Revised Supplement to Scoping Ecological and Off-site Human Health Risk Assessment

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

Prepared for:

Sierra Pacific Industries

Arcata Division Sawmill 2593 New Navy Base Road Arcata, California

September 2006

Project No. 9329.000, Task 20

September 1, 2006 Project 9329, Task 20

Executive Officer California Regional Water Quality Control Board North Coast Region 5550 Skylane Boulevard, Suite A Santa Rosa, California 95403

Attention: Kasey Ashley

Subject:

Revised Supplement to Scoping Ecological and

Off-Site Human Health Risk Assessment

Sierra Pacific Industries Arcata Division Sawmill 2593 New Navy Base Road

Arcata, California

Dear Ms. Ashley:

On behalf of Sierra Pacific Industries, Geomatrix Consultants, Inc. (Geomatrix) has prepared the *Revised Supplement to Scoping Ecological and Off-Site Human Health Risk Assessment*, dated September 1, 2006.

Please contact the undersigned if you have any questions regarding this submittal.

Sincerely yours,

GEOMATRIX CONSULTANTS, INC.

Ann Holbrow

Senior Toxicologist

Edward P. Conti, CEG, CHG

Principal Geologist

Ravi Arulanantham, Ph.D.

Principal

AM/EPC/RA/jd

I:\Doc_Safe\9000s\9329\20-Task\Revised Supplement to HHRA_2006\Supplement Cvrltr.doc

2101 Webster Street, 12th Floor Oakland, California 94612-3066 Tel 510.663.4100 Fax 510.663.4141

www.geomatrix.com

Executive Officer

Attention: Ms. Kasey Ashley

California Regional Water Quality Control Board

September 1, 2006

Page 2

Enclosure

cc: Bob Ellery, Sierra Pacific Industries (with enclosure)

Gordie Amos, Sierra Pacific Industries (with enclosure)

David Dun, Dun and Martinek, LLP (with enclosure)

Fred Evenson, Law Offices of Frederic Evenson (with enclosure)

Jim Lamport, Ecological Rights Foundation (with enclosure)

Regina Donohoe, Department of Fish and Game (with enclosure)

Vicky Frey, Department of Fish and Game (with enclosure)

Robert Brodberg, Office of Environmental Health Hazard Assessment (with enclosure)

Joseph Dillon, NOAA Fisheries (with enclosure)

Revised Supplement to Scoping Ecological and Off-site Human Health Risk Assessment

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

Prepared for:

Sierra Pacific Industries

Arcata Division Sawmill 2593 New Navy Base Road Arcata, California

Prepared by:

Geomatrix Consultants, Inc.

2101 Webster Street, 12th Floor Oakland, California 94612 (510) 663-4100

September 2006

Project No. 9329.000, Task 20

TABLE OF CONTENTS

		Page
1.0	INTRODUCTION	3
2.0	EXISTING DATA SUMMARY 2.1 SEDIMENT DATA 2.1.1 Initial Sediment Data Collection 2.1.2 Additional Sediment Data Collection 2.2 FIN FISH TISSUE DATA	4 4 5
3.0	DATA QUALITY OBJECTIVES	6
4.0	SAMPLING AND ANALYTICAL METHODS 4.1 SEDIMENT SAMPLE COLLECTION	
5.0	QUALITY ASSURANCE/QUALITY CONTROL 5.1 SEDIMENT SAMPLES 5.2 FIN FISH TISSUE SAMPLES	14
6.0	RESULTS	16 17
7.0	ESTIMATE OF HUMAN HEALTH RISKS	19
8.0	CONCLUSIONS	21
9.0	REFERENCES	23

TABLE OF CONTENTS

(continued)

	TABLES
Table 1	Analytical Results for Chlorinated Phenols in Sediment Samples from Mad River Slough
Table 2	Analytical Results for Dioxins/Furans in Fin Fish from Mad River Slough
Table 3	Comparison of 2005 Fin Fish Tissue Sample Results to 2002 Results
Table 4	Proposed and Actual Sediment Sampling Locations – September 2004
Table 5	Summary of Fish Collection Activities
Table 6	Summary of Representative Concentrations in Biota From Mad River Slough – 2002 Data
Table 7	Summary of Noncarcinogenic Hazard Indexes – 2002 Data
Table 8	Summary of Lifetime Cancer Risks – 2002 Data
Table 9	Summary of Representative Concentrations in Biota from Mad River Slough – 2002/2005 Data
Table 10	Summary of Noncarcinogenic Hazard Indexes – 2002/2005 Data
Table 11	Summary of Lifetime Cancer Risks – 2002/2005 Data
Table 12	Summary of Potential Human Health Risks
	FIGURES
Figure 1	Site Location Map
Figure 2	Arcata Division Sawmill and Mad River Slough
Figure 3	Sediment Sample Locations in Mad River Slough in the Vicinity of the Sawmill
Figure 4	Fin Fish Tissue Sample Locations in Mad River Slough in the Vicinity of the
	Sawmill
	APPENDIXES
Appendix A	Core Logs
	I aboratory Pagulta for Sadiment Samples

Appendix A	Cole Logs
Appendix B	Laboratory Results for Sediment Samples
Appendix C	Laboratory Results for Fish Tissue Samples
Appendix D	Quality Assurance/Quality Control Review for Sediment Samples
Appendix E	Quality Assurance/Quality Control Review for Fish Tissue Samples
Appendix F	Calculation of 2,3,7,8-TCDD Toxicity Equivalents
Appendix G	Risk Calculations Using 2002 Data
Appendix H	Representative Concentrations and ProUCL Output for Finfish Samples
Appendix I	Risk Calculations Using 2002/2005 Data

REVISED SUPPLEMENT TO SCOPING ECOLOGICAL AND OFF-SITE HUMAN HEALTH RISK ASSESSMENT

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

1.0 INTRODUCTION

On behalf of Sierra Pacific Industries, Geomatrix Consultants, Inc. (Geomatrix) and NewFields have prepared this report, Revised Supplement to Scoping Ecological and Off-Site Human Health Risk Assessment (Revised Supplement to Scoping Risk Assessment), which documents implementation of the Work Plan to Collect Sediment and Fin Fish Tissue Samples (Sampling Work Plan; Geomatrix/NewFields, 2004a) and Addendum to Work Plan To Collect Sediment and Fin Fish Tissue Samples (Sampling Work Plan Addendum, Geomatrix/NewFields, 2004b). The Sampling Work Plan and Sampling Work Plan Addendum were approved by the California Regional Water Quality Control Board, North Coast Region (RWQCB), in a letter dated September 10, 2004 (RWQCB, 2004). The Revised Supplement to Scoping Risk Assessment addresses comments by the Office of Environmental Health Hazard Assessment (OEHHA, 2006) to the Supplement to the Scoping Ecological and Off-Site Human Health Risk Assessment (Geomatrix, 2005). Specifically, OEHHA requested copies of omitted laboratory data sheets and a quantitative comparison of human health risk assessment calculations for fin fish data collected in 2002 and fin fish data collected in 2005. In the process of updating these components of the Supplement to the Scoping Risk Assessment, we identified some additional revisions that were required that included a revision to the quality assurance/quality control review of the data, replacement pages for laboratory reports with mislabeled units, and an update to the zinc hazard index calculations from those in the Scoping Risk Assessment. These additional changes are described in more detail herein.

The Sampling Work Plan was implemented to address data needs identified in the *Scoping Ecological and Off-Site Human Health Risk Assessment* (the Scoping Risk Assessment; Geomatrix/MFG, 2004) for the Arcata Division Sawmill (the sawmill) in Arcata, California (Figure 1). The sawmill is located at 2593 New Navy Base Road in Arcata, California. The sawmill has been issued Cleanup and Abatement Orders No. R1-2001-0200 and No. R1-2003-127 by the RWQCB to address discharges of pentachlorophenol, tetrachlorophenol, and dioxins/furans to groundwater and surface water. These chemicals are constituents of wood

surface protection chemicals used historically in the vicinity of the former green chain where new lumber was cut (Figure 2).

The risk assessment process was initiated with preparation of the *Revised Work Plan for Performing a Human Health and Ecological Risk Assessment at the Sierra Pacific Industries, Arcata Division Sawmill, Arcata, California* (the Risk Assessment Work Plan; ENVIRON, 2002), which described the risk assessment process in relatively general terms. Potential onsite human health risks identified in the Risk Assessment Work Plan were evaluated in the *Baseline Human Health Risk Assessment of On-Site Soil and Groundwater* (Baseline Risk Assessment; Geomatrix, 2003). To implement the remaining components of the Risk Assessment Work Plan, the *Scoping Ecological and Off-site Human Health Risk Assessment* was issued on September 8, 2004 (the Scoping Risk Assessment, Geomatrix/MFG, 2004). The objective of the Scoping Risk Assessment was to assess ecological and human health risks to the extent possible using the available data collected by Sierra Pacific Industries, environmental groups, and the RWQCB. The data needs identified in the recommendations section of the Scoping Risk Assessment were addressed by implementation of the Sampling Work Plan in 2004 and 2005, and the results are documented in this Supplement to Scoping Risk Assessment.

1.1 OBJECTIVES

The recommendations of the Scoping Risk Assessment identified two areas that could be addressed by collection of additional data:

- *Pentachlorophenol detection limits in sediment.* The analytical detection limits reported for pentachlorophenol in sediments collected during 2002 were 990 or 1,000 micrograms per kilogram (μg/kg). This level is greater than the available sediment quality guidelines for the assessment of potential risks to some aquatic receptors (360 to 690 μg/kg) (Barick, et al., 1988, as cited in Hellyer and Balog, 1999). Since pentachlorophenol is a primary component in wood surface protection chemicals used historically at the site, additional analyses with more applicable detection limits were recommended to help evaluate potential risks to benthic organisms. Sediment sampling and analysis is described in Section 4.1.
- Representativeness of fin fish tissue samples for human health risk assessment. The fin fish tissue samples used to evaluate human health risks from ingestion of fin fish from the site vicinity were not ideal for human health risk assessment. The length and

size of fin fish in the samples were not available and whole-body samples were analyzed, instead of limiting analyses to edible portions of the fin fish (e.g., fillets). Collection of additional fin fish tissue samples was intended to address comments on previous sample collection efforts from California EPA's Office of Environmental Health Hazard Assessment (OEHHA, 2003). Based on the results of the Scoping Risk Assessment, dioxins/furans were the primary chemical of potential concern in fin fish. Fin fish tissue sampling and analysis is described in Section 4.2.

1.2 SITE BACKGROUND

The Sierra Pacific Industries Arcata Division Sawmill is situated at the northern end of Humboldt Bay (Figure 1) also referred to as Arcata Bay. Specifically, the sawmill is located along the west shore of Mad River Slough; the slough joins Humboldt Bay immediately south of the sawmill (Figure 2). As noted in the Remedial Investigation report (EnviroNet, 2003), before it was developed as a lumber mill in approximately 1950, the site consisted of sand dunes and mud flats. The site began operations as an active mill in approximately 1950. After initial construction, the sawmill property was expanded, including filling parts of Mad River Slough, into the 1960s.

Wood surface protection operations using products containing pentachlorophenol and tetrachlorophenol began in the early to mid-1960s and were discontinued in 1987. The wood surface protection products were applied to small quantities of milled lumber to provide cosmetic protection against mold and sap stains. The wood surface protection solution was stored and used in a dip tank located at the former green chain and in a nearby aboveground storage tank. The green chain was located south of the current sorter building and west of the current sawmill building. The area where the wood surface protection solutions were stored and used is now covered with concrete or asphalt and equipment.

1.3 REPORT ORGANIZATION

The remainder of this Supplement to Scoping Risk Assessment is organized in the following sections.

Section 2: Existing Data Summary

Section 3: Data Quality Objectives

Section 4: Sampling and Analytical Methods

Section 5: Quality Assurance/Quality Control

Section 6: Results

Section 7: Conclusions
Section 8: References

2.0 EXISTING DATA SUMMARY

The purpose of this section is to provide a brief summary of previously collected data that are relevant to the objectives of the Sampling Work Plan. Specifically, summaries of pentachlorophenol data in sediment and dioxin/furan data in fin fish tissue are presented in this section.

2.1 SEDIMENT DATA

Sediment samples in Mad River Slough analyzed for chlorinated phenols were collected primarily in October 2002 (EnviroNet, 2003b). However, as noted in the Scoping Risk Assessment, pentachlorophenol detection limits exceeded sediment quality guidelines for all samples (360 to 690 μ g/kg for the apparent effects threshold, low and high, respectively). Subsequent to preparation of the Scoping Risk Assessment, four additional sediment samples were collected in April 2004 to evaluate whether lower detection limits could be achieved in the sediment matrix in Mad River Slough adjacent to the sawmill. The sample collection methods and results of these four additional samples were presented in the Sampling Work Plan, and the results are described in this section.

2.1.1 Initial Sediment Data Collection

Most of the initial surficial sediment and core samples from the Mad River Slough in the vicinity of the sawmill were collected by EnviroNet and ENVIRON in October 2002 (Figure 3). A total of 14 surface and 17 core samples from 21 locations in Mad River Slough were collected and analyzed for chlorinated phenols.

Surface sediment samples from the Mad River Slough analyzed for chlorinated phenols included:

- Eight samples collected from four locations and analyzed by the RWQCB, North Coast Region, or EnviroNet in June 2001 (EnviroNet, 2001 and RWQCB, 2001); and
- Six samples collected from five locations by EnviroNet and ENVIRON in October 2002 (EnviroNet, 2003b).

Core sediment samples from the Mad River Slough analyzed for chlorinated phenols included 17 core sediment samples from 12 locations in the Mad River Slough that were analyzed for chlorinated phenols (EnviroNet, 2003b).

Detection limits for pentachlorophenol in these sediment samples from Mad River Slough ranged from 990 to $1{,}000\,\mu\text{g/kg}$. No chlorinated phenols, including pentachlorophenol, were detected in these sediment samples from Mad River Slough.

2.1.2 Additional Sediment Data Collection

In April 2004, sediment samples (GSED-01 to GSED-04) were collected from four locations near the four outfalls from the sawmill to the Mad River Slough (Outfalls 1 to 4) (Figure 3). Samples were collected between 0.25 and 1 foot below the sediment surface.

Sediment samples were analyzed for percent solids and a subset of chlorinated phenols (pentachlorophenol, two trichlorophenols [2,4,5- and 2,4,6-trichlorophenol], 2,4-dichlorophenol, and 2-chlorophenol). The laboratory was instructed to report other chlorinated phenols, if identified, as tentatively identified compounds (Table 1).

None of the primary chlorinated phenols analyzed by the laboratory, including pentachlorophenol, were detected in any of the sediment samples. Laboratory reporting limits ranged from 10 to 250 μ g/kg, well below the sediment quality guidelines, low and high, of 360 to 690 μ g/kg, respectively. The laboratory also analyzed the sediment samples for additional chlorinated phenols as tentatively identified compounds, including: 2,3,4,5-tetrachlorophenol, 2,3,4,6-tetrachlorophenol, 2,3,5-trichlorophenol, 2,3,5-trichlorophenol, 2,3,6-trichlorophenol, 3,4,5-trichlorophenol, 2,3-dichlorophenol, 2,5-dichlorophenol, 2,6-dichlorophenol, 3,4-dichlorophenol, 3,5-dichlorophenol, 3,5-dichlorophenol, 3-chlorophenol, and 4-chlorophenol. None of these chlorinated phenols were identified as a tentatively identified compound above the estimated laboratory reporting limit of 10 μ g/kg. The percent solids ranged from 45.4 to 63.1 percent.

2.2 FIN FISH TISSUE DATA

In October 2002, EnviroNet and ENVIRON collected fin fish samples at several locations in Mad River Slough and Arcata Bay for the purpose of analyzing tissue residues (Figure 4). Otter trawls (large nets dragged along the sediment surface) were used to collect fin fish at 18 sampling locations. Whole fin fish were shipped to the laboratory on ice. The laboratory determined the total weight of all fin fish of the same species from each trawl. A sample of

about 200 grams was the target tissue weight for each location. The composite tissue sample was then homogenized and stored at less than -20 °C until analyses were conducted by Columbia Analytical Services in Kelso, Washington.

Concentrations of dioxins/furans in fin fish, summarized as 2,3,7,8-tetrachlorodibenzo-p-dioxin toxic equivalents (2,3,7,8-TCDD TEQs) and used in the Scoping Risk Assessment, are presented in Table 2. The representative concentration for each fin fish species was based on the 95 percent upper confidence limit (95% UCL) of the mean or the maximum detected concentration, whichever was lower. For fish species with less than five samples, the maximum detected concentration was used. In the assessment of human health risk, the concentration used to assess fin fish consumption by the receptors was the highest representative concentration among the fin fish species sampled from Mad River Slough. As shown in Table 3, the representative concentration of dioxins/furans (0.38 nanograms per kilograms [ng/kg]) used in the human health risk assessment was based on the maximum concentration in a shiner sample. This approach was conservative because it assumes all fin fish exposure is represented by the highest fin fish representative concentration and was used to account for limitations in the data (e.g., sample collection and preparation).

3.0 DATA QUALITY OBJECTIVES

Data quality objectives for this sampling effort were outlined in the Sampling Work Plan. The list below consolidates some similar objectives and provides more detail than was provided in the Sampling Work Plan. The data quality objectives for this sampling effort included (followed by the sections of this report where they are addressed):

- 1. Sample collection and processing methods that result in reliable data collected consistently across locations (Sections 4.1 and 4.2);
- 2. Analytical methods that identify chemicals of potential concern specific to the data needs identified in the Sampling Work Plan and of sufficient quality for use in risk assessment (Sections 4.1.5 and 4.2.4);
- 3. Detection limits adequate for evaluating potential ecological (sediment) and human health risks (fin fish tissue) (Sections 6.2 and 6.3);
- 4. Analytical chemistry quality assurance procedures, objectives, and criteria as established by the laboratory for quality assurance/quality control samples (Section 5.0);

- 5. Evaluation of chemistry data acceptability based on criteria outlined in the National Functional Guidelines (U.S. EPA, 1999 and 2002a and b; Section 5.0);
- 6. Collection of sufficient samples at appropriate locations to address the objectives outlined in Section 1.0 of this report (Sections 4.1.1, 4.1.2, and 4.2.3); and
- 7. Use of tables and figures to present the data to allow for interpretation (Section 6.0).

4.0 SAMPLING AND ANALYTICAL METHODS

This section outlines sample collection and analytical methods for sediment and fin fish samples. General sample handling, field documentation, and laboratory analyses are also discussed.

4.1 SEDIMENT SAMPLE COLLECTION

Sediment samples were collected from sediment cores at 10 locations, as proposed in the Sampling Work Plan and Sampling Work Plan Addendum, between September 13 and September 16, 2004. A total of 35 sediment samples were submitted for analysis to evaluate the potential for chlorinated phenols to be present in sediment in Mad River Slough adjacent to the sawmill.

4.1.1 Sampling Locations

Samples were collected at ten locations along a transect approximately parallel to the western bank of Mad River Slough that extends approximately 1500 feet from the Samoa Bridge to Outfall 5 (Figure 3). Sample locations corresponded to previous sediment sample locations and provided for overall coverage along the transect. Sample locations were identified in the field using a Wide Area Augmentation System (WAAS) enabled handheld unit, which is accurate to less than 3 meters. Using the previous sediment sampling location coordinates provided by the consultant at the time, the field team navigated as close as possible to the previous sampling location.

Effort was made to locate samples at the proposed sample locations, but in some cases this was not possible because of the conditions in the slough. For example, the sample located under the Samoa Bridge was relocated south of the bridge because of the concrete and large rocks used in the bridge abutment. Where new locations were sampled, the coordinate data were collected with the GPS unit and recorded in the field notes. A summary of the proposed and actual sample locations is presented in Table 4 and on Figure 3.

The sample locations represent the center point for the collection of a composite sample at each location. At each of the designated sample locations, four cores were collected approximately 1 meter to the north, east, south, and west of the sample location point and one core was collected from the center. The purpose of this approach was to provide adequate material for compositing from an area that is representative of the sample location.

4.1.2 Sample Depths

A core sampler was used to collect sediment samples, as described in Section 4.1.3. The objective was to collect a minimum of four samples from each location: one representative of the surface (0 to 6") and three representative of the subsurface (6 to 12", 12 to 24", and 24 to 36"). If adequate core penetration was achieved, additional samples were proposed at each subsequent foot below 36" (e.g., 36 to 48", 48 to 60"). For several cores, the apparatus was driven the entire 60 inches.

Overall, cores yielded recoveries lower than those anticipated in the Sampling Work Plan. In some cases, this resulted from large organic material plugging the core tube. This was similar to difficulties reported in previous investigations (Environet and ENVIRON, 2003). There may also have been compression in the core as the upper layers of soft and flocculent material responded to the impact of the core. The maximum depth from which a sample was collected was 3 feet below surface. In one location (103-GSED-CO7), the maximum depth of the sample collected was 1 foot below surface. Samples at all other locations were collected at least to a depth of 2 feet below surface.

4.1.3 Sample Collection Methods

Sediment core samples were retrieved using a coring device that was pushed or driven into the sediment surface. While sampling commenced each day during low tides (i.e., no overlying water), some samples were collected during the incoming tide (i.e., when overlying water was present) to complete work within the schedule. Sample integrity was maintained in samples with overlying water because the overlying water was retained with the samples so fine surface sediments were not lost. To minimize the loss of fines, surface water in these cores was decanted while the core was in a vertical position.

The core assembly consisted of a core tube, a check valve, and extension rods. Core tubes consisted of 2-inch stainless steel barrels, each about 3-feet in length. Clear core tube liners were used to minimize contact of the core barrel interior with the sediment. A check valve, a stainless steel head that screwed into the top of the core tube, contained a ball-check

mechanism that allowed water to flow through upon descent and closed to form a vacuum upon retrieval of the core. The check valve was threaded to receive the core tube on the lower end as well as steel extension rods on the upper end. Extension rods attached to the top of the check valve.

In most cases, a slide hammer was used to drive the core. Because of difficulties with threads on the core tube on September 16, samples at 109-GSEC-C01-1.0 and 110-GSED-C01A were collected using manual pushing. At each location, the core assembly was advanced to a depth of 60" or until refusal. Refusal was the depth at which successive blows yielded no further distinguishable penetration. Eight of the ten locations had at least one core to a depth of 5 feet bgs. As discussed below, samples were not recovered from below 3 feet in all cores. Because all cores were not able to be driven to the same depth at a particular sampling location, there was not sufficient material to create a composite sample to be submitted for analysis at each interval.

Core retrieval was conducted in the reverse order. The slide hammer was removed, and the core assembly and extension bars were raised. Once the core tube assembly was retrieved, the lower end of the core was capped to prevent loss of the material. Samples in liners were removed with the top of the core being elevated above the bottom of the core to prevent spillage. Once removed, the core liner with the intact sample was positioned vertically. The top of the sediment surface within the core was visually determined and marked. Overlying water was decanted by drilling a series of pilot holes above the sediment surface. This approach reduced the disturbance and loss of fine surficial materials encountered when decanting via a direct pour. Once the water was decanted, the top of the core tube was cut such that the core tube was a few inches longer than the sediment surface. The top opening was capped and marked indicating that it is the top of the core.

4.1.4 Sample Processing

All core samples were processed on shore. The core liner was split along its entire length using a knife and stainless steel wire, along two sides separated by 180 degrees. Once cut, the two halves were split internally using pre-cleaned stainless steel wire; where the leader wire could not be pulled through the sample, a large, flat-blade stainless steel knife was used to separate the two halves of the core. The two halves of the core were separated and positioned adjacent to each other. One half of the longest core was used to log the sediment layers at each sample location, while the other half was prepared as part of the sample to be analyzed. The core was logged and photographed to document the sediment layers present, the presence or absence of

macroinvertebrates, and the differentiation between sediment layers and substrata (sand and clay layers). No odors were noted. The logging was conducted to the extent practicable in accordance with ASTM D2488 Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), and included such items as texture (relative sand, silt, and or clay content), color (as determined by using a Munsell Color Chart), apparent moisture content, and preliminary soil classification. Core logs are presented in Appendix A.

Cores collected from the north, south, east, west and center locations at each sample point were used to create composite samples at each of the specified intervals for chemical analysis. Sample intervals from the interior of each core were segregated and accumulated in a stainless steel bowl until sufficient sample volume was acquired. Bowls were covered with aluminum foil to prevent aerial deposition of materials into the samples. Once all cores for a location and interval had been segregated, the samples were homogenized and spooned into an 8-ounce sample container, labeled, double bagged, and placed on ice in a cooler. Sample containers were filled with sediment to the top of the container and the transfer of rocks, shells, sticks, or other debris into the sample container was avoided, if possible. Samples were clearly labeled in accordance with the Sampling Work Plan and submitted to the laboratory under chain-of-custody protocols.

Investigation-derived waste was containerized in DOT-approved drums and stored at the sawmill for subsequent disposal.

4.1.5 Laboratory Analyses

Laboratory analyses were conducted by Columbia Analytical Services in Kelso, Washington. Sediment samples were shipped to the laboratory on September 15 and 16, 2005. Sediment samples were analyzed for chlorinated phenols, percent solids, and total organic carbon. The laboratory used a modified EPA Method 8270c for the analysis of chlorinated phenols preceded by a sample cleanup procedure. EPA Method 160.3M was used for percent solids, and ASTM Method D4129-82M was used for total organic carbon. Laboratory analytical results for sediment samples are presented in Appendix B.

4.2 FIN FISH TISSUE SAMPLES

Fin fish samples representative of those fin fish likely consumed by the recreational angler were collected for comparison to existing data collected by EnviroNet (2003). The objectives of this sampling effort were to collect fin fish species of recreational importance (i.e., target species of legal and edible size). The edible fin fish tissues were analyzed for dioxins/furans.

4.2.1 Sample Collection Methods

Sampling was initiated on November 13, 2004 after some test fishing in November indicated fish could be caught using hook and line methods as outlined in the Sampling Work Plan. Nine anglers, using a combination of single or double fishing rods, fished from the former railroad bridge (adjacent to the Samoa Bridge) and from two skiffs that ranged throughout the sampling area. Fishing generally took place between 9:00 a.m. and 4:30 p.m. One jack smelt was the only legal-sized fish caught and preserved for analysis. A more intensive effort was made the following week (November 16 to 18, 2004) using fish traps and set lines along with hook and line fishing. All fish caught were sub legal and were not retained for analysis. As discussed with agency representatives, fishing was discontinued until the spring when local fishermen indicated fishing in Mad River Slough would be more productive.

After some initial test fishing in early March 2005, hook and line fishing to catch fish from Mad River Slough was resumed in March through May 2005. Table 5 summarizes information for all the fish caught between March 16 and May 10, 2005 that were considered consistent with the target species and of sufficient size as identified in the Sampling Work Plan. Fishing was conducted from the Samoa Bridge and from a skiff in Mad River Slough. Figure 4 shows the locations from which fish were caught.

4.2.2 Sample Processing

Whole individual fin fish were submitted to the laboratory. Each fin fish collected for analysis was wrapped in heavy-duty aluminum foil, and the wrapped fish were placed in a waterproof Ziploc bag. Spines were severed to avoid puncture of the foil and bags. Samples were clearly labeled in accordance with the Sampling Work Plan and submitted to the laboratory under chain-of-custody protocols. All samples were kept on ice prior to and during shipment to the laboratory.

Fin fish were prepared (i.e., filleted) at the laboratory upon arrival and held until sufficient fish of a particular species (five fish or more if a composite was required) were collected and consensus with OEHHA staff regarding analysis was reached. All samples were shipped to the laboratory on ice within 24 hours of collection or kept on ice for shipment within 48 hours.

_

The size of the fin fish submitted to the laboratory for tissue residue analysis followed the California Department of Fish and Game's fishing regulations if slot limits applied to a particular species. If no slot limits applied for a particular species, then size of the fin fish retained for analysis was based on retaining fin fish of edible sizes.

4.2.3 Selection of Fish for Analysis

Geomatrix personnel worked with OEHHA staff to identify the specific fish for analysis. The objective, as outlined in the Sampling Work Plan and Sampling Work Plan Addendum, was to analyze tissue from at least five samples from three target species. Target species for the sampling effort were defined as the species listed in Table 3 of the Sampling Work Plan Addendum and those species that are particularly abundant during the time of sampling.

Although the goal of this study was to analyze samples from individual fish, in some cases the fillets obtained by the laboratory were not of sufficient weight (30 grams) for analysis as outlined in the Sampling Work Plan. U.S. EPA guidance (2000) discusses the use of composite samples versus individual fin fish samples and suggests that either is viable depending on the goals of the study. In cases where composites were required, fillets from two fish were composited to create a 30-gram composite sample. Fin fish caught on separate days were processed and stored frozen until adequate tissue for a composite was compiled.

A summary of fish caught was submitted to a representative of OEHHA to develop consensus on which fish were to be composited and analyzed. A total of 41 fish were caught and submitted to the laboratory. Table 5 summarizes all fish caught and indicates which fish were analyzed and/or composited based on agreement with the OEHHA representative. Fin fish tissues from different species were not composited for analysis. The smallest individual in a composite sample was no less than 75 percent of the total length of the largest individual.

4.2.4 Laboratory Analysis

Laboratory analyses were conducted by Columbia Analytical Services in Kelso, Washington. Fin fish tissue samples were analyzed for dioxin/furans, percent lipids, and percent solids. Seventeen 2,3,7,8, substituted dioxin/furan congeners were reported in composite fin fish tissue samples using U.S. EPA Method 1613B. Percent solids and percent lipids also were reported under Method 1613B. Because pentachlorophenol was not detected in sediment samples (Section 6.2), fish tissue samples were not analyzed for pentachlorophenol per the Sampling Work Plan Addendum. Laboratory analytical results for the fin fish tissue samples are presented in Appendix C, which is comprised of five analytical data packages.

4.3 FIELD DOCUMENTATION

The Geomatrix field representatives documented details of the field investigation. At a minimum, the following information was recorded: site conditions, sample location, project personnel and visitors at the site, the use of personal safety equipment, waste disposition, and

any decisions made in the field about a specific sample or sample location that deviated from this Sampling Work Plan.

5.0 QUALITY ASSURANCE/QUALITY CONTROL

The purpose of quality assurance/quality control (QA/QC) procedures is to assess the quality of data by evaluating its accuracy and precision. To evaluate the quality of sampling data, the following quality assurance/quality control activities were conducted.

Quality control samples consisting of laboratory-analyzed method blanks, duplicates, laboratory control samples/laboratory control sample duplicates, and matrix spike/matrix spike duplicates were used to assess internal quality control at the laboratory. A minimum of one quality control sample of each type was analyzed per 20 samples for each analysis for each medium. The QA/QC results were evaluated in accordance with U.S. EPA guidelines for reviewing organic data (U.S. EPA, 1999) and for reviewing chlorinated dioxin/furan data (U.S. EPA, 2002a, b).

Geomatrix reviewed the data for compliance with the following QA/QC project and/or method-prescribed criteria.

- Holding time and preservation the period between collection of a sample and preparation/analysis, along with acceptable temperature range of the sample upon receipt by the laboratory. Analyses that were performed for this project have method-prescribed holding times and preservation temperature ranges.
- Blank samples the preparation and analysis of reagent (contaminant-free) water or soil. Blank samples for this investigation consist of equipment blanks (sediment only) and method blanks. Detection in an equipment or method blank would indicate possible laboratory contamination.
- Matrix and laboratory control spiked samples the preparation and analysis of an environmental sample (matrix) or sample of reagent water (laboratory control) spiked with a subset of target compounds at known concentrations. Results of the laboratory spike analysis indicate laboratory accuracy in the reagent sample, and results of the matrix spike sample measure potential interference from the sample matrix.
- Surrogate spikes the addition of compounds similar to target compounds that are added to sample aliquots for organic analysis. Surrogate spikes measure possible interference of the sample matrix when analyzing for the target compounds.

- Duplicate samples collection and analysis of samples of the same media at the same location for evaluation of the accuracy of the analytical results.
- Mass spectrometer initial calibration the objective of the initial calibration is to establish a linear range or curve, the mean relative responses, and the mean relative response factors for the instrument.
- Identification criteria the primary objective is to unambiguously identify a gas chromatograph peak for a target analyte.

The results of the quality assurance/quality control review for sediment and fin fish tissue samples are presented separately in the following subsections. Only the exceptions to the acceptance criteria and the consequence of those exceptions for the data are discussed. A detailed summary of the entire QA/QC review is provided in Appendixes D and E for sediment and fin fish tissue samples, respectively.

5.1 SEDIMENT SAMPLES

Exceptions to the acceptance criteria for sediment samples occurred for three equipment blank samples, one matrix spike/matrix spike duplicate sample, and one surrogate spike sample.

- The three equipment blank samples were extracted beyond the method holding time of seven days (13 to 15 days). Results for the equipment blank samples were non-detect. Based on the holding time issue, these equipment blank results were qualified as estimated values (UJ). This is not expected to significantly affect the sediment sample results.
- In one of two matrix spike/matrix spike duplicate samples, the relative percent difference for 2-chlorophenol (53 percent) was above the range of acceptance criteria (0 to 40 percent). The RPD for 2-chlorophenol was within the range of the acceptance criteria in the other matrix spike/matrix spike duplicate sample. Since 2-chlorophenol was not detected in any samples, no revision to the data was required.
- The surrogate recovery for one surrogate spike (2-fluorophenol) in a laboratory control sample was above laboratory control limits (114 percent compared to 109 percent). Given this slight exceedance in a non-site sample, no adjustment to the data was required.

Other than these exceptions, all other QA/QC parameters reviewed were consistent with the acceptance criteria. The accuracy and precision of the sediment data is considered acceptable. No data was qualified based on this review.

5.2 FIN FISH TISSUE SAMPLES

Exceptions to acceptance criteria for fin fish tissue samples occurred for sample temperature, calibration standards, method blank samples, and abundance ratios.

- Ten of the samples were received at 5.6°C, above the required temperature of 4°C. Due to this temperature variance, all of the sample detections and detection limits are considered estimated values. All of the detected values were qualified as estimates (J) and all of the non-detects were qualified as (UJ). However, since dioxins/furans are not subject to rapid degradation, we do not believe this variance significantly affects the results.
- Results for ten of the samples had a reporting limit equal to the lowest calibration standard. All detections reported that were less than the reporting limit were qualified as estimates (J).
- The qualification procedure for detections in method blank samples has been revised from the 2005 report, but the TEQ calculation results did not change significantly. The method blank sample, for samples analyzed on May 18, 2005, had detections of 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin (HpCDD) at 0.067 pg/L, OCDD at 0.938 pg/L, and OCDF at 0.091 pg/L. The method blank sample, for samples analyzed on June 17, 2005, had detections of octachlorodibenzo-pdioxin (OCDD) at 0.442 picograms/liter (pg/L) and of octachlordibenzo-p-furan (OCDF) at 0.341 pg/L. The method blank sample for the re-extraction of one sample and sample duplicate had detections of HpCDD at 0.074 pg/L and OCDD at 0.623 pg/L. U.S. EPA guidance for dioxin data validation (U.S. EPA 2002b) advises that, if the detections in the actual samples are less than five times the method blank result, the sample results for the analyte should be qualified. As a result, detections of OCDD in all the samples are qualified "UJ", indicating the analyte was not detected above the reported sample concentration. Also, OCDF results in 14 samples and HpCDD results in 6 samples are qualified "UJ." This qualification changes the result from a detected value to a non-detect with the detection limit set at the concentration reported in the sample. However, the detection limit is approximate ("J" qualification).
- Several analytes in ten of the samples analyzed had ion abundance ratios outside their associated QC limits. Therefore, the reported value is an estimated maximum possible concentration, and all of these reported detections were qualified as "U".
- The original duplicate sample data for sample PSP-SB-001 was withdrawn by the laboratory because of suspected contamination of the samples. The sample and duplicate were subsequently re-extracted and results were considered acceptable. The results from re-extraction were reported in the data package dated July 28, 2005.

• Laboratory reports for dioxins/furans from Columbia Analytical were mislabeled in various places where results were reported. On Forms 1, 2, and/or 3, some results were presented in units of ng/kg dry weight while some were reported in units of ng/kg wet weight. The units of wet weight are correct, and the units on the mislabeled forms have been corrected by the laboratory and presented in Appendix C.

Other than these exceptions, all other QA/QC parameters reviewed were consistent with the acceptance criteria. The accuracy and precision of the data is considered acceptable. Qualifications to the data are noted in Appendix F.

6.0 RESULTS

The results of sediment and fin fish tissue sampling are presented in this section and include tidal and sediment conditions in Mad River Slough, analytical results for sediment, and analytical results for fin fish tissue.

6.1 TIDAL AND SEDIMENT CONDITIONS

The intertidal flats are largely composed of very soft sediments, which contain large amounts of water due to daily inundation. Even under the lowest tide conditions, walking in the mud was difficult due to its unconsolidated nature. The water height observed during the high tide resulted in an estimated overlying water depth from 10 inches to approximately 2 feet at sample locations.

Biological activity was observed in the top few inches of most cores by an experienced field biologist. Further observations of the surface area of the intertidal flats surrounding each sample location indicated small boreholes in the sediment surface. Crabs, crab body parts, and invertebrates (bivalves) were observed in the vicinity of all locations sampled, along with abundant evidence of shore birds (tracks and sightings of individual species). Closer to shore, mammalian scat was observed near the high-tide water mark. At only one location, a bivalve was observed 8 inches below surface in a core. Invertebrate burrow tubes were not evident in any of the cores. Because burrow tubes may have been compressed during sampling, these results may not indicate the absence of activity at deeper depths.

Sediment composition varied along the sampling transect. The northernmost samples (101-GSED-C09, 102-GSED-C08, and 103-GSED-C07) had the highest amounts of relatively large particulate organic material resembling bark. This large organic material generally occurred between the surface and 2 feet below the surface and was overlain by sandy silt or silt with

sand when below the surface. Where the large organic material was present, very little sediment was present (less than 10 percent).

The samples in the middle of the transect (104-GSED-C06, 105-GSED-C05, 106-GSED-C31, 107-GSED-C32, and 108-GSED-CO2) appeared to have less large organic material (less than approximately 60 percent). Organic material in these samples appeared more decomposed than material in the northern samples. Lenses of clay and/or silt appeared to be present in the cores. Sediment was predominantly described as a sandy silt or a silt with sand.

At the southern end of the transect, near Outfall 1 and the Samoa Bridge (109-GSEC-C01, 110-GSED-C01A), more sand was encountered and little or no large organic material was present in the samples (less than approximately 30 percent).

6.2 ANALYTICAL RESULTS FOR SEDIMENT

Sediment samples were analyzed for percent solids, total organic carbon, and chlorinated phenols (Table 1). Percent solids ranged from 40 to 77.5. Total organic carbon ranged from 0.28 to 20.6 percent. Pentachlorophenol was not detected in any of the 35 samples and three duplicate samples collected in September 2004. Detection limits ranged from 97 to 620 μ g/kg, which are below the upper bound of the sediment quality guidelines of 360 to 690 μ g/kg. Detection limits for only eight of the 35 samples exceeded the lower sediment benchmark. These results are consistent with samples collected in April 2004 and with the absence of pentachlorophenol detection in samples considered in the Scoping Risk Assessment. Of the 18 other chlorinated phenols reported by the laboratory, only 2,4,5-trichlorophenol was detected in three samples (102-GSED-C08-1.0; 104-GSED-C06-2.0; 106-GSED-C31-1.0) at concentrations of 9.3, 11, and 7.7 μ g/kg, respectively). For several reasons, the low concentrations of 2,4,5-trichlorophenol are not considered to be related to the stormwater discharge at the sawmill:

- The absence of pentachlorophenol and other related breakdown products (e.g., tetrachlorophenol, dichlorophenol, and chlorophenol);
- The disconnect between locations of detections of 2,4,5-trichlorophenol and suspected historical stormwater discharges; and
- The presence of other potential sources to Mad River Slough.

In addition, toxicity was not observed in surface sediment toxicity tests conducted previously at C-06 (MEC, 2003) which is located near the highest detection of 2,4,5-trichloropehenol at 2

feet below surface (104-GSED-C06). Thus, chlorinated phenols in sediment are not considered chemicals of potential ecological concern for the sawmill.

6.3 ANALYTICAL RESULTS FOR FIN FISH TISSUE

Fin fish tissue samples were analyzed for percent lipids, percent solids, and dioxins/furans (Table 2). Results for dioxins/furans are presented in terms of 2,3,7,8-tetrachlorodibenzo-pdioxin toxicity equivalents (2,3,7,8-TCDD TEQs) as calculated in Appendix F using toxicity equivalent factors (TEFs). Percent lipids ranged from 0.077 to 1.565 percent in the samples analyzed. Percent solids were analyzed in 10 of the 15 samples, and results ranged from 17.7 to 22.1 percent. 2,3,7,8-TCDD TEQ concentrations ranged from 0.03 to 0.07 nanograms per kilogram (ng/kg) except for one sample (PSP-SB-001) and corresponding duplicate reported at 0.3/0.22 ng/kg. The primary contribution to the 2,3,7,8-TCDD TEQ concentration in these samples are elevated detection limits compared to the other samples because one-half the detection limit was used to calculate the 2,3,7,9-TCDD concentration. At least one dioxin/furan congener was detected in approximately 50 percent of the samples (Appendix F). As shown on Table 3, the maximum concentration for the pile surfperch is consistent with concentrations used as representative concentrations in the Scoping Risk Assessment. The results for the remaining 14 samples were approximately 10 times lower than the whole fish samples (Table 2). This suggests that the estimate of human health risk in the Scoping Ecological Risk Assessment does not underestimate and may significantly overestimate potential human health risk from the consumption of fin fish.

7.0 ESTIMATE OF HUMAN HEALTH RISKS

Potential human health risks using fin fish dioxin/furan data collected in 2005 were compared to potential human health risks estimated using fin fish dioxin/furan data collected in 2002 and presented in the Scoping Risk Assessment. Shell fish data was also considered in the cumulative assessment of potential health risks, but data was only available from 2002 for this component of the assessment. The methodology for estimating potential health risks, which is consistent with the methodology used in the Scoping Risk Assessment, is presented followed by the results of the calculations.

Potential exposures for two receptors were evaluated: a resident who consumes an average amount of fin fish and shellfish and an angler who consumes an upper-bound amount of fin fish and shellfish (also representative of a subsistence fisherman). For the resident scenario, the mean concentration for each species was used as the representative concentration. For the

angler scenario, the upper-bound representative concentration (the 95 percent upper confidence limit or the maximum concentration, whichever was higher) for each species was used as the representative concentration. Appendix H presents the calculation results for the 95% UCL using the ProUCL software recommended by U.S. EPA.

Separate representative concentrations were developed for shell fish and fin fish because the concentrations of dioxins/furans and zinc were higher in shellfish than in fin fish. For shellfish, representative concentrations were developed for each individual species (e.g., oyster, crab, and shrimp). Since no new data was collected in 2005 for these species, the same representative concentrations from 2002 were used for the 2002 and 2002/2005 risk calculations. Zinc concentrations from 2002 in fin fish were also used in both risk calculations. For fin fish, the representative concentration for dioxins/furans was based on the highest concentration appropriate to the exposure scenario (i.e., resident or angler) among the fish species sampled in Mad River Slough. This approach is conservative in that it assumes all fin fish exposure is represented by the highest representative concentration even though concentrations for other types of fish may be lower.

All remaining exposure assumptions (e.g., fish ingestion rates) and toxicity criteria were consistent with the Scoping Risk Assessment.

7.1 2002 DATA AND HEALTH RISK EVALUATION

The fin fish and shellfish data collected in 2002 presented in the Scoping Risk Assessment was used to estimate representative concentrations for use in the risk calculations. The data consisted of whole fin fish data samples instead of the fish filets analyzed in the supplemental investigation. A summary of the representative concentrations from the Scoping Risk Assessment is presented in Table 6.

The results presented herein have been updated to correct calculations for potential zinc exposure, including the noncarcinogenic hazard index from those presented presented in the Scoping Risk Assessment. The representative concentrations for zinc in crabs and the potential hazard indexes have been updated. The representative zinc concentrations in crabs was corrected to be 32 from 37.7 mg/kg for the resident and to be 41.9 from 43 mg/kg for the adult angler. In addition, the hazard index calculation for the angler has been updated since the original calculations reflected exposure and hazard indexes applicable to the resident. Lifetime excess cancer risk calculations were not affected since zinc is not evaluated as a carcinogen. These changes do not significantly affect the overall hazard indexes, which changed from 0.2 to

0.3, nor do they change the conclusions of the Scoping Risk Assessment. The updated risk calculations using the data from the Scoping Risk Assessment are presented in Appendix G.

Using the 2002 data, the potential noncarcinogenic hazard quotients and hazard indexes associated with the resident's and angler's total exposure to the COPCs in fin fish and shellfish from Mad River Slough were 0.03 and 0.3, respectively. These estimates include a minor contribution from exposure to off-site receptors from chemicals at the sawmill as estimated in Baseline Human Health Risk Assessment. As concluded in the Scoping Risk Assessment, this indicates that exposure to chemicals in fin fish and shellfish should not result in unacceptable noncarcinogenic health effects under the conditions evaluated. A summary of the noncarcinogenic hazard indexes is presented in Table 7.

The estimated theoretical lifetime excess carcinogenic risks associated with a resident's exposure to the COPCs in fin fish and shellfish is 5 x 10⁻⁶. The angler's estimated theoretical lifetime excess carcinogenic risks associated with exposure to the COPCs in fin fish and shellfish is 6 x 10⁻⁵. These estimates include a minor contribution from exposure to off-site receptors from chemicals at the sawmill as estimated in the Baseline Human Health Risk Assessment. Both results are within the acceptable risk range of 1 x 10⁻⁴ to 1 x 10⁻⁶ developed by U.S. EPA. As concluded in the Scoping Risk Assessment, exposure to chemicals in fin fish and shellfish should not result in an unacceptable carcinogenic risk under the conditions evaluated for these receptors. The most significant contribution to risk is consumption of fin fish (more than 80 percent). A summary of the lifetime canter risks is presented in Table 8.

7.2 2005/2002 DATA AND HEALTH RISK EVALUATION

The 2005 dioxin/furan fin fish data and the 2002 shellfish data and zinc fin fish data were used to estimate representative concentrations and potential health risks from the ingestion of fish from the Mad River Slough. The calculations of representative concentrations for dioxins/furans in fin fish filets are presented in Appendix H and are summarized in Table 9. The calculations of noncarcinogenic hazard indexes and theoretical excess lifetime risks are presented in Appendix I.

The estimated noncarcinogenic hazard index associated with residential exposure to the COPCs in fin fish and shellfish from Mad River Slough is 0.02. The estimated noncarcinogenic hazard index associated with the angler's exposure is 0.3. These estimates include a minor contribution from exposure to off-site receptors from chemicals at the sawmill as estimated in Baseline Human Health Risk Assessment. These hazard indexes are less than 1, indicating that

the predicted exposure to the chemicals should not result in adverse noncarcinogenic health effects under the conditions evaluated. A summary of the noncarcinogenic hazard indexes is presented in Table 10. The ingestion of fin fish provides the most significant contribution (more than 80 percent) to noncarcinogenic hazard index based on the concentration of zinc in fin fish for the resident and zinc and dioxins/furans in fin fish for the angler.

The current estimated theoretical lifetime excess carcinogenic risks associated with a resident's exposure to the COPCs in fin fish and shellfish is 2 x 10⁻⁶. The current estimated theoretical lifetime excess carcinogenic risk for anglers is 5 x 10⁻⁵. These estimates include a minor contribution from exposure to off-site receptors from chemicals at the sawmill as estimated in Baseline Human Health Risk Assessment. The ingestion of fin fish accounts for approximately 70 percent of the risk for the resident and 80 percent of the risk for the angler; however, as discussed previously the risk is based 2,3,7,8-TCDD TEQs incorporating one-half the detection limit for many congeners that were not detected. A summary of the lifetime cancer risks is presented in Table 11. Both risks are within the acceptable risk range of 1 x 10⁻⁴ to 1 x 10⁻⁶ developed by U.S. EPA. Therefore, exposure to chemicals in fin fish and shellfish should not result in an unacceptable carcinogenic risk under the conditions evaluated for these receptors.

8.0 CONCLUSIONS

Sediment and fin fish tissue samples were collected from Mad River Slough adjacent to the sawmill for analysis of chlorinated phenols and dioxins/furans, respectively, to address data gaps outlined in the Scoping Risk Assessment. Specifically, (1) pentachlorophenol detection limits associated with previous sediment analyses were not sufficiently low to assess the potential effects on benthic invertebrates and (2) the fish samples available for the Scoping Risk Assessment did not represent the size or species that are most likely to be consumed by recreational fishers. Sediment and fin-fish sampling and analysis efforts were successful in addressing these data gaps. The results of sample analysis indicate:

- Pentachlorophenol was not detected in samples collected. Detection limits were within
 the range of sediment quality benchmarks available for benthos, and so
 pentachlorophenol is not present at levels of ecological concern in the sediment adjacent
 to the sawmill. Thus, pentachlorophenol is not considered a chemical of potential
 ecological concern in sediment.
- Dioxin/furan concentrations in fin fish fillets are equal to or lower than representative concentrations for whole fish used to assess potential human health risk in the Scoping Risk Assessment.

