

Client Site ID: FL-1	\mathbf{W}_{i}	Wet Wt.		Dry Wt.		
ToxScan Lab ID: 12046-22	Sample	.]	Detection		Sample	Detection
<u>Analyte</u>	<u>Value</u>		<u>Limit</u>		<u>Value</u>	<u>Limit</u>
•		-				
Aldrin	ND		1.1		ND	2.0
alpha-BHC	ND		1.1		ND	2.0
beta-BHC	ND		1.1		ND	2.0
delta-BHC	ND		1.1		ND	2.0
gamma-BHC (lindane)	ND		1.1		ND	2.0
alpha-Chlordane	ND		1.1		ND	2.0
-						
gamma-Chlordane	ND		1.1		ND	2.0
4,4'-DDD	ND		1.1		ND	2.0
4,4'-DDE	ND		1.1		ND	2.0
4,4'-DDT	ND		1.1		ND	2.0
Dieldrin	ND		1.1		ND	2.0
Endosulfan I	ND		1.1		ND	2.0 *** **** ****
Endosulfan II	ND		1.1		ND	2.0
Endosulfan sulfate	ND		5.7		ND	4 10 56 - 1006 - 1006 - 1006
Endrin	ND		1.1		ND	2.0
Heptachlor	ND		1.1		ND	2.0 ************************************
Heptachlor epoxide	ND		5.7		ND	1 0 and 1 a
Toxaphene	ND		17		ND	30
PCBs:						
PCB 1242	ND		11		ND	20 20 2
PCB 1248	· ND		11		ND	20
PCB 1254	ND		11		ND	20
PCB 1260	ND		11		ND	20 (1) (1)
TOTAL PCBs	ND		11		ND	20

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

P-8

Method:

EPA 8080

Date Extracted: Date Analyzed:

April 11, 1995 April 22-23, 1995

Matrix:

Sediment

Units:

μg/Kg (ppb)

Client Sample ID: HUM95SED0008

Client Site ID: FL-2	We	t Wt.	Dry Wt.		
ToxScan Lab ID: 12046-23	Sample	Detection	Sample	Detection	
<u>Analyte</u>	<u>Value</u>	<u>Limit</u>	<u>Value</u>	<u>Limit</u>	
Aldrin	ND	1.1	ND	2.0	
alpha-BHC	ND	1.1	ND	2.0	
beta-BHC	ND	1.1	ND	2.0	
delta-BHC	ND	1.1	ND	2.0	
gamma-BHC (lindane)	ND	1.1	ND	2.0	
alpha-Chlordane	ND	1.1	ND	2.0	
gamma-Chlordane	ND	1.1	ND	2.0	
4,4'-DDD	ND ·	1.1	ND	2.0	
4,4'-DDE	ND	1.1	ND	2.0	
4,4'-DDT	ND ND	1.1	ND ND	2.0	
Dieldrin	ND ND	1.1	ND ND	2.0	
	ND ND	1.1	ND ND	2.0	
Endosulfan I	ND	1.1	ND	2.0	
Endosulfan II	ND	1.1	ND	2.0	
Endosulfan sulfate	ND	5.6	ND	10	
Endrin	ND	1.1	ND	2.0	
Heptachlor	ND	1.1	ND	2.0	
Heptachlor epoxide	ND	5.6	ND	10	
Toxaphene	ND	17	ND	30	
PCBs:					
PCB 1242	ND	11	ND .	20	
PCB 1248	ND	11	ND	20	
PCB 1254	ND	. 11	ND	20	
PCB 1260	ND	11	ND	20	
TOTAL PCBs	ND	11	ND	20	

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

P-9

n Francisco Anny Corps of Engli

Method:
Date Extracted:

EPA 8080 April 11, 1995

Date Analyzed:

April 22-25, 1995

Matrix:

Sediment

Units:

μg/Kg (ppb)

Client Sample ID: HUM95SED0009

Client Site ID: FL-3	W	et Wt.	Dry Wt.		
ToxScan Lab ID: 12046-24	Sample	Detection	Sample	Detection	
Analyte	<u>Value</u>	<u>Limit</u>	<u>Value</u>	<u>Limit</u>	
Aldrin	ND	1.0	ND	2.0	
alpha-BHC	ND	1.0	ND	2.0	
beta-BHC	ND	1.0	ND	2.0	
delta-BHC	ND	1.0	ND	2.0	
gamma-BHC (lindane)	ND	1.0	ND	2.0	
alpha-Chlordane	ND	1.0	ND	2.0	
).ID	2.0	
gamma-Chlordane	ND	1.0	ND	2.0	
4,4'-DDD	ND	1.0	ND	2.0	
4,4'-DDE	ND	1.0	ND	2.0	
4,4'-DDT	ND	1.0	ND	2.0	
Dieldrin	ND	1.0	ND	2.0	
Endosulfan I	ND	1.0	ND	2.0	
Endosulfan II	ND	1.0	ND	2.0	
Endosulfan sulfate	ND	5.2	ND	10	
Endrin	ND	1.0	ND	2.0	
Heptachlor	ND	1.0	ND	2.0	
Heptachlor epoxide	ND	5.2	ND	10	
<u>-</u>	ND	16	ND	30	
Toxaphene PCBs:	1417	10	ND	30	
	ND	10	ND	20	
PCB 1242	ND ND	10	ND	20	
PCB 1248	ND ND	10	ND ND	20	
PCB 1254				20	
PCB 1260	ND	10	ND		
TOTAL PCBs	ND	10	ND	20	

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

P-10

Method:

EPA 8080

Date Extracted:
Date Analyzed:

April 11, 1995 April 22-23, 1995

Matrix:

Sediment

Units:

μg/Kg (ppb)

Client Sample ID: HUM95SED0010

Client Site ID: COMP # 4	We	t Wt.	Dry	V Wt.
ToxScan Lab ID: 12046-25	Sample	Detection	Sample	Detection
<u>Analyte</u>	<u>Value</u>	<u>Limit</u>	<u>Value</u>	<u>Limit</u>
Aldrin	ND	1.0	ND	2.0
alpha-BHC	ND	1.0	ND	2.0
beta-BHC	ND	1.0	ND	2.0
delta-BHC	ND	1.0	ND	2.0
gamma-BHC (lindane)	ND	1.0	ND	2.0
alpha-Chlordane	ND	1.0	ND	2.0
gamma-Chlordane	ND	1.0	ND	2.0
4,4'-DDD	ND	1.0	ND	2.0
4,4'-DDE	ND	1.0	ND	2.0
4,4'-DDT	ND	1.0	ND	2.0
Dieldrin	ND	1.0	ND	2.0
Endosulfan I	ND	1.0	ND	2.0
Endosulfan II	ND	1.0	ND	2.0
Endosulfan sulfate	ND	5.7	ND	10
Endrin	ND	1.0	ND	2.0
Heptachlor	ND	1.0	ND	2.0
Heptachlor epoxide	ND	5.7	ND	10
Toxaphene	ND	17	ND	30 - 7 / 7
PCBs:				
PCB 1242	ND	11	ND	20
PCB 1248	ND	11	ND	20
PCB 1254	ND	11	ND	20
PCB 1260	ND	11	ND	20
TOTAL PCBs	ND	11	ND	20

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

P-11

Method:

EPA 8080

Date Extracted: Date Analyzed:

April 11, 1995 April 22-25, 1995

Matrix:

Sediment

Units:

 μ g/Kg (ppb)

Client Sample ID: HUM95PSD0006

Client Site ID: SAM 5		Wet V	Vt.	Dry V	Dry Wt.		
ToxScan Lab ID: 12046-40		Sample	Detection	Sample	Detection		
<u>Analyte</u>	1 11	<u>Value</u>	<u>Limit</u>	<u>Value</u>	<u>Limit</u>		
Aldrin		ND	1.4	ND	2.0		
alpha-BHC		ND	1.4	ND	2.0		
beta-BHC		ND	1.4	ND	2.0		
delta-BHC		ND	1.4	ND	2.0		
gamma-BHC (lindane)		ND	1.4	ND	2.0		
alpha-Chlordane		ND	1.4	ND	2.0		
-							
gamma-Chlordane		ND	1.4	ND	2.0		
4,4'-DDD		ND	1.4	ND	2.0 (1964) (2.5)		
4,4'-DDE		ND	1.4	ND	2.0		
4,4'-DDT		ND	1.4	ND	2.0		
Dieldrin		ND	1.4	ND	2.0		
Endosulfan I		ND	1.4	ND	2.0		
Endosulfan II		ND	1.4	ND	2.0		
Endosulfan sulfate		ND	6.9	ND	10		
Endrin		ND	1.4	ND	2.0		
Heptachlor		ND	1.4	ND	2.0		
Heptachlor epoxide		ND	6.9	ND	4 10 (2) (2)		
Toxaphene		ND	21	ND	30		
PCBs:							
PCB 1242		ND	14	ND	20		
PCB 1248		ND	14	ND	20		
PCB 1254		ND	14	ND	20		
PCB 1260		ND	14	ND	20		
TOTAL PCBs		ND	14	ND	20		

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

P-12

Method:

EPA 8080

Date Extracted: Date Analyzed:

April 11, 1995

Matulan

April 22-23, 1995

Matrix:

Sediment

Units:

μg/Kg (ppb)

Client Sample ID: HUM95PSD0007

Client Site ID: SAM 7	Wet Wt.				D:	ry Wt.
ToxScan Lab ID: 12046-41	Sample		Detection		Sample	Detection
<u>Analyte</u>	<u>Value</u>	÷	<u>Limit</u>		<u>Value</u>	<u>Limit</u>
		•				
Aldrin	ND		1.6		ND	2.0
alpha-BHC	ND		1.6		ND	2.0
beta-BHC	ND		1.6		ND	2.0
delta-BHC	ND		1.6		ND	2.0
gamma-BHC (lindane)	ND		1.6		ND	2.0
alpha-Chlordane	ND		1.6		ND	2.0
	NID.		1.6		.	• •
gamma-Chlordane	ND		1.6		ND	2.0
4,4'-DDD	ND		1.6		ND	2.0
4,4'-DDE	ND		1.6		ND	2.0
4,4'-DDT	ND		1.6		ND	2.0
Dieldrin	ND		1.6		ND	2.0
Endosulfan I	ND		1.6		ND	2.0
Endosulfan II	ND		1.6		ND	2.0
Endosulfan sulfate	ND		8.0		ND	10
Endrin	ND		1.6		ND	2.0
Heptachlor	ND		1.6		ND	2.0
Heptachlor epoxide	ND		8.0		ND	10
Toxaphene	ND		24		ND	30
PCBs:	ND		2-1		ND	30
PCB 1242	ND		16		ND	20
PCB 1248	ND		16	. /	ND	20
PCB 1254	ND		16		ND	20
PCB 1260	ND		16		ND	20
TOTAL PCBs	ND		16		ND	20

Client: San Francisco Army Corps of Engineers ToxScan Number: T-12046

Method: EPA 8080
Date Extracted: April 11, 1995
Date Analyzed: April 22-23, 1995

Matrix: Sediment Units: $\mu g/Kg$ (ppb)

Client Sample ID: HUM95PSD0008

Client Site ID: SAM 1	Wet Wt.				Dry Wt.		
ToxScan Lab ID: 12046-42		Sample		Detection	r	Sample	Detection
Analyte		<u>Value</u>		<u>Limit</u>		<u>Value</u>	<u>Limit</u>
Aldrin		ND		1.6		ND	2.0
alpha-BHC	* - *	ND		1.6		ND	2.0
beta-BHC		ND		1.6		ND	2.0
delta-BHC		ND		1.6		ND	2.0
gamma-BHC (lindane)		ND		1.6		ND	2.0
alpha-Chlordane		ND		1.6		ND	2.0
gamma-Chlordane		ND		1.6		ND	2.0
4,4'-DDD		ND		1.6		ND	2.0
4,4'-DDE		ND		1.6		ND	2.0
4,4'-DDT		ND		1.6		ND	2.0
Dieldrin		ND		1.6	- 12	ND	2.0
Endosulfan I		ND		1.6		ND	2.0
Elidosultali 1		ND		1.0		ND	2.0
Endosulfan II		ND		1.6		ND	2.0
Endosulfan sulfate		ND	*	8.0		ND	· 10,
Endrin		ND		1.6		ND	2.0
Heptachlor		ND		1.6		ND	2.0
Heptachlor epoxide		ND		8.0		ND	10
Toxaphene		ND		24		ND	30
PCBs:							
PCB 1242	** . *	ND		16		ND	20
PCB 1248	4	ND		16		ND	20
PCB 1254		ND		16		ND	20
PCB 1260	7	ND		16		ND	20
TOTAL PCBs		ND		16		ND	20

Client: Method:

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

P-14

F

EPA 8080

Date Extracted:
Date Analyzed:

April 11, 1995 April 22-23, 1995

Matrix:

Sediment

Units:

μg/Kg (ppb)

Client Sample ID: HUM95PSD0009

Client Site ID: SAM 3	Wet Wt.		Dry Wt.		
ToxScan Lab ID: 12046-43	Sample	Detection	Sample	Detection	
<u>Analyte</u>	<u>Value</u>	<u>Limit</u>	<u>Value</u>	<u>Limit</u>	
•					
Aldrin	ND	1.6	ND	2.0	
alpha-BHC	ND	1.6	ND	2.0	
beta-BHC	ND	1.6	ND	2.0	
delta-BHC	ND	1.6	ND	2.0	
gamma-BHC (lindane)	ND	1.6	ND	2.0	
alpha-Chlordane	ND	1.6	ND	2.0	
gamma-Chlordane	ND	1.6	ND	2.0	
4,4'-DDD	ND	1.6	ND	2.0	
4,4'-DDE	ND	1.6	ND	2.0	
4,4'-DDT	ND	1.6	ND	2.0	
Dieldrin	ND	1.6	ND	2.0	
Endosulfan I	ND	1.6	ND	2.0	
Endosulfan II	ND	1.6	ND	2.0	
Endosulfan sulfate	ND	8.0	ND	10	
Endrin	ND	1.6	ND	2.0	
Heptachlor	ND	1.6	ND	2.0	
Heptachlor epoxide	ND	8.0	ND	10	
Toxaphene	ND	24	ND	30	
PCBs:					
PCB 1242	ND	16	ND	20	
PCB 1248	ND	16	ND	20	
PCB 1254	ND	16	ND	20	
PCB 1260	ND	16	ND	20	
TOTAL PCBs	ND	16	ND	20	

Client: San Francisco Army Corps of Engineers ToxScan Number: T-12046
Method: EPA 8080 P-15

Method: EPA 8080
Date Extracted: April 11, 1995
Date Analyzed: April 22-23, 1995

Matrix: Sediment Units: $\mu g/Kg$ (ppb)

Client Sample ID: HUM95PSD0009 Rep.

Client Site ID: SAM 3	V	Vet V	Vt.	Dry Wt.			
ToxScan Lab ID: 12046-43	Rep.	Sample		Detection		Sample	Detection
Analyte	•	Value		Limit		<u>Value</u>	Limit
Aldrin		ND		1.6		ND	2.0
alpha-BHC		ND		1.6		ND	2.0
beta-BHC		ND		1.6		ND	2.0
delta-BHC		ND		1.6		ND	2.0
gamma-BHC (lindane)		ND		1.6		ND	2.0
alpha-Chlordane		ND		1.6		ND	2.0
gamma-Chlordane		ND		1.6		ND	2.0
4,4'-DDD		ND		1.6		ND	2.0
4,4'-DDE		ND		1.6		ND	2.0
4,4'-DDT		ND		1.6		ND	2.0
Dieldrin		ND		1.6		ND	2.0
Endosulfan I		ND		1.6		ND	2.0
Endosulfan II		ND		1.6		ND	2.0
Endosulfan sulfate		ND	. 5	8.0		ND	10
Endrin		ND		1.6		ND	2.0
Heptachlor		ND		1.6		ND	2.0
Heptachlor epoxide		ND		8.0		ND	10
Toxaphene		ND		24		ND	30
PCBs:							
PCB 1242		ND		16		ND	20
PCB 1248		ND		16		ND	20
PCB 1254		ND		16		ND	20
PCB 1260		ND		16		ND	20
TOTAL PCBs		ND		16		ND	20

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

P-16

Method:

EPA 8080

Date Extracted: Date Analyzed:

April 11, 1995 April 22-23, 1995

Matrix:

Sediment

Units:

μg/Kg (ppb)

Client Sample ID: HUM95PSD0010

Client Site ID: SAM 4	Wet	t Wt.	Dry Wt.			
ToxScan Lab ID: 12046-44	Sample	Detection	Sample	Detection		
<u>Analyte</u>	<u>Value</u>	<u>Limit</u>	<u>Value</u>	Limit		
	4					
Aldrin	ND	1.5	ND	2.0		
alpha-BHC	ND	1.5	ND	2.0		
beta-BHC	ND	1.5	ND	2.0		
delta-BHC	ND	1.5	ND	2.0		
gamma-BHC (lindane)	ND	1.5	ND	2.0		
alpha-Chlordane	ND	1.5	ND	2.0		
gamma-Chlordane	ND	1.5	ND	2.0		
4,4'-DDD	ND	1.5	ND	2.0		
4,4'-DDE	ND	1.5	ND	2.0		
4,4'-DDT	ND	1.5	ND	2.0		
Dieldrin	ND	1.5	ND	2.0		
Endosulfan I	ND	1.5	ND	2.0		
Endosulfan II	ND	1.5	ND	2.0		
Endosulfan sulfate	ND	7.5	ND	10		
Endrin	ND	1.5	ND	2.0		
Heptachlor	ND	1.5	ND	2.0		
Heptachlor epoxide	ND	7.5	ND	10		
Toxaphene	ND	23	ND	30		
PCBs:						
PCB 1242	ND	15	ND	20		
PCB 1248	ND	15	ND	20		
PCB 1254	ND	15	ND	20		
PCB 1260	ND	15	ND	20		
TOTAL PCBs	ND	15	ND	20		

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

P-19

Method:

EPA 8080

Date Extracted:

April 12, 1995

Date Analyzed:

April 25, 1995

Matrix:

Sediment

Units:

μg/Kg (ppb)

Method Blank		Dry Wt.
ToxScan Lab ID: MB041295	Sample	Detection
<u>Analyte</u>	<u>Value</u>	<u>Limit</u>
	3.775	2.0
Aldrin	ND	2.0
alpha-BHC	ND	2.0
beta-BHC	ND	2.0
delta-BHC	ND	2.0
gamma-BHC (lindane)	ND	2.0
alpha-Chlordane	ND	2.0 x = 1
gamma-Chlordane	ND	2.0
4,4'-DDD	ND	2.0
4,4'-DDE	ND	2.0
4,4'-DDT	ND	2.0
Dieldrin	ND	2.0
Endosulfan I	ND	2.0
Elidosultali 1	ND	2.0
Endosulfan II	ND	2.0
Endosulfan sulfate	ND	10
Endrin	ND	2.0
Heptachlor	ND	2.0
Heptachlor epoxide	ND	10
Toxaphene	ND	30
PCBs:		
PCB 1242	ND	20
PCB 1248	ND	20
PCB 1254	ND	20
PCB 1260	ND	20
TOTAL PCBs	ND	20
	. 120	20

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

P-20

Method:

EPA 8080

Date Extracted:
Date Analyzed:

April 12, 1995

Matrix:

April 24, 1995 Sediment

Units:

μg/Kg (ppb)

Client Sample ID: HUM95SED0011

Client Site ID: EK 8		Wet	Wt.	Dry Wt.			
ToxScan Lab ID: 12046-26		Sample	Detection	Sample	Detection		
<u>Analyte</u>		<u>Value</u>	<u>Limit</u>	<u>Value</u>	<u>Limit</u>		
Aldrin		ND	1.2	ND	2.0		
alpha-BHC	<u> </u>	ND	1.2	ND	2.0		
beta-BHC		ND	1.2	ND	2.0		
delta-BHC		ND ·	1.2	ND	2.0		
gamma-BHC (lindane)		ND	1.2	ND	2.0		
alpha-Chlordane		ND	1.2	ND	2.0		
gamma-Chlordane		ND	1.2	ND	2.0		
4,4'-DDD		ND	1.2	ND	2.0		
4,4'-DDE		ND	1.2	ND	2.0		
4,4'-DDT		ND	1.2	ND	2.0		
Dieldrin		ND	1.2	ND	2.0		
Endosulfan I		ND	1.2	ND	2.0		
Endosulfan II		ND	1.2	ND	2.0		
Endosulfan sulfate		ND	6.2	ND	10		
Endrin		ND	1.2	ND	2.0		
Heptachlor		ND	1.2	ND	2.0		
Heptachlor epoxide		ND	6.2	ND	10		
Toxaphene		ND	19	ND	30		
PCBs:							
PCB 1242		ND	12	ND	20		
PCB 1248		ND	12	ND	20		
PCB 1254		ND	12	ND	20		
PCB 1260		ND	12	ND	20		
TOTAL PCBs		ND	12	ND	20		

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

P-21

Method:

EPA 8080

Date Extracted:

April 12, 1995

Date Analyzed:

April 24, 1995

Matrix:

Sediment

Units:

 $\mu g/Kg (ppb)$

Client Sample ID: HUM95SED0012

				Dry Wt.		
145	Sample		Detection		Sample	Detection
	<u>Value</u>		<u>Limit</u>		<u>Value</u>	<u>Limit</u>
4	ND		1.3		ND	2.0
473	ND		1.3		ND	2.0
	ND		1.3		ND	2.0
	ND		1.3		ND	2.0
	ND		1.3		ND	2.0
	ND		1.3		ND	2.0
	ND		1.3		ND	2.0
	ND		1.3		ND	2.0
	ND		1.3		ND	2.0
	ND		1.3		ND	2.0
	ND		1.3		ND	2.0
	ND		1.3		ND	2.0
	ND		1.3		ND	2.0
	ND		6.3		ND	10
	ND		1.3		ND	2.0
	ND		1.3		ND	2.0
	ND		6.3		ND	10
	ND		19		ND	30
	ND		13		ND	20
	ND		13		ND	20
	ND		13	* .	ND	20
	ND		13		ND	20
	ND		13		ND	20
		Value ND N	Value ND	Value Limit ND 1.3 ND 1.3	Value Limit ND 1.3 ND 1.3	Value Limit Value ND 1.3 ND ND

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

P-22

EPA 8080

Method: Date Extracted:

Date Analyzed:

April 12, 1995 April 25, 1995

Matrix:

Sediment

Units:

 $\mu g/Kg (ppb)$

Client Sample ID: HUM95SED0013

Client Site ID: EK 6	Wet Wt.			Dry Wt.		
ToxScan Lab ID: 12046-28		Sample		Detection	Sample	Detection
<u>Analyte</u>		<u>Value</u>		<u>Limit</u>	<u>Value</u>	<u>Limit</u>
Aldrin		ND		1.2	ND	2.0
alpha-BHC		ND		1.2	ND	2.0
beta-BHC		ND		1.2	ND	2.0
delta-BHC		ND		1.2	ND	2.0
gamma-BHC (lindane)		ND		1.2	ND	2.0
alpha-Chlordane		ND		1.2	ND	2.0
all I		ND) IID	2.0
gamma-Chlordane		ND		1.2	ND	2.0
4,4'-DDD		ND		1.2	ND	2.0
4,4'-DDE		ND		1.2	ND	2.0
4,4'-DDT		ND		1.2	ND	2.0
Dieldrin		ND		1.2	ND	2.0
Endosulfan I		ND		1.2	ND	2.0
Endosulfan II		ND		1.2	ND	2.0
Endosulfan sulfate		ND		6.1	ND	10
Endrin		ND		1.2	ND	2.0
Heptachlor		ND		1.2	ND	2.0
Heptachlor epoxide		ND		6.1	ND	10
Toxaphene		ND		18	ND	30
PCBs:		ND		10	IND	30
PCB 1242		ND		12	ND	20
PCB 1248		ND		12	ND	20
PCB 1254		ND		12	ND	20
PCB 1260		ND		12	ND	20
TOTAL PCBs		ND ND		12	ND ND	20
IUIAL FUDS		עאו		14	מאו	20

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

Method:

EPA 8080

Date Extracted:

April 12, 1995

Date Analyzed:

April 25, 1995

Matrix:

Sediment

Units:

 $\mu g/Kg (ppb)$

Client Sample ID: HUM95SED0016

Client Site ID: EK 2		Wet Wt.				Dry Wt.		
ToxScan Lab ID: 12046-31		Sample		Detection		Sample	Detection	
Analyte		<u>Value</u>		<u>Limit</u>		<u>Value</u>	<u>Limit</u>	
Aldrin		ND		1.3		ND	2.0	
alpha-BHC		ND		1.3		ND	2.0	
beta-BHC		ND		1.3		ND	2.0	
delta-BHC		ND		1.3		ND	2.0	
gamma-BHC (lindane)		ND		1.3		ND	2.0	
alpha-Chlordane		ND		1.3		ND	2.0	
gamma-Chlordane		ND		1.3		ND	2.0	
4,4'-DDD		ND		1.3		ND	2.0	
4,4'-DDE		ND		1.3	e.	ND	2.0	
.,,		ND		1.3		ND	2.0	
Dieldrin	100	ND		1.3		ND	2.0	
Endosulfan I		ND		1.3		ND	2.0	
Endosulfan II		ND .		1.3		ND	2.0	
Endosulfan sulfate		ND ND		6.3		ND	10	
Endrin		ND ND		1.3		ND ND	2.0	
				1.3		ND ND	2.0	
Heptachlor		ND		6.3		ND ND		
Heptachlor epoxide		ND					10	
Toxaphene		ND		19		ND	30	
PCBs:) ID		1.2		NID	20	
PCB 1242		ND		13		ND	20	
PCB 1248		ND		13		ND	20	
PCB 1254		ND		13		ND	20	
PCB 1260		ND		13		ND	20	
TOTAL PCBs		ND		13		ND	20	

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

P-26

Method:

EPA 8080

Date Extracted: Date Analyzed: April 12, 1995

Matrix:

April 25, 1995

Sediment

Units:

 μ g/Kg (ppb)

Client Sample ID: HUM95SED0017

Client Site ID: EK 4	We	t Wt.	Dry Wt.		
ToxScan Lab ID: 12046-32	Sample	Detection	Sample	Detection	
Analyte	Value	<u>Limit</u>	<u>Value</u>	<u>Limit</u>	
Aldrin	ND	1.3	ND	2.0	
alpha-BHC	ND	1.3	ND	2.0	
beta-BHC	ND	1.3	ND	2.0	
delta-BHC	ND	1.3	ND	2.0	
gamma-BHC (lindane)	ND	1.3	ND	2.0	
alpha-Chlordane	ND	1.3	ND	2.0	
gamma-Chlordane	ND	1.3	ND	2.0	
4,4'-DDD	ND	1.3	ND	2.0	
4,4'-DDE	ND	1.3	ND	2.0	
4,4'-DDT	ND	1.3	ND	2.0	
Dieldrin	ND	1.3	ND	2.0	
Endosulfan I	ND	1.3	ND	2.0	
Endosulfan II	ND	1.3	ND	2.0	
Endosulfan sulfate	ND	6.3	ND	10	
Endrin	ND	1.3	ND	2.0	
Heptachlor	ND	1.3	ND	2.0	
Heptachlor epoxide	ND	6.3	ND	10	
Toxaphene	ND	19	ND	30	
PCBs:					
PCB 1242	ND	13	ND	20	
PCB 1248	ND	13	ND	20	
PCB 1254	ND	13	ND	20	
PCB 1260	ND	13	ND	20	
TOTAL PCBs	ND	13	ND	20	

Client: San Francisco Army Corps of Engineers ToxScan Number: T-12046

P-27

Method: EPA 8080
Date Extracted: April 12, 1995
Date Analyzed: April 25, 1995
Matrix: Sediment

Matrix: Sediment Units: $\mu g/Kg$ (ppb)

Client Sample ID: HUM95SED0018

Client Site ID: EK 4-A	We	t Wt.	Dry Wt.		
ToxScan Lab ID: 12046-33	Sample	Detection	Sample	Detection	
<u>Analyte</u>	<u>Value</u>	<u>Limit</u>	Value	Limit	
Aldrin	ND	1.2	ND	2.0	
alpha-BHC	ND	1.2	ND	2.0	
beta-BHC	ND	1.2	ND	2.0	
delta-BHC	ND	1.2	ND	2.0	
gamma-BHC (lindane)	ND	1.2	ND	2.0	
alpha-Chlordane	ND	1.2	ND	2.0	
Chloden	ND	1.2	NID	2.0	
gamma-Chlordane	ND	1.2	ND	2.0	
4,4'-DDD	ND	1.2	ND	2.0	
4,4'-DDE	ND	1.2	ND	2.0	
4,4'-DDT	ND	1.2	ND	2.0	
Dieldrin	ND	1.2	ND	2.0	
Endosulfan I	ND	1.2	ND	2.0	
Endosulfan II	ND	1.2	ND	2.0	
Endosulfan sulfate	ND	6.2	ND	10	
Endrin	ND	1.2	ND	2.0	
Heptachlor	ND	1.2	ND	2.0	
Heptachlor epoxide	ND	6.2	ND	10	
Toxaphene	ND	19	ND	30	
PCBs:	1.2		1.2		
PCB 1242	ND	12	ND	20	
PCB 1248	ND	12	ND	20	
PCB 1254	ND	12	ND	20	
PCB 1260	ND	12	ND	20	
TOTAL PCBs	ND	12	ND	20	

