DESIRED SALMONID FRESHWATER HABITAT CONDITIONS FOR SEDIMENT-RELATED INDICES

July 28, 2006

State of California North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, California 95403 707-576-2220

TABLE OF CONTENTS

PAGE

Chapter 1.	Introduction1
Chapter 2.	Embeddedness
Chapter 3.	Substrate Composition - % Fines < 0.85 mm10
Chapter 4.	Substrate Composition - % Fines < 6.40 mm14
Chapter 5.	Substrate Composition – D ₅₀ 18
Chapter 6.	Turbidity
Chapter 7.	V*26
Chapter 8.	Large Woody Debris
Chapter 9.	Pools – Backwater Pool Distribution
Chapter 10.	Pools – Lateral Scour Pool Distribution
Chapter 11.	Pools – Primary Pool Distribution
Chapter 12.	Thalweg Profile41
Chapter 13.	Benthic Macroinvertebrate Assemblage
Chapter 14.	Types of Monitoring
References	
Glossary	

LIST OF TABLES & FIGURES

PAGE

Table 1	Salmonid Freshwater Habitat Desired Conditions for Sediment-Related Indices	5
Table 2	Large Woody Debris Indices	7
Table 3	Russian River Index of Biological Integrity	7
Table 4	Summary of Literature Values for Percent Fines < 0.85 mm	11
Table 5	Summary of Literature Values for Percent Fines < 6.40 mm	15
Table 6	D ₅₀ Values in Reference Streams per Knopp 1993	19
Table 7	Severity Index from Newcombe & Jensen 1996	23
Figure 1	SSC Dose vs. Severity Index Rank for Chinook, Coho, and Steelhead	23
Table 8	Summary of Literature Values for Turbidity	25
Table 9	Literature Summary of V* Values	27
Table 10	LWD Criteria	28
Table 11	LWD Key Piece Volume Criteria	30
Table 12	LWD Frequency Thresholds per Peterson et al. 1992	31
Table 13	LWD Index Values per Fox 2001	32
Table 14	LWD Volume in Northern California Reference Watersheds per Knopp 1993	33
Table 15	Summary of Literature Values for LWD	34
Table 16	LWD Desired Condition	34
Table 17	Pool Frequency in Northern California Reference Watersheds per Knopp 1993	39
Table 18	Pool Frequency Properly Functioning Conditions per NMFS 1996	39
Table 19	Russian River Index of Biological Integrity	44

1. INTRODUCTION

BACKGROUND

In many streams and rivers throughout coastal Northern California, excessive amounts of human caused sediment have reduced water quality and detrimentally impacted the beneficial uses of water. Approximately 59% of the North Coast Region drains to rivers and streams that are impaired by too much sediment¹. The North Coast Regional Water Quality Control Board (Regional Water Board) is charged with protecting and enhancing the water quality and the beneficial uses of water throughout coastal Northern California.

Excessive sediment impacts several beneficial uses of water. Some of the most sensitive beneficial uses to high sediment loads are associated with the migration, spawning, reproduction, and early development of cold water fish such as coho salmon (*Oncorhynchus kisutch*), chinook salmon (*O. tshawytscha*), and steelhead trout (*O. mykiss*). Where sediment total maximum daily load reports have been completed, they have confirmed sediment impairments and confirmed that the beneficial uses associated with the cold water fishery appears to be the most sensitive to excessive sediment loads.

The *Water Quality Control Plan for the North Coast Region* (the Basin Plan) also includes water quality objectives for suspended material, settleable material, sediment, and turbidity; as listed below. With the exception of turbidity, the following water quality objectives are narrative in nature.

Suspended Material:

Waters shall not contain suspended material in concentrations that cause or adversely affect beneficial uses.

Settleable Material:

Waters shall not contain substances in concentration that result in deposition of material that causes nuisance or adversely affect beneficial uses.

Sediment:

The suspended sediment load and suspended sediment discharge rate of surface waters shall not be altered in such a manner as to cause nuisance or adversely affect beneficial uses.

Turbidity:

Turbidity shall not be increased more than 20 percent above naturally occurring background levels. Allowable zones of dilution within which higher percentages can be tolerated may be defined for specific discharges upon the issuance of discharge permits or waiver thereof.

¹ Per 2002 Clean Water Act Section 303(d) List.

PURPOSE OF THE DESIRED CONDITIONS REPORT

The purpose of this report is to describe salmonid freshwater habitat conditions that are expected to support the beneficial uses associated with the cold water fishery and meet the narrative sediment water quality objectives in regards to salmonid freshwater habitat. In other words, this document describes the desired conditions. The desired condition values are Regional Water Board staff's best professional judgment of current scientific knowledge. The desired conditions are expressed through the following indices: benthic macroinvertebrate assemblage, embeddedness, large wood debris frequency and volume, pool distribution, substrate composition, thalweg profile, and V* percentage. Turbidity and D_{50} are also discussed.

The desired condition values contained in this report are numeric in nature and are directly measurable by known monitoring methods. Therefore, they can provide a means of assessing attainment, or recovery toward attainment, with the narrative water quality objectives for suspended material, settleable material, and sediment in regards to salmonid freshwater habitat.. It is important to note, however, that enforcement actions will not be taken if the desired condition values are not met. The desired condition values would only be enforceable if they are specifically incorporated into a permit or if they are formally adopted as water quality objectives into the Basin Plan.

This report satisfies and fulfills the direction from the Regional Water Board to complete a scientific document addressing salmonid freshwater habitat properly functioning conditions for sediment-related parameters. This direction was given to the Executive Officer on November 29, 2004, in Resolution No. R1-2004-0087 which established the Total Maximum Daily Load Implementation Policy Statement for Sediment-Impaired Receiving Waters in the North Coast Region.

USE OF THE DESIRED CONDITIONS REPORT

The desired conditions are intended to be used by the Regional Water Board and other agencies, organizations, and interested individuals to assess and monitor sediment impacts to water quality, particularly salmonid freshwater habitat. Stakeholders, landowners, land managers, and other resource agencies are encouraged to monitor instream conditions and compare their data to these indices where applicable.

The desired condition values are most appropriate for comparison with compliance and trend monitoring data, which is repeatable and conducted over a long period of time. Those conducting other monitoring efforts, such as instream effectiveness monitoring, may also find this document useful. Please see Chapter 14 for a discussion on compliance, trend, effectiveness, and other types of monitoring.

It is important to note that no single parameter can adequately describe water quality related to sediment in all reaches and gradients of all water bodies. Because of the inherent variability associated with stream channel conditions, and because no single parameter applies in all situations, attainment of desired conditions should be evaluated using a weight-of-evidence approach. Attainment of all the indices in all locations, even in the best of watershed conditions, is highly unlikely. Additionally, in order to address the variability in climatic conditions and storm-flow characteristics, monitoring data for the following desired condition values should be compared to reference conditions during the same time period, when possible. When considered together, the following suite of indices and their desired condition values should provide a valuable assessment of instream sediment conditions on water quality.

It is also important to note that detecting statistically significant changes in the following indices in response to changes in upslope practices and sediment discharges may take a considerable amount of time, perhaps years to decades. However, valuable feedback on water quality trends is likely to occur within shorter periods of perhaps five to ten years.

REPORT ORGANIZATION

The desired conditions are organized alphabetically within three broad categories, as described below. Each parameter is summarized in Tables 1 through 3 and described in detail in Chapters 2 through 13.

Parameters that directly measure sediment in a stream channel:

- Embeddedness
- Substrate Composition (% fines < 0.85 mm and % fines < 6.40 mm)
- Turbidity
- V*

Parameters that measure sediment impacts on habitat features:

- Large Woody Debris
- Pools (lateral scour pools, backwater pools, and primary pool distribution)
- Thalweg Profile

Parameter that measures sediment impacts on a salmonid food source and water quality in general:

• Benthic Macroinvertebrate Assemblage

A glossary of terms is included at the end of this document. The first time a term contained in the glossary is used, starting with Chapter 2, that term is formatted in SMALL CAPS.

RELATION OF THE DESIRED CONDITIONS TO OTHER NATURAL RESOURCE DOCUMENTS

This document would not be possible without the research, time, and effort of others. I wish to thank the staff of the California Department of Fish and Game for their *California Salmonid Stream Habitat Restoration Manual*, which was relied upon for the justification of several of the desired condition values. I also thank the other authors whose work is cited below. Should readers desire more information on cited publications, the reader is encouraged to refer to that publication, many of which are available online. Copies of all cited publications are also on file at the office of the Regional Water Board and are available upon request.

MONITORING AND DATA ANALYSIS PROTOCOLS

This document purposefully does not include detailed monitoring methodologies and data analysis protocols. The purpose of this document is to describe desired conditions. However, in recognition of the fact that consistent methodologies and protocols are necessary for data to be comparable to the

desired condition values, several monitoring recommendations for each parameter are included here. Several of these recommendations are basic in nature or reference other sources. As more detailed information and guidance will undoubtedly be helpful for monitoring efforts, Regional Water Board staff intend to develop a quality assurance project plan, or other similar document, for the desired condition indices in the future.

FUTURE UPDATES

This document was initially published in November 2004 and last revised in July 2006. It may be updated periodically as new research, data, practices, and technology become available and input is received from users.

Comments and questions on this document may be directed to Regional Water Board staff Rebecca Fitzgerald at 707-576-2650 and rfitzgerald@waterboards.ca.gov.

	Table 1 Salmonid Freshwater Habitat Desired Conditions for Sediment-Related Indices						
Parameter	Desired Condition Value	Applicability	Monitoring/Sampling Notes				
The following parameters	are direct measurements of sediment in	a stream channel.					
Embeddedness	Increasing trend in the number of locations where gravels and cobbles are $\leq 25\%$ embedded.	All wadeable streams and rivers.	Monitoring should occur according to the protocols found in the <i>California Salmonid Stream Habitat Restoration Manual, Third Edition</i> by Flosi et al. (2004).				
Substrate Composition – % fines	≤ 14% fines < 0.85 mm in diameter. ≤ 30% fines < 6.40 mm in diameter.	Wadeable streams and rivers with a gradient < 3%.	Monitoring should use a McNeil sediment core sampler similar to the specifications found in <i>Success of Pink Salmon Spawning Relative to Size of Spawning Bed Materials</i> by McNeil and Ahnell (1964), except the diameter of the sampler's core should be at least 2-3 times larger than the largest substrate particle usually encountered. Monitoring should occur according the protocols found in <i>Stream Substrate Quality for Salmonids: Guidelines for Sampling, Processing, and Analysis</i> by Valentine (1995), and use the methodology for the redd or pool/riffle break sampling universe. A 0.85 mm and a 6.40 mm sieve should be used during sample processing. The wet volumetric method is recommended with the use of the wet volumetric method and the dry gravimetric method on 10% of the samples.				
V*	≤ 0.21 (21%)	3 rd order streams with slopes between 1% and 4% that drain watersheds geologically composed of the Franciscan Formation.	Monitoring should occur according to the protocols found in <i>Measuring the Fraction of Pool Volume Filled with Fine Sediment</i> by Hilton & Lisle (1993).				
The following parameters	measure the impacts of sediment on ha	bitat features.					
Large Woody Debris (LWD)	See Table 2 for the indices.	Streams and rivers with a bankfull channel width from 1m to 100m that drain watersheds predominately vegetated with forests of redwood and/or Douglas fir.	Monitoring should occur according to the protocols found in the <i>California Salmonid Stream Restoration Manual, Third Edition</i> by Flosi et al. (2004) or in the Washington State <i>Method Manual for the Large Woody Debris Survey</i> by Shuett-Hames et al. (1999b).				
	Increasing trend in the volume and frequency of LWD and key pieces of LWD.	Streams and rivers that drain watersheds not predominately vegetated with forests of redwood and/or Douglas fir and all streams and rivers with bankfull channel widths < 1m.	Monitoring should occur according to the protocols found in the <i>California Salmonid Stream Restoration Manual, Third Edition</i> by Flosi et al. (2004) or in the Washington State <i>Method Manual for the Large Woody Debris Survey</i> by Shuett-Hames et al. (1999b).				
Pools – Backwater Pool Distribution	Increasing trend in the number of backwater pools.	Wadeable streams and rivers with a channel morphology that supports the development of backwater pools. Steep, v-shaped valleys with little floodplain connection generally do not exhibit this type of habitat and are exempt.	Monitoring should occur periodically during the low-flow period and after a heavy winter storm according to the protocols found in the <i>California Salmonid Stream Restoration Manual, Third Edition</i> by Flosi et al. (2004).				

Parameter	Desired Condition Value	Applicability	Monitoring/Sampling Notes
Pools – Lateral Scour Pool Distribution	Increasing trend in the number of lateral scour pools.	Wadeable streams and rivers with a channel morphology that supports the development of backwater pools. Steep, v-shaped valleys with little floodplain connection generally do not exhibit this type of habitat and are exempt.	Monitoring should occur during the low-flow period, after a heavy winter storm, and once every five to ten years according to the protocols found in the <i>California Salmonid Stream Restoration Manual, Third</i> <i>Edition</i> by Flosi et al. (2004).
Pools – Primary Pool Distribution	Increasing trend in the number of reaches where the length of the reach is composed of $\geq 40\%$ primary pools.	2 nd , 3 rd , and 4 th order wadeable streams and rivers.	Monitoring should occur once every five to ten years during the low- flow period and after a heavy winter storm according to the protocols found in the <i>California Salmonid Stream Restoration Manual, Third</i> <i>Edition</i> by Flosi et al. (2004). Reported data should include length and depth of pools, and the number of primary pools.
Thalweg Profile	Increasing variation in the thalweg elevation around the mean thalweg profile slope.	Streams and rivers with slopes ≤ 2%.	Monitoring should occur during the low-flow period, after a heavy winter storm, once every five to ten years. The monitored stream segments should be at least 20, but usually 30 to 40 times as long as the average bankfull channel width. Points that should be surveyed include the thalweg, all breaks-in-slope, riffle crests, maximum pool depths, tails of pools, and surface water elevation. Acceptable monitoring protocols include the Channel Geometry Survey of <i>Water in</i> <i>Environmental Planning</i> by Dunne and Leopold (1978).
The following parameter	measures the impacts of sediment on a s	almonid food source and water quality in	n general.
Benthic Macroinvertebrate Assemblage	≥ 18 Index Score per the Russian River Index of Biological Integrity (IBI). See Table 3 for the Russian River IBI.	1 st , 2 nd , and 3 rd order wadeable streams and rivers.	Monitoring and calculation should occur in the spring according to the protocols found in the <i>California Stream Bioassessment Procedure</i> by the CA Department of Fish and Game (2003).

Table 2Large Woody Debris Indices						
Bankfull Index Channel Width (per 100 m of (m) channel length)						
LWD	1 to 6	> 38 pieces				
Frequency	> 6 to 30	> 63 pieces				
requercy	>30 to 100	> 209 pieces				
LWD Volume	1 to 30	$> 72 \text{ m}^3$				
	> 30 to 100	$> 317 \text{ m}^3$				
Key Piece	1 to 10	> 11 pieces				
Frequency	> 10 to 100	>4 pieces				

Table 3 Russian River Index of Biological Integrity								
Biological Matria		Score		How to use the				
Biological Metric	5	3	1	Russian River Index of Biological Integrity				
Taxa Richness	> 35	35-26	< 26	Obtain a sample of benthic macroinvertebrates following the state standard procedures in <i>California Stream</i> <i>Bioassessment Procedure</i> . <i>Protocol Brief for Biological</i>				
% Dominant Taxa	< 15	15-39	> 39	and Physical/Habitat Assessment in Wadeable Streams by CA Dept. of Fish and Game dated 2003. There must				
EPT Taxa	> 18	18-12	< 12	be at least three replicate samples collected at each monitoring location. The samples should be processed by a professional bioassessment laboratory using the Level 3				
Modified EPT Index	> 53	53-17	< 17	Taxonomic Effort. Determine the mean values for the six listed biological metrics, compare them to the values in the columns, and add the scores listed in the column				
Shannon Diversity> 2.92.9-2.3< 2.3headings. The total score will be between a low of a high of 30. Determine biotic condition of the								
Tolerance Value	< 3.1	3.1-4.6	> 4.6	monitoring location from the following categories:ExcellentGoodFairPoor30-2423-1817-1211-6				

* from Measuring the Health of California Streams and River. A Methods Manual for: Water Resource Professionals, Citizen Monitors, and Natural Resources Students by Harrington & Born (1999).

2. EMBEDDEDNESS

EMBEDDEDNESS is the degree to which larger particles such as gravels and cobbles are surrounded or covered by fine SEDIMENT (e.g., silt and/or sand), which effectively covers or cements them into the channel bottom. A spawning SALMONID slaps its tail against the channel bottom when constructing the REDD, which lifts out un-embedded gravels and cobbles and removes some of the fine sediment. This process results in a pile of cleaner and more permeable gravel or cobble that is better suited to the nurturing of eggs. Embedded gravels can be cemented, generally do not lift out easily, and can prevent spawning salmonids from building their redds to lay eggs. Most importantly, embedded gravels contain high levels of fine material, which reduces the permeability in the egg pocket and can slow growth and cause mortality.