- The human health risks estimated using the 2005 fin fish filet data are compared to the updated calculations from the Scoping Risk Assessment in Table 12. As shown, the hazard index and lifetime cancer risk for the resident are lower using 2005 data for dioxins/furans in fin fish than in the assessment of 2002 data. The hazard indexes and lifetime cancer risks for the angler are essentially the same because the maximum concentration among the fin fish samples was used as the representative concentration, which was similar to the representative concentration for data collected in 2002 (0.38 in 2002 and 0.30 ng/kg in 2005). However, the maximum filet concentration (0.3 ng/kg) was significantly higher than the typical concentration among the remaining fin fish sampled in 2005 (0.03 to 0.07 ng/kg). As such, the health risk estimate for the angler represents an upperbound estimate and actual exposures could be much lower based on the typical dioxin/furan concentrations detected in fin fish.
- Pentachlorophenol was not detected in sediment samples collected in the Mad River Slough suggesting that risk to benthic invertebrates from this chemical is probably negligible. The dioxin/furan concentrations in the supplemental fish samples were equivalent to or lower than the concentrations used to estimate human exposure and health risk in the Scoping Risk Assessment. The Scoping Risk Assessment indicated that dioxin/furan exposures do not exceed acceptable limits, and concluded that risk management actions in Mad River Slough were not necessary to protect human health. The supplemental fin fish data collected for this study do not change this conclusion.

Overall, the supplemental data collected for this analysis do not change the overall conclusions of the Scoping Risk Assessment, which stated that these "risk assessment results do not indicate ecological or human health effects for which action is necessary to protect receptors." (Geomatrix/MFG, 2004).

9.0 REFERENCES

- Barrick, R., S. Becker, L. Brown, H. Beller, and R. Pastorok. 1988. Sediment Quality Values Refinements: 1988 Update and Evaluation of Puget Sound AET. Volume 1. Prepared for the Puget Sound Estuary Program, Office of Puget Sound.
- EnviroNet Consulting (EnviroNet), 2001, Co-Located Samples with RWQC, June.
- EnviroNet, 2003a, Transmittal of Dioxin and Other Chemical Testing Data for Fish and Shellfish Tissue in Mad River Slough and Arcata Bay, California, June 2.
- EnviroNet, 2003b, Results of Dioxin and Other Chemical Testing of Sediments in the Mad River Slough and Arcata Bay, California in October 2002, June 2.
- EnviroNet and ENVIRON, 2003, Sampling and Analysis Work Plan for October 2002 Sediment and Biota Sampling in the Mad River Slough and Arcata Bay, California, February 21.
- ENVIRON, 2002, Revised Work Plan for Performing a Human Health and Ecological Risk Assessment at the Sierra Pacific Industries, Arcata Division Sawmill, Arcata, California, December 18.
- Geomatrix Consultants, Inc., 2003, Baseline Human Health Risk Assessment of On-Site Soil and Groundwater, Sierra Pacific Industries, Arcata Division Sawmill, Arcata, California, November 20.
- Geomatrix Consultants, Inc., and MFG, Inc., (Geomatrix/MFG), 2004, Scoping Ecological and Off-Site Human Health Risk Assessment, September 8.
- Geomatrix Consultants, Inc. and NewFields, 2004a, Work Plan to Collect Sediment and Fin Fish Tissue Samples, June 8.
- Geomatrix Consultants, Inc. and NewFields, 2004b, Addendum to Work Plan to Collect Sediment and Fin Fish Tissue Samples, August 24.
- Geomatrix Consultants, Inc. and NewFields, 2005, Supplement to Scoping Ecological and Off-Site Human Health Risk Assessment, Sierra Pacific Industries, Arcata Division Sawmill, Arcata, California, October.
- Hellyer, G.M. and G.E. Balog, 1999. Derivation, Strengths and Limitations of Sediment Ecotoxicological Screening Benchmarks (ESBs). U.S. EPA-New England Regional Laboratory, Lexington, MA.
- MEC Analytical Systems, 2003, Analysis of the Benthic Infaunal Community, Sediment Toxicity, and Bioaccumulation Potential of Sediments from Arcata Bay, California, May.

- Office of Environmental Health Hazard Assessment, 2003a, Review of the ENVIRON 2002 HRA/ERA Work Plan 2003 Sampling Plan for Mad River Slough and Arcata Bay, Memorandum to Dean Prat, Regional Water Quality Control Board, North Coast Region from Robert K. Brodberg, June 10.
- Office of Environmental Health Hazard Assessment, 2003b, Memorandum from Dr. Joan E. Denton on Adoption of the Revised Toxicity Equivalency Factors (TEF_{WHO-97}) for PCDDs, PCDFs, and Dioxin-like PCBs, August 29.
- Office of Environmental Health Hazard Assessment (OEHHA), 2006, Review of Supplement to Scoping Ecological and Off-Site Human Health Risk Assessment, Sierra Pacific Industries, Arcata Division Sawmill, Arcata, California, May 23.
- Regional Water Quality Control Board, North Coast Region, 2001, Inspection and Analytical Results Memo, letter to Mr. Gordy Amos of Sierra Pacific Industries from Mr. Dean Prat, Regional Water Quality Control Board, North Coast Region, August 2.
- Regional Water Quality Control Board, North Coast Region, 2004, Addendum to Work Plan to Collect Sediment and Fin Fish Tissue Samples, letter to Mr. Bob Ellery at Sierra Pacific Industries, September 10.
- U.S. EPA, 1999, Contract Laboratory Program National Functional Guidelines for Organic Data Review, October.
- U.S. EPA, 2000, Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories, Volume 1: Third Edition, Office of Water, November.
- U.S. EPA, 2002a, U.S. EPA Analytical Operations/Data Quality Center, National Functional Guidelines for Chlorinated Dioxin/Furan Data Review, August.
- U.S. EPA, 2002b, Data Validation Standard Operating Procedures for Chlorinated Dioxin/Furan Analyses by High Resolution Gas Chromatography/High Resolution Mass Spectrometry, Region IV, May.

TABLES

TABLE 1

ANALYTICAL RESULTS FOR CHLORINATED PHENOLS IN SEDIMENT SAMPLES FROM MAD RIVER SLOUGH

Sierra Pacific Industries

Arcata Division Sawmill

Arcata, California

Concentrations in micrograms per kilogram ($\mu g/kg$) unless noted otherwise

Sample ID	Bottom Depth/ Depth Interval (feet below surface)	Date Collected	Solids, Total (%)	Total Organic Carbon (%)	2,3,4,5- Tetra- chloro- phenol ²	2,3,4,6- Tetra- chloro- phenol ²	2,3,4-Tri- chloro- phenol ²	2,3,5,6- Tetra- chloro- phenol ²	2,3,5-Tri- chloro- phenol ²	2,3,6-Tri- chloro- phenol ²	2,3- Dichloro- phenol ²	2,4,5-Tri- chloro- phenol	2,4,6-Tri- chloro- phenol	2,4- Dichloro- phenol	2,5- Dichloro- phenol ²	2,6- Dichloro- phenol ²	2-Chloro-phenol	3,4,5-Tri- chloro- phenol ²	3,4- Dichloro- phenol ²	3,5- Dichloro- phenol ²	3-Chloro- phenol ²	4-Chloro-phenol ²	Penta- chloro- phenol (PCP)
GSED-04	0.25 - 1.0	04/04/2004	63.1	` ′	-10	-10	-10	-10	-10	-10	-10	-	-12	-12		-10	-12	-		-10	-10	-10	-56
	0.25 - 0.75	04/04/2004	49.1		-10	-10	-10	-10	-10	-10		-12	-12	-12	-10 -10			-10	-10	-10			-50
GSED-01					-				1		-10	-10	1			-10	-10	-10	-10	1	-10	-10	
GSED-02 GSED-03	0.5 - 1.0 0.5 - 1.0	04/07/2004	51.1 45.4		-10 -10	-10	-10	-10	-10 -10	-10	-10	-21 -50	-21 -50	-21 -50	-10	-10	-21	-10	-10	-10	-10 -10	-10	-110
101-GSED-C09-0.5	0.5 - 1.0	04/07/2004 09/14/2004	45.4	5.62	-20	-10 -20	-10 -20	-10 -20	-20	-10 -20	-10 -20	-20	-20	-20	-10 -20	-10 -20	-50 -20	-10 -20	-10 -20	-10 -20	-20	-10 -20	-250 -200
101-GSED-C09-0.3	1	09/14/2004	48.3	7.01	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-210
101-GSED-C09-2.0	2.0	09/14/2004	46.2	11.9	-10	-10	-10	-10	-10	-10	-10	-11	-11	-11	-10	-10	-11	-10	-10	-10	-10	-10	-110
101-GSED-C09-2.0D	2.0	09/14/2004	46.9	13.7	-10	-10	-10	-10	-10	-10	-10	-11	-11	-11	-10	-10	-11	-10	-10	-10	-10	-10	-110
101-GSED-C09-2.5	2.5	09/14/2004	69.3	2.55	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-100
102-GSED-C08-0.5	0.5	09/14/2004	46.5	7.64	-10	-10	-10	-10	-10	-10	-10	-11	-11	-11	-10	-10	-11	-10	-10	-10	-10	-10	-110
102-GSED-C08-1.0	1.0	09/14/2004	47.1	12.1	-10	-10	-10	-10	-10	-10	-10	9.3	-11	-11	-10	-10	-11	-10	-10	-10	-10	-10	-110
102-GSED-C08-2.0	2.0	09/14/2004	45.6	14.5	-10	-10	-10	-10	-10	-10	-10	-11	-11	-11	-10	-10	-11	-10	-10	-10	-10	-10	-110
102-GSED-C08-3.0	3.0	09/14/2004	47.3	19.6	-10	-10	-10	-10	-10	-10	-10	-11	-11	-11	-10	-10	-11	-10	-10	-10	-10	-10	-110
103-GSED-C07-0.5	0.5	09/14/2004	45.6	8.53	-10	-10	-10	-10	-10	-10	-10	-11	-11	-11	-10	-10	-11	-10	-10	-10	-10	-10	-110
103-GSED-C07-1.0	1.0	09/14/2004	40.2	20.6	-10	-10	-10	-10	-10	-10	-10	-13	-13	-13	-10	-10	-13	-10	-10	-10	-10	-10	-130
104-GSED-C06-0.5	0.5	09/15/2004	46.9	4.45	-10	-10	-10	-10	-10	-10	-10	-11	-11	-11	-10	-10	-11	-10	-10	-10	-10	-10	-110
104-GSED-C06-1.0	1.0	09/15/2004	48.1	5.71	-10	-10	-10	-10	-10	-10	-10	-11	-11	-11	-10	-10	-11	-10	-10	-10	-10	-10	-110
104-GSED-C06-2.0	2.0	09/15/2004	52.1	8.19	-10	-10	-10	-10	-10	-10	-10	11	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-100
105-GSED-C05-0.5	0.5	09/15/2004	42.2	10.1	-50	-50	-50	-50	-50	-50	-50	-59	-59	-59	-50	-50	-59	-50	-50	-50	-50	-50	-590
105-GSED-C05-1.0	1.0	09/15/2004	40	17.4	-50	-50	-50	-50	-50	-50	-50	-63	-63	-63	-50	-50	-63	-50	-50	-50	-50	-50	-630
105-GSED-C05-2.0	2.0	09/15/2004	51.9	9.47	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-200
105-GSED-C05-3.0	3.0	09/15/2004	77.5	1.11	-10	-10	-10	-10	-10	-10	-10	-9.7	-9.7	-9.7	-10	-10	-9.7	-10	-10	-10	-10	-10	-97
106-GSED-C31-0.5	0.5	09/15/2004	42.5	10.2	-20	-20	-20	-20	-20	-20	-20	-24	-24	-24	-20	-20	-24	-20	-20	-20	-20	-20	-240
106-GSED-C31-1.0	1.0	09/15/2004	54.3	10.3	-10	-10	-10	-10	-10	-10	-10	7.7	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-100
106-GSED-C31-2.0	2.0	09/15/2004	52.7	8.11	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-100
106-GSED-C31-2.0D ³	2.0	09/15/2004	52.9	7.46	-20	-20	-20	-20	-20	-20	-20	-19	-19	-19	-20	-20	-19	-20	-20	-20	-20	-20	-190
106-GSED-C31-2.5	2.5	09/15/2004	55.5	4.39	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-100
107-GSED-C32-0.5	0.5	09/15/2004	40.6	9.21	-50	-50	-50	-50	-50	-50	-50	-62	-62	-62	-50	-50	-62	-50	-50	-50	-50	-50	-620
107-GSED-C32-1.0	1.0	09/15/2004	46.6	6.36	-50	-50	-50	-50	-50	-50	-50	-54	-54	-54	-50	-50	-54	-50	-50	-50	-50	-50	-540
107-GSED-C32-2.0	2.0	09/15/2004	54.8	4.18	-50	-50	-50	-50	-50	-50	-50	-49	-49	-49	-50	-50	-49	-50	-50	-50	-50	-50	-490
107-GSED-C32-3.0	3.0	09/15/2004	57	3.88	-10	-10	-10	-10	-10	-10	-10	-8.8	-8.8	-8.8	-10	-10	-8.8	-10	-10	-10	-10	-10	-88
108-GSED-C02-0.5	0.5	09/16/2004	43.5	7.25	-50	-50	-50	-50	-50	-50	-50	-57	-57	-57	-50	-50	-57	-50	-50	-50	-50	-50	-570
108-GSED-C02-1.0	1.0	09/16/2004	44.6	7.04	-20 -50	-20 -50	-20	-20 -50	-20 -50	-20 -50	-20 -50	-22 -54	-22 -54	-22 -54	-20	-20	-22 -54	-20	-20	-20 -50	-20 -50	-20 -50	-220
108-GSED-C02-1.0D 108-GSED-C02-2.0	2.0	09/16/2004 09/16/2004	51.7	6.72 4.67	-50	-50	-50 -50	-50	-50	-50	-50	-50	-54	-50	-50 -50	-50 -50	-50	-50 -50	-50 -50	-50	-50	-50	-540 -500
108-GSED-C02-2.0 108-GSED-C02-3.0	3.0	09/16/2004	57.7	5.19	-50	-50 -50	-50	-50	-50	-50	-50	-19	-19	-19	-50	-50	-19	-50	-50	-50	-50	-50	-190
109-GSED-C02-3.0 109-GSED-C01-0.5	0.5	09/16/2004	43.4	6.73	-50	-50	-50	-50	-50	-50	-50	-19	-19	-19	-50	-50	-19	-50	-50	-50	-50	-50	-580
109-GSED-C01-0.5	1.0	09/16/2004	46	5.91	-20	-20	-20	-20	-20	-20	-20	-22	-22	-22	-20	-20	-22	-20	-20	-20	-20	-20	-220
109-GSED-C01-1.0	2.0	09/16/2004	54.5	4.57	-20	-20	-20	-20	-20	-20	-20	-20	-20	-22	-20	-20	-20	-20	-20	-20	-20	-20	-200
110-GSED-C01-2.0	0.5	09/16/2004	60.6	2.51	-50	-50	-50	-50	-50	-50	-50	-50	-50	-50	-50	-50	-50	-50	-50	-50	-50	-50	-500
110-GSED-C01A-0.5	1.0	09/16/2004	64.7	1.03	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-100
110-GSED-C01A-1.0	2.0	09/16/2004	82	0.28	-10	-10	-10	-10	-10	-10	-10	-9.9	-9.9	-9.9	-10	-10	-9.9	-10	-10	-10	-10	-10	-99

Bold values denote concentrations above the detection limit.
-10 = Sample result below the detection limited indicated

- All results reported as dry weight.
 Analyzed as a tentatively identified compound (TIC). Reporting limits estimated.
 Duplicate sample (denoted "D")

 $\frac{Abbreviation:}{\mu g/Kg = micrograms per kilogram}$

TABLE 2 ANALYTICAL RESULTS FOR DIOXINS/FURANS IN FIN FISH FROM MAD RIVER SLOUGH

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

					2,3,7,8-TCDD
Sample ID/					TEQ
Station Identifier	Date	Species	% Lipids	% Solids	(ng/kg)
DM-0054, TRAWL 10/11	10/25/2002	Sculpin	0.303	NM	0.15
DM-0080, TRAWL 13	10/25/2002	Sculpin	0.551	NM	0.36
DM-0060, TRAWL 13	10/25/2002	Shark	0.000	NM	0.06
DM-0055, TRAWL 10/11	10/25/2002	Shiner	1.000	NM	0.38
DM-0053, TRAWL 10/11	10/25/2002	Sole	1.437	NM	0.39
DM-0057, TRAWL 13	10/25/2002	Sole	2.712	NM	0.22
DM-0046, TRAWL 5	10/25/2002	Sole	0.833	NM	0.11
DM-0047, TRAWL 5	10/25/2002	Sole	1.703	NM	0.21
DM-0049, TRAWL 6	10/25/2002	Sole	2.368	NM	0.18
DM-0050, TRAWL 6	10/25/2002	Sole	0.578	NM	0.19
DM-0051, TRAWL 7/8	10/25/2002	Sole	0.541	NM	0.19
PSP-SB-001	3/16/2005	Pile Surfperch	0.077	24.00	0.30
PSP-SB-001 DUP ¹	3/16/2005	Pile Surfperch	NM	NM	0.21
PSP-SB-002	3/16/2005	Pile Surfperch	1.565	23.90	0.04
PSP-SB-003	3/16/2005	Pile Surfperch	0.803	24.50	0.03
PSP-SB-004	3/16/2005	Pile Surfperch	0.160	22.90	0.03
PSP-SB-005	3/16/2005	Pile Surfperch	0.206	25.50	0.03
JST-SB-009	3/16/2005	Jacksmelt	0.249	22.07	0.04
JST-SB-017	4/21/2005	Jacksmelt	0.115	21.26	0.06
	4/21/2005,				
Comp JST-SB-040/018	5/9/2005	Jacksmelt	0.100	19.81	0.06
JST-SB-019	4/21/2005	Jacksmelt	0.646	22.11	0.07
JST-SB-042	5/9/2005	Jacksmelt	0.307	17.69	0.06
WSP-SB-006	3/16/2005	Walleye Surfperch	0.426	20.97	0.07
WSP-SB-007	3/16/2005	Walleye Surfperch	0.330	19.82	0.06
WSP-SB-008	3/16/2005	Walleye Surfperch	0.220	21.02	0.07
	4/22/2005,	<u> </u>			
Comp WSP-SB-033/045	5/10/2005	Walleye Surfperch	0.080	18.26	0.05
Comp WSP-SB-044/046	5/10/2005	Walleye Surfperch	0.197	18.81	0.05

Notes:

1. Duplicate of sample PSP-SB-001

Abbreviations:

 $ng/kg = nanograms \ per \ kilogram \ wet \ weight$

2,3,7,8-TCDD TEQ = 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicity equivalent

NM = not measured

TABLE 3 COMPARISON OF 2005 FIN FISH TISSUE SAMPLE RESULTS TO 2002 RESULTS

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

Fall 2002 ¹		Spring 2005				
Fish Type	UCL (ng/kg)	Fish Type	Range of TEQs (ng/kg)			
Shiner ²	0.38	Pile Surfperch	0.03-0.30			
Sole	0.30	Jacksmelt	0.04-0.07			
Shark	0.06	Walleye Surperch	0.05-0.07			
Sculpin	0.36					

Notes

- 1. Fish results from Scoping Risk Assessment (Geomatrix, 2004)
- 2. Exposure point concentration used in Scoping Risk Assessment

Abbreviations:

TEQ = toxic equivalent

UCL = upper confidence limit

ng/kg = nanograms per kilogram wet weight

TABLE 4 PROPOSED AND ACTUAL SEDIMENT SAMPLING LOCATIONS-SEPTEMBER 2004

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

Sample	Sample	Previously Sampled	UTM_X	UTM_Y	NEW UTM_X	NEW UTM_Y
Location ID	Date	Location ID	(meters)	(meters)	(meters)	(meters)
101-GSED-C09	9/14/2004	C-09	402871	4524804	402874	4524809
102-GSED-C08	9/14/2004	C-08	402837	4524777	402837	4524787
103-GSED-C07	9/14/2004	C-07	402836	4524718	402826	4524716
104-GSED-C06	9/15/2004	C-06	402854	4524649	402847	4524639
105-GSED-C05	9/15/2004	C-05	402897	4524599	402895	4524588
106-GSED-C31	9/15/2004	C-31	402934	4524544	402929	4524542
		BETWEEN C-03				
107-GSED-C32	9/15/2004	AND C-32	402963	4524513	402961	4524507
108-GSED-C02	9/16/2004	C-02	402991	4524483	402984	4524478
109-GSED-C01	9/16/2004	C-01	403025	4524451	403015	4524456
110-GSED-C01A	9/16/2004	-	403042	4524415	403057	4524409

Abbreviations:

UTM-X/Y - Universal Transverse Mercator coordinate system (NAD 83)

TABLE 5 SUMMARY OF FISH COLLECTION ACTIVITIES

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

				Sample Location				Weight	Length				Filet Weight	
Date	Time	Sample ID	Laboratory ID	Latitude	Longitude	Location Description	Species	(g)	(mm)	Condition	Method	Photo #	(g)	- Analyzed ¹
		•			J	·	•							
3/16/2005	1500	JST-SB-009	K250124-009	40° 51.9309'	124° 9.0263'	North of Samoa Bridge	Jacksmelt	154	273	Good	Hook & Line	A12	83.73	Yes
3/16/2005	1500	JST-SB-010	K250124-010	40° 51.9309'	124° 9.0263'	North of Samoa Bridge	Jacksmelt	74	205	Good	Hook & Line	A13	38.98	
4/21/2005	830	JST-SB-016	K2502994-006	40° 51.9309'	124° 9.0263'	North of Samoa Bridge	Jacksmelt	132	265	Good	Hook & Line	B20	9.47	
4/21/2005	830	JST-SB-017	K2502994-007	40° 51.9309'	124° 9.0263'	North of Samoa Bridge	Jacksmelt	198	293	Good	Hook & Line	B21	66.81	Yes
4/21/2005	830	JST-SB-018	K2502994-008	40° 51.9309'	124° 9.0263'	North of Samoa Bridge	Jacksmelt	195	293	Good	Hook & Line	B22	22.58	Yes (composite with JST-SB-040)
4/21/2005	830	JST-SB-019	K2502994-009	40° 51.9309'	124° 9.0263'	North of Samoa Bridge	Jacksmelt	202	299	Good	Hook & Line	B2	85.59	Yes
4/21/2005	830	JST-SB-020	K2502994-010	40° 51.9309'	124° 9.0263'	North of Samoa Bridge	Jacksmelt	169	280	Good	Hook & Line	В3	10.49	
4/21/2005	1530	LSK-SB-025	K2502994-022	40° 52.073'	124° 9.127'	North of Samoa Bridge	Leopard Shark	10400	1280	Good	Hook & Line	B13	742.04	
4/22/2005	830	LSK-SB-031	K2502994-023	40° 52.073'	124° 9.127'	North of Samoa Bridge	Leopard Shark	11100	1350	Good	Hook & Line	B14	538.6	
3/16/2005	1500	PSP-SB-001	K250124-001	40° 51.9309'	124° 9.0263'	North of Samoa Bridge	Pile Surfperch	979	350	Good	Hook & Line	A4	360.26	Yes
3/16/2005	1500	PSP-SB-002	K250124-002	40° 51.9309'	124° 9.0263'	North of Samoa Bridge	Pile Surfperch	1056	345	Good	Hook & Line	A5	431.96	Yes
3/16/2005	1500	PSP-SB-003	K250124-003	40° 51.9309'	124° 9.0263'	North of Samoa Bridge	Pile Surfperch	673	305	Good	Hook & Line	A6	320.25	Yes
3/16/2005	1500	PSP-SB-004	K250124-004	40° 51.9309'	124° 9.0263'	North of Samoa Bridge	Pile Surfperch	926	325	Good	Hook & Line	A7	371.46	Yes
3/16/2005	1500	PSP-SB-005	K250124-005	40° 51.9309'	124° 9.0263'	North of Samoa Bridge	Pile Surfperch	642	290	Good	Hook & Line	A8	265.7	Yes
4/21/2005	830	PSP-SB-011	K2502994-001	40° 51.9309'	124° 9.0263'	North of Samoa Bridge	Pile Surfperch	816	320	Good	Hook & Line	B15	174.5	
4/21/2005	830	PSP-SB-012	K2502994-002	40° 51.9309'	124° 9.0263'	North of Samoa Bridge	Pile Surfperch	567	300	Good	Hook & Line	B16	134.16	
4/21/2005	830	PSP-SB-013	K2502994-003	40° 51.9309'	124° 9.0263'	North of Samoa Bridge	Pile Surfperch	705	325	Good	Hook & Line	B17	134.16	
4/21/2005	830	PSP-SB-014	K2502994-004	40° 51.9309'	124° 9.0263'	North of Samoa Bridge	Pile Surfperch	695	310	Good	Hook & Line	B18	180	
4/21/2005	830	PSP-SB-015	K2502994-005	40° 51.9309'	124° 9.0263'	North of Samoa Bridge	Pile Surfperch	842	335	Good	Hook & Line	B19	158	
4/22/2005	1100	RSP-SB-032	K2502994-020	40° 51.9309'	124° 9.0263'	North of Samoa Bridge	Redtail Surfperch	482	293	Good	Hook & Line	B12	58.07	
4/21/2005	1700	SSP-SB-026	K2502994-015	40° 51.9309'	124° 9.0263'	North of Samoa Bridge	Shiner Surfperch	32	140	Good	Hook & Line	В7	11.79	
4/21/2005	1700	SSP-SB-027	K2502994-016	40° 51.9309'	124° 9.0263'	North of Samoa Bridge	Shiner Surfperch	39	125	Good	Hook & Line	В8	9.95	
4/21/2005	1700	SSP-SB-028	K2502994-017	40° 51.9309'	124° 9.0263'	North of Samoa Bridge	Shiner Surfperch	30	115	Subcutaneous hemorage at vent	Hook & Line	В9	10.66	
4/21/2005	1700	SSP-SB-029	K2502994-018	40° 51.9309'	124° 9.0263'	North of Samoa Bridge	Shiner Surfperch	37	126	Good	Hook & Line	B10	10.41	
4/21/2005	1700	SSP-SB-030	K2502994-019	40° 51.9309'	124° 9.0263'	North of Samoa Bridge	Shiner Surfperch	35	124	Irregular fin rays, dorsal caudal fin	Hook & Line	B11	12.5	
3/16/2005	1500	WSP-SB-006	K250124-006	40° 51.9309'	124° 9.0263'	North of Samoa Bridge	Walleye Surfperch	349	260	Good	Hook & Line	A9	136.29	Yes

TABLE 5 SUMMARY OF FISH COLLECTION ACTIVITIES

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

				Sample I	Location			Weight	Length				Filet Weight	
Date	Time	Sample ID	Laboratory ID	Latitude	Longitude	Location Description	Species	(g)	(mm)	Condition	Method	Photo #	(g)	Analyzed ¹
3/16/2005	1500	WCD CD 007	K250124-007	40° 51.9309'	124° 9.0263'		Walleye	243	220	Good	Hook & Line	A10	99.21	Yes
3/16/2003	1500	WSP-SB-007	K250124-007	40 51.9309	124 9.0263	North of Samoa Bridge	Surfperch Walleye	243	220	Good	Hook & Line	Alu	99.21	res
3/16/2005	1500	WSP-SB-008	K250124-008	40° 51.9309'	124° 9.0263'	North of Samoa Bridge	Surfperch	222	210	Good	Hook & Line	A11	88.69	Yes
4/22/2005	1100	WSP-SB-033	K2502994-021	40° 51.9309'	124° 9.0263'	North of Samoa Bridge	Walleye Surfperch	184	220	Good	Hook & Line	B15	22.12	Yes (composite with WSP-SB-045)
4/21/2005	830	WHP-SB-021	K2502994-011	40° 51.9309'	124° 9.0263'	North of Samoa Bridge	White Surfperch	200	223	Good	Hook & Line		26.06	
	830			40° 51.9309'			White					D.4	70.07	
4/21/2005	830	WHP-SB-022	K2502994-012	40 51.9309	124° 9.0263'	North of Samoa Bridge	Surfperch White	303	227	Hook damage in mouth	Hook & Line	B4	70.07	
4/21/2005	830	WHP-SB-023	K2502994-013	40° 51.9309'	124° 9.0263'	North of Samoa Bridge	Surfperch	249	239	Good	Hook & Line	B5	50.25	
4/21/2005	830	WHP-SB-024	K2502994-014	40° 51.9309'	124° 9.0263'	North of Samoa Bridge	White Surfperch	184	210	40 mm healed scar on left side	Hook & Line	В6	65.68	
4/21/2003	050	WIII -5D-024	142302774-014	40 31.7307	124 7.0203	Notal of Sallioa Bridge	Walleye	104	210	No visible	HOOK & Line	Во	03.00	
5/5/2005	2000	WSP-SB-034 ^a	K2503303-1	40° 51.9309'	124° 9.0263'	North of Samoa Bridge	Surfperch	220	223	deformities	Hook & Line	2	40.72	
5/5/2005	2005	WSP-SB-35 ^a	K2503303-2	40° 51.9309'	124° 9.0263'	North of Samoa Bridge	Walleye Surfperch	247	230	No visible deformities	Hook & Line	3	29.27	
5/5/2005	2005	WSP-SB-36 ^a	K2503303-3	40° 51.9309'	124° 9.0263'	North of Samoa Bridge	Walleye Surfperch	269	230	No visible deformities	Hook & Line	4	54.16	
						-	Walleye			No visible				
5/5/2005	2010	WSP-SB-37 ^a	K2503303-4	40° 51.9309'	124° 9.0263'	North of Samoa Bridge	Surfperch	165	200	deformities	Hook & Line	5	31.39	
5/5/2005	2110	WSP-SB-38 ^a	K2503303-5	40° 51.9309'	124° 9.0263'	North of Samoa Bridge	Walleye Surfperch	169	195	No visible deformities	Hook & Line	6	32.01	
5/9/2005	910	JST-SB-039	K2503359-001	40° 51.9309'	124° 9.0263'	North of Samoa Bridge	Jacksmelt	135	265	No visible deformities	Hook & Line	7	20.5	
5/9/2005	913	JST-SB-040	K2503359-002	40° 51.9309'	124° 9.0263'	North of Samoa Bridge	Jacksmelt	106	249	Healed scar left side at pectoral fin	Hook & Line	8,9	23.79	Yes (composite with JST-SB-018)
5/9/2005	930	JST-SB-041	K2503359-003	40° 51.9309'	124° 9.0263'	North of Samoa Bridge	Jacksmelt	120	255	No visible deformities	Hook & Line	11	17.26	
5/9/2005	935		K2503359-004	40° 51.9309'	124° 9.0263'	North of Samoa Bridge	Jacksmelt	171	285	No visible deformities	Hook & Line	12	31.53	Yes
														100
5/10/2005	1300	JST-SB-043	K2503359-005	40° 51.9309'	124° 9.0263'	North of Samoa Bridge	Jacksmelt Walleye	184	300	No visible deformities	Hook & Line	13	28.74	
5/10/2005	1130	WSP-SB-044	K2503359-006	40° 51.9309'	124° 9.0263'	North of Samoa Bridge	Surfperch	122	183	No visible deformities	Hook & Line	14	24.41	Yes (composite with WSP-SB-046)
5/10/2005	1245	WSP-SB-045	K2503359-007	40° 51.9309'	124° 9.0263'	North of Samoa Bridge	Walleye Surfperch	131	177	No visible deformities	Hook & Line	15,16	21.11	Yes (composite with WSP-SB-033)
5/10/2005	1338	WSP-SB-046	K2503359-008	40° 51.9309'	124° 9.0263'	North of Samoa Bridge	Walleye Surfperch	138	193	No visible deformities	Hook & Line	17	25.18	Yes (composite with WSP-SB-044)

Abbreviations;

g = grams

mm = millimeters

-- = not available

Notes:

1. "Yes" analyze individual sample. Yes (composite with X) - analyze after compsotiting it with sample indicated the samples were defrosted upon arrival at the laboratory. Cooler temperature is a. Gel-packs in cooler transferring thes samples were defrosted upon arrival at the laboratory. Cooler temperature was 17oC.

SUMMARY OF REPRESENTATIVE CONCENTRATIONS IN BIOTA FROM MAD RIVER SLOUGH -- 2002 DATA

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

Chemical	Fish Type	Species	Number of Samples	Averge Concentration	Upperbound Representative	Rationale	Representative	Concentration ¹
			(n)	Concentration	Concentration ¹		Resident	Angler
		Crab	9	0.78	1.76	95% Chebyshev (MVUE) UCL	0.78	1.76
	Shellfish	Oyster	3	0.85	2.22	Maximum Concentration	0.85	2.22
2,3,7,8-TCDD TEQ		Shrimp 3 0.15		0.15	0.25	Maximum Concentration	0.15	0.25
(Mammal TEFs)		Sculpin	2	0.26	0.36	Maximum Concentration		
(ng/kg)	Fin Fish	Shark	1		0.06	Maximum Concentration	0.26	0.38
	1 111 1 1311	Shiner	1		0.38	Maximum Concentration	0.26	0.36
		Sole	7	0.21	0.30	H-UCL		
		Crab	5	32	41.9	H-UCL	32	41.9
	Shellfish	Oyster	2	94	110	Maximum Concentration	94	110
Zinc (mg/kg)		Shrimp 1		11	Maximum Concentration	11	11	
	Fin Fish	Shark 1 4		4	Maximum Concentration	14	15	
	FIII FISH	Sole	2	14	15	Maximum Concentration	14	15

Notes:

1. Concentration represents the 95% upper confidence limit (95% UCL) as calculated using ProUCL software or the maximum concentration, which ever is lower.

Abbreviations:

mg/kg = milligram per kilogram

ng/kg = nanograms per kilogram

TEF = Toxicity equivalency factors

2.3.7.8-TCDD TEQ = 2,3,7,8-tetrachloro dibenzo-p-dioxin toxicity equivalents

-- = insufficient number of samples to calculate value

SUMMARY OF NONCANCER HAZARD INDEXES -- 2002 DATA^1

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

		Exposure	Pathway		
	Ingestion of Fin	Ingestion of	Ingestion of		
Chemical	Fish	Oysters	Shrimp	Ingestion of Crab	Total
Resident					
Dioxins/Furans	0.0090	0.00024	0.00064	0.00038	0.01
Zinc	0.016	0.00088	0.0016	0.00053	0.02
Off-Site Exposure to					
Chemicals at the Mill ²					0.00002
Total	0.03	0.001	0.002	0.0009	0.03
Angler	_	-	_		-
Dioxins/Furans	0.10	0.0050	0.0085	0.0069	0.1
Zinc	0.13	0.0082	0.0125	0.0055	0.2
Off-Site Exposure to					
Chemicals at the Mill ²					0.00002
Total	0.2	0.013	0.021	0.012	0.3

Notes:

1. Shell fish and fin fish data from 2002.

SUMMARY OF LIFETIME CANCER RISKS -- 2002 DATA¹

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

		Exposure	Pathway		
Chemical	Ingestion of Fin Fish	Ingestion of Oysters	Ingestion of Shrimp	Ingestion of Crab	Total
Resident					
Dioxins/Furans	4.2E-06	1.1E-07	3.0E-07	1.8E-07	5.E-06
Zinc	NA	NA	NA	NA	NA
Off-Site Exposure to					
Chemicals at the Mill ²					4.0E-09
Total	4.2E-06	1.1E-07	3.0E-07	1.8E-07	5.E-06
Angler					
Dioxins/Furans	4.7E-05	2.3E-06	4.0E-06	3.2E-06	6.E-05
Zinc	NA	NA	NA	NA	NA
Off-Site Exposure to					
Chemicals at the Mill ²					4.0E-09
Total	5.E-05	2.E-06	4.E-06	3.E-06	6.E-05

Notes:

- 1. Shell fish and fin fish data from 2002.
- 2. Includes potential lifetime cancer risks for off-site receptors predicted in the *Baseline Human Health Risk Assessment of On-Site Soil and Groundwater* (Geomatrix, 2003).

SUMMARY OF REPRESENTATIVE CONCENTRATIONS IN BIOTA FROM MAD RIVER SLOUGH -- 2002/2005 DATA¹

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

Chemical	Fish Type	Species	Number of	Averge	Upperbound Representative	Rationale	Representative Concentration ¹		
			Samples (n) Concentration		Concentration ¹		Resident	Angler	
		Crab	9	0.78	1.76	95% Chebyshev (MVUE) UCL	0.78	1.76	
2,3,7,8-TCDD	Shellfish	Oyster	3	0.85	2.22	Maximum Concentration	0.85	2.22	
TEQ (Mammal		Shrimp	3	0.15	0.25	Maximum Concentration	0.15	0.25	
TEFs)		Jacksmelt	5	0.06	0.07	Student's-t UCL			
(ng/kg)	Fin Fish	Fin Fish Pile Sufperch		0.09	0.30	Maximum Concentration	0.09	0.30	
		Walleye Surfperch	5	0.06	0.07	Student's-t UCL			
		Crab	5	32	41.9	H-UCL	32	41.9	
	Shellfish	Oyster	2	94	110	Maximum Concentration	94	110	
Zinc (mg/kg)		Shrimp 1 11		11	Maximum Concentration	11	11		
	Ei- Ei-k	Shark	1		4	Maximum Concentration	1.4	15	
	Fin Fish	Sole	2	14	15	Maximum Concentration	14	15	

Notes:

- 1. All zinc data and dioxin/furan data for shellfish are from 2002. Dioxin/furan data for fin fish are from 2005.
- 2. Concentration represents the 95% upper confidence limit (95% UCL) as calculated using ProUCL software or the maximum concentration, which ever is lower. Abbreviations:

mg/kg = milligram per kilogram

ng/kg = nanograms per kilogram

TEF = Toxicity equivalency factors

- 2.3.7.8-TCDD TEQ = 2,3,7,8-tetrachloro dibenzo-p-dioxin toxicity equivalents
- -- = insufficient number of samples to calculate value

SUMMARY OF NONCANCER HAZARD INDEXES -- $2002/2005~\mathrm{DATA}^1$

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

		Exposure	Pathway		
Chemical	Ingestion of Fin Fish	Ingestion of Oysters	Ingestion of Shrimp	Ingestion of Crab	Total
Resident		·	•		
Dioxins/Furans	0.0031	0.00024	0.00064	0.00038	0.004
Zinc	0.016	0.00088	0.0016	0.00053	0.02
Off-Site Exposure to					
Chemicals at the Mill ²					0.00002
Total	0.02	0.001	0.002	0.001	0.02
Angler					
Dioxins/Furans	0.08	0.0050	0.0085	0.0069	0.1
Zinc	0.13	0.0082	0.013	0.0055	0.2
Off-Site Exposure to					_
Chemicals at the Mill ²					0.00002
Total	0.2	0.01	0.02	0.01	0.3

Notes:

1. Shell fish data from 2002; fin fish data for dioxins/furans from 2005, and fin fish data for zinc from 2002.

SUMMARY OF LIFETIME CANCER RISKS -- 2002/2005 DATA 1

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

		Exposure	Pathway		
Chemical	Ingestion of Fin Fish	Ingestion of Oysters	Ingestion of Shrimp	Ingestion of Crab	Total
Resident					
Dioxins/Furans	1.4E-06	1.1E-07	3.0E-07	1.8E-07	2.E-06
Zinc	NA	NA	NA	NA	NA
Off-Site Exposure to					
Chemicals at the Mill ²					4E-09
Total	1.4E-06	1.1E-07	3.0E-07	1.8E-07	2.E-06
Angler					
Dioxins/Furans	3.7E-05	2.3E-06	4.0E-06	3.2E-06	5.E-05
Zinc	NA	NA	NA	NA	NA
Off-Site Exposure to					
Chemicals at the Mill ²					4E-09
Total	4.E-05	2.E-06	4.E-06	3.E-06	5.E-05

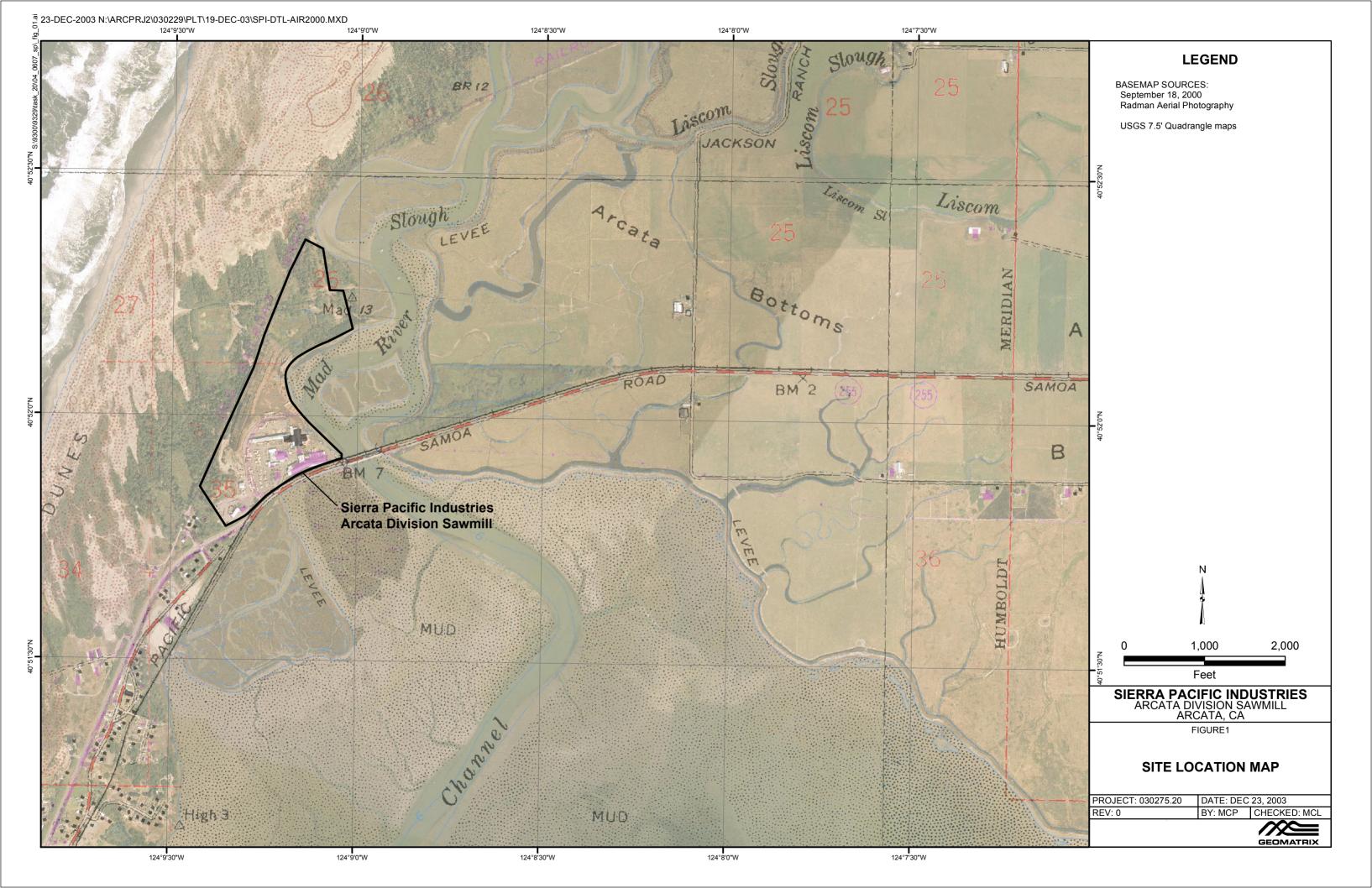
Notes:

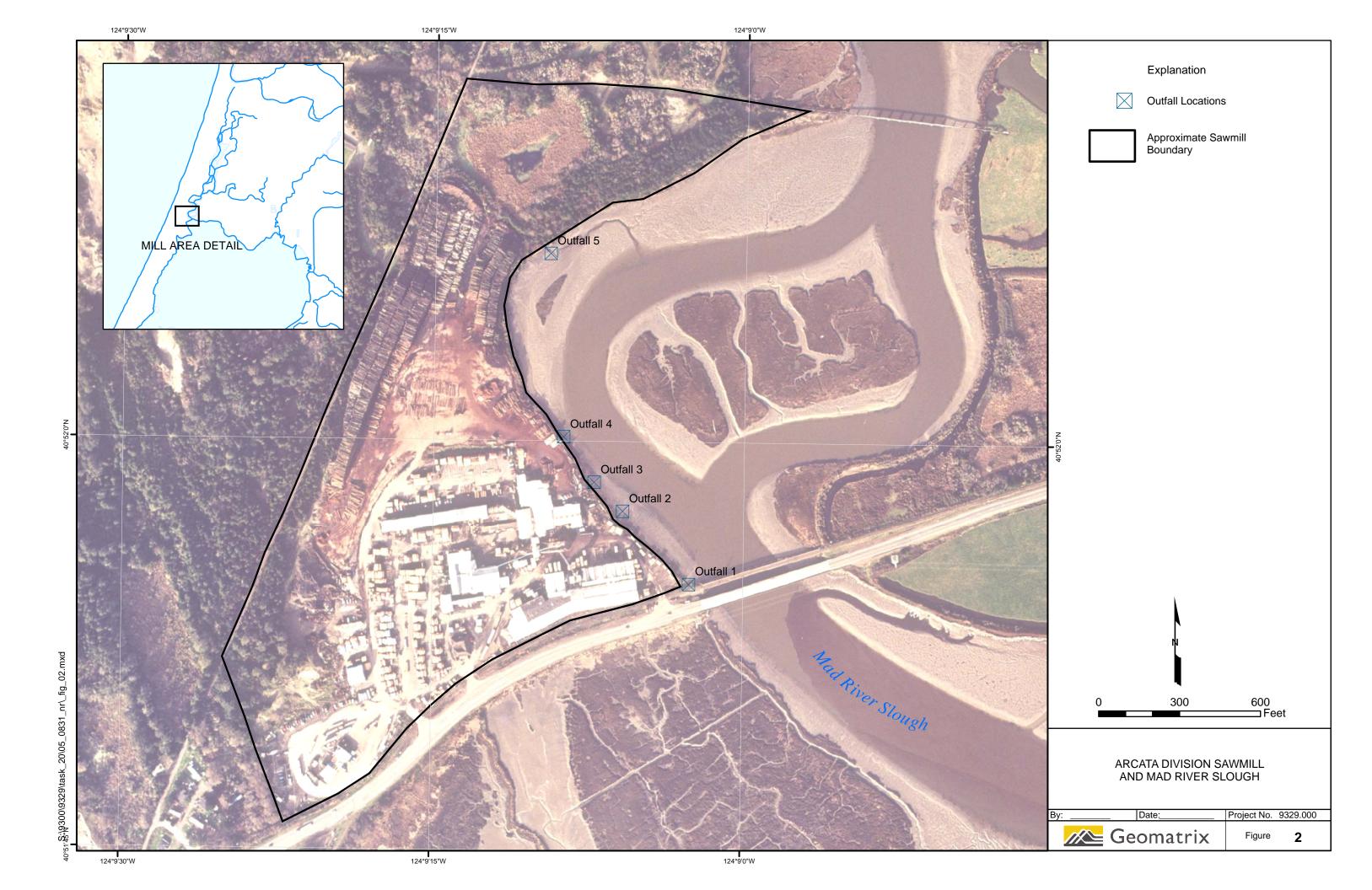
- 1. Shell fish data from 2002; fin fish data for dioxins/furans from 2005, and fin fish data for zinc from 2002.
- 2. Includes potential lifetime cancer risks for off-site receptors predicted in the *Baseline Human Health Risk Assessment of On-Site Soil and Groundwater* (Geomatrix, 2003).