Client: Method:

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

P-28

EPA 8080

Date Extracted:

April 12, 1995

Date Analyzed:

April 25, 1995

Matrix:

Sediment

Units:

μg/Kg (ppb)

Client Sample ID: HUM95SED0019

Client Site ID: COMP #2	We	t Wt.	Dry Wt.		
ToxScan Lab ID: 12046-34	Sample	Detection	Sample	Detection	
<u>Analyte</u>	<u>Value</u>	<u>Limit</u>	<u>Value</u>	<u>Limit</u>	
Aldrin	ND	1.3	ND	2.0	
alpha-BHC	ND	1.3	ND	2.0	
beta-BHC	ND	1.3	ND	2.0	
delta-BHC	ND	1.3	ND	2.0	
gamma-BHC (lindane)	ND	1.3	ND	2.0	
alpha-Chlordane	ND	1.3	ND	2.0	
CI I	.	10	3 775	2.0	
gamma-Chlordane	ND	1.3	ND	2.0	
4,4'-DDD	ND	1.3	ND	2.0	
4,4'-DDE	ND	1.3	ND	2.0	
4,4'-DDT	ND	. 1.3	ND	2.0	
Dieldrin	ND	1.3	ND	2.0	
Endosulfan I	ND	1.3	ND	2.0	
Endosulfan II	ND	1.3	ND	2.0	
Endosulfan sulfate	ND	6.3	ND	10	
Endrin	ND	1.3	ND	2.0	
Heptachlor	ND	1.3	ND	2.0	
Heptachlor epoxide	ND	6.3	ND	10	
Toxaphene	ND	19	ND	30	
PCBs:					
PCB 1242	ND	13	ND	20	
PCB 1248	ND	13	ND	20	
PCB 1254	ND	13	ND	20	
PCB 1260	ND	13	ND	20	
TOTAL PCBs	ND	13	ND	20	

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

P-29

Method: EPA

Date Extracted:

EPA 8080 April 12, 1995

Date Analyzed:

April 25, 1995

Matrix:

Sediment

Units:

μg/Kg (ppb)

Client Sample ID: HUM95PSD0018

Client Site ID: FL7	W	et V	Vt.	Dry	Dry Wt.		
ToxScan Lab ID: 12046-52	Sample		Detection	Sample	Detection		
Analyte	<u>Value</u>		<u>Limit</u>	<u>Value</u>	<u>Limit</u>		
A 1.4	ND		1.5	ND	2.0		
Aldrin			1.5	ND ND	2.0		
alpha-BHC	ND						
beta-BHC	ND		1.5	ND	2.0		
delta-BHC	ND		1.5	ND	2.0		
gamma-BHC (lindane)	ND		1.5	ND	2.0		
alpha-Chlordane	ND		1.5	ND	2.0		
gamma-Chlordane	ND		1.5	ND	2.0		
4,4'-DDD	ND		1.5	ND	2.0		
4,4'-DDE	ND		1.5	ND	2.0		
4,4'-DDT	ND		1.5	ND	2.0		
Dieldrin	ND		1.5	ND	2.0		
Endosulfan I	ND		1.5	ND	2.0		
Endosulfan II	ND		1.5	ND	2.0		
Endosulfan sulfate	ND		7.7	ND	10		
Endrin	ND		1.5	ND	2.0		
Heptachlor	ND		1.5	ND	2.0		
Heptachlor epoxide	ND		7.7	ND	10		
Toxaphene	ND		23	ND	30		
PCBs:	עאו		23	ND	30		
PCB 1242	ND		15	ND	20		
PCB 1242 PCB 1248	ND ND		15	ND ND	20		
	ND ND		15	ND ND	20		
PCB 1254			15	ND ND	20		
PCB 1260	ND						
TOTAL PCBs	ND		15	ND	20		

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

P-30

Method:

EPA 8080

Date Extracted: Date Analyzed:

April 12, 1995

Matrix:

April 25, 1995

Units:

Sediment μg/Kg (ppb)

Client Sample ID: HUM95PSD0020

Client Site ID: FL5		We	et W	't.		I	Dry Wt.
ToxScan Lab ID: 12046-54		Sample		Detection	1	Sample	Detection
<u>Analyte</u>		<u>Value</u>		<u>Limit</u>		<u>Value</u>	<u>Limit</u>
Aldrin		ND		1.5		ND	2.0
alpha-BHC		ND		1.5		ND	2.0
beta-BHC		ND		1.5		ND	2.0
delta-BHC		ND		1.5		ND	2.0
gamma-BHC (lindane)		ND		1.5		ND	2.0
alpha-Chlordane		ND		1.5		ND	2.0 / 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
gamma-Chlordane		ND		1.5		ND	2.0 • 5
4,4'-DDD		ND		1.5		ND	2.0
4,4'-DDE	111	ND		1.5	1.5	ND	2.0 5.4646
4,4'-DDT		ND		1.5		ND	2.0
Dieldrin		ND		1.5		ND	2.0
Endosulfan I		ND		1.5		ND	2.0
					•		
Endosulfan II		ND		1.5		ND	2.0
Endosulfan sulfate		ND		7.3		ND	10 km (1944) (1944) (1944)
Endrin		ND		1.5		ND	2.0
Heptachlor		ND		1.5		ND	2.0
Heptachlor epoxide		ND		7.3		ND	10
Toxaphene	147	ND		22		ND	30
PCBs:							
PCB 1242		ND		15		ND	20
PCB 1248		ND		15		ND	20
PCB 1254		ND		15		ND	20
PCB 1260		ND		15		ND	20
TOTAL PCBs		ND		15		ND	20

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

P-31

Method:

EPA 8080

Date Extracted:

April 12, 1995

Date Analyzed:

April 25, 1995

Matrix:

Sediment

Units:

 $\mu g/Kg (ppb)$

Client Sample ID: HUM95PSD0021

Client Site ID: EK1		V	Vet	Wt.		Dı	ry Wt.
ToxScan Lab ID: 12046-55		Sample		Detection		Sample	Detection
<u>Analyte</u>		<u>Value</u>		<u>Limit</u>	12.5	<u>Value</u>	<u>Limit</u>
Aldrin		ND		1.6		ND	2.0
alpha-BHC	1.5	ND		1.6		ND	2.0
beta-BHC		ND		1.6		ND	2.0
delta-BHC		ND		1.6		ND	2.0
gamma-BHC (lindane)		ND		1.6		ND	2.0
alpha-Chlordane		ND		1.6		ND	2.0
gamma-Chlordane		ND		1.6		ND	2.0
4,4'-DDD	4 4	ND		1.6		ND	2.0
4,4'-DDE	517	ND		1.6		ND	2.0
4,4'-DDT		ND		1.6		ND	2.0
Dieldrin		ND		1.6	1.5	ND	2.0
Endosulfan I		ND		1.6		ND	2.0
							,
Endosulfan II		ND		1.6		ND	2.0
Endosulfan sulfate		ND		8.1		ND	10
Endrin		ND		1.6		ND	2.0
Heptachlor		ND		1.6		ND	2.0
Heptachlor epoxide		ND		8.1		ND	10
Toxaphene		ND		24		ND	30
PCBs:							
PCB 1242		ND		16		ND	20
PCB 1248		ND		16		ND	20
PCB 1254		ND		16		ND	20
PCB 1260		ND		16		ND	20
TOTAL PCBs		ND		16		ND	20

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

Method:

EPA 8080

Date Extracted: Date Analyzed: April 12, 1995

Matrix:

April 25, 1995

Sediment

Units:

 $\mu g/Kg (ppb)$

Client Sample ID: HUM95PSD0022

Client Site ID: EK3	Wet	Wt.	Dr	y Wt.
ToxScan Lab ID: 12046-56	Sample	Detection	Sample	Detection
Analyte	<u>Value</u>	<u>Limit</u>	<u>Value</u>	<u>Limit</u>
Aldrin	ND	1.5	ND	2.0
alpha-BHC	ND	1.5	ND	2.0
beta-BHC	ND	1.5	ND	2.0
delta-BHC	ND	1.5	ND	2.0
gamma-BHC (lindane)	ND	1.5	ND	2.0
alpha-Chlordane	ND	1.5	ND	2.0
gamma-Chlordane	ND	1.5	ND	2.0
4,4'-DDD	ND	1.5	ND	2.0
4,4'-DDE	ND	1.5	ND	2.0
4,4'-DDT	ND	1.5	ND	2.0
Dieldrin	ND	1.5	ND	2.0
Endosulfan I	ND	1.5	ND	2.0
Endosulfan II	ND	1.5	ND	2.0
Endosulfan sulfate	ND	7.5	ND	10
Endrin	ND	1.5	ND	2.0
Heptachlor	ND	1.5	ND	2.0
Heptachlor epoxide	ND	7.5	ND	10
Toxaphene	ND	23	ND	30
PCBs:			. 12	30
PCB 1242	ND	15	ND	20
PCB 1248	ND	15	ND	20
PCB 1254	ND	15	ND	20
PCB 1260	ND	15	ND	20
TOTAL PCBs	ND	15	ND	20

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

P-33

Method:

EPA 8080

Date Extracted: Date Analyzed:

April 12, 1995

Matrix:

April 25, 1995 Sediment

Units:

μg/Kg (ppb)

Client Sample ID: HUM95PSD0023

Client Site ID: FL6		W	et V	Vt.	Dry Wt.		
ToxScan Lab ID: 12046-57		Sample		Detection	Sample	Detection	
Analyte		<u>Value</u>		<u>Limit</u>	<u>Value</u>	<u>Limit</u>	
Aldrin		ND		1.6	ND	2.0	
alpha-BHC		ND		1.6	ND	2.0	
beta-BHC		ND		1.6	ND	2.0	
delta-BHC		ND		1.6	ND	2.0	
gamma-BHC (lindane)		ND		1.6	ND	2.0	
alpha-Chlordane		ND		1.6	ND	2.0	
gamma-Chlordane		ND		1.6	ND	2.0	
4,4'-DDD		ND		1.6	ND	2.0	
4,4'-DDE		ND		1.6	ND	2.0	
4,4'-DDT		ND		1.6	ND	2.0	
Dieldrin		ND		1.6	ND	2.0	
Endosulfan I		ND		1.6	ND	2.0	
Endosulfan II		ND		1.6	ND	2.0	
Endosulfan sulfate		ND		8.0	ND	10	
Endrin		ND		1.6	ND	2.0	
Heptachlor		ND		1.6	ND	2.0	
Heptachlor epoxide	٠.	ND		8.0	ND	10.	
Toxaphene		ND		24	ND	30	
PCBs:							
PCB 1242		ND		16	ND	20	
PCB 1248		ND		16	ND	20	
PCB 1254		ND		16	ND	20	
PCB 1260		ND		16	ND	20	
TOTAL PCBs		ND		16	ND	20	

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

P-34

Method:

EPA 8080

Date Extracted:
Date Analyzed:

April 12, 1995

Matrix:

April 25, 1995 Sediment

Units:

μg/Kg (ppb)

Client Sample ID: HUM95PSD0023 REP.

Client Site ID: FL6	We	t Wt.	Dry Wt.		
ToxScan Lab ID: 12046-57	Sample	Detection	Sample	Detection	
Analyte	<u>Value</u>	<u>Limit</u>	<u>Value</u>	<u>Limit</u>	
Aldrin	ND	1.6	ND	2.0	
alpha-BHC	ND	1.6	ND	2.0	
beta-BHC	ND	1.6	ND	2.0	
delta-BHC	ND	1.6	ND	2.0	
gamma-BHC (lindane)	ND	1.6	ND	2.0	
alpha-Chlordane	ND	1.6	ND	2.0	
gamma-Chlordane	ND	1.6	ND	2.0	
4,4'-DDD	ND	1.6	ND	2.0	
4,4'-DDE	ND	1.6	ND	2.0	
4,4'-DDT	ND	1.6	ND	2.0	
Dieldrin	ND	1.6	ND	2.0	
Endosulfan I	ND	1.6	ND	2.0	
Endosulfan II	ND	1.6	ND	2.0	
Endosulfan sulfate	ND	8.0	ND	. 10	
Endrin	ND	1.6	ND	2.0	
Heptachlor	ND	1.6	ND	2.0	
Heptachlor epoxide	ND	8.0	ND	10	
Toxaphene	ND	24	ND	30	
PCBs:					
PCB 1242	ND	16	ND	20	
PCB 1248	ND	16	ND	20	
PCB 1254	ND	16	ND	20	
PCB 1260	ND	16	ND	20	
TOTAL PCBs	ND	16	ND	20	

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

P-35

Method:

EPA 8080

Date Extracted: Date Analyzed:

April 12, 1995 April 25, 1995

Matrix:

Sediment

QA/QC REPORT: Matrix Spike Summary

QA/QC on sample 12046-57

	* 4p/100			QC LI	MITS
Compound	% REC MS	% REC MSD	% RPD	% REC	% RPD
Lindane	80	78	3	46-127	50
Heptachlor	68	71	4	35-130	31
Aldrin	81	79 7	3	34-132	43
Dieldrin	96	84	13	31-134	38
Endrin	115	101	13	42-139	43
DDT	102	96	6	23-134	50

MS = Matrix Spike

MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

P-36

Method:

EPA 8080

Date Extracted: Date Analyzed: April 12, 1995

Matrix:

April 23, 1995 Sediment

QA/QC REPORT: Matrix Spike Summary

QA/QC on sample 12046-43

				QC LI	MITS
Compound	% REC MS	% REC MSD	<u>% RPD</u>	% REC	% RPD
Lindane	85	81		46-127	50
Heptachlor	66	112		35-130	31
Aldrin	85	85		34-132	43
Dieldrin	97	98		31-134	38
Endrin	114	125		42-139	43
DDT	104	104		23-134	50

MS = Matrix Spike

MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

Method:

EPA 8080

Date Extracted:

April 11, 1995

Date Analyzed: Matrix:

April 24, 1995 Sediment

QA/QC REPORT: Laboratory Control Sample Summary

Compound	% REC LCS	QC LIMITS <u>% REC</u>
Lindane	76	46-127
Heptachlor	64	35-130
Aldrin	78	34-132
Dieldrin	80	31-134
Endrin	87	42-139
DDT	91	23-134

LCS = Laboratory Control Sample

Client: Method: San Francisco Army Corps of Engineers

ToxScan Number: T-12046

P-38

EPA 8080

Date Extracted:

Date Analyzed:

April 11, 1995 April 24, 1995

Matrix:

Sediment

QA/QC REPORT: Laboratory Control Sample Summary

Compound	% REC LCS	QC LIMITS <u>% REC</u>
Lindane	103	46-127
Heptachlor	63	35-130
Aldrin	90	34-132
Dieldrin	92	31-134
Endrin	92	42-139
DDT	105	23-134

LCS = Laboratory Control Sample

Client: Method: San Francisco Army Corps of Engineers

ToxScan Number: T-12046

P-39

EPA 8080

Date Extracted: Date Analyzed:

April 11-12, 1995 April 23-25, 1995

Matrix:

Sediment

QA/QC REPORT: Surrogate Recoveries (%)

Sample ID	Tetrachloro-m-xylene	Decachlorobiphenyl
HUM95SED0001	100	87
HUM95SED0002	123	88
HUM95SED0003	93	103
HUM95SED0004	140	90
HUM95SED0005	132	85
HUM95SED0006	113	91
HUM95SED0007	66	90
HUM95SED0008	87	89
HUM95SED0009	120	102
HUM95SED0010	111	91
HUM95PSD0006	98	96
HUM95PSD0007	121	94
HUM95PSD0008	98	100
HUM95PSD0009	78	85
HUM95PSD0009 Rep.	91	100
HUM95PSD0010	89	93
HUM95PSD0011	88	97
HUM95SED0011	133	94
HUM95SED0012	85	91
HUM95SED0013	84	93
HUM95SED0014	96	87
HUM95SED0015	137	95
HUM95SED0016	129	89
HUM95SED0017	81	92
HUM95SED0018	105	93
HUM95SED0019	87	94
HUM95PSD0018	111	98
HUM95PSD0020	141	101
HUM95PSD0021	80	89
HUM95PSD0022	106	95
HUM95PSD0023	117	102
HUM95PSD0023 Rep.	95	98
Method Blank(04/11/95)	77	89
Method Blank(04/12/95)	81	91

San Francisco Army Corps of Engineers

ToxScan Number: T-12046

P-40

Method:

EPA 8080

Date Extracted: Date Analyzed:

April 11, 1995

Matrix:

April 22, 1995

Matrix

Sediment

Units:

 $\mu g/Kg (ppb)$

QA/QC REPORT: SRM Recoveries

	Value	Certified	Advisory
<u>Element</u>	<u>Found</u>	Value	Range
			
Pesticides			
Aldrin	124	196	105-221
beta-BHC	324	361	172-415
gamma-BHC (Lindane)	121	142	65.5-153
4,4'-DDD	196	151	72.5-181
4,4'-DDE	239	275	157-327
Dieldrin	60	87.6	41.9-104
Endrin	136	211	108-262
Heptachlor	234	324	179-363
delta-BHC	274	306	207-373
Heptachlor epoxide	207	245	85.8-306
alpha - Chlordane	138	173	69.4-199

SRM = Environmental Resource Associates Lot #330

SF Army Corps of Engineers

ToxScan Number: T-12046

Page SV-1

Method:

Modified EPA Method 8270

Date Extracted: Date Analyzed:

04/12/95 04/24/95

Matrix: Units: Sediment ug/Kg (ppb)

Client Sample ID:

HUM95SED0001

Station ID:

RF

ToxScan Lab ID:

12046-16

		Wet '	Weight	Dry	Dry Weight	
Analyte		Sample Value	Reporting Limit	Sample Value	Reporting Limit	
Naphthalene		17	7.5	27	12	
2-Methylnaphthalene		44	7.5 7.5	71	12	
2-Wednymaphthalene 2-Chloronaphthalene		ND	7.5 7.5	ND	12	
		ND ND	a c	3.775	12	
Acenaphthylene		ND ND	7.5 7.5	ND ND	12	
Acenaphthene Fluorene		15				
			7.5	24	12	
Phenanthrene		70	7.5	110	12	
Anthracene	1,3	ND	7.5	ND	12	
Total LPAHs		150	7.5	230	12	
Fluoranthene		22	7.5	35	12	
Pyrene		22	7.5	35	12	
Benzo(a)anthracene		9.8	7.5	16	12	
Chrysene		22	7.5	35	12	
Benzo(b)fluoranthene	;	14	7.5	23	12	
Benzo(k)fluoranthene		ND	7.5	ND	12	
Benzo(a)pyrene		ND	7.5	ND	12	
Indeno(1,2,3-cd)pyrei	ne	ND	10	ND	16	
Dibenzo(a,h)anthrace		ND	10	ND	16	
Benzo(g,h,i)perylene		12	10	19	16	
Total HPAHs		100	7.5-10	160	12-16	
Total PAHs		250	7.5-10	390	12-16	
Total phthalate esters		230	7.5	370	12	

ND = Not Detected

SF Army Corps of Engineers

ToxScan Number: T-12046

Page SV-2

Method:

Modified EPA Method 8270

Date Extracted: Date Analyzed:

04/12/95

Matrix: Units: 04/24/95 Sediment ug/Kg (ppb)

Client Sample ID: Station ID:

HUM95SED0002 DISCRETE SAM 6-A

ToxScan Lab ID:

12046-17

	W	et Weight	D	Dry Weight	
	Sample	Reporting	Sample	Reporting	
Analyte	Value	Limit	Value	Limit	
Naphthalene	ND	7.5	ND	10	
2-Methylnaphthalene	ND	7.5	ND	10	
2-Chloronaphthalene	ND	7.5	ND	10	
Acenaphthylene	ND	7.5	ND	10	
Acenaphthene	ND	7.5	ND	10	
Fluorene	ND	7.5	ND	10	
Phenanthrene	18	7.5	25	10	
Anthracene	ND	7.5	ND	10	
Total LPAHs	18	7.5	25	10	
Fluoranthene	7.7	7.5	11	10	
Pyrene	8.9	7.5	12	10	
Benzo(a)anthracene	ND	7.5	ND	10	
Chrysene	ND	7.5	ND	10	
Benzo(b)fluoranthene	7.8	7.5	11	10	
Benzo(k)fluoranthene	ND	7.5	ND	10	
Benzo(a)pyrene	ND	7.5	ND	10	
Indeno(1,2,3-cd)pyrene	ND	10	ND	14	
Dibenzo(a,h)anthracene	ND	10	ND	14	
Benzo(g,h,i)perylene	ND	10	ND	14	
Total HPAHs	. 24	7.5-10	34	10-14	
Total PAHs	42	7.5-10	59	10-14	
Total phthalate esters	120	7.5	160	10	

ND = Not Detected

LPAH = Low Molecular Weight PAH

SF Army Corps of Engineers

ToxScan Number: T-12046

Page SV-3

Method:

Modified EPA Method 8270

Date Extracted: Date Analyzed:

Modified EPA Method 82 04/26/95

Matrix: Units: 04/28/95 Sediment ug/Kg (ppb)

Client Sample ID:

HUM95SED0002 (2nd Extraction)

Station ID: ToxScan Lab ID: DISCRETE SAM 6-A 12046-17 (2nd Extraction)

		Wet Weight			Dry Weight	
Analyte		Sample Value	Reporting Limit		Sample Value	Reporting Limit
Naphthalene		8.9	7.5		12	10
2-Methylnaphthalene		9.8	7.5		13	10
2-Chloronaphthalene		ND	7.5		ND	10
Acenaphthylene		ND	7.5		ND	10
Acenaphthene		ND	7.5		ND	10
Fluorene		ND	7.5		ND	10
Phenanthrene		20	7.5		27	10
Anthracene		ND	7.5		ND	10
Total LPAHs		39	7.5		52	10
Fluoranthene		16	7.5		22	10 - 411 - 41
Pyrene		16	7.5	•	22	10
Benzo(a)anthracene		ND	7.5		ND	10
Chrysene		ND	8.0	*	ND	11 *
Benzo(b)fluoranthene		ND	7.5		ND	10
Benzo(k)fluoranthene		ND	7.5		ND	10
Benzo(a)pyrene		ND	7.5		ND	10
Indeno(1,2,3-cd)pyrene		ND ·	10		ND	14
Dibenzo(a,h)anthracene		ND	10		ND	14
Benzo(g,h,i)perylene		ND	10		ND	14
Total HPAHs	1	32	7.5-10	*	44	10-14 *
Total PAHs		71	7.5-10	*	96	10-14 *
Total phthalate esters		160	7.5		210	10

^{*} Reporting limit raised due to matrix interference

LPAH = Low Molecular Weight PAH

HPAH = High Molecular Weight PAH

SF Army Corps of Engineers

ToxScan Number: T-12046

Page SV-4

Method:

Modified EPA Method 8270

Date Extracted: Date Analyzed:

04/12/95

Matrix: Units: 04/24/95 Sediment

Client Sample ID:

ug/Kg (ppb)

Station ID:

HUM95SED0003 DISCRETE SAM 6-B

ToxScan Lab ID:

12046-18

	Wet '	Weight	Dry Weight	
Analyte	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Naphthalene	ND	7.5	ND	11
2-Methylnaphthalene	ND	7.5	ND	11
2-Chloronaphthalene	ND	7.5	ND	11 480
Acenaphthylene	ND	7.5	ND	11
Acenaphthene	ND	7.5	ND	11
Fluorene	ND	7.5	ND	11
Phenanthrene	25	7.5	36	11
Anthracene	ND	7.5	ND	11
Total LPAHs	25	7.5	36	11
Fluoranthene	26	7.5	37	11
Pyrene	32	7.5	46	11
Benzo(a)anthracene	ND	7.5	ND	11
Chrysene	9.2	7.5	13	11
Benzo(b)fluoranthene	8.3	7.5	12	11
Benzo(k)fluoranthene	ND	7.5	ND	. 11
Benzo(a)pyrene	ND	7.5	ND	11
Indeno(1,2,3-cd)pyrene	ND	10	ND	· 14
Dibenzo(a,h)anthracene	ND	10	ND	14
Benzo(g,h,i)perylene	ND	10	ND	14
Total HPAHs	76	7.5-10	110	11-14
Total PAHs	100	7.5-10	150	11-14
Total phthalate esters	140	7.5	200	au 11 tau

ND = Not Detected

SF Army Corps of Engineers

ToxScan Number: T-12046

Page SV-5

Method:

Modified EPA Method 8270

Date Extracted: Date Analyzed:

04/26/95 04/28/95

Matrix: Units: Sediment ug/Kg (ppb)

Client Sample ID:

HUM95SED0003 (2nd Extraction)

Station ID:

DISCRETE SAM 6-B

ToxScan Lab ID: 120-

12046-18 (2nd Extraction)

		Wet '	Weight	Dry	Dry Weight	
Analyte		Sample Value	Reporting Limit	Sample Value	Reporting Limit	
Naphthalene		14	7.5	20	11	
2-Methylnaphthalene		12	7.5 7.5	17		
2-Chloronaphthalene		ND	7.5 7.5		11	
		ND ND	7.5 7.5	ND ND	11	
Acenaphthylene		16		ND	11	
Acenaphthene			7.5	23	11	
Fluorene		20	7.5	29	11	
Phenanthrene		160	7.5	230	11	
Anthracene		37	7.5	53	11	
Total LPAHs		260	7.5	370	11	
Fluoranthene		170	7.5	240	11	
Pyrene		240	7.5	340	11	
Benzo(a)anthracene	417	110	7.5	160	11	
Chrysene		140	7.5	200	11	
Benzo(b)fluoranthene		65	7.5	93	11	
Benzo(k)fluoranthene		70	7.5	100	11	
Benzo(a)pyrene		110	7.5	160	11	
Indeno(1,2,3-cd)pyrene		41	10	59	14	
Dibenzo(a,h)anthracene		21	10	30	14	
Benzo(g,h,i)perylene		50	10	71	14	
Total HPAHs		1000	7.5-10	1500	11-14	
Total PAHs		1300	7.5-10	1900	11-14	
Total phthalate esters	•	170	7.5	240	11	

ND = Not Detected

SF Army Corps of Engineers

ToxScan Number: T-12046

Page SV-6

Method:

Modified EPA Method 8270

Date Extracted: Date Analyzed:

04/12/95

Matrix:

04/24/95 Sediment

Units:

ug/Kg (ppb)

Client Sample ID:

HUM95SED0004

Station ID:

DISCRETE SAM 6-C

ToxScan Lab ID:

12046-19

	Wet V	Weight	Dry	Dry Weight	
Analyte	Sample Value	Reporting Limit	Sample Value	Reporting Limit	
Naphthalene	ND	7.5	ND	10	
2-Methylnaphthalene	ND	7.5	ND	10	
2-Chloronaphthalene	ND	7.5	ND	10	
Acenaphthylene	ND	7.5	ND	10	
Acenaphthene	ND	7.5	ND	10	
Fluorene	ND	7.5	ND	10	
Phenanthrene	15	7.5	21	10	
Anthracene	ND	7.5	ND	10	
Total LPAHs	15	7.5	21	10	
Fluoranthene	15	7.5	21	10	
Pyrene	16	7.5	22	10	
Benzo(a)anthracene	ND	7.5	ND	10	
Chrysene	ND-	7.5	ND	10	
Benzo(b)fluoranthene	ND	7.5	ND	10	
Benzo(k)fluoranthene	ND	7.5	ND	10	
Benzo(a)pyrene	ND	7.5	ND	10	
Indeno(1,2,3-cd)pyrene	ND	10	ND	14	
Dibenzo(a,h)anthracene	ND	10	ND	14	
Benzo(g,h,i)perylene	ND	10	ND	14	
Total HPAHs	31	7.5-10	43	10-14	
Total PAHs	46	7.5-10	64	10-14	
Total phthalate esters	95	7.5	130	10	

ND = Not Detected

LPAH = Low Molecular Weight PAH

SF Army Corps of Engineers

ToxScan Number: T-12046

Page SV-7

Method:

Modified EPA Method 8270

Date Extracted: Date Analyzed:

04/26/95.