Embeddedness Literature Review

The *California Salmonid Stream Habitat Restoration Manual, Third Edition* (Flosi et al. 2004) indicates that embeddedness of 25% or less is considered to indicate good spawning substrate for salmon and steelhead. Unfortunately, very few inventoried Northern California STREAMS contain substrates that are less than 25% embedded (Flosi, personal communication 2003).

The *Gualala River Watershed Assessment Report* (Klamt et al. 2003, p. 3-27) habitat inventory surveys conducted by the Department of Fish and Game used an embeddedness index of "50 percent or greater of the pool tails samples are 50 percent or less embedded." In other words, the criteria for suitable habitat is \leq 50% embeddedness in at least half the sampled pool tail-outs.

The National Marine Fisheries Service developed a *Matrix of Pathways and Indicators* that was designed to summarize important salmonid habitat parameters and corresponding levels of condition. This matrix is found in the *Coastal Salmon Conservation: Working Guidance for Comprehensive Salmon Restoration Initiatives on the Pacific Coast* (NMFS 1996). According to the matrix, the properly functioning condition for embeddedness in coastal streams is < 20%. This value was derived from data from Washington streams.

Embeddedness Desired Condition

The salmonid freshwater habitat desired condition for embeddedness is an increasing trend in the number of locations where gravels and cobbles are $\leq 25\%$ embedded. Although this value is an increasing trend, Regional Water Board staff do not expect nor intend every reach of every water body to meet this condition. It is not possible at this time to identify the specific number of locations with embeddedness values of $\leq 25\%$ that are necessary for salmonid success due to the lack of sufficient research. Therefore, the above desired condition value is established until more information is available.

This desired condition is based on information by Flosi et al. (2004) and the National Marine Fisheries Service (1996). The 25% value is more representative of desired conditions than the 50% value contained in Klamt et al. (2003) and provides balance between the three literature values in a manner conservative toward the protection of the cold water salmonid fishery.

The embeddedness parameter is only applicable to WADEABLE STREAMS AND RIVERS. A wadeable stream or river is one which an average human can safely cross on foot during the summer, low flow season while wearing chest waders.

Embeddedness Monitoring Recommendations

Embeddedness should be monitored during the summer, low flow season according to the protocol found in the *California Salmonid Stream Habitat Restoration Manual, Third Edition* (Flosi et al. 2004) at locations in the stream where salmonids are likely to build a redd, such as pool tail-outs and RIFFLE heads. Please note that an apparent change between two successive embeddedness results may be due to natural variability and fluctuations in streamflow. Embeddedness should, therefore, be monitoring over a more extensive period of time.

3. SUBSTRATE COMPOSITION - % FINES < 0.85mm

The composition of the substrate of a WATERCOURSE is a common measure of salmonid spawning habitat. Fine sediment particles, known as fines, in the substrate of a water body have the potential to fill the interstitial spaces of gravels used by salmonids to hold and incubate eggs (a redd). Once salmonid eggs are laid and fertilized, the spawning fish cover the redds with substrate material from just upstream of the redd. Interstitial spaces between substrate particles allow for water to flow into the interstitial spaces also allow water to flow out of the interior cavity carrying away metabolic wastes. Fine sediment particles can intrude into these interstitial spaces, reducing gravel permeability, which results in reduced rates of oxygen delivery and the removal of metabolic wastes (McBain & Trush 1999). Ultimately, reduced permeability results in reduced embryo survival and deleterious effects on the cold water fishery BENEFICIAL USES.

Fine sediment that impacts embryo development has been defined as particles that pass through a 0.85 mm sieve. The 0.85 mm diameter cut off is an arbitrarily established value based on the available sieve sizes at the time of the initial studies. As the percentage of fine sediment increases as a proportion of the total bulk core sample, the survival-to-emergence decreases.

% Fines < 0.85 mm Literature Review

Extensive research has occurred trying to relate a certain amount of salmonid survival or emergence to the size of the substrate. The results of several studies are summarized in Table 4 below.

Burns (1970) conducted three years of study in Northern California streams, including three streams he classified as unmanaged: Godwood Creek and South Fork Yager Creek in Humboldt County, and North Fork Caspar Creek in Mendocino County. Burns conducted his field work during the summer low flow season. He found a range of values for fines < 0.8 mm in each of these streams: 17.3-17.8% in Godwood Creek, 16.4-22.1% in South Fork Yager Creek, and 17.5-23.2% in Caspar Creek. Data collection for this study began a few years following big storms in 1964, which caused extensive hillside erosion and instream AGGRADATION; the results of which we still observe today.

Cederholm et al. (1980) studied several Washington streams through a combination of both field and laboratory work. Samples were analyzed using a wet-sieve method and were collected during the winter spawning period. Cederholm et al. found that in streams with less than 20% fines < 0.85 mm in diameter, the mean coho salmon survival rate was 31.9%. However, when streams had more than 20% fines < 0.85 mm, the mean coho salmon survival rate was 17.7%. Cederholm et al. also found that streams in road impacted WATERSHEDS have fines ranging from 15-20% fines < 0.85 mm, and natural streams have only 10% fines < 0.85 mm in diameter.

Magee et al. (1996) studied the distribution and habitat characteristics of spawning sites of cutthroat trout in Montana. As part of their research, Magee et al. sampled the substrate of 21 redds in Cache Creek (history of livestock and timber management) and 15 redds in upper Wapiti Creek (no known history of logging, grazing, or road building) using a McNeil sampler. Samples were collected in July and August following the first sighting of emergent FRY. Magee et al. (1996) found that the percentage

of substrate smaller than 0.85 mm was significantly higher in Cache Creek, the managed stream, then in Wapiti Creek, the unmanaged stream; with 21.6% and 17.1% respectively.

McNeil and Ahnell (1964), in their early work in Alaska, found a range of 8.6-12.3% fines < 0.833 mm in diameter in moderately to highly productive pink salmon streams. McNeil and Ahnell sampled during periods of low discharge. Data from Tagart (1976, as cited in Chapman 1988) showed a 32% survival-to-emergence rate in salmonid redds where sediment was less than 20% fines < 0.85mm.

The National Marine Fisheries Service (NMFS), also known as NOAA Fisheries, developed a Matrix of Pathways and Indicators that was designed to summarize important parameters and corresponding levels of condition. This matrix is found in the Coastal Salmon Conservation: Working Guidance for Comprehensive Salmon Restoration Initiatives on the Pacific Coast (NMFS 1996). According to the matrix, the properly functioning condition for sediment in coastal streams is < 12% fines < 0.85 mm.

In a broad survey of literature reporting percent fines in streams without a history of land management activities, Peterson et al. (1992) found fines <0.85 mm in diameter ranging from 6.37% in the Olympic National Forest to 28% on the Oregon Coast. Peterson et al. recommended the use of 11% fines < 0.85mm in diameter as a target for Washington streams because the study sites in unmanaged streams in Washington congregated around that figure. The 11% target condition should be applied to low and moderate gradient streams (<3% slope) up to 30 m in channel width. Substrate should be sampled in potential spawning reaches prior to spawning. None of the data summarized by Peterson et al. were from California.

Table 4								
Summary of Literature Values for Percent Fines < 0.85 mm								
Reference	Study Location	Season Sampled	Analysis Method	Species	Results			
	Godwood Ck - field	low flow	wet volumetric	Coho	natural stream	17.3-17.8% fines < 0.80 mm		
Burns 1970	S. Fk. Yager Ck – field	low flow	wet volumetric	N/A	natural stream	16.4-22.1% fines < 0.80 mm		
	Caspar Ck - field	low flow	wet volumetric	Coho	managed before 1900	17.5-23.2% fines < 0.80 mm		
					31.9% survival	< 20% fines < 0.85 mm		
Cederholm et al. 1980	Washington – field & lab	spawning	wet volumetric	Coho	17.7% survival	> 20% fines < 0.85 mm		
Cedernolm et al. 1980	washington – Heid & lab	season	wet volumetric	Collo	roads/sediment impacted	15-20% fines < 0.85 mm		
					natural streams	10% fines < 0.85 mm		
Magee et al. 1996	Montana – field	low flow	dry weight	Cutthroat	unmanaged stream	17.1% fines < 0.85 mm		
Wagee et al. 1990				Trout	managed stream	21.6% fines < 0.85 mm		
McNeil & Ahnell 1964	Alaska - field	low flow	wet volumetric	Pink	mod to highly productive	8.6-12.3% fines < 0.833 mm		
NMFS, 1996	Washington	N/A	N/A	all salmonids	properly functioning condition	< 12% fines < 0.85 mm		
Peterson et al. 1992	Washington	pre-spawning season	both methods	N/A	recommended target	11% fines < 0.85 mm ¹		
Platts et al. 1979	Idaho - field	unknown	both methods	Chinook	most important spawning streams in Idaho	8% fines < 0.83 mm		
Tagart 1976 ²	Washington - field	unknown	unknown	unknown	32% survival	< 20% fines < 0.85 mm		
				Steelhead	70% survival	$\leq 11\%$ fines < 0.85 mm ³		
Tappel & Bjornn 1983	Idaho & WA - lab	N/A	N/A	Steemeau	50% survival	$\leq 14\%$ fines < 0.85 mm ⁴		
rapper & Bjornin 1985	Iuano & wA - lab	1N/A	IN/A	Chinook	70% survival	$\leq 14\%$ fines < 0.85 mm ⁵		
				CIIIIOOK	50% survival	$\leq 19\%$ fines < 0.85 mm ⁵		

1. The 11% target condition should be applied to low and moderate gradient stream (<3% slope) up to 30m in channel width in WA. 4. when < 30% fines < 9.50 mm in diameter

5. when < 32% fines < 9.50 mm in diameter

as cited in Chapman, 1988

6. when < 36% fines < 9.50 mm in diameter

Platts et al. (1979) studied the effects on fine sediment on chinook salmon in the Salmon River watershed of Idaho. Samples from 1966 to 1974 were analyzed using the dry weight method and samples taken during 1975 to 1977 were analyzed using the wet volumetric method. Platts et al. found that based on 815 samples taken from the 12 most important chinook salmon spawning areas in Idaho, channels used for spawning averaged 8% fines < 0.83 mm and 30% fines < 4.7 mm.

Tappel and Bjornn (1983) conducted laboratory work on Idaho and Washington sediments. They found that approximately 11% fines < 0.85 mm and 23% fines < 9.50 mm resulted in a 70% steelhead embryo survival rate. A 50% survival rate of steelhead required approximately 14% fines < 0.85 mm and 30% fines < 9.50 mm in diameter. For chinook salmon, a 70% survival rate required less than approximately 14% fines < 0.85 mm and 32% fines < 9.50 mm. A 50% survival rate corresponded to less than approximately 19% fines < 0.85 mm and 36% fines < 9.50 mm in diameter.

% Fines < 0.85 mm Desired Condition

The salmonid freshwater habitat desired condition for percent fines less than 0.85 mm is a substrate composition where the percent of fine sediment less than 0.85 mm in diameter is less then or equal to 14% of the total bulk core sample (i.e., \leq 14% fines < 0.85 mm). This parameter is applicable to wadeable streams and rivers with a gradient of less than 3%. A wadeable stream or river is one which an average human can safely cross on foot during the summer, low flow season while wearing chest waders.

This desired condition value was chosen as it is roughly the midpoint between the 8% of Platts et al. (1979), the 9.6% to 12.3% of McNeil and Ahnell (1964), the 11% recommended target of Peterson et al. (1992), the < 12% properly functioning condition value of NMFS (1996), the < 14% of Tappel and Bjornn (1983), the 17.1% of Magee et al. (1996), and the 17.3 to 23.2% range of Burns (1970). This value takes into account that the recommended value of 11% fines < 0.85 mm from Washington (Peterson et al. 1992; NMFS 1996) is lower than would be expected in California. The same justification applies to the < 12% fines < 0.85 mm properly functioning condition of NMFS (1996), which was based on studies from Washington State. On the other hand, the roughly 17% fines < 0.85mm seen in unmanaged Godwood Creek of Northern California beginning in 1967 (Burns 1970) is probably too high given the tremendous sediment loads discharged to streams as a result of the 1964 storms. In addition, Tappel and Bjorn (1983) predicted that 15% fines < 0.85 mm, in combination with about 27% fines < 9.5 mm, would provide an average of 50% survival-to-emergence for steelhead and an average of 80% survival-to-emergence for chinook salmon. The choice of 50% emergence can be justified because redds with at least 50% emergence success would probably be considered productive by most biologists (Kondolf 2000).

The work by Cederholm et al. (1980) was not used in choosing the desired condition value because the samples were taken during the spawning season when stream flows were high. High stream flows, and correspondingly high velocities, result in a higher amount of fine sediment suspended in the water column. Regional Water Board staff expect that this condition results in a smaller amount of very fine sediment particles present in the substrate during high flows then would otherwise be present during low flow conditions.

% Fines < 0.85 mm Monitoring Recommendations

Monitoring for substrate composition should use a McNeil sediment core sampler similar to the specifications found in McNeil and Ahnell (1964), with the exception that the diameter of the sampler's core should be two to three times larger than the largest substrate particle usually encountered (Shirazi et al. 1979). Common sampler sizes are 6" and 12" in diameter. A twelve inch diameter sampler is suitable for a broad range of typical substrates. A McNeil sampler is recommended over the use of a shovel for several reasons. First, the McNeil sampler results in a more accurate and representative core of the substrate. Second, shovels types vary (e.g., round vs. square) and a specific type/brand has not be consistently used. This results in lower repeatability. Third, historical data has been collected using a McNeil sampler. Continued use of a McNeil sampler allows for comparison of future monitoring data to historical data.

Sampling of substrate composition should be performed according to the protocol found in *Stream Substrate Quality for Salmonids: Guidelines for Sampling, Processing, and Analysis* (Valentine 1995), and should follow the methodology for either the "redd sampling universe" or the "pool/riffle break sampling universe." According to Valentine's methodology, sampling should occur soon after salmonid fry have emerged from the substrate (if following the redd sampling universe method) or during the summer low flow period (if following the pool/riffle break sampling universe method). Additionally, a 0.85 mm sieve should be used during sample processing in order to compare data to this desired condition value.

In regards to sample processing, there are two options available: (1) the field-based, wet volumetric method, and (2) the laboratory-based, dry gravimetric method. Regional Water Board staff recommend the use of the wet volumetric method and encourage the use of both the wet volumetric and the dry gravimetric methods on 10% of the samples for quality control purposes. As described by Schuett-Hames et al. (1999a), the wet volumetric method uses the field-based manual shaking and washing technique to sort the sample by particle size class. The volume of sample particles retained in each sieve is measured by using a water displacement technique. This method is quicker, requires less equipment, and is cheaper. However, it does have a greater potential for inaccurate data. The dry gravimetric method involves the drying of the samples in an oven prior to sieve sorting. Each particle size class is then weighed. This method is more labor intensive, as it involves carrying out samples from the field and laboratory work. This method is also more expensive. However, it eliminates many potential sources of inaccuracy.

4. SUBSTRATE COMPOSITION - % FINES < 6.40mm

Substrate composition is a common measure of salmonid spawning habitat. Fine sediment particles, known as fines, in the substrate of a water course have the potential to cover the redd and prevent the emergence of fry (young swimming fish) out of the gravel and into the flowing stream. The size of fine particles likely to fill the INTERSTICES of redds sufficient enough to block passage of fry are larger than those fines likely to suffocate embryos. That is, particles ranging from 1.0 mm to 10.0 mm are capable of blocking fry emergence, depending on the sizes and angularity of the framework particles, while still allowing sufficient water flow through the gravels to support embryo development (Kondolf 2000). The percentage of fines is inversely related to the size of emerging fry (Chapman 1988). These factors impact the ultimate survivability of the embryos and fry.

% Fines < 6.40 mm Literature Review

Extensive research has occurred that studies the amount of salmonid survival or emergence to the size of the substrate. The results of several studies are summarized in Table 5 below.

Kondolf (1988) evaluated data from twenty three studies which focused on gravel quality criteria for a large variety of salmonids including chinook (five studies), coho (five studies), and steelhead (four studies). Kondolf found values for percentage finer than 3.35 mm and 6.35 mm for fifty percent emergence both average about 30%. He goes on to state that the conflict of similar results obtained with different variables probably reflect differences in experimental design, which makes it difficult to specify a single target value. A strict approach to determining the target value would be to simply use a maximum of 30% finer than 6.35 mm as the index.

Koski (1966) studied the survival of coho salmon from egg deposition to emergence in three coastal stream in Oregon from 1963 to 1964. The three streams drained small, un-logged watersheds. In 1966, two of the watersheds were scheduled to be logged as part of a paired watershed study. Koski found that as the percentage of fine sediment (particles < 3.327 mm in diameter) in the redds increased, the success of coho survival-to-emergence decreased.