SUMMARY OF POTENTIAL HUMAN HEALTH RISKS¹

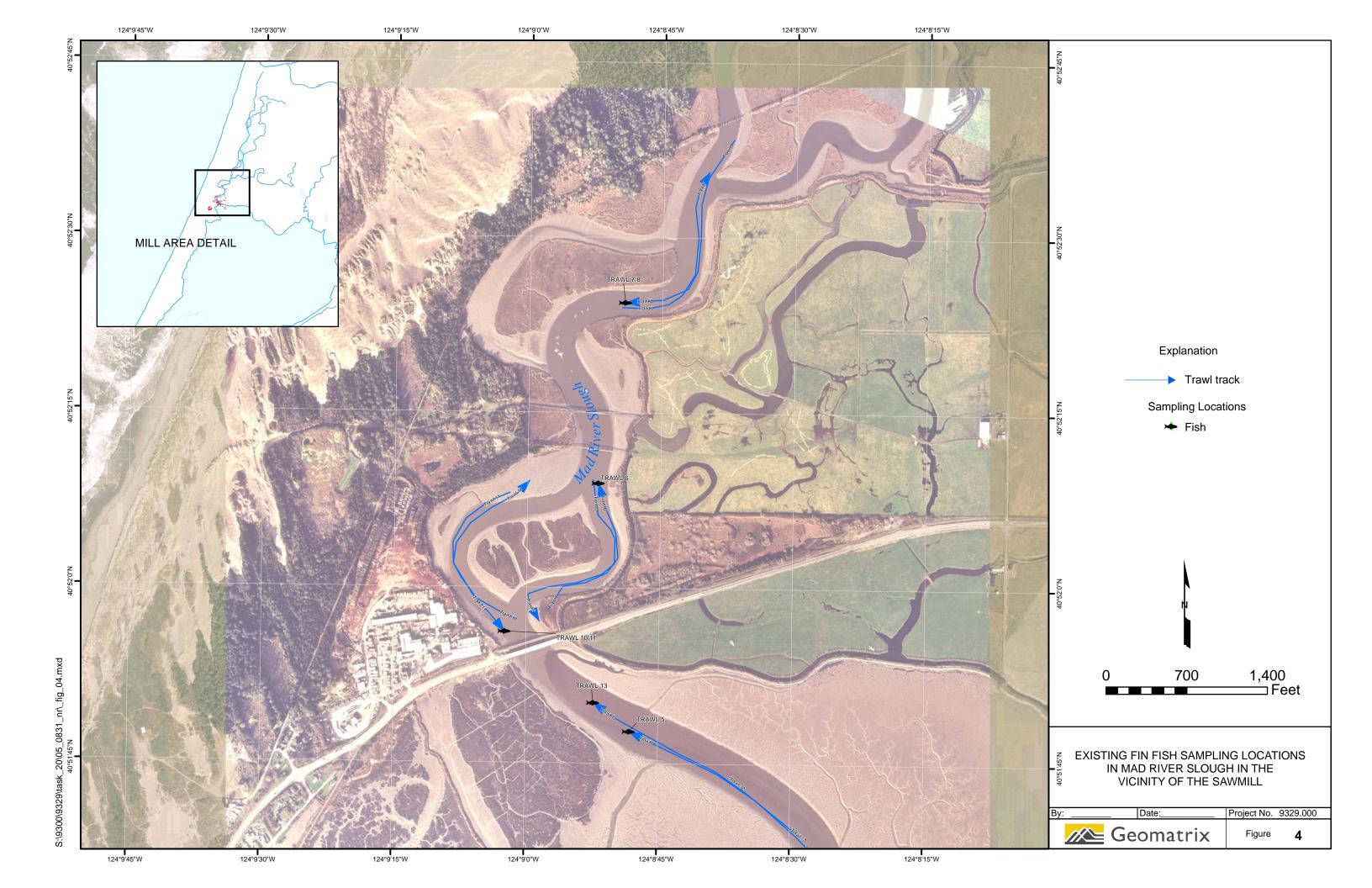
Sierra Pacific Industries Arcata Division Sawmill Arcata, California

D	•		T 10 11	G PU
Receptor	Hazard	Index	Lifetime	Cancer Risk
Year ²	2002/2005	2002	2002/2005	2002
Resident	0.02	0.03	2E-06	5e-6
Angler	0.3	0.3	5E-05	6e-5


Notes:


- 1. Includes risks associated with ingestion of fish and shellfish and potential health risks to off-site receptors predicted in the *Baseline Human Health Risk Assessment of On-Site Soil and Groundwater* (Geomatrix, 2003).
- 2002/2005 Fin fish collected in 2005 for dioxin/furans and fin fish data for zinc and shell fish data for zinc and dioxins/furans collected in 2002 2002 - Fin fish and shell fish collected in 2002.

"**Bold**" = Risks/hazard indexes calculated using the dioxin/furan fin fish data collected in 2005.



FIGURES

124°9'0"W Explanation **Outfall Locations Sampling Locations** Previous Core Sediment Sample Previous Surface Sediment Sample April 2004 Surface Sediment Sample Proposed Sampling Locations MILL AREA DETAIL Proposed Sample Transect Note: PCP was analyzed at selected previous surface and core sediment sample locations. 300 ☐ Feet 150 EXISTING AND PROPOSED SEDIMENT SAMPLING LOCTIONS
IN MAD RIVER SLOUGH IN THE
VICINITY OF THE SAWMILL Project No. 9329.000 Date:_ **Geomatrix** Figure 124°9'0"W

APPENDIX A Core Logs

PROJE				A PACIFIC California	INDU	STRIES	Bor	ing Lo	g E	xplan	ation
BORIN							ELEVATION A	ND DATU	M:		
DRILLI	NG C	TNC	RAC	ΓOR:			DATE STARTI	ED:	D	ATE FINIS	SHED:
DRILLI	NG MI	ETH	OD:				TOTAL DEPTI	H (ft.):	M	IEASURIN	IG POINT:
DRILLI				IT:		•	DEPTH TO WATER	FIRST	C	OMPL.	24 HRS.
SAMPL	_ING N	/IETI	HOD:				LOGGED BY:				
HAMM	ER W	EIGI	HT:			DROP:	RESPONSIBL	E PROFES	SSION	AL:	REG. NO.
DEPTH (feet)	Sample No.	Sample 17	Blows/ S Foot	OVM READING (ppm)	N	DESCRIPTION AME (USCS): color, moist, % by wt., plast. der cementation, react. w/HCl, geo. inte	nsity, structure,			RE	MARKS
<u> </u>	San	San	용고	RE C		Surface Elevation:					
_	-			-		Notes			_		
1- - 2-					1.	Soil described using visual-manual proce Society of Testing and Materials (ASTM) for guidance; a Standard based on the Un Classification System.	Standard D 24	ican 188	- - -		
_					2.	Soil color described according to Munsell	Color Chart.		-		
3-	-			-	3.	Dashed lines separating soil strata repres boundaries between sampled intervals th	ent inferred at may be abru	upt			
4-				-		or gradual transitions.	arioe observed		-		
5-						Solid lines represent approximate bounda within sample intervals.			_		
6-					5.	OVM = organic vapor meter, reading in v million.	olumetric parts	s per			
7 -					6.	Odor, if noted is subjective and not necesspecific compounds or concentrations.	ssarily indicativ	ve of	_		
_	-				7.	NA = Not applicable.			-		
8-	-				8.	ND = No data.					
9-						terval of recovered soil core collected with impler.	split-barrel		- - -		
10											
11		X			In	terval of no recovery.			_		
12									-		
13	SB-1-13.0					ample collected for chemical analysis and entification.	sample		_		
14									_		
4.5											
15				/XX=	Goor	natrix Consultants	Dr	oiect No. 93	329 00	0	Page 1 of 1

PROJECT: SIERRA PACIFIC INDUSTRIES Arcata, California	Log of Borin	g No. 101-0	GSED-C09
	ELEVATION AND DAT		
BORING LOCATION: Mad River Slough	Not surveyed; datu	ım is ground s	urface
DRILLING CONTRACTOR. Compatrix/Nov-Fields	DATE STARTED:	DATE FIN	ISHED:
DRILLING CONTRACTOR: Geomatrix/NewFields	8/14/04	8/14/04	
DRILLING METUOD. Direct ruch	TOTAL DEPTH (ft.):		NG POINT:
DRILLING METHOD: Direct push	5.3	Ground	
DRILLING EQUIPMENT: Slidehammer	DEPTH TO WATER (ft	FIRST NA	NA
SAMPLING METHOD: SS core slide hammer [3' x 2"]	LOGGED BY: M. Goerz		
HAMMER WEIGHT: NA DROP: NA	RESPONSIBLE PROF R. Steenson	ESSIONAL:	REG. NO. R.G. 6592
SAMPLES Gest Color, moist, % by wt., plast cementation, react. w/HCl, geo Surface Elevation: N	t. density, structure,	R	EMARKS
Single Si	let europed		
	lot surveyed		
SILT with SAND (ML): dark greenish grafines, 20% fine sand, medium plasticity, I soft [SEDIMENT] ~ 80% of sample consists of wood fragm 85% fines, 15% fine sand, no wood fragr	low toughness, very	at this location	s were collected ation. veries were: 2) 20", (3) 11",
3- 4- 5-		Composit collected 4 cores at 0.5' to 1';	t 0' to 0.5' and 3 cores at 1' to
Bottom of boring at 5.3 feet		collected	ample was from 1 core at 2'
7-		to 2.5'.	
8-		_	
9-		-	
11-			
12-		_	
13 – - 14 –		-	
		_	
15	PROJECT\9000s\9329\GINT LOGS\101-0	SED COS L OG COW	OAKBOREV (REV. 3/00
			1
Geomatrix Consultants	Project No.	D220 000	Page 1 of 1

PROJE				A PACIFIC	CINDUSTRIES					SED-C08
BORIN	GIOC	ATI	ON.	Mad Rive	er Slough	ELEVATION A				d curfoco
DOMIN			O14.	- IVIAG I (IVC		Not surveyed		atum		FINISHED:
DRILLI	NG CC	TNC	RACT	OR: Geo	matrix/NewFields	9/14/04	LU.		9/14/0	1
						TOTAL DEPT	H (ft.)	:		JRING POINT:
DRILLI	NG ME	ETH	OD:	Direct pu	sh					nd surface
DRILLI	NG EC	QUIF	MEN	T: Slideh	ammer	DEPTH TO WATER	\ N	RST A	NA	L. 24 HRS.
SAMPL	ING N	/IETI	HOD:	SS core	slide hammer [3' x 2"]	LOGGED BY: M. Goerz				
HAMM	ER WI	EIGI	HT:	NA	DROP: NA	RESPONSIBL R. Steenso		ROFES	SIONAL:	REG. NO. R.G. 6592
DEPTH (feet)	Sample No.		Blows/ Si Foot	OVM READING (ppm)	DESCRIPTION NAME (USCS): color, moist, % by wt., plast. der cementation, react. w/HCl, geo. inte	nsity, structure, er.				REMARKS
	0)	0)	_		Surface Elevation: Not surveyed; da					
1- -					SANDY SILT ("ML"): dark greenish gray ("1 fines, 30% fine sand, low plasticity, low tough ~ 90% of sample consists of wood fragments	nness, very so	ft,		at this	ores were collected location.
2-										, (2) 36", (3) 12.5",
3-					SILT with SAND ("ML"): very dark gray ("N fines, 20% fine sand, low plasticity, low tougl 10% of sample consists of wood fragments [hness, very so			- (4) 30" - -	
4-		I V							- Compo	osite samples were
_		$/ \setminus$							collected 4 cores	ed from: s at 0' to 0.5' and
5-					Bottom of boring at 5.0 feet				_ 2'. On	1'; 2 cores at 1' to e sample was
6-									to 3'.	ed from 1 core at 2'
7-									_	
-									_	
8-										
9										
-										
10-									_	
11-									_	
12									_	
12									_	
13										
14										
									-	
15					I				1	KEYFORM (REV. 7/99)
				/% <u></u>	Geomatrix Consultants	Pro	oject l	No. 93	329.000	Page 1 of 1

PROJE				A PACIFI Californi	C INDUSTRIES a		Log of Boring	g N	lo. 103-	GSED-C07
BORIN	G LOC	CATI	ON:	Mad Riv	er Slough		ELEVATION AND DATU Not surveyed; datu		s around s	surface
DRILLI	NG CC	TNC	RAC	TOR: Geo	omatrix/NewFields		DATE STARTED:	111 10	DATE FIN	IISHED:
							9/14/04 TOTAL DEPTH (ft.):		9/14/04 MEASUR	ING POINT:
DRILLI	NG ME	ETH	OD:	Direct p	ush		2.5		Ground	surface
DRILLI	NG EC	QUIF	PMEN	IT: Slideh	nammer		DEPTH TO WATER (ft.)		IRST NA	NA
SAMPI	LING N	/IETI	HOD:	SS core	e slide hammer [3' x 2"]		LOGGED BY: M. Goerz			
HAMM	ER WI	EIGI	HT:	NA	DROP: NA		RESPONSIBLE PROFE R. Steenson	SSI	ONAL:	REG. NO. R.G. 6592
DEPTH (feet)	Sample No.		Blows/ Si Foot	OVM READING (ppm)	DESCRIPTION NAME (USCS): color, moist, % by wt., plast. of cementation, react. w/HCl, geo. in	nter	sity, structure,		F	REMARKS
	S	S	ш	<u>«</u>			rveyed			
1- - 2-			-		SILT with SAND (ML): dark greenish gray fines, 15% fine sand, low plasticity, low tou sample consists of wood fragments [SEDII ~ 10% of sample consists of wood fragments]	ıghı ME	ness, ~ 90% of	_	slough was sampled.	under 2' of ater when as were collected
3-		/_\			Bottom of boring at 2.5 feet	,			at this loc Core reco (1) 6", (2	
					*			-	9.5".	
4- - 5-								_	collected	t 0' to 0.5'; 2
6-										
_								_		
7-								-		
_								-		
8-								-		
9-										
9								_		
10-								-		
_							•	-		
11-								-		1,
-								-		
12-								-		
13-										
								_		
14-								_		
-								_		
15-					I:\PRO	JEC.	T/9000s/9329/GINT LOGS/ 103-GS	SED-C	:07 LOG.GDW	OAKBOREV (REV. 3/00)
			•	%	Geomatrix Consultants		Project No. 9	329.	000	Page 1 of 1

		PACIFIC California	C INDUSTRIES		Log of Boring		-GSED-C06
BORING LOCA	ATION:	Mad Rive	er Slough		ELEVATION AND DATUM Not surveyed; datum		surface
DRILLING CON	NTRACT	OR: Geo	matrix/NewFields		DATE STARTED:	DATE FI	NISHED:
			·		9/15/04 TOTAL DEPTH (ft.):	9/15/04 MEASUR	RING POINT:
DRILLING MET	THOD:	Direct pu	ısh		5.0		surface
DRILLING EQU	UIPMEN	т: Slideh	ammer		DEPTH TO WATER (ft.)	FIRST NA	COMPL. NA
SAMPLING ME	ETHOD:	SS core	e slide hammer [3' x 2"]		LOGGED BY: M. Goerz		
HAMMER WEI	IGHT:	NA	DROP: NA		RESPONSIBLE PROFES R. Steenson	SSIONAL:	REG. NO. R.G. 6592
Sample Some No.	Sample TT Blows/ ST Foot	OVM READING (ppm)	NAME (USCS): color, moist, 9	RIPTION % by wt., plast. dens ct. w/HCl, geo. inter	sity, structure,		REMARKS
San	Blo Fig	RE	Surface El	evation: Not sur	veyed		
1-			SANDY SILT (ML): bluish b 15% fine sand, low plasticity [SEDIMENT]	, low dry strength			ree were collected
			~ 70% of sample consists of			at this lo	es were collected cation.
2-			₹ 80% fines, 20% fine sand, ~	50% of sample w	ood fragments	_ Core red	coveries were: ', (2) 12", (3) 15",
3-	\bigvee					_	
4-						- collecte	
5			Bottom of boring at 5.0 feet			0.5' to 1	at 0' to 0.5' and '; 3 cores at 1' to
6-						_ 2'. _	
7-						_	
						_	
8-						_	
9-							
10-			•				
11-							
12-						_	
13-						_	
14:						_	
14-						_	
15				I:\PROJEC	T\9000s\9329\GINT LOGS\ 104-GSI	ED-C06 LOG.GDW	OAKBOREV (REV. 3/00)
		/XS	Geomatrix Consultants		Project No. 93		Page 1 of 1

PROJE				A PACIFIC		JSTRIES	Bori	ng Lo	g 1	05-GSE	D-C05
BORIN				Mad Riv		igh	ELEVATION				
BOKIN	G LOC		OIV.	IVIAU I (IV	er Oloc		Not survey	ed; datui	m is	ground su	rface
DRILLI	NG C	TNC	RAC	ron: Ged	omatrix	/NewFields	DATE START 9/15/04			DATE FINIS 9/15/04	
DRILLI	NG MI	ETH	OD:	Direct pu	ısh		TOTAL DEPT			MEASURIN Ground s	urface
DRILLI	NG E	QUIF	PMEN	IT: Slideh	amme	r	DEPTH TO WATER	FIRST		COMPL.	24 HRS.
SAMPI	LING N	ИΕТ	HOD:	SS core	slide	hammer [3' x 2"]	LOGGED BY M. Goerz				
HAMM	ER W	EIGI	HT:	NA		DROP: NA	RESPONSIB R. Steenso		SSI	ONAL:	REG. NO. R.G. 6592
DEPTH (feet)	Sample No.	_		OVM READING (ppm)	١	DESCRIPTION NAME (USCS): color, moist, % by wt., plast. den cementation, react. w/HCl, geo. inte	nsity, structure, r.			RE	MARKS
	S	တ	ш	ш		Surface Elevation: Not surveyed; da			+		
_						ANDY SILT ("ML"): dark greenish gray("1 nes, 30% fine sand, nonplastic, low toughne			_		
1- - 2-			I	_	4/ \$8	OORLY GRADED SAND with SILT ("SP-S 0"), wet, 90% fine to medium sand, 10% fir ample contains wood fragments o wood fragments			_	at this local	were collected tion. eries were: 33", (3) 30",
-			•		V	o wood magmonto			-	(4) 31".	
3-		$\backslash /$							_		
4-									_	Composite	samples were
5-		$ \rangle$							_	collected fr 4 cores at	om: 0' to 0.5' and
5-						attended for the sign of F.O. foot			_	0.5' to 1', 1 3'.	' to 2', and 2' to
6-					В	ottom of boring at 5.3 feet			_		
7-											
-									_		
8-									_		
9-											
									-		
10-									-		
11-									_		
-									_		
12									-		
13-									-		
-									-		
14-									_		
4.5											
15		•		^^^							KEYFORM (REV. 7/99)
				/ %	Geor	natrix Consultants	Pr	oject No. 9	329.	000	Page 1 of 1

PROJE				PACIFIC		ISTRIES	Log	of Boring	No. 106-	GSED-C31
						a la		ION AND DATU		
BORING	G LOC	CATI	ON:	Mad Riv	er Slou	gn		rveyed; datum	n is ground	surface
DDII : ::	10.01		D 4 07	TOP: 0	motrical	NowFields		TARTED:	DATE FII	
DRILLIN	NG C	JNT	KACT	UK: Geo	ınatrıx/	NewFields	9/15/04		9/15/04	
DDIII	NO M	CTI	OD:	Direct re	ich			DEPTH (ft.):		RING POINT:
PKILLI	NG IVII	C I H	OD:	Direct pu	1011		5.3			surface
DRILLI	NG E	QUIF	MEN	T: Slideh	ammei	r		TO WATER (ft.)	FIRST NA	NA
SAMPL	ING N	ИΕΤΙ	HOD:	SS core	slide h	nammer [3' x 2"]	M. Goe	erz		
HAMME	ER W	EIGI	HT:	NA		DROP: NA	RESPOR	NSIBLE PROFES enson	SSIONAL:	REG. NO. R.G. 6592
DEPTH (feet)		mble IJQN	Blows/ 55 Foot	OVM READING (ppm)	N	DESCRIPTION IAME (USCS): color, moist, % by wt., plast. do cementation, react. w/HCl, geo. in	ensity, struc ter.	ture,		REMARKS
	Sal	Sal	ᄦ	RE O		Surface Elevation: Not	surveyed			
1- 2-					15 str SII \(\frac{1}{\pi} \) ~ 6	ANDY SILT (ML): dark greenish gray (50% fine sand, low plasticity, very soft, low rength, ~ 15% of sample consists of organity SAND (ML) 60% of sample consists of wood fragment 20% of sample consists of wood fragment	SY 3/1), we toughness nic fibers [S	, low dry	1 1	under 3' of ater when
3- 4- 5-									at this lo	es were collected cation. coveries were: (2) 24", (3) 31",
					Bo	ottom of boring at 5.3 feet				
6- 7- 8-									collected 4 cores 1', and 1 sample	ite samples were if from: at 0' to 0.5', 0.5' to ' to 2'. One was collected from t 2' to 2.5'.
9-									_	
-									-	
10										
10-										
-									-	
11-										
_	-								-	
12-										
_										
13-	1									
_	1								_	
14-	+								-	
									_	
15-						I:\PRO	ECT\9000s\932	9\GINT LOGS\ 106-GSE	ED-C31 LOG.GDW	OAKBOREV (REV. 3/00)
				/X	Coor	natrix Consultants				Page 1 of 1
			•		Geor	natrix Consultants		Project No. 93	23.000	rage 1011

PROJE		RRA PACIF ta, Califorr	FIC INDUSTRIES nia					GSED-C32
BORIN			iver Slough			N AND DATUM:		
BORIN	GLOCATIC	N. IVIAU IXI	ver Slough		Not surve	yed; datum i	is ground	surface
ייוופח	NG CONTR	ACTOR: Co	eomatrix/NewFields		DATE STAF	RTED:	DATE FIN	
DIVILLI	ING CONTR	ACTON. GE			9/15/04	TIL (6)	9/15/04	
DRILLI	NG METHO	D: Direct	oush		TOTAL DEF	PTH (ft.):		RING POINT:
DI VILLI		- Direct			5.3			surface COMPL.
DRILLI	NG EQUIPN	MENT: Slide	ehammer	,		WATER (ft.)	FIRST NA	NA
SAMPI	ING METH	OD: SS co	re slide hammer [3' x 2"]		LOGGED B M. Goerz			
HAMM	ER WEIGH	T: NA	DROP: NA		RESPONSI R. Steens	BLE PROFESS son	SIONAL:	REG. NO. R.G. 6592
DEPTH (feet)	Sample No. Sample Sample Blower	Foot OVM READING (ppm)	DESCRIPTION NAME (USCS): color, moist, % by we cementation, react. w/H	t., plast. dens	ity, structure	e,		REMARKS
	Sa Sa	2	Surface Elevation	n: Not sun	veyed			
1 - -			SILT with SAND (ML): greenish be fines, 25% fine sand, nonplastic, vortices of the control of th	very soft [SE	DIMENT]	t, 75% - -		under 1.3' of rater when
2-							-	
3-						_	Four cor	es were collected
4-						-	Core rec	coveries were: (2) 29", (3) 29",
5-						-	- (4) 52 .	
_			Bottom of boring at 5.3 feet			_	_	
6-					•	_	collected 4 cores	at 0' to 0.5', 0.5' to
7-						-	1', 1' to 2 - 	2', and 2' to 3'.
-							_	
8-						-	_	
9-						-	_	
10						.		
10-						-	_	
11-						-	-	
12							_	
						-	_	
13						-	_	
14						-	_	
						-	_	
15				I-IDDO IECT	/0000e/0330/CII	NT LOGS\ 107-GSED	-C32 LOG GDW	OAKBOREV (REV. 3/00)
		//XC=	Geomatrix Consultants	I.IFROJECT	T	Project No. 932		Page 1 of 1

BORING LOCATION: Mad River Slough ELEVATION AND DATUM: Not surveyed; datum is ground surface DATE STARTED: 9/16/04 9/16/	PROJE				A PACIFIC		JSTRIES			_		o. 108-0	SSED-C02			
DRILLING CONTRACTOR: Geomatrix/NewFields 9/16/04 9/16/	DOD!!						ah									
DRILLING METHOD: Direct push RILLING RETHOD: Direct push RAMPLING EQUIPMENT: Slidehammer SAMPLING SEVENT SINGHAMMER (3° x 2°) DEPTH TO WATER (1). FIRST COMPINA SAMPLING METHOD: SS core slide hammer (3° x 2°) HAMMER WEIGHT: NA DROP: NA DROP: NA DESCRIPTION NAME (USCS): color, moist, % by wt., plast, density, structure, comentation, react, whCl, geo inter SILT with SAND (ML): black (N 2.50), wt., 80% fines, 20% fine sand, low plasticity, very soft, ~ 30% of sample consists of organic material (SEDIMENT) Wood fragment Wood fragment Bottom of boring at 5.0 feet Bottom of boring at 5.0 feet 10 Composite sampler of 10.5% (1) 33°, (2) 18°, (3) 11.3°, (3) 11.3°, (3) 11	BORIN	IG LOC	JATI	ON:	Mad RIV	er Slou	gn				ı is	ground si	urface			
DRILLING METHOD: Direct push 5.0. DRILLING EQUIPMENT: Slidehammer DEPTH TO WATER (ft.) SAMPLING METHOD: SS core slide hammer [3' x 2"] HAMMER WEIGHT: NA DROP: NA DESCRIPTION RESPONSIBLE PROFESSIONAL: REG R. Steenson R. Steenson RESPONSIBLE PROFESSIONAL: REG R. Steenson REMARKS Surface Elevation: Not surveyed SILT with SAND (ftl.): black (N 2.50), wet, 80% fines, 20% fine sand, low plasticity, very soft, ~ 30% of sample consists of organic methal (SEDMENT) wood fragment i ow toughness, low dry strength wood fragment Bottom of boring at 5.0 feet Bottom of boring at 5.0 feet RESPONSIBLE PROFESSIONAL: REG REMARKS REMARKS Composite sample consists of organic methal (SEDMENT) Four cores were co at this location. Core recoveries were (1) 33". (2) 18", (3) (4) 31". Composite sampler collected from: 4 cores at 0'to 0.5' 0.5 to 1'; 3 cores a and 2'to 3'. Bottom of boring at 5.0 feet	DBILLI	NG C	ידואר	RACT	TOR: Geo	matriy/	NewFields			RTED:			SHED:			
DRILLING METHOD: Direct push RAMPLING EQUIPMENT: Slidehammer RAMPLING METHOD: SS core slide hammer [3' x 2"] HAMMER WEIGHT: NA DROP: NA RESPONSIBLE PROFESSIONAL: REG. R. Steenson R. Steenson R. Steenson REMARKS REMARK	DKILLI	140 00		V-10 I	GeC	, maurix/				DTIL (6.)			IC DOINT:			
DRILLING EQUIPMENT: Slidehammer SAMPLING METHOD. SS core slide hammer [3' x 2"] HAMMER WEIGHT: NA DROP: NA DESCRIPTION RESPONSIBLE PROFESSIONAL: REG. R. Steenson R. Steenson R. S. Steenson R. S. Steenson REMARKS SILT with SAND (ML): black (N 2.50), were 80% fines and, low plasticity, very soft, ~ 30% of sample consists of organic material (SEDIMENT) dark greenish gray (SGY 4/1) wood fragment Bottom of boring at 5.0 feet DESCRIPTION NAME (USCS): color, noist, % by wt. plast denaity, structure, cementation, react, which geo. infer. SILT with SAND (ML): black (N 2.50), were 80% fines, 20% fine sand, low plasticity, very soft, ~ 30% of sample consists of organic material (SEDIMENT) dark greenish gray (SGY 4/1) wood fragment Bottom of boring at 5.0 feet Composite sample: collected from: 4 cores at 10 to 1:3 cores a and 2 to 3: Composite sample: collected from: 4 cores at 10 to 1:3 cores a and 2 to 3: 10 11 12 13 14 15 Bottom of boring at 5.0 feet	DRILLI	NG M	ETH	OD.	Direct no	ısh				:PIH (ft.):						
DRILLING EQUIPMENT: Slidehammer [3' x 2"] SAMPLING METHOD: SS core slide hammer [3' x 2"] HAMMER WEIGHT: NA DROP: NA RESPONSIBLE PROFESSIONAL: REG R. Steenson R. Steen	DIVILLI	140 1411		OD.	Direct pe				5.0							
SAMPLES Sam	DRILLI	NG E	QUIP	MEN	ıT: Slideh	nammei	r						1			
HAMMERWEIGHT: NA DROP: NA R. Steenson R.G. SAMPLES BY STAMPLES BY	SAMPI	LING N	ИΕΤΗ	HOD:	SS core	slide h	nammer [3' x 2"]		M. Goera	Z			PEO 110			
NAME (USCS): color, moist, % by M., plast density, structure, cementation, read. wHoll, goe. inter. SILT with SAND (ML): black (N. 2.5/0), wet, 80% fines, 20% fine sand, low plasticity, very soft, ~ 30% of sample consists of organic material (SEDIMENT) arrangement wood fragment low toughness, low dry strength wood fragment Bettom of boring at 5.0 feet REMARKS	HAMM	IER W	EIGH	HT:	NA		DROP: NA				SSIC)NAL:	REG. NO. R.G. 6592			
SILT with SAND (ML): black (N 2.5/0), wet, 80% fines. 20% fine sand, low plasticity, very soft, ~ 30% of sample consists of organic material [SEDIMENT] dark greenish gray (5GY 4/1) wood fragment wood fragment wood fragment 1 -	(feet)				OVM EADING (ppm)	. N	IAME (USCS): color, moist, % by wt	., plast. dens	sity, structur	re,		RE	EMARKS			
SILT with SAND (ML): black (N 2.5/0), wet, 80% fines. 20% fine sand, low plasticity, very soft, ~ 30% of sample consists of organic material [SEDIMENT] dark greenish gray (5GY 4/1) wood fragment wood fragment wood fragment 1 -		Sa	Sa	窗上	A.		Surface Elevation	: Not sur	rveyed							
Bottom of boring at 5.0 feet Collected from: 4 cores at 0' to 0.5' 0.5' to 1'; 3 cores a and 2' to 3'.	2-					find org da	e sand, low plasticity, very soft, aganic material [SEDIMENT] urk greenish gray (5GY 4/1) bood fragment w toughness, low dry strength	5/0), wet, 8 ~ 30% of sa	80% fines, ample cons	20% sists of	 	at this local Core record (1) 33", (2)	ation. veries were:			
7- 8- 9- 10- 11- 12- 13- 14-	-					Вс	ottom of boring at 5.0 feet				_	collected 1 4 cores at 0.5' to 1';	from: 0' to 0.5' and 3 cores at 1' to 2'			
10- 11- 12- 13- 14-	7-															
11- 12- 13- 14- -	9										-					
11- 12- 13- 14- -		-									-					
11- 12- 13- 14- -	10										_					
12-	10															
12- 13- 14- 15-		-									-					
12- 13- 14- 15-	11										_					
13-	11															
13-		-									-					
13-	12										_					
14-	12															
14-		-									-					
14-	12										_					
15	13															
15		-									-					
15	11										_					
15 I:\PROJECT\9000s\9329\GINT LOGS\ 108-GSED-C02 LOG.GDW OAKBOREV	14															
15 I:\PROJECT\9000s\9329\GINT LOGS\ 108-GSED-C02 LOG.GDW OAKBOREV		-									-					
1:\PROJECT\9000s\9329\GINT LOGS\ 108-GSED-C02 LOG.GDW OAKBOREV	4.5															
	15							I:\PROJEC	T\9000s\9329\G	SINT LOGS\ 108-GS	ED-C	02 LOG.GDW	OAKBOREV (REV. 3/00)			
Geomatrix Consultants Project No. 9329.000 Page 1 o						Geor	matrix Consultants			Project No. 93	329.	000	Page 1 of 1			

PROJECT: SIERRA Arcata,	A PACIFIC		_	of Boring N	lo. 109-0	GSED-C01
BORING LOCATION:				ON AND DATUM.		
BORING LOCATION.	Mad Kive	ei Siougii		veyed; datum i	s ground s	urface
DRILLING CONTRACT	ron: Geo	matrix/NewFields	DATE ST 9/16/04		DATE FIN 9/16/04	ISHED:
				EPTH (ft.):		NG POINT:
DRILLING METHOD:	Direct pu	ısh	5.0		Ground	surface
DRILLING EQUIPMEN	IT: Slideh	ammer	DEPTH T		FIRST NA	NA
SAMPLING METHOD:	SS core	slide hammer [3' x 2"]	M. Goe	rz		
HAMMER WEIGHT:	NA	DROP: NA	RESPON R. Stee	SIBLE PROFESS nson	IONAL:	REG. NO. R.G. 6592
Ceet) Sample Sample Sample Sample Foot	OVM READING (ppm)	DESCRIPTIO NAME (USCS): color, moist, % by wt cementation, react. w/HC	., plast. density, structo I, geo. inter.	ure,	R	EMARKS
1-	_	SILT with SAND (ML): greenish bla fines, 15% fine sand, low plasticity, consists of organic material [SEDIN dark greenish gray (10Y 3/1), low to trace coarse gravel	ack (10GY 2.5/1), w very soft , ~ 30% of //ENT]	f sample	at this loc	veries were:
3- 4-		wood fragment		-	(4) 23". Composit collected	2) 22.5", (3) 20", e samples were from: t 0' to 0.5', 0.5' to
5		Bottom of boring at 5.0 feet		- - - -	1', and 1'	to 2'.
10-				-		
11- - 12- - 13-				- - - -	-	
14-	/% =	Geomatrix Consultants	I:\PROJECT\9000s			OAKBOREV (REV. 3/00) Page 1 of 1
		Johnan A Johnsulaints		1.0,500.110.0020		1. 230 1 0. 1

PROJECT: SIERRA PACIFI Arcata, California		Boring Log		D-C01A
		ELEVATION AND DATUM		
BORING LOCATION: Mad Riv	er Slough	Not surveyed; datum	is ground su	urface
DRILLING CONTRACTOR: Geo	omatrix/NewFields	DATE STARTED: 9/16/04	DATE FINI 9/16/04	PHED:
BRILLING CONTINUE TO A		TOTAL DEPTH (ft.):	MEASURIN	IG POINT:
DRILLING METHOD: Direct pu	ush	TOTAL BLI TIT (IL.).	Ground s	
		DEPTH TO FIRST	COMPL.	24 HRS.
DRILLING EQUIPMENT: Slider	nammer	WATER NA	NA	
SAMPLING METHOD: SS core	e slide hammer [3' x 2"]	M. Goerz		DEO NO
HAMMER WEIGHT: NA	DROP: NA	RESPONSIBLE PROFES R. Steenson	SSIONAL:	REG. NO. R.G. 6592
Sample Sample Sample Sample Sample OVM Sample Sample Sample Sample Sample Sample Sample Sout Sout Sample Sout Sout Sample Sout Sout Sample Sout Sout Sample Sout Sout Sample Sout Sample Sout Sample Sout Sample Sout Sout Sout Sout Sample Sout Sout Sout Sout Sout Sout Sout Sout	DESCRIPTION NAME (USCS): color, moist, % by wt., pla cementation, react. w/HCl, ge	st. density, structure, o. inter.	RE	EMARKS
San San San (f. Fr. Fr. Fr. Fr. Fr. Fr. Fr. Fr. Fr. Fr	Surface Elevation: Not surve	yed; datum is ground surface		
2-	SILTY SAND ("SM"): bluish black ("58 to medium sand, 40% low plasticity fine SILT with SAND ("ML"): dark greenish 80% fines, 20% fine sand, medium platoughness, low dry strength [SEDIMEN POORLY GRADED SAND with SILT ("black ("5BG 2.5/1"), wet, 90% fine to replasticity fines [SEDIMENT] Bottom of boring at 2.5 feet	3 2.5/1"), wet, 60% fine es [SEDIMENT] gray ("10BG 4/1"), wet, sticity, very soft, low IT] "SP-SM"): greenish	at this loca	s were collected ation. veries were: 2) 19", (3) 16",
3 - 4 - 5 - 6 -			- collected f	0' to 0.5', 0.5' to
7-				
8-				
9-			_	
-				
10-			-	
			_	
11-				
-			-	
12-			-	
14				
			-	
13-				
13-			_	
13-			_	
. –			_	
14-				
. –		Project No. 93		KEYFORM (REV. 7/9

APPENDIX B

Laboratory Results for Sediment Samples

October 14, 2004

Service Request No: K2407209

Ann Holbrow Geomatrix Consultants 2101 Webster St. 12th Floor Oakland, CA 94612

RE: 9329.000

Dear Ann:

Enclosed are the results of the sample(s) submitted to our laboratory on September 17, 2004. For your reference, these analyses have been assigned our service request number K2407209.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAC standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3376.

Respectfully submitted,

Columbia Analytical Services, Inc.

Gregory Salata, Ph.D.

Project Chemist

GS/jeb

Page 1 of

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the POL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Case Narrative

COLUMBIA ANALYTICAL SERVICES, INC.

Client:

Geomatrix Consultants

Service Request No.:

K2407209

Project: Sample Matrix: 9329,000 Soil and Water Date Received:

09/17/04

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier III validation deliverables including summary forms and all of the associated raw data for each of the analyses. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Twenty soil and three water samples were received for analysis at Columbia Analytical Services on 09/17/04. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

General Chemistry Parameters

No anomalies associated with the analysis of these samples were observed.

Semivolatile Organic Compounds by EPA Method 8270C

Holding Time Exceptions:

Samples RB-1, RB-2 and RB-3 were received with insufficient hold time remaining to complete the analysis within the recommended limit. The analysis was performed as soon as possible after receipt by the laboratory. The data is flagged to indicate the holding time violation.

Initial Calibration (ICAL) Exceptions:

The primary evaluation criterion was exceeded for Pentachlorophenol in ICAL ID CAL3872. In accordance with CAS standard operating procedures, the alternative evaluation specified in the EPA method was performed using the mean Relative Standard Deviation (RSD) of all analytes in the calibration. The result of the mean RSD calculation was 7.6%. The calibration meets the alternative evaluation criteria. Note that CAS/Kelso policy does not allow the use of averaging if any analyte in the ICAL exceeds 30% RSD.

Elevated Method Reporting Limits:

The reporting limit is elevated for all analytes in various samples because the samples required dilution. The chromatogram indicated the presence of non-target background components. The matrix interference prevented adequate resolution of the target compounds at the reporting limit. The reporting limits are adjusted to reflect the dilution.

Surrogate Exceptions:

The control criteria were exceeded for the 2-Fluorophenol surrogate in LCS KWG0414855-1. The associated matrix spike recoveries of target compounds were in control, indicating the analysis was in control. The surrogate outlier is flagged accordingly. No further corrective action was appropriate.

Relative Percent Difference Exceptions:

The Relative Percent Difference (RPD) for the 2-Chlorophenol in the replicate matrix spike analyses of 107-GSED-C32-2.0 was outside control criteria. All spike recoveries in the MS, DMS, and associated Laboratory Control Sample (LCS) were within acceptance limits, indicating the analytical batch was in control. No further corrective action was appropriate.

No other anoma	ilies associated	with the a	malysis of th	iese samples w	ere observe	a. 🖊	,
	Hoon	1121 3	In In	1	Date 4	0/14	//
Approved by	- VX SIGH	19 1	192111	A	Date_ <u>- (</u>	. 	

Chain of Custody Documentation

K140720919207

																						915201
		of Custody F	20	cor	d												Dat	e:q	13	100	1	Page of 2
Project N	10:: 9329	,000		-				A	NAI	LYSE	S		•							1		REMARKS
Samplers	(Signature:)	£	od 8021	od 8021 s only)	y) od 8260	od 8270	EPA Method 8270 SIM (PAHS only)	15m (Gasoline)	Method 8015m (Diesel)	Method 8015m (Motor OII)	Cleanup		SMSD				or Other (o)				tainers	Additional Comments (I) Analyze EPA 8276 Olus TICS.
Date	Time	Sample Number	EPA Meth	EPA Method 8021 (Hal. VOCs only) EPA Method 8021	(BETX onl	EPA Metho	EPA Metho	Method 80	Method 80	Method 80	Silica Gel Cleanup	0	MS				Vapor (V), or Other	Filtered	Preserved	Cooled	No. of Containers	plus TICS. LVI/GCIMS Chlarinated Solver
9/14/04	1520	RB-1										X						7	7	7	J	
<u>भीज्ञेल</u>	111200	106- EDED-C31-2.00	\vdash		-							X			-		5			ţ	-	- MPG
4/15/04	1700	107-GSED-C32-0.5			十	 	-								1		5	-	_	Ÿ	1	2
		107-65ED-C32-1.0			_	-	 	_				X					5			 	~	3
		107-656D-C32-2.0	\vdash	1 1	+-	t^{-}						V	X				↲	_		Υ	a	4
		107-65ED-C32-3,0			\top							X				\Box	5			7	- [5	6
, _ _		105-GSED-C05-0,5			\dagger	 	 				*******	文		_	†		5	_	_	~	1	6
		105-65ED-C05-1.0			\top							X					5		_	Y	1	1
		105-6560-605-2.0			1							V	_	\top			3	-1	:	~	١	\$
		105-6560-005-3,0			\top	T	ļ					又			-		5	-1		7	1	a
		RB-2					1					又						2	2	7	(ĮŌ
9 16 04		108-65ED-CO2-0.5				1	†					X	7				5	-		ĭ	1	1
	1	109-6920-203-1.0			1							文					5	-	-	7	-	12
		108-6560-62-2.0										X					5	-	-	-د ا	1	13
1	0830	108-6560-62-3.0										又					5	- -	-	7	ij	14
Laborate Colu.				rnarou			•		R	sults 055				Total N	lo. of	Cont	ain	ers			Ka	15
Relingui	shed by (Si	gnature): Date: Re	ling	uished	by (Sign	ature	;):	D	ate:	T	Relin	quisl	ned by	(Sigr	aturé):	D	ate:			od of Shipment:
	Name:	1 1 1 1 11 11 11 11	inte	d Nam	e:				T	ime:	F	Printe	d N	ame:				T	ime	. آر	abo	ratory Comments and Log No.:
Compan		1500 Co	mpa	any:		•					7	Comp	any:									
Receive		Date: Re	ceiv	ed by	:				D	ate:	T	Rece	ved	by:				D	ate:			
Printed		Time: Pr	inte	d Nam	e:				т	ime:	F	rinte	d N	ame:					ime	, ,	13	Geomatrix Consultants
Compan			mpa	iny:							7	Comp	any:							2	OT W	ebster Street, 12th Floor - Oakland, CA 94612 Phone: 510-663-4100 Fax: 510-663-4141

19208 Chain-of Custody Record Project No.: 9329,000 ANALYSES REMARKS Samplers (Signature:) **Additional Comments** DAnalyze 8070C
plus TICS, LVI/ GC MS
Chlorinated solvents Method 8015m (Motor 5 Ĭ 5 Date Time Sample Number 9/16/04/0830 108-615ED-COZ-1.0D h900 109-65ED-CO1-0.5 S 109-65ED-COI-1.0 0900 109-GSED-CO1-2.0 3 10 1000 110-GSED.COIA-0.5 1000 110-65ED-COIA-1.0 1000 110-GISED-COIA- 2.0 1330 RB-3 101-6560-C09-2.0D Laboratory: Turnaround Time: Results to: ROSS Relinquished by (Signature): Day Total No. of Containers STANDARD STEENSON Relinquished by (Signature): Relinguished by (Signature): Date: Method of Shipment: 7/16/04 Printed Name: Printed Name: Printed Name: MATT GOERZ Laboratory Comments and Log No.: Time: Time: Time: Company: 500 Company: Company: Printed Name: 20 Date: Received by: Date: K2407209 Received by: Date: 9/17/04 Printed Name: Printed Name: Time: Time: Geometrix Consultants Company: Company: Company: Webster Street, 12th Floor + Oakland, CA 94612 Phone: 510-663-4100 Fax: 510-663-4141

 ∞

Columbia Analytical Services Inc. Cooler Receipt and Preservation Form

PC_	grees	
	0	

Proj	ect/Client_	ratrix			ork Order K24(7209		<i></i>	
Coc	ler received on 5600	9-17-0	and ope	ened on 91704	by	Du)			
1.	Were custody seals on out If yes, how many and		ers?	1 Front			ŀ	Y	N
2	Were custody seals intact?						,	Y	N
3.			e custody s	eals?			ن 	Y	N
4.	Were signature and date process are signature and date process are signature. Is the shipper's airbill available to the signature and date process are signature.	ilable and f	iled? If no	, record airbill number:	8479-75	539-03	30	$\left(\begin{array}{c} Y \end{array}\right)$	N
5.	COC#			· _					
	Temperature of cooler(s) upon rece	eipt: (°C)	2.1					
	-	(°C)	•						
	Were samples hand deliver	•	ame day as	collection?				- Y _	<u></u> N
6.	Were custody papers prop		-			٠	ı	(Y)	N
7.	Type of packing material		11 - 11	45			•		
8.	Did all bottles arrive in g	7	1	ken)?			/	Y	N
9.	Were all bottle labels com	•					,	Y	N
10.	Did all bottle labels and						,	(Y)	N
11.	Were the correct types of		_					(A)	N
12.	Were all of the preserved				pH?		,	<u></u>	N
13.	Were VOA vials checked							<u>-Y</u>	-N
14.	Did the bottles originate f	rom CAS/K	or a branc	h laboratory?				\sqrt{Y}	N
15.	Are CWA Microbiology			-	me remaining fr	om collection?		Y	N
16.	Was C12/Res negative?	-						Y	- N
Ext	lain any discrepancies:_								
	-								
					······································				
						· · · · · · · · · · · · · · · · · · ·			
			·····						
RE	SOLUTION:								
San	uples that required presen	vation or r	eceived o	ut of temperature:					
	Sample ID	Reagent	Volume	Lot Number	Bottle Type	Rec'd out of Temperature	Initials		

Sample ID	Reagent	Volume	Lot Number	Bottle Type	Rec'd out of Temperature	Initials
1						

					,	
				<u> </u>		
·····						1
-				_		

Total Solids

Analytical Results

Client:

Geomatrix Consultants

Project:

9329,000

Sample Matrix:

Soil

Total Solids

Prep Method:

NONE

Analysis Method: Test Notes:

160.3M

Units: PERCENT

Basis: Wet

Service Request: K2407209

Sample Name	Lab Code	Date Collected	Date Received	Date Analyzed	Result	Result Notes
107-GSED-C32-0.5	K2407209-002	09/15/2004	09/17/2004	09/23/2004	40.6	
107-GSED-C32-1.0	K2407209-003	09/15/2004	09/17/2004	09/23/2004	46.6	
107-GSED-C32-1.0	K2407209-004	09/15/2004	09/17/2004	09/23/2004	54.8	
107-GSED-C32-2.0 107-GSED-C32-3.0	K2407209-005	09/15/2004	09/17/2004	09/23/2004	57.0	
	K2407209-005	09/15/2004	09/17/2004	09/23/2004	42.2	
105-GSED-C05-0.5	K2407209-007	09/15/2004	09/17/2004	09/23/2004	40.0	
105-GSED-C05-1.0	K2407209-007	09/15/2004	09/17/2004	09/23/2004	51.9	
105-GSED-C05-2.0	K2407209-009	09/15/2004	09/17/2004	09/23/2004	77.5	
105-GSED-C05-3.0	K2407209-003 K2407209-011	09/16/2004	09/17/2004	09/23/2004	43.5	
108-GSED-C02-0.5	******	09/16/2004	09/17/2004	09/23/2004	44.6	
108-GSED-C02-1.0	K2407209-012		09/17/2004	09/23/2004	51.7	
108-GSED-C02-2.0	K2407209-013	09/16/2004	09/17/2004	09/23/2004	57.7	
108-GSED-C02-3.0	K2407209-014	09/16/2004			46.3	
108-GSED-C02-1.0D	K2407209-015	09/16/2004	09/17/2004	09/23/2004		'
109-GSED-C01-0.5	K2407209-016	09/16/2004	09/17/2004	09/23/2004	43.4	
109-GSED-C01-1.0	K2407209-017	09/16/2004	09/17/2004	09/23/2004	46.0	
109-GSED-C01-2.0	K2407209-018	09/16/2004	09/17/2004	09/23/2004	54.5	
110-GSED-C01A-0.5	K2407209-019	09/16/2004	09/17/2004	09/23/2004	60,6	
110-GSED-C01A-1.0	K2407209-020	09/16/2004	09/17/2004	09/23/2004	64.7	
110-GSED-C01A-2.0	K2407209-021	09/16/2004	09/17/2004	09/23/2004	82.0	
101-GSED-C01A-2.0 101-GSED-C09-2.0D	K2407209-023	09/14/2004	09/17/2004	09/23/2004	46.9	

QA/QC Report

Client:

Geomatrix Consultants

Project:

9329,000

Sample Matrix:

Soil

Service Request: K2407209

Date Collected: 09/15/2004 Date Received: 09/17/2004

Date Analyzed: 09/23/2004

Duplicate Sample Summary Total Solids

Prep Method: Analysis Method:

NONE

Units: PERCENT

Basis: Wet

Test Notes:

160.3M

Duplicate

Sample Name

Lab Code

Sample Result

Sample Result

Average

Percent Result Difference

Notes

107-GSED-C32-0.5

K2407209-002

40.6

40.3

40.5

<1

Relative

Printed: 09/24/2004 10:33

U:\Stealth\Crystal.rpt\Solids.rpt

SuperSet Reference: W0414461

Page 1 of 3

12

QA/QC Report

Client: Project: Geomatrix Consultants

Sample Matrix:

9329.000

Soil

Service Request: K2407209

Date Collected: 09/16/2004

Date Received: 09/17/2004

Date Analyzed: 09/23/2004

Duplicate Sample Summary Total Solids

Prep Method:

NONE

Units: PERCENT

Test Notes:

Sample Name

Analysis Method:

160.3M

Relative

Basis: Wet

Sample Result

Duplicate Sample Result

Average

Percent Result Difference Notes

108-GSED-C02-0.5

K2407209-011

Lab Code

43.5

43.5

43.5

<1

Page 2 of 3

Printed: 09/24/2004 10:33 U:\Stealth\Crystal.rpt\Solids.rpt

13

SuperSet Reference: W0414461

QA/QC Report

Client:

Geomatrix Consultants

Project:

9329,000

Sample Matrix:

Soil

Service Request: K2407209

Date Collected: 09/16/2004

Date Received: 09/17/2004

Date Analyzed: 09/23/2004

Duplicate Sample Summary Total Solids

Prep Method:

NONE

Units: PERCENT

Analysis Method:

160.3M

Basis: Wet

Test Notes:

Relative Duplicate Sample Percent Sample Result Result Difference Notes Result Lab Code Average Sample Name 110-GSED-C01A-1.0 K2407209-020 64.7 65.6 65.2 1

Group ID:

KWG0414461

Analyst:

RMcKee

Date Acquired: Date Completed: 09/23/2004 17:09 09/24/2004 07:49 Oven TempStart:

103 DEG C

Oven TempEnd:

104 DEG C

Reviewed By:

Date Reviewed:

#	Lab Code	Client ID	Matrix	Tare	Tare+Wet	Tare+Dry	% Solids	QC Ref Sample	Comments
27	K2407206-010	WCP070	SOIL	1.24g	10.42g	9.02g	84.7	QC Itel Sample	Conditions
28	K2407206-011	WCP071	SOIL	1.23g	7.89g	6.51g	79.3		
29	K2407206-012	WCP072	SOIL	1.23g	10.47g	9.81g	92.9		
30	K2407206-013	WCP073	SOIL	1.24g	12.05g	10.75g	88.0		
31	K2407206-016	WCP076	SOIL	1.23g	11.80g	11.12g	93.6		
32	K2407206-017	WCP077	SOIL	1.21g	14.00g	11.12g 12.77g	90.4		
33	K2407206-018	WCP078	SOIL	1.21g	9.54g	8.35g	85.7		
34	K2407206-019	WCP079	SOIL	1.22g	13.97g	11.43g	80.1	 	
35	K2407206-020	WCP080	SOIL	1.21g	16.97g	14.26g	82.8		
36	K2407206-021	WCP081	SOIL	1.23g	12.88g	11.02g	84.0		
37	K2407206-022	WCP082	SOIL	1.24g	11.22g	10.55g	93.3		
3,8	K2407206-023	WCP083	SOIL	1.22g	13.85g	10.55g 11.56g	81.9		
39	K2407206-024	WCP084	SOIL	1.23g	12.56g	11.92g	94.4		
40	K2407206-025	WCP085	SOIL	1.23g	13.37g	11.48g	84.4		
41	K2407209-002	107-GSED-C32-0.5	SOIL	1.21g	13.85g	6.34g	40.6		
42	K2407209-003	107-GSED-C32-1.0	SOIL	1.22g	11.22g	5.88g	46.6		
43	K2407209-004	107-GSED-C32-2.0	SOIL	1.23g	12.82g	7.58g	54.8		
44	K2407209-005	107-GSED-C32-3.0	SOIL	1.23g	14.93g	9.04g	57.0		
45	K2407209-006	105-GSED-C05-0.5	SOIL	1.22g	14.91g	7.00g	42.2		
46	K2407209-007	105-GSED-C05-1.0	SOIL	1.23g	17.89g	7.89g	40.0	<u> </u>	
47	K2407209-008	105-GSED-C05-2.0	SOIL	1.23g	16.56g	9.18g	51.9		
48	K2407209-009	105-GSED-C05-3.0	SOIL	1.23g	19.18g	15.15g	77.5		
49	K2407209-011	108-GSED-C02-0.5	SOIL	1.23g	15.33g	7.37g	43.5		
50	K2407209-012	108-GSED-C02-1.0	SOIL	1.23g	13.50g	6.70g	44.6		
51	K2407209-013	108-GSED-C02-2.0	SOIL	1.24g	13.87g	7.77g	51.7		·
52	K2407209-014	108-GSED-C02-3.0	SOIL	1.22g	14.86g	9.09g	57.7		
53	K2407209-015	108-GSED-C02-1.0D	SOIL	1.23g	13.98g	7.13g	46.3		
54	K2407209-016	109-GSED-C01-0.5	SOIL	1.23g	16.31g	7.78g	43.4		
55	K2407209-017	109-GSED-C01-1.0	SOIL	1.23g	16.25g	8.14g	46.0		
56	K2407209-018	109-GSED-C01-2.0	SOIL	1.22g	18.43g	10.60g	54.5		
57	K2407209-019	110-GSED-C01A-0.5	SOIL	1.22g	27.00g	16.84g	60.6		
					~5	10.04g	00.0		

Printed:

U:\Stealth\Crystal.rpt\prep3.rpt

15

09/24/2004

08:01:12

EPA Method 160.3 - Total Solids

2 of 4

Group ID:

KWG0414461

Analyst:

RMcKee

Date Acquired:

Date Completed:

09/23/2004 17:09 09/24/2004 07:49 Oven TempStart:

103 DEG C

Oven TempEnd:

104 DEG C

Reviewed By:

Date Reviewed:

9/24/04

#	Lab Code	Client ID	Matrix	Tare	Tare+Wet	Tare+Dry	% Solids	QC Ref Sample	Comments
58	K2407209-020	110-GSED-C01A-1.0	SOIL	1.23g	13.40g	9.10g	64,7		
59	K2407209-021	110-GSED-C01A-2.0	SOIL	1.23g	13.63g	11.40g	82.0		
60	K2407209-023	101-GSED-C09-2.0D	SOIL	1.22g	13.45g	6.95g	46.9		
61	K2407236-001	ES3-16-0-PCBA	SOIL	1.21g	7.48g	7.38g	98.4		
62	K2407245-001	Compost (mixed 8-20)	SLUDGE	1.21g	4.91g	2.79g	42.7		
63	K2407248-001	S-1 Sediments I	SEDIMENT	1.23g	15.80g	11.03g	67.3		
64	K2407248-002	S-1 Sediments II	SEDIMENT	1.21g	20.89g	15.46g	72.4		-
65	K2407248-003	S-1 Sediments III	SEDIMENT	1.22g	10.85g	7.25g	62,6		
66	K2407248-008	S-2 Sediments I	SEDIMENT	1.23g	23.06g	18.00g	76.8		
67	K2407248-009	S-2 Sediments II	SEDIMENT	1.23g	24.52g	19.12g	76.8		
68	K2407248-010	S-2 Sediments III	SEDIMENT	1.22g	25.88g	20.26g	77.2	· · · · · · · · · · · · · · · · · · ·	
69	K2407248-017	S-3 Sediments I	SEDIMENT	1.23g	15.91g	8.66g	50.6		
70	K2407248-018	S-3 Sediments II	SEDIMENT	1.23g	15.71g	8.51g	50.3		
971	K2407248-019	S-3 Sediments III	SEDIMENT	1.24g	11.10g	6.24g	50.7		
72	K2407248-030	S-4 Sediments I	SEDIMENT	1.22g	35.09g	28.24g	79.8		
73	K2407248-031	S-4 Sediments II	SEDIMENT	1.22g	24.34g	19.62g	79.6		
74	K2407248-032	S-4 Sediments III	SEDIMENT	1.22g	28.42g	23.43g	81.7		
75	K2407248-035	S-5N Sediments I	SEDIMENT	1.23g	12.36g	8.47g	65.0		
76	K2407248-036	S-5N Sediments II	SEDIMENT	1.23g	17.33g	13.11g	73.8		
77	K2407248-037	S-5N Sediments III	SEDIMENT	1.23g	21.73g	15.98g	72.0		
78	K2407248-038	S-5S Sediments I	SEDIMENT	1.22g	18.04g	12.01g	64.1		
79	K2407248-039	S-5S Sediments II	SEDIMENT	1.23g	21.48g	14.53g	65.7		
80	K2407248-040	S-5S Sediments III	SEDIMENT	1.23g	15.04g	10.23g	65.2		
81	KWG0414461-1	Duplicate Client Sample	SOIL	1.23g	8.18g	7.23g	86.3	K2407206-001	
82	KWG0414461-10	Duplicate Client Sample	SEDIMENT	1.21g	33.35g	27.10g	80.6	K2407156-001	
83	KWG0414461-11	Triplicate Client Sample	SEDIMENT	1.21g	35.62g	29.30g	81.6	K2407156-001	
84	KWG0414461-12	Duplicate Client Sample	SEDIMENT	1.21g	23.09g	14.74g	61.8	K2407156-010	
85	KWG0414461-13	Triplicate Client Sample	SEDIMENT	1.21g	23.33g	14.87g	61.8	K2407156-010	
86	KWG0414461-2	Duplicate Client Sample	SOIL	1.23g	11.20g	9.66g	84.6	K2407206-010	
	KWG0414461-3	Duplicate Client Sample	SOIL	1.23g	11.88g	10.09g	83.2	K2407206-020	
88	KWG0414461-4	Duplicate Client Sample	SOIL	1.23g	13.75g	6.28g	40.3	K2407209-002	

Printed: 09/24/2004

08:01:12

Group ID:

KWG0414461

Analyst:

RMcKee

Date Acquired:

09/23/2004 17:09

Oven TempStart:

103 DEG C

Reviewed By:

MAS

Date Completed:

09/24/2004 07:49

Oven TempEnd:

104 DEG C

Date Reviewed:

9/24/04

#	Lab Code	Client ID	Matrix	Tare	Tare+Wet	Tare+Dry	% Solids	QC Ref Sample	Comments
89	KWG0414461-5	Duplicate Client Sample	SOIL	1.23g	14.94g	7.19g	43.5	K2407209-011	
90	KWG0414461-6	Duplicate Client Sample	SOIL	1.22g	12.55g	8.65g	65.6	K2407209-020	
91	KWG0414461-7	Duplicate Client Sample	SEDIMENT	1.22g	14.40g	10.02g	66.8	K2407248-001	
92	KWG0414461-8	Duplicate Client Sample	SEDIMENT	1.21g	13.63g	7.45g	50.2	K2407248-019	
93	KWG0414461-9	Duplicate Client Sample	SOIL	1.21g	7.47g	7.37g	98.4	K2407236-001	

09/24/2004

08:01:12

EPA Method 160.3 - Total Solids

Group ID:

KWG0414461

Analyst: Date Acquired: **RMcKee**

09/23/2004 17:09

Oven TempStart:

103 DEG C

Date Completed:

09/24/2004 07:49

Oven TempEnd:

104 DEG C

Reviewed By:

Date Reviewed:

#	Lab Code	Client ID	Matrix	Tare	Tare+Wet	Tare+Dry	% Solids	QC Ref Sample	Comments
1	K2407143-018	106GSED-C31-2.0D	SOIL	1.22g	13.91g	7.93g	52.9		
2	K2407156-001	LW2-G217	SEDIMENT	1.20g	33.87g	28.75g	84.3		
3	K2407156-002	LW2-G233	SEDIMENT	1.21g	29.45g	17.54g	57.8		
4	K2407156-003	LW2-G249	SEDIMENT	1.21g	28.42g	19.03g	65.5		
5	K2407156-004	LW2-G520	SEDIMENT	1.21g	24.43g	10.87g	41.6		
6	K2407156-005	LW2-G260	SEDIMENT	1.21g	33.07g	23.94g	71.3		
7	K2407156-006	LW2-G268	SEDIMENT	1.21g	25.79g	12.98g	47.9		
8	K2407156-007	LW2-G318	SEDIMENT	1.20g	23.34g	14.62g	60.6	· · · · · · · · · · · · · · · · · · ·	
9	K2407156-008	LW2-G320	SEDIMENT	1.20g	25.40g	16.38g	62.7		
10	K2407156-009	LW2-G323	SEDIMENT	1.21g	29.87g	22.73g	75.1		
11	K2407156-010	LW2-G327	SEDIMENT	1.21g	24.11g	15.35g	61.7		
12	K2407156-011	LW2-G331	SEDIMENT	1.23g	33.64g	24.26g	71.1		
13	K2407156-012	LW2-G333	SEDIMENT	1.21g	32.65g	20.07g	60.0		
14	K2407156-013	LW2-G335	SEDIMENT	1.22g	31.70g	22.70g	70.5		
15	K2407156-014	LW2-G336	SEDIMENT	1.21g	29.54g	20.30g	67.4		
16	K2407156-015	LW2-G348	SEDIMENT	1.21g	27.30g	17.52g	62.5		
17	K2407156-016	LW2-G350	SEDIMENT	1.21g	25.60g	13.42g	50.1		
18	K2407206-001	WCP061	SOIL	1.23g	7.57g	6.72g	86.6		
19	K2407206-002	WCP062	SOIL	1.23g	9.40g	8.43g	88.1		
20	K2407206-003	WCP063	SOIL	1.22g	10.18g	8.99g	86.7		
21	K2407206-004	WCP064	SOIL	1.23g	16.53g	11.56g	67.5		
22	K2407206-005	WCP065	SOIL	1.24g	11.95g	10.41g	85.6		
23	K2407206-006	WCP066	SOIL	1.23g	9.74g	8.98g	91.1		***
24	K2407206-007	WCP067	SOIL	1.22g	12.11g	11.00g	89.8		
25	K2407206-008	WCP068	SOIL	1.23g	9.35g	7.48g	77.0	**	
26	K2407206-009	WCP069	SOIL	1.23g	9.83g	8.70g	86.9		

09/24/2004

08:01:12

EPA Method 160.3 - Total Solids

General Chemistry Parameters

Analytical Report

Client:

Geomatrix Consultants

Project Name: NA

Project Number: 9329.000

Sample Matrix: WATER

Service Request: K2407209 Date Collected: 09/14/04

Date Received: 09/17/04

Carbon, Total Organic

Units: mg/L (ppm)

Basis: NA

Analysis Method 415.1

Test Notes:

Sample Name	Lab Code	MRL	MDL	Dilution Factor	Date Analyzed	Result	Result Notes
RB-1	K2407209-001	0.5	0.07	1	09/23/04	0.6	
Method Blank	K2407209-MB	0.5	0.07	1	09/23/04	ND	

QA/QC Report

Client:

Geomatrix Consultants

Project Name:

NA

Project Number: 9329.000

Sample Matrix:

WATER

Service Request: K2407209

Date Collected: 09/14/04

Date Received: 09/17/04

Date Extracted: NA

Date Analyzed: 09/23/04

Duplicate Summary

Inorganic Parameters

Sample Name:

RB-1

Lab Code: Test Notes: K2407209-001DUP

Units: mg/L (ppm)

Basis: NA

Duplicate Relative Sample Sample Percent Result Analysis Result Average Difference Notes Method MRL Result Analyte 0.6 <1 415.1 0.5 0.6 0.6 Carbon, Total Organic

QA/QC Report

Client:

Geomatrix Consultants

Project Name: Project Number: 9329.000

NA

Sample Matrix:

WATER

Service Request: K2407209

Date Collected: 09/14/04 Date Received: 09/17/04

Date Extracted: NA Date Analyzed: 09/23/04

Matrix Spike Summary Inorganic Parameters

Sample Name:

RB-1

Lab Code:

Test Notes:

K2407209-001MS

Units: mg/L (ppm) Basis: NA

CAS Percent Recovery Spiked Analysis Spike Sample Sample Percent Acceptance Result Analyte Method MRL Level Result Result Recovery Limits Notes 415.1 0.5 25.0 0.6 25.4 99 76-121 Carbon, Total Organic

QA/QC Report

Client:

Geomatrix Consultants

Project Name: Project Number: NA

9329.000

Sample Matrix:

WATER

Service Request: K2407209

Date Collected: NA

Date Received: NA NA

Date Extracted: Date Analyzed:

09/23/04

Laboratory Control Sample Summary **Inorganic Parameters**

Sample Name:

Laboratory Control Sample

Lab Code:

K2407209-LCS

Units:

mg/L (ppm)

Basis: NA

Test Notes:

CAS Percent Recovery Acceptance Percent Result Prep Analysis True Value Result Recovery Limits Notes Method Method Analyte 415.1 30.1 31.1 103 92-106 None Carbon, Total Organic

Report By: AYaple

QA/QC Report

Client: Geomatrix Consultants

Project: NA

Service Request: K2407209

Date Collected: NA
Date Received: NA

Carbon, Total Organic EPA Method 415.1 Units: mg/L (ppm)

CONTINUING CALIBRATION VERIFICATION (CCV)

•	Date	True	Measured	Percent
	Analyzed	Value	Value	Recovery
CCV1 Result	09/23/04	25.0	26.3	105
CCV2 Result	09/23/04	25.0	26.0	104
CCV3 Result	09/23/04	25.0	25.4	102
CCV4 Result	09/23/04	25.0	25.2	101
CCV5 Result	09/23/04	25.0	25.8	103
CCV6 Result	09/23/04	25.0	24.8	99
CCV7 Result	09/23/04	25.0	24.9	100
CCV8 Result	09/23/04	25.0	26.0	104

CONTINUING CALIBRATION BLANK (CCB)

	Date			
•	Analyzed	MRL	Value	
CCB1 Result	09/23/04	0.5	ND	
CCB2 Result	09/23/04	0.5	ND	
CCB3 Result	09/23/04	0.5	ND	
CCB4 Result	09/23/04	0.5	ND	
CCB5 Result	09/23/04	0,5	ND	
CCB6 Result	09/23/04	0.5	ND	
CCB7 Result	09/23/04	0,5	ND	
CCB8 Result	09/23/04	0.5	ND	

Analytical Report

Client:

Geomatrix Consultants

Project Name: NA
Project Number: 9329.000

Sample Matrix: SOIL Service Request: K2407209

Date Collected: 09/14-16/04 Date Received: 09/17/04

Carbon, Total Organic

Units: Percent

Basis: Dry

Analysis Method ASTM D4129-82M

Test Notes:

				Dilution	Date		Result
Sample Name	Lab Code	MRL	MDL	Factor	Analyzed	Result	Notes
107-GSED-C32-0.5	K2407209-002	0.05	0.02	· I	09/28/04	9.21	
107-GSED-C32-1.0	K2407209-003	0.05	0.02	1	09/28/04	6.36	
107-GSED-C32-2.0	K2407209-004	0.05	0.02	1	09/28/04	4.18	
107-GSED-C32-3.0	K2407209-005	0.05	0.02	1	09/28/04	3.88	
105-GSED-C05-0.5	K2407209-006	0.05	0.02	1	09/28/04	10.1	
105-GSED-C05-1.0	K2407209-007	0.05	0.02	1	09/28/04	17.4	
105-GSED-C05-2.0	K2407209-008	0.05	0.02	1	09/28/04	9.47	
105-GSED-C05-3.0	K2407209-009	0.05	0.02	1	09/28/04	1.11	•
108-GSED-C02-0.5	K2407209-011	0.05	0.02	1	09/28/04	7.25	
108-GSED-C02-1.0	K2407209-012	0.05	0.02	1	09/28/04	7.04	
108-GSED-C02-2.0	K2407209-013	0.05	0.02	1	09/28/04	4.67	
108-GSED-C02-3.0	K2407209-014	0.05	0.02	1	09/28/04	5.19	
108-GSED-C02-1.0D	K2407209-015	0.05	0.02	1	09/28/04	6.72	
109-GSED-C01-0.5	K2407209-016	0.05	0.02	1	09/28/04	6.73	
109-GSED-C01-1.0	K2407209-017	0.05	0.02	1	09/28/04	5.91	
109-GSED-C01-2.0	K2407209-018	0.05	0.02	1	09/28/04	4.57	
110-GSED-C01A-0.5	K2407209-019	0.05	0.02	ĺ	09/28/04	2.51	
110-GSED-C01A-1.0	K2407209-020	0.05	0.02	1	09/28/04	1.03	
110-GSED-C01A-2.0	K2407209-021	0.05	0.02	1	09/28/04	0.28	
101-GSED-C09-2.0D	K2407209-023	0.05	0.02	1	09/28/04	13.7	
Method Blank	K2407209-MB	0.05	0.02	1	09/28/04	ND	

Modified for analysis of soil.

M

QA/QC Report

Client:

Geomatrix Consultants

Project Name: Project Number: 9329.000

NA

Sample Matrix:

SOIL

Service Request: K2407209

Date Collected: 09/15/04

Date Received: 09/17/04 Date Extracted: NA

Date Analyzed: 09/28/04

Duplicate Summary Inorganic Parameters

Sample Name:

107-GSED-C32-2.0

Lab Code:

K2407209-004DUP

Test Notes:

Units: Percent

Basis: Dry

Analyte	Analysis Method	MRL	Sample Result	Duplicate Sample Result		Relative Percent Difference	Result Notes
Carbon, Total Organic	ASTM D4129-82M	0.05	4.18	3.82	4.00	9	

M

QA/QC Report

Client:

Geomatrix Consultants

Project Name:

NA

Project Number: 9329.000 Sample Matrix:

SOIL

Service Request: K2407209

Date Collected: 09/15/04 Date Received: 09/17/04

Date Extracted: NA

Date Analyzed: 09/28/04

Matrix Spike Summary Inorganic Parameters

Sample Name:

107-GSED-C32-2.0

Lab Code:

K2407209-004MS

Test Notes:

Units: Percent

Basis: Dry

Analyte	Analysis Method	MRL	Spike Level	Sample Result	_	Percent Recovery	CAS Percent Recovery Acceptance Limits	Resul- Notes
Carbon, Total Organic	ASTM D4129-82M	0.05	5.73	4.18	10.0	102	75-125	

M

QA/QC Report

Client:

Geomatrix Consultants

Project Name:

NA

Project Number:

9329.000

Sample Matrix:

SOIL

Service Request: K2407209

Date Collected:

NA

Date Received:

NA Date Extracted: NA

09/28/04

Date Analyzed:

Laboratory Control Sample Summary **Inorganic Parameters**

Sample Name:

Laboratory Control Sample

Lab Code:

K2407209-LCS

Units: Percent

Basis: Dry

Test Notes:

Analyte

Carbon, Total Organic

CAS Percent

Recovery Prep Analysis Percent Acceptance Result Method Method True Value Result Recovery Limits Notes None ASTM D4129-82M 0.75 0.80 107 85-115

M

QA/QC Report

Client:

Geomatrix Consultants

Project Name:

NA

Project Number: 9329.000 Sample Matrix:

SOIL

Service Request: K2407209

Date Collected: NA

Date Received: NA Date Extracted: NA

Date Analyzed: 09/28/04

Duplicate Summary

Inorganic Parameters

Sample Name:

109-GSED-C01-2.0

Lab Code:

K2407209-018DUP

Test Notes:

Units: PERCENT

Basis: Dry

Duplicate Relative Percent Result Sample Sample Analysis Result Average Difference Notes Result Method MRL Analyte 4.57 4.37

Carbon, Total Organic

0.05

4.47

M

QA/QC Report

Client:

Geomatrix Consultants

Project Name: Project Number: 9329.000

NA

Sample Matrix:

SOIL

Service Request: K2407209

Date Collected: NA

Date Received: NA Date Extracted: NA

Date Analyzed: 09/28/04

Matrix Spike Summary Inorganic Parameters

Sample Name:

109-GSED-C01-2.0

Lab Code:

K2407209-018MS

Test Notes:

Units: PERCENT

Basis: Dry

							Percent		
	Analysis		Spike	Sample	Spiked Sample	Percent	Recovery Acceptance	Result	
Analyte	Method .	MRL	Level	•	-	Recovery	Limits	Notes	
Carbon, Total Organic	ASTM D4129-82M	0.05	7.56	4.57	12.2	101	75-125		

Μ

QA/QC Report

Client: Geomatrix Consultants

Project: NA

Service Request: K2407209

Date Collected: NA
Date Received: NA

Carbon, Total Organic ASTM D4129-82M Units: Percent

CONTINUING CALIBRATION VERIFICATION (CCV)

	Date Analyzed	True Value	Measured Value	Percent Recovery
CCV1 Result	09/28/04	20.0	19.1	96
CCV2 Result	09/28/04	20,0	19.3	97
CCV3 Result	09/28/04	20.0	19.4	97
CCV4 Result	09/28/04	20.0	19.1	96
CCV5 Result	09/28/04	20.0	19.6	98
CCV6 Result	09/28/04	20.0	19.7	99

CONTINUING CALIBRATION BLANK (CCB)

	Date		Blank
	Analyzed	MRL	Value
CCB1 Result	09/28/04	0,05	ND
CCB2 Result	09/28/04	0.05	ND
CCB3 Result	09/28/04	0.05	ND
CCB4 Result	09/28/04	0.05	ND
CCB5 Result	09/28/04	0.05	ND
CCB6 Result	09/28/04	0.05	ND

		Original	
Work	Request #	#: 7267 7209 7140 7253 7252 7219	
Tier: _	·	II II IA IIA IIA II	
Date A	malyzed:	9/23/04	
Analys	iSP		
Analys	is TC	X.	
Audiys			
		DATA QUALITY REPORT	
		INORGANICS	
Explain	any "no	" responses to questions below, and any corrective actions in the com-	ments section below.
i.		nethod name and number correct and appropriate?	(yes/no/NA
2.		g times met for all analyses and for all samples?	\approx
3.		•	(ves)no/NA
•		culations correct?	(yes/no/NA
4.	Is the r	eporting basis correct? (Dry Weight)	yes/no(NA)
5.	All qua	lity control criteria met?	yes/no/NA
	a.	Is the calibration curve correlation coefficient ≥ 0.995?	yes/no.NA
	b.	MBs, CCVs, CCBs, LCSs, Dups, and Spikes, analyzed at proper frequency?	yes/no/NA
	c.	Are ICVs, CCVs, and CCBs all within acceptance limits?	yes/no/NA
	d.	Are results for methods blanks all ND?	yes no/NA
·	e.	Are all QC samples within acceptance criteria? (LCS % rec, MS/DMS % rec, DUP or MS/DMS RPDs, etc.)	yes no/NA
	f.	Are all exceptions explained?	yes/no/NA)
6.	Are all	service requests that apply attached?	(yes/po/NA
7.	Are all	samples labelled correctly?	Yesyno/NA
8.		l instructions on the service request been followed? ecial MRLs, QC on a specific sample)	yesino/NA
9.	Are dete	ection limits and units reported correctly?	yes/no/NA

COMMENTS:

10.

11.

12.

Final Approved by: Date: 9/25/174

Are proper Analysis/Extraction stickers included on report?

Was analysis turned in by the due date? (n-2) (If not record SR#)

Is the unused space on the benchsheet crossed out?

yesyno/NA

Analytical Batch KA0404215

Analysis For:	Total Organic Carbon	· · · · · · · · · · · · · · · · · · ·		Method:Oxidation E	Water PA 415.1/9060
nstrument: A B					
rintout SPL#	CBA	2	3	4	5
ample Number	RB	ICV	ICB	CCV-1	CCB-1
ilution Factor	1	1	1	1	[
olution Conc., mg/L	0.00100	21.65400	0.12000	26.45300	0.09900
Blank Correction, mg/L	0.15345	0.15345	0.15345	0.15345	0.15345
		21.50055	-0.03345	26.29955	-0.05445
Net mg/L	-0.15245 <0.5	21.5	<0.5	26.3	<0.5
ΓOC mg/L	<0.5	%REC=108		%REC=105	70.5
ON A COLUMN	6	78REC=1082	8	9	10
Printout SPL# Sample Number	MB-1	LCS-1	7267-1	7267-2	7267-3
Dilution Factor	1	1	1	1207-2	1
Solution Conc., mg/L	0.10100	31.20600	2.44700	11.07100	6.37200
Blank Correction, mg/L	0.15345	0.15345	0.15345	0.15345	0.15345
Net mg/L	-0.05245	31.05255	2.29355	10.91755	6.21855
ΓOC mg/L	<0.5	31.1	2.3	10.9	6.2
		%REC=103			·
Printout SPL#	1	12	13	14	15
Sample Number	7267-4	7267-5	7267-6	RB	RB
Dilution Factor	1	1	ı	1	1
Solution Conc., mg/L	8.23200	8.53600	2.45300	0.19400	0.12500
Blank Correction, mg/L	0.15345	0.15345	0.15345	0.15345	0.15345
Diank Correction, mg/L	0.13343		·		
	8.07855 ·	8.38255	2.29955	0.04055	-0.02845
Net mg/L TOC mg/L ICV = 20.0 (Ref.#TOCI	8.07855 8.1	8.38255 8.4	·	0.04055	-0.02845 <0.5
Net mg/L FOC mg/L CV = 20.0 (Ref.#TOC1 LCS =30.1 ppm APG 4 CCV = 25.0 (Ref.#TOC Spike: 0.05 ml if 5000 ppr	8.07855 8.1 -55-L) 1012 Lot #37720 (11-45-Y)	8.38255 8.4 REF#TOC1-06-D)	2.29955 2.3	<u> </u>	
Net mg/L FOC mg/L ICV = 20.0 (Ref.#TOC1 LCS =30.1 ppm APG 4 CCV = 25.0 (Ref.#TOC Spike: 0.05 ml if 5000 ppr	8.07855 8.1 -55-L) 1012 Lot #37720 (11-45-Y)	8.38255 8.4 REF#TOC1-06-D)	2.29955 2.3	<0.5	
Net mg/L FOC mg/L CV = 20.0 (Ref.#TOC1 LCS =30.1 ppm APG 4 CCV = 25.0 (Ref.#TOC Spike: 0.05 ml if 5000 ppr	8.07855 8.1 -55-L) 1012 Lot #37720 (11-45-Y)	8.38255 8.4 REF#TOC1-06-D)	2.29955 2.3	<0.5	
Net mg/L FOC mg/L CV = 20.0 (Ref.#TOC1 LCS =30.1 ppm APG 4 CCV = 25.0 (Ref.#TOC Spike: 0.05 ml if 5000 ppr	8.07855 8.1 -55-L) 1012 Lot #37720 (11-45-Y)	8.38255 8.4 REF#TOC1-06-D)	2.29955 2.3	<0.5	
Net mg/L FOC mg/L ICV = 20.0 (Ref.#TOC1 LCS =30.1 ppm APG 4 CCV = 25.0 (Ref.#TOC Spike: 0.05 ml if 5000 ppr	8.07855 8.1 -55-L) 1012 Lot #37720 (11-45-Y)	8.38255 8.4 REF#TOC1-06-D)	2.29955 2.3	<0.5	
Net mg/L TOC mg/L ICV = 20.0 (Ref.#TOC1 LCS =30.1 ppm APG 4 CCV = 25.0 (Ref.#TOC Spike: 0.05 ml if 5000 ppr	8.07855 8.1 -55-L) 1012 Lot #37720 (11-45-Y)	8.38255 8.4 REF#TOC1-06-D)	2.29955 2.3	<0.5	
Net mg/L TOC mg/L ICV = 20.0 (Ref.#TOC1 LCS =30.1 ppm APG 4 CCV = 25.0 (Ref.#TOC Spike: 0.05 ml if 5000 ppr	8.07855 8.1 -55-L) 1012 Lot #37720 (11-45-Y)	8.38255 8.4 REF#TOC1-06-D)	2.29955 2.3	<0.5	
Net mg/L FOC mg/L ICV = 20.0 (Ref.#TOC1 LCS =30.1 ppm APG 4 CCV = 25.0 (Ref.#TOC Spike: 0.05 ml if 5000 ppr	8.07855 8.1 -55-L) 1012 Lot #37720 (11-45-Y)	8.38255 8.4 REF#TOC1-06-D)	2.29955 2.3	<0.5	
Net mg/L FOC mg/L CV = 20.0 (Ref.#TOC1 LCS =30.1 ppm APG 4 CCV = 25.0 (Ref.#TOC Spike: 0.05 ml if 5000 ppr	8.07855 8.1 -55-L) 1012 Lot #37720 (11-45-Y)	8.38255 8.4 REF#TOC1-06-D)	2.29955 2.3	<0.5	
Net mg/L FOC mg/L CV = 20.0 (Ref.#TOC1 LCS =30.1 ppm APG 4 CCV = 25.0 (Ref.#TOC Spike: 0.05 ml if 5000 ppr	8.07855 8.1 -55-L) 1012 Lot #37720 (11-45-Y)	8.38255 8.4 REF#TOC1-06-D)	2.29955 2.3	<0.5	
Net mg/L FOC mg/L CV = 20.0 (Ref.#TOC1 LCS =30.1 ppm APG 4 CCV = 25.0 (Ref.#TOC Spike: 0.05 ml if 5000 ppr	8.07855 8.1 -55-L) 1012 Lot #37720 (11-45-Y)	8.38255 8.4 REF#TOC1-06-D)	2.29955 2.3	<0.5	
Net mg/L TOC mg/L ICV = 20.0 (Ref.#TOC1 LCS =30.1 ppm APG 4 CCV = 25.0 (Ref.#TOC Spike: 0.05 ml if 5000 ppr	8.07855 8.1 -55-L) 1012 Lot #37720 (11-45-Y)	8.38255 8.4 REF#TOC1-06-D)	2.29955 2.3	<0.5	
Net mg/L TOC mg/L ICV = 20.0 (Ref.#TOCI LCS =30.1 ppm APG 4 CCV = 25.0 (Ref.#TOC Spike: 0.05 ml if 5000 ppr	8.07855 8.1 -55-L) 1012 Lot #37720 (11-45-Y)	8.38255 8.4 REF#TOC1-06-D)	2.29955 2.3	<0.5 tor (Ref.# TOC1-21-J)	<0.5
Net mg/L TOC mg/L ICV = 20.0 (Ref.#TOC1 LCS =30.1 ppm APG 4 CCV = 25.0 (Ref.#TOC Spike: 0.05 ml if 5000 ppr Comments:	8.07855 8.1 -55-L) 1012 Lot #37720 (11-45-Y) m stock> 10.0 mls s	8.38255 8.4 REF#TOC1-06-D)	2.29955 2.3	tor (Ref.# TOC1-21-J) Date Analyzed 9/	
Net mg/L TOC mg/L ICV = 20.0 (Ref.#TOCI LCS =30.1 ppm APG 4 CCV = 25.0 (Ref.#TOC Spike: 0.05 ml if 5000 ppr	8.07855 8.1 -55-L) 1012 Lot #37720 (11-45-Y) m stock> 10.0 mls s	8.38255 8.4 REF#TOC1-06-D)	2.29955 2.3	<0.5 tor (Ref.# TOC1-21-J)	<0.5

Service Request #:				Matrix:	Water
Analysis For:	Total Organic Carbon	· · · · · · · · · · · · · · · · · · ·		Method:Oxidation l	EPA 415.1
Instrument: A B					
Printout SPL#	16	17	18	19	20
Sample Number	CCV-2	CCB-2	7267-7	7267-7D	7267-7MS
Dilution Factor	Ī	1	1	Ī	1
Solution Conc., mg/L	26.11700	0.14300	2.08400	2.03100	27.89000
Blank Correction, mg/L	0.15345	0.15345	0.15345	0.15345	0.15345
Net mg/L	25.96355	-0.01045	1.93055	1.87755	27.73655
TOC mg/L	26.0	<0.5	1.9	1.9	27.7
	%REC=104		X=1.9 RPD=<1		%REC=103~
Printout SPL#	21	22	23	24	25
Sample Number	RB	RB	7267-8	7267-9	7267-10
Dilution Factor	1	1	1	1	1
Solution Conc., mg/L	0.15500	0.14200	2.29500	6.81600	7.49100
Blank Correction, mg/L	0.15345	0.15345	0.15345	0.15345	0.15345
Net mg/L	0.00155	-0.01145	2.14155	6.66255	7.33755
TOC mg/L	<0.5	<0.5	2.1	6.7	7.3
Printout SPL#	26	27	28	29	. 30
Sample Number	7267-11	RB	CCV-3 1 25.52500	CCB-3 1 0.18000	7267-12
Dilution Factor	1	1			1
Solution Conc., mg/L	2.43400	2.43400 0.17700			2.06900 0.15345
Blank Correction, mg/L	0.15345	0.15345	0.15345	0.15345	
Net mg/L	2.28055	0.02355	25.37155	0.02655	1.91555
TOC mg/L	2.3	<0.5	25.4	<0.5	1.9
			%REC=102		
Printout SPL#	31	32	33	34	35
Sample Number	RB	7209-1	7209-1D	7209-1MS	RB
Dilution Factor	0.1000	1	1	1	1
Solution Conc., mg/L	0.12000	0.75500	0.75700	25.54000	0.16200
Blank Correction, mg/L	0.15345	0.15345	0.15345	0.15345	0.15345
Net mg/L	-0.03345	0.60155	0.60355	25.38655	0.00855
FOC mg/L	<0.5	0.6	0.6	25.4	<0.5
D. C. C. C. C. C.		X=0.6 RPD=<1.		%REC=99 -	
Printout SPL#	36	37	38	39	40
Sample Number	RB	7160-1	7160-1D	RB	CCV-4
Dilution Factor Solution Conc., mg/L	0.12300	2	2	0.16300	26.22700
	0.12300	4.23200	4.38800	0.16200	25.33700
Blank Correction, mg/L	0.15345	0.15345	0.15345	0.15345	0.15345
Net mg/L	-0.03045	4.07855	4.23455	0.00855	25.18355
TOC mg/L	<0.5	8.2	8.5	<0.5	25.2

Comments:

	Date Analyzed	9/23/04
Analyst 📯 //-	MDate - L /-//	(A)
Approved by	Date	9/25/M

Service Request #:	0			Matrix:	Water
Analysis For:	Total Organic Carbon			Method:Oxidation E	PA 415.1
Instrument: A B					
Printout SPL#	41	42	43	44	45
Sample Number	CCB-4	MB-2	LCS-2	7160-1MS	RB
Dilution Factor	l	1	ī	2	1
Solution Conc., mg/L	0.13500	0.17000	31.30600	29.82700	0.14400
Blank Correction, mg/L	0.15345	0.15345	0.15345	0.15345	0.15345
Net mg/L	-0.01845	0.01655	31.15255	29.67355	-0.00945
TOC mg/L	<0.5	<0.5	31.2	59.3	<0.5
U			%REC=104	%REC=102	
Printout SPL#	46	47	48	49	50
Sample Number	RB	7160-2	7160-3	7160-4	7160-5
Dilution Factor	1	l	1	1	1
Solution Conc., mg/L	0.12400	3,57000	3.55500	8.21800	6.20500
Blank Correction, mg/L	0.15345	0.15345	0.15345	0.15345	0.15345
Net mg/L	-0.02945	3.41655	3.40155	8.06455	6.05155
TOC mg/L	< 0.5	3.4	3.4	8.1	6.1
			· · · · · · · · · · · · · · · · · · ·		
Printout SPL#	51	52	53	54	55
Sample Number	RB .	CCV-5	CCB-5	7160-6	7160-7
Dilution Factor	0.16100	1 1	1	1	1
Solution Conc., mg/L		0.16100 25.97300	25.97300	0.12700	5.48200
Blank Correction, mg/L	0.15345	0.15345	0.15345	0.15345	0.15345
Net mg/L	0.00755	25.81955	-0.02645	5.32855	4.44555
TOC mg/L	<0.5	25.8	<0.5	5.3	4.4
		%REC=103			
Printout SPL#	56	57	58	59	60
Sample Number	7160-10	RB	7219-1	7219-1D	7219-1MS
Dilution Factor		1	i	ĺ	1
Solution Conc., mg/L	3.50800	0.18400	1.75700	1.72800	27.90500
Blank Correction, mg/L	0.15345	0.15345	0.15345	0.15345	0.15345
Net mg/L	3.35455	0.03055	1.60355	1.57455	27.75155
TOC mg/L	3.4	< 0.5	1.6	1.6	27.8
	,		X=1.6 RPD=<1		%REC=105
Printout SPL#	61	62	63	64	65
Sample Number	RB	RB	RB	CCV-6	CCB-6
Dilution Factor		i	I	l l	<u> </u>
Solution Conc., mg/L	0.16100	0.16000	0.12700	24.96300	0.13500
Blank Correction, mg/L	0.15345	0.15345	0.15345	0.15345	0.15345
Net mg/L	0.00755	0.00655	-0.02645	24.80955	-0.01845
TOC mg/L	< 0.5	< 0.5	<0.5	24.8	< 0.5

	Date Analyzed	9/23/04
Analyst SP /)	Date 9/24/	or the second
Approved by	Date	9175101

Service Request #:	0			Matrix:	Water
Analysis For:	Total Organic Carbon			Method:Oxidation E	PA 415.1 / 9060
Instrument: A B					
Printout SPL#	66	67	68	69	70
Sample Number	7219-2	7219-3	7219-4	7219-5	7219-6
Dilution Factor	ı	1	1	. 1	1
Solution Conc., mg/L	1.63700	1.22800	0.88100	0.88700	0.87500
Blank Correction, mg/L	0.15345	0.15345	0.15345	0.15345	0.15345
Net mg/L	1.48355	1.07455	0.72755	0.73355	0.72155
TOC mg/L	1.5	1.1	0.7	0.7	0.7
3				1 0.7	0.7
Printout SPL#	71	72	73	74	75
Sample Number	RB	7253-1	7253-1D	RB	RB
Dilution Factor	I	2	2	1	1
Solution Conc., mg/L	0.11700	7.90400	7.92700	0.21900	0.19300
Blank Correction, mg/L	0.15345	0.15345	0.15345	0.15345	0.15345
Net mg/L	-0.03645	7.75055	7.77355	0.06555	0.03955
TOC mg/L	<0.5	15.5	15.5	<0.5	<0.5
		X=15.5 RPD=<1~			
Printout SPL#	76	77	78	79	80
Sample Number	CCV-7	CCB-7	7253-1MS	RB	RB
Dilution Factor	1	1	2	1	1
Solution Conc., mg/L	25.08300	0.13100	33.67100	0.18600	0.16900
Blank Correction, mg/L	0.15345	0.15345	0.15345	0.15345	0.15345
Net mg/L	24.92955	-0.02245	33.51755	0.03255	0.01555
TOC mg/L	24.9	<0.5	67.0	<0.5	<0.5
	%REC=100		%REC=103		
Printout SPL#	81	82	83	84	85
Sample Number	7253-2	7252-1	7252-1D	7252-1MS	RB
Dilution Factor	2	I	1	l	1
Solution Conc., mg/L	6.77900	5.58900	5.63300	31.06700	0.31700
Blank Correction, mg/L	0.15345	0.15345	0.15345	0.15345	0.15345
Net mg/L	6.62555	5.43555	5.47955	30.91355	0.16355
TOC mg/L	13.3	5.4	5.5	30.9	<0.5
	1	X=5.5 RPD=2 ✓	7-2	%REC=102	
Printout SPL#	86	87	88	89	90
Sample Number	RB	CCV-8	CCB-8		···
Dilution Factor	1	1	1		1
Solution Conc., mg/L	0.17900	26.14000	0.14800		
Blank Correction, mg/L	0.15345	0.15345	0.15345	0.15345	0.15345
Net mg/L	0.02555	25.98655	-0.00545	-0.15345	-0.15345
TOC mg/L	<0.5	26.0 %REC=104	<0.5	- ≪0.5	

Comments:

	Date Analyzed 9/23/04
Analyst SP	Date 9 24 /04
Approved by	Date 4/25/04

9-24-04

	Run Type	Rep	Roo Date	Run Time	Data Filename	Area (cts)	T I C Mass (ugC)	- + Conc (ppm)	Area (cts)	- T O C Mass (ugC)	Conc (ppm)	Area (cts	T C Mass (ugC)	Cone (ppm)
å	Spi	1	13Sep2004	13:41	92304000	B -	-	-	236	0.003	0.001		-	
. 2	Sp1	1	23Sep2004	13:51	92304001	ICU-	-	-	33696	43.092	21.654	-	-	-
3	Spl	1	238ep2004	14:02	92304002	ICB	-	-	419	6.238	0.120	-	-	-
4	Chk1	1	.23Sep2004	14:13	92304003	CUI-1	-	-	41752	52.640	20.453	=	-	بن
5	Spl	1	235ep2004	14:23	92304004	aB-	} -	-	387	0.197	0.099	- ,	-	-
F.	Spl	1	23Sep2004	14:34	923040051	MB-1	-	-	390	0.201	0.101	-	-	-
7	Spl	1	1238ep2004	14:44	92304006	LLS-1	-	-	48455	62.099	31,20€		-	_
Ä	Spl	i	23Sep2004	14:50	92304007	72607	-1 -	-	4016	4.870	0.447	-	-	-
ч	Spl	1	23Sep2004	15:06	923040081	72007	-2 -	~~	17341	12.030	11.071	-	-	-
10	Spl	1	23Sep2004	15:16	92304009	7207	-3 -	-	10080	12.680	6.372	**	-	-
11	Spl	1	23Sep2004	15:27	92304010	7267	-4 -	-	12954	16.351	5.231	-	•	-
12	Spl	1	23Sep2004	15:38	92304011	7247	1-5	-	13425	16.987	8.536	-		
1.3	Spl	1	23Sep2004	15:48	92304012	72ce7	~ Co -	-	4024	4.981	2.453	~	-	-
14	Spl	1	23Sep2004	15:59	92304013	B -	-	_	534	0.386	0.194	-	-	A.
15	Spl	1	23Sep20.04	16:09	92304014	3	-	-	427	0.249	0.125	-	-	-
16	Chk1	3	23Sep2004	16:20	92304015	cw-ż	_	-	41233	51.973	26.117	-	-	-
17	Spl	1	23Sep2004	16:31	92304016	aB-i	2	-	455	0.285	0.143	-	-	-
16	Spl	1	23Sep2004	16:41	92304017	7267.	7 -	-	3455	4.143	2.094	-	-	
19	Spl		23Sep2004					-	3373	4.042	2.031	-	-	. -
20	Spl	. 1	23Sep2004	17:03	92304019	TUST.	-7ms	-	43331	55.500	27.890	-	-	-
01	Spl	1	23Sep2004	17:13	92304020	B -	-		474	0.309	0.155	-	-	-
22	Spl	. 1	23Sep2004	17:24	92304021	B -	-	-	453	0.292	0.142	-	. -	
23	Spl	1	23Sep2004	17:34	92304022**	7267.	-8 -		3781	4.568	2.295		=	=
24	Spl		23Sep2004					-	10767	13.564	6.816	· -	-	~
25	Spl	ï	23Sep2004	17:56	92304024	7207	-10 -	-	11810	14.908	7.491	-	-	-
26	Spl	1	23Sep2004	18:06	92304025	7267	(=	3995	4.843	3.434		-	-
27	Spl		23Sep2004			_	-	-	508	0.353	0.177	-	-	-
28	Chk1	1	23Sep2004	18:28	92304027	(W-3	3 ~	-	40318	50.795	25.525	**	-	
29	Spl	1	23Sep2004	18:38	92304028 4	-cB-3	> -	-	512	.0.358	0.180	-		
3 Ó	Spl	1	23Sep2004	18:49	92304029	72007-	12	-	3430	4.118	2.069	-	-	-
31	Spl	1	23Sep2004	18:59	92304030	B -	-	-	4.26	0.040	0.120	-	-	-

4.17	Spi	1 23Sep2004 19:10 92304031 7255-(-	-	1400	1.502	0.755	-	-	
3 -	Spl	1 238ep2004 19:21 92304032 7204-1 -	-	1404	1.507	0.757	~	**	-
34	Spl	1 23Sep2004 19:31 92304033 7209-1MS	-	39700	50.824	25.540	-	-	_
37	8p1	1 23Sep2004 19:42 92304034 3	-	484	0.322	0.162		-	-
36	Sp1	1 23Sep2004 19:52 92304035 B	-	424	0.245	0.123	-		-
37	Spl	1 23Sep2004 20:03 9230403671 4⊖-1 5 Ho	-	6774	8.432	4.232	~	-	-
38	Spl	1 238ep2004 20:14 923040377160-W 5710	-	7014	8.731	4.388	-	-	-
39	Spl	1 23Sep2004 20:24 92304038 B	-	484	0.322	6.162		-	-
40	Chk1	1 23Sep2004 20:35 92304039CCVH -	-	40028	50.422	25.337	-	-	-
41	Spl	1 03Sep2004 20:45 92304040CeB-4 -		442	0.268	0.135	-	-	-
42	Spì	1 238ep2004 20:56 92304041 MB-Z -		497	0.339	0.170	-	-	-
43	spl	1 23Sep2004 21:07 92304042LCS-Z -	-	48610	62.299	31.306	-	-	-
44	Spl	1 23Sep2004 21:17 9230404371669-1MS 5710	_	46325	59.356	29,827	~	-	-
4.5	Spi	1 23Sep2004 21:28 92304044 B		457	0.287	0.144	-	-	-
4 t.	Spl	1 23Sep2004 21:39 92304045 3	-	426	0.247	0.124	-	-	-
47	Spl	1 23Sep2004 21:49 923040467160-Z -	-	5751	7.105	3.570	=	-	-
48	Spl	1 23Sep2004 22:00 92304047 3 -	-	5728	7.075	3.555	-	-	-
4 4	Spl	1 23Sep2004 22:10 92304048		12933	16.354	8.218	-	-	-
50	Spl	1 23Sep2004 22:21 92304049 V5 -	-	. 9823	12.349	6.205	-	-	-
51	Spl	1 23Sep2004 22:31 92304050 B	-	483	0.321	0.161	-	· -	_
51	Chkl	1 23Sep2004 22:42 92304051 CW-5 -	-	41010	51.686	25.973	-	-	-
53	Spl	.1 23Sep2004 22:53 92304052 CB=5 -	-	. 431	0.254	0.127	-	-	
54	Spl	1 23Sep2004 23:03 92304053. 7160-6 -	-	8705	10.909	5.482	. -	-	-
55	Spl	1 23Sep2004 23:14 92304054 7 -	-	7341	9.152	4.599	-	• -	-
36	Spl	1 23sep2004 23:24 92304055 V10-	-	5655	6.981	3.508	-	-	-
5.7	Spl.	1 23Sep2004 23:35 92304056 B	-	519	0.367	0.184	-	-	-
. 9	Spl	1 23sep2004 23:46 92304057 7214-1 -	-	2949	3.498	1.757		÷	-
59	Sp1	1 23Sep2004 23:56 923040587219-1D -	-	2904	3.438	1.728	-	-	-
60	Spl	1 24Sep2004 00:07 923040597749-1MS	-	43355	55.531	27.905	~	-	-
61	Spl	1 24Sep2004 00:18 92304060 👂	-	482	0.319	0.161		-	-
62	Spl	1 24Sep2004 00:28 92304061 B	-	481	0.318	0.160	-	=	=
163	Spl	1 24Sep2004 60:39 92304062 R	~	431	0.254	0.127	-	-	-