Matrix:

04/28/95 Sediment

Units:

ug/Kg (ppb)

Client Sample ID:

HUM95SED0004 (2nd Extraction)

Station ID: ToxScan Lab ID: DISCRETE SAM 6-C 12046-19 (2nd Extraction)

	Wet W	eight	Dry Weight	
	Sample	Sample Reporting		Reporting
Analyte	Value	Limit	Sample Value	Limit
Naphthalene	ND	7.5	ND	10
2-Methylnaphthalene	7.8	7.5	11	10
2-Chloronaphthalene	ND	7.5	ND	10
Acenaphthylene	ND	7.5	ND	10
Acenaphthene	ND	7.5	ND	10
Fluorene	ND	7.5	ND	10
Phenanthrene	11	7.5	15	10
Anthracene	ND	7.5	ND	10
Total LPAHs	19	7.5	26	10
Fluoranthene	8.9	7.5	12	10. 19.0
Pyrene	11	7.5	15	10
Benzo(a)anthracene	ND	7.5	ND	10
Chrysene	ND	7.5	ND	10
Benzo(b)fluoranthene	ND	7.5	ND	10
Benzo(k)fluoranthene	ND	7.5	ND	10
Benzo(a)pyrene	ND	7.5	ND	10
Indeno(1,2,3-cd)pyrene	ND	10	ND	14
Dibenzo(a,h)anthracene	ND	10	ND	14
Benzo(g,h,i)perylene	ND	10	ND	14
Total HPAHs	20	7.5-10	27	10-14
Total PAHs	39	7.5-10	53	10-14
Total phthalate esters	170	7.5	230	10

ND = Not Detected

SF Army Corps of Engineers

ToxScan Number: T-12046

Page SV-8

Method:

Modified EPA Method 8270

Date Extracted: Date Analyzed: 04/12/95

Matrix:

04/25/95 Sediment

Units:

ug/Kg (ppb)

Client Sample ID:

HUM95SED0005

Station ID:

COMP #1

ToxScan Lab ID:

12046-20

	We	t Weight	Dry	Dry Weight	
	Sample	Reporting	Sample	Reporting	
Analyte	Value	Limit	Value	Limit	
Naphthalene	ND	7.5	ND	11	
2-Methylnaphthalene	ND	7.5	ND	11	
2-Chloronaphthalene	ND	7.5	ND	11	
Acenaphthylene	ND	7.5	ND	11 -	
Acenaphthene	ND	7.5	ND	11	
Fluorene	ND	7.5	ND	11	
Phenanthrene	22	7.5	31	11	
Anthracene	ND	7.5	ND	11 %	
Total LPAHs	22	7.5	31	11 🖓	
Fluoranthene	18	7.5	25	11	
Pyrene	. 25	7.5	35	11	
Benzo(a)anthracene	ND	7.5	ND	11	
Chrysene	ND	7.5	ND	11	
Benzo(b)fluoranthene	ND	7.5	ND	11	
Benzo(k)fluoranthene	ND	7.5	ND	11	
Benzo(a)pyrene	ND	7.5	ND	11	
Indeno(1,2,3-cd)pyrene	ND ·	10	ND	14	
Dibenzo(a,h)anthracene	ND	10	ND	14	
Benzo(g,h,i)perylene	ND	10	ND	14	
Total HPAHs	43	7.5-10	60	11-14	
Total PAHs	65	7.5-10	91	11-14	
Total phthalate esters	160	7.5	220	11	

ND = Not Detected

LPAH = Low Molecular Weight PAH

SF Army Corps of Engineers

ToxScan Number: T-12046

Page SV-9

Method: Modified

Date Extracted: Date Analyzed:

Modified EPA Method 8270 04/26/95

Date An Matrix:

04/28/95 Sediment

Units:

ug/Kg (ppb)

Client Sample ID:

HUM95SED0005 (2nd Extraction)

Station ID:

COMP #1

ToxScan Lab ID:

12046-20 (2nd Extraction)

	W	et Wei	ght	Dry Weight			
Analyte		Sample Value		Reporting Limit	g	Sample Value	Reporting Limit
Naphthalene		9.1		7.5		13	11 -
2-Methylnaphthalene		9.9		7.5		14	11
2-Chloronaphthalene		ND		7.5		ND	11
Acenaphthylene		ND		7.5		ND	11
Acenaphthene	10	ND		7.5		ND	11
Fluorene		ND		7.5		ND	11
Phenanthrene		17		7.5		24	11
Anthracene		ND		7.5		ND	11
Total LPAHs		36		7.5		51	11:10
Fluoranthene		14		7.5		20	11
Pyrene		18		7.5		25	11
Benzo(a)anthracene		ND		7.5	100	ND	:11
Chrysene		ND		7.5		ND	11
Benzo(b)fluoranthene		ND		7.5		ND	11
Benzo(k)fluoranthene		ND		7.5		ND	11.
Benzo(a)pyrene		ND		7.5		ND	11
Indeno(1,2,3-cd)pyrene		ND		10		ND	14
Dibenzo(a,h)anthracene	, f	ND		10		ND	14
Benzo(g,h,i)perylene		ND		10		ND	14
Total HPAHs		32		7.5-10	*	45	11-14
Total PAHs		68		7.5-10		96	11-14
Total phthalate esters	* .	140		7.5		200	11 . 1

ND = Not Detected

SF Army Corps of Engineers

ToxScan Number: T-12046

Page SV-10

Method:

Modified EPA Method 8270

Date Extracted:
Date Analyzed:

04/12/95

Matrix:

04/25/95 Sediment

Units:

ug/Kg (ppb)

Client Sample ID:

HUM95SED0006

Station ID:

FL 4

ToxScan Lab ID:

12046-21

	Wet '	Weight	Dry Weight		
	Sample	Reporting	Sample	Reporting	
Analyte	Value	Limit	Value	Limit	
Naphthalene	9.1	7.5	. 14	12	
2-Methylnaphthalene	36	7.5	56	12	
2-Chloronaphthalene	ND	7.5	ND	12	
Acenaphthylene	ND	7.5	ND	12	
Acenaphthene	ND	7.5	ND	12	
Fluorene	16	7.5	25	12	
Phenanthrene	63	7.5	98	12	
Anthracene	ND	7.5	ND	12	
Total LPAHs	120	7.5	190	12 80	
Fluoranthene	7.8	7.5	12	12	
Pyrene	10	7.5	16	12	
Benzo(a)anthracene	ND	7.5	ND	12	
Chrysene	15	7.5	23	12	
Benzo(b)fluoranthene	9.5	7.5	15	12	
Benzo(k)fluoranthene	ND	7.5	ND	12	
Benzo(a)pyrene	ND	7.5	ND	12	
Indeno(1,2,3-cd)pyrene	ND	10	ND	16	
Dibenzo(a,h)anthracene	ND	10	ND	16	
Benzo(g,h,i)perylene	ND	10	ND	16	
Total HPAHs	42	7.5-10	66	12-16	
Total PAHs	160	7.5-10	260	. 12-16 ₇	
Total phthalate esters	240	7.5	370	12	

ToxScan, Inc. 42 Hangar Way • Watsonville, CA 95076-2404 • (408) 724-4522 • FAX (408) 724-3188

ND = Not Detected

SF Army Corps of Engineers

ToxScan Number: T-12046

Page SV-11

Method:

Modified EPA Method 8270

Date Extracted: Date Analyzed:

04/26/95

Date An Matrix:

04/28/95 Sediment

Units:

ug/Kg (ppb)

Client Sample ID:

HUM95SED0006 (2nd Extraction)

Station ID:

FL 4

ToxScan Lab ID:

12046-21 (2nd Extraction)

	Wet V	Weight	Dry V	Dry Weight		
	Sample	Reporting	Sample	Reporting		
Analyte	Value	Limit	Value	Limit		
Naphthalene	24	7.5	38	12		
2-Methylnaphthalene	58	7.5	91	12		
2-Chloronaphthalene	ND	7.5	ND ·	12		
Acenaphthylene	ND	7.5	ND	12		
Acenaphthene	ND	7.5	ND	12		
Fluorene	14	7.5	22	12		
Phenanthrene	51	7.5	80	12		
Anthracene	ND	7.5	ND	12		
Total LPAHs	150	7.5	230	12		
Fluoranthene	ND	7.5	ND	12		
Pyrene	8.8	7.5	14	12		
Benzo(a)anthracene	ND	7.5	ND	12		
Chrysene	12	7.5	19	12		
Benzo(b)fluoranthene	8.3	7.5	13	12		
Benzo(k)fluoranthene	ND	7.5	ND	12		
Benzo(a)pyrene	ND	7.5	ND	12		
Indeno(1,2,3-cd)pyrene	ND	10	ND	16		
Dibenzo(a,h)anthracene	ND	10	ND	16		
Benzo(g,h,i)perylene	ND	10	ND	16		
Total HPAHs	29	7.5-10	46	12-16		
Total PAHs	180	7.5-10	280	12-16		
Total phthalate esters	510	7.5	800	12		

ND = Not Detected

SF Army Corps of Engineers

ToxScan Number: T-12046

Page SV-12

Method:

Modified EPA Method 8270

Date Extracted: Date Analyzed:

04/12/95.

Matrix:

04/25/95 Sediment

Units:

ug/Kg (ppb)

Client Sample ID:

HUM95SED0007

Station ID: ToxScan Lab ID: FL-1 12046-22

	We	t We	ight	Dry '	Dry Weight		
Analyte	Sample Value		Reporting Limit	g `	Sample Value	Reporting Limit	
Naphthalene	15		7.5		26	13	
2-Methylnaphthalene	39		7.5		68	13	
2-Chloronaphthalene	ND		7.5		ND	13	
Acenaphthylene	ND		7.5		ND	13	
Acenaphthene	ND		7.5		ND	13	
Fluorene	14		7.5		25	13	
Phenanthrene	52		7.5		91	13	
Anthracene	ND		7.5		ND	13	
Total LPAHs	120		7.5		210	13	
Fluoranthene	23		7.5		40	13	
Pyrene	23		7.5		40	13	
Benzo(a)anthracene	ND		7.5		ND	13	
Chrysene	17		7.5		30	13	
Benzo(b)fluoranthene	12		7.5		21	13	
Benzo(k)fluoranthene	ND		7.5		ND	13	
Benzo(a)pyrene	ND		7.5		ND	13	
Indeno(1,2,3-cd)pyrene	ND		10		ND	18	
Dibenzo(a,h)anthracene	ND		10		ND	18	
Benzo(g,h,i)perylene	ND		12	*	ND	21, *	
Total HPAHs	75		7.5-12	*	130	13-21 *	
Total PAHs	200		7.5-12	*	340	13-21 *	
Total phthalate esters	160		7.5		280	13	

ND = Not Detected

LPAH = Low Molecular Weight PAH

^{*} Reporting limit raised due to matrix interference

SF Army Corps of Engineers

ToxScan Number: T-12046

Page SV-13

Method:

Modified EPA Method 8270

Date Extracted: Date Analyzed: 04/12/95

Matrix:

04/25/95 Sediment

Units:

ug/Kg (ppb)

Client Sample ID:

HUM95SED0008

Station ID:

FL-2

ToxScan Lab ID: 12046-23

		We	t Wei	ight	Dry Weight		
		Sample		Reporting	;	Sample	Reporting
Analyte		Value		Limit		Value	Limit
Naphthalene	**	10		7.5		18	13
2-Methylnaphthalene		30		7.5		54	13
2-Chloronaphthalene		ND		7.5		ND	13
Acenaphthylene		ND		7.5	*	ND	13
Acenaphthene		ND		7.5		ND	13
Fluorene		14		7.5		25	13
Phenanthrene		48		7.5		86	13
Anthracene		ND		7.5		ND	13
Total LPAHs		100	.e.	7.5		180	13
Fluoranthene		23	i,	7.5		41	13 (27)
Pyrene		24		7.5		43	13
Benzo(a)anthracene		8.5		7.5	1	15	13
Chrysene		18		7.5		32	13
Benzo(b)fluoranthene		11		7.5		20	13
Benzo(k)fluoranthene		ND		7.5		ND	13
Benzo(a)pyrene		ND		7.5		ND	13
Indeno(1,2,3-cd)pyrene		ND		10		ND	18
Dibenzo(a,h)anthracene	=	ND		10		ND	18
Benzo(g,h,i)perylene		ND		10		ND	18
Total HPAHs	• •	85		7.5-10		150	13-18
Total PAHs		190		7.5-10		330	13-18
Total phthalate esters		99		7.5		180	e e 13

ND = Not Detected

SF Army Corps of Engineers

ToxScan Number: T-12046

Page SV-14

Method:

Modified EPA Method 8270

Date Extracted: Date Analyzed:

04/26/95

Matrix:

04/28/95 Sediment

Units:

ug/Kg (ppb)

Client Sample ID:

HUM95SED0008 (2nd Extraction)

Station ID:

FL 2

ToxScan Lab ID:

12046-23 (2nd Extraction)

	Wet \	Weight	Drv	Dry Weight	
	Sample	Reporting	Sample	Reporting	
Analyte	Value	Limit	Value	Limit	
Naphthalene	17	7.5	30	13	
2-Methylnaphthalene	36	7.5	64	13	
2-Chloronaphthalene	ND	7.5	ND	13	
Acenaphthylene	ND	7.5	ND	13	
Acenaphthene	ND	7.5	ND	13	
Fluorene	13	7.5	23	13	
Phenanthrene	47	7.5	84	13	
Anthracene	ND	7.5	ND	13	
Total LPAHs	110	7.5	200	13	
Fluoranthene	24.	7.5	43	13	
Pyrene	24	7.5	43	13	
Benzo(a)anthracene	8.1	7.5	14	13	
Chrysene	18	7.5	32	13	
Benzo(b)fluoranthene	12	7.5	21	13	
Benzo(k)fluoranthene	ND	7.5	ND	13	
Benzo(a)pyrene	ND	7.5	ND	13	
Indeno(1,2,3-cd)pyrene	ND	10	ND	18	
Dibenzo(a,h)anthracene	ND	10	ND	18	
Benzo(g,h,i)perylene	ND	10	ND	18	
Total HPAHs	86	7.5-10	150	13-18	
Total PAHs	200	7.5-10	350	13-18	
Total phthalate esters	230	7.5	420	13,5 j	

ND = Not Detected

LPAH = Low Molecular Weight PAH

SF Army Corps of Engineers

ToxScan Number: T-12046

Page SV-15

Method:

Modified EPA Method 8270

Date Extracted:

04/12/95

Date Analyzed: Matrix:

04/25/95 Sediment

Units:

ug/Kg (ppb)

Client Sample ID:

HUM95SED0009

Station ID:

FL-3

ToxScan Lab ID:

12046-24

		Wet	Weight	Dry	Dry Weight		
Analyte	15815	Sample Value	Reporting Limit	3	Sample Value	Reporting Limit	
Naphthalene		ND	7.5		ND	14	
2-Methylnaphthalene		16	7.5		31	14	
2-Chloronaphthalene		ND	7.5		ND	14	
Acenaphthylene		ND	7.5		ND	14	
Acenaphthene		ND	7.5		ND	14	
Fluorene		14	7.5		27	14	
Phenanthrene	,	52	7.5		100	14	
Anthracene		ND	7.5		ND	14	
Total LPAHs		82	7.5		160	14	
Fluoranthene		26	7.5		50	14	
Pyrene		22	7.5		42	14	
Benzo(a)anthracene		9.9	7.5		19	14	
Chrysene		18	7.5		35	14	
Benzo(b)fluoranthene		13	7.5	`	25	14	
Benzo(k)fluoranthene		ND	7.5		ND	14	
Benzo(a)pyrene		ND	7.5		ND	14	
Indeno(1,2,3-cd)pyrene		ND	10		ND	19	
Dibenzo(a,h)anthracene		ND	10		ND	19	
Benzo(g,h,i)perylene		ND	12	*	ND	23 *	
Total HPAHs		89	7.5-12	*	170	14-23 *	
Total PAHs		170	7.5-12	* • •	330	14-23	
Total phthalate esters		150	7.5		300	14	

ND = Not Detected

LPAH = Low Molecular Weight PAH

^{*} Reporting limit raised due to matrix interference

SF Army Corps of Engineers

ToxScan Number: T-12046

Page SV-16

Method:

Modified EPA Method 8270

Date Extracted: Date Analyzed:

04/26/95

Matrix:

04/29/95 Sediment

Units:

ug/Kg (ppb)

Client Sample ID:

HUM95SED0009 (2nd Extraction)

Station ID:

FL 3

ToxScan Lab ID:

12046-24 (2nd Extraction)

	Wet '	Weight	Dry	Dry Weight		
Analyte	Sample Value	Reporting Limit	Sample Value	Reporting Limit		
Naphthalene	15	7.5	29	14		
2-Methylnaphthalene	35	7.5	67	14		
2-Chloronaphthalene	ND	7.5	ND .	14		
Acenaphthylene	ND	7.5	ND	14		
Acenaphthene	ND	7.5	ND	14		
Fluorene	12	7.5	23	14		
Phenanthrene	40	7.5	77	14		
Anthracene	ND	7.5	ND	14		
Total LPAHs	100	7.5	200	14		
Fluoranthene	15	7.5	29	14		
Pyrene	16	7.5	31	14		
Benzo(a)anthracene	ND	7.5	ND	no. 14		
Chrysene	11	7.5	21	14		
Benzo(b)fluoranthene	9.6	7.5	18	14		
Benzo(k)fluoranthene	ND	7.5	ND	14		
Benzo(a)pyrene	ND	7.5	ND	14		
Indeno(1,2,3-cd)pyrene	ND	10	ND	19		
Dibenzo(a,h)anthracene	ND	10	ND :	19		
Benzo(g,h,i)perylene	ND	10	ND	19		
Total HPAHs	52	7.5-10	99	14-19		
Total PAHs	150	7.5-10	300	14-19		
Total phthalate esters	270	7.5	520	14		

ND = Not Detected

LPAH = Low Molecular Weight PAH

SF Army Corps of Engineers

ToxScan Number: T-12046

Page SV-17

Method:

Modified EPA Method 8270

Date Extracted: Date Analyzed:

04/12/95 Method 82

Matrix: Units:

Sediment ug/Kg (ppb)

04/25/95

Client Sample ID:

HUM95SED0010

Station ID: ToxScan Lab ID: **COMP #4** 12046-25

	Wet '	Weight	Dry	Weight
3351 774 913	Sample	Reporting	Sample	Reporting
Analyte	Value	Limit	Value	Limit
Naphthalene	18	7.5	32	13
2-Methylnaphthalene	44	7.5	77	13
2-Chloronaphthalene	ND	7.5	ND	13
Acenaphthylene	ND	7.5	ND	13
Acenaphthene	ND	7.5	ND	13
Fluorene	16	7.5	28	13
Phenanthrene	58	7.5	100	13
Anthracene	ND	7.5	ND	13
Total LPAHs	140	7.5	240	13
Fluoranthene	27	7.5	47	13
Pyrene	26	7.5	46	13
Benzo(a)anthracene	9.0	7.5	16	13
Chrysene	19	7.5	33	13
Benzo(b)fluoranthene	14	7.5	25	13
Benzo(k)fluoranthene	ND	7.5	ND	13
Benzo(a)pyrene	8.9	7.5	16	13
Indeno(1,2,3-cd)pyrene	ND	10	ND	18
Dibenzo(a,h)anthracene	ND	10	ND	18
Benzo(g,h,i)perylene	13	10	23	18
Total HPAHs	120	7.5-10	210	13-18
Total PAHs	260	7.5-10	450	13-18
Total phthalate esters	 730	7.5	1300	13

ND = Not Detected

SF Army Corps of Engineers

ToxScan Number: T-12046

Page SV-18

Method:

Modified EPA Method 8270

Date Extracted: Date Analyzed: 04/12/95

Matrix:

04/25/95 Sediment

Units:

ug/Kg (ppb)

Client Sample ID:

HUM95SED0011

Station ID:

EK 8

ToxScan Lab ID:

12046-26

		Wet V	Veight		Dry	Pry Weight Reporting		
		Sample	Reporting	g	Sample	Reporting		
Analyte		Value	Limit		Value	Limit		
Naphthalene		ND	7.5		ND	12		
2-Methylnaphthalene		18	7.5		29	12		
2-Chloronaphthalene		ND	7.5		ND	12		
Acenaphthylene		ND	7.5		ND	12		
Acenaphthene		ND	7.5		ND	12		
Fluorene		15	7.5		24	12		
Phenanthrene		62	7.5		100	12		
Anthracene		ND	7.5		ND	12		
Total LPAHs		95	7.5		150	12		
Fluoranthene		38	7.5		61	12		
Pyrene		36	7.5		58	12		
Benzo(a)anthracene		9.6	7.5	s.	15	12: 12:		
Chrysene	1.5 5	23	7.5		37	12		
Benzo(b)fluoranthene		18	7.5		29	12		
Benzo(k)fluoranthene		ND	7.5		ND	12. 3. 8. 8. 4.		
Benzo(a)pyrene		ND	10	*	ND	16 *		
Indeno(1,2,3-cd)pyrene		ND	10		ND	16		
Dibenzo(a,h)anthracene		ND	10	•	ND	16		
Benzo(g,h,i)perylene		17	10		27	16		
Total HPAHs		140	7.5-10	*	230	12-16 *		
Total PAHs		240	7.5-10	*	380	12-16		
Total phthalate esters		220	7.5		360	11 a 12 11 a 4		

ND = Not Detected

LPAH = Low Molecular Weight PAH

^{*} Reporting limit raised due to matrix interference

SF Army Corps of Engineers

ToxScan Number: T-12046

Page SV-19

Method:

Modified EPA Method 8270

Date Extracted: Date Analyzed: 04/26/95

Matrix: Units:

04/30/95 Sediment ug/Kg (ppb)

Client Sample ID:

HUM95SED0011 (2nd Extraction)

Station ID:

EK 8

ToxScan Lab ID:

12046-26 (2nd Extraction)

		W	et Wei	ght		Dr	y Weight
Analyte		Sample Value		Reporting Limit	3	Sample Value	Reporting Limit
Naphthalene		19		7.5		31	12
2-Methylnaphthalene		36		7.5		58	12
2-Chloronaphthalene		ND		7.5		ND	12
Acenaphthylene		ND		7.5		ND	12
Acenaphthene		ND		7.5		ND	12
Fluorene		13		7.5		21	12
Phenanthrene		43		7.5		69	12
Anthracene		ND		7.5		ND	12
Total LPAHs	\$ 1	110		7.5		180	12
Fluoranthene	•	27		7.5		44	12
Pyrene		27		7.5		44	12
Benzo(a)anthracene		ND		7.5		ND	12
Chrysene		16		7.5		26	12
Benzo(b)fluoranthene		12		7.5		19	12
Benzo(k)fluoranthene		ND		7.5		ND	12
Benzo(a)pyrene		ND	1.	7.5		ND	12
Indeno(1,2,3-cd)pyrene		ND		10		ND	16
Dibenzo(a,h)anthracene		ND		10		ND	16
Benzo(g,h,i)perylene		10		10		16	16
Total HPAHs	+ 2 ,	92		7.5-10		150	12-16
Total PAHs		200	(1 -	7.5-10	141	330	12-16
Total phthalate esters	e e Ve	280		7.5		440	12

ND = Not Detected

SF Army Corps of Engineers

ToxScan Number: T-12046

Page SV-20

Method:

Modified EPA Method 8270

Date Extracted: Date Analyzed:

Modified EPA Method 8270 04/12/95

Matrix: Units: 04/26/95 Sediment ug/Kg (ppb)

Client Sample ID:

HUM95SED0012

Station ID:

EK 7

ToxScan Lab ID:

12046-27

	Wet \	Weight	Dry Weight	
Analyte	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Naphthalene	21	7.5	33	12
2-Methylnaphthalene	36	7.5	57	12
2-Chloronaphthalene	ND	7.5	ND	12
Acenaphthylene	ND	7.5	ND	12
Acenaphthene	ND	7.5	ND	12
Fluorene	18	7.5	29	12
Phenanthrene	66	7.5	100	12
Anthracene	ND	7.5	ND	12
Total LPAHs	140	7.5	220	12
Fluoranthene	49	7.5	78	12
Pyrene	45	7.5	71	12
Benzo(a)anthracene	13	7.5	21	12
Chrysene	23	7.5	37	12
Benzo(b)fluoranthene	18	7.5	29	12
Benzo(k)fluoranthene	8.8	7.5	14	12
Benzo(a)pyrene	12	7.5	19	12
Indeno(1,2,3-cd)pyrene	ND	10	ND	16
Dibenzo(a,h)anthracene	ND	10	ND	16
Benzo(g,h,i)perylene	17	10	27	16
Total HPAHs	190	7.5-10	300	12-16
Total PAHs	330	7.5-10	520	12-16
Total phthalate esters	230	7.5	370	12

ND = Not Detected

LPAH = Low Molecular Weight PAH

HPAH = High Molecular Weight PAH

SF Army Corps of Engineers

ToxScan Number: T-12046

Page SV-21

Method:

Modified EPA Method 8270

Date Extracted: Date Analyzed: 04/26/95

Matrix: Units:

04/30/95 Sediment ug/Kg (ppb)

Client Sample ID:

HUM95SED0012 (2nd Extraction)

Station ID:

EK 7

ToxScan Lab ID:

12046-27 (2nd Extraction)

		Wet Weight			Dry Weight		
		Sample	Reporting		Sample	Reporting	
Analyte		Value	Limit		Value	Limit	
Naphthalene		20	7.5		32	12	
2-Methylnaphthalene		40	7.5		63	12	
2-Chloronaphthalene		ND	7.5		ND	12	
Acenaphthylene	* *	ND	7.5		ND	12	
Acenaphthene		ND	7.5		ND	12	
Fluorene		15	7.5		24	12	
Phenanthrene		50	7.5		79	12	
Anthracene		ND	7.5		ND	12	
Total LPAHs		130	7.5		200	12	
Fluoranthene		36	7.5		57	12	
Pyrene		33	7.5		52	12	
Benzo(a)anthracene		11	7.5		17	12	
Chrysene		19	7.5		30	12	
Benzo(b)fluoranthene		16	7.5		25	12	
Benzo(k)fluoranthene		ND	7.5		ND	12	
Benzo(a)pyrene		9.0	7.5		14	12	
Indeno(1,2,3-cd)pyrene		ND	10		ND	16	
Dibenzo(a,h)anthracene		ND	10		ND	16	
Benzo(g,h,i)perylene		13	10	**	21	16	
Total HPAHs		140	7.5-10		220	12-16	
Total PAHs		270	7.5-10		420	12-16	
Total phthalate esters		300	7.5		480	12	

ND = Not Detected

SF Army Corps of Engineers

ToxScan Number: T-12046 Page SV-22

Method:

Modified EPA Method 8270 04/12/95

Date Extracted: Date Analyzed: 04/25/95 Sediment

Matrix: Units:

ug/Kg (ppb)

Client Sample ID:

HUM95SED0013

Station ID: ToxScan Lab ID: **EK 6** 12046-28

ToxScan Lab ID: 12046-28			Dry Weight		
•	Wet W Sample Value	eight Reporting Limit	Sample Value	Reporting Limit	
Analyte	value		39	12	
•	24	7.5	67	12	
Naphthalene	41	7.5	ND	12	
2-Methylnaphthalene	ND	7.5		12	
2-Chloronaphthalene	ND	7.5	ND	12	
Acenaphthylene	ND	7.5	ND	12	
Acenaphthene	18	7.5	30	12	
Fluorene	61	7.5	100	12	
Phenanthrene	ND	7.5	ND	12	
Anthracene	ND		240	12	
, management	140	7.5	240	12	
Total LPAHs	140			12	
1000	42	7.5	69	12	
Fluoranthene	42	7.5	69	12	
Pyrene	11	7.5	18	12	
Benzo(a)anthracene	23	7.5	38	12	
Chrysene	19	7.5	31	12	
Renzo(b)fluorantnene	9.0	7.5	15	12	
Benzo(k)fluoranthene	11	7.5	18	16	
Penzo(a)nyrene	ND	10	ND	16	
Indepo(1.2.3-cd)pyrene	ND ND	10	ND	16	
Dibenzo(a,h)anthracene	ND 17	10	28	10	
Benzo(g,h,i)perylene	17			12-16	
Doing (B)	170	7.5-10	290	12-10	
Total HPAHs	170	7.5		12-16	
1000111111111	210	7.5-10	530	12-10	
Total PAHs	310	7,5 20		10	
10th 1222	1.00	7.5	260	12	
Total phthalate esters	160	1.0			
I Otal Pilane					

ND = Not Detected

SF Army Corps of Engineers

ToxScan Number: T-12046

Page SV-23

- 13.5 - 13.5

Method:

Modified EPA Method 8270

Date Extracted:

04/12/95

Date Analyzed:

04/25/95 - 04/26/95

Matrix:

Sediment

Units:

ug/Kg (ppb)

Client Sample ID:

HUM95SED0014

Station ID:

EK 5

ToxScan Lab ID:

12046-29

+ F		Wet '	Weight	Dry Weight	
,		Sample	Reporting	Sample	Reporting
Analyte		Value	Limit	Value	Limit
Naphthalene		ND	7.5	ND	13
2-Methylnaphthalene		15	7.5	26	13
2-Chloronaphthalene		ND	7.5	ND	13
Acenaphthylene		ND	7.5	ND	13
Acenaphthene		8.1	7.5	14	13
Fluorene		21	7.5	37	13
Phenanthrene		92	7.5	160	13
Anthracene		15	7.5	26	13
Total LPAHs		150	7.5	260	13
Fluoranthene	·	83	7.5	150	13
Pyrene	t. *	62	7.5	110	13
Benzo(a)anthracene		34	7.5	60	13
Chrysene		56	7.5	98	13
Benzo(b)fluoranthene		33	7.5	58	13
Benzo(k)fluoranthene		21	7.5	37	13
Benzo(a)pyrene		25	7.5	44	13
Indeno(1,2,3-cd)pyrene		15	10	26	18
Dibenzo(a,h)anthracene		ND	10	ND	18
Benzo(g,h,i)perylene		20	10	35	18
Total HPAHs		350	7.5-10	620	13-18
Total PAHs		500	7.5-10	880	13-18
Total phthalate esters	. "	840	7.5	1400	13

ND = Not Detected

SF Army Corps of Engineers

ToxScan Number: T-12046

Page SV-24

Method:

Modified EPA Method 8270

Date Extracted: Date Analyzed: 04/26/95

Matrix: Units:

04/30/95 Sediment ug/Kg (ppb)

Client Sample ID:

Station ID:

HUM95SED0014 (2nd Extraction)

ToxScan Lab ID:

12046-29 (2nd Extraction)

		Wet Weight		Dry Weight		
		Sample	Reporting	5 .	Sample	Reporting
Analyte		Value	Limit		Value	Limit
Naphthalene		18	7.5		32	13
2-Methylnaphthalene		35	7.5		61	13
2-Chloronaphthalene		ND	7.5		ND	13
Acenaphthylene		ND	7.5		ND	13
Acenaphthene		8.3	7.5		15	13
Fluorene		17	7.5		30	13
Phenanthrene		67	7.5		120	13
Anthracene		ND	7.5		ND	13
Total LPAHs		150	7.5		260	13
Fluoranthene		81	7.5		140	13.
Pyrene		64	7.5		110	13
Benzo(a)anthracene		16	7.5		28	13
Chrysene		25	7.5	. "	44	13
Benzo(b)fluoranthene		20	7.5		35	13
Benzo(k)fluoranthene		13	7.5		23	13
Benzo(a)pyrene		13	7.5		23	13
Indeno(1,2,3-cd)pyrene		ND	12	*	ND	21 *
Dibenzo(a,h)anthracene		ND	. 10		ND	18
Benzo(g,h,i)perylene		16	10		28	18
Total HPAHs		250	7.5-12	*	430	13-21 *
Total PAHs	·	400	7.5-12	*	690	13-21 *
Total phthalate esters		160	7.5		280	13

ND = Not Detected

LPAH = Low Molecular Weight PAH

HPAH = High Molecular Weight PAH

^{*} Reporting limit raised due to matrix interference

SF Army Corps of Engineers

ToxScan Number: T-12046

Page SV-25

Method:

Modified EPA Method 8270

Date Extracted: Date Analyzed:

04/12/95

Matrix: Units:

04/25/95 Sediment ug/Kg (ppb)

Client Sample ID:

HUM95SED0015

Station ID:

COMP #3

ToxScan Lab ID: 12046-30

	Wet '	Weight	Dry Weight	
Analyte	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Naphthalene	ND	7.5	ND	13
2-Methylnaphthalene	23	7.5	39	13
2-Chloronaphthalene	ND	7.5	ND	13
Acenaphthylene	ND	7.5	ND	13
Acenaphthene	ND	7.5	ND	13
Fluorene	19	7.5	32	13
Phenanthrene	64	7.5	110	13
Anthracene	ND	7.5	ND	13
Total LPAHs	110	7.5	180	13
Fluoranthene	53	7.5	90	13
Pyrene	43	7.5	73	13
Benzo(a)anthracene	13	7.5	22	13
Chrysene	25	7.5	42	13
Benzo(b)fluoranthene	22	7.5	37	13
Benzo(k)fluoranthene	11	7.5	19	13
Benzo(a)pyrene	13	7.5	.22	13
Indeno(1,2,3-cd)pyrene	11	10	19	17
Dibenzo(a,h)anthracene	ND	10	ND	17
Benzo(g,h,i)perylene	18	10	31	17
Total HPAHs	210	7.5-10	360	13-17
Total PAHs	320	7.5-10	540	13-17
Total phthalate esters	300	7.5	510	13

ND = Not Detected

SF Army Corps of Engineers

ToxScan Number: T-12046

Page SV-26

Method:

Modified EPA Method 8270

Date Extracted: Date Analyzed:

Modified EPA Method 8 04/26/95

Date An Matrix:

04/30/95 Sediment

Units:

ug/Kg (ppb)

Client Sample ID:

HUM95SED0015 (2nd Extraction)

Station ID:

COMP #3

ToxScan Lab ID:

12046-30 (2nd Extraction)

	Wet Weight			Dry Weight		
Analyte		Sample Value	Reporting Limit	Sample Value	Reporting Limit	
Naphthalene		22	7.5	37	13	
2-Methylnaphthalene		38	7.5	64	13	
2-Chloronaphthalene		ND	7.5	ND	13	
Acenaphthylene		ND	7.5	ND	13	
Acenaphthene		ND	7.5	ND	13	
Fluorene		16	7.5	27	13	
Phenanthrene		48	7.5	81	13	
Anthracene		ND	7.5	ND	13 52	
Total LPAHs		120	7.5	210	13	
Fluoranthene	· · · · · ·	37	7.5	63	13	
Pyrene		35	7.5	59	13	
Benzo(a)anthracene		9.8	7.5	17	13	
Chrysene		18	7.5	31	13	
Benzo(b)fluoranthene		14	7.5	24	13	
Benzo(k)fluoranthene		ND	7.5	ND	13	
Benzo(a)pyrene		9.2	7.5	16	13	
Indeno(1,2,3-cd)pyrene		ND	10	ND	17	
Dibenzo(a,h)anthracene		ND	10	ND	17	
Benzo(g,h,i)perylene		13	10	22	17	
Total HPAHs		140	7.5-10	230	13-17	
Total PAHs		260	7.5-10	440	13-17	
Total phthalate esters		180	7.5	300	13	

ND = Not Detected

SF Army Corps of Engineers

ToxScan Number: T-12046

Page SV-27

Method:

Modified EPA Method 8270

Date Extracted: Date Analyzed:

04/13/95 04/21/95

Matrix: Units:

Sediment ug/Kg (ppb)

Client Sample ID:

HUM95SED0016

Station ID:

EK 2

ToxScan Lab ID: 12046-31

	We	t Weight	Dry Weight	
Analyte	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Naphthalene	21	7.5	33	12
2-Methylnaphthalene	27	7.5	43	12
2-Chloronaphthalene	ND	7.5	ND	12
Acenaphthylene	ND	7.5	ND	12
Acenaphthene	ND	7.5	ND	12
Fluorene	15	7.5	24	12
Phenanthrene	53	7.5	84	12
Anthracene	ND	7.5	ND	12 -
Total LPAHs	120	7.5	180	12
Fluoranthene	52	7.5	83	12
Pyrene	49	7.5	78	12
Benzo(a)anthracene	12	7.5	19	12
Chrysene	20	7.5	32	12
Benzo(b)fluoranthene	19	7.5	30	12
Benzo(k)fluoranthene	8.1	7.5	13	12
Benzo(a)pyrene	10	7.5	16	12
Indeno(1,2,3-cd)pyrene	, ND	10	ND	16
Dibenzo(a,h)anthracene	ND	10	ND	16
Benzo(g,h,i)perylene	14	10	22	16
Total HPAHs	180	7.5-10	290	12-16
Total PAHs	300	7.5-10	470	12-16
Total phthalate esters	810	7.5	1300	12

ND = Not Detected

SF Army Corps of Engineers

ToxScan Number: T-12046

Page SV-28

Method:

Modified EPA Method 8270

Date Extracted: Date Analyzed:

04/13/95

Matrix: Units: 04/21/95 Sediment

ug/Kg (ppb)

Client Sample ID:

HUM95SED0017

Station ID:

EK 4

ToxScan Lab ID:

12046-32

		Wet V	Weight	Dry Weight		
		Sample	Reporting		Sample	Reporting
Analyte		Value	Limit		Value	Limit
Naphthalene		30	7.5	,	48	12
2-Methylnaphthalene		33	7.5	1.74	52	12
2-Chloronaphthalene		ND	7.5		ND	12
Acenaphthylene	<i>,</i> *	8.2	7.5		13	12
Acenaphthene		25	7.5		40	12
Fluorene		29	7.5		46	12
Phenanthrene		190	7.5		300	12
Anthracene		21	7.5		33	12
Total LPAHs		340	7.5		530	12
Fluoranthene		260	7.5		410	12
Pyrene		270	7.5		430	12
Benzo(a)anthracene		68	7.5		110	12
Chrysene		96	7.5		150	12
Benzo(b)fluoranthene		98	7.5		160	12
Benzo(k)fluoranthene		71	7.5		110	12
Benzo(a)pyrene		110	7.5		170	12
Indeno(1,2,3-cd)pyrene		69	10		110	an 1444 16
Dibenzo(a,h)anthracene		17	10		27	16
Benzo(g,h,i)perylene		110	10		170	16
Total HPAHs		1200	7.5-10		1800	12-16
Total PAHs		1500	7.5-10		2300	12-16
Total phthalate esters		1000	7.5		1700	12,00

ND = Not Detected

SF Army Corps of Engineers

Method:

Modified EPA Method 8270

ToxScan Number: T-12046

Page SV-29

Date Extracted: Date Analyzed:

04/13/95.

Matrix:

04/21/95 Sediment

Units:

ug/Kg (ppb)

Client Sample ID:

HUM95SED0018

Station ID:

EK 4-A

ToxScan Lab ID:

12046-33

		Wet '	Weight	Dry	Dry Weight	
		Sample	Reporting	Sample	Reporting	
Analyte		Value	Limit	Value	Limit	
Naphthalene		20	7.5	32	12	
2-Methylnaphthalene		26	7.5	42	12	
2-Chloronaphthalene		ND	7.5	ND	12	
Acenaphthylene		ND	7.5	ND	12	
Acenaphthene		ND	7.5	ND	12	
Fluorene		16	7.5	26	12	
Phenanthrene		7 9	7.5	130	12	
Anthracene		15	7.5	24	12	
Total LPAHs		160	7.5	250	12	
Fluoranthene		120	7.5	190	12	
Pyrene		140	7.5	230	12	
Benzo(a)anthracene		33	7.5	53	12	
Chrysene		44	7.5	71	12	
Benzo(b)fluoranthene	eg" i	42	7.5	68	12	
Benzo(k)fluoranthene		24	7.5	39	12	
Benzo(a)pyrene		47	7.5	76	12	
Indeno(1,2,3-cd)pyrene		30	10	48	16	
Dibenzo(a,h)anthracene		ND	10	ND	16	
Benzo(g,h,i)perylene		47	10	76	16	
Total HPAHs	1:14	530	7.5-10	850	12-16	
Total PAHs		690	7.5-10	1100	12-16	
Total phthalate esters		660	7.5	1100	12	

ND = Not Detected

SF Army Corps of Engineers

ToxScan Number: T-12046

Page SV-30

Method:

Modified EPA Method 8270

Date Extracted: Date Analyzed:

04/13/95

Date An Matrix: Units:

04/21/95 Sediment ug/Kg (ppb)

Client Sample ID:

HUM95SED0019

Station ID:

COMP #2

ToxScan Lab ID:

12046-34

	Wet '	Weight	Drv	Dry Weight	
	Sample	Reporting	Sample	Reporting	
Analyte	Value	Limit	Value	Limit	
Naphthalene	28	7.5	44	12	
2-Methylnaphthalene	32	7.5	51	12	
2-Chloronaphthalene	ND	7.5	ND ·	12	
Acenaphthylene	ND	7.5	ND	12	
Acenaphthene	7.9	7.5	13	12	
Fluorene	19	7.5	30	12	
Phenanthrene	69	7.5	110	12	
Anthracene	11	7.5	17	12	
Total LPAHs	170	7.5	270	12	
Fluoranthene	100	7.5	160	12	
Pyrene	96	7.5	150	12	
Benzo(a)anthracene	26	7.5	41	12	
Chrysene	37	7.5	59	12	
Benzo(b)fluoranthene	32	7.5	51	12	
Benzo(k)fluoranthene	18	7.5	29	12	
Benzo(a)pyrene	32	7.5	51	12	
Indeno(1,2,3-cd)pyrene	20	10	32	16	
Dibenzo(a,h)anthracene	ND	10	ND	16	
Benzo(g,h,i)perylene	32	10	51	16	
Total HPAHs	390	7.5-10	620	12-16	
Total PAHs	560	7.5-10	890	12-16	
Total phthalate esters	1000	7.5	1700	12	

ND = Not Detected

SF Army Corps of Engineers

ToxScan Number: T-12046

Page SV-31

Method:

Modified EPA Method 8270

Date Extracted: Date Analyzed: 04/12/95

Matrix:

04/26/95 Sediment

Units:

ug/Kg (ppb)

Client Sample ID:

HUM95PSD0006

Station ID:

SAM 5

ToxScan Lab ID:

12046-40

	Wet '	Weight	Dry Weight	
V	Sample	Reporting	Sample	Reporting
Analyte	Value	Limit	Value	Limit
Naphthalene	11	7.5	16	11 .
2-Methylnaphthalene	16	7.5	23	11
2-Chloronaphthalene	ND	7.5	ND	11
Acenaphthylene	ND	7.5	ND	11
Acenaphthene	ND	7.5	ND	11
Fluorene	7.5	7.5	11	11
Phenanthrene	26	7.5	38	11
Anthracene	ND	7.5	ND	11
Total LPAHs	61	7.5	88	11
Fluoranthene	19	7.5	28	11
Pyrene	16	7.5	23	11
Benzo(a)anthracene	ND	7.5	ND	11
Chrysene	9.3	7.5	13	11
Benzo(b)fluoranthene	8.5	7.5	12	11
Benzo(k)fluoranthene	ND	7.5	ND	11
Benzo(a)pyrene	ND	7.5	ND	11
Indeno(1,2,3-cd)pyrene	ND	10	ND	14
Dibenzo(a,h)anthracene	ND	10	ND	14
Benzo(g,h,i)perylene	ND	10	ND	14
Total HPAHs	53	7.5-10	76	11-14
Total PAHs	110	7.5-10	160	11-14
Total phthalate esters	320	7.5	460	1,1,

ND = Not Detected

SF Army Corps of Engineers

Method:

Modified EPA Method 8270

Date Extracted: Date Analyzed:

04/12/95 04/25/95

Matrix: Units:

Sediment ug/Kg (ppb)

Client Sample ID:

HUM95PSD0007

Station ID:

SAM 7

12046-41

ToxScan Lab ID:

	Wet '	Weight	Dry	Dry Weight	
Analyte	Sample Value	Reporting Limit	Sample Value	Reporting Limit	
Allalyte	v aruc	. Limit	v aluc	Lillit	
Naphthalene	ND	7.5	ND	9.4	
2-Methylnaphthalene	ND	7.5	ND	9.4	
2-Chloronaphthalene	ND	7.5	ND	9.4	
Acenaphthylene	ND	7.5	ND	9.4	
Acenaphthene	ND	7.5	ND	9.4	
Fluorene	ND	7.5	ND	9.4	
Phenanthrene	8.1	7.5	10	9.4	
Anthracene	ND	7.5	ND	9.4	
Total LPAHs	8.1	7.5	10	9.4	
Fluoranthene	ND	7.5	ND	9.4	
Pyrene	ND	7.5	ND	9.4	
Benzo(a)anthracene	ND	7.5	ND	9.4	
Chrysene	ND	7.5	ND	9.4	
Benzo(b)fluoranthene	ND	7.5	ND	9.4	
Benzo(k)fluoranthene	ND	7.5	ND	9.4	
Benzo(a)pyrene	ND	7.5	ND	9.4	
Indeno(1,2,3-cd)pyrene	ND	10	ND	13	
Dibenzo(a,h)anthracene	ND	10	ND	13	
Benzo(g,h,i)perylene	ND	10	ND	13	
Total HPAHs	ND	7.5-10	ND	9.4-13	
Total PAHs	8.1	7.5-10	10	9.4-13	
Total phthalate esters	140	7.5	180	9.4	

ToxScan Number: T-12046

Page SV-32

ND = Not Detected

SF Army Corps of Engineers

ToxScan Number: T-12046

Page SV-33

Method:

Modified EPA Method 8270

Date Extracted: Date Analyzed:

04/12/95

Date An Matrix:

04/25/95 Sediment

Units:

ug/Kg (ppb)

Client Sample ID:

HUM95PSD0007

Station ID:

SAM 7

ToxScan Lab ID:

12046-41REP

		Wet V	Weight	Dry Weight	
Analyte		Sample Value	Reporting Limit	Sample Value	Reporting Limit
Naphthalene		ND	7.5	ND	9.4
2-Methylnaphthalene		ND	7.5	ND	9.4
2-Chloronaphthalene		ND	7.5	ND	9.4
Acenaphthylene		ND	7.5	ND	9.4
Acenaphthene		ND	7.5	ND	9.4
Fluorene		ND	7.5	ND	9.4
Phenanthrene		8.1	7.5	10	9.4
Anthracene		ND	7.5	ND	9.4
Total LPAHs		8.1	7.5	10	9.4
Fluoranthene		ND	7.5	ND	9.4
Pyrene		ND	7.5	ND	9.4
Benzo(a)anthracene		ND	7.5	ND	9.4
Chrysene		ND	7.5	ND	9.4
Benzo(b)fluoranthene		ND	7.5	ND	9.4
Benzo(k)fluoranthene		ND	7.5	ND	9.4
Benzo(a)pyrene		ND	7.5	ND	9.4
Indeno(1,2,3-cd)pyrene		ND	10	ND	13
Dibenzo(a,h)anthracene		ND	10	ND	13
Benzo(g,h,i)perylene		ND	10	ND	13
Total HPAHs		ND	7.5-10	ND	9.4-13
Total PAHs		8.1	7.5-10	10	9.4-13
Total phthalate esters		260	7.5	330	9.4

ND = Not Detected

SF Army Corps of Engineers

ToxScan Number: T-12046

Page SV-34

Method:

Modified EPA Method 8270

Date Extracted: Date Analyzed:

04/13/95

Matrix:

04/21/95 Sediment

Units:

ug/Kg (ppb)

Client Sample ID:

HUM95PSD0008

Station ID:

SAM 1

ToxScan Lab ID:

12046-42

		Wet '	Weight	Dry Weight		
		Sample	Reporting		Sample	Reporting
Analyte		Value	Limit		Value	Ĺimit
Naphthalene		ND	7.5		ND	9.4
2-Methylnaphthalene		ND	7.5		ND	9.4
2-Chloronaphthalene		ND	7.5		ND	9.4
Acenaphthylene		ND	7.5		ND	9.4
Acenaphthene		ND	7.5		ND	9.4
Fluorene		ND	7.5		ND	9.4
Phenanthrene		ND	7.5		ND	9.4
Anthracene		ND	7.5		ND	9.4
Total LPAHs		ND	7.5		ND	9.4
Fluoranthene		ND	7.5		ND	9.4
Pyrene		ND	7.5		ND	9.4
Benzo(a)anthracene	7 - 15	ND	7.5		ND	9.4
Chrysene		ND	7.5		ND	9.4
Benzo(b)fluoranthene		ND	7.5		ND	9.4
Benzo(k)fluoranthene		ND	7.5	1	ND	9.4
Benzo(a)pyrene		ND	7.5		ND	9.4
Indeno(1,2,3-cd)pyrene		ND	10		ND	13
Dibenzo(a,h)anthracene		ND	10		ND	13
Benzo(g,h,i)perylene		ND	10		ND	13
Total HPAHs	. V	ND	7.5-10		ND	9.4-13
Total PAHs		ND 1	7.5-10		ND	9.4-13
Total phthalate esters		200	7.5		260	9.4

ND = Not Detected

SF Army Corps of Engineers

ToxScan Number: T-12046

Page SV-35

Method:

Modified EPA Method 8270

Date Extracted:

04/13/95

Date Analyzed:

04/21/95 - 04/24/95

Matrix: Units:

Sediment ug/Kg (ppb)

Client Sample ID:

HUM95PSD0009

Station ID:

SAM 3 ToxScan Lab ID: 12046-43

	Wet '	Weight	Dry Weight	
Analyte	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Naphthalene	ND	7.5	ND	9.4
2-Methylnaphthalene	10	7.5	13	9.4
2-Chloronaphthalene	ND	7.5	ND	9.4
Acenaphthylene	ND	7.5	ND	9.4
Acenaphthene	ND	7.5	ND	9.4
Fluorene	ND	7.5	ND	9.4
Phenanthrene	11	7.5	14	9.4
Anthracene	ND	7.5	ND	9.4
Total LPAHs	21	7.5	27	9.4
Fluoranthene	ND	7.5	ND	9.4
Pyrene	ND	7.5	ND	9.4
Benzo(a)anthracene	ND	7.5	ND	9.4
Chrysene	ND	7.5	ND	9.4
Benzo(b)fluoranthene	ND	7.5	ND	9.4
Benzo(k)fluoranthene	ND	7.5	ND	9.4
Benzo(a)pyrene	ND	7.5	ND	9.4
Indeno(1,2,3-cd)pyrene	ND	10	ND	13
Dibenzo(a,h)anthracene	ND	10	ND	13
Benzo(g,h,i)perylene	ND	10	ND	13
Total HPAHs	ND	7.5-10	ND	9.4-13
Total PAHs	21	7.5-10	27	9.4-13
Total phthalate esters	630	7.5	790	9.4

ND = Not Detected

SF Army Corps of Engineers

ToxScan Number: T-12046

Page SV-36

Method:

Modified EPA Method 8270

Date Extracted:

04/13/95

Date Analyzed:

04/21/95 - 04/24/95

Matrix:

Sediment

Units:

ug/Kg (ppb)

Client Sample ID:

HUM95PSD0010

Station ID:

SAM 4

ToxScan Lab ID:

12046-44

		Wet W	/eight	Dry	Weight
		Sample	Reporting	Sample	Reporting
Analyte		Value	Limit	Value	Limit
Naphthalene	Cy.,	ND	7.5	ND	10
2-Methylnaphthalene		9.5	7.5	13	10
2-Chloronaphthalene		ND	7.5	ND	10
Acenaphthylene		ND	7.5	ND	10
Acenaphthene		ND	7.5	ND	10
Fluorene		ND	7.5	ND	10
Phenanthrene		13	7.5	17	10
Anthracene		ND	7.5	ND	10
Total LPAHs		23	7.5	30	10
Fluoranthene		ND	7.5	ND	10
Pyrene		ND	7.5	ND	10
Benzo(a)anthracene		ND	7.5	ND	10
Chrysene		ND	7.5	ND	10
Benzo(b)fluoranthene		ND	7.5	ND	10
Benzo(k)fluoranthene		ND	7.5	ND	10
Benzo(a)pyrene		ND	7.5	ND	10
Indeno(1,2,3-cd)pyrene		ND	10	ND	13
Dibenzo(a,h)anthracene		ND	10	ND	13
Benzo(g,h,i)perylene		ND	10	ND	13
Total HPAHs		ND	7.5-10	ND	10-13
Total PAHs		23	7.5-10	30	10-13
Total phthalate esters		910	7.5	1200	10

ND = Not Detected

LPAH = Low Molecular Weight PAH

HPAH = High Molecular Weight PAH

SF Army Corps of Engineers

ToxScan Number: T-12046

Page SV-39

Method:

Modified EPA Method 8270 04/13/95

Date Extracted: Date Analyzed: Matrix:

04/22/95 Sediment

Units:

ug/Kg (ppb)

Client Sample ID:

HUM95PSD0020

Station ID: ToxScan Lab ID: FL 5 12046-54

		Wet We	eight	Dry Weight	
		Sample	Reporting	Sample	Reporting
Analyte		Value	Limit	Value	Limit
Naphthalene		9.5	7.5	13	10
2-Methylnaphthalene		22	7.5	30	10
2-Chloronaphthalene		ND	7.5	ND	10 4
Acenaphthylene		ND	7.5	ND	10
Acenaphthene		ND	7.5	ND	10
Fluorene		ND	7.5	ND	10
Phenanthrene		24	7.5	33	10
Anthracene		ND	7.5	ND	10 : :
Total LPAHs		56	7.5	76	10
Fluoranthene		ND	7.5	ND	10
Pyrene		ND	7.5	ND	10
Benzo(a)anthracene		ND	7.5	ND	10
Chrysene		ND	7.5	ND	10
Benzo(b)fluoranthene		ND	7.5	ND	10
Benzo(k)fluoranthene		ND	7.5	ND :	10
Benzo(a)pyrene		ND	7.5	ND	10
Indeno(1,2,3-cd)pyrene		ND	10	ND	14
Dibenzo(a,h)anthracene		ND	10	ND .	14
Benzo(g,h,i)perylene		ND	10	ND	6. 14 %
Total HPAHs		ND Harman	7.5-10	ND	10-14
Total PAHs	ŧ	56	7.5-10	76	10-14
Total phthalate esters		190	7.5	270	10

ND = Not Detected

SF Army Corps of Engineers

ToxScan Number: T-12046

Page SV-40

Method:

Modified EPA Method 8270

Date Extracted: Date Analyzed:

04/13/95

Matrix:

04/24/95 Sediment

Units:

ug/Kg (ppb)

Client Sample ID:

HUM95PSD0021

Station ID:

EK 1

ToxScan Lab ID:

12046-55

		Wet Weight				Dry Weight	
Analyte		Sample Value		Reporting Limit		Sample Value	Reporting Limit
Naphthalene		ND		7.5		ND	9.3
2-Methylnaphthalene		ND		7.5		ND	9.3
2-Chloronaphthalene		ND		7.5		ND	9.3
Acenaphthylene	4,1	ND		7.5		ND	9.3
Acenaphthene		ND		7.5		ND	9.3
Fluorene		ND		7.5		ND	9.3
Phenanthrene		ND		7.5		ND	9.3 9.3
Anthracene		ND		7.5		ND	9.3
7 Midifiacono		ND		1.5		ND	9.5
Total LPAHs		ND		7.5		ND	9.3
Fluoranthene		ND		7.5		ND	9.3
Pyrene		ND		7.5	* .	ND	9.3
Benzo(a)anthracene		ND		7.5		ND	9.3
Chrysene	1	ND		7.5		ND	9.3
Benzo(b)fluoranthene		ND		7.5	11	ND	9.3
Benzo(k)fluoranthene		ND		7.5		ND	9.3
Benzo(a)pyrene		ND		7.5		ND	9.3
Indeno(1,2,3-cd)pyrene		ND		10		ND	12
Dibenzo(a,h)anthracene	11 T	ND		10		ND	12
Benzo(g,h,i)perylene		ND		10		ND	12
Total HPAHs		ND		7.5-10		ND	9.3-12
Total PAHs		ND		7.5-10		ND	9.3-12
Total phthalate esters		180		7.5		220	9.3

ND = Not Detected

SF Army Corps of Engineers

Method:

Modified EPA Method 8270

ToxScan Number: T-12046

Page SV-41

Date Extracted:

04/13/95

Date Analyzed:

04/24/95 - 04/25/95

Matrix:

Sediment

Units:

ug/Kg (ppb)

Client Sample ID:

HUM95PSD0022

Station ID:

EK 3

ToxScan Lab ID:

12046-56

		Wet W	eight		Dry Weight	
Analyte		Sample Value	Reporting Limit		Sample Value	Reporting Limit
Naphthalene		ND	7.5		ND	10
2-Methylnaphthalene		ND	7.5	,	ND	10
2-Chloronaphthalene	6 Jan 1	ND	7.5		ND	10
Acenaphthylene		ND	7.5		ND	10
Acenaphthene		ND	7.5		ND	10
Fluorene		ND	7.5		ND	10
Phenanthrene		15	7.5		20	10
Anthracene		ND	7.5		ND	10
Total LPAHs		15	7.5		20	10
Fluoranthene		16	7.5		21	10
Pyrene		18	7.5		24	10
Benzo(a)anthracene	4.1	ND	7.5		ND	10
Chrysene		7.6	7.5		10	10
Benzo(b)fluoranthene		ND	7.5		ND	10
Benzo(k)fluoranthene	+ 7	ND	7.5		ND	. 10
Benzo(a)pyrene		ND	7.5		ND	10
Indeno(1,2,3-cd)pyrene		ND	10		ND	13
Dibenzo(a,h)anthracene		ND	10		ND	13
Benzo(g,h,i)perylene		ND	10		ND	13
Total HPAHs		42	7.5-10		55	10-13
Total PAHs		57	7.5-10		75	10-13
Total phthalate esters	,	770	7.5		1000	10

ND = Not Detected

SF Army Corps of Engineers

ToxScan Number: T-12046

Page SV-42

Method:

Modified EPA Method 8270

Date Extracted: Date Analyzed:

04/13/95

Matrix:

04/20/95 Sediment

Units:

ug/Kg (ppb)

Client Sample ID:

HUM95PSD0023

Station ID:

FL 6

ToxScan Lab ID:

12046-57

	Wet Weight			Dry Weight	
		Sample	Reporting	Sample	Reporting
Analyte		Value	Limit	Value	Limit
Naphthalene		ND	7.5	ND	9.4
2-Methylnaphthalene		ND	7.5	ND	9.4
2-Chloronaphthalene		ND	7.5	ND	9.4
Acenaphthylene		ND	7.5	ND	9.4
Acenaphthene		ND	7.5	ND	9.4
Fluorene		ND	7.5	ND	9.4
Phenanthrene		ND	7.5	ND	9.4
Anthracene		ND	7.5	ND	9.4
Total LPAHs		ND	7.5	ND	9.4
Fluoranthene		ND	7.5	ND	9.4
Pyrene		ND	7.5	ND	9.4
Benzo(a)anthracene		ND	7.5	ND	9.4
Chrysene		ND	7.5	ND	9.4
Benzo(b)fluoranthene		ND	7.5	ND	9.4
Benzo(k)fluoranthene		ND	7.5	ND	9.4
Benzo(a)pyrene		ND	7.5	ND	9.4
Indeno(1,2,3-cd)pyrene		ND	10	ND	13
Dibenzo(a,h)anthracene		ND	10	ND	13
Benzo(g,h,i)perylene	·	ND	10	ND	13
Total HPAHs		ND	7.5-10	ND	9.4-13
Total PAHs		ND	7.5-10	ND	9.4-13
Total phthalate esters		300	7.5	370	9.4