Koski (1981) studied the rates of survival of chum salmon from egg to emerged fry in an experimental stream that was built into the streambed of a tributary to Big Beef Creek in Washington State. The substrate of the experiment stream was manipulated for the purposes of this study. Koski found that a high percentage of sand (particles < 3.327 mm in diameter) in the spawning gravel resulted in earlier emergence, increased pre-maturity, and decreased survival-to-emergence rates. Each 1% increment in the amount of sand reduced survival-to-emergence by 1.26%. Although the research by Koski does not specifically focus on fines < 6.40 mm in diameter, it does focus on fine sediment that are capable of blocking fry emergence.

Magee et al. (1996) studied the distribution and habitat characteristics of spawning sites of cutthroat trout in Montana. As part of their research, Magee et al. sampled the substrate of 21 redds in Cache Creek (which has a history of livestock and timber management) and 15 redds in upper Wapiti Creek (which has no known history of logging, grazing, or road building) using a McNeil sampler. Samples were collected in July and August following the first sighting of emergent fry. Magee et al. (1996)

found that both the managed stream, Cache Creek, and the unmanaged stream, Wapiti Creek, had high percentages of fines smaller than 6.35 mm.

McCuddin (1977) found that the ability of chinook salmon and steelhead trout to emerge from the substrate decreased sharply when sediment less than 6.4 mm in diameter comprised more than 20-25% of the substrate. Reported data varied from 27-55% from several other studies concerning fine sediment levels in un-logged Oregon watersheds. McNeil and Ahnell (1964) studied eight streams in Alaska with moderate to high pink salmon production and found the substrate to consist of 12.6-15.7% fines < 6.68 mm in diameter.

Phillips et al. (1975) studied the relationships between the amount of fine sediment and survival of coho and steelhead fry during emergence. In a laboratory setting, sand (1-3 mm in diameter) and gravel (3-32 mm) were mixed to create the substrate. Phillips et al. found an inverse relationship between the concentration of 1-3 mm sand and emergent survival of coho and steelhead fry. Mean survival for coho ranged from 96% in the control groups with no fine sand, to 8% in substrates of 70% sand. Mean survival of steelhead ranged from 99% in the control group to 18% in substrates with 70% sand. Results also show an inverse relationship between days to emergence for coho and the amount of 1-3 mm sand. Although the research by Phillips et al. does not specifically focus on fines < 6.40 mm in diameter, it does focus on fine sediment that are capable of blocking fry emergence.

Platts et al. (1979) studied the effects of fine sediment on chinook salmon in the Salmon River watershed of Idaho. Samples from 1966 to 1974 were analyzed using the dry weight method, and samples taken during 1975 to 1977 were analyzed using the wet volumetric method. Platts et al. found that, based on 815 samples taken from the 12 most important chinook salmon spawning areas in Idaho, channels used for spawning averaged 8% fines sediment < 0.83 mm and 30% fines < 4.7 mm.

	Table 5						
Summary of Literature Values for Percent Fines < 6.40 mm							
Reference	Study Location	Season Sampled	Analysis Method	Species	Results		
Kondolf 1988	N/A	N/A	N/A	Chinook, Coho, Steelhead	50% survival	30% fines < 3.35 or 6.35 mm	
Koski 1966	Oregon - field	year round	wet volumetric	Coho	50% survival	30% fines < 3.327 mm	
Koski 1981	Washington - field	unknown	N/A	Chum	50% survival	27% fines < 3.327 mm	
McCuddin 1977	Idaho – lab	N/A	wet volumetric	Chinook Steelhead	decrease in emergence	20-25% fines < 6.40 mm	
Magee et al. 1996	Montana – field	low flow	dry weight	Cutthroat Trout	unmanaged stream	42.6% fines < 6.35 mm	
Magee et al. 1990					managed stream	44.6% fines < 6.35 mm	
McNeil & Ahnell 1964	Alaska – field	low flow	wet volumetric	Pink	mod. to highly productive	12.6-15.7% fines < 6.68 mm	
	Oregon – lab		N/A		96% survival	0% fines < 3.00 mm	
				Coho	50% survival	27% fines < 3.00 mm	
Phillips et al. 1975		N/A			8% survival	70% fines < 3.00 mm	
r minps et al. 1975	oregon nuo	11/21			99% survival	0% fines < 3.00 mm	
				Steelhead	50% survival	37% fines < 3.00 mm	
					18% survival	70% fines < 3.00 mm	
Platts et al. 1979	Idaho – field	unknown	both methods	Chinook	most important spawning streams in Idaho	30% fines < 4.70 mm	
				Chinook	70% survival	32% fines < 9.50 mm ¹	
Tappel & Bjornn 1983	Idaho & WA - lab N/A	N/A	N/A	CHIHOOK	50% survival	41% fines < 9.50 mm ¹	
			Steelhead	50% survival	30% fines < 9.50 mm ¹		

1. when <14% fines < 0.85 mm in diameter

Tappel and Bjornn (1983) have done extensive research on percent fines, in which they focused on the combination of fines smaller than 0.85 mm and 9.50 mm in diameter. They predicted that 30% fines < 9.50 mm, in combination with 14% fines < 0.85 mm, would provide an average of 50% survival-to-emergence for steelhead. The same study predicted that 32% fines < 9.50 mm, in combination with 14% fines < 0.85 mm, would provide an average of 50% survival-to-emergence for steelhead. The same study predicted that 32% fines < 9.50 mm, in combination with 14% fines < 0.85 mm, would provide an average of 70% survival-to-emergence for chinook salmon. No relationship was reported for coho salmon, but it should be noted that both steelhead and chinook are expected to have greater emergence success than coho salmon when redds are sedimented.

% Fines < 6.40 mm Desired Condition

The salmonid freshwater habitat desired condition for percent fines less than 6.40 mm is a substrate composition where the percent of fines sediment less than 6.40 mm in diameter is less than or equal to 30% of the total bulk core sample (i.e., \leq 30% fines < 6.40 mm). This parameter is applicable to wadeable streams and rivers with a gradient less than 3%. A wadeable stream or river is one which an average human can safely cross on foot during the summer, low flow season while wearing chest waders.

This desired condition value was selected due to the findings of Kondolf (1988) and because it is roughly the midpoint of the results from the studies listed in Table 15 above. Specifically, the percentages of fines corresponding to 50% survival were considered as values because redds with at least 50% emergence success would probably be considered productive by most biologists (Kondolf 1988). Studies which focused on coho salmon were also given greater consideration due to the expected lower emergence success rate of coho salmon than either chinook salmon or steelhead trout when redds are sedimented. The Regional Water Board has the responsibility to protect the most sensitive species, which is often coho salmon. As easily seen in Table 15, not every study focused on fine sediment particles < 6.40 mm in diameter. Koski (1966), Magee et al. (1996), and Phillips et al. (1979) studied the effects of fine sediment less than approximately 3.00 mm in diameter. Platts et al (1979) studied fine sediment would be higher if the studies took into account all fine sediment particles < 6.40 mm in diameter. Regional Water Board staff expect that the percentages of fine sediment < 9.50 mm in diameter. Conversely, Tappel and Bjornn (1983) studied the effects of fine sediment < 9.50 mm in diameter and Regional Water Board staff expect that the percentages of fine sediment would be lower if the studies took into account only fine sediment particles < 6.40 mm.

% Fines < 6.40 mm Monitoring Recommendations

Monitoring for substrate composition should use a McNeil sediment core sampler similar to the specifications found in McNeil and Ahnell (1964), with the exception that the diameter of the sampler's core should be two to three times larger than the largest substrate particle usually encountered (Shirazi et al. 1979). Common sampler sizes are 6" and 12" in diameter. A twelve inch diameter sampler is suitable for a broad range of typical substrates. A McNeil sampler is recommended over the use of a shovel for several reasons. First, the McNeil sampler results in a more accurate and representative core of the substrate. Second, shovels types vary (e.g., round vs. square) and a specific type/brand has not be consistently used. This results in lower repeatability. Third, historical data has been collected using a McNeil sampler. Continued use of a McNeil sampler allows for comparison of future monitoring data to historical data.

Sampling of substrate composition should be performed according to the protocol found in *Stream Substrate Quality for Salmonids: Guidelines for Sampling, Processing, and Analysis* (Valentine 1995), and should follow the methodology for either the "redd sampling universe" or the "pool/riffle break sampling universe." According to Valentine's methodology, sampling should occur soon after fry have emerged from the substrate (if following the redd sampling universe method) or during the summer low flow period (if following the pool/riffle break sampling universe method). Additionally, a 6.40 mm or 6.35 mm sieve should be used during sample processing in order to compare data to this desired condition value.

In regards to sample processing, there are two options available: (1) the field-based, wet volumetric method, and (2) the laboratory-based, dry gravimetric method. Regional Water Board staff recommend the use of the wet volumetric method and encourage the use of both the wet volumetric and the dry gravimetric methods on 10% of the samples for quality control purposes. As described by Schuett-Hames et al. (1999a), the wet volumetric method uses the field-based manual shaking and washing technique to sort the sample by particle size class. The volume of sample particles retained in each sieve is measured by using a water displacement technique. This method is quicker, requires less equipment, and is cheaper. However, it does have a greater potential for inaccurate data. The dry gravimetric method involves the drying of the samples in an oven prior to sieve sorting. Each particle size class is then weighed. This method is more labor intensive, as it involves carrying out samples from the field and laboratory work. This method is also more expensive. However, it eliminates many potential sources of inaccuracy.

5. SUBSTRATE COMPOSITION $-D_{50}$

 D_{50} is the median particle diameter of a sampled population. The sampled population is composed of particles from the surface substrate of a stream or river that is sampled by a pebble count. For example, a D_{50} value of 65 mm means that 50% of the substrate particles were smaller than 65 mm and 50% were larger. D_{50} can be used as a measure of substrate composition and salmonid spawning habitat. Fine sediment particles in a stream's substrate have the potential to clog the interstitial spaces of substrate gravels used by salmonids as a nest, which is known as a redd. Once salmonid eggs are laid and fertilized, the spawning fish cover the redds with substrate material from just upstream of the redd. Interstitial spaces between substrate particles allow for water to flow into the interior cavity of the redd where dissolved oxygen, a necessity to growing embryos, is replenished. Similarly, the interstitial spaces allow water to flow out of the interior cavity carrying away metabolic wastes. Fine sediment particles can intrude into these interstitial spaces, reducing gravel permeability, which results in reduced rates of oxygen delivery and removal of metabolic wastes (McBain & Trush 1999).

D₅₀ Literature Review

Knopp (1993) studied sixty streams within the North Coast Region which were of the Franciscan Formation and were composed of small cobble substrates with slopes between one and four percent (Rosgen B-3 and C-3 channels). The data for each stream was derived from three separate riffle reaches using 200-count pebble counts. Twelve of these streams, categorized as "Index No" streams, had no human disturbance history and were considered good quality habitat that is best able to maintain viable populations of salmonids relative to the above specific geologic formation and channel type. Six other streams, categorized as "Index Yes" streams, had reaches with historic management greater than forty years old (i.e., the most recent management activity occurred prior to 1953) and had no evidence of residual erosion or instability due to past human activity. The D_{50} values for both categories of stream can be found in Table 6.

Knopp found a statistically significant difference in average and minimum D_{50} values when comparing references reaches with reaches in moderately and highly disturbed watersheds. Therefore, the D_{50} levels identified in the references streams are good candidates for numeric indices.

D₅₀ Desired Condition

Although sediment supply is an important variable affecting sediment substrate, reach-scale flow perturbations add considerable variability to grain size and transport capacity. Due to this variability, Regional Water Board staff do not propose a salmonid freshwater habitat desired condition for D_{50} at this point.

Table 6 D ₅₀ Values in Reference Streams per Knopp 1993						
Stream	Tributary To	Stream Condition	D ₅₀ (mm)			
Balm of Gilead Creek	Middle Fork Eel River	Unmanaged	111.4			
Canoe Creek	South Fork Eel River	Virtually Undisturbed	63.5			
Cedar Creek	Smith River	Unmanaged	45.4			
Clark Creek	Smith River	Unmanaged	37.4			
Elder Creek	South Fork Eel River	Virtually Undisturbed	183.1			
Graham Gulch	Freshwater Creek	Managed Before 1953	38.4			
Honeydew Creek	Mattole River	Unmanaged	105.9			
Little Lost Man Creek	Redwood Creek	Unmanaged	42.0			
Little River	Pacific Ocean	Managed Before 1953	47.6			
Middle Fork Eel River	Eel River	Virtually Undisturbed	109.3			
Morrison Creek	Middle Fork Eel River	Unmanaged	50.2			
North Fork Caspar Creek	Caspar Creek	Managed Before 1900 & from 1985 to 1991	52.1			
North Fork Freshwater Creek	Freshwater Creek	Managed Before 1953	50.9			
Pilot Creek	Mad River	Unmanaged	83.8			
Prairie Creek	Redwood Creek	Managed Before 1953	57.7			
Russian Gulch	Pacific Ocean	Managed Before 1953	40.7			
Squaw Creek	South Fork Eel River	Unmanaged	83.7			
Yew Creek	Mattole River	Managed Before 1953	47.2			
			mean 69.5			

6. TURBIDITY

TURBIDITY is an optical measure of the amount of suspended particles in the water column, including suspended sediment, algae, organic matter, and pollutants. Turbidity can be measured in Jackson Turbidity Units (JTUs) or Nephelometric Turbidity Units (NTUs), which are not interchangeable. While JTUs are suitable for evaluating gross changes in turbidity levels, NTUs offer more precise and sensitive measurements.

Turbidity is a very important component of the water column and highly turbid waters can have a variety of negative effects on salmonids, including avoidance response, reduced feeding rates, reduced growth rates, damage to fish gills, and fatality. "Turbidity is regarded by many as the single most sensitive measure of the effects of land use on streams. This is due partly to the fact that relatively small amounts of sediment can cause a large change in turbidity, and partly to the estimated accuracy of turbidity measurements." (MacDonald et al. 1991, p. 105).

Suspended sediment is the amount of particles suspended in the water column. It is measured in milligrams of suspended sediment per liter of water (mg/L) or in parts per million (ppm). The relationship between suspended sediment and turbidity is variable. At low concentrations (approximately less than 50 NTUs and mg/L), one NTU is typically equal to one mg/L. At higher concentrations, the relationship must be developed on a site specific basis.

Turbidity Water Quality Objective

The *Water Quality Control Plan for the North Coast Region* (NCRWQCB 2005) contains a WATER QUALITY OBJECTIVE for turbidity. A Water Quality Objective establishes limits that are necessary for the reasonable protection of the beneficial uses and for the prevention of nuisance. The turbidity Objective states that "[t]urbidity shall not be increased more than 20 percent above naturally occurring back ground levels. Allowable zones of dilution within which higher percentages can be tolerated may be defined for specific discharges upon the issuance of discharge permits or waivers thereof" (p. 3-3.00).

Regional Water Board Staff's Intentions Regarding Turbidity

At this point, Regional Water Board staff do not propose to revise the turbidity Water Quality Objective or establish a turbidity desired condition due to the lack of comprehensive data and research. However, the following information and literature review on turbidity is informative, and staff hope it will lead to the future establishment of a turbidity desired condition for salmonid habitat to support the turbidity Water Quality Objective as its relates to salmonid habitat.

Specifically, preliminary findings from Klein's (2001; 2003) work in Upper Prairie and Little Lost Man Creeks suggest that turbidity and suspended sediment concentration can be used as a diagnostic tool for quantifying management effects. In addition, Klein (2003) stated that should his hypothesis hold true following more comprehensive studies (more streams, more years of data), then expressions of chronic turbidity - such as the number of days exceeding 27 NTUs or the 10% exceedence NTU - will have good potential for setting robust WATER QUALITY STANDARDS or indices. It may also be possible to suggest a suspended sediment dose-based index according to the findings of Newcombe & Jensen (1996).

Turbidity Literature Review

Extensive research on turbidity and its effects on salmonids has occurred. The results of several studies are summarized in Table 8 below.