6	4 Chk	1	į	24Sep2004	00:49	92304063	CU)-co	-	-	39449	49.676	24.965	-	-	-
C	spi		ì	24Sep2004	01:00	92304064	af	3-v	-	-	443	0.269	0.135	-	-	-
ŧ;	t Spi		3	24Sep2004	01:11	92304065	7210	1-2	-	-	2764	3.058	1.637	-	<u>-</u>	=
ŧ,	7 Spl		1	24Sep2004	01:21	92304066	1	- 3	-	-	2131	2.443	1.228	-	-	-
6	8 - Spl		1	24Sep2004	01:32	92304067		-4	-	-	1595	1.753	0.881	-	-	-
6	9 Spl		ì	24Sep2004	01:42	92304068		-5	-	· -	1605	1.766	0.887	-	-	-
7	0 Spl		1	24Sep2004	01:53	92304069	1	-6	-	- ,	1586	1.741	0.875	-	-	-
7	l Spl		1	24Sep2004	02:04	92304070	3	_	-	-	415	0.233	0.117	-	-	-
7	l Spl		1	04Sep2004	02:14	92304071	725	3-15	Tuo	-	12448	15.729	7.904	-		-
7	3 3pl		1	048ep2004	02:25	923040721	77:	53-10	5710	-	12483	15,774	7.927		-	-
7	4 Sp1			24Sep2004				-	-	-	573	0.437	0.219	-	-	-
7	5 Spl		1	24Sep2004	02:46	92304074	B	-	•••	-	532	0.384	0.193	-	-	-
7	6 Chk	1	ī	24Sep2004	02:57	90304075	Cil	1-7	-	-	39634	49.914	25.083	-	-	-
7	7 Spl		1	24Sep2004	03:07	92304076	CLB	77	253-11	ms -	436	0.260	0.131	-	-	-
7	a Spi		1	14Sep2004	03:18	92304077	725	30 (40)	85710	- ·	52264	67.004	33.671	-		-
7	9 Spl	•	1	24Sep2004	03:29	92304078	B	-	-	-	521	0.370	0.186	-	-	-
8	0 Spl		1	24Sep2004	03:39	92304079	B	-	-	-	495	0.336	0.169	-	-	-
8	1 Spl		1	24Sep2004	03:50	92304080	725	3-25	lio	-	10710 .	13.491	6.779	-	-	-
8	2 Sp1			24Sep2004					-	~	8870	11.121	5.589	-	-	-
્	3 Sp1		1	24Sep2004	04:11	92304082	1	-10		-	8939	11.210	5.633	-	-	-
. н	4 Spl		ī	24Sep2004	04:22	92304083	1	- 1m	S	-	48241	61.823	31.067	-	-	-
8	5 Gpl		1	24Sep2004	04:32	90304084	B	-	-	-	724	0.631	0.317	-	-	-
Я	б Spl		1	24Sep2004	04:43	92304085	$\widehat{\mathcal{B}}$	-	-	-	511	0.357	0.179	·	- :	-
8	7 Chk	ì	1	24Sep2004	04:54	92304086	CU	8-1	-		41268	52.018	26.140		-	-
8	8 Sp1		î	24Sep2004	05:04	92304087	CLF	3 ~%	-	-	463	0.295	0.148	-	=	_

889 9/24/04

		lst	2nd	3rd		
1	0.00100				OBSERVATIONS	35
2	0.12000	0.12000			STD Deviation	0.04728
3	0.09900				AVERAGE	0.15031
4	0.10100	•			ULC	0.19760
5	0.19400	0.19400			LCL	0.10303
6	0.12500	0.12500			•	
7	0.14300	0.14300	0.14300	0.14300		
8	0.15500	0.15500	0.15500	0.15500	OBSERVATIONS	30
9	0.14200	0.14200	0.14200	0.14200	STD Deviation	0.02359
10	0.17700	0.17700			AVERAGE	0.15080
11	0.15000	0.15000	0.15000	0.15000	ULC	0.17439
12	0.12000	0.12000			LCL	0 12721
13	0.16200	0.16200	0.16200	0.16200		
14	0.12300	0.12300				
15	0.16200	0.16200	0.16200	0.16200	OBSERVATIONS	16
16	0.13500	0.13500	0.13500		STD Deviation	0.01247
17	0.17000	0.17000	0.17000		AVERAGE	0.15175
18	0.14400	0.14400	0.14400	0.14400	ULC	0.16422
19	0.12400	0.12400			LCL	0.13928
20	0.16100	0.16100	0.16100	0.16100		
21	0.12700	0.12700				
22	0.18400	0.18400	•		OBSERVATIONS	11
23	0.16100	0.16100	0.16100	0.16100	STD Deviation	0.00823
24	0.16000	0.16000	0.16000	0.16000	AVERAGE	0.15345
25	0.12700	0.12700				
26	0.13500	0.13500	0.13500			
27	0.11700	0.11700				
28	0.21900					
29	0.19300	0.19300				
30	0.13100	0.13100	0.13100			
31	0.18600	0.18600				
32	0.16900	0.16900	0.16900			
33	0.31700					
34	0.17900	0.17900		4		
35	0.14800	0.14800	0.14800	0.14800		•
36		,				
37	ı					
38						
39	•					
40						
41						
42						
43	• •					
44						
45						
46						
47 48						
40					•	

*****	*****************	*****
**	CONFIGURATION	**
****	. + + + + + + + + + + + + + + + + + + +	+++++++++

Analysis Mode: TOC Spl Intro: Autosampler 88

Remote Start : OFF

Loop Size: 1 mL Actual Volume 1mL 5mL 10mL 25mL Loop A (uL): 990 4950 10060 24700 Loop B (uL): 1000 4970 10050 24600

Tray Type: 88 Vial Vial Option: Neither Needle Depth: 95 % Preacid Volume (uL): 100 Wash Needle Depth: 94 % Preacid Purge Time (min:sec): 0:30

TIC TOC TC

Blank ---- --- Linearization Coeff: 60000

Average: 44 234 158

Sample Transfer Times (sec) Sample Inject Initial Fill Loop Fill (all) AS AS w/Sep Non-AS AS AS w/Sep _____ ____ 1.2 1.2 6.0 4.5 3.5 1.0 4.5 1mL: 8.1 5.1 7.2 5.1 4.2 9.3 6.8 5mL: 10mL: 14.2 12.2 25mL: 35.0 35.0 10.5 10.5 n/a n/a 11.0 16.5 11.0 32.0 38.0 n/a |

******	*************	*****
* *	SEQUENCE	**
******	************	*****

REG. RUN Thu Sep 23 13:29:23 2004

Pos/ Vial	L	Method	Run Type	# Rep	Vol (mL)	# Blk	Dil Fact	Ovr Rng	Remarks
1	RB	TOC	Sample	1	2.000		1 00	NT.	
2	ICV	TOC	Sample	1	2.000	0	1.00	No	
3	ICB	TOC	Sample		2.000	0	1.00	No	
4	CCV-1	TOC	Chk. 1	1	2.000		1.00	No	
5	CCB-1	TOC	Sample	1	2.000	0.		No	4
6	MB	TOC	Sample	1	2.000	0		No	
7	LCS	TOC	Sample	1	2.000	0		No	
8	7267-1	TOC	Sample	1	2.000	0		No	-
9	7267-2	TOC	Sample	1	2.000	0		No	
10	7267-3	TOC	Sample	1	2.000	0		No	
11	7267-4	TOC	Sample	1	2.000	0	1.00		
12	7267-5	TOC	Sample	1	2.000	. 0	1.00		
13	7267-6	TOC	Sample	1	2.000				
14	RB	TOC	Sample	1		0		No	•
15	RB	TOC	Sample		2.000	0		No	
16	CCV-2	TOC	Chk. 1	1		0		No	
17	CCB-2	TOC		1	2.000	0		No	
18	7267-7	TOC	Sample	1.	2.000	0		No	
19	7267-7D	TOC	Sample	1	2.000	0		No	
20	7267-7MS	TOC	Sample	1	2.000			No	
21	RB	TOC	Sample	1	2.000			No .	
22	RB	TOC	Sample	1	2.000	0		No .	
23	7267-8	TOC	Sample	. 1	2.000	0		No	
. 24	7267-9	TOC	Sample	1	2.000			No	
25	7267-10	TOC	Sample	1	2.000		1.00		
26	7267-11	TOC	Sample	1	2.000		1.00		
27	RB	TOC	Sample	1	2.000		1.00		
28	CCV-3	TOC	Sample	1	2.000		1.00		
29	CCB-3	TOC	Chk. 1	1	2.000		1.00		
30	7267-12	TOC	Sample	1	2.000			No	
31	RB	TOC	Sample	1	2.000			No	
32	7209-1	TOC	Sample	1	2.000			No No	
33	7209-1D	TOC	Sample	1	2.000			No	
34	7209-1MS	TOC	Sample	1	2.000			No	
35	RB	TOC	Sample	1	2.000			No	
36	RB		Sample	1	2.000		1.00		
37	7160-1 5/10	TOC	Sample	1 .	2.000		1.00		
38	7160~1 5/10 7160-1D 5/10	TOC	Sample	1	2.000		1.00		
39	RB	TOC	Sample	1.	2.000		1.00		
		TOC	Sample	. 1	2.000		1.00		•
40 41	CCV-4 CCB-4	TOC	Chk. 1	1	2.000		1.00		
		TOC	Sample	1	2.000		1.00		
42	MB-2	TOC	Sample	1	2.000		1.00		
43	LCS-2	TOC	Sample	1	2.000		1.00		
44	7160-1MS 5/10	TOC	Sample	1	2.000	0	1.00	No	

******	****************	· * * * * * * *
**	SEQUENCE	**
*****	*************	*****

REG. RUN Thu Sep 23 13:29:23 2004

Pos/ Vial	Sample Name	Method.	Run Type	# Rep	Vol (mL)	# Blk	Dil Fact	Ovr Rng	Remarks
45	RB	TOC	Camplo		2 000		1 00	Mo	
46	RB	TOC	Sample	1	2.000	0	1.00		
47	7160-2		Sample	1	2.000		1.00		
48		TOC TOC	Sample	1.	2.000		1.00		
49	7160-3		Sample	1	2.000		1.00		•
	7160-4	TOC	Sample	1	2.000		1.00		
50	7160-5	TOC	Sample	1.	2.000		1.00		
51 52	RB CCV-5	TOC	Sample	1	2.000	0			
53		TOC	Chk. 1	1	2.000	0	1.00		
54	CCB-5	TOC	Sample	1	2.000		1.00		
5 4 55	7160-6	TOC	Sample	1	2.000		1.00		
56	7160-7	TOC	Sample	1	2.000	0	1.00		-
57	7160-10	TOC	Sample	1	2.000		1.00		
	RB	TOC	Sample	1	2.000		1.00		
58 59	7219-1 7219-1D	TOC	Sample	1	2.000		1.00		
		TOC	Sample	1	2.000		1.00		
60	7219-1MS	TOC	Sample	1	2.000	. 0	1.00		
61	RB	TOC	Sample	1	2.000	0	1.00		
62	RB	TOC	Sample	1	2.000	0	1.00		
63	RB	TOC	Sample	1	2.000	0	1.00		
64 CE	CCV-6	TOC	Chk. 1	1	2.000	0	1.00		
65 66	CCB-6	TOC	Sample	1.	2.000	0	1.00		
66 67	7219-2	TOC	Sample	1	2.000	0	1.00		
67	7219-3	TOC	Sample	1	2.000	0	1.00		
68 69	7219-4	TOC	Sample	1	2.000	0	1.00		
	7219-5	TOC	Sample	1.	2.000	0	1.00		
70 71	7219-6	TOC	Sample	1	2.000	0	1.00		
71 72	RB	TOC	Sample	1	2.000	0	1.00		
	7253-1 5/10	TOC	Sample	1	2.000	0	1.00		
73	7253-1D 5/10	TOC	Sample	1	2.000	0	1.00		
74 75	RB RB	TOC	Sample	1	2.000	0	1.00		
75 76	CCV-7	TOC TOC	Sample	1	2.000	0	1.00		-
77	CCB-7		Chk. 1	1.	2.000	0	1.00		
78	7253-1MS 5/10	TOC TOC	Sample	1	2.000		1.00		
79	RB .	TOC	Sample Sample				1.00		
80	RB	TOC					1.00		
81	7253-2 5/10		Sample	1	2.000				
82	•	TOC	Sample	1	2.000	0	1.00		
	7252-1 7252-1D	TOC	Sample	1	2.000	0	1.00		
83	7252-1D	TOC	Sample	. 1	2.000	0	1.00		
84	7252-1MS	TOC	Sample	1	2.000	0	1.00		
85 86	RB	TOC	Sample	1	2.000	. 0	1.00		
86 87		TOC	Sample	· 1	2.000	0	1.00		
	CCV-8	TOC	Chk. 1	1	2.000	0	1.00		
88	CCB-8	TOC ·	Sample	1	2.000	0	1.00	MO	

***	******	*****	****	****	*****	*****
* *				LIBRATION		**
****	*****	*****	*****	*****	*****	*****
						·
10/2	003 Fri	Oct 24 15	:38:52 2	003		
			•			
Std.	# Used	Conc. (p	pm) Voli	ume (mL)		
					RF (ugC	/k-cts): 1.288
1		0.0		2.000		ed: 0.9995
2	Yes	0.5	00	2.000	Offset	(cts): 874
3	Yes	5.0	00	2.000	Offset	(ugC): -1.127
4	Yes	25.0	00	2.000	Calibra	tion Mode: TOC
5	Yes	50.0	00	2.000	Allow Ed	
Rep	Std. 1	Std. 2	Std. 3	Std 4	Std. 5	
1	349	1096	9326	40402	77595	
2	_		-	~ .	-	
3	~	_	- .	-	-	
4	-	~	***	-	-	
5	2	=			←	(* = unused)
6	-	· -	-	*	-	
7	-		-	_	-	
8		. –	_	_	-	•
9	-	-	-	_	-	
10	_	. –	-	-	-	

1	Work R	onginal equest #:(7143) 7209		
	Tier:	$\overline{\mu}$		
		alyzed: 9/28/04		
		Cholster/GBat 7		* * * * * * * * * * * * * * * * * * * *
,	Anaiysi	: <u>70C - Soil</u> s	•	
		DATA QUALFTY REPO INORGANICS	DRT	
			to a serior below	ta ya sa Nasarata
	Explain	any "no" responses to questions below, and any corrective act	tions in the comments section below.	
	1.	Is the method name and number correct and appropriate?	vestoo/NA	
	2.	Holding times met for all analyses and for all samples?	veshio/NA	
	3.	Are calculations correct?	(yes)no/NA	false Lag
	4.	is the reporting basis correct? (Dry Weight)	yesho/NA	
	5.	All quality control criteria met?	ves/no/NA	
		a. Is the calibration curve correlation coefficient ≥ 0.9	95? yes/no/NA	
		b. MBs, CCVs, CCBs, LCSs, Dups, and Spikes, analy frequency?		
		c. Are ICVs, CCVs, and CCBs all within acceptance	limits? yes/no/NA	
		d. Are results for methods blanks all ND?	(yeg)no/NA	
ē		e. Are all QC samples within acceptance criteria? (LCS % rec, MS/DMS % rec, DUP or MS/DMS I	(yesyno/NA RPDs, etc.)	
		f. Are all exceptions explained?	yes/nd/Na	
	6.	Are all service requests that apply attached?	yeshno/NA	
	7.	Are all samples labelled correctly?	yes/no/NA	
	8.	Have all instructions on the service request been followed? (e.g. Special MRLs, QC on a specific sample)	(yeSmo/NA	
	9.	Are detection limits and units reported correctly?	yes no/NA	
	10.	Are proper Analysis/Extraction stickers included on report?	yes/no/NA	
	11.	Is the unused space on the benchsheet crossed out?	yes/no/NA	
	12.	Was analysis turned in by the due date? (n-2) (If not record	SR#) Xyeskno/NA	
	COMP	MENTS: # SR 7/43 due 9/30/04		S
				1.71 1.71 9.1
				•
			Alma Pall	
	Final A	Approved by: PM FM	Date:	DOREPO

Columbia Analytical Services, Inc.

· maryucar Batch KA0404647

Service Request #: 7143, 7209

Analysis For:

Total Organic Carbon (TOC)

Method: ASTM D4129-82 (Combustion/Coulometric)

Matrix: Soil / Dry Weight Basis

Sample Number	mg Sample		Baseline Reading,	Net μg C	% Carbon
	Injected	L ua C	ua C	ποι μα C	% Carbon
CCV-1	9.7	1865.0	12.3	1852.7	19.1 -
CCB-1	50,0	11.5	12.3	-0.8	< 0.05
LCS	55.2	436.1	12.3	423.8	0.77
MB	50.0	13.0	12.3	0.7	< 0.05
7143-1	48.0	2707.6	12.3	2695.3	5.62
7143-2	48.4	3405.6	12.3	3393.3	7.01
7143-3	47.8	5681,3	12.3	5669.0	11.9
7143-4	49.0	1264.2	12.3	1251.9	2.55
7143-5	46.3	3549.1	12.3	3536.8	7.64
7143-6	46.3	5614.8	12.3	5602.5	12.1
7143-7	44.7	6512.8	12.3	6500.5	14.5
7143-8	20.2	3974.8	12.3	3962.5	19.6
CCV-2	9.6	1861,5	12.3	1849.2	19.3 -
CCB-2	50.0	5.8	12.3	-6.5	< 0.05
7143-9	45.7	3910.0	12.3	3897.7	8.53
7143-9d	47.3	4541.8	12.3	4529.5	9.58
7143-9ms	21.0	3827.2	12.3	3814.9	18.2
7143-10	26.4	5457.6	12.3	5445.3	20.6
7143-11	47.0	2102.4	12.3	2090.1	4,45
7143-12	45.3	2598.3	12.3	2586.0	5.71 ^
7143-13	46.1	3786.2	12.3	3773.9	8.19
7143-14	45.3	4640.9	12.3	4628.6	10.2
7143-15	47.3	4866.6	12.3	4854.3	10.3
7143-16	47.0	3824.4	12.3	3812.1	8.11
CCV-3	10.3	2010.5	12.3	1998.2	19.4 ~
CCB-3	50.0	4.1	12.3	-8.2	< 0.05
7143-17	47.0	2077.0	12.3	2064.7	4.39
7143-18	46.0	3444.8	12.3	3432.5	7.46

Acid Purge Time: 1 minute

Reading Time: 5 minutes

TOC % =

(Net Reading)(µg 0.1) mg Sample Injected

CCV: Urea CCV1 = 96 -

CCV3 = 97 ~

Baker (lot #A17584) ID#: TOCS/1-10-J TV = 20.0%C

CCV5 = 98 -

CCV6 = 99 [^]

LCS: ERA

Cat#: 542 Lot#: DO41542 ID#: TOCS/1-10-1 TV = 0.75% %Rec = 103, 107

CCV4 = 96 <

Comments:

7143-9ms = 9.8 mg x20 / 21.0 mg = 9.33	x = 9.06	RPD = 12	REC = 104 :
7209-4ms = 6.1 mg x20 / 21.3 mg = 5.73	x = 4.00	RPD = 9	REC = 102
7209-18ms = 8.5 mg x20 / 22.5 mg = 7.56	x = 4.47	RPD = 4	REC = 101 ~

Date: 9/28/2004

Time: 8:50

| Analyzed By: Cholota 9/28/04 GS
| Reveiwed By: 229

Date: 9/29/04

Columbia Analytical Services, Inc.

Service Request #:	7143, 7209	Method:	ASTM D4129-82 (Combustion/Coulometric
Analysis For:	Total Organic Carbon (TOC)	Matrix:	Soil / Dry Weight Basis

Sample Number	mg Sample Injected	Sample Reading, ug C	Baseline Reading, ug C	Net μg C	% Carbon
LSC2	44.2	366.7	12.3	354.4	0.80
MB2	50.0	2.2	12.3	-10.1	< 0.05
7209-2	19.9	1845.9	12.3	1833.6	9.21
7209-3	24.0	1538.1	12.3	1525.8	6.36
7209-4	20.7	876.7	12.3	864.4	4.18
7209-4d	22.5	870.7	12.3	858.4	3.82
7209-4ms	21.3	2150.4	12.3	2138.1	10.0
7209-5	18.9	744.8	12.3	732.5	3.88
CCV-4	10.7	2060.8	12.3	2048.5	19.1 *
CCB-4	50.0	4.4	12.3	-7.9	< 0.05
7209-6	17.6	1797.0	12.3	1784.7	10.14
7209-7	16.7	2922.2	12.3	2909.9	17.4
7209-8	21.1	2009.8	12.3	1997.5	9.47
7209-9	41.1	467.2	12.3	454.9	1.11
7209-11	22.8	1666.1	12.3	1653.8	7.25
7209-12	24.3	1722.7	12.3	1710.4	7.04
7209-13	23.7	1119.8	12.3	1107.5	4.67
7209-14	27.3	1429.8	12.3	1417.5	5.19
7209-15	21.5	1456.6	12.3	1444.3	6.72
7209-16	19.6	1331.2	12.3	1318.9	6.73
CCV-5	9.3	1837.2	12.3	1824.9	19.6 ~
CCB-5	50.0	3.7	12.3	-8.6	< 0.05
7209-17	21.7	1293.9	12.3	1281.6	5.91
7209-18	2 6,3	1215.4	12.3	1203.1	4.57
7209-18d	23.2	1026.7	12.3	1014.4	4.37
7209-18ms	22.5	2754.6	12.3	2742.3	12.2

Acid Purge Time: 1 minute Reading Time: 5 minutes TOC % = (Net Reading)(µg 0.1 mg Sample Injected

Comments:

Analyzed By:	Cholotor	6Bent my
Davaiwad By:	ONAH E	= 3/

Date: 9/28/2004 Time: 8:50

Date: 9/29/04

Columbia Analytical Services, Inc. Service Request #: 7143, 7209 Method: ASTM D4129-82 (Combustion/Coulometric) Total Organic Carbon (TOC) Analysis For: Soil / Dry Weight Basis mg Sample Sample Reading, | Baseline Reading, Sample Number Net µg C % Carbon Injected ua C иа С 7209-19 33.6 855.2 12.3 842.9 2.51 7209-20 24.1 260.6 12.3 248.3 1.03 7209-21 50.1 152.0 12.3 139.7 0.28 7209-23 15.7 2165.6 12.3 2153.3 13.7 CCV-6 10.6 2101.7 12.3 2089.4 19.7 ~ CCB-6 50.0 3.3 12.3 -9.0 < 0.05 Acid Purge Time: 1 minute Reading Time: 5 minutes TOC % = (Net Reading)(µg 0.1) mg Sample Injected CCV: Urea Baker (lot #A17584) ID#: TOCS/1-10-J TV = 20.0%C

Comments:	

Analyzed By: cholsts
Reveiwed By: MT FAT

Date: 9/28/2004

Time: 8:50

Date: 9/29/04

TOC Soil Benchsheet

Sample #	mg Sample	Reading	Date Baked
CCV-1	9.7	1865.0	
CB-1	50.0	11.5	
.CS	55.2	436.1	
<u>/</u> IB	50.0	13.0	
143-1	48.0	2707.6	9/21/2004
143-2	48.4	3405.6	9/21/2004
143-3	47.8	5681.3	9/21/2004
143-4	49.0	1264.2	9/21/2004
143-5	46.3	3549.1	9/21/2004
143-6	46.3	5614.8	9/21/2004
7143-7	44.7	6512.8	9/21/2004
7143-8	20.2	3974.8	9/21/2004
CCV-2	9.6	1861.5	
CCB-2	50.0	5.8	
7143-9	45.7	3910.0	9/21/2004
7143-9d	47.3	4541.8	9/21/2004
7143-9ms	21.0	3827.2	9/21/2004
7143-10	26.4	5457.6	9/21/2004
7143-11	47.0	2102.4	9/21/2004
7143-12	45.3	2598.3	9/21/2004
7143-13	46.1	3786.2	9/21/2004
7143-14	45.3	4640.9	9/21/2004
7143-15	47.3	4866.6	9/21/2004
7143-16	47.0	3824.4	9/21/2004
CCV-3	10.3	2010.5	
CCB-3	50.0	4.1	
7143-17	47.0	2077.0	9/21/2004
7143-18	46.0	3444.8	9/21/2004
LSC2	44.2	366.7	
MB2	50.0	2.2	
7209-2	19.9	1845.9	9/23/2004
7209-3	24.0	1538.1	9/23/2004
7209-4	20.7	876.7	9/23/2004
7209-4d	22.5	870.7	9/23/2004
7209-4ms	21.3	2150.4	9/23/2004
7209-5	18.9	744.8	9/23/2004
CCV-4	10.7	2060.8	
CCB-4	50.0	4.4	
7209-6	17.6	1797.0	9/23/2004
7209-7	16.7	2922.2	9/23/2004
7209-8	21.1	2009.8	9/23/2004
7209-9	41.1	467.2	9/23/2004
7209-11	22.8	1666.1	9/23/2004
7209-12	24.3	1722.7	9/23/2004
7209-13	23.7	1119.8	9/23/2004
7209-14	27.3	1429.8	9/23/2004
7209-15	21.5	1456.6	9/23/2004
7209-16	19.6	1331.2	9/23/2004
CCV-5	9.3	1837.2	
CCB-5	50.0	3.7	
7209-17	21.7	1293.9	9/23/2004
7209-18	26.3	1215.4	9/23/2004
7209-18d	23.2	1026.7	9/23/2004
7209-18ms	22.5	2754.6	9/23/2004

grales

Baseline

12.3

11.7 13.9 11.4 **Avg**

dolater 9/28/04 3:50 613 49

TOC Soil Benchsheet

Sample #	mg Sample	Reading	Date Baked	Baseline
209-19	33.6	855.2	9/23/2004	11.7
209-20	24.1	260.6	9/23/2004	
209-21	50.1	152.0		13.9
209-23			9/23/2004	11.4
203-23 YOU C	15.7	2165.6	9/23/2004	Avg
CV-6	10.6	2101.7		12.3
CB-6	50.0	3.3		
			 	
			 / 	
			 	
· · · · · · · · · · · · · · · · · · ·			 / 	
				}
			1/	
			1/	
			y 	
		 	4	
		 		
		 	1	
	<u> </u>			
	·	7		
		/		
·				
· · · · · · · · · · · · · · · · · · ·		/	 	
	 	/		
·		/	<u> </u>	
	/			
				04/16/
	/	· · · · · · · · · · · · · · · · · · ·	 	1° al
			<u> </u>	all
	 			and and
	 			
	 /			
	/			•
	7			
	/		 	
	/			
/				
/	· ·			
				•
/				
/				
/				
/				
/				

choloto 9/28/04 8:50 6-0 50

7143 III 7209 III

Sample #	mg Sample	Reading	Date Baked	Baseline
CCV-1	9.7	1865,0 /19.1		11 7
CCB-I	50,0	11.5 (20.05)		139
LCS	55.2	436.1 (0.11)		12/
MB	50.0	13.0 /50.05)	· · · · · · · · · · · · · · · · · · ·	12.3 Avg
7143-1	48.0	2707.6 15.68	9/21/04	14.2 748
T -2	484	3405.6 17.01		000
-3	47.8	56813 (11.9)		CCV-1 96%
-5	49.0	1264.7 (255)		CCB-1 <0.05 LCS 1031.
-5	46.3	3549.1/7.69		MB (0.05
-6	4/.3	5614.8 112.1		76 (0.07
- 7	44.7	6512.8 (14.5)		CCV-Z 971.
V -8	20.2	3974.8 (196)		
CCV-2	9.6	1861.5 /19.3)		7143-9/91
CCB-2	50.0	5.8 (50.05)		V= 9.06 Rr0=12
7143-9	45.7	3910.0 (8.53)	9/21/04	7143-900
T -9d	47.3	4541.8 19.58		9.8 mg x20 = 9.33 21.0 mg 1. Rec = 104
-9m5	21.0	3827.2 (18.2)		ZI.Ging
-10	26.4	5457.6 (20.6)		1. Rec = 109
-11	47.0	2102.4 /4.457		CCV-3 97%.
-12	45,3	15983 (5.7)		<u> </u>
-/3	46.1	3786.2 (819)		
-14	45.3	4640.9 (10.2)		MBZ 10.05
-15	47.3	4866.6 (10.3)		CCV-4 98%
-16	47.0	38244 18.0		CCB-4 (0.05
CCV-3	10.3	2010 5 (19.4)		
CCB-3	50.0	4.1 (50.05)		7209-4/4d V= 4.00 RM=
7143-17	47.0	1439 2077.0	9/21/01	V= 4.00 KIE
V -18	46.0	17.48) 3444-8	9/21/04	7209-4ms
LCSZ	. 44.2	366.7 (0.80)	Y	(max20 c
MBZ	50	2.2/(0.05)		6.1mg x 20 = 5. 21.3mg 1. Rec=1
7209 - 2	19.9	1845.919.31	9/23/04	21.3mg
- 3	27.0	1538,1/6.36	1/42/61	1. Rec=1
-4	20.7	876.7 (4.18)		1
-4d	225	870.7 (3.62)		1
-4ms	21.3	2150 4 /10 AY		7207-4m=6.1mg
-4ms	18.9	744.8 (3.88)		100000000000000000000000000000000000000
CCV-4	10.7	744.8 (3.88) 2060.8 (19.1) 4.4 (4.85)		ecv-5 98%
CCB-4	10,7 50	4.4 ((005)		CCB-5 (0.05
7-209 - 6	17.6	1797.0 /10.1	9/23/64	7209-18/18
-7 -8 -9	17.6 16.7	2922.2 /17.4)	<u> </u>	7= 4.47 RPD=4
8		2009,8 (9,47)		11
-9	21.1 41.1	467.2 (1.11)		7209-18MS
~//	22.8	1666.1 (7.25)		05 max 20 71
-12	24.7	1722.7 (7.04)		275 mm
-12 -13 -14 -15 -16	24.3 23.7	1119.8 /4.67		8.5 mg x 20 - 7.5 22.5 mg / Rec = 10,
-14	27-3	1424.8 [5,19]		" / NEL 101
-15	27-3 21.5	14566 16.72		ccv-6 99%
V -16	19.6	13312 16.73		CCV B ///
CCV-5	9.3			CCB-6 (0.05
CCB-5	50.0	1837.2 [19.6] 3.7 (0.57)		
	21.7	13939 (5.9)	9/22 100]
7209-17 -18	26.3		9/23/04	and co
-181	23.2			I MACOUNT
-18ms			- L	1 GIV
10.115	22.5	27546 (12.2)		

Sample #	mg Sample	Reading	Date Baked	Baseline
CCV_U 7209-10	7 33.6	855,2 (2.51)	9/23/04	
CCB 1-0 T -20	24.1	260.6 (1.03)	733/09	11. F
Les 0 -21	50,1	1 ADV.D (1.03)	 	13.9
MB① V -23	15.7	1520 (0.28)	 	11.4
CCV-6		2165.6 (13 7)	1	123 AV
CCB-6	10.6	3101.7 (19.7)		
C.D.G	50.0	3.3 1000st		
		· · · · · · · · · · · · · · · · · · ·	,	7
				-
				-
	 	 		.
CCV-2			/	_
CCB-2				1
CCB-2	<u> </u>			
			/	7
		/		-1
<u> </u>		/		-
· · · · · · · · · · · · · · · · · · ·		 	· · · · · · · · · · · · · · · · · · ·	-
				4
166	<u> </u>			4
				1
		/	····	1
		7		1
				· ·
CCV-3		_/		1
CCB-3		-/		4
		/		1
		/		<u> </u>
	I			1.
	/			
	/			
	/ /			
	/			
	/			
	 			
	 / 			ļ
CV-4	/			
CB-4	-/	· <u>·</u>		
CD-4.				
	/			
	7			
	/			
/				
/				
/ -/				
/_				
/				
7				
2V-5				
CB-5				Walley Colored
-U-J /				Wall of
/				1/1/4/01
				410
				,
		<u> </u>		
			. 19	

Semi-Volatile Organic Compounds EPA Method 8270C

Organic Analysis: Semi-Volatile Organic Compounds by GC/MS

Summary Package

Sample and QC Results

Client: Project:

Geomatrix Consultants

9329.000

Service Request:

K2407209

Cover Page - Organic Analysis Data Package Semi-Volatile Organic Compounds by GC/MS

Sample Name	Lab Code	Date Collected	Date Received
RB-1	K2407209-001	09/14/2004	09/17/2004
107-GSED-C32-0.5	K2407209-002	09/15/2004	09/17/2004
107-GSED-C32-1.0	K2407209-003	09/15/2004	09/17/2004
107-GSED-C32-2.0	K2407209-004	09/15/2004	09/17/2004
107-GSED-C32-3.0	K2407209-005	09/15/2004	09/17/2004
105-GSED-C05-0.5	K2407209-006	09/15/2004	09/17/2004
105-GSED-C05-1.0	K2407209-007	09/15/2004	09/17/2004
105-GSED-C05-2.0	K2407209-008	09/15/2004	09/17/2004
105-GSED-C05-3.0	K2407209-009	09/15/2004	09/17/2004
RB-2	K2407209-010	09/15/2004	09/17/2004
108-GSED-C02-0.5	K2407209-011	09/16/2004	09/17/2004
108-GSED-C02-1.0	K2407209-012	09/16/2004	09/17/2004
108-GSED-C02-2.0	K2407209-013	09/16/2004	09/17/2004
108-GSED-C02-3.0	K2407209-014	09/16/2004	09/17/2004
1.108-GSED-C02-1.0D	K2407209-015	09/16/2004	09/17/2004
1 109-GSED-C01-0.5	K2407209-016	09/16/2004	09/17/2004
109-GSED-C01-1.0	K2407209-017	09/16/2004	09/17/2004
109-GSED-C01-2.0	K2407209-018	09/16/2004	09/17/2004
110-GSED-C01A-0.5	K2407209-019	09/16/2004	09/17/2004
110-GSED-C01A-1.0	K2407209-020	09/16/2004	09/17/2004
110-GSED-C01A-2.0	K2407209-021	09/16/2004	09/17/2004
RB-3	K2407209-022	09/16/2004	09/17/2004
1.101-GSED-C09-2.0D	K2407209-023	09/14/2004	09/17/2004
107-GSED-C32-2.0MS	KWG0414674-1	09/15/2004	09/17/2004
107-GSED-C32-2.0DMS	KWG0414674-2	09/15/2004	09/17/2004
109-GSED-C01-2.0MS	KWG0414674-6	09/16/2004	09/17/2004
109-GSED-C01-2.0DMS	KWG0414674-7	09/16/2004	09/17/2004

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature: An Auchoff
Date: 10114104

Jame: If Grubbled

Title: 69MS Managa

RR41822

Analytical Results

Client: .

Geomatrix Consultants

Project: Sample Matrix:

9329.000 Water

Service Request: K2407209

Date Collected: 09/14/2004

Date Received: 09/17/2004

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

RB-1

Lab Code:

K2407209-001

Extraction Method: EPA 3520C

Units: ug/L Basis: NA

Level: Low

Analysis Method:

8270C

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
2-Chlorophenol	ND U ut	2.8	0.081	1	09/29/04	10/04/04	KWG0414855	*
2,4-Dichlorophenol	ND U UJ	2.8	0.14	1	09/29/04	10/04/04	KWG0414855	*
2,4,6-Trichlorophenol	ND U us	2.8	0.21	1	09/29/04	10/04/04	KWG0414855	*
2,4,5-Trichlorophenol	ND U uj	2.8	0.14	1	09/29/04	10/04/04	KWG0414855	*
Pentachlorophenol	ND U KT	12	0.16	1	09/29/04	10/04/04	KWG0414855	*

^{*} See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
2-Fluorophenol	99	33-109	10/04/04	Acceptable
2,4,6-Tribromophenol	110	34-130	10/04/04	Acceptable

Analytical Report

Client:

Geomatrix Consultants

Project:

9329

Sample Matrix: Water

Service Request: K2407209

Date Collected: 9/14-15/04 Date Received: 9/17/2004

Date Extracted: 9/27/2004

Base Neutral/Acid Semivolatile Organic Compounds EPA Method 3520/8270C

Units: ug/L (ppb)

	Sample Name: Lab Code: Date Analyzed:	RB-1 K2407209-001 10/4/2004
Analyte	MRL*	
2,3,4,5-Tetrachlorophenol	10	ND
2,3,4,6-Tetrachlorophenol	10	ND
2,3,5,6-Tetrachlorophenol	10	ND
2,3,4-Trichlorophenol	10	ND
2,3,5-Trichlorophenol	10	ND
2,3,6-Trichlorophenol	10	ND
3,4,5-Trichlorophenol	10	ND
2,3-Dichlorophenol	10	ND
2,5-Dichlorophenol	10	ND
2,6-Dichlorophenol	10	ND
3,4-Dichlorophenol	10	ND
3,5-Dichlorophenol	10	ND
3-Chlorophenol	10	ND
4-Chlorophenol	10	ND

MRL's have been estimated.

Approved By:

07209SVM.ml1 - 1 10/14/2004

Jun / hull

Date: 1914/04

Page No.

Analytical Results

Client:

Geomatrix Consultants

Project: Sample Matrix: 9329.000 Water

Date Collected: 09/15/2004

Service Request: K2407209

Date Received: 09/17/2004

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

RB-2

Lab Code:

K2407209-010

Extraction Method:

EPA 3520C

Units: ug/L Basis: NA

Level: Low

Analysis Method:

8270C

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
2-Chlorophenol	ND U us	2.2	0.064	1	09/29/04	10/04/04	KWG0414855	*
2,4-Dichlorophenol	ND U US	2.2	0.11	1	09/29/04	10/04/04	KWG0414855	*
2,4,6-Trichlorophenol	ND U ut	2.2	0.16	1	09/29/04	10/04/04	KWG0414855	*
2,4,5-Trichlorophenol	ND U WS	2.2	0.11	1	09/29/04	10/04/04	KWG0414855	*
Pentachlorophenol	ND U UT	8.7	0.13	1	09/29/04	10/04/04	KWG0414855	*

^{*} See Case Narrative

Surrogate Name		%Rec	Control Limits	Date Analyzed	Note
2-Fluorophenol	•	87	33-109	10/04/04	Acceptable
2,4,6-Tribromophenol		100	34-130	10/04/04	Acceptable

Analytical Report

Client:

Geomatrix Consultants

Project:

9329

Sample Matrix: Water

Service Request: K2407209

Date Collected: 9/15-16/04
Date Received: 9/17/2004

Date Extracted: 9/27/2004

Base Neutral/Acid Semivolatile Organic Compounds EPA Method 3520/8270C Units: ug/L (ppb)

	Sample Name: Lab Code: Date Analyzed:	RB-2 K2407209-010 10/5/2004
Analyte	MRL*	
2,3,4,5-Tetrachlorophenol 2,3,4,6-Tetrachlorophenol 2,3,5,6-Tetrachlorophenol 2,3,4-Trichlorophenol 2,3,5-Trichlorophenol 2,3,6-Trichlorophenol 3,4,5-Trichlorophenol 2,5-Dichlorophenol 2,6-Dichlorophenol 3,4-Dichlorophenol 3,5-Dichlorophenol meta-chlorophenol	10 10 10 10 10 10 10 10 10 10 10	
para-chlorophenol	10	ND

MRL's have been estimated.

 Jun Truff Date:

Page No.:

Analytical Results

Client:

Geomatrix Consultants

Project: Sample Matrix: 9329.000

Water

Service Request: K2407209

Date Collected: 09/16/2004

Date Received: 09/17/2004

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

RB-3

Lab Code:

K2407209-022

Extraction Method:

EPA 3520C

Analysis Method:

8270C

Units: ug/L Basis: NA

. . .

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
2-Chlorophenol	ND U UT	2.2	0.064	1	09/29/04	10/04/04	KWG0414855	*
2,4-Dichlorophenol	ND U US	2.2	0.11	1	09/29/04	10/04/04	KWG0414855	*
2,4,6-Trichlorophenol	ND U us	2.2	0.16	1	09/29/04	10/04/04	KWG0414855	*
2,4,5-Trichlorophenol	ND U uJ	2.2	0.11	1	09/29/04	10/04/04	KWG0414855	*
Pentachlorophenol	ND U us	8.7	0.13	1	09/29/04	10/04/04	KWG0414855	*

^{*} See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
-Fluorophenol	90	33-109	10/04/04	Acceptable
2,4,6-Tribromophenol	106	34-130	10/04/04	Acceptable

Analytical Report

Client:

Geomatrix Consultants

Project:

9329

Sample Matrix: Water

Service Request: K2407209

Date Collected: 9/16/2004 **Date Received:** 9/17/2004

Date Extracted: 9/27/2004

Base Neutral/Acid Semivolatile Organic Compounds EPA Method 3520/8270C

Units: ug/L (ppb)

	Sample Name: Lab Code: Date Analyzed:	RB-3 K2407209-022 10/7/2004
Analyte	MRL*	
2,3,4,5-Tetrachlorophenol	10	ND
2,3,4,6-Tetrachlorophenol	10	ND
2,3,5,6-Tetrachlorophenol	10	ND
2,3,4-Trichlorophenol	10	ND
2,3,5-Trichlorophenol	10	ND
2,3,6-Trichlorophenol	10	ND
3,4,5-Trichlorophenol	10	ND
2,3-Dichlorophenol	10	ND
2,5-Dichlorophenol	10	ND
2,6-Dichlorophenol	10	ND
3,4-Dichlorophenol	10	ND
3,5-Dichlorophenol	10	ND
meta-chlorophenol	10	ND
para-chlorophenol	10	ND

MRL's have been estimated.

Approved By:

07209SVM.ml1 - 22 10/14/2004

Jun Tung

Date: 19/14/04

Analytical Results

Client:

Geomatrix Consultants

Project: Sample Matrix: 9329.000

Water

Service Request: K2407209

Date Collected: NA
Date Received: NA

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

Method Blank

Lab Code:

KWG0414855-3

Extraction Method:

EPA 3520C

Analysis Method:

8270C

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
2-Chlorophenol	ND U	0.48	0.015	1	09/29/04	10/04/04	KWG0414855	
2,4-Dichlorophenol	ND U	0.48	0.024	1	09/29/04	10/04/04	KWG0414855	
2,4,6-Trichlorophenol	ND U	0.48	0.037	1	09/29/04	10/04/04	KWG0414855	
2,4,5-Trichlorophenol	ND U	0.48	0.026	1	09/29/04	10/04/04	KWG0414855	
Pentachlorophenol	ND U	2.0	0.029	1	09/29/04	10/04/04	KWG0414855	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
2-Fluorophenol	102	33-109	10/04/04	Acceptable
2,4,6-Tribromophenol	103	34-130	10/04/04	Acceptable

Comments:

Page

Analytical Report

Client:

Geomatrix Consultants

Service Request: K2407209

Date Collected: NA

Project:

9329

Date Collected: NA

Date Received: NA

Sample Matrix: Water

Date Extracted: 9/27/2004

Base Neutral/Acid Semivolatile Organic Compounds EPA Method 3520/8270C Units: ug/L (ppb)

	Sample Name: Lab Code: Date Analyzed:	Method Blank KWG0414855-3 10/4/2004
Analyte	MRL*	
2,3,4,5-Tetrachlorophenol	10	ND
2,3,4,6-Tetrachlorophenol	10	ND
2,3,5,6-Tetrachlorophenol	10	ND
2,3,4-Trichlorophenol	10	ND
2,3,5-Trichlorophenol	10	ND
2,3,6-Trichlorophenol	10	ND
3,4,5-Trichlorophenol	10	ND
2,3-Dichlorophenol	10	ND
2,5-Dichlorophenol	10	ND
2,6-Dichlorophenol	10	ND
3,4-Dichlorophenol	10	ND
3,5-Dichlorophenol	10	ND
meta-chlorophenol	10	ND
para-chlorophenol	10	ND

MRL's have been estimated.

Approved By:

07209SVM.ml1 - mb 10/14/2004

Jun Nung

Date: 10/14/04

Page No.:

Analytical Results

Client:

Geomatrix Consultants

Project:

9329.000

Sample Matrix:

Soil

Service Request: K2407209

Date Collected: 09/15/2004

Date Received: 09/17/2004

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

107-GSED-C32-0.5

Lab Code:

K2407209-002

Extraction Method: Analysis Method:

EPA 3541

8270C

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
2-Chlorophenol	ND U	62	21	5	09/27/04	10/04/04	KWG0414674	
2,4-Dichlorophenol	ND U	62	23	5	09/27/04	10/04/04	KWG0414674	
2,4,6-Trichlorophenol	ND U	62	23	5	09/27/04	10/04/04	KWG0414674	
2,4,5-Trichlorophenol	ND U	62	37	5	09/27/04	10/04/04	KWG0414674	
Pentachlorophenol	ND U	620	110	5	09/27/04	10/04/04	KWG0414674	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2-Fluorophenol	80	28-109	10/04/04	Acceptable	
2,4,6-Tribromophenol	104	35-138	10/04/04	Acceptable	

Analytical Report

Client:

Geomatrix Consultants

Project:

9329

Sample Matrix: Sediment

Service Request: K2407209

Date Collected: 9/14-15/04
Date Received: 9/17/2004

Date Extracted: 9/27/2004

Base Neutral/Acid Semivolatile Organic Compounds

EPA Methods 3541/8270C Units: ug/Kg (ppb) Dry Weight Basis

107-GSED-C32-

Sample Name:	0.5
Lab Code:	K2407209-002
Date Analyzed:	10/4/2004
MRL*	
50	ND
50	ND ·
50	ND
	Lab Code: Date Analyzed: MRL* 50 50 50 50 50 50 50 50 50 50 50 50 50

MRL's have been estimated.

Approved By:

07209SVM.ml1 - 2 10/14/2004

Jen Mul

Date: 10/14/04

Page No.:

Analytical Results

Client: .

Geomatrix Consultants

Project:

9329.000

Sample Matrix:

Soil

Service Request: K2407209

Date Collected: 09/15/2004

Date Received: 09/17/2004

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

107-GSED-C32-1.0

Lab Code:

K2407209-003

Extraction Method: EPA 3541 Analysis Method:

8270C

Units: ug/Kg

Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
2-Chlorophenol	ND U	54	19	5	09/27/04	10/04/04	KWG0414674	
2,4-Dichlorophenol	ND U	54	20	5	09/27/04	10/04/04	KWG0414674	
2,4,6-Trichlorophenol	ND U	54	- 20	_. 5	09/27/04	10/04/04	KWG0414674	
2,4,5-Trichlorophenol	ND U	54	33	5	09/27/04	10/04/04	KWG0414674	
Pentachlorophenol	ND U	540	92	5	09/27/04	10/04/04	KWG0414674	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2-Fluorophenol	68	28-109	10/04/04	Acceptable	
2,4,6-Tribromophenol	69	35-138	10/04/04	Acceptable	

Analytical Report

Client:

Geomatrix Consultants

Project:

9329

Sample Matrix: Sediment

Service Request: K2407209

Date Collected: 9/14-15/04 **Date Received:** 9/17/2004

Date Extracted: 9/27/2004

Base Neutral/Acid Semivolatile Organic Compounds

EPA Methods 3541/8270C Units: ug/Kg (ppb) Dry Weight Basis

107-GSED-C32-

	Sample Name: Lab Code: Date Analyzed:	1.0 K2407209-003 10/4/2004
Analyte	MRL*	
2,3,4,5-Tetrachlorophenol	50	ND
2,3,4,6-Tetrachlorophenol	50	ND
2,3,5,6-Tetrachlorophenol	50	ND
2,3,4-Trichlorophenol	50	ND
2,3,5-Trichlorophenol	50	ND
2,3,6-Trichlorophenol	50	ND
3,4,5-Trichlorophenol	50	ND
2,3-Dichlorophenol	50	ND
2,5-Dichlorophenol	50	ND
2,6-Dichlorophenol	50	ND
3,4-Dichlorophenol	50	ND
3,5-Dichlorophenol	50	ND
3-Chlorophenol	50	ND
4-Chlorophenol	50	ND

MRL's have been estimated.

Approved By:

07209SVM.ml1 - 3 10/14/2004

Date: 10/14/104

Page No.:

Analytical Results

Client:

Geomatrix Consultants

Project:

9329.000

Sample Matrix:

Soil

Service Request: K2407209

Date Collected: 09/15/2004

Date Received: 09/17/2004

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

107-GSED-C32-2.0

Lab Code:

K2407209-004

EPA 3541

Units: ug/Kg Basis: Dry

Level: Low

Extraction Method: Analysis Method: 8270C

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
2-Chlorophenol	ND U	49	16	5	09/27/04	10/04/04	KWG0414674	
2,4-Dichlorophenol	ND U	49	17	5	09/27/04	10/04/04	KWG0414674	
2,4,6-Trichlorophenol	ND U	49	17	5	09/27/04	10/04/04	KWG0414674	
2,4,5-Trichlorophenol	ND U	49	28	5	09/27/04	10/04/04	KWG0414674	
Pentachlorophenol	ND U	490	78	5	09/27/04	10/04/04	KWG0414674	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note ·		
2-Fluorophenol	 73	28-109	10/04/04	Acceptable	·	
2,4,6-Tribromophenol	93	35-138	10/04/04	Acceptable		

Comments:

Printed: 10/12/2004 17:10:18

U:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic 68

Page 1 of 1

SuperSet Reference: RR41822

Analytical Report

Client:

Geomatrix Consultants

Project:

9329

Sample Matrix: Sediment

Service Request: K2407209

Date Collected: 9/15/2004
Date Received: 9/17/2004

Date Extracted: 9/27/2004

Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3541/8270C Units: ug/Kg (ppb) Dry Weight Basis

107-GSED-C32-

Sample Name:	2.0
Lab Code:	K2407209-004
Date Analyzed:	10/4/2004
MRL*	
50	ND
50	ND ·
50	ND
50	ND ·
50	ND
	Lab Code: Date Analyzed: MRL* 50 50 50 50 50 50 50 50 50 50 50 50 50

MRL's have been estimated.

Approved By:

07209SVM.ml1 - 4 10/14/2004

Jen Mul

Date: 10/14/09

Page No.