ND = Not Detected

SF Army Corps of Engineers

ToxScan Number: T-12046

Page SV-43

Method:

Modified EPA Method 8270

Date Extracted: Date Analyzed:

04/13/95

Matrix:

04/20/95 Sediment

Units:

ug/Kg (ppb)

Client Sample ID:

HUM95PSD0023

Station ID:

FL 6

ToxScan Lab ID:

12046-57REP

	Wet '	Weight	Dry Weight	
Analyte	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Naphthalene	ND	7.5	ND	9.4
2-Methylnaphthalene	ND	7.5	ND	9.4
2-Chloronaphthalene	ND	7.5	ND ·	9.4
Acenaphthylene	ND	7.5	ND	9.4
Acenaphthene	ND	7.5	ND	9.4
Fluorene	ND	7.5	ND	9.4
Phenanthrene	ND	7.5	ND	9.4
Anthracene	ND	7.5	ND	9.4
Total LPAHs	ND .	7.5	ND	9.4
Fluoranthene	ND	7.5	ND	9.4
Pyrene	ND .	7.5	ND	9.4
Benzo(a)anthracene	ND	7.5	ND	9.4
Chrysene	ND	7.5	ND	9.4
Benzo(b)fluoranthene	ND	7.5	ND ·	9.4
Benzo(k)fluoranthene	ND	7.5	ND	9.4
Benzo(a)pyrene	 ND	7.5	ND	9.4
Indeno(1,2,3-cd)pyrene	ND	10	ND	13
Dibenzo(a,h)anthracene	ND	10	ND	13
Benzo(g,h,i)perylene	ND	10	ND	13
Total HPAHs	ND	7.5-10	ND	9.4-13
Total PAHs	ND	7.5-10	ND	9.4-13
Total phthalate esters	320	7.5	400	9.4

ND = Not Detected

SF Army Corps of Engineers

ToxScan Number: T-12046

Page SV-44

Method:

Modified EPA Method 8270

Date Extracted: Date Analyzed:

04/12/95

Matrix: Units: 04/24/95 Sediment

ug/Kg (ppb)

ToxScan Lab ID:

Method Blank

	Wet Weight		
	Sample	Reporting	
Analyte	Value	Limit	
Naphthalene	ND	7.5	
2-Methylnaphthalene	ND	7.5	
2-Chloronaphthalene	ND	7.5	
Acenaphthylene	ND	7.5	
Acenaphthene	ND	7.5	
Fluorene	ND	7.5	
Phenanthrene	ND	7.5	
Anthracene	ND	7.5	
Total LPAHs	ND	7.5	
Fluoranthene	ND	7.5	
Pyrene	ND	7.5	
Benzo(a)anthracene	ND	7.5	
Chrysene	ND	7.5	
Benzo(b)fluoranthene	ND	7.5	
Benzo(k)fluoranthene	ND	7.5	
Benzo(a)pyrene	ND	7.5	
Indeno(1,2,3-cd)pyrene	ND	10	
Dibenzo(a,h)anthracene	ND	10	
Benzo(g,h,i)perylene	ND	10	
Total HPAHs	ND	7.5-10	
Total PAHs	ND	7.5-10	
Total phthalate esters	150	7.5	

ND = Not Detected

LPAH = Low Molecular Weight PAH

HPAH = High Molecular Weight PAH

SF Army Corps of Engineers

ToxScan Number: T-12046

Page SV-45

Method:

Modified EPA Method 8270

Date Extracted: Date Analyzed:

04/13/95

Matrix:

04/20/95 Sediment

Units:

ug/Kg (ppb)

ToxScan Lab ID:

Method Blank

	Wet Weight			
	Sample	Reporting		
Analyte	Value	Limit		
Naphthalene	ND	7.5		
2-Methylnaphthalene	ND	7.5		
2-Chloronaphthalene	ND	7.5		
Acenaphthylene	ND	7.5		
Acenaphthene	ND	7.5		
Fluorene	ND	7.5		
Phenanthrene	ND	7.5		
Anthracene	ND	7.5		
Total LPAHs	ND	7.5		
Fluoranthene	ND	7.5		
Pyrene	ND	7.5		
Benzo(a)anthracene	ND	7.5		
Chrysene	ND	7.5		
Benzo(b)fluoranthene	ND	7.5		
Benzo(k)fluoranthene	ND	7.5		
Benzo(a)pyrene	ND	7.5		
Indeno(1,2,3-cd)pyrene	ND	10		
Dibenzo(a,h)anthracene	ND	10		
Benzo(g,h,i)perylene	ND	10		
Total HPAHs	ND	7.5-10		
Total PAHs	ND	7.5-10		
Total phthalate esters	240	7.5		

ND = Not Detected

SF Army Corps of Engineers

ToxScan Number: T-12046

Page SV-46

Method:

Modified EPA Method 8270

Date Extracted: Date Analyzed:

04/26/95

Matrix: Units: 04/28/95 Sediment

ug/Kg (ppb)

ToxScan Lab ID:

Method Blank

	Wet Weight		
	Sample	Reporting	
Analyte	Value	Limit	
Naphthalene	ND	7.5	
2-Methylnaphthalene	ND	7.5	
2-Chloronaphthalene	ND	7.5	
Acenaphthylene	ND	7.5	
Acenaphthene	ND	7.5	
Fluorene	ND	7.5	
Phenanthrene	ND	7.5	
Anthracene	ND	7.5	
Total LPAHs	ND	7.5	
Fluoranthene	ND	7.5	
Pyrene	ND	7.5	
Benzo(a)anthracene	ND	7.5	
Chrysene	ND	7.5	
Benzo(b)fluoranthene	ND	7.5	
Benzo(k)fluoranthene	, ND	7.5	
Benzo(a)pyrene	ND	7.5	
Indeno(1,2,3-cd)pyrene	ND	10	
Dibenzo(a,h)anthracene	ND	10	
Benzo(g,h,i)perylene	ND	10	
Total HPAHs	ND	7.5-10	
Total PAHs	ND	7.5-10	
Total phthalate esters	47	7.5	

ND = Not Detected

LPAH = Low Molecular Weight PAH

HPAH = High Molecular Weight PAH

SF Army Corps of Engineers

Method:

Modified EPA Method 8270

Date Extracted:

04/12/95

Date Analyzed: Matrix:

04/25/95 Sediment

Quality Control Report: Spike recoveries expressed as percentages

Client ID:

HUM95PSD0007

ToxScan Number: T-12046

Page SV-47

ToxScan ID:

12046-41

Analyte	% Rec MS	% Rec MSD	RPD	QAQC LIMITS <u>%REC %RPD</u>
Acenaphthene	93	89	4	31-137 19
Pyrene	96	91	5	35-142 36

MS = Matrix Spike MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference

SF Army Corps of Engineers Modified EPA Method 8270

Method:

Date Extracted: Date Analyzed:

04/13/95

Matrix:

04/20/95 Sediment

Quality Control Report: Spike recoveries expressed as percentages

Client ID:

HUM95PSD0023

ToxScan Number: T-12046

Page SV-48

ToxScan ID:

12046-57

Analyte	% Rec MS	% Rec MSD	<u>RPD</u>	QAQC LIMITS <u>%REC</u> <u>%RPD</u>
Acenaphthene	77	85	10	31-137 19
Pyrene	81	87	7	35-142 36

MS = Matrix Spike

MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference

SF Army Corps of Engineers Modified EPA Method 8270

Method:

Date Extracted: Date Analyzed: 04/12/95

Matrix:

04/24/95 Sediment

Quality Control Report: Spike recoveries expressed as percentages

Analyte	% Rec LCS	QAQC LIMITS <u>%REC</u>
Acenaphthene	63	31-137
Pyrene	96	35-142

ToxScan Number: T-12046

Page SV-49

LCS = Laboratory Control Sample

SF Army Corps of Engineers Modified EPA Method 8270

Method:

Date Extracted: Date Analyzed:

04/13/95

04/20/95

Matrix: Sediment

Quality Control Report: Spike recoveries expressed as percentages

Analyte 4.6	% Rec LCS	QAQC LIMITS <u>%REC</u>
Acenaphthene	78	31-137
Pyrene	75	35-142

ToxScan Number: T-12046

Page SV-50

LCS = Laboratory Control Sample

SF Army Corps of Engineers

Method:

Modified EPA Method 8270

Date Extracted: Date Analyzed:

04/26/95 04/28/95

Matrix:

Sediment

Quality Control Report: Spike recoveries expressed as percentages

Analyte	% Rec LCS	QAQC LIMITS <u>%REC</u>
Acenaphthene	92	31-137
Pyrene	90	35-142

ToxScan Number: T-12046

Page SV-51

LCS = Laboratory Control Sample

SF Army Corps of Engineers

ToxScan Number: T-12046 Page SV-52

Method:

Modified EPA Method 8270

Date Extracted:

04/12/95

Date Analyzed:

04/24/95 - 04/26/95

Matrix:

Sediment

Quality Control Report: Surrogate recoveries expressed as percentages

Sample Identification	<u>S1</u>	<u>S2</u>	<u>S3</u>
Method Blank	7 *	49	105
Laboratory Control Sample	4 *	39	103
HUM95SED0001	54	78	94
HUM95SED0002	10 *	46	90
HUM95SED0003	5 *	54	95
HUM95SED0004	4 *	25 *	96
HUM95SED0005	3 *	47	98
HUM95SED0006	21 *	64	96
HUM95SED0007	54	90	100
HUM95SED0008	31	77	97
HUM95SED0009	3 *	53	93
HUM95SED0010	62	89	97
HUM95SED0011	3 *	57	102
HUM95SED0012	54	86	101
HUM95SED0013	65	92	103
HUM95SED0014	4 *	57	92
HUM95SED0015	13 *	63	97
HUM95PSD0006	66	90	98
HUM95PSD0007	66	89	- 99
HUM95PSD0007REP	52	72	94
HUM95PSD0007MS	67	87	105
HUM95PSD0007MSD	59	83	96

Surrogates:

^{*} Outside QC limits; sample was reextracted (new recoveries on page SV-54)

MS = Matrix Spike

MS = Matrix Spike Duplicate

 $[\]overline{S1} = \overline{Nitrobenzene-d5}$ (S.S.)

S2 = 2-Fluorobiphenyl (S.S.)

S3 = Terphenyl-d14 (S.S.)

SF Army Corps of Engineers

Method:

Modified EPA Method 8270

ToxScan Number: T-12046

Page SV-53

Date Extracted:

04/13/95

Date Analyzed:

04/20/95 - 04/24/95

Matrix:

Sediment

Quality Control Report: Surrogate recoveries expressed as percentages

<u>S1</u>	<u>S2</u>	<u>\$3</u>
60	· 80	95
46	··· 71	86
55	74	86
÷ 55	82	94
59	82	92
60	81	92
64	86	97
61	76	95
60	80	91
60	86	97
67	86	95
58	81	96
67	91	98
58	77	91
56	85	100
45	70	88
50	7 2	96
48	71	88
53	76	90
	60 46 55 55 59 60 64 61 60 67 58 67 58 56 45	60 80 46 71 55 74 55 82 59 82 60 81 64 86 61 76 60 80 60 86 67 86 58 81 67 91 58 77 56 85 45 70 50 72 48 71

MS = Matrix Spike

MS = Matrix Spike Duplicate

Surrogates:

 $\overline{S1} = Nitrobenzene-d5 (S.S.)$

S2 = 2-Fluorobiphenyl (S.S.)

S3 = Terphenyl-d14 (S.S.)

SF Army Corps of Engineers

ToxScan Number: T-12046

Page SV-54

Method:

Modified EPA Method 8270

Date Extracted:

04/26/95.

Date Analyzed:

04/28/95 - 04/30/95

Matrix:

Sediment

Quality Control Report: Surrogate recoveries expressed as percentages

Sample Identification	<u>S1</u>	<u>S2</u>	<u>S3</u>
Method Blank	67	88	96
Laboratory Control Sample	66	86	92
HUM95SED0002 (2nd Extraction)	69	95	98
HUM95SED0003 (2nd Extraction)	66	87	94
HUM95SED0004 (2nd Extraction)	67	89	99
HUM95SED0005 (2nd Extraction)	67	83	91
HUM95SED0006 (2nd Extraction)	68	88	93
HUM95SED0008 (2nd Extraction)	67	91	95
HUM95SED0009 (2nd Extraction)	65	87	94
HUM95SED0011 (2nd Extraction)	83	92	100
HUM95SED0012 (2nd Extraction)	81	95	99
HUM95SED0014 (2nd Extraction)	82	92	100
HUM95SED0015 (2nd Extraction)	-82	92	102

Surrogates:

 $\overline{S1} = Nitrobenzene-d5 (S.S.)$

S2 = 2-Fluorobiphenyl (S.S.)

S3 = Terphenyl-d14 (S.S.)

Units:

SF Army Corps of Engineers

Method:

Modified EPA Method 8270

Date Analyzed:

04/13/95

Date Analyzed: Matrix:

04/24/95 Sediment

ug/Kg (ppb)

Standard Reference Material Results: ERA Lot # 332

	Certified Acceptance		ince Limits	Analytical
Analyte	Value	Low	High	Result
Anthracene	5090	1590	5340	2080
Benzo(k)fluoranthene	3920	1670	4120	2030
Butyl benzyl phthalate	6300	2440	7310	4670
Chrysene	6860	2490	7200	4630
Dibenzo(a,h)anthracene	3300	868	5210	1830
Bis(2-ethylhexyl)phthalate	4060	1910	4750	3080
Fluoranthene	2570	<i>7</i> 76	2700	1590
Naphthalene	8110	1680	8520	3640
Pyrene	9870	3630	10400	6040

ToxScan Number: T-12046

Page SV-55

Appendix C-1

Sediment Dioxins and Furans (Alta Analytical Laboratory, Inc.)

<u>Please note</u>: The composite sample labels in this appendix are equivalent to the composite sample labels referenced in other sections and appendices of this report, as follows:

Alta Lab. ID	<u>Composite</u>
1110-0001-SA	Reference Site
1110-00021-SA	SAMTB
1110-00031-SA	FLTB
1110-00041-SA	EKEX
1110-00051-SA	EKUP

entropia de la composition de la compo La composition de la

April 28, 1995

Alta Batch I.D.: 1110

Ms. Mary Lou Milazzo Toxscan 42 Hangar Way Watsonville, CA 95076

Dear Ms. Milazzo,

Enclosed are the results for the five sediment samples received at Alta Analytical Laboratory on April 11, 1995. The work was authorized as your Project #10334. These samples were analyzed using EPA Method 8290 for tetra to octa chlorinated dioxins and furans. Routine turnaround time was provided for this project.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix. The Appendix contains a copy of the chain-of-custody, a list of data qualifiers and abbreviations and copies of the raw data (if requested).

If you have any questions regarding this report please feel free to contact me.

Sincerely,

William J. Luksemburg

Director of HRMS Services

Section I: Sample Inventory Report Date Received: 4/11/95

Alta Lab. ID	Client Sample ID
1110-0001-SA	DIOXIN 001
1110-0002-SA	DIOXIN 002
1110-0003-SA	DIOXIN 003
1110-0004-SA	DIOXIN 004
1110-0005-SA	DIOXIN 005

SECTION II.

SECTION II.

A.

n a se

METHOD BLANK

Lab ID: <u>1110-0001-MB</u>

Matrix: Sediment

 $TEQ = \underline{0.002}$

Date Received: NA

Date Extracted: 4/14/95

Sample Amount: 10.00 g

ICAL ID: <u>I1613A</u>

QC Lot: LC0413S

Units: pg/g

				S/N	
<u>Compound</u>	Conc.	<u>D.L.</u>	<u>Ratio</u>	<u>Ratio</u>	Qualifier
2,3,7,8-TCDD	ND	0.12			
Total TCDD	ND	0.12			
1,2,3,7,8-PeCDD	ND	0.15			
Total PeCDD	ND	0.15			•
1,2,3,4,7,8-HxCDD	ND	0.11			
1,2,3,6,7,8-HxCDD	ND	0.11			
1,2,3,7,8,9-HxCDD	ND	0.11			
Total HxCDD	ND	0.11			·
1,2,3,4,6,7,8-HpCDD	ND	0.18			
Total HpCDD	ND	0.25			
OCDD	2.0		1.02	>10:1	A
2,3,7,8-TCDF	ND	0.18			
Total TCDF	ND	0.18			
1,2,3,7,8-PeCDF	ND	0.16			
2,3,4,7,8-PeCDF	ND	0.17			
Total PeCDF	ND	0.17			
1,2,3,4,7,8-HxCDF	ND	0.20			
1,2,3,6,7,8-HxCDF	ND	0.20			
2,3,4,6,7,8-HxCDF	ND	0.20			
1,2,3,7,8,9-HxCDF	ND	0.24			
Total HxCDF	ND	0.24			
1,2,3,4,6,7,8-HpCDF	ND	0.20			
1,2,3,4,7,8,9-HpCDF	ND	0.11			
Total HpCDF	ND	0.20			
OCDF Analyst: <u>by</u>	ND	0.30 Page 1	l of 2		Reviewer: 42

METHOD BLANK Lab ID: 1110-0001-MB

Isotopic Recovery Results

Internal Standard	<u>% R</u>	Ratio	Qualifier
¹³ C-2,3,7,8-TCDD	96	0.74	S DWG Color
¹³ C-1,2,3,7,8-PeCDD	103	1.57	
¹³ C-1,2,3,4,7,8-HxCDD	89	1.32	The probability of the
¹³ C-1,2,3,6,7,8-HxCDD	98	1.33	
¹³ C-1,2,3,4,6,7,8-HpCDD	98	1.07	
¹³ C-OCDD	113	0.91	
¹³ C-2,3,7,8-TCDF	95	0.80	eter ye
¹³ C-1,2,3,7,8-PeCDF	88	1.64	
¹³ C-2,3,4,7,8-PeCDF	84	1.67	
¹³ C-1,2,3,4,7,8-HxCDF	83	0.52	
¹³ C-1,2,3,6,7,8-HxCDF	85	0.52	
¹³ C-2,3,4,6,7,8-HxCDF	80	0.53	elle a karanta a kar
¹³ C-1,2,3,7,8,9-HxCDF	96	0.52	
¹³ C-1,2,3,4,6,7,8-HpCDF	86	0.43	
¹³ C-1,2,3,4,7,8,9-HpCDF	98	0.45	
Clean-up Recovery Standard:			1000
³⁷ Cl-2,3,7,8-TCDD	91	NA	

Dates Analyzed:

DB-5: <u>4/17/95</u>

DB-225: <u>NA</u>

SP-2331: <u>NA</u>

Analyst: 1

Page 2 of 2 Reviewer: W

LCS RESULTS

Lab ID: 1110-LCS1/LCS2

Matrix: Sediment

Date Received: NA

Date Extracted: 4/13/95

Sample Amount: 10.00 g

ICAL ID: <u>I1613A</u>

QC Lot: LC0413S

Units: NA

Compound	LCS1 <u>% R</u>	LCS2 <u>% R</u>	RPD <u>%</u>
2,3,7,8-TCDD	89	94	5.5
1,2,3,7,8-PeCDD	89	91	2.2
1,2,3,4,7,8-HxCDD	93	98	5.2
1,2,3,6,7,8-HxCDD	95	97	2.1
1,2,3,7,8,9-HxCDD	94	97	3.1
1,2,3,4,6,7,8-HpCDD	93	98	5.2
OCDD	108	117	8.0
2,3,7,8-TCDF	93	96	3.2
1,2,3,7,8-PeCDF	94	98	4.2
2,3,4,7,8-PeCDF	94	99	5.2
1,2,3,4,7,8-HxCDF	94	98	4.2
1,2,3,6,7,8-HxCDF	96	99	3.1
2,3,4,6,7,8-HxCDF	90	93	3.3
1,2,3,7,8,9-HxCDF	95	97	2.1
1,2,3,4,6,7,8-HpCDF	94	97	3.1
1,2,3,4,7,8,9-HpCDF	95	97	2.1
OCDF	100	120	18

Analyst: hly

Page 1 of 2

Reviewer:

LCS RESULTS

Lab ID: 1110-LCS1/LCS2

Isotopic Recovery Results

Internal Standard:	LCS1 % R	LCS2 % R
¹³ C-2,3,7,8-TCDD	95	98
¹³ C-1,2,3,7,8-PeCDD	106	115
¹³ C-1,2,3,4,7,8-HxCDD	90	94
¹³ C-1,2,3,6,7,8-HxCDD	90	97
¹³ C-1,2,3,4,6,7,8-HpCDD	95	97
¹³ C-OCDD	98	88
¹³ C-2,3,7,8-TCDF	96	98
¹³ C-1,2,3,7,8-PeCDF	100	102
¹³ C-2,3,4,7,8-PeCDF	96	100
¹³ C-1,2,3,4,7,8-HxCDF	84	87
¹³ C-1,2,3,6,7,8-HxCDF	82	87
¹³ C-2,3,4,6,7,8-HxCDF	82	86
¹³ C-1,2,3,7,8,9-HxCDF	84	88
¹³ C-1,2,3,4,6,7,8-HpCDF	79	85
¹³ C-1,2,3,4,7,8,9-HpCDF	87	91
Clean-up Recovery Standard:		
³⁷ Cl-2,3,7,8-TCDD	87	89

Date Analyzed: 4/15/95

Analyst: 6mg

Page 2 of 2

Reviewer: M2

Sample ID: Dioxin 001 Lab ID: 1110-0001-SA

Matrix: Sediment

% Solid: <u>64</u>

Date Received: 4/11/95 Date Extracted: 4/14/95 Sample Amount: 8.07 g

TEQ = 0.76

ICAL ID: <u>I1613A</u> QC Lot: LC0413S

Units: pg/g

•				S/N	
Compound	Conc.	<u>D.L.</u>	Ratio	Ratio	Qualifier
2,3,7,8-TCDD	ND	0.19			
Total TCDD	0.29		0.79	>10:1	A
1,2,3,7,8-PeCDD	ND	0.27			
Total PeCDD	ND	0.27			
1,2,3,4,7,8-HxCDD	ND	0.20			
1,2,3,6,7,8-HxCDD	0.35		1.30	5:1	$\mathcal{A}^{(n)}$
1,2,3,7,8,9-HxCDD	0.34		1.20	4:1	
Total HxCDD	3.4		1.12	>10:1	
1,2,3,4,6,7,8-HpCDD	4.2		1.07	>10:1	
Total HpCDD	7.8		1.01	>10:1	
OCDD	610		0.90	>10:1	B · · ·
2,3,7,8-TCDF	ND	0.19			
Total TCDF	0.31		0.69	7:1	A
1,2,3,7,8-PeCDF	ND	0.13			
2,3,4,7,8-PeCDF	ND	0.13			
Total PeCDF	0.71		1.34	>10:1	A
1,2,3,4,7,8-HxCDF	ND	0.049			
1,2,3,6,7,8-HxCDF	ND	0.048			
2,3,4,6,7,8-HxCDF	0.39		1.27	>10:1	A
1,2,3,7,8,9-HxCDF	ND	0.051			
Total HxCDF	0.82		1.17	>10:1	$\dot{m{A}}$. The $\dot{m{A}}$
1,2,3,4,6,7,8-HpCDF	0.47		1.09	>10:1	
1,2,3,4,7,8,9-HpCDF	ND	0.070			
Total HpCDF	1.3		1.09	>10:1	A
OCDF	0.51		0.97	>10:1	A

Analyst: My

Page 1 of 2

Reviewer:

Sample ID: <u>Dioxin 001</u> **Lab ID:** <u>1110-0001-SA</u>

Isotopic Recovery Results

Internal Standard:	<u>% R</u>	<u>Ratio</u>	Qualifier
¹³ C-2,3,7,8-TCDD	86	0.75	
¹³ C-1,2,3,7,8-PeCDD	88	1.59	
¹³ C-1,2,3,4,7,8-HxCDD	90	1.31	
¹³ C-1,2,3,6,7,8-HxCDD	91	1.32	
¹³ C-1,2,3,4,6,7,8-HpCDD	89	1.07	
¹³ C-OCDD	98	0.92	
¹³ C-2,3,7,8-TCDF	89	0.81	
¹³ C-1,2,3,7,8-PeCDF	82	1.68	
¹³ C-2,3,4,7,8-PeCDF	81	1.64	
¹³ C-1,2,3,4,7,8-HxCDF	83	0.52	
¹³ C-1,2,3,6,7,8-HxCDF	83	0.52	
¹³ C-2,3,4,6,7,8-HxCDF	79	0.52	
¹³ C-1,2,3,7,8,9-HxCDF	90	0.53	
¹³ C-1,2,3,4,6,7,8-HpCDF	80	0.43	
¹³ C-1,2,3,4,7,8,9-HpCDF	89	0.44	
Clara and Danasana Chandral			
Clean-up Recovery Standard:			
³⁷ Cl-2,3,7,8-TCDD	81	NA	

Dates Analyzed:

DB-5: <u>4/18/95</u> **DB-225:** <u>4/28/95</u>

SP-2331: <u>NA</u>

Page 2 of 2

Reviewer: MZ

Sample ID: Dioxin 002 Lab ID: <u>1110-0002-SA</u>

Matrix: Sediment

% Solid: <u>68</u>

Date Received: <u>4/11/95</u> Date Extracted: 4/14/95 Sample Amount: 8.68 g

TEQ = 1.4

ICAL ID: <u>I1613A</u> QC Lot: LC0413S

Units: pg/g

Carrain d	Cama	D I	Datio	S/N <u>Ratio</u>	<u>Qualifier</u>
Compound	Conc.	<u>D.L.</u>	Ratio	Katio	Quamiei
2,3,7,8-TCDD	ND	0.17	0 40	. 10.1	
Total TCDD	22		0.79	>10:1	
1,2,3,7,8-PeCDD	0.32		1.55	8:1	A
Total PeCDD	12		1.73	>10:1	
1,2,3,4,7,8-HxCDD	0.40		1.30	5:1	A
1,2,3,6,7,8-HxCDD	2.6		1.22	>10:1	
1,2,3,7,8,9-HxCDD	1.5		1.23	>10:1	A
Total HxCDD	27		1.27	>10:1	
1,2,3,4,6,7,8-HpCDD	18		1.08	>10:1	
Total HpCDD	43		1.03	>10:1	
OCDD	110		0.90	>10:1	В
2,3,7,8-TCDF	0.93		0.86	>10:1	
Total TCDF	5.3		0.74	>10:1	
1,2,3,7,8-PeCDF	0.18		1.53	6:1	A
2,3,4,7,8-PeCDF	0.36		1.48	>10:1	A
Total PeCDF	4.0		1.36	>10:1	
1,2,3,4,7,8-HxCDF	0.53		1.35	>10:1	A
1,2,3,6,7,8-HxCDF	0.27		1.22	8:1	s La <mark>A</mark> an
2,3,4,6,7,8-HxCDF	0.70		1.40	>10:1	$\mathbf{A}_{ij} = \mathbf{A}_{ij}$
1,2,3,7,8,9-HxCDF	0.14		1.30	4:1	A
Total HxCDF	7.2		1.30	>10:1	and the second second
1,2,3,4,6,7,8-HpCDF	3.8		1.09	>10:1	
1,2,3,4,7,8,9-HpCDF	ND	0.45			
Total HpCDF	11		1.09	>10:1	
OCDF	6.2		0.93	>10:1	
Analyst: by		Pag	e 1 of 2	·	Reviewer:

Sample ID: <u>Dioxin 002</u> **Lab ID:** <u>1110-0002-SA</u>

Isotopic Recovery Results

Internal Standard:	<u>% R</u>	<u>Ratio</u>	Qualifier
¹³ C-2,3,7,8-TCDD	96	0.73	
¹³ C-1,2,3,7,8-PeCDD	105	1.57	
¹³ C-1,2,3,4,7,8-HxCDD	96	1.37	
¹³ C-1,2,3,6,7,8-HxCDD	97	1.26	er falle
¹³ C-1,2,3,4,6,7,8-HpCDD	98	1.06	
¹³ C-OCDD	108	0.93	
¹³ C-2,3,7,8-TCDF	98	0.79	
¹³ C-1,2,3,7,8-PeCDF	92	1.65	
¹³ C-2,3,4,7,8-PeCDF	89	1.66	
¹³ C-1,2,3,4,7,8-HxCDF	88	0.52	* www.exito.
¹³ C-1,2,3,6,7,8-HxCDF	89	0.53	
¹³ C-2,3,4,6,7,8-HxCDF	85	0.52	
¹³ C-1,2,3,7,8,9-HxCDF	100	0.52	
¹³ C-1,2,3,4,6,7,8-HpCDF	86	0.43	
¹³ C-1,2,3,4,7,8,9-HpCDF	99	0.45	
Clean-up Recovery Standard:			
³⁷ Cl-2,3,7,8-TCDD	91	NA	\$

Dates Analyzed:

Analyst: My

Page 2 of 2

Reviewer:

Sample ID: <u>Dioxin 003</u> **Lab ID:** <u>1110-0003-SA</u>

Matrix: Sediment

% Solid: <u>55</u>

Date Received: 4/11/95
Date Extracted: 4/14/95
Sample Amount: 6.63 g

TEQ = 0.81

ICAL ID: <u>11613A</u> **QC Lot:** <u>LC0413S</u>

Units: pg/g

Compound	Conc.	D.L.	<u>Ratio</u>	S/N <u>Ratio</u>	<u>Qualifier</u>
2,3,7,8-TCDD	ND	0.19			
Total TCDD	0.53		0.82	>10:1	
1,2,3,7,8-PeCDD	0.29		1.61	>10:1	A
Total PeCDD	1.1		1.56	>10:1	A
1,2,3,4,7,8-HxCDD	ND	0.36			
1,2,3,6,7,8-HxCDD	1.2		1.20	>10:1	A
1,2,3,7,8,9-HxCDD	0.72		1.22	5:1	A
Total HxCDD	9.4		1.26	>10:1	
1,2,3,4,6,7,8-HpCDD	8.7		1.09	>10:1	
Total HpCDD	20		1.02	>10:1	
OCDD	56		0.91	>10:1	В
2,3,7,8-TCDF	1.0		0.78	>10:1	
Total TCDF	4.9		0.79	>10:1	
1,2,3,7,8-PeCDF	0.14		1.57	3:1	A
2,3,4,7,8-PeCDF	0.20		1.76	4:1	A
Total PeCDF	1.5		1.76	>10:1	A
1,2,3,4,7,8-HxCDF	0.23		1.37	8:1	A
1,2,3,6,7,8-HxCDF	0.13		1.35	6:1	.
2,3,4,6,7,8-HxCDF	0.59		1.07	>10:1	A
1,2,3,7,8,9-HxCDF	ND	0.054			
Total HxCDF	3.1		1.21	>10:1	
1,2,3,4,6,7,8-HpCDF	1.6		1.01	>10:1	A
1,2,3,4,7,8,9-HpCDF	ND	0.19			
Total HpCDF	4.8		1.01	>10:1	
OCDF	3.7		0.90	>10:1	A
Analyst: <u>My</u>		Page	1 of 2		Reviewer: MV

Sample ID: <u>Dioxin 003</u> **Lab ID:** <u>1110-0003-SA</u>

Isotopic Recovery Results

Internal Standard:	<u>% R</u>	<u>Ratio</u>	Qualifier
¹³ C-2,3,7,8-TCDD	91	0.73	
¹³ C-1,2,3,7,8-PeCDD	95	1.45	
¹³ C-1,2,3,4,7,8-HxCDD	94	1.30	
¹³ C-1,2,3,6,7,8-HxCDD	94	1.33	
¹³ C-1,2,3,4,6,7,8-HpCDD	97	1.07	
¹³ C-OCDD	106	0.90	
¹³ C-2,3,7,8-TCDF	98	0.81	
¹³ C-1,2,3,7,8-PeCDF	90	1.63	
¹³ C-2,3,4,7,8-PeCDF	88	1.65	
¹³ C-1,2,3,4,7,8-HxCDF	87	0.53	
¹³ C-1,2,3,6,7,8-HxCDF	87	0.53	
¹³ C-2,3,4,6,7,8-HxCDF	84	0.53	
¹³ C-1,2,3,7,8,9-HxCDF	95	0.53	
¹³ C-1,2,3,4,6,7,8-HpCDF	87	0.44	
¹³ C-1,2,3,4,7,8,9-HpCDF	95	0.45	
Clean-up Recovery Standard:			
³⁷ Cl-2,3,7,8-TCDD	85	NA	

Dates Analyzed:

Analyst:

Page 2 of 2

Reviewer:

Sample ID: <u>Dioxin 004</u> Lab ID: <u>1110-0004-SA</u>

Matrix: Sediment

% Solid: <u>60</u>

Date Received: 4/11/95
Date Extracted: 4/14/95
Sample Amount: 7.88 g

TEQ = 3.5

ICAL ID: <u>11613A</u> **QC Lot:** <u>LC0413S</u>

Units: pg/g

<u>Compound</u>	Conc. D.L.	Ratio	S/N <u>Ratio</u>	<u>Qualifier</u>
2,3,7,8-TCDD	0.34	0.66	>10:1	A
	5.3	0.79	>10.1	A
Total TCDD				() () () () () () () () () ()
1,2,3,7,8-PeCDD	0.75	1.72	>10:1	.
Total PeCDD	6.6	1.65	>10:1	
1,2,3,4,7,8-HxCDD	0.91	1.16	3:1	A 1 - 444 - North
1,2,3,6,7,8-HxCDD	6.3	1.26	>10:1	egya tanan 1964 tanan 1964.
1,2,3,7,8,9-HxCDD	3.3	1.24	>10:1	
Total HxCDD	51	1.22	>10:1	
1,2,3,4,6,7,8-HpCDD	52	1.06	>10:1	e de la companya de La companya de la co
Total HpCDD	120	1.00	>10:1	
OCDD	320	0.90	>10:1	В
2,3,7,8-TCDF	1.0	0.72	>10:1	
Total TCDF	8.6	0.83	>10:1	
1,2,3,7,8-PeCDF	0.28	1.38	>10:1	A
2,3,4,7,8-PeCDF	0.67	1.69	>10:1	A
Total PeCDF	8.1	1.33	>10:1	
1,2,3,4,7,8-HxCDF	1.0	1.36	>10:1	A
1,2,3,6,7,8-HxCDF	0.61	1.13	>10:1	, and a \mathbf{A}_{ij} , ij
2,3,4,6,7,8-HxCDF	1.2	1.25	>10:1	$\mathbf{A}_{\mathrm{obs}} = \mathbf{A}_{\mathrm{obs}} \mathbf{A}_{\mathrm{obs}}$
1,2,3,7,8,9-HxCDF	0.26	1.29	>10:1	A
Total HxCDF	16	1.33	>10:1	
1,2,3,4,6,7,8-HpCDF	11	1.04	>10:1	
1,2,3,4,7,8,9-HpCDF	0.69	1.04	>10:1	A
Total HpCDF	31	1.04	>10:1	
OCDF	21	0.88	>10:1	

Analyst: by

Page 1 of 2

Reviewer:

Sample ID: <u>Dioxin 004</u> **Lab ID:** <u>1110-0004-SA</u>

Isotopic Recovery Results

Internal Standard:	<u>% R</u>	<u>Ratio</u>	Qualifier
¹³ C-2,3,7,8-TCDD	89	0.73	
¹³ C-1,2,3,7,8-PeCDD	98	1.57	
¹³ C-1,2,3,4,7,8-HxCDD	89	1.33	
¹³ C-1,2,3,6,7,8-HxCDD	89	1.32	
¹³ C-1,2,3,4,6,7,8-HpCDD	91	1.04	
¹³ C-OCDD	97	0.90	
¹³ C-2,3,7,8-TCDF	92	0.79	
¹³ C-1,2,3,7,8-PeCDF	86	1.64	
¹³ C-2,3,4,7,8-PeCDF	85	1.63	
¹³ C-1,2,3,4,7,8-HxCDF	84	0.53	·
¹³ C-1,2,3,6,7,8-HxCDF	83	0.52	
¹³ C-2,3,4,6,7,8-HxCDF	80	0.52	
¹³ C-1,2,3,7,8,9-HxCDF	90	0.52	
¹³ C-1,2,3,4,6,7,8-HpCDF	76	0.41	
¹³ C-1,2,3,4,7,8,9-HpCDF	88	0.44	
Clean-up Recovery Standard:			
³⁷ Cl-2,3,7,8-TCDD	84	NA	

Dates Analyzed:

DB-5: <u>4/18/95</u> **DB-225:** <u>4/28/95</u>

SP-2331: <u>NA</u>

Analyst: My

Page 2 of 2

Reviewer: W/

Sample ID: <u>Dioxin 005</u> **Lab ID:** <u>1110-0005-SA</u>

Matrix: Sediment

% Solid: <u>63</u>

Date Received: 4/11/95
Date Extracted: 4/14/95
Sample Amount: 7.75 g

TEQ = 2.7

ICAL ID: <u>11613A</u> **QC** Lot: <u>LC0413S</u>

Units: pg/g

Compound	Conc.	D.L.	<u>Ratio</u>	S/N <u>Ratio</u>	Qualifier
2,3,7,8-TCDD	0.38	<u> </u>	0.68	>10:1	A
Total TCDD	7.8		0.74	>10.1	
	0.49		1.48	>10.1	at a second of the second of t
1,2,3,7,8-PeCDD					
Total PeCDD	8.6		1.66	>10:1	
1,2,3,4,7,8-HxCDD	0.61		1.17	>10:1	A
1,2,3,6,7,8-HxCDD	3.7		1.25	>10:1	
1,2,3,7,8,9-HxCDD	2.0		1.07	>10:1	A
Total HxCDD	36		1.26	>10:1	
1,2,3,4,6,7,8-HpCDD	33		0.97	>10:1	
Total HpCDD	80		0.94	>10:1	
OCDD	210		0.90	>10:1	В
2,3,7,8-TCDF	1.3		0.78	>10:1	
Total TCDF	12		0.73	>10:1	
1,2,3,7,8-PeCDF	0.30		1.55	>10:1	A
2,3,4,7,8-PeCDF	0.77		1.57	>10:1	A
Total PeCDF	5.1		1.60	>10:1	
1,2,3,4,7,8-HxCDF	0.90		1.35	>10:1	A
1,2,3,6,7,8-HxCDF	0.54		1.22	>10:1	
2,3,4,6,7,8-HxCDF	0.97		1.26	>10:1	4 A + 2
1,2,3,7,8,9-HxCDF	0.23		1.27	>10:1	A
Total HxCDF	13		1.34	>10:1	
1,2,3,4,6,7,8-HpCDF	7.5		1.11	>10:1	
1,2,3,4,7,8,9-HpCDF	0.46		1.04	>10:1	A
Total HpCDF	20		1.11	>10:1	
OCDF	13.		0.91	>10:1	

Analyst:

Page 1 of 2

Reviewer: M

Sample ID: <u>Dioxin 005</u> **Lab ID:** <u>1110-0005-SA</u>

Isotopic Recovery Results

Internal Standard:	<u>% R</u>	<u>Ratio</u>	Qualifier
¹³ C-2,3,7,8-TCDD	93	0.73	
¹³ C-1,2,3,7,8-PeCDD	102	1.55	
¹³ C-1,2,3,4,7,8-HxCDD	91	1.30	
¹³ C-1,2,3,6,7,8-HxCDD	92	1.33	
¹³ C-1,2,3,4,6,7,8-HpCDD	79	0.96	
¹³ C-OCDD	104	0.92	•
¹³ C-2,3,7,8-TCDF	93	0.79	
¹³ C-1,2,3,7,8-PeCDF	90	1.63	
¹³ C-2,3,4,7,8-PeCDF	87	1.62	
¹³ C-1,2,3,4,7,8-HxCDF	84	0.53	
¹³ C-1,2,3,6,7,8-HxCDF	84	0.52	
¹³ C-2,3,4,6,7,8-HxCDF	82	0.52	
¹³ C-1,2,3,7,8,9-HxCDF	92	0.52	
¹³ C-1,2,3,4,6,7,8-HpCDF	72	0.38	
¹³ C-1,2,3,4,7,8,9-HpCDF	77	0.37	
Clean-up Recovery Standard:			
³⁷ Cl-2,3,7,8-TCDD	87	NA	

Dates Analyzed:

DB-5: <u>4/18/95</u>

DB-225: 4/28/95

SP-2331: NA

Analyst: by

Page 2 of 2

Reviewer:

APPENDIX

Editor William

DATA QUALIFIERS & ABBREVIATIONS

A	The amount detected is below the Method Calibration Limit.
В	This compound was also detected in the blank.
C	The amount detected is less than five times the Method Quantitation Limit.
D	The amount reported is the maximum possible concentration.
E	The detection limit was raised above the Method Quantitation Limit due to chemical interferences.
F	This result has been confirmed on a DB-225 column.
G	This result has been confirmed on a SP-2331 column.
H	The signal-to-noise ratio is greater than 10:1.
I	Chemical Interference
	en e
Conc.	Concentration
D.L.	Detection Limit
NA	Not applicable
S/N	Signal-to-noise
* ************************************	See Cover Letter
ND Commence	Not Detected Not Detected Not Detected
MPC	Maximum Possible Concentration

ALTA Analytical Laboratory

Batch ID: 110

Sample Log-In Checklist	Yes	No
1. Date Samples Arrived: 4-//-95 Initials: 4.4		
Samples Arrived By: (circle one) Airborne Express Federal Expres Emery Freezer Truck Company Courier Other	s (UPS
Emery Treezer Truck Company Council Cure		
3. Shipping Documentation Present? (circle one) Shipping Label Airbill Tracking Number 0 2515486 798	X	
4. Shipping Container(s) Intact? If no, describe condition below.		
5. Custody Seals Present and Intact? If not intact, describe condition below.		
No. of Seals or Seal No Type:(circle) Bottle or Container	·	
6. Sample Container Intact? If no, indicate sample condition below.		
7. Shipping Preservation: (circle one) Ice Blue Ice Dry Ice None	Temp(°C)_2
8. Chain of Custody (COC) or other Sample Documentation Present?		
9. COC/Documentation Acceptable? If no, complete COC Anomaly Form.		
10. Shipping Container: (circle one each) ALTA or Client / Return	or R	etain
11. Container and/or Bottles Requested?		
*12. Drinking Water Sample? If yes, Acceptable Preservation? (circle) Y or N		
*Required for HRMS		
Name: Date Samples Reconciled (Signature Required for LCMS Only)	•	

Comments:

company name: Toxscan Inc.	COMMENTS / SPECIAL INSTRUCTIONS:	ANALYSIS(ES) REQUESTED	TOXSCAN INC.
ATTH: MARY LOW MIGHZZO	INCLUDE TEG'S	(VĽ	Watsonville, CA 95076
ADDRESS: 42 Hangar Way	TAT= STD. (21 DAYS)	oo fi	PHONE: 408/724-4622
Watsonville, CA 95076	REPORT SOTH SAMPLE I.D. + STATION J.D.	9ng	100. 100.
PHONE: (408) 724-4522		એમ <u>ા</u>	LAB USE ONLY:
FAX: (408) 724–3188		, ¥2u	STORAGE LOCATION
PROJECT NAME: HUMBOLDT COL	SEND INVOICE TO: Above	131)	FREEZER #
PROJECT NUMBER: T-12046	P.O) CONTRACT NO: (03}4	062	REFRIGERATOR #:

										- -		
Lab Use Only:	Client Sample	e/STATION	Client Sample /ราสาเอม Sample Information:	mation:		Bottle or Container Information:	ner Informa	illon:		184		
ID Number	identification	T.D.	$ dentification \mid \mathcal{I}. \mathcal{D}$. Sampling Date	Sampling Time	Sample Type	Sample Preservative	Bottle Type:	Bottle Stre:	No. of Bollles:	CHECK THE APPROPRIATE BOX BELOW:	BELOW:	SAMPLE CONDITION:
T-12046- 11	Dioxin 001	Humbsco7	Hundslot 30 MAR 95 1118	\$111	SEDMENT		GUSS AR	71	_	/		
71 - 1	DIOXIN 002 CONT#1 OI APR 95 1125	Conf#1	OI MR 95	1125				500 ml	_	\ 		
<u></u>	DIOXIN 003 COMP#4 02 APR.95 1400	COMP#4	02 APR 95	cohi					-	\ 		
711	DIOXIN OCY COMP#3 03APR.95 1055	COMP#3	03 APR 95	2501					1	<i>\</i>		
S - >	DIOXIN OOS COMPAZ	7#dwco	\rightarrow	1732	>		→	7	-	\ \		
		\						1	1			
	\											\
\												
	144 7011		I VIV									

SAMPLER'S SIGNATURE AND PRINTED NAME:

CA エここと COMDOR 13 ALTA ANALYTICAL; SAMPLES SENT TO:

RELINQUISHED BY (SIGNATURE AND PRINTED NAME):	RECEIVED BY (SIGNATURE AND PRINTED NAME):	DATE:	TIME:
April Clark Dono US CLARK	VIA UPS RES	10 APR 95	1630
0 1,95 60	Will haw Fater	4-11-62	1100

						MATCHES
			•			
						National Sections
					Tall the state of	
					7 45	
						Spiriture.
· · · · · · · · · · · · · · · · · · ·				en de la companya de		
,						Market Construction
						All Controls
						Marine Constitution of the
	4 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					ACCOUNTS AND ACCOU
	en e				en e	&

Appendix D

QA/QC Data Plan

QA/QC PLAN

1.0 Field Survey Procedures

Sediment samples were collected from prescribed locations in Humboldt Harbor by use of a vibra-core and Smith-Macintyre grab. The vibra-core consists of a vibrating aluminum head and a ten foot long aluminum core tube. The core tube is capped with a stainless steel cutting tip and a stainless steel core catcher. The vibra-core is lowered slowly into the sediment; the vibration allows entry into the sediment from the mudline to the sample depth. If a sample was not obtained on the first attempt, core attempts were repeated until a sample was secured. The Smith-Macintyre grab consists of a set of spring-loaded galvanized steel jaws, triggered by impact with the sediment surface.

The water sample used to prepare elutriates for bioassays was collected from the disposal site using a peristaltic pump with silicon and teflon hoses which had been precleaned with soap and nitric acid, and thoroughly rinsed with deionized (DI) water.

Horizontal positioning was accomplished by use of a Trimble Global Positioning System (GPS). Water depth was measured by use of a precision Fathometer, calibrated daily according to manufacture specification. Tidal height was extrapolated from tide tables.

Sediment samples were composited in a precleaned teflon-lined container. Samples for chemical analysis were placed into pre-cleaned glass jars and sealed with teflon-lined lids. Bioassay samples were placed into one-gallon, pre-cleaned polyethylene jars with poly screw closures. Immediately after collection and compositing, samples were stored in insulated coolers with ice. Upon arrival at the ToxScan laboratory in Watsonville, CA, sediments were stored in the 4°C room until analyzed. Holding times for chemical analysis are detailed below. None were exceeded during this study.

All sampling data are documented in the field log sheets included in this report.

2.0 Laboratory

Laboratory QA/QC procedures for this testing program were implemented as described in the ToxScan QA/QC program. Generic QA measures are described below in an excerpt from our written program. Table 5 presents a summary of instruments used in this study for bulk sediment analyses, along with methods and schedules for calibration, maintenance, precision/accuracy monitoring and record keeping.

All sediment samples were preserved by storage at 4°C in the dark. While EPA/COE protocol allows a 6-week holding period for dredged material sampled, certain of the methods require extraction and/or analysis within a shorter time period. These restricted holding times are listed below, and were adhered to in this program.

Maximum Holding Time
28 days
extraction within 14 days
extraction within 14 days
7 days
28 days
28 days

As required by the Scope of Services for this program, the frequency of duplicate analyses and spiked sample analyses has been increased over our standard practice. For this study, 10% of the analyses have been duplicated and 20% of samples have been spiked.

Following is an excerpt from our QA/QC program which details the routine QA/QC measures followed in this program.

Procedures for Sample Receiving

The samples, accompanied by a chain of custody form are received by the sample control officer who follows the listed procedures for receiving a sample.

All sample containers are inspected to determine if any breakage or mishandling occurred and to determine that the proper container and preservatives have been used. The sample control officer will verify that sample labels match those on the chain of custody and that all samples listed are present. If a chain of custody does not exist and one is to be generated. See section below on Chain of Custody and Documentation.

The "log-in" process is initiated by giving each sample a discrete laboratory number which is entered on the chain of custody, in the log book and on the project sheet.

The proper paperwork (Sample Analysis Request Form or SARF) indicating analyses needed, detection limits, due dates, sample description and location, and necessary QA/QC is prepared and given to the appropriate analyst. The project manager receives the project sheet, which indicates analyses to be performed and due dates, along with a copy of the original SARF.

Sample Identification Procedure

In order to maintain sample identity, the following scheme is used: T-0001-01, where T = ToxScan
0001 is the group number assigned to the set of samples
01 is the individual container number received.

Chain of Custody and Documentation

A chain of custody is initiated prior to sampling or at the time of sample delivery is submitted by a walk-in client. This chain of custody accompanies all samples and is given to the sample control officer along with the samples. Samples are logged in and the chain of custody is kept with the original SARF. If samples are to be subcontracted to another laboratory, a photocopy of the original chain of custody is made and will accompany those samples.

Source and Preparation of Standards

All primary standards are purchased in concentrated solutions or as pure substances and purchased in the highest purity available from reputable manufacturers or suppliers. Liquid stock solutions of concentrated standards are accompanied by a certification as to purity and concentration. All batch numbers, catalogue numbers, supplier and date of purchase are kept in the standards log book and updated as necessary.

Stock and working standards are prepared taking into account the stability and concentration of the analyte. Thus, some standards are prepared daily, others at less frequent intervals. Those standards that are light sensitive are stored in amber or like containers. If refrigeration will maximize the lifetime of the standards, they are stored at 4°C. Included on the standards container are date of preparation, concentration of solution analyte, and weight or volume used to prepare the standard if applicable. All standards are prepared with a high quality deionized or distilled water or with known purity solvents. A blank of all dilutants is checked to determine if any contamination has been introduced.

Calibration Procedures and Methods of Analysis

All instrument calibration methods are related to known analyte concentrations. This requires a calibration curve be prepared for each analyte. Some instruments can be calibrated directly from known concentrations of a standard; others furnish data for construction of a three-point curve.

The analyst follows the procedures specified in the operational manual for each instrument as well as those guidelines set forth by operational standard methods: Standard Methods for the Evaluation of Waters and Wastewaters, EPA Protocol SW-846, AOAC Manual of Methodologies,

etc. Calibration of instrumental parameters is further checked against standard reference materials provided by the EPA or NBS with listings of certified values. The worksheets given to the analyst have pertinent areas for calibration data to be recorded from which calibration or standard curves can be obtained.

Once the instrument has been standardized, analyte concentrations are checked against the standard curve every 10 analyses to assure continued calibration.

Samples are prepared, analyzed and reported according to those standardized procedures specified by EPA, Standard Methods, AOAC, or other recognized, documented methodologies. Sample weights, preparation, aliquots taken, and calculations are recorded on the analysis sheet furnished for each parameter to be determined and recorded in ink.

Method Blanks and Duplicate and Spiked Samples

A method blank is the analysis of pure organic-free water, high purity solvent or clean sample matrix after being subjected to treatment specified by the method used. Method blanks are used on all analyses to verify, qualitatively, that no false positives will occur and quantitatively, that concentrations are accurate and do not reflect contamination. A method blank is analyzed at a minimum of once for each batch of samples or after every twentieth sample, whichever is more frequent.

Spiking concentrations are dependent upon the background levels in the original sample. When spiking for a scan analysis, nominal spiking levels are used as described by the method. If a small number of specified chemicals are being measured, the sample is ideally spiked at one-half to one-and-one-half times the concentration found in the sample.

The recovery of the spiked samples is calculated and summarized in the quality control record as accuracy and gives the control chart limits.

Establishment of Acceptance Limits of Precision and Accuracy

Each set of samples analyzed per analyte has a blank, duplicate, spike and a standard reference material from which the precision and accuracy data are obtained.

The precision of RPD is obtained by the manipulation of duplicate sample data as follows:

$$RPD = \frac{(D1 - D2)}{(D1 + D2)/2} \times 100$$

where D1 = sample D2 = sample replicate

The accuracy is a measurement of the percentage of a spike recovery, %R, calculated by the formula:

$$%R = [(SSR - SR)/SA] \times 100$$

where SSR = spiked sample SR = sample SA = spike added

Control charts are maintained to show the limits within which measurements should fall. The upper and lower control limits are calculated as follows and are based on 25 sample sets:

Upper control limits =
$$M + 3 Sm$$
 (UCL)
Lower control limits = $M - 3 Sm$ (LCL)

M = the average of the RPD Sm = standard deviation of the RPD

Procedures for Corrective Action

If values fall outside the ULC or LCL, the following guidelines are taken for corrective action:

- 1. Define the problem.
- 2. QA/QC officer and laboratory section leader assign the investigation responsibility to an analyst.
- 3. Document the action needed to correct the problem.
- 4. Implement and verify that corrective action is taken and the problem corrected.

In general, when QA techniques or procedures identify errors, deficiencies or an "out of control" situation, and two types of action need to be considered. The first, immediate action is generally to correct instrumentation error or malfunction, poor technique, or sample variability. Long-term action is to correct out-of-control conditions that may stem from contamination, old standards, improper spiking, or improperly calibrated equipment.

The above guidelines would be followed to correct the problem and maintain acceptable levels of confidence. No laboratory results will be reported or released until the "out of control" situation is rectified.

All worksheets given to the analyst for analyte determination are dated and initialed after major analytical procedures are completed, i.e. on date weighed, after extraction, upon completion of digestion, and on the date the sample is given to the laboratory supervisor for review. This is signed by the supervisor after review for reliability in terms of accuracy, precision, detection limits, and quantitative limits, and forwarded to data processing.

Reports submitted to clients routinely include method numbers and detection limits as well as identifying information, date received, data analyzed, etc.

Maintenance and Repair of Instrumentation

Instruments are maintained according to the operation manuals supplied by the manufacturer. Repairs are conducted as needed, either by manufacturer representatives or by inhouse personnel (for simple problems). Routine maintenance, such as lamp replacement, is conducted as indicated by the collected QC data.

3.0 Bioassay

All bioassays for this testing program (with the exception of the bivalve larval test) were conducted following methods outlined in the EPA/COE Testing Manual (1991). The bivalve larval bioassays were performed according to protocol described in ASTM (1989). Standard operating procedures (SOPs) have been written and approved for these procedures, and are accessible to all bioassay staff. Dilution water for the bioassays, collected from the ToxScan Davenport laboratory, meets all requirements outlined in ASTM (1989).

Data resulting from the bioassays were recorded in ink on laboratory data sheets, evaluated by the project manager to insure that all test conditions were within protocol limits, and incorporated into the permanent project record file.

SOPs have been developed for instrument calibration, which detail standards to be used, units for reporting data and expected performance standards for accuracy and precision. Water quality monitoring instruments (D.O. meter, pH meter, salinometer, thermometer) are calibrated at least once daily according to these SOPs, and data are recorded in logbooks at the laboratory. Backup instrumentation is available in the event of equipment failure.

Bioassay test protocols generally specify acceptable limits of water quality (pH, D.O., temperature, salinity) in test containers during test performance. They also specify certain minimum levels of organism response (survival, normal development, growth) which must be achieved in test controls in order to validate the bioassay. A reference toxicant bioassay has been requested for this program as an additional quality assurance measure. Reference toxicant tests serve to "calibrate" the sensitivity of organisms to a known toxic compound, and control charts are maintained in the laboratory

for each organism:toxicant combination. Our control charts are continuously updated as each new reference toxicant bioassay data set is incorporated. In order to be within control limits, the reftox EC50 or LC50 must fall within the range of ±2 standard deviations of the mean of all previous reference toxicant bioassays. The following table outlines reference toxicants used by the laboratory with each test species:

TEST C	RGANISM	REFERENCE TOXICANT	CONCENTRATION RANGE
Amphip	od	Cadmium Chloride (CdCl ₂)	0.125 - 4.0 mg/L
Mysid		Sodium Dodecyl Sulfate (SDS)	0.5 - 16.0 mg/L
Fish (Sa	anddab)	Sodium Dodecyl Sulfate (SDS)	0.25 - 4.0 mg/L
Bivalve	(Mussel)	Copper Sulfate (CuSO ₄)	2.0 - 32.0 μg/L
Worm (I	Polychaete)	Copper Sulfate (CuSO ₄)	6.25 - 500 µ g/L

Statistical analyses of bioassay data are performed using computer programs which provide not only the EC50 or LC50 calculation but also provide estimates of the precision of the data in the form of 95% confidence limits around the EC/LC50 point.

QA/QC data for chemical analyses and reference toxicant data for this test program, as well as environmental monitoring data for these bioassays are presented herein. Chains of Custody are presented in Appendix E.

Table 5. Summary of instruments, calibration methods, precision/accuracy monitoring, maintenance and record-keeping for analytical equipment utilized in this test program.

Analyte	Instruments	Calibration Method	Precision & Accuracy Standards	Maintenance Schedule	Record- keeping Methods
Metals	Varian AA5; Models 400P, 4002, 10	3-4 point standard curve	SRMs* and replicate analyses	as needed	instrument print- out, electronic meter hard copy
Oil & Grease	Perkin-Elmer IR Spectrophotometer Model 710B	4-point standard curve	spikes and replicate analyses	as needed	chromatogram charts, hard copy
Sulfides	Titration	standardized titrant	replicate analyses	clean burettes	notebook hard copy
Organotins	Hewlett-Packard GC; model 5890, series II	3-point standard curve and surro-gate injection	SRMs and replicate analyses	as needed	instrument print- out, hard copy
Chlorinated pesticides and PCBs	Hewlett-Packard GC; model 5890 dual columns; ECD detectors	3-point standard curve	SRMs, matrix spikes, matrix spike duplicates, duplicate samples, surrogates	as needed	instrument printout and work sheet
PAHs, phenols, phthalates	Varian GC/MS Saturn II	5-point standard curve	SRMs, matrix spikes, matrix spike duplicates, duplicate samples, surrogates	as needed	instrument printout and work sheet

^{*} SRM = standard reference materials, obtained from NIST (National Institute of Standards and Technology).