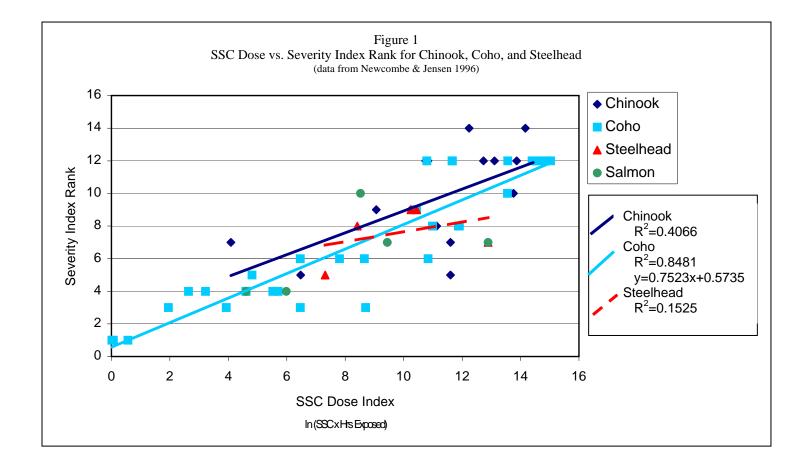
According to Anderson (1975), turbid water is separated from non-turbid water at a suspended sediment concentration of 27 mg/L. Water with 27 mg/L of suspended sediment has been characterized as "not drinkable," results in a fifty percent drop in the catch of fish, and results in a less than a ten percent drop in fish production (Anderson 1975). Klein (2001) states that suspended sediment concentrations above 27 mg/L affects the ability of juvenile salmonids to forage for food.

Barrett et al. (1992) studied the effects of turbidity on the reactive distance of rainbow trout over a period of twenty-four hours in Georgia. They found that an increase of 10 NTUs of turbidity over the ambient background of 5 NTUs reduced the reactive distance of rainbow trout by approximately twenty percent. Reactive distance is the distance moved by the fish from its holding position to the point where it took its prey.

Bisson and Bilby (1982) conducted several laboratory based avoidance tests on young-of-the-year coho salmon taken from a Washington stream. They found that coho who were acclimated to clear water (less than 0.3 NTUs) avoided water with turbidities of 70 NTUs and greater. Juvenile coho who were acclimated to slightly turbid water (2-15 NTUs) avoided water with turbidities of 100 NTUs and greater. The avoidance reaction to turbid water has been commonly attributed to the sight-feeding requirements of salmonids as overall visibility, flotation, and background contrast are key factors in food selection by juvenile coho.

Literature sources also state that water with low concentrations of turbidity can be beneficial to salmonids as turbidity can provide temporary cover and protection from predators. Gregory and Northcote (1993) investigated the effect of turbidity on the foraging behavior of juvenile chinook salmon taken from the Fraser River in British Colombia. They found that plankton foraging by chinook occurred at high rates at low turbidity, and at much reduced rates at elevated turbidity levels (greater than 150 NTUs). However, this trend was not found in the foraging rates for surface and benthic prey. Instead Gregory and Northcote found that chinook foraging on surface and benthic prey was roughly the greatest between 18 and 150 NTUs. They suggested that turbidity may act as a form of cover, reducing the perception of risk in juvenile chinook. However, at turbidity levels greater than 150 NTUs, visual ability becomes substantially impaired and foraging ability is reduced.

Klein (2001) studied suspended sediment concentrations on one pristine and two near-pristine tributary streams throughout the 1999 water year. Elder Creek is a pristine tributary to the South Fork Eel River. Upper Prairie Creek and Little Lost Man Creek are both near-pristine tributaries to Redwood Creek and have experienced minimal management activity. Klein sampled for suspended sediment at established gaging stations both manually and with an automated pumping sampler controlled by a data logger. A stage-based sampling routine was used to control the pumping sampler that increased sampling frequency with increased stage height above a set threshold. Samples taken manually and with the automated sampler were used to determine suspended sediment flux and to define a rating curve. The rating curves were than used to estimate continuous suspended sediment data from the discharge record. A confidence level was not given. When plotted, these data composed "sedigraphs," which reflect the


variation of suspended sediment concentrations over a period of time. Klein found that Elder Creek had 11 days, Upper Prairie Creek had 25 days, and Little Lost Man Creek had 25 days in which turbidity levels exceeded 27 NTUs. In comparison, Panther Creek had 101 days and Lacks Creek had 135 days in which turbidity exceeded 27 NTUs. Panther Creek and Lacks Creek have been, and continue to be, managed primarily for timber production.

Klein (2003) further assembled and analyzed turbidity data from eight continuous turbidity and stage recording stations located on small streams in the North Coast Region. The study basins were Little Jones Creek, Horse Linto Creek, Upper Prairie Creek, Godwood Creek, Upper Jacoby Creek, Freshwater Creek, and the North and South Forks of Caspar Creek. Data from individual streams spanning three water years (WY 2000-2002) were processed to calculate the lengths of time that turbidity exceeded several thresholds. From suspended sediment data collected in Upper Prairie Creek and Little Lost Man Creek, Klein inferred that intrinsic differences in a watershed's attributes (e.g., geology, soils, stream and slope gradient) that affect erosion can cause large differences in suspended sediment concentrations during storms at peak stream flows. However, suspended sediment concentrations during small storms and winter baseflows are much less affected by intrinsic differences in differences in differences, watersheds. Specifically, Klein found that "for most of the winter runoff period, . . . undisturbed watersheds, even those with very different soils, geology, and steepness, tend to have similarly low turbidity and [suspended sediment concentration] durations" (Klein 2003, p. 22).

Newcombe & Jensen (1996) performed a meta-analysis of eighty published and adequately documented reports on fish response to suspended sediment. From these reports, they developed the Severity Index (see Table 7) which provides a very useful means for ranking and analyzing the effects of suspended sediment on salmonid species.

Regional Water Board staff suggest that a Severity Index Rank of four or greater represents significant harm to salmonids so as to be detrimental to the beneficial uses associated with the cold water fishery. The rationale for this determination is as follows. First, it is obvious that mortality is significantly harmful. Second, based upon work by Trush (2001), long term reductions in the success and feeding rate (corresponds to a Rank of 8) are considered significantly harmful to salmonids. Trush found that the survival of salmonids during the SMOLT life stage is strongly a function of smolt size. Reductions in growth decrease the chance of smolts to mature and return as spawning adults, which cumulatively jeopardizes population sustainability (Trush 2001). Third, discrete short-term reduction in feeding rates and/or feeding success (corresponds to a Rank of 4) which repeatedly occur can lead to an overall long-term reduction in growth. Again, reductions in juvenile salmonid growth jeopardize population sustainability.

	Table 7 Severity Index				
Rank	from Newcombe & Jensen 1996 Description of Effect Associated w/ Excess Turbidity or Suspended Sediment				
	No Effect				
1	Alarm Reaction				
2	Abandonment of Cover				
3	Avoidance Response				
4	Short-term Reduction in Feeding Rates and/or Feeding Success				
5	Minor Physiological Stress, Increased Coughing Rate, and/or Increased Respiration Rate				
6	Moderate Physiological Stress				
7	Moderate Habitat Degradation and/or Impaired Homing				
8	Major Physiological Stress, Poor Condition, and/or Long-term Reduction in Feeding Rates and/or Feeding Success				
9	Reduced Growth Rate, Delayed Hatching, and/or Reduced Fish Density				
10	0 to 20% Mortality, Increased Predation, and/or Moderate to Severe Habitat Degradation				
11	>20 to 40% Mortality				
12	>40 to 60% Mortality				
13	>60 to 80% Mortality				
14	>80 to 100% Mortality				

In addition to developing the Severity Index, Newcombe and Jensen (1996) analyzed suspended sediment dose. The suspended sediment dose is the product of the suspended sediment concentration in mg/L and length of exposure in hours. Newcombe and Jensen took the natural log of the dose to give a simple Dose Index. The expression is as follows:

Suspended Sediment Dose Index = $\ln(SSC \times Hrs Exposed)$

For example, exposure to only 3.13 mg/L of suspended sediment for 24 hours results in a Dose Index of 4. Similarly, exposure to 75.19 mg/L of suspended sediment for only one hour results in a Dose Index of 4.

Newcombe & Jensen then made a connection between summarized suspended sediment data, their Dose Index, and their Severity Index. Figure 1 plots their findings in the form of Dose Index versus the Severity Index Rank for coho, chinook, and steelhead. Only coho salmon were studied sufficiently to see a strong correlation (R^2 =0.8481) between suspended sediment and negative responses. These plots illustrate that as suspended sediment concentrations and exposure increase, the effects on salmonids becomes increasingly deleterious.

As proposed above, a Severity Index Rank of four (4) or greater is considered to be significantly harmful to salmonids to be detrimental to the beneficial uses associated with the cold water fishery. As determined from the linear regression line for coho salmon on Figure 1, a Severity Index Rank of four (4) equates to a Suspended Sediment Dose Index of 4.55. The data from studies on coho salmon were used due to the data robustness and the high sensitivity of coho to changes in their environment. Thus, a potential index for the protection of salmonids using the Suspended Sediment Dose Index could be a Dose Index of less than or equal to 4.55.

Sigler et al. (1984) studied the effects of chronic turbidity on juvenile coho from Oregon hatcheries and juvenile steelhead from Idaho hatcheries over a twenty one day period. They found that, in general, more salmonids stayed in channels with clear water than turbid water, and the weight and length of salmonids increased faster in clear water. Sigler et al. also found that large numbers of fish avoided highly turbid water, especially over the first two diel cycles of the study. Some of these juveniles still had a portion of their yolk sac, indicating that foraging and feeding were not the principal reasons for the avoidance. Sigler et al. concluded that as little as 25 NTUs over periods that ranged from 14 to 31 days caused a reduction in fish growth.

According to testimony given by Trush (2001), a turbidity exposure threshold for ANADROMOUS salmonids that minimally inhibits recovery of salmonid populations is near 27 NTU when the measured flow rate is at ten percent of the daily average flow rate. Trush further clarifies that these criteria should apply to late-winter baseflows when the stream flow is at ten percent of the daily average flow rate. These criteria will allow reliable measurements for the development of baseflow turbidity rating curves. In addition, one winter season of baseflow sampling should be sufficient (though certainly not ideal) for developing a baseflow turbidity rating curve at each monitoring station.

Table 8 Summary of Literature Values for Turbidity							
Reference(s)	Effects	Results ¹					
Anderson, 1975	N/A	N/A	Not Drinkable	27 mg/L			
Barrett et al., 1992	tt et al., 1992 Georgia Rainbow Trout Reduced Reactive Distance		Increase of 10 NTU ²				
Bisson & Bilby, 1982	Washington	Coho (j)	Avoidance	70 NTU			
Gregory & Northcote, 1993	British Colombia	Chinook (j)	Reduced Feeding	150 NTU			
	Elder Ck	N/A	Pristine Stream	11 days of > 27 NTU			
Klein, 2001	Upper Prairie Ck	N/A	Near Pristine Stream	25 days of > 27 NTU			
	Little Lost Man Ck	N/A	Near Pristine Stream	25 days of > 27 NTU			
Sigler et al., 1984	Oregon & Idaho	Coho (j) & Steelhead (j)	Reduced Growth	25 NTU			
Trush, 2001	N/A	Salmonids	Minimally Inhibits Recovery	27 NTU			

1. Turbidity expressed in NTU. Suspended Sediment expressed in mg/L.

7. V*

V* (pronounced v-star) is a unit-less measure of the fraction of a pool's volume that is filled by fine sediment and is representative of the in-channel supply of mobile bedload sediment (Lisle and Hilton 1992). V* gives an indication of the depth of a pool prior to sedimentation. Lisle and Hilton (1999) demonstrated the usefulness of the parameter by comparing annual sediment yields of select streams with their average V* values. The comparison indicated that V* was well correlated to annual sediment yield and that V* values can quickly respond to changes in sediment supply. For example, V* values in French Creek, a tributary to the Scott River, decreased to approximately one-third the initial value soon after an erosion control program focusing on roads was implemented.

V* Literature Review

Knopp (1993) studied sixty streams within the North Coast Region which were of Franciscan Formation geology and were composed of small cobble substrates with slopes between one and four percent (Rosgen B-3 and C-3 channels). V* values identified by Knopp represent the average of six separate pools. Twelve of these streams, categorized as "Index No" streams, had no human disturbance history and were considered good quality habitat that is best able to maintain viable populations of salmonids relative to the above specific geologic formation and channel type. Six other streams, categorized as "Index Yes" streams, had reaches with historic management greater than forty years old (i.e., the most recent management activity occurred prior to 1953), and had no evidence of residual erosion or instability due to past human activity. The V* values for both categories of stream can be found in Table 19. Knopp (1993) concluded that the median particle size of instream sediment samples was significantly different at the 95% confidence level between the index reaches and those of Moderate and High disturbance. The region-wide mean V* value for index reaches was 0.17 of the pool volume filled with fine sediment.

Lisle and Hilton (1999) also reported that V* values for Elder Creek, a stream of 2.2% slope, averaged 0.09. Elder Creek is a pristine tributary to the South Fork Eel River and is composed of Coastal Belt Franciscan Geology (U.S. EPA 1999). In September 1998, V* values in Elder Creek ranged from 0.01 to 0.02. Other streams in the North Coast Region were studied by Lisle and Hilton (1999). These streams and their corresponding V* values are included in Table 9 below. All these streams have a slope between 1% and 4%. Of the streams studied, Horse Linto Creek, Little North Fork Salmon River, South Fork Salmon River, Sugar Creek, and Taylor Creek are considered to be relatively undisturbed streams according to the general knowledge and best professional judgment of Regional Water Board staff.

V* Desired Condition

The salmonid freshwater habitat desired condition for V* is less than or equal to 0.21 or 21% (i.e., $\leq 1\%$ of a pool's volume filled with sediment) applicable in 3rd order streams with slopes between 1% and 4%. The V* desired condition value is only applicable to streams that drain watersheds geologically composed of the Franciscan Formation. The desired condition value is based on the research by Knopp (1993) concerning V* levels in Northern California coastal watersheds which are relatively undisturbed.

	Table 9						
Literature Summary of V* Values							
Stream	Tributary To	Stream Condition	Reference	V *			
Balm of Gilead Creek	Middle Fork Eel River	Unmanaged	Knopp, 1993	0.08			
Canoe Creek	South Fork Eel River	Virtually Undisturbed	Knopp, 1993	0.24			
Cedar Creek	Smith River	Unmanaged	Knopp, 1993	0.13			
Clark Creek	Smith River	Unmanaged	Knopp, 1993	0.23			
Elder Creek	South Fork Eel River	Virtually Undisturbed	Knopp, 1993	0.07			
			Lisle & Hilton, 1999	0.09			
			U.S. EPA, 1999a	0.01			
Graham Gulch	Freshwater Creek	Managed Before 1953	Knopp, 1993	0.35			
Honeydew Creek	Mattole River	Unmanaged	Knopp, 1993	0.10			
Horse Linto Creek	Trinity River	Relatively Undisturbed	Lisle & Hilton, 1999	0.12			
Little Lost Man Creek	Redwood Creek	Unmanaged	Knopp, 1993	0.26			
Little North Fk Salmon River	Salmon River	Relatively Undisturbed	Lisle & Hilton, 1999	0.046			
Little River	Pacific Ocean	Managed Before 1953	Knopp, 1993	0.22			
Middle Fork Eel River	Eel River	Virtually Undisturbed	Knopp, 1993	0.13			
Morrison Creek	Middle Fork Eel River	Unmanaged	Knopp, 1993	0.21			
North Fork Caspar Creek	Caspar Creek	Managed Before 1900 &	Knopp, 1993	0.27			
		from 1985 to 1991					
North Fork Freshwater Creek	Freshwater Creek	Managed Before 1953	Knopp, 1993	0.19			
Pilot Creek	Mad River	Unmanaged	Knopp, 1993	0.15			
Priarie Creek	Redwood Creek	Managed Before 1953	Knopp, 1993	0.14			
Russian Gulch	Pacific Ocean	Managed Before 1953	Knopp, 1993	0.33			
South Fork Salmon River	Salmon River	Relatively Undisturbed	Lisle & Hilton, 1999	0.22			
Squaw Creek	South Fork Eel River	Unmanaged	Knopp, 1993	0.24			
Sugar Creek	Scott River	Relatively Undisturbed	Lisle & Hilton, 1999	0.15			
Taylor Creek	South Fork Eel River	Relatively Undisturbed	Lisle & Hilton, 1999	0.11			
Yew Creek	Mattole River	Managed Before 1953	Knopp, 1993	0.45			

V* Monitoring Recommendations

Monitoring should be conducted according to the methodology contained in *Measuring the Fraction of Pool Volume Filled with Fine Sediment* (Hilton & Lisle 1993). A minimum of 6 pools (with an maximum depth \leq 4 times the riffle crest depth) per 1000 m of stream should be sampled and the mean value for the reach is to be compared to the desired condition value. Not all streams will contain a 1000 m reach of stream with at least 6 pools. Where a stream does not meet the minimum pool requirements, the V* desired condition value is not applicable.

8. LARGE WOODY DEBRIS

LARGE WOODY DEBRIS (LWD) includes both logs and root wads that at least partially extend into the bankfull channel of a water body. According to the *Method Manual for Large Woody Debris Survey* by Washington's Timber Fish and Wildlife Program (Schuett-Hames et al. 1999b), to qualify as LWD, a log must have a diameter of at least 0.1 meter (3.9 in.) and a length of at least 2 meters (6.6 ft.) and extend into the bankfull channel by at least 0.1 meter. A root wad must have a diameter of at least 0.2

meter (7.9 in.) and a length of less than 2 meters (6.6 ft.) and extend into the bankfull channel by at least 0.1 meter in order to be considered LWD.