Analytical Results

Client:

Geomatrix Consultants

Project:

9329.000

Sample Matrix:

Soil

Service Request: K2407209

Date Collected: 09/15/2004 **Date Received:** 09/17/2004

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

107-GSED-C32-3.0

ND U

Lab Code:

K2407209-005

Extraction Method:

EPA 3541

Units: ug/Kg Basis: Dry

Level: Low

KWG0414674

Analysis Method:

Pentachlorophenol

8270C

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
2-Chlorophenol	ND U	8.8	3.0	1	09/27/04	10/04/04	KWG0414674	
2,4-Dichlorophenol	ND U	8.8	3.2	1	09/27/04	10/04/04	KWG0414674	
2,4,6-Trichlorophenol	ND U	8.8	3.2	1	09/27/04	10/04/04	KWG0414674	
2,4,5-Trichlorophenol	ND U	8.8	5.3	1	09/27/04	10/04/04	KWG0414674	

15

1

09/27/04

10/04/04

88

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2-Fluorophenol	63	28-109	10/04/04	Acceptable	
2,4,6-Tribromophenol	85	35-138	10/04/04	Acceptable	

Comments:

Printed: 10/12/2004 17:10:22

U:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic 70

Page 1 of

SuperSet Reference: RR41822

Analytical Report

Client:

Geomatrix Consultants

Project:

9329

Sample Matrix: Sediment

Service Request: K2407209

Date Collected: 9/15/2004 **Date Received:** 9/17/2004

Date Extracted: 9/27/2004

Base Neutral/Acid Semivolatile Organic Compounds

EPA Methods 3541/8270C Units: ug/Kg (ppb) Dry Weight Basis

107-GSED-C32-

Sample Name:	3.0
Lab Code:	K2407209-005
Date Analyzed:	10/4/2004

•	Date Allatyzed.	10/4/2004
Analyte	MRL*	
2,3,4,5-Tetrachlorophenol	10	ND
2,3,4,6-Tetrachlorophenol	10	ND
2,3,5,6-Tetrachlorophenol	10	ND
2,3,4-Trichlorophenol	10	ND
2,3,5-Trichlorophenol	10	ND
2,3,6-Trichlorophenol	10	ND
3,4,5-Trichlorophenol	10	ND
2,3-Dichlorophenol	10	ND
2,5-Dichlorophenol	10	ND
2,6-Dichlorophenol	10	ND
3,4-Dichlorophenol	10	ND
3,5-Dichlorophenol	10	ND
meta-chlorophenol	10	ND
para-chlorophenol	10	ND

MRL's have been estimated.

Approved By:

07209SVM.ml1 - 5 10/14/2004

__ Date: __*[0/14/04*/____

Analytical Results

Client:

Geomatrix Consultants

Project:

9329.000

Sample Matrix:

Soil

Service Request: K2407209

Date Collected: 09/15/2004

Date Received: 09/17/2004

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

105-GSED-C05-0.5

Lab Code:

K2407209-006

Extraction Method:

EPA 3541

Basis: Dry

Units: ug/Kg Basis: Dry

Level: Low

Analysis Method:

8270C

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
2-Chlorophenol	ND U	59	21	5	09/27/04	10/04/04	KWG0414674	
2,4-Dichlorophenol	ND U	59	22	5	09/27/04	10/04/04	KWG0414674	
2,4,6-Trichlorophenol	ND U	59	22	5	09/27/04	10/04/04	KWG0414674	
2,4,5-Trichlorophenol	ND U	59	36	5	09/27/04	10/04/04	KWG0414674	
Pentachlorophenol	ND U	590	110	5	09/27/04	10/04/04	KWG0414674	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
2-Fluorophenol	63	28-109	10/04/04	Acceptable
2,4,6-Tribromophenol	80	35-138	10/04/04	Acceptable

Comments:

Printed: 10/12/2004 17:10:25

U:\Stealth\Crystal.rpt\Formlm.rpt

Merged

Form 1A - Organic

Page 1 of 1

Analytical Report

Client:

Geomatrix Consultants

Project:

9329

Sample Matrix: Sediment

Service Request: K2407209

Date Collected: 9/15/2004 Date Received: 9/17/2004

Date Extracted: 9/27/2004

Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3541/8270C Units: ug/Kg (ppb) Dry Weight Basis

105-GSED-C05-

		103-G3ED-C03-
.*	Sample Name:	0.5
	Lab Code:	K2407209-006
	Date Analyzed:	10/4/2004
Analyte	MRL*	
2,3,4,5-Tetrachlorophenol	50	ND
2,3,4,6-Tetrachlorophenol	50	ND
2,3,5,6-Tetrachlorophenol	50	ND
2,3,4-Trichlorophenol	50	ND
2,3,5-Trichlorophenol	50	ND
2,3,6-Trichlorophenol	50	ND
3,4,5-Trichlorophenol	50	ND
2,3-Dichlorophenol	50	ND
2,5-Dichlorophenol	50	ND
2,6-Dichlorophenol	50	ND
3,4-Dichlorophenol	50	ND
3,5-Dichlorophenol	50	ND
meta-chlorophenol	50	ND
para-chlorophenol	50	ND

MRL's have been estimated.

Approved By:

07209SVM.mli - 6 10/14/2004

Jun Date: 10/14/04

Analytical Results

Client:

Geomatrix Consultants

Project:

9329.000

Sample Matrix:

Soil

Service Request: K2407209

Date Collected: 09/15/2004

Date Received: 09/17/2004

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

105-GSED-C05-1.0

Lab Code:

K2407209-007

Extraction Method:

EPA 3541

Analysis Method:

8270C

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
2-Chlorophenol	ND U	63	22	5	09/27/04	10/05/04	KWG0414674	
2,4-Dichlorophenol	ND U	63	23	5	09/27/04	10/05/04	KWG0414674	
2,4,6-Trichlorophenol	ND U	63	- 23	5	09/27/04	10/05/04	KWG0414674	
2,4,5-Trichlorophenol	ND U	63	38	5	09/27/04	10/05/04	KWG0414674	
Pentachlorophenol	ND U	630	110	5	09/27/04	10/05/04	KWG0414674	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2-Fluorophenol	66	28-109	10/05/04	Acceptable	
2,4,6-Tribromophenol	87	35-138	10/05/04	Acceptable	

Analytical Report

Client:

Geomatrix Consultants

Project:

9329

Sample Matrix: Sediment

Service Request: K2407209

Date Collected: 9/15/2004 **Date Received:** 9/17/2004

Date Extracted: 9/27/2004

Base Neutral/Acid Semivolatile Organic Compounds

EPA Methods 3541/8270C Units: ug/Kg (ppb) Dry Weight Basis

105-GSED-C05-

		TOS-COPED-COP
	Sample Name:	1.0
	Lab Code:	K2407209-007
	Date Analyzed:	10/5/2004
Analyte	MRL*	
2,3,4,5-Tetrachlorophenol	50	ND
2,3,4,6-Tetrachlorophenol	50	ND
2,3,5,6-Tetrachlorophenol	50 .	ND
2,3,4-Trichlorophenol	50	ND
2,3,5-Trichlorophenol	50	ND
2,3,6-Trichlorophenol	50	ND
3,4,5-Trichlorophenol	50	ND
2,3-Dichlorophenol -	50	ND.
2,5-Dichlorophenol	50	ND
2,6-Dichlorophenol	50	ND
3,4-Dichlorophenol	50	ND
3,5-Dichlorophenol	50	ND
3-Chlorophenol	50	ND
4-Chlorophenol	50	ND

MRL's have been estimated.

Approved By:

07209SVM.ml1 - 7 10/14/2004

ay huff

_ Date: _ / Ø/14/04___

Page No

Analytical Results

Client: ·

Geomatrix Consultants

Project:

9329.000

Sample Matrix:

Soil

Service Request: K2407209

Date Collected: 09/15/2004 Date Received: 09/17/2004

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

105-GSED-C05-2.0

Lab Code:

K2407209-008

Units: ug/Kg Basis: Dry

Extraction Method:

EPA 3541

Level: Low

Analysis	Method	:		8

8270C

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
2-Chlorophenol	ND U	20	6.6	2	09/27/04	10/05/04	KWG0414674	
2,4-Dichlorophenol	ND U	20	7.0	2	09/27/04	10/05/04	KWG0414674	
2,4,6-Trichlorophenol	ND U	20	7.0	2	09/27/04	10/05/04	KWG0414674	
2,4,5-Trichlorophenol	ND U	20	12	2	09/27/04	10/05/04	KWG0414674	
Pentachlorophenol	ND U	200	33	2	09/27/04	10/05/04	KWG0414674	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note		
2-Fluorophenol	58	28-109	10/05/04	Acceptable		
2,4,6-Tribromophenol	82	35-138	10/05/04	Acceptable	•	

Comments:

Printed: 10/12/2004 17:10:31

U:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic 76

Analytical Report

Client:

Geomatrix Consultants

Project:

9329

Sample Matrix: Sediment

Service Request: K2407209

Date Collected: 9/15/2004
Date Received: 9/17/2004

Date Extracted: 9/27/2004

Base Neutral/Acid Semivolatile Organic Compounds

EPA Methods 3541/8270C Units: ug/Kg (ppb) Dry Weight Basis

105-GSED-C05-

	Sample Name:	2.0
	Lab Code:	K2407209-008
	Date Analyzed:	10/5/2004
Analyte	MRL*	
2,3,4,5-Tetrachlorophenol	20	ND
2,3,4,6-Tetrachlorophenol	20	ND
2,3,5,6-Tetrachlorophenol	20	ND
2.3.4-Trichlorophenol	20	ND

2,3,4,5-Tetrachlorophenol	20	ND
2,3,4,6-Tetrachlorophenol	20	ND
2,3,5,6-Tetrachlorophenol	20	ND
2,3,4-Trichlorophenol	20	ND
2,3,5-Trichlorophenol	20	ND
2,3,6-Trichlorophenol	20	ND
3,4,5-Trichlorophenol	20	ND
2,3-Dichlorophenol	20	ND
2,5-Dichlorophenol	20	ND
2.6-Dichlorophenol	20	ND
3,4-Dichlorophenol	20	ND
3,5-Dichlorophenol	20	ND
3-Chlorophenol	20	ND
4-Chlorophenol	20	ND

MRL's have been estimated.

Approved By:

07209SVM.mll - 8 10/14/2004

Page No

Analytical Results

Client:

Geomatrix Consultants

Project:

9329.000

Sample Matrix:

Soil

Service Request: K2407209

Date Collected: 09/15/2004

Date Received: 09/17/2004

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

105-GSED-C05-3.0

Lab Code:

K2407209-009

Extraction Method:

EPA 3541

Analysis Method:

8270C

Units: ug/Kg

Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
2-Chlorophenol	ND U	9.7	2.2	1	09/27/04	10/05/04	KWG0414674	
2,4-Dichlorophenol	ND U	9.7	2.4	1	09/27/04	10/05/04	KWG0414674	
2,4,6-Trichlorophenol	ND U	9.7	2.4	1	09/27/04	10/05/04	KWG0414674	
2,4,5-Trichlorophenol	ND U	9.7	3.9	1	09/27/04	10/05/04	KWG0414674	
Pentachlorophenol	ND U	97	11	1	09/27/04	10/05/04	KWG0414674	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	·
2-Fluorophenol 2,4,6-Tribromophenol	57 89	28-109 35-138	10/05/04 10/05/04	Acceptable Acceptable	

Analytical Report

Client:

Geomatrix Consultants

Project:

9329

Sample Matrix: Sediment

Service Request: K2407209

Date Collected: 9/15/2004 **Date Received:** 9/17/2004

Date Extracted: 9/27/2004

Base Neutral/Acid Semivolatile Organic Compounds

EPA Methods 3541/8270C Units: ug/Kg (ppb) Dry Weight Basis

105-GSED-C05-

		102-G2ED-C02-
	Sample Name:	3.0
	Lab Code:	K2407209-009
	Date Analyzed:	10/5/2004
Analyte	MRL*	
2,3,4,5-Tetrachlorophenol	10	ND
2,3,4,6-Tetrachlorophenol	10	ND
2,3,5,6-Tetrachlorophenol	10	ND
2,3,4-Trichlorophenol	10	ND
2,3,5-Trichlorophenol	10	ND
2,3,6-Trichlorophenol	10	ND
3,4,5-Trichlorophenol	10	ND
2,3-Dichlorophenol	10	ND
2,5-Dichlorophenol	10	ND
2,6-Dichlorophenol	10	ND
3,4-Dichlorophenol	10	ND
3,5-Dichlorophenol	10	. ND
3-Chlorophenol	10	ND
4-Chlorophenol	10	ND

MRL's have been estimated.

Approved By:

07209SVM.ml1 - 9 10/14/2004

Jun Jung Date: 1914

Page No

Analytical Results

Client:

Geomatrix Consultants

Project:

9329.000

Sample Matrix:

Soil

Service Request: K2407209

Date Collected: 09/16/2004

Date Received: 09/17/2004

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

108-GSED-C02-0.5

Lab Code:

K2407209-011

Extraction Method:

EPA 3541

Analysis Method:

8270C

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
2-Chlorophenol	ND U	57	20	5	09/27/04	10/05/04	KWG0414674	_
2,4-Dichlorophenol	ND U	57	21	5	09/27/04	10/05/04	KWG0414674	
2,4,6-Trichlorophenol	ND U	57.	21	5	09/27/04	10/05/04	KWG0414674	
2,4,5-Trichlorophenol	ND U	57	35	5	09/27/04	10/05/04	KWG0414674	
Pentachlorophenol	ND U	570	98	5	09/27/04	10/05/04	KWG0414674	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2-Fluorophenol	60	28-109	10/05/04	Acceptable	
2,4,6-Tribromophenol	90	35-138	10/05/04	Acceptable	e e

Comments:

Printed: 10/12/2004 17:10:37 U:\Stealth\Crystal.rpt\Form1m.rpt

Analytical Report

Client:

Geomatrix Consultants

Project:

9329

Sample Matrix: Sediment

Service Request: K2407209

Date Collected: 9/15-16/04 Date Received: 9/17/2004

Date Extracted: 9/27/2004

Base Neutral/Acid Semivolatile Organic Compounds

EPA Methods 3541/8270C Units: ug/Kg (ppb) Dry Weight Basis

108-GSED-C02-

	Sample Name: Lab Code: Date Analyzed:	0.5 K2407209-011 10/5/2004
Analyte	MRL*	
2,3,4,5-Tetrachlorophenol	50	ND
2,3,4,6-Tetrachlorophenol	50	ND
2,3,5,6-Tetrachlorophenol	50	ND
2,3,4-Trichlorophenol	50	ND
2,3,5-Trichlorophenol	50	ND
2,3,6-Trichlorophenol	50	ND
3,4,5-Trichlorophenol	50	ND
2,3-Dichlorophenol	50	ND
2,5-Dichlorophenol	50	ND
2,6-Dichlorophenol	50	ND
3,4-Dichlorophenol	50	ND
3,5-Dichlorophenol	50	ND
meta-chlorophenol	50	ND
para-chlorophenol	50	ND

MRL's have been estimated.

Approved By:

07209SVM.mll - 11 10/14/2004

Analytical Results

Client:

Geomatrix Consultants

Project:

9329.000

Sample Matrix:

Soil

Service Request: K2407209

Date Collected: 09/16/2004 Date Received: 09/17/2004

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

108-GSED-C02-1.0

Lab Code:

K2407209-012

Extraction Method:

EPA 3541

Units: ug/Kg Basis: Dry

Level: Low

Analysis Method: 8270C

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
2-Chlorophenol	ND U	22	7.7	2	09/27/04	10/05/04	KWG0414674	
2,4-Dichlorophenol	ND U	22	8.1	2	09/27/04	10/05/04	KWG0414674	
2,4,6-Trichlorophenol	ND U	22	8.1	2 .	09/27/04	10/05/04	KWG0414674	
2,4,5-Trichlorophenol	ND U	22	14	2	09/27/04	10/05/04	KWG0414674	
Pentachlorophenol	ND U	220	39	2	09/27/04	10/05/04	KWG0414674	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
2-Fluorophenol	52	28-109	10/05/04	Acceptable
2,4,6-Tribromophenol	82	35-138	10/05/04	Acceptable

Comments:

Printed: 10/12/2004 17:10:40

U:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic 82

Page I of 1 SuperSet Reference: RR41822

Analytical Report

Client:

Geomatrix Consultants

Project:

9329

Sample Matrix: Sediment

Service Request: K2407209

Date Collected: 9/15-16/04
Date Received: 9/17/2004

Date Extracted: 9/27/2004

Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3541/8270C Units: ug/Kg (ppb) Dry Weight Basis

108-GSED-C02-

	TOO-OPEN-COT-
Sample Name:	1.0
Lab Code:	K2407209-012
Date Analyzed:	10/5/2004
*	
	ND
	Lab Code:

MRL's have been estimated.

Approved By:

07209SVM.ml1 - 12 10/14/2004

Jup Mush Date: 10

Page No

Analytical Results

Client:

Geomatrix Consultants

Project:

9329.000

Sample Matrix:

Soil

Service Request: K2407209

Date Collected: 09/16/2004

Date Received: 09/17/2004

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

108-GSED-C02-2.0

Lab Code:

K2407209-013

Extraction Method:

EPA 3541

Analysis Method:

8270C

Units: ug/Kg

Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
2-Chlorophenol	ND U	50	17	5	09/27/04	10/05/04	KWG0414674	
2,4-Dichlorophenol	ND U	50	18	5	09/27/04	10/05/04	KWG0414674	
2,4,6-Trichlorophenol	ND U	50	18	5	09/27/04	10/05/04	KWG0414674	
2,4,5-Trichlorophenol	ND U	50	30	5	09/27/04	10/05/04	KWG0414674	
Pentachlorophenol	ND U	500	83	5	09/27/04	10/05/04	KWG0414674	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	÷
2-Fluorophenol	70	28-109	10/05/04	Acceptable	
2,4,6-Tribromophenol	90	35-138	10/05/04	Acceptable	

Comments:

Printed: 10/12/2004 17:10:43

U:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic 84

Page 1 of 1

SuperSet Reference: RR41822

Analytical Report

Client:

Geomatrix Consultants

Project:

9329

Sample Matrix: Sediment

Service Request: K2407209

Date Collected: 9/16/2004 Date Received: 9/17/2004

Date Extracted: 9/27/2004

Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3541/8270C

Units: ug/Kg (ppb) Dry Weight Basis

108-GSED-C02-

	Sample Name: Lab Code: Date Analyzed:	2.0 K2407209-013 10/5/2004
Analyte	MRL*	
2,3,4,5-Tetrachlorophenol	50	ND
2,3,4,6-Tetrachlorophenol	50	ND
2,3,5,6-Tetrachlorophenol	50	ND
2,3,4-Trichlorophenol	50	ND
2,3,5-Trichlorophenol	50	ND
2,3,6-Trichlorophenol	50	ND
3,4,5-Trichlorophenol	50	ND
2,3-Dichlorophenol	50	ND
2,5-Dichlorophenol	50	ND
2,6-Dichlorophenol	50	ND
3,4-Dichlorophenol	50	ND
3,5-Dichlorophenol	50	ND
3-Chlorophenol	50	ND
4-Chlorophenol	50	ND

MRL's have been estimated.

Approved By:

07209SVM.mli - 13 10/14/2004

Date: _

Analytical Results

Client: ·

Geomatrix Consultants

Project:

9329.000

Sample Matrix:

Soil

Service Request: K2407209

Date Collected: 09/16/2004

Date Received: 09/17/2004

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

108-GSED-C02-3.0

Lab Code:

K2407209-014

Extraction Method:

EPA 3541

Analysis Method:

Units: ug/Kg Basis: Dry

Level: Low

8270C

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
2-Chlorophenol	ND U	19	5.9	2	09/27/04	10/05/04	KWG0414674	
2,4-Dichlorophenol	ND U	19	6.3	2	09/27/04	10/05/04	KWG0414674	
2,4,6-Trichlorophenol	ND U	19	6.3	. 2	09/27/04	10/05/04	KWG0414674	
2,4,5-Trichlorophenol	ND U	19	11	2	09/27/04	10/05/04	KWG0414674	
Pentachlorophenol	ND U	190	30	2	09/27/04	10/05/04	KWG0414674	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
2-Fluorophenol	60	28-109	10/05/04	Acceptable
2,4,6-Tribromophenol	77	35-138	10/05/04	Acceptable

Comments:

Analytical Report

Client:

Geomatrix Consultants

Project:

9329

Sample Matrix: Sediment

Service Request: K2407209

Date Collected: 9/16/2004
Date Received: 9/17/2004

Date Extracted: 9/27/2004

Base Neutral/Acid Semivolatile Organic Compounds

EPA Methods 3541/8270C Units: ug/Kg (ppb) Dry Weight Basis

108-GSED-C02-

	Sample Name:	3.0
	Lab Code:	K2407209-014
	Date Analyzed:	10/5/2004
Analyte	MRL*	
2,3,4,5-Tetrachlorophenol	50	ND
2,3,4,6-Tetrachlorophenol	50	ND
2,3,5,6-Tetrachlorophenol	50	ND
2,3,4-Trichlorophenol	50	ND
2,3,5-Trichlorophenol	50	ND
2,3,6-Trichlorophenol	50	ND
3,4,5-Trichlorophenol	50	ND
2,3-Dichlorophenol	50	ND
2,5-Dichlorophenol	50	ND
2,6-Dichlorophenol	50	ND
3,4-Dichlorophenol	50	ND
3,5-Dichlorophenol	50	ND
3-Chlorophenol	50	ND
4-Chlorophenol	50	ND

MRL's have been estimated.

Approved By:

07209SVM.ml1 - 14 10/14/2004

Page No.:

Analytical Results

Client:

Geomatrix Consultants

Project: Sample Matrix: 9329.000

Soil

Service Request: K2407209

Date Collected: 09/16/2004

Date Received: 09/17/2004

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

108-GSED-C02-1.0D

Lab Code:

K2407209-015

Extraction Method:

EPA 3541

Units: ug/Kg Basis: Dry

Level: Low

Analysis Method:

8270C

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
2-Chlorophenol	NĎ U	54	19	5	09/27/04	10/05/04	KWG0414674	
2,4-Dichlorophenol	ND U	54	20	5	09/27/04	10/05/04	KWG0414674	
2,4,6-Trichlorophenol	ND U	54	20	5	09/27/04	10/05/04	KWG0414674	
2,4,5-Trichlorophenol	ND U	54	33	5	09/27/04	10/05/04	KWG0414674	
Pentachlorophenol	ND U	540	92	5	09/27/04	10/05/04	KWG0414674	

Surrogate Name	•	%Rec	Control Limits	Date Analyzed	Note	·	٠,
2-Fluorophenol		66	28-109	10/05/04	Acceptable		
2,4,6-Tribromophenol		82	35-138	10/05/04	Acceptable		

Comments:

Printed: 10/12/2004 17:10:49

U:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic 88

Page 1 of 1

SuperSet Reference: RR41822

Analytical Report

Client:

Geomatrix Consultants

Project:

9329

Sample Matrix: Sediment

Service Request: K2407209

Date Collected: 9/16/2004 Date Received: 9/17/2004 Date Extracted: 9/27/2004

Base Neutral/Acid Semivolatile Organic Compounds

EPA Methods 3541/8270C Units: ug/Kg (ppb) Dry Weight Basis

108-GSED-C02-

		100-GDED COZ
	Sample Name:	1.0D
	Lab Code:	K2407209-015
	Date Analyzed:	10/5/2004
Analyte	MRL*	
2,3,4,5-Tetrachlorophenol	50	ND
2,3,4,6-Tetrachlorophenol	50	ND
2,3,5,6-Tetrachlorophenol	50	ND
2,3,4-Trichlorophenol	50	ND
2,3,5-Trichlorophenol	50	ND
2,3,6-Trichlorophenol	50	ND
3,4,5-Trichlorophenol	50	ND
2,3-Dichlorophenol	50	ND
2,5-Dichlorophenol	50	ND
2,6-Dichlorophenol	50	ND
3,4-Dichlorophenol	50	ND
3,5-Dichlorophenol	50	ND
3-Chlorophenol	50	ND
4-Chlorophenol	50	ND

MRL's have been estimated.

Approved By:

072098VM.ml1 - 15 10/14/2004

Jun July Date: 14/1/0

Page No

Analytical Results

Client:

Geomatrix Consultants

Project: Sample Matrix: 9329.000

Soil

Service Request: K2407209

Date Collected: 09/16/2004

Date Received: 09/17/2004

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

109-GSED-C01-0.5

Lab Code:

K2407209-016

Extraction Method:
Analysis Method:

EDA 2541

EPA 3541 8270C Units: ug/Kg

Basis: Dry

Level: Low

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
2-Chlorophenol	ND	U	58	20	5	09/27/04	10/05/04	KWG0414674	
2,4-Dichlorophenol	ND	U	58	21	5	09/27/04	10/05/04	KWG0414674	
2,4,6-Trichlorophenol	ND	U	58	21	5	09/27/04	10/05/04	KWG0414674	
2,4,5-Trichlorophenol	ND	U	58	35	5	09/27/04	10/05/04	KWG0414674	
Pentachlorophenol	ND	Π .	580	98	5	09/27/04	10/05/04	KWG0414674	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
2-Fluorophenol	76	28-109	10/05/04	Acceptable
2,4,6-Tribromophenol	88	35-138	10/05/04	Acceptable

Comments:

Printed: 10/12/2004 17:10:52

U:\Stealth\Crystal.rpt\Formim.rpt

Merged

Form 1A - Organic 90

Page 1 of 1

Analytical Report

Client:

Geomatrix Consultants

Project:

9329

Sample Matrix: Sediment

Service Request: K2407209

Date Collected: 9/16/2004
Date Received: 9/17/2004

Date Extracted: 9/27/2004

Base Neutral/Acid Semivolatile Organic Compounds

EPA Methods 3541/8270C Units: ug/Kg (ppb) Dry Weight Basis

109-GSED-C01-

ND

	Sample Name: Lab Code:	0.5 K2407209-016
	Date Analyzed:	10/5/2004
Analyte	MRL*	
2,3,4,5-Tetrachlorophenol	50	ND
2,3,4,6-Tetrachlorophenol	50	ND
2,3,5,6-Tetrachlorophenol	50	ND
2,3,4-Trichlorophenol	50	ND
2,3,5-Trichlorophenol	50	ND
2,3,6-Trichlorophenol	50	ND
3,4,5-Trichlorophenol	50	ND
2,3-Dichlorophenol	50	ND
2,5-Dichlorophenol	50	ND
2,6-Dichlorophenol	50	ND
3,4-Dichlorophenol	50	ND
3,5-Dichlorophenol	50	ND
meta-chlorophenol	50	ND

50

MRL's have been estimated.

Approved By:

para-chlorophenol

07209SVM.ml1 - 16 10/14/2004

An Nug

Date: 16/14/04

Page No.:

Analytical Results

Client:

Geomatrix Consultants

Project: Sample Matrix: 9329.000

Soil

Service Request: K2407209

Date Collected: 09/16/2004 Date Received: 09/17/2004

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

109-GSED-C01-1.0

Lab Code:

K2407209-017

Extraction Method:

EPA 3541

Units: ug/Kg Basis: Dry

Level: Low

Analysis Method:

8270C

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
2-Chlorophenol	ND U	22	7.4	2	09/27/04	10/05/04	KWG0414674	 .
2,4-Dichlorophenol	ND U	22	7.9	2	09/27/04	10/05/04	KWG0414674	
2,4,6-Trichlorophenol	ND U	22	7.9	2	09/27/04	10/05/04	KWG0414674	
2,4,5-Trichlorophenol	ND U	22	14	2	09/27/04	10/05/04	KWG0414674	
Pentachlorophenol	ND U	220	37	2	09/27/04	10/05/04	KWG0414674	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2-Fluorophenol	66	28-109	10/05/04	Acceptable	
2,4,6-Tribromophenol	86	35-138	10/05/04	Acceptable	

Comments:

Printed: 10/12/2004 17:10:55

U:\Stealth\Crystal.rpt\Form1 m.rpt

Merged

Form 1A - Organic 92

Page 1 of 1

Analytical Report

Client:

Geomatrix Consultants

Project:

9329

Sample Matrix: Sediment

Service Request: K2407209

Date Collected: 9/16/2004 Date Received: 9/17/2004

Date Extracted: 9/27/2004

Base Neutral/Acid Semivolatile Organic Compounds

EPA Methods 3541/8270C Units: ug/Kg (ppb) Dry Weight Basis

109-GSED-C01-

·	Sample Name: Lab Code: Date Analyzed:	1.0 K2407209-017 10/5/2004
Analyte	MRL*	
2,3,4,5-Tetrachlorophenol	20	ND
2,3,4,6-Tetrachlorophenol	20	ND
2,3,5,6-Tetrachlorophenol	20	ND
2,3,4-Trichlorophenol	20	ND
2,3,5-Trichlorophenol	20	ND
2,3,6-Trichlorophenol	20	ND
3,4,5-Trichlorophenol	20	ND
2,3-Dichlorophenol	20	ND
2,5-Dichlorophenol	20	ND
2,6-Dichlorophenol	20	ND
3,4-Dichlorophenol	20	ND
3,5-Dichlorophenol	20	ND
meta-chlorophenol	20	ND
para-chlorophenol	20	ND

MRL's have been estimated.

Approved By:

07209SVM.ml1 - 17 10/14/2004

In tup

Date: 1914/04

Page No.

Analytical Results

Client:

Geomatrix Consultants

Project:

9329.000

Sample Matrix:

Soil

Service Request: K2407209

Date Collected: 09/16/2004

Date Received: 09/17/2004

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

109-GSED-C01-2.0

Lab Code:

K2407209-018

Extraction Method:

EPA 3541

Analysis Method:

8270C

Units: ug/Kg Basis: Dry

Level: Low

A I A . N	T) 14	^	Many	MADY	Dilution	Date	Date	Extraction	Mado
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
2-Chlorophenol	ND	U	20	6.3	2	09/27/04	10/05/04	KWG0414674	
2,4-Dichlorophenol	ND	U	20	6.7	2	09/27/04	10/05/04	KWG0414674	
2,4,6-Trichlorophenol	ND	U	20	6.7	2	09/27/04	10/05/04	KWG0414674	
2,4,5-Trichlorophenol	ND	U	20	12	2	09/27/04	10/05/04	KWG0414674	
Pentachlorophenol	ND	U	200	32	2	09/27/04	10/05/04	KWG0414674	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2-Fluorophenol	63	28-109	10/05/04	Acceptable	
2,4,6-Tribromophenol	76	35-138	10/05/04	Acceptable	•

Comments:

Printed: 10/12/2004 17:10:59

U:\Stealth\Crystal.rpt\Forml.m.rpt

Merged

Form 1A - Organic 94

Page 1 of 1

Analytical Report

Client:

Geomatrix Consultants

Project:

9329

Sample Matrix: Sediment

Service Request: K2407209

Date Collected: 9/16/2004 Date Received: 9/17/2004

Date Extracted: 9/27/2004

Base Neutral/Acid Semivolatile Organic Compounds

EPA Methods 3541/8270C Units: ug/Kg (ppb) Dry Weight Basis

109-GSED-C01-

	Sample Name:	2.0
	Lab Code:	K2407209-018
	Date Analyzed:	10/5/2004
Analyte	MRL*	
2,3,4,5-Tetrachlorophenol	20	ND
2,3,4,6-Tetrachlorophenol	20	ND
2,3,5,6-Tetrachlorophenol	20	ND
2,3,4-Trichlorophenol	20	ND
2,3,5-Trichlorophenol	20	ND
2,3,6-Trichlorophenol	20	ND
3,4,5-Trichlorophenol	20	ND
2,3-Dichlorophenol	20	ND
2,5-Dichlorophenol	20	ND
2,6-Dichlorophenol	20	ND
3,4-Dichlorophenol	20	ND
3,5-Dichlorophenol	20	ND
meta-chlorophenol	20	ND
para-chlorophenol	20	ND

MRL's have been estimated.

Approved By:

07209SVM.ml1 - 18 10/14/2004

Dep New Date: 19/14/04

Page No

Analytical Results

Client: .

Geomatrix Consultants

Project:

9329.000

Sample Matrix:

Soil

Service Request: K2407209

Date Collected: 09/16/2004

Date Received: 09/17/2004

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

110-GSED-C01A-0.5

Lab Code:

K2407209-019

Extraction Method:

EPA 3541

Analysis Method:

8270C

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
2-Chlorophenol	ND U	50	15	5	09/27/04	10/05/04	KWG0414674	
2,4-Dichlorophenol	ND U	50	15	5	09/27/04	10/05/04	KWG0414674	
2,4,6-Trichlorophenol	ND U	50	15	5	09/27/04	10/05/04	KWG0414674	
2,4,5-Trichlorophenol	ND U	50	25	5	09/27/04	10/05/04	KWG0414674	
Pentachlorophenol	ND U	500	71	5	09/27/04	10/05/04	KWG0414674	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2-Fluorophenol	89	28-109	10/05/04	Acceptable	
2,4,6-Tribromophenol	68	35-138	10/05/04	Acceptable	

Comments:

Printed: 10/12/2004 17:11:02

U:\Stealth\Crystal.rpt\FormIm.rpt

Merged

Form 1A - Organic 96

Page 1 of 1

Analytical Report

Client:

Geomatrix Consultants

Project:

9329

Sample Matrix: Sediment

Service Request: K2407209

Date Collected: 9/14-15/04
Date Received: 9/17/2004

Date Extracted: 9/27/2004

Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3541/8270C Units: ug/Kg (ppb) Dry Weight Basis

110-GSED-C01A-

	Sample Name: Lab Code: Date Analyzed:	0.5 K2407209-019 10/5/2004
Analyte	MRL*	
2,3,4,5-Tetrachlorophenol	50	ND
2,3,4,6-Tetrachlorophenol	50	ND
2,3,5,6-Tetrachlorophenol	50	ND
2,3,4-Trichlorophenol	50	ND
2,3,5-Trichlorophenol	50	ND
2,3,6-Trichlorophenol	50	ND
3,4,5-Trichlorophenol	50	ND
2,3-Dichlorophenol	50	ND
2,5-Dichlorophenol	50	ND
2,6-Dichlorophenol	50	. ND
3,4-Dichlorophenol	50	ND
3,5-Dichlorophenol	50	ND
3-Chlorophenol	50	ND
4-Chlorophenol	50	ND

MRL's have been estimated.

Approved By:

07209SVM.ml1 - 19 10/14/2004

July Date:

Date: 10/14/04

Page No.

Analytical Results

Client:

Geomatrix Consultants

Project:

9329.000

Sample Matrix:

Soil

Service Request: K2407209

Date Collected: 09/16/2004

Date Received: 09/17/2004

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

110-GSED-C01A-1.0

Lab Code:

K2407209-020

Extraction Method:

EPA 3541

Analysis Method:

8270C

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
2-Chlorophenol	ND	U	10	2.7	1	09/27/04	10/05/04	KWG0414674	
2,4-Dichlorophenol	ND	U.	10	2.8	1	09/27/04	10/05/04	KWG0414674	
2,4,6-Trichlorophenol	ND	U	10	2.8	1	09/27/04	10/05/04	KWG0414674	
2,4,5-Trichlorophenol	ND	U	10	4.7	1	09/27/04	10/05/04	KWG0414674	
Pentachlorophenol	ND	U	100	14	1	09/27/04	10/05/04	KWG0414674	

Surrogate Name	-	%Rec	Control Limits	Date Analyzed	Note
2-Fluorophenol		5 7	28-109	10/05/04	Acceptable
2,4,6-Tribromophenol		69	35-138	10/05/04	Acceptable

Comments:

Analytical Report

Client:

Geomatrix Consultants

Project:

9329

Sample Matrix: Sediment

Service Request: K2407209

Date Collected: 9/14-15/04
Date Received: 9/17/2004

Date Extracted: 9/27/2004

Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3541/8270C Units: ug/Kg (ppb) Dry Weight Basis

110-GSED-C01A-

	Sample Name: Lab Code: Date Analyzed:	1.0 K2407209-020 10/5/2004
Analyte	MRL*	
2,3,4,5-Tetrachlorophenol	10	ND
2,3,4,6-Tetrachlorophenol	10	ND
2,3,5,6-Tetrachlorophenol	10	ND
2,3,4-Trichlorophenol	10	ND
2,3,5-Trichlorophenol	10	ND
2,3,6-Trichlorophenol	10	ND
3,4,5-Trichlorophenol	10	ND
2,3-Dichlorophenol	10	ND
2,5-Dichlorophenol	10	ND
2,6-Dichlorophenol	10	ND
3,4-Dichlorophenol	10	ND
3,5-Dichlorophenol	10	ND
3-Chlorophenol	10	ND
4-Chlorophenol	10	ND

MRL's have been estimated.

Approved By:

07209SVM.mll - 20 10/14/2004

Juf Tuff_ Date: 10/14

Page No

Analytical Results

Client:

Geomatrix Consultants

Project:

9329.000

Sample Matrix:

Soil

Service Request: K2407209

Date Collected: 09/16/2004

Date Received: 09/17/2004

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

110-GSED-C01A-2.0

Lab Code:

K2407209-021

Extraction Method:

EPA 3541

Analysis Method:

8270C

Units: ug/Kg

Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
2-Chlorophenol	ND U	9.9	2.1	1	09/27/04	10/07/04	KWG0414674	
2,4-Dichlorophenol	ND U	9.9	2.2	1	09/27/04	10/07/04	KWG0414674	
2,4,6-Trichlorophenol	ND U	9.9	2.2	. 1	09/27/04	10/07/04	KWG0414674	
2,4,5-Trichlorophenol	ND U	9.9	3.7	1	09/27/04	10/07/04	KWG0414674	
Pentachlorophenol	ND U	99	11	1	09/27/04	10/07/04	KWG0414674	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2-Fluorophenol	46	28-109	10/07/04	Acceptable	
2,4,6-Tribromophenol	69	35-138	10/07/04	Acceptable	

Comments:

Printed: 10/12/2004 17:11:08

U:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic 100

Page

1 of 1

SuperSet Reference: RR41822

Analytical Report

Client:

Geomatrix Consultants

Project:

9329

Sample Matrix: Sediment

Service Request: K2407209

Date Collected: 9/14-15/04
Date Received: 9/17/2004

Date Extracted: 9/27/2004

Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3541/8270C Units: ug/Kg (ppb) Dry Weight Basis

110-GSED-C01A-

	Sample Name: Lab Code: Date Analyzed:	2.0 K2407209-021 10/7/2004
Analyte	MRL*	
2,3,4,5-Tetrachlorophenol	10	ND
2,3,4,6-Tetrachlorophenol	10	ND
2,3,5,6-Tetrachlorophenol	10	ND
2,3,4-Trichlorophenol	10	ND
2,3,5-Trichlorophenol	10	ND
2,3,6-Trichlorophenol	10	ND
3,4,5-Trichlorophenol	10	ND
2,3-Dichlorophenol	10	ND
2,5-Dichlorophenol	10	ND
2,6-Dichlorophenol	10	ND
3,4-Dichlorophenol	10	ND
3,5-Dichlorophenol	10	ND
3-Chlorophenol	10	ND
4-Chlorophenol	10	ND

MRL's have been estimated.

Approved By:

07209SVM.ml1 - 21 10/14/2004

Jun huff Date: 1914/04

Page No.

Analytical Results

Client:

Geomatrix Consultants

Project:

9329.000

Sample Matrix:

Soil

Service Request: K2407209

Date Collected: 09/14/2004

Date Received: 09/17/2004

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

101-GSED-C09-2.0D

Lab Code:

K2407209-023

Extraction Method:

EPA 3541

Analysis Method:

8270C

Units: ug/Kg

Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
2-Chlorophenol	ND U	11	3.7	1	09/27/04	10/07/04	KWG0414674	
2,4-Dichlorophenol	ND U	11	3.9	1	09/27/04	10/07/04	KWG0414674	
2,4,6-Trichlorophenol	ND U	11	3.9	1	09/27/04	10/07/04	KWG0414674	
2,4,5-Trichlorophenol	ND U	11	6.4	1	09/27/04	10/07/04	KWG0414674	
Pentachlorophenol	ND U	110	19	1	09/27/04	10/07/04	KWG0414674	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2-Fluorophenol	47	28-109	10/07/04	Acceptable	
2,4,6-Tribromophenol	73	35-138	10/07/04	Acceptable	

Comments:

Printed: 10/12/2004 17:11:11

 $U:\Stealth\Crystal.rpt\Form1m.rpt$

Merged

orm 1A - Organic

Page 1 of 1

Analytical Report

Client:

Geomatrix Consultants

Project:

9329

Sample Matrix: Sediment

Service Request: K2407209

Date Collected: 9/16/2004
Date Received: 9/17/2004

Date Extracted: 9/27/2004

Base Neutral/Acid Semivolatile Organic Compounds

EPA Methods 3541/8270C Units: ug/Kg (ppb) Dry Weight Basis

101-GSED-C09-

Sample Name: 2.0D

Lab Code: K2407209-023

Date Analyzed: 10/5/2004

	Date Alialyzeu.	10/3/2004
Analyte	MRL*	
2,3,4,5-Tetrachlorophenol	10	ND
2,3,4,6-Tetrachlorophenol	10	ND
2,3,5,6-Tetrachlorophenol	10	ND
2,3,4-Trichlorophenol	10	ND
2,3,5-Trichlorophenol	10	ND
2,3,6-Trichlorophenol	10	ND
3,4,5-Trichlorophenol	10	ND
2,3-Dichlorophenol	10	ND
2,5-Dichlorophenol	10	ND
2,6-Dichlorophenol	10	ND
3,4-Dichlorophenol	10	ND
3,5-Dichlorophenol	10	ND
meta-chlorophenol	10	ND
para-chlorophenol	10	ND

MRL's have been estimated.

Approved By:

07209SVM.ml1 - 23 10/14/2004

Jup Sup

_ Date: <u>l0)14/04</u>

Page No.

Analytical Results

Client:

Geomatrix Consultants

Project:

9329.000

Sample Matrix:

Soil

Service Request: K2407209

Date Collected: NA

Date Received: NA

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

Method Blank

Lab Code:

KWG0414674-5

Extraction Method:

EPA 3541

Units: ug/Kg Basis: Dry

Level: Low

Analysis Method:

8270C

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
2-Chlorophenol	ND U	5.0	1.7	1	09/27/04	10/05/04	KWG0414674	
2,4-Dichlorophenol	ND U	5.0	1.8	1	09/27/04	10/05/04	KWG0414674	
2,4,6-Trichlorophenol	ND U	5.0	1.8	1	09/27/04	10/05/04	KWG0414674	
2,4,5-Trichlorophenol	ND U	5.0	3.0	1	09/27/04	10/05/04	KWG0414674	
Pentachlorophenol	ND U	50	8.5	1	09/27/04	10/05/04	KWG0414674	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2-Fluorophenol	71	28-109	10/05/04	Acceptable	
2,4,6-Tribromophenol	72	35-138	10/05/04	Acceptable	

Comments:

Printed: 10/12/2004 17:11:14

U:\Stealth\Crystal.rpt\Formlm.rpt

Merged

Page SuperSet Reference: RR41822

Analytical Report

Client:

Geomatrix Consultants

9329

Project: Sample Matrix: Sediment Service Request: K2407209

Date Collected: NA Date Received: NA

Date Extracted: 9/27/2004

Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3541/8270C

Units: ug/Kg (ppb) Dry Weight Basis

	Sample Name: Lab Code: Date Analyzed:	Method Blank KWG0414674-5 10/5/2004
Analyte	MRL*	
2,3,4,5-Tetrachlorophenol	10	ND
2,3,4,6-Tetrachlorophenol	10	ND
2,3,5,6-Tetrachlorophenol	10	ND
2,3,4-Trichlorophenol	10	ND
2,3,5-Trichlorophenol	10	ND
2,3,6-Trichlorophenol	10	ND
3,4,5-Trichlorophenol	10	ND
2,3-Dichlorophenol -	10	ND
2,5-Dichlorophenol	10	ND
2,6-Dichlorophenol	10	ND
3,4-Dichlorophenol	10	ND
3,5-Dichlorophenol	10	ND
meta-chlorophenol	10	ND
para-chlorophenol	10	ND

MRL's have been estimated.

Approved By:

07209SVM.rul1 - mb2 10/14/2004

QA/QC Report

Client: .

Geomatrix Consultants

Project:

9329.000

Sample Matrix:

Water

Service Request: K2407209

Surrogate Recovery Summary Semi-Volatile Organic Compounds by GC/MS

Extraction Method:

EPA 3520C

Analysis Method:

8270C

Units: PERCENT

Level: Low

Sample Name	<u>Lab Code</u>	Sur1		Sur2
RB-1	K2407209-001	99		110
RB-2	K2407209-010	87		100
RB-3	K2407209-022	90		106
Method Blank	KWG0414855-3	102		103
Lab Control Sample	KWG0414855-1	114	*	127
Duplicate Lab Control Sample	KWG0414855-2	105		121

Surrogate Recovery Control Limits (%)

Sur1 = 2-Fluorophenol 33-109 Sur2 = 2,4,6-Tribromophenol 34-130

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 10/12/2004 17:11:20

U:\Stealth\Crystal.rpt\Form2.rpt

Page

1 of 1

SuperSet Reference: RR41822

QA/QC Report

Client:

Geomatrix Consultants

Project:

9329.000

Sample Matrix:

Soil

Service Request: K2407209

Surrogate Recovery Summary Semi-Volatile Organic Compounds by GC/MS

Extraction Method: EPA 3541

Analysis Method:

8270C

Units: PERCENT

Level: Low

Sample Name	Lab Code	<u>Sur1</u>	Sur2
107-GSED-C32-0.5	K2407209-002	80 D	104 D
107-GSED-C32-1.0	K2407209-003	68 D	69 D
107-GSED-C32-2.0	K2407209-004	73 D	93 D
107-GSED-C32-3.0	K2407209-005	63	85
105-GSED-C05-0.5	K2407209-006	63 D	80 D
105-GSED-C05-1.0	K2407209-007	66 D	87 D
105-GSED-C05-2.0	K2407209-008	58 D	82 D
105-GSED-C05-3.0	K2407209-009	57	89
108-GSED-C02-0.5	K2407209-011	60 D	90 D
108-GSED-C02-1.0	K2407209-012	52 D	82 D
108-GSED-C02-2.0	K2407209-013	70 D	90 D
108-GSED-C02-3.0	K2407209-014	60 D	77 D
108-GSED-C02-1.0D	K2407209-015	66 D	82 D
109-GSED-C01-0.5	K2407209-016	76 D	88 D
109-GSED-C01-1.0	K2407209-017	66 D	86 D
109-GSED-C01-2.0	K2407209-018	63 D	76 D
110-GSED-C01A-0.5	K2407209-019	89 D	68 D
110-GSED-C01A-1.0	K2407209-020	57	69
110-GSED-C01A-2.0	K2407209-021	46	69
101-GSED-C09-2.0D	K2407209-023	47	73
Method Blank	KWG0414674-5	71	72
107-GSED-C32-2.0MS	KWG0414674-1	103 D	76 D
107-GSED-C32-2.0DMS	KWG0414674-2	58 D	93 D
109-GSED-C01-2.0MS	KWG0414674-6	69 D	82 D
109-GSED-C01-2.0DMS	KWG0414674-7	72 D	86 D
Lab Control Sample	KWG0414674-3	82	88
Duplicate Lab Control Sample	KWG0414674-4	66	73

Surrogate Recovery Control Limits (%)

28-109 Sur1 = 2-Fluorophenol Sur2 = 2,4,6-Tribromophenol 35-138

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 10/12/2004 17:11:24 U:\Stealth\Crystal.rpt\Form2.rpt

QA/QC Report

Client:

Geomatrix Consultants

Project:

9329.000

Service Request: K2407209

Date Analyzed: 10/07/2004

Time Analyzed: 13:30

Internal Standard Area and RT Summary Semi-Volatile Organic Compounds by GC/MS

File ID:

J:\MS10\DATA\100704\1007F002.D

Instrument ID:

MS10

Lab Code: KWG0415478-2

Analysis Method:

8270C

Analysis Lot: KWG0415478

		1,4-Dichlorobenzene-d4		Naphthalene-d8		Acenaphthene-d10	
		Area	RT	Area	<u>RT</u>	Area	RT
	Results ==>	76,845	9.67	302,289	11.64	170,060	14.46
	Upper Limit ==>	153,690	10.17	604,578	12.14	340,120	14.96
	Lower Limit ==>	38,423	9.17	151,145	11.14	85,030	13.96
	ICAL Result ==>	90,024	9.66	325,259	11.64	184,072	14.46
Associated Analyses							
110-GSED-C01A-2.0	K2407209-021	74,019	9.67	323,772	11.63	157,120	14.46
101-GSED-C09-2.0D	K2407209-023	93,068	9.67	330,716	11.64	153,390	14.46

Results flagged with an asterisk (*) indicate values outside control criteria.

Printed: 10/13/2004 08:57:20 U:\Stealth\Crystal.rpt\Form2IS6.rpt

RR41822

QA/QC Report

Client:

Geomatrix Consultants

Project:

9329.000

Service Request: K2407209

Date Analyzed: 10/07/2004

Time Analyzed: 13:30

Internal Standard Area and RT Summary Semi-Volatile Organic Compounds by GC/MS

File ID:

J:\MS10\DATA\100704\1007F002.D

Instrument ID:

MS10

Analysis Method:

Associated Analyses 110-GSED-C01A-2.0 101-GSED-C09-2.0D 8270C

Lab Code: KWG0415478-2

Analysis Lot: KWG0415478

	Phenanthren	e-d10
-	<u>Area</u>	RT
Results ==>	255,655	16.86
Upper Limit ==>	511,310	17.36
Lower Limit ==>	127,828	16.36
ICAL Result ==>	288,631	16.87
K2407209-021	243,743	16.86
K2407209-023	241,460	16.86

Results flagged with an asterisk (*) indicate values outside control criteria.