Appendix E

- LPC Calculations
- Bioassay QC: Water Quality Monitoring & Reference Toxicant Test Results
 - Test Organism Handling Logs

Table E1.

Humboldt Harbor: Calculation of the Limiting Permissible Concentration for disposal depth of **10 meters** (from EPA/COE 1977¹⁰).

Mixing Zone Estimation (V _m)	<u>SAMTB</u> Bivalve	<u>EKUP</u> Bivalve	EKEX Bivalve	EKEX Sanddab (Mysid)
Depth of disposal site (m) = Pi = Width of vessel (m) = Length of vessel (m) = Speed of vessel (m/sec) = Time of discharge (sec) =	10 3.1416 11* 35* 0.5* <u>15*</u>	10 3.1416 11* 35* 0.5* 15*	10 3.1416 11* 35* 0.5* <u>15*</u>	10 3.1416 11* 35* 0.5* <u>15*</u>
Mixing Zone Volume (m³) =	427815	427815	427815	427815
Volume of Liquid Phase (V _w)				
Bulk density (constant) = Particle density (constant) = Density of liquid phase (constant) = Volume of disposal vessel (m³) =	1.5 2.6 1.0 <u>1155*</u>	1.5 2.6 1.0 <u>1155*</u>	1.5 2.6 1.0 1155*	1.5 2.6 1.0 1155*
Liquid phase volume (m³) =	794	794	794	794
Concentration of Suspended Phase (C _{sp})		· 多数	to the West	
Percent Silt = Percent Clay =	12.7 7.93	43.94 20.93	54.64 29.41	54.64 29.41
Volume (m³) of suspended phase (V _{sp}) =	74.5	234.1	303.4	303.4
Projected Percent Concentration (C _{sp}) =	0.0174	0.0547	0.0709**	0.0709
EC ₅₀ from bioassay (% elutriate) =	18.6	9.8	5.11***	61.6 (51.2)
<u>Factor EC₅₀ X 0.01</u> =	0.186	0.098	0.0511	0.616 (0.512)

For Stations SAMTB and EKUP bivalves, and Station EKEX sandabs and mysids, the factored EC50s are higher than the projected concentrations; therefore the Limiting Permissible Concentration is not exceeded.

^{*} These values are estimations; actual values were not available.

^{**} Exceeds LPC at this depth.

^{***} EC_{50} not calculable; LC_{50} value used.

Table E1, continued. Humboldt Harbor: Calculation of the Limiting Permissible Concentration for disposal depth of 20 meters (from EPA/COE 1977¹⁰).

Mixing Zone Estimation (V _m)	SAMTB Bivalve	<u>EKUP</u> Bivalve	EKEX Bivalve	EKEX Sanddab (Mysid)
Depth of disposal site (m) = Pi = Width of vessel (m) = Length of vessel (m) = Speed of vessel (m/sec) = Time of discharge (sec) =	20 3.1416 11* 35* 0.5* 15*	20 3.1416 11* 35* 0.5* <u>15*</u>	20 3.1416 11* 35* 0.5* <u>15*</u>	20 3.1416 11* 35* 0.5* <u>15*</u>
Mixing Zone Volume (m³) =	855630	855630	855630	855630
Volume of Liquid Phase (V _w)				
Bulk density (constant) = Particle density (constant) = Density of liquid phase (constant) = Volume of disposal vessel (m³) =	1.5 2.6 1.0 1155*	1.5 2.6 1.0 1155*	1.5 2.6 1.0 1155*	1.5 2.6 1.0 <u>1155*</u>
Liquid phase volume (m³) =	794	794	794	794
Concentration of Suspended Phase (C _{sp})				
Percent Silt = Percent Clay =	12.7 7.93	43.94 20.93	54.64 29.41	54.64 29.41
Volume (m^3) of suspended phase (V_{sp}) =	74.5	234.1	303.4	303.4
Projected Percent Concentration (C _{sp}) =	0.0087	0.0274	0.0355	0.0355
EC ₅₀ from bioassay (% elutriate) =	18.6	9.8	5.11***	61.6 (51.2)
Factor EC ₅₀ X 0.01 =	0.186	0.098	0.0511	0.616 (0.512)

The factored EC50s are higher than the projected concentrations; therefore the Limiting Permissible Concentration is not exceeded for Stations SAMTB, EKUP and EKEX.

^{*} These values are estimations; actual values were not available.

*** EC₅₀ not calculable; LC₅₀ value used.

^{***} EC₅₀ not calculable; LC₅₀ value used.

Table E1, continued. Humboldt Harbor: Calculation of the Limiting Permissible Concentration for disposal depth of **50 meters** (from EPA/COE 1977¹⁰).

Mixing Zone Estimation (V _m)	SAMTB	EKUP	EKEX	EKEX
	Bivalve	Bivalve	Bivalve	Sanddab (Mysid)
Depth of disposal site (m) =	50	50	50	50
Pi =	3.1416	3.1416	3.1416	3.1416
Width of vessel (m) =	11*	11*	11*	11*
Length of vessel (m) =	35*	35*	35*	35*
Speed of vessel (m/sec) =	0.5*	0.5*	0.5*	0.5*
Time of discharge (sec) =	<u>15*</u>	<u>15*</u>	<u>15*</u>	<u>15*</u>
Mixing Zone Volume (m³) =	2139075	2139075	2139075	2139075
Volume of Liquid Phase (V _w)		y kangarat Pangarat		1. W. T.
Bulk density (constant) =	1.5	1.5	1.5	1.5
Particle density (constant) =	2.6	2.6	2.6	2.6
Density of liquid phase (constant) =	1.0	1.0	1.0	1.0
Volume of disposal vessel (m³) =	<u>1155*</u>	<u>1155*</u>	<u>1155*</u>	<u>1155*</u>
Liquid phase volume (m³) =	794	794	794	794
Concentration of Suspended Phase (C _{sp})				
Percent Silt =	12.7	43.94	54.64	54.64
Percent Clay =	<u>7.93</u>	<u>20.93</u>	29.41	<u>29.41</u>
Volume (m^3) of suspended phase (V_{sp}) =	74.5	234.1	303.4	303.4
Projected Percent Concentration (C_{sp}) =	0.0348	0.0109	0.0142	0.0142
EC ₅₀ from bioassay (% elutriate) =	18.6	9.8	5.11***	61.6 (51.2)
<u>Factor EC₅₀ X 0.01</u> =	0.186	0.098	0.0511	0.616 (0.512)

The factored EC50s are higher than the projected concentrations; therefore the Limiting Permissible Concentration is not exceeded for Stations SAMTB, EKUP and EKEX.

^{*} These values are estimations; actual values were not available.

^{***} EC_{50} not calculable; LC_{50} value used.

Summary of Bivalve Larvae Bioassay Environmental Monitoring Data

Sample ID	Parameter	Mean	Std. Dev.	Max	Min
	pH value (units)	7.9	0.06	7.9	7.8
Seawater Control	Temperature (°C)	16.1	0.31	16.4	15.8
Geawater Control	D.O. (mg/L)	7.9	0.1	8.0	7.8
444-724	Salinity (‰)	32.0	0	32.0	32.0
	pH value (units)	7.9	0.11	8.0	7.7
Reference	Temperature (°C)	15.9	0.30	16.1	15.4
Reference	D.O. (mg/L)	7.6	0.3	7.8	7.2
	Salinity (‰)	32.0	0	32.0	32.0
	pH value (units)	7.9	0.05	8.0	7.9
CAMED	Temperature (°C)	15.9	0.36	16.2	15.3
SAMTB	D.O. (mg/L)	7.5	0.28	7.9	7.1
	Salinity (‰)	31.6	0.4	32.0	31.2
	pH value (units)	7.9	0.10	8.1	7.8
EKUD	Temperature (°C)	15.9	0.29	16.1	15.4
EKUP	D.O. (mg/L)	7.7	0.32	8.2	7.3
	Salinity (‰)	31.5	0.5	32.0	31.0
	pH value (units)	7.9	0.11	8.1	7.8
EVEV	Temperature (°C)	15.8	0.33	16.1	15.4
EKEX	D.O. (mg/L)	7.6	0.33	8.0	7.2
	Salinity (‰)	32.0	0	32.0	32.0
	pH value (units)	7.9	0.11	8.1	7.8
C! TD	Temperature (°C)	15.9	0.27	16.1	15.5
FLTB	D.O. (mg/L)	7.6	0.34	7.9	7.2
	Salinity (‰)	32.0	0	32.0	32.0

Summary of *Holmesimysis costata* Suspended Particulate Phase Bioassay Environmental Monitoring Data

Sample ID	Parameter	Mean	Std.Dev.	Maximum	Minimum
	D.O. (mg/L)	7.6	0.24	7.9	7.2
Control	Temperature (°C)	15.1	0.20	15.6	14.9
	pH value (units)	7.9	0.06	8.1	7.9
Humboldt	D.O. (mg/L)	7.5	0.31	7.8	6.9
Reference	Temperature (°C)	15.0	0.13	15.2	14.9
Sediment	pH value (units)	8.0	0.11	8.1	7.8
	Salinity (‰)	32.2	0	32.2	32.2
	D.O. (mg/L)	7.6	0.28	7.9	7.1
EKUD	Temperature (°C)	15.0	0.11	15.3	14.9
EKUP	pH value (units)	8.1	0.16	8.3	7.8
· · · · · · · · · · · · · · · · · · ·	Salinity (‰)	31.9	0.59	32.6	31.2
	D.O. (mg/L)	7.6	0.30	7.9	7.0
FIZEV	Temperature (°C)	15.0	0.12	15.2	14.9
EKEX	pH value (units)	8.2	0.20	8.4	7.8
	Salinity (‰)	32.2	0.20	32.5	32.1
	D.O. (mg/L)	7.7	0.24	8.0	7.1
CAMED	Temperature (°C)	15.0	0.13	15.3	14.9
SAMTB	pH value (units)	8.1	0.09	8.2	7.9
	Salinity (‰)	32.3	0.40	32.8	31.9
	D.O. (mg/L)	7.5	0.31	7.8	6.9
CI TD	Temperature (°C)	15.0	0.12	15.2	14.9
FLTB	pH value (units)	8.1	0.14	8.3	7.9
	Salinity (‰)	32.1	0.13	32.3	32.0

Summary of Citharichthys stigmaeus Suspended Particulate Phase Bioassay Environmental Monitoring Data

Sample ID	Parameter	Mean	Std.Dev.	Maximum	Minimum
	D.O. (mg/L)	7.7	0.31	8.0	7.0
Control	Temperature (°C)	14.6	0.12	14.7	14.4
	pH value (units)	7.9	0.07	8.1	7.8
Humboldt	D.O. (mg/L)	7.6	0.31	8.1	6.1
Reference	Temperature (°C)	14.3	0.22	14.6	13.8
Sediment	pH value (units)	7.9	0.14	8.2	7.6
	D.O. (mg/L)	7.5	0.29	8.0	6.6
EKUP	Temperature (°C)	14.5	0.13	14.8	14.2
	pH value (units)	8.1	0.17	8.3	7.6
	D.O. (mg/L)	7.7	0.33	8.2	6.2
EKEX	Temperature (°C)	14.5	0.07	14.6	14.3
	pH value (units)	8.1	0.18	8.3	7.7
	D.O. (mg/L)	7.6	0.22	8.0	7.1
SAMTB	Temperature (°C)	14.5	0.14	14.7	14.2
•	pH value (units)	8.1	0.09	8.2	7.9
	D.O. (mg/L)	7.7	0.26	8.2	7.2
FLTB	Temperature (°C)	14.4	0.15	14.7	14.1
	pH value (units)	8.1	0.24	8.2	7.5

Summary of Rhepoxynius abronius Solid Phase Static Bioassay Environmental Monitoring Data

Sample ID	Parameter	Mean	Std.Dev.	Maximum	Minimum
	D.O. (mg/L)	7.8	0.23	8.3	7.5
Control	Temperature (°C)	14.9	0.16	15.2	14.0
Control	pH value (units)	8.1	0.08	8.2	7.9
	Salinity (‰)	32.2	0.21	32.5	32.0
Humboldt	D.O. (mg/L)	7.8	0.19	8.1	7.5
Reference	Temperature (°C)	14.9	as -0.10	15.1	14.7
Sediment	pH value (units)	8.1	0.08	8.2	7.9
	Salinity (‰)	32.1	0.14	32.3	32.0
	D.O. (mg/L)	7.8	0.23	8.3	7.4
Home	Temperature (°C)	14.9	0.12	15.1	14.7
Renewal	pH value (units)	8.0	0.08	8.2	7.9
	Salinity (‰)	32.3	0.27	32.8	32.0
	D.O. (mg/L)	7.7	0.21	8.2	7.5
EKUP	Temperature (°C)	14.9	0.15	15.4	14.7
Renewal	pH value (units)	8.0	0.08	8.1	7.8
	Salinity (‰)	32.3	0.20	32.5	32.1
	D.O. (mg/L)	7.7	0.25	8.3	7.2
EKEX	Temperature (°C)	14.9	0.13	15.3	14.7
Renewal	pH value (units)	8.1	0.07	8.2	7.8
	Salinity (‰)	32.3	0.20	32.5	32.1
	D.O. (mg/L)	7.8	0.23	8.2	7.3
SAMTB	Temperature (°C)	14.9	0.11	15.2	14.7
SAIVITE	pH value (units)	8.1	0.09	8.2	7.9
	Salinity (‰)	31.8	0.28	32.1	31.4
	D.O. (mg/L)	7.7	0.21	8.2	7.5
FLTB	Temperature (°C)	14.9	0.10	15.1	14.7
FLID	pH value (units)	8.1	0.10	8.3	7.9
	Salinity (‰)	32.0	0.11	32.2	31.9

Summary of Holmesimysis costata Solid Phase Flow Through Bioassay Environmental Monitoring Data

Sample ID	Parameter	Mean	Std.Dev.	Maximum	Minimum
-	D.O. (mg/L)	8.1	0.26	8.4	7.6
	Temperature (°C)	12.1	0.61	13.6	10.7
Control	pH value (units)	7.9	0.05	8.0	7.9
1.	Salinity (‰)	33.3	0.27	34.0	33.0
Humboldt	D.O. (mg/L)	8.0	0.23	8.4	7.7
Reference	Temperature (°C)	12.2	0.66	13.6	10.7
Sediment	pH value (units)	7.9	0.05	8.1	10.7 7.9 33.0 7.7 10.7 7.9 33.0 7.7 10.7 7.8 33.0 7.6 10.7 7.9 33.0 7.6 11.0 7.9 33.0 7.7 10.7 7.9
	Salinity (‰)	33.3	0.27	34.0	33.0
	D.O. (mg/L)	8.1	0.24	8.5	7.7
EKUD	Temperature (°C)	12.3	0.95	16.1	10.7
EKUP	pH value (units)	7.9	0.07	8.1	7.8
	Salinity (‰)	33.3	0.27	34.0	33.0
	D.O. (mg/L)	8.0	0.23	8.4	7.6
FVEV	Temperature (°C)	12.2	0.68	13.2	10.7
EKEX	pH value (units)	7.9	0.04	8.0	7.9
	Salinity (‰)	33.3	0.27	34.0	33.0
	D.O. (mg/L)	8.1	0.26	8.4	7.6
CAMED	Temperature (°C)	12.3	0.74	15.5	11.0
SAMTB	pH value (units)	7.9	0.05	8.0	7.9
	Salinity (‰)	33.3	0.27	34.0	33.0
	D.O. (mg/L)	8.1	0.26	8.5	7.7
EL TD	Temperature (°C)	12.3	0.70	13.9	10.7
FLTB	pH value (units)	7.9	0.05	8.1	7.9
	Salinity (‰)	33.3	0.27	34.0	33.0

Summary of Nephtys caecoides Solid Phase Flow Through Bioassay Environmental Monitoring Data

Sample ID	Parameter	Mean	Std.Dev.	Maximum	Minimum
, · ·	D.O. (mg/L)	7.7	0.26	8.2	7.1
Operatural	Temperature (°C)	13.1	1.25	16.4	11.0
Control	pH value (units)	7.9	0.06	8.1	7.8
	Salinity (‰)	33.3	0.27	34.0	33.0
Humboldt	D.O. (mg/L)	7.7	0.24	8.2	7.1
Reference	Temperature (°C)	12.6	0.97	16.3	11.0
Sediment	pH value (units)	8.0	0.06	8.1	7.7
	Salinity (‰)	33.3	0.27	34.0	33.0
	D.O. (mg/L)	7.7	0.29	8.2	7.1
FIZUD	Temperature (°C)	13.2	1.25	16.3	11.0
EKUP	pH value (units)	7.9	0.09	8.1	7.7
	Salinity (‰)	33.3	0.27	34.0	33.0
	D.O. (mg/L)	7.7	0.31	8.2	7.1
	Temperature (°C)	13.9	1.32	16.7	11.1
EKEX	pH value (units)	7.9	0.08	8.0	7.7
	Salinity (‰)	33.2	0.27	34.0	33.0
We see the	D.O. (mg/L)	7.7	0.29	8.2	7.0
CANTO	Temperature (°C)	13.3	1.42	16.5	11.1
SAMTB	pH value (units)	7.9	0.06	8.1	7.7
	Salinity (‰)	33.3	0.27	34.0	33.0
	D.O. (mg/L)	7.7	0.37	9.1	6.8
	Temperature (°C)	13.9	1.26	16.4	11.2
FLTB	pH value (units)	7.9	0.09	8.0	7.6
	Salinity (‰)	33.3	0.27	34.0	33.0

REFERENCE TOXICANT BIOASSAY Bivalve Larvae (*M. edulis*) and Copper Mean Initial Recovery = 5319

					Total #			***********	Mean %	Survival	rivai	Normal De	Normal Development
					Normai .		Mean %		Normai	Abbotts	Mean	Abbotts	Mean
ō.				Resuspended	Larvae -	, , %	Survival	Develop-	Development	Corrected	Corrected	Corrected	Corrected
<u> </u>	кер погта	ai Abnormai	Der 1 mL	Volume	Recovered	Survival	∓ S.D.	ment	± S.D.	Value	Value	Value	Value
	1 95	7	102	48	4560	85.7		93.1					· . :
	2 109	9	119	47	5123	96.3	89.5	91.6	94.6	: : :			
LAB SW	3 104	2	106	48	4992	93.8	+1	98.1	+1				
CONTROL	4 92	s,	97	47.5	4370	82.2	5.78	94.8	2.45				
	5 100	5	105	47.5	4750	89.3		95.2					
	1 93	2	92	48	4464	83.9	74.0	97.9	94.9	93.8	82.8	103.5	100.37
	2 75	∞	83	46.5	3488	9:59	+1	90.4	+1	73.3	+1	95.5	+1
2 PPB	3 84	3	87	46	3864	72.6	9.26	9.96	4.02	81.2	10.35	102.1	4.25
**	1 88	7	96	47.5	4180	78.6	76.4	92.6	94.9	87.8	85.4	6.76	100.3
	2 93	က	96	46	4278	80.4	+1	96.9	+	89.9	+1	102.4	+1
4 PPB	3 77	4	81	48.5	3735	70.2	5.45	95.1	2.13	78.5	6.09	100.5	2.25
	1 38	29	105	48.5	1843	34.6	39.6	36.2	43.7	38.7	44.3	38.3	46.2
8 PPB	2 32	62	94	48	1536	28.9	+1	34.0	#	32.3	+1	36.0	+1
	3 64	41	105	46	2944	55.3	13.92	61.0	14.95	61.9	15.56	64.4	15.81
	0	110	110	46.5	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
16 PPB	2 0	107	107	47.5		0.0	+1	0.0	, + 1	0.0	+1	0.0	+1
	3 0	96	96	46	0	0.0	0.00	0.0	0.00	0.0	00.0	0.0	0.00
	0	6	တ	47.5	0	0.0	6.0	0.0	6.0	0.0	1.0	0.0	8.8
32 PPB	2 2	14	16	46	95	1.7	+1	12.5	+1	6:1	+1	13.2	++
	ى 1	7	80	47.5	48	6.0	98.0	12.5	98.0	1.0	0.97	13.2	7.63

 $LC_{50} = 7.15 \text{ ppb } (6.46, 7.92 \text{ ppb}); \quad EC_{50} = 7.88 \text{ ppb } (7.29, 8.52 \text{ ppb})$

REFERENCE TOXICANT BIOASSAY
Bivalve Larvae (*M. edulis*) and Ammonia
Mean Initial Recovery = 5319

						Total #				% neeM	Silpuival	ilval	Normal Development	(elonment
				Total		Normal		Mean %	% Normal	Normal	Abbotts	Mean	Abbotts	Mean
Sample	Z	Number	Number	Recovered	Resuspended	Lavae	%	Survival	Develop-	Development	Corrected	Corrected	Carrected	Corrected
0	Rep h	Normal	Abnormal	per 1 mL	Volume	Recovered	Survival	+ S.D.	ment	+ S.D.	Value	Value	Value	Value
	-	92	7	102	48	4560	85.7		93.1				447	
	2	109	10	119	47	5123	96.3	89.5	91.6	94.6				
LAB SW	က	104	2	106	48	4992	93.8	+	98.1	+			1 1 1 1	
CONTROL	4	95	2	26	47.5	4370	82.2	5.78	94.8	2.45				
	2	100	5	105	47.5	4750	89.3		95.2	-				
	-	100	4	104	47	4700	88.4	78.1	96.2	92.5	98.8	87.3	101.7	97.84
	2	100	80	108	47.5	4750	89.3	+	97.6	+	8.66	+	6.76	+
1.5 PPM	က	64	8	72	47	3008	56.6	18.64	88.9	3.63	63.2	20.84	94.0	3.84
	ļ -	87	8	96	46.5	4046	76.1	81.0	91.6	95.2	85.0	90.5	8.96	100.6
	7	92	5	100	46	4370	82.2	+	95.0	+	91.8	+	100.4	+
3.0 PPM	က	98	-	66	46	4508	84.8	4.46	99.0	3.71	94.7	4.99	104.7	3.92
	-	83	16	66	46	3818	71.8	83.7	83.8	87.0	80.2	93.6	9.88	92.0
6.0 PPM	2	108	12	120	47	5076	95.4	+	90.0	+	106.7	+	95.2	+
	3	95	14	109	47	4465	83.9	11.83	87.2	3.08	93.8	13.22	92.1	3.26
	-	45	63	108	45	2025	38.1	35.8	41.7	35.8	42.6	40.0	44.1	43.0
12.0 PPM	7	37	51	88	47.5	1758	33.0	+	45.0	+	36.9	+	44.5	+
	3	42	68	110	46	1932	36.3	2.55	38.2	2.55	40.6	2.85	40.4	2.25
	-	0	17	17	48	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
24.0 PPM	7	0	87	87	48	0	0.0	+	0.0	+	0.0	+	0.0	+
	3	0	85	85	46.5	0	0.0	0.00	0.0	0.00	0.0	0.00	0.0	00.00

 $LC_{50} = 10.67 \text{ ppm (9.80, 11.62 ppm)}; EC_{50} = 10.83 \text{ ppm (10.00, 11.74 ppm)}$

Species: Holmesimysis costata
Toxicant: Sodium Dodecyl Sulfate

Date: 26 April 1995

T-12046

	· · · · · · · · · · · · · · · · · · ·	Number Su	rviving	
		Observation Tin	ne (hours)	
Concentration (ppm)	Replicate	0	96	Mean % Surviva
Control	1 2	10 10	10 10	100
1.0	1 2	10 10	10 10	100
2.0	1 2	10 10	9 10	95
4.0	1 2	10 10	8 10	90
8.0	1 2	10 10	4 5	45
16.0	1 2	10 10	3 2	25

96-hour LC_{50} (Spearman) = 8.00 ppm

95% confidence limits = 5.61 ppm - 11.40 ppm

Species: Citharichthys stigmaeus

Toxicant: Copper

Date: 9 May 1995 T-12046

		Number S	Surviving	
		Observation 1	Time (hours)	
Concentration (ppm)	Replicate	0 🗸	96	Mean % Surviva
Control	1	10	10	100
	2	10	10	
	1	10	8	85
0.25	2	10	9	
	1	10	8	70
0.5	2	10	6	
	1	10	0	15
1.0	2	10	3	
	1	10	0	0
1.5	2	10	0	
	1	10	0	0
2.0	2	10	Õ	•

96-hour LC_{50} (Spearman) = 0.37 ppm

95% confidence limits = 0.31 ppm - 0.44 ppm

Species: *Citharichthys stigmaeus* Toxicant: Sodium Dodecyl Sulfate

Date: 9 May 1995

T-12046

		Number S	urviving	_
		Observation T	ime (hours)	
Concentration (ppm)	Replicate	0	96	Mean % Surviva
Control	1	10	10	100
	2	10	10	
	1	10	10	100
0.25	2	10	10	
	1	10	9	85
0.5	2	`10	8	
	1	10	10	95
1.0	2	10	9	
	1	10	7	· 70
2.0	2	10	7	
	1	10	0	0
4.0	2	10	0	

96-hour LC_{50} (Spearman) = 2.00 ppm

95% confidence limits = 1.65 ppm - 2.43 ppm

Species: Rhepoxynius abronius
Toxicant: Cadmium chloride

Date: 5 May 1995

T-12046

		Number S	Surviving	
		Observation ²		
Concentration (ppm)	Replicate	0	96	Mean % Surviva
Control	1 2	10 10	10 10	100
0.125	1 2	10 10	10 10	100
0.25	1 2	10 10	10 9	95
0.50	1 2	10 10	9 10	95
1.00	1 2	10 10	6 4	50
2.00	1 2	10 10	2	15

96-hour LC_{50} (Spearman) = 1.04 ppm

95% confidence limits = .82 ppm - 1.32 ppm

Species: Rhepoxynius abronius

Toxicant: Ammonia

Date: 5 May 1995

T-12046

		Number	Surviving	-
		Observation	Time (hours)	
Concentration (ppm)	Replicate	0	96	Mean % Survival
Control	1	10	10	100
Control	2	10	10	
40	1	10	10	100
16	2	10	10	
20	1	10	10	100
32	2	10	10	
0.4	1	10	6	80
64	2	10	10	
400	1	. 10	4	30
128	2	10	2	
0.50	1	10	0	0
256	2	10	Ö	Ū

96-hour LC_{50} (Spearman) = 97.01 ppm

95% confidence limits = 80.34 ppm - 117.14 ppm

Species: Holmesimysis costata
Toxicant: Sodium Dodecyl Sulfate

Date: 12 May 1995

T-12046

,	·	Number S	urviving	_
:	t and a second	Observation T	ime (hours)	
Concentration (ppm)	Replicate	0	96	Mean % Surviva
Control	1 2	10 10	10 10	100
1.0	1 2	10 10	10 10	100
2.0	1 2	10 10	10 10	100
4.0	1 2	10 10	10 8	90
8.0	1 2	10 10	9 9	90
16.0	1 2	10 10	6	30

96-hour LC_{50} (Spearman) = 12.70 ppm

95% confidence limits = 10.76 ppm - 14.99 ppm

Species: *Nephtys caecoides* Toxicant: Copper Sulfate

Date: 11 May 1995

T-12046

		Number	Surviving	•
<u>.</u>		Observation	Time (hours)	
Concentration (µg/L)	Replicate	0	96	Mean % Survival
Control	1	10	9	90
Control	2	10	9	
20	1	10	3	25
20	2	10	2	
40	1	10	9	95
40	2	10	10	
00	1	10	9	95
80	2	10	10	
400	1	10	0	0
160	2	10	0	
200	1	10	0	0
320	2	10	0	

96-hour LC₅₀ (Spearman) = 98.65 μ g/L

95% confidence limits = Not calculable

ToxScan, Inc.