LWD plays an important role in channel morphology by forming habitat such as pools, by storing sediment and organic matter, by providing cover to salmonids and other species from predators, by increasing hydraulic complexity, and by contributing to the production of BENTHIC MACROINVERTEBRATES (Bisson et al. 1987; O'Connor & Harr 1994; Peterson et al. 1992). Additionally, it is difficult to determine if impacts to salmonids are due to a discharge of sediment or due to the lack of complexity in the stream channel without knowing the volume and distribution of LWD in a stream channel. Table 10 LWD Criteria

LWD Log Criteria

- 1. Diameter ≥ 0.1 meter (3.9 in.)
- 2. Length \geq 2.0 meters (6.6 ft.)
- 3. ≥ 0.1 meter (3.9 in.) of the log extends into the bankfull channel.

LWD Root Wad Criteria

- 1. Diameter ≥ 0.2 meter (7.9 in.)
- 2. Length < 2.0 meters (6.6 ft.)
- 3. ≥ 0.1 meter (3.9 in.) of the root wad extends into the bankfull channel.

LWD plays different roles in different sized streams. For example, in steep headwater streams where logs span the channel, LWD creates a stepped longitudinal profile that governs the storage and release of sediment (Bisson et al. 1987). When the stream channel becomes too wide to be spanned by logs, LWD is found along the channel margins and often forms the most productive fish habitat in the mainstem. LWD is also an important in the floodplain, where it can meter sediment, provide refuge in floods, and stabilize stream banks.

Beechie and Sibley (1997) studied twenty-eight sites in four Washington watersheds and found LWD to be a dominant pool forming mechanism. They also found a direct cause and effect relationship between LWD abundance and pool abundance. Bisson et al. (1987) found a strong correlation between the volume of LWD and the size of the associated pool, especially in streams wider than 10 meters (33 feet). In their survey of Prairie Creek and Little Lost Man Creek, two reference streams in Humboldt County, Keller and Tally (1979) inventoried all large organic debris in the stream channel larger than 10 cm (4 in.) in diameter. They found that in Prairie Creek, at least 50% of the pools in the low gradient study reaches were controlled or influenced by LWD. In the steeper reaches of Little Lost Man Creek, more than 90% of the pools were controlled by LWD.

LWD Key Pieces

The Washington Forest Practices Board's *Standard Methodology for Conducting Watershed Analysis* (WFPB 1997) states that it is necessary for a stream channel to contain a few larger pieces of wood that provide stability and function in unison with the smaller pieces. These larger pieces of LWD are called

"key pieces." A KEY PIECE OF LWD is defined as a log or root wad that (1) is independently stable in the stream bankfull width and not functionally held by another factor (e.g., not pinned by another log, buried, or trapped against a rock, etc.) and (2) is retaining, or has the potential to retain, other pieces of organic debris that are likely to become mobilized in a high flow without the key piece (WFPB 1997, p. F-26).

Although the above definition is performance based, two sources give guidance on how to choose a piece of wood that might perform as intended by the definition. One source is the *Method Manual for the Large Woody Debris Survey* which is included in the Timber, Fish, and Wildlife Monitoring Program of the Northwest Indian Fisheries Commission in Washington State (Schuett-Hames et al. 1999b). They give volume based criteria for LWD key piece selection for streams with a bankfull width of 20 m (65.6 ft.) and smaller. Volume criteria for streams with a bankfull width of 20 m to 100 m (65.6 ft.) are taken from research by Fox (2001). These criteria are combined in Table 11.

The *Salmonid Stream Habitat Restoration Manual, Third Edition* (Flosi et al. 2004) is a second source of guidance on how to choose a piece of wood that might perform as intended by the LWD key piece definition. Specifically, the following minimum size requirements for LWD in unanchored applications are given: logs with a minimum diameter of twelve inches and a minimum length 1.5 times the mean bankfull width of the stream channel type reach and the deployment site. Root wads must have a minimum root bole diameter of five feet and minimum length of 15 feet and minimum width at least half the channel type bankfull width.

In part to test the minimum size requirements for unanchored wood pieces found in Flosi et al. (2004), Collins (1999) conducted a study of LWD purposely placed in Parlin Creek, a tributary to the South Fork Noyo River in Jackson Demonstration State Forest. The bankfull width of Parlin Creek in 1997 was 21 feet, which results in a minimum key piece length of 31.5 feet according to unanchored LWD requirements. The study began in 1996. During the 1997 survey, 147 of the 162 pieces of wood tagged in 1996 were located (91%). Their average length was 39 feet with an average diameter of 25 inches. The wood not found in 1997 had a significantly smaller average length of 22 feet, although their average diameter of 28 inches was not significantly different. The average length of wood displaced downstream was 31 feet, while the average length of wood found in their original positions was 40 feet. However, it is possible that some of the missing 1996 project wood may have either lost their tags or rolled on top of them obscuring the tags from view, and not all of these pieces were necessarily lost from the project area. Collins (1999) determined that these surveys appear to support the unanchored LWD length criteria found in Flosi et al. (2004).

Table 11 LWD Key Piece Volume Criteria

(taken from Schuett-Hames et al. 1999b; modified with results from Fox 2001)

Min.	Minimum Length of LWD in meters			
Diameter	BFW	BFW	BFW	BFW
in meters	> 0 to < 5	5 to < 10	10 to < 15	15 to < 20
0.20	32			
0.25	21			
0.30	15	36		
0.35	11	26		
0.40	8	20		
0.45	7	16	38	
0.50	6	13	31	
0.55	5	11	26	
0.60	4	9	22	32
0.65	3	8	19	28
0.70	3	7	19	24
0.75	3	6	14	21
0.80	2	5	12	18
0.85	2	5	11	16
0.90	2	4	10	15
0.95	2	4	9	13
1.00	2	4	8	12
1.05	2	3	7	11
1.10	2	3	7	10
1.15	1	3	6	9
1.20		3	6	8
1.25		3	5	8
1.30		2	5	7
1.40		2	4	6
1.55		2	4	5
1.60		2	3	5
1.70		2	3	4
1.80		1	3	4
2.00			2	3
2.40			2	2
2.80			1	2
3.40				1
Meter/Feet conversion: meters x 3.281 = feet				

$\begin{tabular}{|c|c|c|c|} \hline Minimum LWD Volume to Qualify as a Key Piece \\ \hline \hline BFW (m) & Volume (m^3) \\ \hline 0 \ to < 5 & 1 \\ 5 \ to < 10 & 2.5 \\ 10 \ to < 15 & 6 \\ 15 \ to < 20 & 9 \\ 20 \ to < 30 & 9.75 \\ \hline \end{tabular}$

* Wood piece must have an attached root wad.

10.5*

10.75*

Procedure:

30 to < 50

50 to 100

1. Select segment bankfull width (BFW) category.

2. Measure diameter of candidate pieces and round to nearest 0.05 m (5 cm)

3. Follow matrix across to find the minimum length requirement.

Key Log Example:

1. Segment has an average BFW of 12 m (use BFW column of 10 to < 15 m).

 Candidate log diameter is measured/ estimated to be 0.53 m (round to 0.55 m).
 Log must be a minimum of 26 m long (measure/estimate log length to assess if it is a key piece).

Key Rootwad Example:

1. Segment has an average BFW of 4 m (use BFW column of 0 to < 5 m).

2. A rootwad Key Piece must have a minimum diameter of 1.15 m and length of 1 m.

LWD Literature Review

Bilby and Ward (1989) surveyed 22 streams located in undisturbed, old-growth Douglas fir forests in southwestern Washington. They found that the mean diameter and length of LWD increased and the LWD frequency decreased as channel width increased. In other words, as channels became wider, LWD pieces were larger but found in fewer numbers due to the increasing capacity of the channel to transport LWD. Bilby and Ward also found that the frequency of LWD ranged from between 0.8 pieces per meter of stream in the smallest channels to 0.1 pieces per meter in the largest stream systems. In the Assessment of Cumulative Effects on Salmonid Habitat: Some Suggested Parameters and Target Conditions, Peterson et al. (1992) used Bilby and Ward's regression analysis to develop targets for LWD frequency. These target conditions are based on channel width and are listed in Table 12. It is interesting to note that these values exceed Washington State's LWD frequency target for good streams of two or more pieces per channel width.

Table 12 LWD Frequency Thresholds					
per Peterson et al. 1992					
Channel Width (m)	# of Pieces per Channel Width	# of Pieces per 100 m			
4	2.44	61.05			
5	2.38	47.56			
6	2.33	38.77			
7	2.28	32.62			
8	2.25	28.09			
9	2.22	24.62			
10	2.19	21.88			
11	2.16	19.66			
12	2.14	17.84			
13	2.12	16.31			
14	2.10	15.01			
15	2.08	13.89			
16	2.07	12.92			
17	2.05	12.08			
18	2.04	11.34			
19	2.03	10.66			

Fox (2001) surveyed 150 stream segments draining unmanaged basins (without logging, roads, dams, or other human-induced conditions that may influence natural wood loading and retention rates) in order to enhance the LWD target in Washington State and review the properly function condition value proposed by the National Marine Fisheries Service (NMFS 1996). For the purposes of this study, Fox used the definitions of a LWD piece and a key piece found in the Washington manuals (WFPB 1997; Shuett-Hames et al. 1999b). Fox found that the most consistent predictor of wood volumes and quantities is bankfull width and eco-region. He also found that the WFPB (1997) LWD frequency target was not appropriate for all stream channels less than 20 m (65.6 ft.) in bankfull width; it is too high for channels less than 3 m (10 ft.) in bankfull width and too low for channels wider than 12 m (39.4 ft.) in bankfull width. Fox concluded that the LWD properly functioning condition proposed by NMFS (1996) does not differentiate between bankfull width classes and is inappropriate for small streams in western Washington. In place of the WFPB and NMFS targets, Fox proposes ranges for instream LWD in "good" streams, as shown in Table 13 Fox's LWD target values are taken from streams in Western Washington, which drain basins of Stika Spruce, Western Hemlock, Silver-fir, Douglas fir, and Western Red Cedar, the most applicable of the Washington eco-regions to Northern California. The quantities of key pieces found in Washington should be similar to those found in Northern California watersheds composed of redwood and/or Douglas fir (Fox, personal communication 2003). Other tree species found in such forests include Stika spruce, western hemlock, big leaf maple, and red alder. Although redwoods and other trees of Northern California may have some differences in density, buoyancy, and subsequent entrainment, it is not likely significant enough to warrant a change in the values of the indices, and the indices are valid for Northern California. The wood density of trees found in Northern California and the trees found in Washington are relatively similar. Keller and Tally (1979) assumed an average wood density of 500 kg/m³ for woody debris in Prairie Creek and Little Lost Man Creek

Table 13LWD Target Values per Fox 2001				
	Bankfull Channel Width (m)	Target (per 100 m of channel length)		
	0 to 6	> 38 pieces		
LWD Frequency	> 6 to 30	> 63 pieces		
	>30 to 100	> 209 pieces		
LWD Volume	0 to 30	$> 99 \text{ m}^3$		
	> 30 to 100	$> 317 \text{ m}^3$		
Kay Biaga Enggyanay	0 to 10	> 11 pieces		
Key Piece Frequency	> 10 to 100	>4 pieces		

(tributaries to Redwood Creek). Fox (2001) relied on an average wood density of 415 kg/m³ for trees in Washington. In addition, redwood remains in streams as LWD longer than any other tree species: usually to approximately half the age of the tree. Furthermore, the indices are scaled by stream size and bankfull width, and thus fluvial processes, rather than eco-region.

Keller et al. (1995) focused on the relationship between in-channel woody debris (logs, stems, limbs, and root wads > 10 cm (4 in.) in diameter), channel morphology, sediment storage, and anadromous fish habitat in the Redwood Creek watershed of Northern California. Several of the streams studied by Keller et al. are considered reference streams. Little Lost Man Creek has not had previous management and Prairie Creek has not be managed since before 1953. Keller et al. included pieces of wood smaller than the minimum size requirements for LWD per Flosi et al. (2004). Consequently, Keller et al. likely overestimated the volume of LWD. Data on woody debris volume from four unmanaged stream segments are listed in Table 15, which is the summary of literature values for LWD. The data presented in Table 15 are converted from the original units of m^3 of debris loading per m^2 of active channel expressed in Keller et al (1995). Data on reach lengths, which were used for the conversions, were taken from Keller and Tally (1979), who studied the same reaches.

Knopp (1993) studied 60 streams within the North Coast Region. These streams were composed of small cobble substrates with slopes between 1% and 4% (Rosgen B-3 and C-3 channels). In addition, the sixty streams drained watersheds composed of the Franciscan Formation geology. Twelve of the streams were categorized as "Index No" streams with no human disturbance history and considered to have good quality habitat best able to maintain viable populations of salmonids relative to the geologic formation and channel type. Six other streams were categorized as "Index Yes" streams with reaches of historic management over 40 years old (i.e., the most recent management activity occurred prior to 1953) and had no evidence of residual erosion or instability due to past human activity. As part of this study, Knopp measured the volume of wood within the active channel, which is the area of annually scoured gravels. Each survey was conducted on a 1,000 m reach of stream. The study does not report that a particular size range of wood was surveyed, nor does it include the bankfull channel width. Table 14 shows the results of the study. The mean wood volume for unmanaged streams and streams managed before 1953 was 243.5 m³ per 1000 m reach (32 yd³ per 109 yd.). Knopp also found that in several reaches which had not had channel clearing work, the values for wood volume ranged from 800 to 1,200 m³ per 1000 m reach (105 to 157 yd³/109yd).

Table 14 LWD Volume in Northern California Reference Watersheds per Knopp 1993				
Stream	Tributary To	Stream Condition	Wood Volume m ³ /1000m reach	
Balm of Gilead Creek	Middle Fork Eel River	Unmanaged	13	
Canoe Creek	South Fork Eel River	Virtually Undisturbed	241	
Cedar Creek	Smith River	Unmanaged	266	
Clark Creek	Smith River	Unmanaged	777	
Elder Creek	South Fork Eel River	Virtually Undisturbed	45	
Graham Gulch	Freshwater Creek	Managed Before 1953 ¹	305	
Honeydew Creek	Mattole River	Unmanaged	32	
Little Lost Man Creek	Redwood Creek	Unmanaged	175	
Little River	Pacific Ocean	Managed Before 1953 ¹	46	
Middle Fork Eel	Eel River	Virtually Undisturbed	10	
Morrison	Middle Fork Eel River	Unmanaged	238	
North Fork Caspar Creek	Caspar Creek	Managed Before 1900 & from 1985 to 1991	250	
North Fork Freshwater	Freshwater Creek	Managed Before 1953 ¹	736	
Pilot Creek	Mad River	Unmanaged	216	
Priarie Creek	Redwood Creek	Managed Before 1953 ¹	290	
Russian Gulch	Pacific Ocean	Managed Before 1953 ¹	410	
Squaw Creek	South Fork Eel River	Unmanaged	250	
Yew Creek	Mattole River	Managed Before 1953 ¹	83	
		mean	243.5	

1. Streams categorized by Knopp (1993) as having reaches with historic management activity more than 40 years ago.

Kramer and Klein (2000) inventoried woody debris in approximately 7 km (4.3 miles) of Upper Prairie Creek in 1997 and 1999. They inventoried all woody debris pieces larger than 10 cm (4 in.) in diameter and 2 m (6.6 ft.) in length (this does not meet the minimum diameter size requirement of LWD per Flosi et al. (2004)). In both years, the total volume of woody debris in the entire reach surveyed approached 8,000 m³. This equates to an average of 114.3 m³ of wood per 100 m of stream (an 8 to 21 km² drainage area equates to an average bankfull channel width of approximately 7 to 20 m according to the regional curve for Prairie Creek found in Keller et al. (1995)).

The National Marine Fisheries Service (NMFS), also known as NOAA Fisheries, developed a *Matrix of Pathways and Indicators* that was designed to summarize important parameters and corresponding levels of condition. This matrix is found in the *Coastal Salmon Conservation: Working Guidance for Comprehensive Salmon Restoration Initiatives on the Pacific Coast* (NMFS 1996). According to the matrix, the properly functioning condition for LWD in coastal streams is > 80 pieces per mile (five pieces per 100 m of stream length). LWD is defined as a piece of wood larger than two feet in diameter and larger than 50 feet in length.