Printed: 10/13/2004 08:57:20 U:\Stealth\Crystal.rpt\Form2IS6.rpt

QA/AC Report

Client:

Geomatrix Consultants

Project:

9329

Service Request: K2407209 Date Analyzed: 10/4/2004

Time Analyzed: 1629

Internal Standard Area and RT Summary

Semi-Volatile Organic Compounds by GC/MS

File ID:

J:\MS06\DATA\100404\1004F012.D

Instrument ID:

MS06

Lab Code: KWG0415229-2

Analysis Lot: KWG0415229

Analysis Method: 8270C

	1,4-Dichlorobenzene-d4			Naphthalene	e-d8	Acenaphthalene-d10		
·	Results-> Upper Limit-> Lower Limit-> ICAL Result->	Area 33507 67014 16753 36220	RT 8.57 9.07 9.57 8.56	Area 121668 243336 60834 129097	RT 10.53 10.58 10.03 10.53	Area 59505 119010 39752 63991	RT 13.34 13.84 12.84 13.33	
Associated Analyses								
Method Blank Lab Control Sample Duplicate Lab Control S RB-1 RB-2 RB-3 107-GSED-C32-0.5 107-GSED-C32-1.0 107-GSED-C32-2.0 107-GSED-C32-3.0 105-GSED-C05-0.5 105-GSED-C05-1.0 105-GSED-C05-2.0 105-GSED-C05-3.0	ample	33094 33246 36274 32778 33654 32124 40763 29482 39023 38220 41250 42670 44457 44016	8.57 8.57 8.58 8.58 8.57 8.58 8.59 8.58 8.58 8.58 8.58 8.58	122795 124387 131243 126514 127090 125917 145910 156099 144284 132043 148715 152984 159110 153063	10.53 10.54 10.53 10.53 10.54 10.53 10.54 10.54 10.54 10.54 10.54 10.55 10.55	59283 60796 64479 56798 59553 60225 71445 74571 72859 66776 74217 78186 79481	13.33 13.34 13.33 13.33 13.33 13.34 13.34 13.34 13.34 13.34 13.35 13.35	
108-GSED-C02-0.5 108-GSED-C02-1.0 108-GSED-C02-2.0		50068 52000 50848	8.58 8.58 8.59 8.60	176398 181988 181635	10.55 10.55 10.55 10.55	77143 90241 91402 83178	13.35 13.35 13.35 13.35	

Date:

QA/AC Report

Client:

Geomatrix Consultants

Project:

9329

Service Request: K2407209

Date Analyzed: 10/4/2004 Time Analyzed: 1629

Internal Standard Area and RT Summary Semi-Volatile Organic Compounds by GC/MS

File ID:

J:\MS06\DATA\100404\1004F012.D

Instrument ID: Analysis Method:

MS06

8270C

Lab Code: KWG0415229-2

Analysis Lot: KWG0415229

Phenanthrene-d10

Upp Low	desults=> per Limit=> ver Limit=> L Result=>	Area 96067 192134 48033 106834	<u>RT</u> 15.67 16.17 15.17 15.67
Associated Analyses			
Method Blank		98063	15.67
Lab Control Sample		99555	15.68
Duplicate Lab Control Sampl	e	103417	15.67
RB-1		95196	15.67
RB-2		102054	15.67
RB-3		104235	15.67
107-GSED-C32-0.5		124101	15.68
107-GSED-C32-1.0		116697	15.68
107-GSED-C32-2.0		129251	15.68
107-GSED-C32-3.0		117481	15.68
105-GSED-C05-0.5		127453	15.68
105-GSED-C05-1.0		134571	15.68
105-GSED-C05-2.0		138226	15.69
105-GSÈD-C05-3.0		148602	15.69
108-GSED-C02-0.5		153900	15.69
108-GSED-C02-1.0		162270	15.69
108-GSED-C02-2.0		155440	15.69

Approved By:

QA/AC Report

Client:

Geomatrix Consultants

Project:

9329

Service Request: K2407209 Date Analyzed: 10/5/2004

Time Analyzed: 1622

Internal Standard Area and RT Summary

Semi-Volatile Organic Compounds by GC/MS

File ID:

J:\MS06\DATA\100504\1005F001.D

Lab Code: KWG0415302-2

Instrument ID:

MS06

Analysis Lot: KWG0415302

Analysis Method:

8270C

<u>1</u> ,	1,4-Dichlorobenzene-d4		Naphthalen	<u>e-d8</u>	Acenaphthalene-d10		
Upper : Lower :	Area 45689 Limit=> 91378 Limit=> 22844 Result=> 36220	RT 8.50 9.00 8.00 8.56	Area 161612 323224 80806 129097	RT 10.43 10.93 9.93 10.53	Area 78965 157930 39482 63991	RT 13.19 13.69 12.69 13.33	
Associated Analyses						•	
Method Blank	48018	8.50	176534	10.43	80949	- 13.18	
Lab Control Sample	76377	8.50	175593	10.43	85071	13.19	
Duplicate Lab Control Sample	48877	8.50	179459	10.43	82219	13.19	
107-GSED-C32-2.0MS	37665	8.51	197706	10.43	93023	13.19	
107-GSED-C32-2.0DMS	49436	8.50	174696	1043	87507	13.19	
108-GSED-C02-3.0	51303	8.50	183607	10.43	90246	13.19	
108-GSED-C02-1.0D	51611	8.50	179821	10.43	88691	13.19	
109-GSED-C01-0.5	53176	8.50	190216	10.44	91157	13.19	
109-GSED-C01-1.0	56349	8.51	196625	10,43	96814	13.20	
109-GSED-C01-2.0	57499	8.51	205714	10.43	104523	13.20	
109-GSED-C01-2.0MS	57731	8.51	204787	10.44	102146	13.20	
109-GSED-C01-2.0DMS	45866	8.51	257189	10.44	140433	13.20	
110-GSED-C01A-0.5	55589	8.51	301425	10,44	142233	13.20	
110-GSED-C01A-1.0	71420	8 51	248141	10 44	121629	13.20	

Approved By:	\angle	M	(Cue)	/ Date:	1,0/	$I_{\ell_2^0}$	4/	24	1
					l	7	7(7	_

QA/AC Report

Client:

Geomatrix Consultants

Project:

9329

Service Request: K2407209

Date Analyzed: 10/5/2004

Time Analyzed: 1622

Internal Standard Area and RT Summary

Semi-Volatile Organic Compounds by GC/MS

File ID:

J:\MS06\DATA\100504\1005F001.D

Lab Code: KWG0415302-2

Instrument ID: Analysis Method: MS06

Analysis Lot: KWG0415302

8270C

Phenanthrene-d10

and the second s		
Results>	<u>Area</u> 133881	<u>RT</u> 15.51
Upper Limit=>	267762	16.01
Lower Limit==>	66940	15.01
ICAL Result=>	106834	15.67
Associated Analyses	•	
Method Blank	133867	15.49
Lab Control Sample	137291	15.49
Duplicate Lab Control Sample	140828	15.50
107-GSED-C32-2.0MS	131447	15.50
107-GSED-C32-2,0DMS	164382	15.49
108-GSED-C02-3.0	160141	15.50
108-GSED-C02-1.0D	163727	15.50
109-GSED-C01-0.5	159031	15.50
109-GSED-C01-1.0	179289	15.50
109-GSED-C01-2.0	202143	15.51
109-GSED-C01-2.0MS	198051	15.51
109-GSED-C01-2.0DMS	249651	15.51
110-GSED-C01A-0.5	219305	15.51
110-GSED-C01A-1.0	216402	15.50

Date: _ Approved By:

QA/QC Report

Client:

Geomatrix Consultants

Project:

9329.000

Sample Matrix:

Soil

Service Request: K2407209

Date Extracted: 09/27/2004

Date Analyzed: 10/05/2004

Matrix Spike/Duplicate Matrix Spike Summary Semi-Volatile Organic Compounds by GC/MS

Sample Name:

107-GSED-C32-2.0

Lab Code:

K2407209-004

Units: ug/Kg Basis: Dry

Extraction Method:

EPA 3541

Level: Low

Analysis Method:

8270C

Extraction Lot: KWG0414674

107-GSED-C32-2.0MS KWG0414674-1

107-GSED-C32-2.0DMS

KWG0414674-2

	Sample	Matrix Spike			Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
2-Chlorophenol	ND	278	246	113	162	246	66	35-115	53 *	40
2,4-Dichlorophenol	ND	191	246	78	199	246	81	39-123	4	40
2,4,6-Trichlorophenol	ND	202	246	82	227	246	92	38-129	12	40
2,4,5-Trichlorophenol	ND	198	246	81	227	246	92	34-138	14	40
Pentachlorophenol	ND	145	246	59	121	246	49	10-150	18	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 10/13/2004 08:57:25 $U:\S tealth\Crystal.rpt\Form3DMS.rpt$

Form 3A - Organic 114

SuperSet Reference: RR41822

Page

i of 1

QA/QC Report

Client:

Geomatrix Consultants

Project:

9329.000

Sample Matrix:

Soil

Service Request: K2407209

Date Extracted: 09/27/2004

Date Analyzed: 10/05/2004

Matrix Spike/Duplicate Matrix Spike Summary Semi-Volatile Organic Compounds by GC/MS

Sample Name:

109-GSED-C01-2.0

Lab Code:

K2407209-018

Extraction Method:

Analysis Method:

8270C

EPA 3541

Basis: Dry

Level: Low

Units: ug/Kg

Extraction Lot: KWG0414674

109-GSED-C01-2.0MS

KWG0414674-6

109-GSED-C01-2.0DMS

KWG0414674-7

	Sample	Matrix Spike			Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Result	Result	t Expected %Rec Result Expected	%Rec	Limits	Limits RPD	Limit			
2-Chlorophenol	ND	176	243	72	219	249	88	35-115	22	40
2,4-Dichlorophenol	ND	191	243	78	210	249	84	39-123	9	40
2,4,6-Trichlorophenol	ND	197	243	81	209	249	84	38-129	6.	40
2,4,5-Trichlorophenol	ND	199	243	82	201	249	81	34-138	1	40
Pentachlorophenol	ND	166	243	68	138	249	55	10-150	18	· 40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 10/13/2004 08:57:28 U:\Stealth\Crystal.rpt\Form3DMS.rpt

Form 3A - Organic 115

SuperSet Reference:

Page 1 of

RR41822

QA/QC Report

Client:

Geomatrix Consultants

Project:

9329,000

Sample Matrix:

Water

Service Request: K2407209

Date Extracted: 09/29/2004

Date Analyzed: 10/04/2004

Lab Control Spike/Duplicate Lab Control Spike Summary Semi-Volatile Organic Compounds by GC/MS

Extraction Method:

EPA 3520C

Analysis Method:

8270C

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: KWG0414855

	KV	Control Samp VG0414855-1 Control Spik		. KV	Lab Control VG0414855-2 e Lab Control	. •	%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits RPD	RPD	Limit
2-Chlorophenol	5,59	4.76	117	5.16	4.76	108	43-120	8	30
2,4-Dichlorophenol	5.44	4.76	114	5.10	4.76	107	43-120	7	30
2,4,6-Trichlorophenol	5.54	4.76	116	5.19	4.76	109	48-116	7	30
2,4,5-Trichlorophenol	5.50	4.76	115	5.41	4.76	114	46-120	2	30
Pentachlorophenol	4.71	4.76	99	4.66	4.76	98	23-125	1	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 10/18/2004 16:02:56 U:\Stealth\Crystal.rpt\Form3DLC.rpt

Form 3C - Organic

Page 1 of 1

QA/QC Report

Client:

Geomatrix Consultants

Project:

9329.000

Sample Matrix:

Soil

Service Request: K2407209

Date Extracted: 09/27/2004

Date Analyzed: 10/05/2004

Lab Control Spike/Duplicate Lab Control Spike Summary Semi-Volatile Organic Compounds by GC/MS

Extraction Method: EPA 3541

Analysis Method:

8270C

Units: ug/Kg

Basis: Dry

Level: Low Extraction Lot: KWG0414674

Lab Control Sample KWG0414674-3

Duplicate Lab Control Sample

KWG0414674-4

	Lab Control Spike			Duplicate Lab Control Spike			%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
2-Chlorophenol	211	250	84	177	250	71	39-119	17	40
2,4-Dichlorophenol	206	250	82	170	250	68	42-120	19	40
2,4,6-Trichlorophenol	211	250	84	187	250	75	40-124	- 12	40
2,4,5-Trichlorophenol	209	250	84	185	250	74	44-122	13	40
Pentachlorophenol	209	250	84	177	250	71	29-130	16	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 10/13/2004 08:57:34 U:\Stealth\Crystal.rpt\Form3DLC.rpt

Page

1 of

QA/QC Report

Client:

Geomatrix Consultants

Project: Sample Matrix: 9329.000

Water

Service Request: K2407209

Date Extracted: 09/29/2004

Date Analyzed: 10/04/2004

Time Analyzed: 16:42

Method Blank Summary Semi-Volatile Organic Compounds by GC/MS

Sample Name:

Method Blank

Lab Code:

KWG0414855-3

Instrument ID: MS06

File ID: J:\MS06\DATA\100404\1004F013.D

Extraction Method:

EPA 3520C

Level: Low

Analysis Method:

8270C

Extraction Lot: KWG0414855

This Method Blank applies to the following analyses:

Sample Name	Lab Code	File ID	Date Analyzed	Time Analyzed
Lab Control Sample	KWG0414855-1	J:\MS06\DATA\100404\1004F014.D	10/04/04	17.21
Duplicate Lab Control Sample	KWG0414855-2	J:\MS06\DATA\100404\1004F015.D	10/04/04	18:00
RB-1	K2407209-001	J:\MS06\DATA\100404\1004F016.D	10/04/04	18:39
RB-2	K2407209-010	J:\MS06\DATA\100404\1004F017.D	10/04/04	19:18
RB-3	K2407209-022	J:\MS06\DATA\100404\1004F018.D	10/04/04	19:57

Printed: 10/13/2004 08:57:39 U:\Stealth\Crystal.rpt\Form4mb.rpt

QA/QC Report

Client:

Geomatrix Consultants

Project:

9329.000

Sample Matrix:

Soil

Service Request: K2407209

Date Extracted: 09/27/2004

Date Analyzed: 10/05/2004

Time Analyzed: 15:09

Method Blank Summary Semi-Volatile Organic Compounds by GC/MS

Sample Name:

Method Blank

File ID: J:\MS06\DATA\100504\1005F002.D

Lab Code:

KWG0414674-5

Instrument ID: MS06

Extraction Method: **Analysis Method:**

EPA 3541 8270C

Level: Low

Extraction Lot: KWG0414674

This Method Blank applies to the following analyses:

Samula Nama	Lab Code	File ID	Date Analyzed	Time Analyzed
Sample Name 107-GSED-C32-0.5	K2407209-002	J:\MS06\DATA\100404\1004F020.D	10/04/04	21:15
107-GSED-C32-0.3	K2407209-003	J:\MS06\DATA\100404\1004F021.D	10/04/04	21:54
107-GSED-C32-1.0 107-GSED-C32-2.0	K2407209-003	J:\MS06\DATA\100404\1004F022.D	10/04/04	22:33
107-GSED-C32-2.0 107-GSED-C32-3.0	K2407209-005	J:\MS06\DATA\100404\1004F023.D	10/04/04	23:12
	K2407209-005	J:\MS06\DATA\100404\1004F024.D	10/04/04	23:51
105-GSED-C05-0.5	K2407209-000 K2407209-007	J:\MS06\DATA\100404\1004F025.D	10/05/04	00:30
105-GSED-C05-1.0	K2407209-007	J:\MS06\DATA\100404\1004F026.D	10/05/04	01:09
105-GSED-C05-2.0	K2407209-008 K2407209-009	J:\MS06\DATA\100404\1004F027.D	10/05/04	01:48
105-GSED-C05-3.0	K2407209-009	J:\MS06\DATA\100404\1004F028.D	10/05/04	02:26
108-GSED-C02-0.5	K2407209-011	J:\MS06\DATA\100404\1004F029.D	r0/05/04	03:06
108-GSED-C02-1.0	K2407209-012	J:\MS06\DATA\100404\1004F030.D	10/05/04	03:44
108-GSED-C02-2.0	KWG0414674-3	J:\MS06\DATA\100504\1005F003.D	10/05/04	15:43
Lab Control Sample	KWG0414674-4	J:\MS06\DATA\100504\1005F004.D	10/05/04	16:17
Duplicate Lab Control Sample	KWG0414674-1	J:\MS06\DATA\100504\1005F005.D	10/05/04	16:50
107-GSED-C32-2.0MS	KWG0414674-1	J:\MS06\DATA\100504\1005F006.D	10/05/04	17:24
107-GSED-C32-2.0DMS	K2407209-014	J:\MS06\DATA\100504\1005F007.D	10/05/04	17:57
108-GSED-C02-3.0	K2407209-014 K2407209-015	1:\MS06\DATA\100504\1005F008.D	10/05/04	18:31
108-GSED-C02-1.0D	K2407209-015 K2407209-016	1:\MS06\DATA\100504\1005F009.D	10/05/04	19:04
109-GSED-C01-0.5	K2407209-016 K2407209-017	J:\MS06\DATA\100504\1005F010.D	10/05/04	19:38
109-GSED-C01-1.0	K2407209-017 K2407209-018	J:\MS06\DATA\100504\1005F011.D	10/05/04	20:11
109-GSED-C01-2.0		I:\MS06\DATA\100504\1005F012.D	10/05/04	20:45
109-GSED-C01-2.0MS	KWG0414674-6	I:\MS06\DATA\100504\1005F013.D	10/05/04	21:19
109-GSED-C01-2.0DMS	KWG0414674-7	J:\MS06\DATA\100504\1005F014.D	10/05/04	21:52
110-GSED-C01A-0.5	K2407209-019	J:\MS06\DATA\100504\1005F015.D	10/05/04	22:26
110-GSED-C01A-1.0	K2407209-020		10/07/04	19:06
110-GSED-C01A-2.0	K2407209-021	J:\MS10\DATA\100704\1007F009.D	10/07/04	19:47
101-GSED-C09-2.0D	K2407209-023	J:\MS10\DATA\100704\1007F010.D	10/07/04	17.77

Printed: 10/13/2004 08:57:44 U:\Stealth\Crystal.rpt\Form4mb.rpt

1 of 1 Page

QA/QC Report

Client:

Geomatrix Consultants

Project: Sample Matrix: 9329.000 Water

Service Request: K2407209

Lab Control Sample/Duplicate Lab Control Sample Summary Semi-Volatile Organic Compounds by GC/MS

Sample Name:

Lab Control Sample

Lab Code:

KWG0414855-1

File ID:

J:\MS06\DATA\100404\1004F014.D

Instrument ID: Date Extracted: MS06 09/29/2004

Date Analyzed: Time Analyzed:

10/04/2004 17:21

Extraction Method: EPA 3520C Analysis Method:

8270C

Sample Name: Duplicate Lab Control Sample

Lab Code: KWG0414855-2

File ID: J:\MS06\DATA\100404\1004F015.D

Instrument ID: MS06 Date Extracted: 09/29/2004 Date Analyzed: 10/04/2004

Time Analyzed: 18:00

Level: Low

Extraction Lot: KWG0414855

These Lab Control Samples apply to the following analyses:

Sample Name	Lab Code	File ID	Date Analyzed	Time Analyzed
Method Blank	KWG0414855-3	J:\MS06\DATA\100404\1004F013.D	10/04/04	16:42
RB-1	K2407209-001	J:\MS06\DATA\100404\1004F016.D	10/04/04	18:39
RB-2	K2407209-010	J:\MS06\DATA\100404\1004F017.D	10/04/04	19:18
RB-3	K2407209-022	J:\MS06\DATA\100404\1004F018.D	10/04/04	19:57

Printed: 10/13/2004 08:57:48

U:\Stealth\Crystal.rpt\Form4DLC.rpt

Form 4B - Organic 120

SuperSet Reference:

RR41822

Page

1 of 1

QA/QC Report

Client:

Geomatrix Consultants

Project:

9329.000

Sample Matrix:

Soil

Service Request: K2407209

Lab Control Sample/Duplicate Lab Control Sample Summary Semi-Volatile Organic Compounds by GC/MS

Sample Name:

Lab Control Sample

Lab Code:

KWG0414674-3

File ID:

J:\MS06\DATA\100504\1005F003.D

Instrument ID: Date Extracted:

09/27/2004 10/05/2004

Date Analyzed: Time Analyzed:

15:43

MS06

Extraction Method: EPA 3541

8270C Analysis Method:

Sample Name: Duplicate Lab Control Sample

Lab Code: KWG0414674-4

File ID: J:\MS06\DATA\100504\1005F004.D

Instrument ID: MS06 Date Extracted: 09/27/2004 Date Analyzed: 10/05/2004 Time Analyzed: 16:17

Level: Low

Extraction Lot: KWG0414674

These Lab Control Samples apply to the following analyses:

		Date	Time
Lab Code	File ID	Analyzed	Analyzed
K2407209-002	J:\MS06\DATA\100404\1004F020.D	10/04/04	21:15
K2407209-003	J:\MS06\DATA\100404\1004F021.D	10/04/04	21:54
K2407209-004	J:\MS06\DATA\100404\1004F022.D	10/04/04	22:33
K2407209-005	J:\MS06\DATA\100404\1004F023.D	10/04/04	23:12
K2407209-006	J:\MS06\DATA\100404\1004F024.D	10/04/04	23:51
K2407209-007	J:\MS06\DATA\100404\1004F025.D	10/05/04	00:30
K2407209-008	J:\MS06\DATA\100404\1004F026.D	10/05/04	01:09
K2407209-009	J:\MS06\DATA\100404\1004F027.D	10/05/04	01:48
K2407209-011	J:\MS06\DATA\100404\1004F028.D	10/05/04	02:26
K2407209-012	J:\M\$06\DATA\100404\1004F029.D	10/05/04	03:06
K2407209-013	J:\MS06\DATA\100404\1004F030.D	10/05/04	03:44
KWG0414674-5	J:\MS06\DATA\100504\1005F002.D	10/05/04	15:09
KWG0414674-1	J:\MS06\DATA\100504\1005F005.D	10/05/04	16:50
KWG0414674-2	J:\MS06\DATA\100504\1005F006.D	10/05/04	17:24
K2407209-014	J:\MS06\DATA\100504\1005F007.D	10/05/04	17:57
K2407209-015	J:\MS06\DATA\100504\1005F008.D	10/05/04	18:31
K2407209-016	J:\MS06\DATA\100504\1005F009.D	10/05/04	19:04
K2407209-017	J:\MS06\DATA\100504\1005F010.D	10/05/04	19:38
K2407209-018	J:\MS06\DATA\100504\1005F011.D	10/05/04	20:11
KWG0414674-6	J:\MS06\DATA\100504\1005F012.D	10/05/04	20:45
KWG0414674-7	J:\MS06\DATA\100504\1005F013.D	10/05/04	21:19
K2407209-019	J:\MS06\DATA\100504\1005F014.D		21:52
K2407209-020	J:\MS06\DATA\100504\1005F015.D	10/05/04	22:26
K2407209-021	J:\MS10\DATA\100704\1007F009.D	10/07/04	19:06
K2407209-023	J:\MS10\DATA\100704\1007F010.D	10/07/04	19:47
	K2407209-002 K2407209-003 K2407209-004 K2407209-005 K2407209-006 K2407209-007 K2407209-008 K2407209-011 K2407209-012 K2407209-013 KWG0414674-5 KWG0414674-1 KWG0414674-2 K2407209-015 K2407209-016 K2407209-016 K2407209-017 K2407209-018 KWG0414674-6 KWG0414674-7 K2407209-019 K2407209-019 K2407209-020 K2407209-020	K2407209-002 J:\MS06\DATA\100404\1004F020.D K2407209-003 J:\MS06\DATA\100404\1004F021.D K2407209-004 J:\MS06\DATA\100404\1004F022.D K2407209-005 J:\MS06\DATA\100404\1004F023.D K2407209-006 J:\MS06\DATA\100404\1004F024.D K2407209-007 J:\MS06\DATA\100404\1004F025.D K2407209-008 J:\MS06\DATA\100404\1004F026.D K2407209-009 J:\MS06\DATA\100404\1004F027.D K2407209-011 J:\MS06\DATA\100404\1004F029.D K2407209-012 J:\MS06\DATA\100404\1004F029.D K2407209-013 J:\MS06\DATA\100504\1005F002.D KWG0414674-5 J:\MS06\DATA\100504\1005F005.D KWG0414674-1 J:\MS06\DATA\100504\1005F005.D KWG0414674-2 J:\MS06\DATA\100504\1005F006.D K2407209-014 J:\MS06\DATA\100504\1005F009.D K2407209-015 J:\MS06\DATA\100504\1005F010.D K2407209-016 J:\MS06\DATA\100504\1005F011.D K2407209-018 J:\MS06\DATA\100504\1005F012.D KWG0414674-6 J:\MS06\DATA\100504\1005F013.D KWG0414674-7 J:\MS06\DATA\100504\1005F014.D K2407209-019 J:\MS06\DATA\100504\1005F015.D <tr< td=""><td>Lab Code File ID Analyzed K2407209-002 J:\MS06\DATA\100404\1004F020.D 10/04/04 K2407209-003 J:\MS06\DATA\100404\1004F021.D 10/04/04 K2407209-004 J:\MS06\DATA\100404\1004F022.D 10/04/04 K2407209-005 J:\MS06\DATA\100404\1004F022.D 10/04/04 K2407209-006 J:\MS06\DATA\100404\1004F023.D 10/04/04 K2407209-007 J:\MS06\DATA\100404\1004F025.D 10/05/04 K2407209-008 J:\MS06\DATA\100404\1004F025.D 10/05/04 K2407209-009 J:\MS06\DATA\100404\1004F027.D 10/05/04 K2407209-011 J:\MS06\DATA\100404\1004F028.D 10/05/04 K2407209-012 J:\MS06\DATA\100404\1004F029.D 10/05/04 K2407209-013 J:\MS06\DATA\100404\1004F029.D 10/05/04 KWG0414674-5 J:\MS06\DATA\100504\1005F002.D 10/05/04 KWG0414674-1 J:\MS06\DATA\100504\1005F005.D 10/05/04 K2407209-014 J:\MS06\DATA\100504\1005F005.D 10/05/04 K2407209-015 J:\MS06\DATA\100504\1005F005.D 10/05/04 K2407209-016 J:\MS06\DATA\100504\1005F007.D 10/0</td></tr<>	Lab Code File ID Analyzed K2407209-002 J:\MS06\DATA\100404\1004F020.D 10/04/04 K2407209-003 J:\MS06\DATA\100404\1004F021.D 10/04/04 K2407209-004 J:\MS06\DATA\100404\1004F022.D 10/04/04 K2407209-005 J:\MS06\DATA\100404\1004F022.D 10/04/04 K2407209-006 J:\MS06\DATA\100404\1004F023.D 10/04/04 K2407209-007 J:\MS06\DATA\100404\1004F025.D 10/05/04 K2407209-008 J:\MS06\DATA\100404\1004F025.D 10/05/04 K2407209-009 J:\MS06\DATA\100404\1004F027.D 10/05/04 K2407209-011 J:\MS06\DATA\100404\1004F028.D 10/05/04 K2407209-012 J:\MS06\DATA\100404\1004F029.D 10/05/04 K2407209-013 J:\MS06\DATA\100404\1004F029.D 10/05/04 KWG0414674-5 J:\MS06\DATA\100504\1005F002.D 10/05/04 KWG0414674-1 J:\MS06\DATA\100504\1005F005.D 10/05/04 K2407209-014 J:\MS06\DATA\100504\1005F005.D 10/05/04 K2407209-015 J:\MS06\DATA\100504\1005F005.D 10/05/04 K2407209-016 J:\MS06\DATA\100504\1005F007.D 10/0

Time

QA/QC Results

Client:

Geomatrix Consultants

Project:

9329.000

Service Request: K2407209

Date Analyzed: 10/04/2004

Time Analyzed: 16:03

Tune Summary Semi-Volatile Organic Compounds by GC/MS

File ID:

J:\MS06\DATA\100404\1004F012.D

Analysis Method: 8270C

Instrument ID:

MS06

Analysis Lot: KWG0415229

Co	1	***	
·υ	ւսւ	TTT	٠

Target Mass	Relative to Mass	Lower Limit %	Upper Limit%	Relative Abundance %	Raw Abundance	Result Pass/Fail	
51	198	30	80	63.4	16047	PASS	
68	69	0	2	0.0	0	PASS	
69	198	0	100	65.7	16625	PASS	
70	69	0	2	0.5	87	PASS	
127	198	25	75	55.0	13913	PASS	
197	198	0	1	0.0	0	PASS	
198	198	100	100	100.0	25298	PASS	
199	198	5	9	6.3	1582	PASS	
275	198	10	30	22.0	5564	PASS	
365	198	1	100	4.6	1163	PASS	
441	443	0	100	31.5	1019	PASS	
442	198	40	110	67.9	17169	PASS	
443	442	15	24	18.8	3235	PASS	

			Date	Time	
Sample Name	Lab Code	File ID	Analyzed	Analyzed	Q
Continuing Calibration Verification	KWG0415229-2	J:\MS06\DATA\100404\1004F012.D	10/04/2004	16:03	
Method Blank	KWG0414855-3	J:\MS06\DATA\100404\1004F013.D	10/04/2004	16:42	,
Lab Control Sample	KWG0414855-1	J:\MS06\DATA\100404\1004F014.D	10/04/2004	17:21	
Duplicate Lab Control Sample	KWG0414855-2	J:\MS06\DATA\100404\1004F015.D	10/04/2004	18:00	
RB-1	K2407209-001	J:\MS06\DATA\100404\1004F016.D	10/04/2004	18:39	
RB-2	K2407209-010	J:\MS06\DATA\100404\1004F017.D	10/04/2004	19:18	
RB-3	K2407209-022	J:\MS06\DATA\100404\1004F018.D	10/04/2004	19:57	
107-GSED-C32-0.5	K2407209-002	J:\MS06\DATA\100404\1004F020.D	10/04/2004	21:15	
107-GSED-C32-1.0	K2407209-003	J:\MS06\DATA\100404\1004F021.D	10/04/2004	21:54	
107-GSED-C32-2.0	K2407209-004	J:\MS06\DATA\100404\1004F022.D	10/04/2004	22:33	
107-GSED-C32-3.0	K2407209-005	J:\MS06\DATA\100404\1004F023.D	10/04/2004	23:12	
105-GSED-C05-0.5	K2407209-006	J:\MS06\DATA\100404\1004F024.D	10/04/2004	23:51	
105-GSED-C05-1.0	K2407209-007	J:\MS06\DATA\100404\1004F025.D	10/05/2004	00:30	
105-GSED-C05-2.0	K2407209-008	J:\MS06\DATA\100404\1004F026.D	10/05/2004	01:09	
105-GSED-C05-3.0	K2407209-009	J:\MS06\DATA\100404\1004F027.D	10/05/2004	01:48.	
108-GSED-C02-0.5	K2407209-011	J:\MS06\DATA\100404\1004F028.D	10/05/2004	02:26	
108-GSED-C02-1.0	K2407209-012	J:\MS06\DATA\100404\1004F029.D	10/05/2004	03:06	
108-GSED-C02-2.0	K2407209-013	J:\MS06\DATA\100404\1004F030.D	10/05/2004	03:44	

Results flagged with an asterisk (*) indicate the analysis performed outside specified tune window

Printed: 10/13/2004 08:57:56 U:\Stealth\Crystal.rpt\Form5.rpt

Form 5 - Organic 122

SuperSet Reference: RR41822

Page

QA/QC Results

Client:

Geomatrix Consultants

Project:

9329.000

Service Request: K2407209

Date Analyzed: 10/05/2004 Time Analyzed: 14:36

Tune Summary Semi-Volatile Organic Compounds by GC/MS

File ID:

J:\MS06\DATA\100504\1005F001.D

Analysis Method: 8270C

Instrument ID:

Analysis Lot: KWG0415302

MS06

Column:

Target Mass			Upper Limit %	Relative Abundance %	Raw Abundance	Result Pass/Fail	
51	198	30	80	54.3	17367	PASS	
68	69	0	2	0.0	0	PASS	
69	198	0	100	58.3	18650	PASS	
70	69	0	2	0.4	75	PASS	
127	198	25	75.	50.7	16211	PASS	
197	198	0	1	0.0	0	PASS	
198	198	100	100	100.0	31999	PASS	
199	198	5	9	6.8	2175	PASS	
275	198	10	30	20.6	6582	PASS	
365	198	1	100	3.8	1220	PASS	
441	443	0	100	37.4	1654	PASS	
442	198	40	110	69.3	22163	PASS	
443	442	15	24	19.9	4418	PASS	

		TII. 170	Date Analyzeď	Time Analyzed	Q
Sample Name	Lab Code	File ID	•	-	V
Continuing Calibration Verification	KWG0415302-2	J:\MS06\DATA\100504\1005F001.D	10/05/2004	14:36	
Method Blank	KWG0414674-5	J:\MS06\DATA\100504\1005F002.D	10/05/2004	15:09	
Lab Control Sample	KWG0414674-3	J:\MS06\DATA\100504\1005F003.D	10/05/2004	15:43	
Duplicate Lab Control Sample	KWG0414674-4	J:\MS06\DATA\100504\1005F004.D	10/05/2004	16:17	
107-GSED-C32-2.0MS	KWG0414674-1	J:\MS06\DATA\100504\1005F005.D	10/05/2004	16:50	
107-GSED-C32-2.0MS	KWG0414674-2	J:\MS06\DATA\100504\1005F006.D	10/05/2004	17:24	
108-GSED-C02-3.0	K2407209-014	J:\MS06\DATA\100504\1005F007.D	10/05/2004	17:57	
108-GSED-C02-3.0 108-GSED-C02-1.0D	K2407209-015	J:\MS06\DATA\100504\1005F008.D	10/05/2004	18:31	
108-GSED-C02-1.0D 109-GSED-C01-0.5	K2407209-016	J:\MS06\DATA\100504\1005F009.D	10/05/2004	19:04	
	K2407209-010	J:\MS06\DATA\100504\1005F010.D	10/05/2004	19:38	
109-GSED-C01-1.0	K2407209-017	J:\MS06\DATA\100504\1005F011.D	10/05/2004	20:11	
109-GSED-C01-2.0		J:\MS06\DATA\100504\1005F012.D	10/05/2004	20:45	
109-GSED-C01-2.0MS	KWG0414674-6			21:19	
109-GSED-C01-2.0DMS	KWG0414674-7	J:\MS06\DATA\100504\1005F013.D	10/05/2004		
110-GSED-C01A-0.5	K2407209-019	J:\MS06\DATA\100504\1005F014.D	10/05/2004	21:52	
110-GSED-C01A-1.0	K2407209-020	J:\MS06\DATA\100504\1005F015.D	10/05/2004	22:26	

Results flagged with an asterisk (*) indicate the analysis performed outside specified tune window

QA/QC Results

Client:

Geomatrix Consultants

Project:

9329.000

Service Request: K2407209

Date Analyzed: 10/07/2004 Time Analyzed: 13:30

Tune Summary Semi-Volatile Organic Compounds by GC/MS

File ID:

J:\MS10\DATA\100704\1007F002.D

Instrument ID:

MS10

Analysis Method: 8270C

Analysis Lot: KWG0415478

Column:

Target Mass	Relative to Mass	Lower Upper Limit% Limit%		Relative Abundance %	Raw Abundance	Result Pass/Fail		
51	198	30	80	80 41.2 189		PASS		
68	69	0	2	0.1	28	PASS		
69	198	0	100	51.9	23824	PASS		
70	69	0	2	0.9	222	PASS		
127	198	25	75	46.1	21152	PASS		
197	198	0	1	0.0	0	PASS		
198	198	100	100	100.0	45922	PASS		
199	198	5	9	6.8	3108	PASS		
275	198	10	30	18.5	8477	PASS		
365	198	1	100	2.4	1121	PASS		
441	443	0	100	80.7	3562	PASS		
442	198	40	110	51.6	23691	PASS		
443	442	15	24	18.6	4414	PASS		

		•	Date	Time	
Sample Name	Lab Code	File ID	Analyzed	Analyzed	Q
Continuing Calibration Verification	KWG0415478-2	J:\MS10\DATA\100704\1007F002.D	10/07/2004	13:30	
110-GSED-C01A-2.0	K2407209-021	J:\MS10\DATA\100704\1007F009.D	10/07/2004	19:06	
101-GSED-C09-2.0D	K2407209-023	J:\MS10\DATA\100704\1007F010.D	10/07/2004	19:47	

Results flagged with an asterisk (*) indicate the analysis performed outside specified tune window

Printed: 10/13/2004 08:58:06 U:\Stealth\Crystal.rpt\Form5.rpt

Form 5 - Organic

Page 1 of

RR41822

SuperSet Reference:

124

QA/QC Results

Client:

Geomatrix Consultants

Project:

9329.000

Service Request: K2407209 Calibration Date: 10/04/2004

Initial Calibration Summary Semi-Volatile Organic Compounds by GC/MS

Calibration ID:

CAL3872

Instrument ID:

MS06

Column: MS

 Level ID
 File ID
 Level ID

 A
 J:\MS06\DATA\100404\1004F004.D
 E

 B
 J:\MS06\DATA\100404\1004F005.D
 F

 C
 J:\MS06\DATA\100404\1004F006.D
 G

 D
 J:\MS06\DATA\100404\1004F007.D
 H

J:\MS06\DATA\100404\1004F009.D J:\MS06\DATA\100404\1004F010.D

J:\MS06\DATA\100404\1004F008.D

File ID

J:\MS06\DATA\100404\1004F011.D

Analyte Name	Level ID	Amt	RRF	Level ID	Amt	RRF	Level ID	Amt	RRF	Level ID	Amt	RRF	Level ID	Amt	RRF
2-Chlorophenol	A	100	1.27	В	500	1.34	C	1000	1.30	D	2000	1.33	E	4000	1.32
2 C	F	6000	1.31	G	8000	1.43	H	10000	1.47	l . L			<u> </u>		
2,4-Dichlorophenol	A	100	0.276	В	500	0.260	C	1000	0.274	D	2000	0.287	! E	4000	0.279
,	F	6000	0.273	G	8000	0.276	Н	10000	0.298	i i			<u> </u>		
2,4,6-Trichlorophenol	A	100	0.388	i B	500	0.385	C	1000	0.396	D	2000	0.411	E	4000	0.415
1	F	6000	0.413	G	8000	0.427	Н	10000	0.442	<u>.</u>			1		
2,4,5-Trichlorophenol	А	100	0.375	, B	500	0.411	C	1000	0.414	D	2000	0.435	<u> </u>	4000	0.464
		6000	0.455	G	8000	0.470	H	10000	0.498	i 			<u>t</u>		
Pentachlorophenol				F E			C	1000	0.0826	D	2000	0.120	E	4000	0.148
•	F	6000	0.149	G	8000	0.159	Н	10000	0.170	i 1			1		
2-Fluorophenol	А	100	1.24	; B	200	1.17	¦ C	500	1.20	<u>_</u> D	1000	1.20	<u></u> E	2000	1.18
•	F	3000	1.22	G	4000	1.29	<u>;</u> н	5000	1.30	i L			I I		
2,4,6-Tribromophenol	A	100	0.212	¦ B	200	0.204	C	500	0.220	D	1000	0.211	E	2000	0.226
•	F	3000	0.225	G	4000	0.234	H	5000	0.238	i I			!		
† 4-Nitrophenol				i B	500	0.289	i C	1000	0.306	j D	2000	0.331	<u></u> E	4000	0.342
•	F	6000	0.331	G	8000	0.332	H	10000	0.345	<u>i</u>			1		
‡ Phenol	А	100	1.38	¦ B	500	1.31	C	1000	1.39	D	2000	1.41	LE_	4000	1.37
	F	6000	1.38	G	8000	1.49	H	10000	1.51	<u>i</u>			1		
† 2,4-Dinitrophenol				¦В	500	0.128	<u> </u>	1000	0.167	D	2000	0.205	E	4000	0.241
•	F	6000	0.243	G	8000	0.254	Н	10000	0.271	1			۱ ا		
‡ 4-Chloro-3-methylphenol	Α	100	0.320	¦ B	500	0.300	C	1000	0.294	D	2000	0.312	: E	4000	0.317
• •	F	6000	0.307	G	8000	0.301	Н	10000	0.331	i			1 1		

Results flagged with an asterisk (*) indicate values outside control criteria.

† SPCC Compound

‡ CCC Compound

Printed: 10/13/2004 08:58:21 U:\Stealth\Crystal.rpt\Form6i10.rpt

QA/QC Results

Client: · Project:

Geomatrix Consultants

9329.000

Initial Calibration Summary

Semi-Volatile Organic Compounds by GC/MS

Calibration ID:

CAL3872

Instrument ID:

MS06

Column: MS

Service Request: K2407209

Calibration Date: 10/04/2004

			RRF Evaluation						
Analyte Name	Compound Type	Fit Type	Eval.	Eval. Result	Q	Control Criteria	Average RRF	Q	Minimum RRF
2-Chlorophenol	MS	AverageRF	% RSD	5.1		≤ 15	1.35		0.01
‡ 2,4-Dichlorophenol	MS	AverageRF	% RSD	4.0		≤ 15	0.278		0.01
‡ 2,4,6-Trichlorophenol	MS	AverageRF	% RSD	4.8		≤ 15	0.410		0.01
2,4,5-Trichlorophenol	MS	AverageRF	% RSD	8.9		≤ 15	0.440		0.01
‡ Pentachlorophenol	MS	AverageRF	% RSD	23.1	*	≤ 15	0.138		0.01
2-Fluorophenol	SURR	AverageRF	% RSD	3.9		≤ 15	1.23		0.01
2,4,6-Tribromophenol	SURR	AverageRF	% RSD	5.3		≤ 15	0.221		0.01
† 4-Nitrophenol	MS	AverageRF	% RSD	6.3		≤ 15	0.325		0.05
‡ Phenol	MS	AverageRF	% RSD	4.6		≤ 15	1.40		0.01
† 2,4-Dinitrophenol	TRG	Linear	R2	0.997		≥ 0.990	0.216		0.05
‡ 4-Chloro-3-methylphenol	MS	AverageRF	% RSD	3.9		≤ 15	0.310		0.01

Results flagged with an asterisk (*) indicate values outside control criteria.

† SPCC Compound

‡ CCC Compound

Printed: 10/13/2004 08:58:21 U:\Stealth\Crystal.rpt\Form6i10.rpt

Form 6A - Organic

SuperSet Reference: RR41822

QA/QC Results

Client:

Geomatrix Consultants

Project:

File ID:

9329.000

Service Request: K2407209

Calibration Date: 10/04/2004

Date Analyzed: 10/04/2004

Second Source Calibration Verification Semi-Volatile Organic Compounds by GC/MS

Calibration Type:

Internal Standard

Calibration ID: CAL3872

Units: ng/ml

Analysis Method:

8270C

J:\MS06\DATA\100404\1004F012.D

Analyte Name	Expected	Result	Average RF	SSV RF	%D	%Drift	Criteria	Curve Fit
2-Chlorophenol	3000	3300	1.35	1.50	11	NA .	± 30 %	AverageRF
‡ 2,4-Dichlorophenol	3000	3200	0.278	0.301	8	NA	$\pm 20 \%$	AverageRF
‡ 2,4,6-Trichlorophenol	3000	3100	0.410	0.430	5	NA	± 20 %	AverageRF
2,4,5-Trichlorophenol	3000	3300	0.440	0.487	11	NA	\pm 30 %	AverageRF
‡ Pentachlorophenol	3000	3000	0.138	0.140	2	NA	± 20 %	AverageRF
† 2,4-Dinitrophenol	3000	3100	0.216	0.240	NA	2	± 30 %	Linear
‡ 4-Chloro-3-methylphenol	3000	3300	0.310	0.345	11	· NA	\pm 20 %	AverageRF
† 4-Nitrophenol	3000	3200	0.325	0.345	6	NA	± 30 %	AverageRF
‡ Phenol	3000	3400	1.40	1.61	15	NA	± 20 %	AverageRF

Results flagged with an asterisk (*) indicate values outside control criteria.

† SPCC Compound

‡ CCC Compound

Printed: 10/13/2004 08:58:28 U:\Stealth\Crystal.rpt\Form6SS.rpt

QA/QC Results

Client: Project: Geomatrix Consultants

9329.000

Service Request: K2407209 Calibration Date: 10/06/2004

Initial Calibration Summary Semi-Volatile Organic Compounds by GC/MS

Calibration ID:

CAL3878

Instrument ID:

MS10

Column: MS

Level ID	File ID	Level ID	File ID
Α	J:\MS10\DATA\100604\1006F004.D	F	J:\MS10\DATA\100604\1006F009.D
В	J:\MS10\DATA\100604\1006F005.D	G	J:\MS10\DATA\100604\1006F010.D
C	J:\MS10\DATA\100604\1006F006.D	\mathbf{H}	J:\MS10\DATA\100604\1006F011.D
D	J:\MS10\DATA\100604\1006F007.D	Ι .	J:\MS10\DATA\100604\1006F012.D
E	J:\MS10\DATA\100604\1006F008.D		

Analyte Name	Level ID	Amt	RRF	Level ID	Amt	RRF	Level ID	Amt	RRF	Level ID	Amt	RRF	Level ID	Amt	RRF
2-Chlorophenol				¦ B	100	1.57	С	500	1.46	D	1000	1.60	E	2000	1.41
	F	4000	1.36	G	6000	1.18	Н	8000	1.30	I	10000	1.19	1 ! !		
‡ 2,4-Dichlorophenol				B	100	0.282	С	500	0.276	D	1000	0.301	E	2000	0.327
	F	4000	0.309	G	6000	0.269	Н	8000	0.266	I	10000	0.265	1 1		
‡ 2,4,6-Trichlorophenol				В	100	0.420	C	500	0.405	D	1000	0.418	E	2000	0.416
	F	4000	0.405	G	6000	0.398	Н	8000	0.390	I	10000	0.388	t t		
2,4,5-Trichlorophenol				В	100	0.445	C	500	0.451	, D	1000	0.427	E	2000	0.447
	F	4000	0.424	G	6000	0.385	Н	8000	0.394	i I	10000	0.409	 		
‡ Pentachlorophenol				!			C	500	0.151	D	1000	0.159	Е	2000	0.168
	F	4000	0.168	G	6000	0.159	Н	8000	0.163	I	10000	0.162	 		
2-Fluorophenol				В	100	1.29	C	200	1.31	D	500	1.37	Е	1000	1.26
	F	2000	1.29	G	3000	1.14	Н	4000	1.26	I	5000	1.21	(
2,4,6-Tribromophenol				¦ B	100	0.0979	С	200	0.114	D	500	0.113	E	1000	0.115
	F	2000	0.116	G	3000	0.114	Н	4000	0.115	I	5000	0.113	1		
† 4-Nitrophenol							С	500	0.198	D	1000	0.201	Е	2000	0.210
	F	4000	0.222	G	6000	0.205	Н	8000	0.218	I	10000	0.228	1 1		
‡ 1,4-Dichlorobenzene	_ A	50	1.55	В	100	1.41	C	200	1.35	D	500	1.31	E	1000	1.40
	F	2000	1.36	G	3000	1.26	Н	4000	1.29	I	5000	1.27			
‡ Phenol				B	100	1.77	С	500	1.60	l D	1000	1.88	E	2000	1.61
	F	4000	1.61	G	6000	1.26	Н	8000	1.39	I	10000	1.25	1 1		
‡ Di-n-octyl Phthalate				В	100	1.64	С	200	2.02	D D	500	2.15	E	1000	2.21
	· . F	2000	2.15	G	3000	2.15	Н	4000	2.12	I	5000	2.12	 		
‡ Fluoranthene	A	50	1.19	В	100	1.10	C	200	1.12	¦ D	500	1.13	E	1000	1.18
· ·	F	2000	1.10	G	3000	1.04	Н	4000	1.04	i I	5000	0.990	1 1 1		
‡ Benzo(a)pyrene	A	50	1.25	В	100	1.18	С	200	1.28	D	500	1.25	Е	1000	1.28
	F	2000	1.23	G	3000	1.26	Н	4000	1.23	I	5000	1.25	1 1		
† 2,4-Dinitrophenol				1			C	500	0.120	D	1000	0.151	E	2000	0.195
	F	4000	0.232	G	6000	0.215	Н	8000	0.223	I	10000	0.229	, 		

Results flagged with an asterisk (*) indicate values outside control criteria.