Receiving, Evaluation and Acclimation Log Worksheet REAL

									MYT	042595	
ecies:	Myfilus e	dulis	Suppl	ier: <u>Carl</u>	shod A	git to	25ms	# Ordered:	117		
Dat ped:	4/24/95		Date/ Recei		25/95	(03c	ر	Shipped via:	Fed	Ex	
INITIAL	EVALUATION										
[ckage	Intact? 🗗 Ye	s 🛘 No	Initi	als:	ゴ			рН:		units	
Temperat	ure:	<u></u> •c	Disso	lved Oxyg	en:	mg	7/1	Sal./Cond.	:	/μmhos	
E timate	d # received	l:~	10165					# Dead:	~5		
Organism Coole	condition/c cwf3 cpeg	comments: _ blue 120 encids	Rec'd large bag of mussels of lots of nows paper. O;					sin white styro-form			
=				2004 U.S.							
	ACCLIMATION		·					· · · · · · · · · · · · · · · · · · ·			
i te	Initials	pH (units)	Temp (°C)	D.O. (mg/l)	Sal/Co (‰/μmho		Food	d # Dead	Со	mments	
7											
				·							
									ļ		
			· · · · · · · · · · · · · · · · · · ·		* * . /		:·		-		
					·						
							· .				
				· ·			-				
			*.	~ .							
								1			
EST INIT	IATION	an age of the	es e								
te	Initials	Test ID		Organisms	s used			Comm			
tl25/95	ス	T-12046		~ 60	>	becau		ept spawnin	1790.0	ouidn't hid c holding	
		T-				tank	. ව <u>ල</u>	carded.))	
		T							· · · · · · · · · · · · · · · · · · ·		
		Т-		· · · · · · · · · · · · · · · · · · ·		·					
	BA-REAL: 01/25/94	T-					· · · · · · · · · · · · · · · · · · ·				

Receiving, Evaluation and Acclimation Log Worksheet
REAL

Hol 042695 (SP-

pecies:	Holmesimy	1515 costata	Suppl.	ier: <i>Sku</i>	e Peters		#	Ordered: ,	1 101 1000
ate hipped:	04/26/95		Date/ Recei	Time ved: <u>04/20</u>	195 / 14.	30	Sh vi	ipped a: <i>Steve</i>	Petus
NITIAL	EVALUATION		* .	· ·	A Line Control		· . ·		
ackage	Intact? XY	es 🛮 No	Initia	als: <u>F</u>	3		Hq	1: 7.6	units
emperat	ure: <u>///</u>	°C	Disso:	lved Oxyg	en: <i>8.0</i>	<u>_mg/l</u>	Sa	l./Cond.:	<u>323</u> %/µmhos
stimate	d # receive	d:				· .	# #	Dead:	
rganism	condition/	comments: _	icemed	quit s	paise. F	Pece wed	,	, 4 coole,	<i>(</i> 3
	COL TIVE MITON		· ·	:					
	ACCLIMATION	рН	Temp	D.O.	Sal/Cond	1 5-	od	# Dead	Comments
ate	Initials	(units)	(oc)	(mg/l)	(‰/μmhos			# Dead	Continents
1/27/95	B	remainin	a my	sids te	rminate	-d			
<u> </u>			, , , ,						
				·					
*									
		·							
		·							
				·				`	
							·		
			-				7.7	· · · · · · · · · · · · · · · · · · ·	
ST INIT	CIATION	· ·					· · · · · · · · · · · · · · · · · · ·		
te	Initials	Test ID		Organisms	s used	~		Comme	nts
20/95	B	T-12046	9	000				er i	
·		T-							
	- N	Т-							
·		т-				,			
		Т-		·.					·

ToxScan, Inc. Receiving, Evaluation and Acclimation Log Worksheet

REAL (continued)

Stiement Supplier: Breziña à Assa: # Ordered:

Species: CHrasichlys Stigned Supplier: Brezira & Assa: # Ordered: 3000

Date
Shipped: 5/5/97 Received: 5/5/97 Via: Brezira

lant HOLDING/ACCLIMATION Initials Date pH · Temp D.O. Sal/Cond Food # Dead Comments (°C) (mg/1)(‰/µmhos) (units) てし 8,0 8.2 14.5 33.0 J_ -Feit Sandaing 8.4 OZ 8.0 11.5 32.5 8,5 7,8 10.9 32,5 12,7 8.1 33.0 8.4 HUMBOLT SCIT UP 8.0 32-8 8.5 DiB **//**· 3 720 8.7 13.3 33 Z MB 7.7 8.0 33. Ø 11-4 MiB - femainder Crisi Termineted -

F:\WPS1\DATALOGS\BA-REAL.EXT:01/25/94

ToxScan, Inc.

Receiving, Evaluation and Acclimation Log Worksheet REAL

Species:	Holmesem	nysis costat	a Suppl	ier: <u>S</u>	eve Pete	<u> </u>	· .	# Ordered:		
Date Shipped:			Date/ Recei	Time ved: <u>j</u> a	2may9	s; 08'	40	Shipped + via: <u>Ha</u>	nd deli	very
ENITIAL	EVALUATION									
?ackage	Intact? 🛭 Y	es 🗆 No	Initi	als:C	RW		1	р Н :	7.8	units
Cemperat	ure:	.9 °C	Disso	lved Oxyg	en: <u>1</u>	3.2 mg	g/l :	Sal./Cond.	: <u>32.</u> 9	%/μmhos_
Estimate	d # receive	d: <u>~ 75</u> 0				:		# Dead:F	وس	
)rganism	condition/	comments: _	Fed^	rtemia upon ar	rival;	Acti	√લ		· · · · · · · · · · · · · · · · · · ·	
			*							
iolding/	ACCLIMATION									
ace	Initials	pH (units)	Temp (°C)	D.O. (mg/l)	Sal/Co		Food	# Dead	Co	omments
	Used	all an	inals	in te	s+ :5	112/9	'5' —			
						41			~	

										<u> </u>
					,					
	·								-	
				•	. •		· · · · · · · · · · · · · · · · · · ·			
					<u> </u>		· · · · · · · · · · · · · · · · · · ·			
<u> </u>										
EST INIT	CIATION			•						
ate	Initials	Test II	#	Organisms	used	·		Comme	nts	
/12/95	CRW	T- 12046		720						
		T-								•
		т-								
	4. t,	T•						· · · · · · · · · · · · · · · · · · ·		
1	and the same	T-	1	•						

SI\DATALOGS\BA-REAL:01/25/94

ToxScan Inc.

Artemia Feeding Schedule

110,000. 11,000 10 10 10 10 10 10 10 10 10 10 10 10	Project: Acoe Humbold +	ID: T- /204/6	Test Species: H. costata
---	-------------------------	---------------	--------------------------

,			* · · · · · · · · · · · · · · · · · · ·								
	Day	Date	Amount	Time	Initials	Amount	Time	Initials	Amount	Time	Initials
	0	04/27/95	_	-		750	1100	屉			_
-		04/28/95				1000	1300	FB			<u> </u>
		4/29/95	_		_	1000	1000	て		_	
	3							:			
	4				·						
	5										
	6										
	7										
	8			1 1 1 1 1 1 1 1 1 1							
	9										
	10										·

ENAME AND ATALOGS BLOASS AN ARTEMIA FOR:11/01/94

ToxScan, Inc. Receiving, Evaluation and Acclimation Log Worksheet REAL (continued)

Mac 050595

Species: Macoina rusula Supplier: Brezina & Assoc. # Ordered: Assoc. # Ordered: Shipped Shipped: Styles Received: Styles Via: Brezina & Shipped Via: Brezina & S

			10	ink #	=3 ortside	₩ #	3	
HOLDING/A	CCLIMATION							
Date	Initials	pH (units)	Temp (°C)	D.O. (mg/l)	Sal/Cond (‰/µmhos)	Food	# Dead	Comments
Received 4/C/95	JC							
Holding 5/5/95	JC	8.2	14.5	8,0	33.0 .		රි	
5/6/95	Œ	7.9	12,5	7.6	32.5		0	
5/7/95	75	7,9	11.0	8.2	32.5		0	
5/8/95	75	8.0	13.5	7.8	33.0		0	
5/9/95	AUB	8.0	11.3	8.3	33. O		0	
5/10/95	AiB	8.1	13. Ə-	-	33.2		0	Do meter not
5/11/95	PLS	8.0	11.8	7.7	33.1		3	J
5/11/95	JC	Used	875	for	T-1204	6 ~	30 small	clams remaining
•								J
	BA-REAL.EXT:01/25/							

....

ToxScan, Inc.

Receiving, Evaluation and Acclimation Log Worksheet REAL

R042895

cies:	Rhepoxynius	abroniu s	Suppl	ier: NA	3		; ,# (ordered:	1250
	04/27/95					20	Shi	ipped a: <i>Fed</i>	Ex
	VALUATION	A A							
	intact? X Y		Toiti	als:	·FA		חשר		76 units
	re: /					1 ma		/Cond.:	7.6 units 31 %/μmhos
				Ived Oxyg	Jen:	<u>/</u>		Dead: 8	
<u> </u>	# received			4	1	۱۰ -		Dead:O	
anısm	condition/	comments:	U Salit	ricy berse-	<u> </u>	(3 	sccrds		
					•				
-									
LDING/A	CCLIMATION	<u> </u>	I	1	<u> </u>				<u> </u>
; ?	Initials	pH (units)	Temp (°C)	D.O. (mg/l)	Sal/Cor (‰/µmho	1	Food	# Dead	Comments
8/95	FB	8.0	15.7	7.5	32.0				holding tob conditions
129/95	5 C	8080	15.3/15.4	7.7/7.074	329 329	3.5	‡ —	1/33	
0/95	73	8.1/8.1		7.37.67.6				5/10	
101/95	MSB	8.0/8.0	15.5/ 45.7	7.7/7.7\7.6	33/33/3	₽.8		4110	
195	ゴン	8.4/8/1 /8/1	16,2/ 16.3	77/7.8/78	33.0/33.1	33.1		1/1/0	
13/95	ASB	8.0/8.0	14.9/15.3	79/7.97.9	32.8/	3.2		1/2/1	
	AYB	8.0 8.0	14.7/ 15.2	7.6/7.6	33.1/33.2/3	3.0		1/0/0	
195 15/95	0E	7.9/7.9 7.9	15.2 15.4	8.0/8.0 8.0	33.1/33.03	33.0		1/0/0	1 Remaining Tub
,/95	JC	1,8	15.4	7.6	32.0	- 1		٥	
12/95	ASB	8.1	15.4	7.6	34.0			0	
3/95	MSB	8.0	15.6	7.7	33.8		·	0	
9 95	FB	8.0	15.6	7.5	34,0			0	
0/95	Remaina	lu duca	nded	- F3					
T INIT	(ATION		<u>-</u>						
1	Initials	Test II) #	Organism	s used			Comme	nts
5/95	chu	T- 12046	D	1060		Acc	E-Hun	P019+	
		T-							
		T -						· · · · · · · · · · · · · · · · · · ·	
		T-							
17110000	-REAL: 01/25/94	T -							

ToxScan, Inc.

Receiving, Evaluation and Acclimation Log Worksheet REAL (continued)

Date
Shipped: 5/5/96

Date/Time
Received: 45/97

Sittpped:			Recel	vea. <u>4</u>		1 1		<u> </u>
			Tan	ks #	1, 2, \$	5 outs	de tr.	#2
HOLDING/A	CCLIMATION			·	Feed	acas	sronally	
Date	Initials	pH (units)	Temp (°C)	D.O. (mg/l)	Sal/Cond (‰/µmhos)	Food	# Dead	Comments
Received 5/5/95	JC					-		
5/5/95 Holding: 5/5/95	JC	8.2	14.5	8.0	33.0		8	
5/6/95	Œ	5:0	11.6	8.4	33.0		0	
5/7/95	73	7.9	10.7	8.3	32,5		. 0	
5/8/95	75	8.0	12.5	8.4	33.0		-01	
5/9/95	ASB	8.00	<i>IJ.</i> 3	8.5	33.0		6	
5/10/95	ASB	2, [13.3	<u></u>	33.00		O	DO heter nor working
5/11/95	AiB	8.0	11.8	8.1	33. Ø			
/12/95	Chw	8.0	10.9	8.2	33.3		*********	
5/13/95	J.C.	8.0	10.7	1-	33.2	V Telra		i de
5/13/95	CE	8.0	il. 3		34.0			Do neter not work
5/15/95	CRW	8.0	11.9	8.8	33.3		-	
5/16/95	CRW	8.0	12.1	9.0	33.2			
5/17/95	روس	7.9	12.4	8.0	33.0	_		
5/18/95	73	8.1	11.9	7.9	33.3	·	<u></u>	
5/19/95	0E-	8.0	11.5	8.4	33. 3			*
5/20/95	Œ	8.0	11.9	8.6	33.0			The second secon
5/21/95	CRW	8.0	11.4	8.7	<i>3</i> 3.			
5/22/95	FB	8.0	12,2	9.0	33.0			
5/23/95	15	8.0	12,3	8.6	33,2			
5/24/95	<u>50</u>	7.9	11.7	8.3	33.3	1 teta Wrin	6 in 3	dtank (flaw off)
5/25/95	CRu)	8.0	12.5	8.9	33.1			<u> </u>
5/26/95		8.0	11.4	8.4	33,5			
127/95	CE	81	11.5	8.6	33.0			
5/28/95	Œ	8.0	11.8	8.5	33.4			
WP51\DATALOGS\E	A-REAL.EXT:01/25/9	94						

Appendix F

Chains of Custody

Chain of Custody Record Page 7-of 7

Laboratory:	ToxScan Inc.	
42	Hangar Way	
W	atsonville CA	95076

(408) 724-4522

Lab# <u>T-12046</u>

Date Received 04/04/55

Project #:

From: Kinnetic

Laboratories,Inc. 307 Washington St. Santa Cruz, CA 95060

(408)426-3900 (408)426-0405 Fax

		l	11	1		(408)420-0403 Fax	
KLI Project:		P.O.#:	1 20070000000000000000000000000000000000	Matrix:	•	Required Completion	Date: 3 weeks
Sample ID #	Station ID #	Lab ID#	Analysis	Containers	Pres.	Sample Date/Time	Condition Upon Receipt
HUM15 ARCCOLL	RF	7-12046 -59	ARCHIVE	1 x 1 e wmg	& Nonc	3-30-95 1118	Intact
HUM95 ARC OOZ	54M 6-A	-60		500 MI WING	9	4-1-95 1125	
HUM 95 ARC 0003	5AM 6-B	-61		500 ME WAG		4-1-95 1355	
HUM95ARCOROY	SAM 6-C	-62				4-1-95 1600	
HUM 95 ARC DOES		-63				4-2-95 1400	
HUM 95 ARC 0006	FL-1	-64				4-2-95 1517	
HUM95 ARC0007	FL-Z	-65				4-2-95 1622	
HUM 95 ARC 0008	FL-3	-60				4-2-95 1730	
HUM 95 ARCODO9	EK 8	-67	4		4.	4-3-95 1055	
HUM 95 ARC 0010	EK7	-68	·			4-3-95 1155	
HUM9 5 ARCOOL	-11	-69				4-3-95 1255	
HUM 95 ARC odZ		-70 =6				4-3-95 1416	
HUM95 ARCOUB	EK Z	-71				4-395 1732	
Hum 95 ARC OOM	EK 4	-72				4-4-95 0822	
HUM95 ARC 0015	EK4-74	-73	V	V	V	4-4-95 1042	4

Data Reports MUST include the following: Sample/Site ID, Analytical Method, Detection Limit, Date of Extraction if applicable, Date of Analysis, Analytical Results and Signature of QA Reviewer.

Special Instructions/Comments: WMG = Wide Mouth Glass

MATRIX IS SEDIMUTED

Sampled & Relinquished By:	Date/Time	Transporter	Received By:	Date/Time
Walter Filios	4/4/45 1548	- hand	. Steen Trump	4/6/95 1545
Relinquished By:	Date/Time	Transporter	Received By:	Date/Time
& Steen Trump	4/6/95 1650	hand	May Shlily	04/06/45 1650
Relinquished By:	Date/Time	Transporter	Received By:	Date/Time

Page 4 of 7

Laboratory: ToxScan Inc.

42 Hangar Way

Watsonville, CA 95076

(408) 724-4522

Lab# T-12046

Date Received <u>54/06/95</u>

Project #: Humboldt 541.

From:

Kinnetic Laboratories,Inc.

307 Washington St. Santa Cruz, CA 95060

(408)426-3900 (408)426-0405 Fax

KLI Project: Humboldt C.O.E. P.O.#: Matrix: Sediment Required Completion Date: 3 weeks Sample Date/Time Condition Sample ID# Station Analysis Containers Pres. Lab ID# ID# Upon Receip16 T-12046 1-1L Wide HUM95SED0016 Sediment None INTACT EK 2 4-3-95 1732 -31 Chemistry Mouth Glass 4-4-95 EK 4 0822 HUM95SED0017 -32 None 1042 EK 4-A 4-4-95 HUM95SED0018 -33 None COMPIFZ 4.3-95 HUM95SED0019 1732 None -34 NUM95SED0020 None HUM95SED0021 None HUM95SED0022 None HUM95\$ED0023 Mone HUM95SED0024 None HUM95SED0Ø35 None HUM95SE200026 None HUM95SED0027 None HUM95SED0028 None HUM95SED0029 None HUM95SED0030 None Data Reports MUST include the following: Sample/Site ID, Analytical Method, Detection Limit, Date of Extraction if applicable, Date of

Data Reports MUST include the following: Sample/Site ID, Analytical Method, Detection Limit, Date of Extraction if applicable, Date of Analysis, Analytical Results and Signature of QA Reviewer.

Special Instructions/Comments:

Sampled & Relinquished By:	Date/Time	Transporter	Received By:	Date/Time
Water Felix 4/4/95	15 45	- hand	Steen Trum	P Same
Relinquished By:	Date/Time	Transporter	Received By:	Date/Time
Steen Trump 4/6/95	1650	hand	Way helily	-04/06/95 1650
Relinquished By:	Date/Time	Transporter	Received By:	. Date/Time

Page 3of 7

Laboratory: ToxScan Inc. 42 Hangar Way

Watsonville, CA 95076 (408) 724-4522

Lab # 7-12046

Date Received 04/06/95

Project #: 541.

From:

Kinnetic

Laboratories,Inc. 307 Washington St. Santa Cruz, CA 95060

(408)426-3900 (408)426-0405 Fax

KLI Project: Humboldt C.O.E. P.O.#: NA Matrix: Sediment Required Completion Date: 3 weeks Sample ID# Station Lah Analysis Containers Pres. Sample Date/Time ID# Condition ID# Upon Receipt T-12046 HUM95SED0001 Sediment 1-1L Wide None RF Chemistry Mouth Glass DISCRATE 3-30-95 1118 NTACT 1UM95SED0002 SAM 6-A -17 None 4-1-95 DISIRGTE 1125 HUM95SED0003 SAM 6-B 31 -None 4-1-95 1355 IUM95SED0004 SAM 6-C - 19 4-1-95 None 1600 COMP# HUM95SED0005 - 20 None 4-1-95 1125 IUM95SED0006 FL'4 -21 4-2-95 None 1400 FL-1 HUM95SED0007 - 22 None 4-2-95 1517 UM95SED0008 FL-Z -23 None 4-2-95 1622 FL -3 HUM95SED0009 -24 4-2-95 None 1730 COMP#4 UM95SED0010 -25 4-2-95 None 1400 2KB HUM95SED0011 -2¢ None 4-3-95 1055 EK7 UM95SED0012 - 27 4-3-45 None 1135 EKL HUM95SED0013 -28 None 4-3-95 1255 EK5 JM95SED0014 -- a9 4-3-95 1416 None COMP#3 HUM95SED0015 -30 None 4-3-95 1055

ta Reports MUST include the following: Sample/Site ID, Analytical Method, Detection Limit, Date of Extraction if applicable, Date of Extraction in the Extractio

ecial Instructions/Comments:

Sampled & Relinquished By: Scott	T.E. Agams Date/Time	Transporter	Received By:	
1/1/1/1	4/4/15 1545		Start o	Date/Time
telinquished By:	Date/Time	Transporter	Received By:	Same
Steen rump	4/6/95 1650	hand	yay halily 04/06/	Date/Time
elinquished By:	Date/Time	Transporter	Received By:	Date/Time

Frig # - 17 Shelf # - 16 17

				Page Lof 7			" ik	ν
Laboratory: ToxS 42 Hang Watsonv (408) 72	ar Way rille, CA 95076		Lab # _T-/20 Date Received _ Project #:	46 04/06/95		From: Kinnetic Laboratorie: 307 Washin Santa Cruz, (408)426-39 (408)426-0	gton St. CA 95060 900	
KLI Project:		P.O.#:		Matrix:		Required (Completion D	ate: 3 weeks
Sample ID#	Station ID #	Lab ID#	Analysis	Containers	Pres.	Sample I	ate/Time	Condition Upon Receipt
DICKIN COL			DIOXIN	1 x / L was	Ø None	3-30-95	1118	INTACT
DIGKIN OOZ	Cour #1	-12 -15, 14		500 ml was	1	4-1-95	1125	
DIOXIN 003	Comp # 4	-13 -15 - 14		500 ml wm6		4-2-95	1400	
DICXIN 60 4	COMP #3	-14 -1 3,17,				4-3-95	1055	
DIOXIN 005	COMP # 7	-15 -15 -14 -14	<u> </u>		√	4-3-95	1732	4
<u> </u>								
						\		
			X	\searrow			X	
X								
								1.5
		7						
		/						
Data Reports MUS Analysis, Analytical				rtical Method, Dete	ection Limit,	Date of Extrac	tion if applica	ble, Date of
Special Instructions/	Comments:	WTRIX	15 stainin	T Dc				
Sampled & Relinqui	shed By: Scott	E. ADAN	S Date/Time	Transporter	Received B	by:		Date/Time
Watter 7	iliae	4/6	195 1545	hand	Ste	en Tr	mD	Same
Relinquished By:		• 7 - 7	Date/Time	Transporter	Received B			Date/Time
Steen	Trump	4/6/9	5 1650	hand	May	Llleib	or oy	lose /95 1650
Relinquished By:			Date/Time	Transporter	Received B	by:	10	Date/Time

DAINE LEWIS

Watsonville, CA 95076

(408) 724-4522

Chain of Custody Record

Laboratory: ToxScan Inc.
42 Hangar Way

Lab# <u>T-12046</u>

Date Received 04/06/95

Project #: 541.

From:

Kinnetic Laboratories,Inc. 307 Washington St.

Santa Cruz, CA 95060 (408)426-3900 (408)426-0405 Fax

Matrix: Sediment/Water Required Completion Date: 3 weeks KLI Project: Humboldt COE P.O.#: Sample Date/Time Sample ID# Station ID Analysis **Containers** Pres. Condition Lab ID# Upon # Receipt T-12046 1125 4-1-95 COMP #1 Bioassay/Bio-2 Lined None HUM95BI00001 -01 -02 Intact TI ST SA (sam 6) accumulation Coolers 5-50-15 T. 12046 A 4-3-95 1732 COMP #2 HUM95BIO0002 None 4-3-45 1055 HUM95BIO0003 COMP #3 None FIELD'S LANDING COMP #4 4-2-95 1400 HUM95BIO0004 None -12046-07 HUM95BI00005 Nane HUM9SBIØ0006 None HUM95BI00007 None AUM95BIO0008 None Tadia HUM95BIO0009 Z Lined Bioassay/Bio Reference None NUT RELEVED 3-30-93 COMP 1 accumulation Coolers Elutriate Water cubitainers T-12046 BIOTSSAM/BIOTECHMENTON 2 LINED COOLERS RÉ Hum 45 BIO 0010 NONE INTACT 30 APR 95 1118 - 09 -10

Data Reports MUST include the following: Sample/Site ID, Analytical Method, Detection Limit, Date of Extraction if applicable, Date of Analysis, Analytical Results and Signature of QA Reviewer.

Special Instructions/Comments: 🔭 🦻	TMICING INFORMATION COP	120 thom 8Am	PU USU be	
Sampled & Relinquished By: = KLI-	TEAOAMS - SEA Date/Time	Transporter	Received By:	Date/Time
Walter Filias	4/6/95 1545	hand	Steen Trum	D Same
Relinquished By:	Date/Time	Transporter	Received By:	Date/Time
Steen Trump	4/6/95 1650	hand	Way In Wiles	04.06.95 1650
Relinquished By:	Date/Time	Transporter	Received By:	Date/Time

Frig # - 11 Sheif# - 16

Chain of Custody Record Page of 7

Laboratory: ToxScan Inc.

42 Hangar Way

Watsonville, CA 95076

(408) 724-4522

Lab# 7-12046

Date Received 04/06/95

Project #: Humbolt 541.

From:

Kinnetic Laboratories,Inc.

307 Washington St. Santa Cruz, CA 95060

(408)426-3900

(408)426-0405 Fax

KLI Project: Hur	nbodt C.O.E.	P.O.#:	NA	Matrix: Sedin	nent	Required Com		ate: 3 weeks
Sample ID#	Station ID#	Lab ID#	Analysis	Containers	Pres.	Sample Date/	l'ime	Condition Upon Receipt
HUM95PSD0001	BAR 1	T-12044	Particle Size Distribution	1-250ml HDPE	None	3-30-45 140	0.2	INTACT
HUM95PSD0002	NB9	-36					523	
HUM95PSD0003	NBI	-37					650	
HUM95PSD0004	ENTI	-38					02	
HUM95PSD0005	ENTZ	39					14	
HUM95PSD0006	SAM 5	-40					35	
HUM95PSD0007	54M 7		y)				50	
HUM95PSD0008	SAM 1	-42				4-1-95 096		
HUM95PSD0009	54M 3	-43				4-1-95 102		
HUM95PSD0010	SAM 4	~44				4-1-95 173		
HUM95PSD0011	SAM Z	-45				4-1-95 175		
HUM95PSD0012	NB5	-46					<u> </u>	
HUM95PSD0013	NB3	-47					2 1126	
HUM95PSD0014	NBY	-49						
HUM95PSD0015	NBG	-49	J	V		4-2-95 120		-

Data Reports MUST include the following: Sample/Site ID, Analytical Method, Detection Limit, Date of Extraction if applicable, Date of Analysis, Analytical Results and Signature of QA Reviewer.

Special Instructions/Comments:

Sampled & Relinquished By: Scott	E. ADAM SDate/Time	Transporter	Received By:	Date/Time
Walter Filios 41	4/15 15 45	-hand	Steen Trumb	Same
Relinquished By:	Date/Time	Transporter	Received By:	Date/Time
Steen runp	4/6/95 1650	hand	May In Willy ou /ac	7
Relinquished By:	Date/Time	Transporter	Received By:	Date/Time
				Suco Time

Laboratory: ToxScan Inc. 42 Hangar Way Watsonville, CA 95076 (408) 724-4522

Lab # 1-12046

Date Received 04/06/75

Project #:

From:

Kinnetic

Laboratories, Inc. 307 Washington St. Santa Cruz, CA 95060 (408)426-3900 (408)426-0405 Fax

KLI Project: Humbodt C.O.E. P.O.#: NA Matrix: Sediment Required Completion Date: 3 weeks

11	SI Patronico					Mequired Completion	Date: 3 Weeks
Sample ID#	Station ID #	Lab ID#	Analysis	Containers	Pres.	Sample Date/Time	Condition Upon Receipt
HUM95PSD0016	NB 7	T-12046 -50	Particle Size Distribution	1-250ml HDPE	None	4-2-95 1211	Intact
HUM95PSD0017	NB8	-51			1	4-2-95 1222	1
HUM95PSD0018	FL 7	- 52	P 2			4-2-95 1310	
IUM95PSD0019	FL 6	-53				9-2-95 1330	
HUM95PSD0020	FL5	- 54	este ya - 1			4-2-95 1343	
IUM95PSD0021	EKI	-55				4-3-95 1638	:
HUM95PSD0022	EK3	-56	Marin San San San San San San San San San Sa			4-4-95 0942	
IUM95PSD0023	FL6	-57				4-495 1220	
HUM95PSD0024	NB Z	- 58	V			4-4-95 1255	*
MM95PSD0025			94.01 T. 19.01 T		7		
HUM9SPSD0026					/		
UM95PSD0027					/		
HUM95PSP0028							$+$ \times $+$
UM95PSD0029							
HUM95PSD0030			1444 - 15 A				/

ata Reports MUST include the following: Sample/Site ID, Analytical Method, Detection Limit, Date of Extraction if applicable, Date of Analysis, Analytical Results and Signature of QA Reviewer.

ecial Instructions/Comments:

mpled & Relinquished By:	1.	Date/Time	Transporter	Received By:	Date/Time
walter Filips	4/4/95	15 45	hand	Steen Trump	
linquished By:		Date/Time	Transporter	Received By:	Date/Time
Steen fromp	4/6/95	1650	hand	May In Wiley	
linquished By:		Date/Time	Transporter	Received By:	Date/Time

MINE TOYCOLI RIOASSAW DIT	COMMENTS / SPECIAL INSTRUCTIONS:	ANALYSISSES) RECUESTED	TOXSCAN INC.
ATTA DE RAY PARKE	SAMPLING LOCKTION:		Watsomille, CA 96076
MODESS: 42 HANGAR WAY	Tomalor Bay, Ca.		PHONE: MB014-4522
WATSONVICUE. CA	Most of Bay		
2	Smiles Revised to Home Skolment.		Like Chart
. 	* SAMPLES T-12046 - 11, 13 LECATES WORK SITE # 12		STORKE LOCALIDE A
PROJECT NAME: HUMBOLDT C.O. E.	SEND INVOICE 10:		reservation of the second
PROJECT MARIER	P.O. / CONTRACT NO:		NETROSKATOR E

	Mentione		ŭ.	X					
	SAMPLE COMMITTON	-							
	COX BIEIC					•			
	PRIATE B						 7		
	E APPRO							/	
	CHECK THE APPROPRIATE BOX BELC				-				
		Buffler:	1	/					
alion:	4	Spec	HDPE 5 GAL						
per Inform		Type:	西						
Bothe os Container Information.	Sample	Personative							
	4	Type	SEDIMENT						
entra ficac		Time	10 AIT						
Sample Informations		95	4/9/4- 10 AM						
Officed Seconds		De la caron	4. Stainsant	1				ester Sign	
			Silmer						7.8.2
			The moon	195 am					

	FART
	AND PRINTED NAME
	SSIGNATURE
	SAMPLER'S

The second secon	RECEIVED BY (SICHATURE AND PRINTED WATE):	mre	
The state of the s			
John Orezina			
Brezina + Associano		70000	
THO THOUSE AND INCHES	tout (lat Donots corek	11-12 MIK 75 1033	10.50
	25- 3005 1-12046 -75	16.77 Received	12 472 45
Filtre - DAVE			