Washington State developed *Indices of Resource Conditions for Interpretation of Field Survey Results* and Habitat Analysis, which contains target values for LWD in poor, fair, and good streams. These indices can be found in the *Washington Forest Practices Board Manual: Standard Methodology for Conducting Watershed Analysis* (WFPB 1997). The manual defines LWD as a piece of wood at least 10 cm (4 in.) in diameter and at least 2 m (6.6 ft.) in length. The definition of a key piece of LWD is duplicative of the definition described above from the Washington State LWD Method Manual (Shuett-Hames et al. 1999b). For "good" streams, the indices list a LWD frequency target value of > 2 pieces

Table 15 Summary of Literature Values for LWD					
Reference	Study Location	Bankfull LWD Volume		LWD Frequency	
Fox 2001	western Washington	See Table 11			
Keller et al. 1995	Little Lost Man Ck - Upper Little Lost Man Ck – Lower	6.4 m* 9.6 m*	$ \begin{array}{r} 181 \text{ m}^{3} \\ 94 \text{ m}^{3} \\ 187 \text{ m}^{3} \end{array} $	N/A N/A	
	Prairie Creek – Brown Ck Prairie Creek – Campground	11.0 m* 18.5 m*	$\frac{187 \text{ m}^3}{72 \text{ m}^3}$	N/A N/A	
Knopp 1993	North Coast Region		See Table 12		
Kramer & Klein 2000	Prairie Creek – Upper	7 – 20 m	114 m ³	N/A	
NMFS 1996	properly functioning condition	N/A	N/A	> 5 pieces per 100 m of channel length	
WFPB 1997	good streams	< 10 m	N/A	> 2 pieces per channel width	
WIID 1997		10 – 20 m	N/A	> 0.5 pieces per channel width	

* This is the average bankfull channel width of the surveyed stream reach. Keller et al. (1995) also calls this the "characteristic width."

per channel width and a key piece frequency target value of > 0.30 pieces per channel width (when the bankfull channel width < 10 m) to > 0.50 pieces per channel width (when the bankfull channel width is 10 - 20 m).

LWD Desired Condition

The LWD desired condition is separated into two indices by the type of vegetation found in a watershed. The salmonid freshwater habitat desired condition for large woody debris (LWD) in water bodies that drain watersheds predominately vegetated with forests of redwood and/or Douglas fir is found in Table 16 below. The salmonid freshwater habitat desired condition for LWD in all other water bodies in the North Coast Region is an increasing trend in the volume and frequency of LWD and key pieces of LWD.

Table 16 LWD Desired Condition				
	Bankfull Channel Width (m)	Index (per 100 m of channel length)		
	1 to 6	> 38 pieces		
LWD Frequency	> 6 to 30	> 63 pieces		
	>30 to 100	> 209 pieces		
LWD Volume	1 to 30	$> 72 \text{ m}^3$		
	> 30 to 100	$> 317 \text{ m}^3$		
Kay Biasa Eraguaray	1 to 10	> 11 pieces		
Key Piece Frequency	> 10 to 100	> 4 pieces		

The LWD desired condition for water bodies that drain watersheds predominately composed of redwood and/or Douglas fir forests is a modified version of the target proposed by Fox (2001). Fox's target incorporates the vital correlation between bankfull channel width and LWD occurrence, which is lacking

in the analysis conducted by Knopp (1993). Fox's work has been modified in several ways. First, water bodies narrower than 1 m in bankfull channel width are excluded from the value, although the narrative desired condition of an increasing trend does apply to such water bodies. This modification ensures that small streams are not subject to a value which might be infeasible to attain. For example, a shallow and narrow stream with a width of less than a meter might be essentially buried in 72 m³ of LWD. Second, the desired condition value for LWD volume in water bodies ranging from 1 m to 30 m in bankfull channel width is set at > 72 m³ per 100 m of channel length. Fox's target for such water bodies is > 99 m³ per 100 m of channel length. This modification reflects the minimum volume of LWD found in reference streams in Northern California per Keller et al. (1995), and ensures that the LWD desired condition corresponds to local reference conditions. As more data and information becomes available, the LWD volume desired condition may be revised to a value that is based on the average volume wood in reference water bodies.

Although the LWD desired condition for water bodies that do not drain watersheds predominately vegetated by forests of redwood and/or Douglas fir is an increasing trend, Regional Water Board staff do not intend nor expect the amount of LWD to increase beyond the capacity of water bodies to form this habitat feature or to continue to increase throughout time. Complexity within the stream channel is necessary. However, it is not possible at this time to identify specific volumes or frequencies of LWD that are necessary for salmonid success for such water bodies due to the lack of sufficient research. Therefore, an increasing trend value is established until more information is available.

LWD Monitoring Recommendations

LWD should be monitored according to the protocols found in the *Method Manual for the Large Woody Debris Survey* by Washington's Timber Fish and Wildlife Monitoring Program (Shuett-Hames et al. 1999b).

9. POOLS – BACKWATER POOL DISTRIBUTION

BACKWATER POOLS are defined in Flosi et al. (2004) as pools found along channel margins within the bankfull channel width that are caused by eddies around an obstruction, such as boulders, root wads, or large woody debris. These pools are usually shallow and are dominated by fine-grained substrate. Current velocities are quite low in backwater pools. Backwater pools are used by salmonids as over-wintering habitat and provide shelter from high storm flows. Backwater pools are especially important habitat for coho salmon. Boulders, root wads, or logs which generally form backwater pools can be removed or buried by excess sediment, thereby reducing the diversity of instream habitat. The loss of habitat, in turn, results in a deleterious impact on the cold water fishery and associated beneficial uses.

Backwater Pool Distribution Desired Condition

The salmonid freshwater habitat desired condition for backwater pool distribution is an increasing trend in the number of backwater pools. Although this value is an increased trend, Regional Water Board staff do not intend nor expect the number of backwater pools to increase beyond the capacity of water bodies to form this habitat feature or to continue to increase throughout time. Complexity within a stream channel is necessary. However, it is not possible at this time to identify a specific number of backwater pools that are necessary for salmonid success due to the lack of sufficient research. An increasing trend desired condition value is established until more information is available.

The backwater pool distribution parameter is only applicable to wadeable streams and rivers with a channel morphology that supports the development of backwater pools. Steep, v-shaped valleys with little floodplain connection generally do not exhibit this type of habitat and monitoring for this index should not be done in such environments. A wadeable stream or river is one which an average human can safely cross on foot during the summer, low flow season while wearing chest waders.

Backwater Pool Distribution Monitoring Recommendations

At a minimum, this parameter should be measured periodically during the low-flow periods after a heavy winter storm. This parameter should be monitored according to the methodology found in the *California Salmonid Stream Restoration Manual, Third Edition* (Flosi et al. 2004).

10. POOLS - LATERAL SCOUR POOL DISTRIBUTION

LATERAL SCOUR POOLS are defined in Flosi et al. (2004) as pools formed by flow impinging against a partial channel obstruction consisting of a log, root wad, boulder, or bedrock stream bank. This is also known as channel constriction. The associated scour is generally confined to less than sixty percent of the wetted channel width. Lateral scour pools are widely used habitat for salmonids, including coho salmon.

Lateral Scour Pool Distribution Literature Review

According to a survey by Georgia-Pacific of anadromous fish bearing streams throughout the Ten Mile River watershed in 1994 and 1995, the percent of scour pools appears to be a critical habitat parameter for coho presence (NCRWQCB 2001). The survey indicates that scour pools which comprise at least 17% of a stream's length, and at least 23% of a stream's area, will contain coho salmon. Applying the above values for the percent of habitat in scour pools correctly predicts coho presence 80% of the time and coho absence 100% of the time. Although this criteria assists in identifying where coho salmon are likely to be present in the Ten Mile River watershed, it does not adequately determine which streams historically supported, or have the future potential to support, coho populations.

Lateral Scour Pool Distribution Desired Condition

The salmonid freshwater habitat desired condition for lateral scour pool distribution is an increasing trend in the number of lateral scour pools. Although this value is an increasing trend, Regional Water Board staff do not intend nor expect the number of lateral scour pools to increase beyond the capacity of water bodies to form this habitat feature, or to continue to increase throughout time. Complexity within the stream channel is necessary. However, it is not possible at this time to identify a specific number of lateral scour pools that are necessary for salmonid success due to the lack of sufficient research. An increasing trend desired condition value is established until more information is available.

The lateral scour pool distribution parameter is only applicable to wadeable streams and rivers with a channel morphology that supports the development of lateral scour pools. Steep, v-shaped valleys with little floodplain connection do not usually support such habitat and this index should not be monitored in such environments. A wadeable stream or river is one which an average human can safely cross on foot during the summer, low flow season while wearing chest waders.

Lateral Scour Pool Monitoring Recommendations

At a minimum, this parameter should be measured periodically during the low-flow periods after a heavy winter storm. This parameter should be monitored according to the methodology found in the *California Salmonid Stream Restoration Manual, Third Edition* (Flosi et al. 2004).

<u>11. POOLS – PRIMARY POOL DISTRIBUTION</u>

Pools are a very important component of instream salmonid habitat. Pools provide shelter from predators and high flows, cooler water temperatures, and quite habitat. In order for a stream to fully support a sustainable population of salmonids, there must be enough pools, and those pools must be of an adequate depth. Pool frequency and depth is partly a function of geology, topography, watershed size, flow, stream disturbance, and pool-forming elements such as boulders and large woody debris.

According to the *California Salmonid Stream Habitat Restoration Manual, Third Edition* (Flosi et al. 2004), PRIMARY POOLS are defined as follows: For 1st and 2nd order streams, primary pools are defined as having a maximum residual depth of at least two feet, occupy at least half the width of the low flow channel, and be as long as the low flow channel width. For 3rd and 4th order streams, a primary pool must have a maximum residual depth of at least three feet, occupy at least half the width of the low flow channel, and be as long as the low flow channel. The STREAM ORDER designations given above refer to the relative position of stream segments in a drainage basin network. The smallest, un-branched, perennial tributaries, terminating at an outer point, are designated as order 1. The junction of two 1st order streams produces a stream segment of order 2. The junction of two 2nd order streams produces a stream segment of order 2. The junction of two 2nd order streams produces a stream segment of order 2. The junction of two 2nd order streams produces a stream segment of order 3, and so on. RESIDUAL POOL DEPTH is defined as the maximum depth of a pool minus the maximum depth of its downstream riffle crest (i.e., the depth of the pool at the point of zero flow).

Primary Pool Distribution Literature Review

Flosi et al. (2004) concluded from the Department of Fish and Game's habitat typing data that better California coastal coho streams may have as much as 40% of the length of the total stream habitat in primary pools. The manual also states that pool enhancement projects are considered when primary pools comprise less than 40% of the length of the total stream habitat. The Department of Fish and Game has also stated in their *Watershed Assessment Field Reference* (CDFG 1999) that good coho streams have more than 50% of their total available fish habitat in adequately deep and complex pools.

Knopp (1993) studied sixty streams within the North Coast Region, of Franciscan Formation geology, with small cobble substrates, and with slopes between 1% and 4% (Rosgen B-3 and C-3 channels). Twelve of the streams, were categorized as "Index No" streams, meaning the watersheds lacked a history of human disturbance and the stream's habitat was considered of good quality and able to maintain viable populations of salmonids relative to the geologic formation and channel type. Six other streams were categorized as "Index Yes" streams, meaning the watersheds had a history of management over forty years ago (i.e., the most recent management activity occurred prior to 1953) and had no evidence of residual erosion or instability due to past human activity. As part of this study, Knopp measured the number and length of pools within each 1000 m stream reach. All pools that occupied fifty percent or more of the active channel and whose surface did not show turbulence were included. No criteria were included for pool depth, which means that Knopp did not exclusively measure primary pools. However, as the primary pool criteria was partially met, the data is still applicable and useful. Table 17 shows the results of Knopp's study.

Table 17 Pool Frequency in Northern California Reference Watersheds per Knopp 1993				
Stream	Tributary To	Stream Condition	Pool Frequency per 1000 m reach	
Balm of Gilead Creek	Middle Fork Eel River	Unmanaged	33.9%	
Canoe Creek	South Fork Eel River	Virtually Undisturbed	24.5%	
Cedar Creek	Smith River	Unmanaged	50.5%	
Clark Creek	Smith River	Unmanaged	52.0%	
Graham Gulch	Freshwater Creek	Managed Before 1953 ¹	40.1%	
Honeydew Creek	Mattole River	Unmanaged	16.7%	
Little River	Pacific Ocean	Managed Before 1953 ¹	53.1%	
Middle Fork Eel River	Eel River	Virtually Undisturbed	46.2%	
Morrison Creek	Middle Fork Eel River	Unmanaged	35.8%	
North Fork Caspar Creek	Caspar Creek	Managed Before 1900 & from 1985 to 1991	45.6%	
North Fork Freshwater Creek	Freshwater Creek	Managed Before 1953 ¹	46.8%	
Pilot Creek	Mad River	Unmanaged	31.5%	
Priarie Creek	Redwood Creek	Managed Before 1953 ¹	55.8%	
Russian Gulch	Pacific Ocean	Managed Before 1953 ¹	49.0%	
Squaw Creek	South Fork Eel River	Unmanaged	32.2%	
Yew Creek	Mattole River	Managed Before 1953 ¹	50.1%	
		mean	41.5%	

1. Streams categorized by Knopp (1993) as having reaches with historic management activity more than 40 years ago (from 1993).

The National Marine Fisheries Service developed a *Matrix of Pathways and Indicators* that was designed to summarize important parameters. This matrix is found in the *Coastal Salmon Conservation: Working Guidance for Comprehensive Salmon Restoration Initiatives on the Pacific Coast* (NMFS 1996). According to the matrix, the properly functioning condition for pool frequency meets the values listed in Table 18 and meets the LWD recruitment properly functioning condition index (as described in Chapter 8 above).

The Assessment of Cumulative Effects on Salmonid Habitat: Some Suggested Parameters and Target Conditions by Peterson et al. (1992) recommended a target condition of 50% pools. They found

Table 18Pool FrequencyProperly Functioning Conditionsper NMFS 1996		
Channel Width	# of Pools	
(ft)	per Mile	
5	184	
10	96	
15	70	
20	56	
25	47	
50	26	
75	23	
100	18	

50% pools to be generally indicative of pool habitat in streams with gradients less than three percent in unmanaged forests. Peterson et al. (1992) used the pool classification system of Bisson et al. (1982, as cited in Peterson et al. 1992) and Sullivan (1986, as cited in Peterson et al. 1992). This classification system differs from the use of primary pools.

Primary Pool Distribution Desired Condition

The salmonid freshwater habitat desired condition for primary pool distribution is an increasing trend in the number of second to fourth order stream reaches where the length of the reach contains $\geq 40\%$ primary pools. The long term goal is for all wadeable streams and rivers to consist of $\geq 40\%$ primary pools. A wadeable stream or river is one which an average human can safely cross on foot during the

summer, low flow season while wearing chest waders. The desired condition only applies to second through fourth order streams.

This value is primarily based on Flosi et al. (2004) and the findings of Knopp (1993). Regional Water Board staff concur with the findings of CDFG in that a water quality objective for pool frequency of \geq 50% would be fully protective of the salmonid population (CDFG 1999). However, streams that are typically considered pristine or near pristine within the North Coast Region were shown by Knopp (1993) to have a mean pool frequency of 41.5%. In addition, Flosi et al. (2004) recommends pool enhancement projects when primary pools comprise less than 40% of the length of the total stream habitat. Regional Water Board staff are not establishing a desired condition value based on the matrix developed by NMFS (1996) because data specific to Northern California are not currently available for verification with local conditions.

Primary Pool Distribution Monitoring Recommendations

At a minimum, this parameter should be measured during the low-flow period after a heavy winter storm season once every five to ten years. Reported data should include length and depth of pools, and the number of primary pools. If possible, monitoring data should include the type of primary pool (e.g., lateral scour pool, step pool, corner pool, channel confluence pool, plunge pool, or dammed pool). This parameter should be monitored according to the protocol by Flosi et al. (2004). Furthermore, additional information can be gathered during while monitoring primary pool distribution, such as general habitat type and THALWEG PROFILE.

12. THALWEG PROFILE

The thalweg is the deepest part of the stream channel at a given cross section. The thalweg profile is constructed by surveying the elevation of the channel bed in a downstream direction along the deepest part of the channel. The profile appears as a jagged but descending line which is relatively flat at pool areas and descends sharply at cascades. The thalweg profile can show the number of pools, depths of pools, pool-riffle spacing, and the spatial pattern of pool distribution (Madej 1999). In other words, the thalweg profile is an indicator of instream salmonid habitat complexity. More variability in the thalweg profile indicates more complexity in the habitat. Variety and complexity in habitat are needed to support salmonids at different times in the year during different stages in their life cycles. Both pools and riffles are utilized by salmonids for spawning, incubation of eggs, and emergence of fry. Once fry emerge, they rest in pools and other slower moving water, darting into faster riffle sections to feed where insects are more abundant. Deep pools also provide cover from predators.

Thalweg Profile Literature Review

Successive thalweg profiles can document trends in stream aggradation or DEGRADATION (Madej 1999). A channel will rise in elevation, or agrade, if larger amounts of sediment is delivered to a channel than it is able to carry away (which is a function of flow and channel geometry). If the channel is able to carry away more sediment than is being delivered from upstream sources, the channel will degrade, or scour.

Madej (1999) studied trends in the thalweg profiles of several streams in the Redwood Creek watershed between 1977 and 1997. The analysis of the profiles showed there were statistically significant differences in the distributions of pool residual water depths and in the variation of channel bed elevations impacted by high sediment loads.

Thalweg Profile Desired Condition

The salmonid freshwater habitat desired condition for the thalweg profile is an increasing trend in the variation around the mean thalweg profile slope for water bodies with slopes of 2% or less. In other words, the desired condition is an increasing trend towards more variation in the thalweg profile. Additionally, it is expected that overall thalweg profile of aggraded streams will drop in elevation as sediment loads are reduced.

It is not possible at this time to establish a specific numeric value due to relatively slow response times and the lack of sufficient research that compares thalweg profiles from different streams. This parameter is limited to water bodies with slopes of 2% or less because such water bodies are often simplified due to increased sediment supply and loss of LWD. Changes in the thalweg profile due to changes in the sediment load will be most pronounced in low gradient water bodies.

Thalweg Profile Monitoring Recommendations

This parameter should be monitored during the low-flow period, after a heavy winter storm season, once every five to ten years. The stream segment must be at least 20, but usually 30 to 40 times, as long as the average bankfull channel width. Points to be surveyed include the thalweg profile, all breaks-in-

slope, riffle crests, maximum pool depths, tails of pools, and surface water elevation. It is essential that the spacing of survey shots be close enough to define the channel bed features of interest. Acceptable monitoring methodologies for the thalweg profile include, but are not limited to, the Channel Geometry Survey of *Water in Environmental Planning* (Dunne & Leopold 1978, pp. 653-655).

13. BENTHIC MACROINVERTEBRATE ASSEMBLAGE

Freshwater benthic macroinvertebrates are aquatic invertebrates that are at least 0.5 mm in length and live primarily on the bottom substrate of streams and rivers. Benthic macroinvertebrates include worms, snails, clams, crustaceans, aquatic beetles, the nymph forms of mayflies, stoneflies, dragonflies, and damselflies, and larval forms of caddisflies and true flies. They are most easily categorized into feeding guilds (species that obtain a common food source in a similar manner) such as shredders, filter-collectors, collect-gatherers, scrapers-grazers, and predators. The complex of benthic macroinvertebrates is influenced by its location in a watershed. In first to second order streams, the predominant feeding guilds are shredders and collectors. There are very few scrapers and predators are found in low numbers. In third, fourth, and fifth order streams, the predominant feeding guilds are scrapers/collectors, and there are low numbers of shredders and predators. In sixth order and higher streams, the predominant feeding guild are collectors. Shredders and scrapers are absent and predators are found in low, but somewhat higher numbers than smaller order streams.

Benthic macroinvertebrate populations are "continuous monitors of the water they inhabit, enabling longterm analysis of both regular and intermittent discharges, single or multiple pollutants, and even synergistic or antagonistic effects" (Harrington & Born 1999, p. 7-7). In other words, benthic macroinvertebrates are significantly influenced by water quality and are often adversely affected by excess fine sediment. "Furthermore, when integrated with physical and chemical assessments, biological assessments . . . provide a more appropriate means for evaluating discharges of non-chemical substances (e.g., sedimentation and habitat destruction)" (Harrington & Born 1999, p. 5-10).

Additionally, benthic macroinvertebrates are important for their role as a food source for salmonids. Increases of fine sediment in a stream channel can result in changes in the types and assemblages of benthic macroinvertebrates present. For example, Suttle et al. (2004) experimentally manipulated fine bed sediment in the South Fork Eel River and found that "[w]ith increasing fine sediment, invertebrate assemblages shifted from available prey organisms (i.e., epibenthic grazers and predators) to unavailable burrowing taxa . . . , so that steelhead confined to channels with higher levels of sedimentation experienced lower food availability than those with less embedded channels" (p. 971).

An Index of Biological Integrity (IBI) has been developed by the California Department of Fish and Game's Water Pollution Control Laboratory. This IBI is specific to first, second, and third order streams in the Russian River watershed. The IBI analyzes six matrices (TAXA OR SPECIES RICHNESS, PERCENT DOMINANT TAXA, EPT TAXA, EPT INDEX, SHANNON DIVERSITY, and TOLERANCE VALUE) and integrates them into a single score for biotic condition. See Table 19 for the Russian River IBI.

According to Harrington & Born (1999), the six metrics ". . .were integrated into a single scoring criteria by producing a histograms [sic] of the values for each of the biological metrics and visually determining breaks in their distribution. The approach of determining scoring criteria was more intuitive and probably most appropriate given the data came from streams that could have been moderately impaired and not actually representative of pristine reference conditions."

According to Harrington (personal communication 2003), the Russian River IBI has been found to be an effective and applicable measure of benthic macroinvertebrate health outside of the Russian River watershed. The California Department of Fish and Game is currently developing a North Coast IBI that

		Duccio		Table 19	Intogrity			
Russian River Index of Biological Integrity (taken from Harrington & Born 1999)								
Dislasiaal Matria		Score		How to use the Russian River Index of Biological Integrity	i a al Tanta amitar			
Biological Metric	5	3	1	How to use the	ne Russian Rive	r index of Biolog	gical integrity	
Taxa Richness	> 35	35-26	< 26.0	Obtain a sample standard procedu				
% Dominant Taxa	< 15	15-39	> 39.0	replicate samples collected at each monitoring location. The samples should be processed by a professional bioassessment laboratory using the Level 3 Taxonomic Effort. Determine the mean values for the six listed biological metrics, compare them to				
EPT Taxa	> 18	18-12	< 12.0					
Modified EPT Index	> 53	53-17	< 17.0	the values in the columns, and add the scores listed in the column headings. The total score will be between a low of 6 and a high				
Shannon Diversity	> 2.9	2.9-2.3	< 2.3	of 30. Determine biotic condition of the monitoring location from the following categories:				
Tolerance Value	< 3.1	3.1-4.6	> 4.6	Excellent 30-24	Good 23-18	Fair 17-12	Poor 11-6	

is specific to three different eco-regions within the North Coast Region. Regional Water Board staff propose to use the North Coast IBI upon its completion.

Taxa Richness:The total number of individual taxa. This metric will decrease in response to
disturbance. This is also known as the Species Richness Index.

Percent Dominant Taxa: The percent composition of the single most abundant taxon. Collections dominated by one taxon generally represent a disturbed ecosystem.

EPT Taxa: The number of families in the Ephemeroptera (mayfly), Plecoptera (stonefly), and Trichoptera (caddisfly) insect orders. This metric will decrease in response to disturbance.

EPT Index: The percent composition of Ephemeroptera, Plecoptera, and Trichoptera, more commonly known as mayflies, stoneflies, and caddisflies. These organisms require higher levels of water quality and respond rapidly to improving or degrading water quality conditions. The EPT Index is calculated by adding the number of organisms in the EPT orders and dividing it by the total number of organisms. Multiply by 100.

Shannon Diversity: An index used to characterize species diversity in a community. The calculation of the Shannon Diversity requires a Level 3 Taxonomic Effort.

Tolerance Value: Value between 0 and 10 weighted for abundance of individuals designated as pollution tolerant (higher values) and intolerant (lower values). This metric will increase in response to disturbance.

Benthic Macroinvertebrate Assemblage Desired Condition

The salmonid freshwater habitat desired condition for benthic macroinvertebrate assemblage is an Index Score of ≥ 18 per the Russian River IBI, which corresponds to a biological integrity rating of good to

excellent. The desired condition corresponds to a good or excellent biological integrity rating in order to err on the side that is most protective of the beneficial uses associated with the cold water fishery. Regional Water Board staff strongly suggest that, upon completion, the North Coast IBI replace the Russian River IBI in all areas but the Russian River watershed.

Benthic macroinvertebrates allow for the use of biological information to determine whether a body of water has been affected by a disturbance. It is the only parameter which directly focuses on biological factors. This parameter applies to first, second, and third order streams. Stream order is the designation (1, 2, 3, etc.) of the relative position of stream segments in the watersheds. For example, the first order stream is the smallest, un-branched, perennial tributary which terminates at the upper point. A second order stream is formed when two first order streams join, and so on.

Benthic Macroinvertebrate Assemblage Monitoring Recommendations

Monitoring and calculation of the above indices should occur in the spring and follow the *California Stream Bioassessment Procedure* by the CA Department of Fish and Game, which was revised in December 2003. This state procedure is a regional adaptation of the national Rapid Bioassessment Protocols.

14. Types of Monitoring

Monitoring can take several different forms, have different objectives, and yet be called, ubiquitously, monitoring. Since the desired conditions contained in this document are intended to be used be all those interested in the monitoring of sediment impacts on salmonid freshwater habitat, consistent nomenclature is necessary for clarity.

Implementation Monitoring

IMPLEMENTATION MONITORING assesses whether activities and sediment control practices were carried out as planned. This type of monitoring can be as simple as photographic documentation, provided that the photographs are adequate to represent and substantiate the implementation of sediment control practices. Implementation monitoring is a cost-effective monitoring type because its purpose is to demonstrate that sediment control practices were properly installed and operated. On its own, however, implementation monitoring cannot directly link management activities to water quality, as no water quality measurements are made.

Upslope Effectiveness Monitoring

UPSLOPE EFFECTIVENESS MONITORING is intended to determine, by assessing upslope conditions, if sediment control practices are effective at keeping sediment from being discharged to a water body. In other words, it is ". . .used to evaluate whether the specified activities had the desired effect" (Solomon 1989, as cited in MacDonald 1991, p. 7). This type of monitoring can be as simple as photographic documentation, provided that the photographs are adequate to represent and substantiate that the sediment control practices are effective. Photographic documentation for the purposes of upslope effectiveness monitoring will often require photographs of drainage facilities and conditions and potential discharge points.

Instream Effectiveness Monitoring

INSTREAM EFFECTIVENESS MONITORING is intended to determine, by assessing instream conditions, if sediment control practices are effective at keeping sediment from being discharged to a water body. This type of monitoring may involve the use of visual observations, limited instream habitat monitoring of the salmonid freshwater habitat indices described in this document, and/or grab samples for turbidity and suspended sediment in the water column. Instream effectiveness monitoring may be conducted upstream and downstream of the discharge point or before, during, and after the implementation of sediment control practices. Development of an instream effectiveness monitoring program is site-specific and may include, where appropriate, partnerships between landowners and state and federal agencies.

Compliance & Trend Monitoring

COMPLIANCE AND TREND MONITORING is intended to determine, on a watershed scale, if the desired conditions are being met, if sediment-related water quality objectives are being met, if the TMDLs are being met, and/or if beneficial uses are being protected from the adverse effects of excess sediment.

Different sources refer to this type of monitoring as either compliance monitoring or trend monitoring. For example, MacDonald et al. (1991) states that compliance monitoring is "... the monitoring used to determine whether specified water quality criteria are being met" (p. 7). In regards to the sediment IMPAIRED WATERS within the North Coast Region, the specified water quality criteria are the water quality objectives for sediment, settleable material, suspended material, and turbidity, as well as the salmonid freshwater habitat indices contained in this document. The California Department of Forestry (CDF) and the Regional Water Boards across the State have developed general water quality monitoring conditions that use trend monitoring for monitoring "typically applied at a watershed scale, focusing on the combined effects of all watershed management activities for multiple years. Examples of Trend Monitoring objectives include . . . [d]etermin[ing] whether Basin Plan water quality standards are achieved and maintained over time" (Fitzgerald 2004). In reality, monitoring for compliance with salmonid freshwater habitat desired conditions, water quality objectives, and beneficial uses will produce data that is useful for analyzing trends in water quality. Therefore, Regional Water Board staff propose to call this monitoring requirement compliance and trend monitoring.

Compliance monitoring may involve the use of (1) wet weather turbidity, suspended sediment, and stream flow monitoring using a constant reading turbidimeter (sample taken once every fifteen minutes) and suspended sediment grab samples; and (2) salmonid freshwater habitat monitoring. The extent and degree of compliance monitoring will vary depending on the site, local conditions, land ownership patterns, and the extent of land management activities in an area.

REFERENCES

- Anderson, H.W. 1975. Sedimentation and Turbidity Wildlands. Reprinted with permission in Watershed Management, ASCE-1975, Prox. Watershed Management Symposium, Division of Irrigation and Drainage, Amer. Soc. Civil Engineers, Logan, Utah, August 11-13, 1975. pp. 347-376.
- Barrett, J.C., G.D. Grossman, and J. Rosenfeld. 1992. Turbidity-Induced Changes in Reactive Distance of Rainbow Trout. Transactions of the American Fisheries Society 121:437-443.
- Beechie, T.J., and Sibley, T.H. 1997. Relationships between Channel Characteristics, Woody Debris, and Fish Habitat in Northwestern Washington Streams. Transactions of the American Fisheries Society 126:217-219, 1997.
- Bilby, R.E., and Ward, J.W. 1989. Changes in Characteristics and Function of Woody Debris with Increasing Size of Streams in Western Washington. Transactions of the American Fisheries Society. 118:368-378, 1989.
- Bisson, P.A. and R.E. Bilby. 1982. Avoidance of Suspended Sediment by Juvenile Coho Salmon. North American Journal of Fisheries Management 4:371-374.
- Bisson, P.A., Bilby, R.E., Bryant, M.D., Dolloff, C.A., Grette, G.B., House, R.A., Murphy, M.L., Koski, K.V., and Sedell, J.R. 1987. Large Woody Debris in Forested Streams in the Pacific Northwest: Past, Present, and Future.
- Burns, J.W. 1970. Spawning Bed Sedimentation Studies in Northern California Streams. California Fish and Game 56(4): 253-270.
- California Department of Fish and Game (CDFG). 1999. Watershed Assessment Field Reference and Project Review Checklist for Anadromous Salmonids with Special Emphasis on Coho Salmon. Watershed Academy.
- California Department of Fish and Game (CDFG). 2003. California Stream Bioassessment Procedure. Protocol Brief for Biological and Physical/Habitat Assessment in Wadeable Streams. Water Pollution Control Laboratory. Aquatic Bioassessment Laboratory. Revision Date – December 2003.
- Cederholm, C.J., Reid, L.M., & Salo, E.O. 1980. Cumulative Effects of Logging Road Sediment on Salmonid Populations in the Clearwater River, Jefferson County, Washington. Contribution No. 543, College of Fisheries, University of Washington.
- Chapman, D.W. 1988. Critical Review of Variables Used to Define Effects of Fines in Redds of Large Salmonids. Transactions of the American Fisheries Society 117:1-21.
- Collins, B.W. 1999. Parlin Creek Large Woody Debris Placement Project. Jackson Demonstration State Forest Newsletter. Vol. 51. Spring/Summer 1999.
- Dunne, T., & Leopold, L.B. 1978. Water in Environmental Planning. W.H. Freeman and Company. New York.
- Fitzgerald, R. 2004. Memorandum to File. Subject: Inter-agency General Water Quality Monitoring Conditions and Monitoring Objectives. June 29, 2004.
- Flosi, G., Downie, S., Hopelain, J., Bird, M., Coey, R., and Collins, B. Updated 2004. California Salmonid Stream Habitat Restoration Manual. Third Edition. Volume I. California Department of Fish and Game. Inland Fisheries Division.
- Flosi, G. 2003. Personal Communication via telephone with Rebecca Fitzgerald. Re: Embeddedness, Backwater Pool, and Lateral Scour Pool Water Quality Targets. Dated May 5, 2003.

- Fox, M. 2001. A New Look at the Quantities and Volumes of Instream Wood in Forested Basins within Washington State. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science, University of Washington, College of Forest Resources.
- Fox, M. 2003. Personal Communication via e-mail with Rebecca Fitzgerald. Re: Large Woody Debris. Dated March 19, 2003.
- Gregory, R.S. and T.G. Northcote. 1993. Surface, Planktonic, and Benthic Foraging by Juvenile Chinook Salmon (Oncorhynchus *tshawytscha*) in Turbid Laboratory Conditions. Can. J. Fish. Aquatic. Sci. 50:233-240.
- Harrington, J. 2003. Personal Communication via telephone with Rebecca Fitzgerald, NCRWQCB. April 1, 2003.
- Harrington, J., and M. Born. 1999. Measuring the Health of California Streams and Rivers: A Methods Manual for: Water Resources Professionals, Citizen Monitors, and Natural Resources Students. Second Edition. Sustainable Land Stewardship International Institute. Sacramento, CA.
- Hilton, S., and Lisle, T.E. 1993. Measuring the fraction of pool volume filled with fine sediment. U.S. Forest Service, Pacific Southwest Research Station. Research Note PSW-RN-414-WEB.
- Keller, E.A., MacDonald, A., Tally, T., and Merrit, N.J. 1995. Effects of Large Organic Debris on Channel Morphology and Sediment Storage in Selected Tributaries of Redwood Creek, Northwestern California. In Geomorphic Processes and Aquatic Habitat in the Redwood Creek Basin, Northwestern California. Eds. Nolan, K.M., Kelsey, H.M., and Marron, D.C. U.S. Geological Survey Professional Paper 1454-P. US. Government Printing Office, Washington.
- Keller, E.A. and Tally, T. 1979. Effects of Large Organic Debris on Channel Form and Fluvial Processes in the Coastal Redwood Environment. Reprinted from Adjustments of the Fluvial System. Proceedings of the Tenth Annual Geomorphology Symposium. Binghamton, New York.
- Klamt, R.R., LeDoux-Bloom, C., Clements, J., Fuller, M., Morse, D., and Scruggs, M. (multidisciplinary team leads). 2003. Gualala River Watershed Assessment Report. North Coast Watershed Assessment Program. 367 pp. plus Appendices. California Resources Agency and California Environmental Protection Agency. Sacramento, California.
- Klein, R. 2001. Chronic Turbidity, Suspended Sediment Concentrations, and Fluxes in Redwood Creek Tributaries. Attachment 3 to May 7, 2001 Letter from Terrence D. Hofstra, Redwood National and State Parks, to Matt St. John, North Coast Regional Water Quality Control Board.
- Klein, R. 2003. Duration of Turbidity and Suspended Sediment Transport in Salmonid-Bearing Streams, North Coastal California. A Report to the U.S. EPA, Region IX.
- Knopp, C. 1993. Testing Indices of Cold Water Fish Habitat. Final Report for Development of Techniques for Measuring Beneficial Use Protection and Inclusion into the North Coast Region's Basin Plan by Amendment of the "Guidelines for Implementing and Enforcement of Discharge Prohibitions Relating to Logging, Construction and Associated Activities." North Coast Regional Water Quality Control Board in cooperation with the California Department of Forestry.
- Kondolf, G.M. 1988. Salmonid Spawning Gravels: A Geomorphic Perspective on Their Size Distribution, Modification by Spawning Fish, and Criteria for Gravel Quality. A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy. Baltimore, Maryland.
- Kondolf, G.M. 2000. Assessing salmonid spawning gravel quality. Transactions of the American Fisheries Society 129:262-281.

- Koski, K.V. 1966. The Survival of Coho Salmon (*Oncorhynchus kisutch*) from Egg Deposition to Emergence in Three Oregon Coastal Streams.
- Koski, K.V. 1981. The Survival and Quality of Two Stocks of Chum Salmon (*Oncorhynchus keta*) From Egg Deposition to Emergence.
- Kramer, S., and Klein, R. 2000. The Distribution and Role of Large Woody Debris in Upper Prairie Creek, A Pristine Northern California Redwood Watershed. In the Proceedings of the Eighteenth Annual Salmonid Restoration Federation Conference. March 2-5, 2000. Fortuna, California.
- Lisle, T.E. & Hilton, S. 1992. The volume of fine sediment in pools: an index of sediment supply in gravel-bed streams. Water Resources Bulletin. American Water Resources Association. Vol. 28. No. 2.
- Lisle, T.E. & Hilton, S. 1999. Fine bed material in pools of natural gravel bed channels. Water Resources Research, Vol. 35, No. 4, pp. 1291-1304.
- MacDonald, L.H., Smart, A.W., and Wissmar, R.C. 1991. Monitoring Guidelines to Evaluate Effects of Forestry Activities on Streams in the Pacific Northwest and Alaska. Developed for Region 10, U.S. Environmental Protection Agency with the University of Washington. EPA 910/9-91-001.
- Madej, M.A. 1999. What Can Thalweg Profiles Tell Us? A Case Study from Redwood Creek, CA. Watershed Management Council Networker. Summer 1999. Vol. 8. No. 4.
- Magee, J.P., McMahon, T.E., and Thurow, R.F. 1996. Spatial Variation in Spawning Habitat of Cutthroat Trout in a Sediment-Rich Stream Basin. Transactions of the American Fisheries Society 125:768-779, 1996.
- McBain & Trush. 1999. Spawning gravel composition and permeability within the Garcia River Watershed, CA. Prepared for Mendocino County Resource Conservation District.
- McCuddin, M.E. 1977. Survival of salmon and trout embryos and fry in gravel-sand mixtures. A Master's Thesis, University of Idaho.
- McNeil, W.J. & Ahnell, W.H. 1964. Success of Pink Salmon Spawning Relative to Size of Spawning Bed Materials. Contribution No. 157, College of Fisheries, University of Washington. U.S. Fish and Wildlife Service Special Scientific Report – Fisheries No. 469.
- National Marine Fisheries Service (NMFS). 1996. Coastal Salmon Conservation: Working Guidance for Comprehensive Salmon Restoration Initiatives on the Pacific Coast. U.S. Department of Commerce, National Oceanic and Atmospheric Administration.
- Newcombe, C.P. and J.O.T. Jensen. 1996. Channel Suspended Sediment and Fisheries: A synthesis for Quantitative Assessment of Risk and Impact. North American Journal of Fisheries Management. 16(4): 693-727.
- North Coast Regional Water Quality Control Board (NCRWQCB). 2001. Assessment of Aquatic Conditions in the Mendocino Coast Hydrologic Unit.
- North Coast Regional Water Quality Control Board (NCRWQCB). 2005. Water Quality Control Plan for the North Coast Region. Last amended on June 28, 2001.
- O'Connor, M. and Harr, R.D. 1994. Bedload Transport and Large Organic Debris in Steep Mountain Streams in Forested Watersheds on the Olympic Peninsula, Washington. Final Report submitted to Timber/Fish/Wildlife and State of Washington Department of Natural Resources. p. 1.
- Peterson, P.N., Hendry, A., and Quinn, T.P. 1992. Assessment of Cumulative Effects on Salmonid Habitat: Some Suggested Parameters and Target Conditions. Prepared for the Washington Department of Natural Resources and The Cooperative Monitoring, Evaluation, and Research

Committee Timber/Fish/Wildlife Agreement. Center for Streamside Studies, University of Washington. TFW-F3-92-001.

- Phillips, R.W., Lantz, R.L., Claire, E.W., and Moring, J.R. 1975. Some Effects of Gravel Mixtures on Emergence of Coho Salmon and Steelhead Trout Fry. Transactions of the American Fisheries Society, 1875. No. 3. pp. 461-466.
- Platts, W.S., Shirazi, M.A., and Lewis, D.H. 1979. Sediment Particle Sizes Used by Salmon for Spawning with Methods for Evaluation. U.S. EPA Office of Research and Development, Corvallis Environmental Research Laboratory.
- Schuett-Hames, D., Conrad, R., Pleus, A., and McHenry, M. 1999a. TFW Monitoring Program Method Manual for the Salmonid Spawning Gravel Composition Survey. Prepared for the Washington State Dept. of Natural Resources under the Timber, Fish, and Wildlife Agreement. TFW-AM9-99-001. DNR #101. March.
- Schuett-Hames, D., A.E. Pleus, J. Ward, M. Fox, and J. Light. 1999b. TFW Monitoring Program Method Manual for the Large Woody Debris Survey. Prepared for the Washington State Dept. of Natural Resources under the Timber, Fish, and Wildlife Agreement. TFW-AM9-99-004. DNR #106. June.
- Shirazi, M.A., Seim, W.K., Lewis, D.H. 1979. Characterization of Spawning Gravel and Stream System Evaluation. Updated edition of EPA Report EPA-800/3-79-109, October 1979.
- Sigler, J.W., T.C. Bjornn, and F.H. Everest. 1984. Effects of Chronic Turbidity on Density and Growth of Steelheads and Coho Salmon. Transactions of the American Fisheries Society 113:142-150.
- Suttle, K.B., Power, M.E., Levine, J.M., and McNeely, C. 2004. How Fine Sediment in Riverbeds Impairs Growth and Survival of Juvenile Salmonids. Ecological Applications, 14(4), 2004, pp. 969-974.
- Tappel, P.D. & Bjornn, T.C. 1983. A New Method of Relating Size of Spawning Gravel to Salmonid Embryo Survival. North American Journal of Fisheries Management 3:123-135.
- Trush, W.J. 2001. Testimony of William J. Trush Before the State Water Resources Control Board. June 25 and 26, 2001. Exhibit G.
- United States Environmental Protection Agency (U.S. EPA). 1999. South Fork Eel River Total Maximum Daily Loads for Sediment and Temperature.
- Valentine, B.E. 1995. Stream Substrate Quality for Salmonids: Guidelines for Sampling, Processing, and Analysis. Perpetual Draft January 4, 1995. California Department of Forestry and Fire Protection.
- Washington Forest Practices Board (WFPB). 1997. Board Manual: Standard Methodology for Conducting Watershed Analysis. Version 4.0

GLOSSARY

Aggradation	The long term process of sand, silt, gravel, sediment, etc. filling in a stream channel and raising the level or elevation of the stream bed.
Anadromous Fish	Fish that mature in the ocean but spawn in freshwater. The anadromous salmonids of concern in most of the North Coast Region are chinook salmon, coho salmon, and steelhead trout.
Backwater Pools	Pools found along channel margins and caused by eddies around an obstruction, such as boulders, root wads, or large woody debris. These pools are usually shallow and are dominated by fine-grain substrate. Water current velocities are quite low in backwater pools.
Beneficial Use	Uses of WATERS OF THE STATE that may be protected against quality degradation including but not limited to: domestic, municipal, agricultural and industrial supply; power generation; recreation; aesthetic enjoyment; navigation; and the preservation and enhancement of fish, wildlife and other aquatic resources or preserves.
Benthic Macroinvertebrates	Aquatic invertebrates that are at least 0.5 mm in length and live primarily on the bottom substrate of streams and rivers. Benthic macroinvertebrates include worms, snails, clams, crustaceans, aquatic beetles, the nymph forms of mayflies, stoneflies, dragonflies, and damselflies, and larvel forms of
Compliance & Trend Monitoring	Monitoring that, on a watershed scale, determines if water quality standards are being met.
D ₅₀	Median particle diameter of a sampled population. The sampled population is composed of particles from the surface substrate of a stream or river that is sampled by a pebble count. For example, a D_{50} value of 65 mm means that 50% of the substrate particles were smaller than 65 mm and 50% were larger.
Degradation	The process of a stream bed lowering in elevation.
Embeddedness	The degree that larger particles such as gravels and cobbles are surrounded or covered by fine sediment, which effectively cements them into the channel bottom.
EPT Index	The percent composition of Ephemeroptera, Plecoptera, and Trichoptera, more commonly known as mayflies, stoneflies, and caddisflies. These organisms require higher levels of water quality and respond rapidly to improving or degrading water quality conditions. The EPT Index is calculated by adding the number of organisms in the EPT orders and dividing it by the total number of organisms. Multiply by 100.

EPT Taxa	The number of families in the Ephemeroptera (mayfly), Plecoptera (stonefly), and Trichoptera (caddisfly) insect orders. This metric will decrease in response to disturbance.
Fry	A young juvenile salmon after it has absorbed its egg sac and emerged from the redd.
Impaired Waters	Water bodies that are not high quality waters. Impaired water bodies do not meet water quality standards and do not support the beneficial uses of those watersheds. Water bodies that are impaired by sediment may be identified on the List of Impaired Water Bodies for sediment impairment pursuant to Section 303(d) of the federal Clean Water Act.
Implementation Monitoring	Monitoring that assesses whether activities and sediment control practices were carried out as planned.
Instream Effectiveness Monitoring	Monitoring that, by assessing instream conditions, determines if sediment control practices are effective at keeping sediment from being discharged to a water body.
Interstices	The space between particles (e.g. space between sand grains).
Key Piece of LWD	As a narrative, a key piece of LWD is a log or root wad that (1) is independently stable in the stream bankfull width and not functionally held by another factor (e.g., not pinned by another log, buried, or trapped against a rock, etc) and (2) is retaining, or has the potential to retain, other pieces of organic debris that are likely to become mobilized in a high flow without the key piece. Numerically, key pieces are logs with a minimum diameter of twelve inches and minimum length 1.5 times the mean bankfull width of the stream channel type reach and the deployment site. Root wad key pieces have a minimum root bole diameter of five feet and minimum length of fifteen feet and minimum width at least half the channel type bankfull width. Key pieces of LWD are also those pieces that meet the criteria found in Table 11.
Large Woody Debris	Logs and root wads that at least partially extend into the bankfull channel of a water body. According to the <i>Method Manual for Large Woody Debris Survey</i> by Washington's Timber Fish and Wildlife Program (Schuett-Hames et al. 1999), to qualify as LWD, a log must have a diameter of at least 0.1 meter (3.9 in.) and a length of at least 2 meters (6.6 ft.) and extend into the bankfull channel by at least 0.1 meter. A root wad must have a diameter of at least 0.2 meter (7.9 in.) and a length of less than 2 meters (6.6 ft.) and extend into the bankfull channel by at least 0.1 meter in order to be considered LWD.
Lateral Scour Pools	Pools formed by flow impinging against a partial channel obstruction consisting of a log, a root wad, a boulder, or a bedrock stream bank. This is

	also known as channel constriction. The associated scour is generally confined to less than sixty percent of the wetted channel width.
Percent Dominant Taxa	An index of benthic macroinvertebrate populations. Calculated by dividing the number of organisms in the most abundant taxon by the total number of organisms in the sample. Collections dominated by one taxon generally represent disturbed conditions.
Primary Pools	For 1 st and 2 nd order streams, primary pools are defined as having a maximum residual depth of at least two feet, occupy at least half the width of the low flow channel, and be as long as the low flow channel width. For 3 rd and 4 th order streams, a primary pool must have a maximum residual depth of at least three feet, occupy at least half the width of the low flow channel, and be as long as the low flow channel.
Redd	A gravel nest or depression in the stream substrate formed by a female salmonid in which eggs are laid, fertilized and incubated.
Residual Pool Depth	The maximum depth of a pool minus the maximum depth of its downstream riffle crest (i.e., the depth of the pool at the point of zero flow).
Riffle	A shallow extending across a streambed and causing broken water.
Salmonids	Fish species in the family Salmonidae, including salmon, trout, and char.
Sediment	Any inorganic or organic earthen material, including, but not limited to: soil, silt, sand, clay, rock, bark, slash, and sawdust.
Shannon Diversity	An index used to characterize species diversity in a community. The calculation of the Shannon Diversity requires a Level 3 Taxonomic Effort.
Smolt	A young salmon at the stage at which it migrates from fresh water to the sea.
Species Richness Index	The total number of taxa represented in the sample. Higher diversity can indicate better water quality. Also known as the Taxa Richness Index.
Stream	See watercourse.
Stream Order	The designation (1,2,3, etc.) of the relative position of stream segments in the drainage basin network. For example, a first order stream is the smallest, unbranched, perennial tributary which terminates at the upper point. A second order stream is formed when two first order streams join. Etc.
Taxa Richness	The total number of individual taxa. This metric will decrease in response to disturbance.

Thalweg	The deepest part of the stream channel at a given cross section.
Thalweg profile	The thalweg profile is the plot of the elevation of the thalweg as surveyed along the length of the stream. The profile appears as a jagged but descending line which is relatively flat at pool areas and descends sharply at cascades.
Tolerance Value	Value between 0 and 10 weighted for abundance of individuals designated as pollution tolerant (higher values) and intolerant (lower values). This metric will increase in response to disturbance.
Turbidity	Turbidity is an optical measure of the amount of suspended particles in the water column, including suspended sediment, algae, organic matter, and pollutants. Turbidity can be measured in Jackson Turbidity Unite (JTUs) or Nephelometric Turbidity Units (NTUs), which are not interchangeable. While JTUs are suitable for evaluating gross changes in turbidity levels, NTUs offer more precise and sensitive measurements.
Upslope Effectiveness Monitoring	Monitoring that, by assessing upslope conditions, determines if sediment control practices are effective at keeping sediment from being discharged to a water body.
V*	A unitless measure of the fraction of a pool's volume that is filled by fine sediment and is representative of the in-channel supply of mobile bedload sediment
Wadeable Stream or River	One which an average human can safely cross on foot during the summer, low flow season while wearing chest waders.
Watercourse	Any well-defined channel with a distinguishable bed and bank showing evidence of having contained flowing water indicated by deposit of rock, sand, gravel, or soil.
Water Quality Objective	The limit or level of water quality constituents or characteristics which are established for the reasonable protection of beneficial uses of water or the prevention of nuisance within a specific area.
Water Quality Standard	Consist of (1) designated beneficial uses of water; (2) water quality objectives to protect those designated uses; and (3) the federal and state antidegradation policies.
Waters of the State	Any surface water or groundwater, including saline water, within the boundaries of the state.
Watershed	Total land area draining to any point in a watercourse, as measured on a map, aerial photo or other horizontal plane. Also called a basin, drainage area, or catchment area.