† SPCC Compound

‡ CCC Compound

Printed: 10/13/2004 08:58:54

U:\Stealth\Crystal.rpt\Form6i10.rpt

Form 6A - Organic 128

SuperSet Reference: RR41822

QA/QC Results

Client:

Geomatrix Consultants

Project:

9329.000

Service Request: K2407209

Calibration Date: 10/06/2004

Initial Calibration Summary Semi-Volatile Organic Compounds by GC/MS

Calibration ID:

CAL3878

Instrument ID:

MS10

Column: MS

Analyte Name	Level ID	Amt -	RRF	Level ID	Amt	RRF	Level ID	Amt	RRF	Level ID	Amt	RRF	Level ID	Amt	RRF
4-Chloro-3-methylphenol				В	100	0.283	C	500	0.260	D	1000	0.268	Е	2000	0.298
7	F	4000	0.269	G	6000	0.260	Н	8000	0.244	I	10000	0.243			
N-Nitrosodi-n-propylamine	A	50	0.890	В	100	0.838	C	200	0.818	D	500	0.905	E	1000	0.833
1 1 2	F	2000	0.821	G	3000	0.706	Н	4000	0.819	1	5000	0.751			
† Hexachlorocyclopentadiene				1			C	200	0.222	D	500	0.277	E	1000	0.284
220.000	F	2000	0.316	G	3000	0.302	Н	4000	0.312	I	5000	0.302			
‡ Acenaphthene	Α	50	1.21	В	100	1.05	С	200	1.03	D	500	1.01	Е	1000	1.02
	F	2000	0.955	G	3000	0.904	Н	4000	0.904	I	5000	0.889			
† N-Nitrosodiphenylamine	A	50	0.926	В	100	0.820	C	200	0.833	D	500	0.831	E	1000	0.828
1 3	F	2000	0.799	G	3000	0.756	Н	4000	0.749	I	5000	0.753			
‡ Hexachlorobutadiene	A	50	0.215	В	100	0.206	C	200	0.202	D	500	0.203	E	1000	0.208
	F	2000	0.200	G	3000	0.195	Н	4000	0.192	I	5000	0.194			
‡ 2-Nitrophenol				В	100	0.181	С	500	0.173	D	1000	0.204	E	2000	0.210
	F	4000	0.186	G	6000	0.190	Н	8000	-0.177	I	10000	0.183			

Results flagged with an asterisk (*) indicate values outside control criteria.

† SPCC Compound

‡ CCC Compound

Printed: 10/13/2004 08:58:54 U:\Stealth\Crystal.rpt\Form6i10.rpt

2 of 3

QA/QC Results

Client: Project: Geomatrix Consultants

9329.000

Calibration Date: 10/06/2004

Initial Calibration Summary Semi-Volatile Organic Compounds by GC/MS

Calibration ID: Instrument ID:

CAL3878

MS10

Column: MS

Service Request: K2407209

	:		Calibratio	n Evaluati	ion		RRF	Eval	ıation
Analyte Name	Compound Type	Fit Type	Eval.	Eval. Result	Q	Control Criteria	Average RRF	Q	Minimum RRF
2-Chlorophenol	MS	AverageRF	% RSD	11.4		≤15	1.38		0.01
‡ 2,4-Dichlorophenol	MS	AverageRF	% RSD	8.0		≤ 15	0.287		0.01
‡ 2,4,6-Trichlorophenol	MS	AverageRF	% RSD	3.0		≤ 15	0.405		0.01
2,4,5-Trichlorophenol	MS	AverageRF	% RSD	5.9		≤ 15	0.423		0.01
‡ Pentachlorophenol	MS	AverageRF	% RSD	3.7		≤ 15	0.161		0.01
2-Fluorophenol	SURR	AverageRF	% RSD	5.6		≤ 15	1.27		0.01
2,4,6-Tribromophenol	SURR	AverageRF	% RSD	5.2		≤ 15	0.112		0.01
† 4-Nitrophenol	MS	AverageRF	% RSD	5.3		≤ 15	0.211		0.05
‡ 1,4-Dichlorobenzene	MS	AverageRF	% RSD	6.6		≤ 15	1.36		0.01
* Phenol	MS	AverageRF	% RSD	14.7		≤ 15	1.54		0.01
‡ Di-n-octyl Phthalate	TRG	AverageRF	% RSD	8.8		≤ 15	2.07		0.01
‡ Fluoranthene	TRG	AverageRF	% RSD	6.0		≤ 15	1.10		0.01
‡ Benzo(a)pyrene	TRG	AverageRF	% RSD	2.6		≤ 15	1.25		0.01
† 2,4-Dinitrophenol	TRG	Linear	R2	0.998		≥ 0.990	0.195		0.05
‡ 4-Chloro-3-methylphenol	MS	AverageRF	% RSD	7.1		≤ 15	0.266		0.01
† N-Nitrosodi-n-propylamine	MS	AverageRF	% RSD	7.5		≤ 15	0.820		0.05
† Hexachlorocyclopentadiene	TRG	AverageRF	% RSD	11.2		≤ 15	0.288		0.05
‡ Acenaphthene	MS	AverageRF	% RSD	10.2		≤ 15	0.997		0.01
‡ N-Nitrosodiphenylamine	TRG	AverageRF	% RSD	6.9		≤ 15	0.811		0.01
‡ Hexachlorobutadiene	TRG	AverageRF	% RSD	3.7		≤ 15	0.202		0.01
‡ 2-Nitrophenol	TRG	AverageRF	% RSD	6.8		≤ 15	0.188		0.01

Results flagged with an asterisk (*) indicate values outside control criteria.

† SPCC Compound

‡ CCC Compound

Printed: 10/13/2004 08:58:54 U:\Stealth\Crystal.rpt\Form6i10.rpt

QA/QC Results

Client:

File ID:

Geomatrix Consultants

Project:

9329.000

Service Request: K2407209

Calibration Date: 10/06/2004

Date Analyzed: 10/07/2004

Second Source Calibration Verification Semi-Volatile Organic Compounds by GC/MS

Calibration Type:

Internal Standard

Calibration ID: CAL3878

Analysis Method:

8270C

Units: ng/ml

J:\MS10\DATA\100604\1006F013.D

J:\MS10\DATA\100604\1006F014.D

Analyte Name	Expected	Result	Average RF	SSV RF	%D	%Drift	Criteria	Curve Fit
2-Chlorophenol	3000	3300	1.38	1.52	10	NA	± 30 %	AverageRF
‡ 2,4-Dichlorophenol	3000	3500	0.287	0.336	17	NA	$\pm~20~\%$	AverageRF
‡ 2,4,6-Trichlorophenol	3000	3300	0.405	0.449	11	. NA	± 20 %	AverageRF
2,4,5-Trichlorophenol	3000	3300	0.423	0.459	9	NA	± 30 %	AverageRF
‡ Pentachlorophenol	3000	3400	0.161	0.180	12	NA	$\pm~20~\%$	AverageRF
‡ 1,4-Dichlorobenzene	3000	3200	1.36	1.46	7	NA	$\pm 20 \%$	AverageRF
† 2,4-Dinitrophenol	3000	3400	0.195	0.241	NA	13	± 30 %	Linear
‡ 2-Nitrophenol	3000	3500	0.188	0.221	18	NA	± 20 %	AverageRF
‡ 4-Chloro-3-methylphenol	3000	3400	0.266	0.304	14	NA	$\pm 20 \%$	AverageRF
† 4-Nitrophenol	3000	3300	0.211	0.232	10	NA	± 30 %	AverageRF
‡ Acenaphthene	3000	3000	0.997	1.01	2	NA	$\pm 20 \%$	AverageRF
‡ Benzo(a)pyrene	3000	3500	1.25	1.46	17	NA	$\pm~20~\%$	AverageRF
‡ Di-n-octyl Phthalate	3000	3500	2.07	2.42	17	NA	$\pm 20 \%$	AverageRF
‡ Fluoranthene	3000	3200	1.10	1.18	7	NA	± 30 %	AverageRF
‡ Hexachlorobutadiene	3000	3300	0.202	0.219	8	NA	± 20 %	AverageRF
† Hexachlorocyclopentadiene	3000	4200	0.288	0.401	39	* NA	± 30 %	AverageRF
† N-Nitrosodi-n-propylamine	3000	3400	0.820	0.935	14	NA	± 30 %	AverageRF
* N-Nitrosodiphenylamine	3000	3300	0.811	0.898	11	NA	± 20 %	AverageRF
‡ Phenol	3000	3600	1.54	1.84	19	NA	± 20 %	AverageRF

Results flagged with an asterisk (*) indicate values outside control criteria.

† SPCC Compound

.‡ CCC Compound

Printed: 10/13/2004 08:59:01 U:\Stealth\Crystal.rpt\Form6SS.rpt

1 of 1

QA/QC Results

Client:

Geomatrix Consultants

Project:

9329.000

Service Request: K2407209

Date Analyzed: 10/04/2004

Continuing Calibration Verification Summary Semi-Volatile Organic Compounds by GC/MS

Calibration Type:

Internal Standard

Analysis Method:

8270C

Calibration Date: 10/04/2004

Calibration ID: CAL3872

Analysis Lot: KWG0415229

Units: ng/ml

File ID:

J:\MS06\DATA\100404\1004F012.D

Analyte Name	Expected	Result	Min RF	Average RF	CCV RF	%D	%Drift	Criteria	Curve Fit
2-Chlorophenol	3000	3300	0.01	1.35	1.50	11	NA	± 30 %	AverageRF
‡ 2,4-Dichlorophenol	3000	3200	0.01	0.278	0.301	8	NA	± 20 %	AverageRF
‡ 2,4,6-Trichlorophenol	3000	3100	0.01	0.410	0.430	5	NA	± 20 %	AverageRF
2,4,5-Trichlorophenol	3000	3300	0.01	0.440	0.487	11	NA	± 30 %	AverageRF
‡ Pentachlorophenol	3000	3000	0.01	0.138	0.140	2	NA	± 20 %	AverageRF
2-Fluorophenol	3000	3300	0.01	1.23	1.34	9	NA	± 30 %	AverageRF
2,4,6-Tribromophenol	3000	3200	0.01	0.221	0.236	7	NA	± 30 %	AverageRF
† 4-Nitrophenol	3000	3200	0.05	0.325	0.345	6	NA	\pm 30 %	AverageRF
‡ Phenol	3000	3400	0.01	1.40	1.61	15	NA	\pm 20 %	AverageRF
† 2,4-Dinitrophenol	3000	3100	0.05	0.216	0.240	NA	2	± 30 %	Linear
‡ 4-Chloro-3-methylphenol	3000	3300	0.01	0.310	0.345	11	NA	± 20 %	AverageRF

Results flagged with an asterisk (*) indicate values outside control criteria.

† SPCC Compound

‡ CCC Compound

Printed: 10/13/2004 08:59:05 U:\Stealth\Crystal.rpt\Form7.rpt

Form 7 - Organic 132

SuperSet Reference: RR41822

QA/QC Results

Client:

Geomatrix Consultants

Project:

9329.000

Service Request: K2407209

Date Analyzed: 10/05/2004

Continuing Calibration Verification Summary Semi-Volatile Organic Compounds by GC/MS

Calibration Type:

Internal Standard

Analysis Method:

8270C

Calibration Date: 10/04/2004 Calibration ID: CAL3872

Analysis Lot: KWG0415302

Units: ng/ml

File ID:

J:\MS06\DATA\100504\1005F001.D

Analyte Name	Expected	Result	Min RF	Average RF	CCV RF	%D	%Drift	Criteria	Curve Fit
2-Chlorophenol	3000	3200	0.01	1.35	1.43	6	NA	± 30 %	AverageRF
‡ 2,4-Dichlorophenol	3000	3300	0.01	0.278	0.307	11	NA	± 20 %	AverageRF
‡ 2,4,6-Trichlorophenol	3000	3400	0.01	0.410	0.459	12	NA	± 20 %	AverageRF
2,4,5-Trichlorophenol	3000	3400	0.01	0.440	0.493	12	NA	± 30 %	AverageRF
‡ Pentachlorophenol	3000	3300	0.01	0.138	0.152	10	NA	± 20 %	AverageRF
2-Fluorophenol	3000	3300	0.01	1.23	1.34	10	NA	± 30 %	AverageRF
2,4,6-Tribromophenol	3000	3400	0.01	0.221	0.248	12	NA	\pm 30 %	AverageRF
† 4-Nitrophenol	3000	2700	0.05	0.325	0.289	-11	NA	± 30 %	AverageRF
‡ Phenol	3000	3300	0.01	1.40	1.53	9	NA	$\pm 20 \%$	AverageRF
† 2,4-Dinitrophenol	3000	3000	0.05	0.216	0.237	NA	1	\pm 30 %	Linear
‡ 4-Chloro-3-methylphenol	3000	3200	0.01	0.310	0.328	6	NA	$\pm~20~\%$	AverageRF

Results flagged with an asterisk (*) indicate values outside control criteria.

† SPCC Compound

‡ CCC Compound

Form 7 - Organic Page 1 of 1 SuperSet Reference: RR41822

QA/QC Results

Client:

Geomatrix Consultants

Project: 9329.000 Service Request: K2407209

Date Analyzed: 10/07/2004

Continuing Calibration Verification Summary Semi-Volatile Organic Compounds by GC/MS

Calibration Type:

Internal Standard

Analysis Method:

8270C

Calibration Date: 10/06/2004

Calibration ID: CAL3878

Analysis Lot: KWG0415478

Units: ng/ml

File ID:

J:\MS10\DATA\100704\1007F002.D

			Min	Average	CCV				
Analyte Name	Expected	Result	RF	RF	RF	%D	%Drift	Criteria	Curve Fit
2-Chlorophenol	3000	3200	0.01	1.38	1.46	5	NA	± 30 %	AverageRF
‡ 2,4-Dichlorophenol	3000	3500	0.01	0.287	0.332	16	NA	± 20 %	AverageRF
‡ 2,4,6-Trichlorophenol	3000	3100	0.01	0.405	0.417	3	NA	± 20 %	AverageRF
2,4,5-Trichlorophenol	3000	3200	0.01	0.423	0.457	8	NA.	± 30 %	AverageRF
‡ Pentachlorophenol	3000	3300	0.01	0.161	0.175	8	NA	\pm 20 %	AverageRF
2-Fluorophenol	3000	3100	0.01	1.27	1.29	2	NA	± 30 %	AverageRF
2,4,6-Tribromophenol	3000	3200	10.0	0.112	0.121	8	NA	± 30 %	AverageRF
† 4-Nitrophenol	3000 .	3200	0.05	0.211	0.227	7	NA	± 30 %	AverageRF
‡ 1,4-Dichlorobenzene	3000	3200	0.01	1.36	1.46	8	NA	$\pm 20 \%$	AverageRF
‡ Phenol	3000	3400	0.01	1.54	1.73	12	NA	$\pm 20 \%$	AverageRF
‡ Di-n-octyl Phthalate	3000	3500	0.01	2.07	2.39	15	NA	\pm 20 %	AverageRF
‡ Fluoranthene	3000	3200	0.01	1.10	1.18	7	NA	± 20 %	AverageRF
‡ Benzo(a)pyrene	3000	3400	0.01	1.25	1.40	12	NA	$\pm 20 \%$	AverageRF
† 2,4-Dinitrophenol	3000	3000	0.05	0.195	0.214	NA	1	\pm 30 %	Linear
‡ 4-Chloro-3-methylphenol	3000	3400	0.01	0.266	0.299	13	NA	± 20 %	AverageRF
† N-Nitrosodi-n-propylamine	3000	3100	0.05	0.820	0.850	4	NA	\pm 30 %	AverageRF
† Hexachlorocyclopentadiene	3000	4000	0.05	0.288	0.386	34 *	NA	± 30 %	AverageRF
‡ Acenaphthene	3000	3000	0.01	0.997	0.997	0	NA	± 30 %	AverageRF
* N-Nitrosodiphenylamine	3000	3300	0.01	0.811	0.881	9	NA	± 20 %	AverageRF
‡ Hexachlorobutadiene	3000	3200	0.01	0.202	0.213	6	NA	± 20 %	AverageRF
‡ 2-Nitrophenol	3000	3400	0.01	0.188	0.214	14	NA	$\pm 20 \%$	AverageRF

Results flagged with an asterisk (*) indicate values outside control criteria.

† SPCC Compound

‡ CCC Compound

Printed: 10/13/2004 08:59:13 U:\Stealth\Crystal.rpt\Form7.rpt

Form 7 - Organic 134

1 of 1

QA/QC Results

Client:

Geomatrix Consultants

Project:

9329.000

Service Request: K2407209

Analysis Run Log Semi-Volatile Organic Compounds by GC/MS

Analysis Method:

8270C

Analysis Lot: KWG0415229

Instrument ID: MS06

File ID	Sample Name	Lab Code	Date Analysis Started	Start Time	Q	Date Analysis Finished	Finish Time
1004F012.D	Continuing Calibration Verification	KWG0415229-2	10/4/2004	16:03		10/4/2004	16:32
1004A012.D	GC/MS Tuning - Decafluorotriphenyl	KWG0415229-1	10/4/2004	16:03		10/4/2004	16:32
1004F013.D	Method Blank	KWG0414855-3	10/4/2004	16:42		10/4/2004	17:11
1004F014.D	Lab Control Sample	KWG0414855-1	10/4/2004	17:21		10/4/2004	17:51
1004F015.D	Duplicate Lab Control Sample	KWG0414855-2	10/4/2004	18:00		10/4/2004	18:30
1004F016.D	RB-1	K2407209-001	10/4/2004	18:39		10/4/2004	19:09
1004F017.D	RB-2	K2407209-010	10/4/2004	19:18		10/4/2004	19:48
1004F018.D	RB-3	K2407209-022	10/4/2004	19:57		10/4/2004	20:26
1004F019.D	ZZZZZZ	ZZZZZZ	10/4/2004	20:36		10/4/2004	21:06
1004F020.D	- 107-GSED-C32-0.5	K2407209-002	10/4/2004	21:15		10/4/2004	21:45
1004F021.D	107-GSED-C32-1.0	K2407209-003	10/4/2004	21:54		10/4/2004	22:23
1004F022.D	107-GSED-C32-2.0	K2407209-004	10/4/2004	22:33		10/4/2004	23:02
1004F023.D	107-GSED-C32-3.0	K2407209-005	10/4/2004	23:12		10/4/2004	23:42
1004F024.D	105-GSED-C05-0.5	K2407209-006	10/4/2004	23:51		10/5/2004	00:21
1004F025.D	105-GSED-C05-1.0	K2407209-007	10/5/2004	00:30		10/5/2004	01:00
1004F026.D	105-GSED-C05-2.0	K2407209-008	10/5/2004	01:09		10/5/2004	01:39
1004F027.D	105-GSED-C05-3.0	K2407209-009	10/5/2004	01:48		10/5/2004	02:18
1004F028.D	108-GSED-C02-0.5	K2407209-011	10/5/2004	02:26		10/5/2004	02:56
1004F029.D	108-GSED-C02-1.0	K2407209-012	10/5/2004	03:06		10/5/2004	03:35
1004F030.D	108-GSED-C02-2.0	K2407209-013	10/5/2004	03:44		10/5/2004	04:14

Results flagged with an asterisk (*) indicate the holding time was exceeded for the analysis

Printed: 10/13/2004 08:59:17 U:\Stealth\Crystal.rpt\Form8.rpt

QA/QC Results

Client: .

Geomatrix Consultants

Project:

9329.000

Service Request: K2407209

Analysis Run Log Semi-Volatile Organic Compounds by GC/MS

Analysis Method:

8270C

Analysis Lot: KWG0415302

Instrument ID: MS06

File ID	Sample Name	Lab Code	Date Analysis Started	Start Time	Q	Date Analysis Finished	Finish Time
1005F008.D	108-GSED-C02-1.0D	K2407209-015	10/5/2004	18:31		10/5/2004	18:56
1005F009.D	109-GSED-C01-0.5	K2407209-016	10/5/2004	19:04		10/5/2004	19:29
1005F010.D	109-GSED-C01-1.0	K2407209-017	10/5/2004	19:38		10/5/2004	20:02
1005F011.D	109-GSED-C01-2.0	K2407209-018	10/5/2004	20:11		10/5/2004	20:36
1005F012.D	109-GSED-C01-2.0MS	KWG0414674-6	10/5/2004	20:45		10/5/2004	21:10
1005F013.D	109-GSED-C01-2.0DMS	KWG0414674-7	10/5/2004	21:19	· · · · · · · · · · · · · · · · · · ·	10/5/2004	21:43
1005F014.D	110-GSED-C01A-0.5	K2407209-019	10/5/2004	21:52		10/5/2004	22:17
1005F015.D	110-GSED-C01A-1.0	K2407209-020	10/5/2004	22:26		10/5/2004	22:50
1005F001.D	Continuing Calibration Verification	KWG0415302-2	10/5/2004	14:36		10/5/2004	15:01
1005A001.D	GC/MS Tuning - Decafluorotriphenyl	KWG0415302-1	10/5/2004	14:36		10/5/2004	15:01
1005F002.D	Method Blank	KWG0414674-5	10/5/2004	15:09		10/5/2004	15:34
1005F003.D	Lab Control Sample	KWG0414674-3	10/5/2004	15:43		10/5/2004	16:08
1005F004.D	Duplicate Lab Control Sample	KWG0414674-4	10/5/2004	16:17		10/5/2004	16:42
1005F005.D	107-GSED-C32-2.0MS	KWG0414674-1	10/5/2004	16:50		10/5/2004	17:14
1005F006.D	107-GSED-C32-2.0DMS	KWG0414674-2	10/5/2004	17:24		10/5/2004	17:49
1005F007.D	108-GSED-C02-3.0	K2407209-014	10/5/2004	17:57		10/5/2004	18:22

Results flagged with an asterisk (*) indicate the holding time was exceeded for the analysis

Printed: 10/13/2004 08:59:20

U:\Stealth\Crystal.rpt\Form8.rpt

QA/QC Results

Client:

Geomatrix Consultants

Project:

9329.000

Service Request: K2407209

Analysis Run Log

Semi-Volatile Organic Compounds by GC/MS

Analysis Method:

8270C

Analysis Lot: KWG0415478

Instrument ID: MS10

File ID	Sample Name	Lab Code	Date Analysis Started	Start Time	Q	Date Analysis Finished	Finish Time
1007F002.D	Continuing Calibration Verification	KWG0415478-2	10/7/2004	13:30		10/7/2004	13:59
1007A002.D	GC/MS Tuning - Decafluorotriphenyl	KWG0415478-1	10/7/2004	13:30		10/7/2004	13:59
1007F008.D	777777	ZZZZZZ	10/7/2004	18:25		10/7/2004	18:54
1007F009.D	110-GSED-C01A-2.0	K2407209-021	10/7/2004	19:06		10/7/2004	19:35
1007F010.D	101-GSED-C09-2.0D	K2407209-023	10/7/2004	19:47		10/7/2004	20:16

Results flagged with an asterisk (*) indicate the holding time was exceeded for the analysis

QA/QC Results

Client:

Geomatrix Consultants

Project:

9329.000

Sample Matrix:

Water

Service Request: K2407209

Date Extracted: 09/29/2004

Extraction Prep Log Semi-Volatile Organic Compounds by GC/MS

Extraction Method: Analysis Method:

EPA 3520C

8270C

Extraction Lot: KWG0414855

Level: Low

Sample Name	Lab Code	Date Collected	Date Received	Sample Amount	Final Volume	% Solids	Note
RB-1	K2407209-001	09/14/04	09/17/04	180ml	2ml	NA	*
RB-2	K2407209-010	09/15/04	09/17/04	230ml	2ml	NA	*
RB-3	K2407209-022	09/16/04	09/17/04	230ml	2ml	NA	*
Method Blank	KWG0414855-3	NA	NA	1050ml	2ml	NA	
Lab Control Sample	KWG0414855-1	NA.	NA	1050ml	2ml	NA	
Duplicate Lab Control Sample	KWG0414855-2	NA	NA	1050ml	2ml	NA	

Results flagged with an asterisk (*) indicate the holding time was exceeded for the analysis

QA/QC Results

Client:

Geomatrix Consultants

Project:

9329.000

Sample Matrix:

Soil

Service Request: K2407209

Date Extracted: 09/27/2004

Extraction Prep Log Semi-Volatile Organic Compounds by GC/MS

Extraction Method: Analysis Method:

EPA 3541

8270C

Extraction Lot: KWG0414674

Level: Low

		Date	Date	Sample	Final		
Sample Name	Lab Code	Collected	Received	Amount	Volume	% Solids	Note
107-GSED-C32-0.5	K2407209-002	09/15/04	09/17/04	40.11g	2ml	40.6	
107-GSED-C32-1.0	K2407209-003	09/15/04	09/17/04	40.36g	2ml	46.6	
107-GSED-C32-2.0	K2407209-004	09/15/04	09/17/04	37.90g	2ml	54.8	
107-GSED-C32-3.0	K2407209-005	09/15/04	09/17/04	40.16g	2ml	57.0	
105-GSED-C05-0.5	K2407209-006	09/15/04	09/17/04	40.54g	2ml	42.2	
105-GSED-C05-1.0	K2407209-007	09/15/04	09/17/04	40.26g	2ml	40.0	
105-GSED-C05-2.0	K2407209-008	09/15/04	09/17/04	40.48g	2ml	51.9	
105-GSED-C05-3.0	K2407209-009	09/15/04	09/17/04	26.76g	2ml	77.5	
108-GSED-C02-0.5	K2407209-011	09/16/04	09/17/04	40.60g	2ml	43.5	
108-GSED-C02-1.0	K2407209-012	09/16/04	09/17/04	40.81g	2ml	44.6	
108-GSED-C02-2.0	K2407209-013	09/16/04	09/17/04	38.70g	2ml	51.7	
108-GSED-C02-3.0	K2407209-014	09/16/04	09/17/04	37.68g	2ml	57.7	
108-GSED-C02-1:0D	K2407209-015	09/16/04	09/17/04	40.09g	2ml	46.3	
109-GSED-C01-0.5	K2407209-016	09/16/04	09/17/04	40.03g	2ml	43.4	
109-GSED-C01-1.0	K2407209-017	09/16/04	09/17/04	40.08g	2ml	46.0	
109-GSED-C01-2.0	K2407209-018	09/16/04	09/17/04	36.74g	2ml	54.5	
110-GSED-C01A-0.5	K2407209-019 ·	09/16/04	09/17/04	33.12g	2ml	60.6	
110-GSED-C01A-1.0	K2407209-020	09/16/04	09/17/04	31.06g	2ml	64.7	
110-GSED-C01A-2.0	K2407209-021	09/16/04	09/17/04	24.69g	2ml	82.0	
101-GSED-C09-2.0D	K2407209-023	09/14/04	09/17/04	40.56g	2ml	46.9	
Method Blank	KWG0414674-5	NA	NA	40.81g	2ml	NA	
107-GSED-C32-2.0MS	KWG0414674-1	09/15/04	09/17/04	37.09g	2ml	54.8	
107-GSED-C32-2.0DMS	KWG0414674-2	09/15/04	09/17/04	37.10g	2ml	54.8	
109-GSED-C01-2.0MS	KWG0414674-6	09/16/04	09/17/04	37.72g	2ml	54.5	
109-GSED-C01-2.0DMS	KWG0414674-7	09/16/04	09/17/04	36.78g	2ml	54.5	
Lab Control Sample	KWG0414674-3	NA	NA	20.00g	2ml	NA	
Duplicate Lab Control Sample	KWG0414674-4	NA	NA	20.00g	2ml	NA	

Results flagged with an asterisk (*) indicate the holding time was exceeded for the analysis

Organic Analysis: Semi-Volatile Organic Compounds by GC/MS

Validation Package

APPENDIX C

Laboratory Results for Fish Tissue Samples

June 29, 2005

Service Request No: K2502124

Ann Holbrow Geomatrix Consultants 2101 Webster St. 12th Floor Oakland, CA 94612

RE: 9329

Dear Ann:

Enclosed are the results of the sample(s) submitted to our laboratory on March 24, 2005. For your reference, these analyses have been assigned our service request number K2502124.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAC standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3376.

Respectfully submitted,

Columbia Analytical Services, Inc.

Gregory Salata, Ph.D.

Project Chemist

GS/jeb

Page 1 of

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit

MPN Most Probable Number

MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Case Narrative

Client:

Geomatrix Consultants

Project:

9329 Sample Matrix: Fish tissue

Service Request No.:

K2502124

Date Received:

03/24/05

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier III validation deliverables including summary forms and all of the associated raw data for each of the analyses. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Ten fish tissue samples were received for analysis at Columbia Analytical Services on 03/24/05. The samples were received in good condition and consistent with the accompanying chain of custody form. Upon receipt at the laboratory the samples were filleted, the skin was removed, and the tissue was stored frozen at -20°C until authorization was received from the client to proceed with analysis.

Dioxins and Furans by EPA Method 8290

Dioxin and Furan analysis by EPA Method 8290 was performed at Columbia Analytical Services laboratory in Houston, TX. The narrative for this analysis can be found in the corresponding section of this data package.

Chain of Custody Documentation

Chain-of-Custody Record 11171 Date: 23 MAROS Page Project No.: **ANALYSES** REMARKS Samplers (Signatures): EPA Method 8270 Additional Comments TPHg by 8015 TPHd by 8015 Title 22 Metals FILLET BEFORE FREEZING EPA 8260 **EPA 8021** Acidified Date Time Sample Number WILL BE CONTACTED Pod FOR ANALYSIS 1500 BP-5B-001 PSP-38-002 1500 BP-5B-003 1500 BP-5B-004 PSP-SB-005 1500 PSP 51 WSP 006 WSP-SB -007 .. 1500 WSP-53 - 008 1500 15T-58-009 16MAROS 1500 15T-58-010 Turnaround Time: Results To: STANDARD Total No. of containers: Date: Relinquished by (signature): Relinquished by (signature): Method of shipment: Date: Printed Name: Printed Name: Printed Name: Laboratory comments and Log No : Time: Time: Time: Company: Company: Received (signature): Received (signature): Date: Received (signature): Date: Printed Name: Printed Name: Time: Geomatrix Consultants Time: Company: Company: 330 W. Bay Street, Suite 140 CAS Company: Costa Mesa, California 92627 (949) 642-0245

	Geom		Coole	nbia Analytical Servion Receipt and Preserv	ces Inc. vation Form	1	ec.M	egory
Pro	ject/Client_Dougla	s Park	inson	W		4		0
Cod	oler received on 3	-24-05	$\frac{1}{2}$ and $\frac{1}{2}$	opened on <u>3-24</u> C		l \		
1.	Were custody seals on of If yes, how many a		oolers?					Y N
2.	Were custody seals inta	_		·				
3.	Were signature and date		the custod	v seals?	CIGI			YN
4.	Is the shipper's airbill a	vailable an	d filed? If	y seals? no, record airbill number:_	161 FX	561-0901		YN
5.	COC#			, record anom number	800 V	207 0801		(Y) N
	Temperature of coole	r(s) upon r	eceipt: (°C	$\frac{1}{75}$				
	Temperature Blank:	(°C)		5.6				
	Were samples hand deliv	vered on the	same day	as collection?				
	Were custody papers pro							Y
	Type of packing materia			avaic S				(Y) N
	Did all bottles arrive in			roken)?				
	Were all bottle labels co			207.1				YN
10.	Did all bottle labels and							YN
11.	Were the correct types			1740				Y (N)
12.				e lab with the appropriate I	ъ Н?			Y N
13.				bbles, and if present, noted				Y N
	Did the bottles originate				ociow;			Y
				ith >1/2 the 24hr. hold tin	ne remaining	from collections	•	YN
16.	Was C12/Res negative?	_			ne remanning	noni conection.	'	Y
Expl:	ain any discrepancies:	Sample SB 0	J5	VERMOD BY DO	s two s	samples/	as per 125/0.	- PC labele
					4			
					1 5			
RESC	DLUTION:							
Samp	les that required prese	rvation or	received o	ut of temperature:				
	Sample ID	Reagent	Volume	Lot Number	Bottle Type	Rec'd out of Temperature	Initials	
(
1								
1								

Dioxins

June 10, 2005

Service Request No: E0500374

Gregory Salata Columbia Analytical Services 1317 South 13th Avenue Kelso, WA 98626

RE: 1613B_Full List/K2502124

Dear Gregory:

Enclosed are the results of the sample(s) submitted to our laboratory on May 12, 2005. For your reference, these analyses have been assigned our service request number E0500374.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 23. You may also contact me via email at JFreemyer@houston.caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Jane Freemyer

Project Manager

Page 1 of 303

Client: **Project:** Columbia Analytical Services,Inc. 1613B_Full List/K2502124

Service Request: E0500374

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID			
			<u>DATE</u>	<u>TIME</u>
E0500374-001	PSP-SB-001		03/16/05	1500
E0500374-002	PSP-SB-001 DUP			
E0500374-003	PSP-SB-002	(19)	03/16/05	1500
E0500374-004	PSP-SB-003		03/16/05	1500
E0500374-005	PSP-SB-004		03/16/05	1500
E0500374-006			03/16/05	1500
20300374-000	PSP-SB-005		03/16/05	1500

Client:

Geomatrix

Project:

1613 Full List/K2502124

Sample Matrix: ti

tissue

Service Request No.:

Date Received:

E0500374

05/12/05

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier IV. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Six tissue samples were received for analysis at Columbia Analytical Services on May 12, 2005. The following discrepancies were noted upon initial sample inspection. The exceptions are also noted on the cooler receipt and preservation form included in this data package. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C/frozen at –20°C upon receipt at the laboratory.

No discrepancies were noted upon initial sample inspection

Data Validation Notes and Discussion

MS/MSD

A Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) pair was analyzed and reported in lieu of the MS/MSD for these samples.

B flags - Method Blanks

The Method Blank EB21060-MB/U22059#1 contained low levels of 1,2,3,4,6,7,8-HpCDD, OCDD and OCDF below the Method Reporting Limit (MRL). The associated compounds in the samples(s) are flagged with 'B' flags.

K flags

EMPC - When the ion abundance ratios associated with a particular compound are outside the QC limits, samples are flagged with a 'K' flag. A 'K' flag indicates an estimated maximum possible concentration for the associated compound.

Approved by

Xiangqiu Liang, Laboratory Director

Date 6/10/05

CAS/HOU - Form Production, Peer Review & Project Review Signatures

SR# Unique ID	E0500374
	First Level - Data Processing - to be filled by person generating the forms
Date	5/20/05 Person 1 W)
Date	Person 2
	Second Level - Data Review - to be filled by person doing peer review
Date	0927 loc Reviewer
Date	Reviewer
	Project Level - Review - to be filled by person doing project compliance review
Date	Reviewer

An Employee - Owned Company

Chain-of-custody

10655 Richmond Avenue, Suite 130-A, Houston, TX 77042 Phone (713)266-1599 Fax (713)266-0130 www.caslab.com

Columbia Analytical Services

CHAIN OF CUSTODY / LABORATORY ANALYSIS REQUEST FORM

SR#	K2502124
PAGE	1 OF 1

10655 Richmond Ave., Suite 130A, Houston, TX 77042 (713) 266-1599 FAX (713) 266-0130

Client Company Name: Geomatrix Consultants						Containers	Analysis Requested					ed	
Client Address:	2101 Web	ster St, 12t	h Floor, O	akland,CA.	64912		onta						
Project Name/Number:	9329							PA	FA OS	¥ _	A 0	8 -	
Client Project Manager:	Ann Holbi	row					er of	E	OD CD	y E]	CD CD	y El	
	For composite samples *				Number	ins l B list)	B B 7,8 T	ins h (ful)	d sui	ns b	=		
	St	art	s	top		Sample	ž	Dioxins by EPA 1613 B (full list)	Dioxins by EPA 1613 B (2,3,7,8 TCDD & TCDF, only)	Dioxins by EPA 8290 (full list)	Dioxins by EPA 8290 (2,3,7,8 TCDD	Dioxins by EPA 8280 (full list)	REMARKS
Sample I.D.	Date	Time	Date	Time	LAB ID	Matrix							
PSP-SB-001	16-Mar	1500				115505		X					K2502124-001
PSP-SB-002	16-Mar	1500				TISSUG		×		ů(K2502124-002
PSP-SB-003	16-Mar	1500				TISSUG		X					K2502124-002
PSP-SB-004	16-Mar	1500				775545		X					
PSP-SB-005	16-Mar	1500				775546		Ý.					K2502124-004
						11750		A					K2502124-005
<u></u>													
01						-							
					**		\neg				-		
							\neg						
		21					\dashv			-			
TURNAROUND				REPORT	¥8	Comment	ts/Spe	cial Instruc	tions:				
REQUIREMENTS24 hr48 hr	5 day	I Dou		QUIREMEN : Results, Me		* For grab	sampl	es, use start co	olumn's date and	time. A	VAZY	75 1	DUPLICATE
X Standard TAT			Surrogate	: Results, M	thod Blank,	CAS Projec	t Chen	nist: (Gregory Salata				
Provide FAX Preliminary Re		II. QC S	Summary R	eports: MS, I	ASD as required	Den	M	·			PSP	-SB-	-00/,
equested Report Date:	7			i Report (inc	udes raw data)	146	ハラ	G MS	DO DO	LIPII	S ON	JAL	L SAMPLES.
			EDD RECEIVE	n pv.									
ignature: Nime Ha	, k				2 cm.	- 1		NQUISHEI			- 1	RECEIV	1
ignature: Name:	Saeli		orginature:	New Kon	la More							Signature:	
irm:OAS		F	Timed Na	me: Nece B-Hous	na y 170012			i Name:			_ [1	Printed Na	nme:
Date/Time: 51	11/08 11	00 1	Date/Time:	5-12-0	5/1053		Firm: Date/T	ime:			- K	Firm: Date/Time	,
	N.				/	~						Jaw I IIIne	··

Service Request Summary

Folder #:

E0500374

Client Name:

Columbia Analytical Services

Project Name:

1613B_Full List

Project Number:

K2502124

Report To:

Gregory Salata

Columbia Analytical Services 1317 South 13th Avenue

Kelso, WA 98626

Phone Number:

1-360-577-7222

Fax Number: E-mail:

1-360-636-1079

gsalata@kelso.caslab.com

Project Chemist: Jane Freemyer

Originating Lab: HOUSTON Created By: RDIAZ

Due Date: 05/26/2005

EDD: BASICwQC

Tier: IV

QAPP: LAB QAP Qualifier Set: CAS Standard

Formset: CAS Standard

Merged?: Y

Report to MDL?: Y

Notes

					*	
Lab Code	Client Samp	ole	COC Matrix	Sample Date	Sample Time	Receive Date
E0500374-001 E - 1613B DIOXINS	PSP-SB-00	1	Animal Tissue	03/16/2005	1500	05/12/2005
1613B		DIOXINS_FURANS_	Full List (17 Congeners)			
E0500374-002 E - 1613B DIOXINS	PSP-SB-001 _FURANS_	I DUP	Animal Tissue	03/16/2005	1500	05/12/2005
1613B		DIOXINS_FURANS_	Full List (17 Congeners)			
E0500374-003 E - 1613B DIOXINS_	PSP-SB-002 _FURANS_	2	Animal Tissue	03/16/2005	1500	05/12/2005
1613B		DIOXINS_FURANS_	Full List (17 Congeners)			\$
E0500374-004 E - 1613B DIOXINS_	PSP-SB-003 _FURANS_	3	Animal Tissue	03/16/2005	1500	05/12/2005
1613B	DF.	DIOXINS_FURANS_	Full List (17 Congeners)			
E0500374-005 E - 1613B DIOXINS_	PSP-SB-004		Animal Tissue	03/16/2005	1500	05/12/2005
1613B		DIOXINS_FURANS_	Full List (17 Congeners)			
E - 1613B DIOXINS_	PSP-SB-005		Animal Tissue	03/16/2005	1500	05/12/2005
1613B		DIOXINS_FURANS_	Full List (17 Congeners)			

Cooler Receipt And Preservation Form

Project/Client: 1613B Full List/Columbia Analytical Services Inc. Work Order: E0500374 Cooler received on 05/12/2005 and opened on 5-12-05Were custody seals on outside of cooler? Did all bottle labels and tags agree with custody papers? N NA 2. Were seals intact and signature & date correct? Ø N Were the correct types of bottles used for the tests indicated? NA NA 3. Is the shipper's airbill available and filed? Were all of the preserved bottles received at the lab with the appropriate pH? YN 4. COC# 12. Were VOA vials checked for absence of air bubbles, and if present, noted below? NA) N 5. Were custody papers properly filled out (ink, signed, etc.)? NA (Y) N 13. Did the bottles originate from CAS/E or a branch laboratory? N Type of packing material present Bubble wrap 6. 14. Are CWA Microbiology samples received with >1/2 the 24 hr. hold time remaining Did all bottles arrive in good condition (unbroken)? NA (Y) N from collection? N Were all bottle labels complete (i.e. analysis, preservation, etc.)? YN NA 15. Was Cl2/Res negative? YIN Lab Code Sample Name E0500374-001 PSP-SB-001 16oz-Glass Jar WM CLEAR Teflon Liner(Unpreserved) Received Conditions **Expected Conditions Cooler** Rec pΗ Seal Rec **□** Bottle ID Barcode HS \mathbf{pH} **Temp** Temp Check HS **Intact? Corrective Action** E0500374-001.01 20.0 NA Test List: SOP Lipids 1613B E0500374-002 PSP-SB-001 DUP 16oz-Glass Jar WM CLEAR Teflon Liner(Unpreserved) **Received Conditions Expected Conditions Cooler** Rec Rec Seal **Bottle ID** Barcode HS рH Temp Temp Check HS Intact? Corrective Action E0500374-002.01 20.0 NA Test List: SOP Lipids 1613B E0500374-003 PSP-SB-002 16oz-Glass Jar WM CLEAR Teflon Liner(Unpreserved) **Received Conditions Expected Conditions Cooler** Rec пH Rec Seal **Bottle ID** Barcode HS рH Temp Temp Check HS Intact? Corrective Action E0500374-003.01 NA 20.0 NA Test List: SOP Lipids 1613B E0500374-004 PSP-SB-003

Cooler Receipt And Preservation Form

Lab Code Sample Name E0500374-004 PSP-SB-003 16oz-Glass Jar WM CLEAR Teflon Liner(Unpreserved) **Received Conditions Expected Conditions Cooler** Rec pHRec Seal **Bottle ID** Barcode рH Temp Temp **Intact?** Corrective Action Check HS E0500374-004.01 20.0 NA Test List: SOP Lipids 1613B E0500374-005 PSP-SB-004 16oz-Glass Jar WM CLEAR Teflon Liner(Unpreserved) **Received Conditions Expected Conditions Cooler** Rec рH Rec Seal **Bottle ID** Barcode рH **Temp** Temp **Intact? Corrective Action** Check HS E0500374-005.01 20.0 NA Test List: SOP Lipids 1613B E0500374-006 PSP-SB-005 → 16oz-Glass Jar WM CLEAR Teflon Liner(Unpreserved) **Received Conditions Expected Conditions Cooler** Rec pH Rec Seal **Bottle ID** Barcode HS pH Temp Temp Check **Intact? Corrective Action** HS E0500374-006.01 20.0 NA Test List: SOP Lipids 1613B

All tests have one or more assigned bottles

No	Project	Lab	Client	Sample	Tare	Tare &	Tare &	Cal	culated	Dry	Sample
	ID	ID	ID	Size	Vial	Wet	Dry	199	ercent	Weight	Description
				g		Sample	Sample	Solid	Moisture		
MB	* * * * * * * * * * * * * * * * * * *	EB21060-MB	MB	10.000							
LCS		EB21060-LCS	LCS	10.000							English to the second s
LCSD	Signature and the contract of	EB21060-LCSD	LCSD	10.000						-	*
1	E0500378	E0500378-001.01	3145	5.022							Powdered milk,
2	E0500374	E0500374-001.01	PSP-SB-001	20.171							Tissue
3	E0500374	E0500374-002.01DUP	PSP-SB-001DUP	. 20.116							Tissue
4	E0500374	E0500374-003.01	PSP-SB-002	20.272							Tissue
5	E0500374	E0500374-004.01	PSP-SB-003	20.657	*						Tissue
6	E0500374	E0500374-005.01	PSP-SB-004	20.190							Tissue
7	E0500374	E0500374-006.01	PSP-SB-005	20.022							Tissue
8	E0500376	E0500376-001.01	1001	20.261							Tissue
9	E0500376	E0500376-002.01	2002	20.550							Tissue
10	E0500376	E0500376-003.01	3003	20.405							Tissue
11	E0500376	E0500376-004.01	4004	20.618							Tissue
12	E0500376	E0500376-005.01	5005	20.404			1001111000	and the same of			Tissue
13	E0500369	E0500369-001.01	Composite	5.022							Fish oil
14	L0500731	L0500731-005.01	801552	50.260	12.801	20.265	13.760	12.85	87.15	6.46	Black sludge
15	L0500731	L0500731-006.01	801558	50.451	12.872	19.873	14.440	22.40	77.60	11.30	Black sludge
16	and the state of the same	1.5654							Section 1		
_17											
18		0.00 - 4.00 - 0.00 - 2.00 - 0.0	946600000 T (100 00 00 00 00 00 00 00 00 00 00 00 00	EN 0000 EN EN 0000 EN			**********				
19											
20	779 2000 2000	X422 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		H3 510 531 532 55 55 55 50 50				- Company of the Comp			
21											
22					600000000000000000000000000000000000000	5.00.00.00.00.00.00.00.00.00.00.00.00.00	000000000000000000000000000000000000000	overtornoover	amacannyan yang ayan aya	Managagagagagagagagagagagagagagagagagaga	
23											
24	20 2 000 000				2253232323232323	54005000000000000000	60.552 AVIS		94 1895 COUNTS	255-296-2113-3, 3, 14, 00	*
25											
26											

SODIUM SULFATE C1-71-2 ACETONE C1-68-3 TOLUENE C1-74-5 GLASS WOOL GW1-1-4 DICHLOROMETHANE C1-73-3 ETHYL ACETATE C1-69-4 **NONANE C1-67-5** HEXANE C1-73-2

Columbia Analytical Services, INC.

EB21060

1613

SAND C1-33-1 TRIDECANE C1-74-2 SULFURIC ACID C1-74-3 BASIC SILICA GEL S1-24-3 CARBON: C1-73-5 ACIDIC SILICA GEL S1-24-4 SILICA GEL S1-22-6

Standard:	Internal	Matrix	
Solution ID:	D7-32-1B	D7-28-3B	EXTRACTION START: 5/13/05
Volume:	1000 uL	100 uL	EXTRACTION END: 5/14/05
Spiker:	CID	CID	EXTRACTION METHOD: SOXHLET
Witness:	DHF	DHF	35%
Date:	5/13/2005	5/13/2005	TIME STARTED: 1500
Standard:	Cleanup	Recovery	TIME FINISHED: 1600
Solution ID:	D7-31-2A/B	BL.	- 2B
Volume:	100 uL	D6-7	EXTRACTS RECEIVED BY
Spiker:	DHF	201	
Witness:	CID	M	
Date:	5/14/2005	5/12/0	DATE RECEIVED 5/16/05

Sulfuric Acid Cleanup: 5/14/05 Silica Gel/Carbon Column: 5/14/05

No	Project	Lab	Client	Sample	Tare	Dried	D	la ,	
	ID	ID	ID	Size	Vial	Extract	Percent	Sample	Quantity
				g		Extract	Lipid	Description	Analized
MB	· Activity of the second of th	-ED21067-MB	Method Blank	10.000	g 12.858	12.050	0.000	-	
				10.000	12.056	12.858	0.000	1000000	10.000
36 0000000	600000000000000000000000000000000000000	1			100000				
1	E0500374	E0500374-001.01	PSP-SB-001	7.827	12.804	12.810	0.077	sm:	
2	E0500374	E0500374-002.01DUP	PSP-SB-001DUP	7.825	13.064	13.071	0.077	Tissue	7.827
3	E0500374	E0500374-003.01	PSP-SB-002	3.514	13.031	13.071	1.565	Tissue	7.825
4	E0500374	E0500374-004.01	PSP-SB-003	3.115	13.058	13.083	0.803	Tissue	3.514
5	E0500374	E0500374-005.01	PSP-SB-004	3.134	13.064	13.069	0.160	Tissue	3.115
6	E0500374	E0500374-006.01	PSP-SB-005	3.886	12.944	12.952	0.160	Tissue	3,134
7	E0500376	E0500376-001.01	1001	10.244	12.982	13.264	2.753	Tissue	3.886
8	E0500376	E0500376-002.01	2002	10.300	13.001	13.012	0.107	Tissue	10.244
9	E0500376	E0500376-003,01	3003	10.475	13.014	13.247	2.224	Tissue	10.300
10	E0500376	E0500376-004.01	4004	10.611	13.075	13.098	0.217	Tissue Tissue	10.475
11	E0500376	E0500376-005.01	5005	10.262	12.852	12.869	0.217	Proposition of the second	10.611
12	NO MARKO CONTROL CONTR	CONCRETE CONTRACTOR CONTRACTOR				12.007	0.100	Tissue	10.262
13									factoria de la companya de la compa
14	Necessary								
15									
16		2005-0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		(0) Reconstitution					
17									
18				A.C. (1007-1000) 3600000000 E					
19									
20	H2000 List Makedoorkooksee				0000000001300000130000				
21									
22 .	X 350-2018 (100-100-100)							ā.	
23									
24		198401000				0000.0000000000000000000000000000000000			
25									
26			1100		10000000000000000000000000000000000000				

Lipid Measurements Only

SOD:UM SULFATE C1-71-2 ACETONE C1-68-3 TOLUENE C1-74-5 GLASS WOOL GW1-1-4 DICHLOROMETHANE C1-73-3 ETHYL ACETATE C1-69-4 NONANE C1-67-5 HEXANE C1-73-2

SAND C1-33-1
TRIDECANE C1-74-2
SULFURIC ACID C1-74-3
BASIC SILICA GEL S1-24-3
CARBON: C1-73-5
ACIDIC SILICA GEL S1-24-4
SILICA GEL S1-22-6

Standard:	Internal	Matrix	7
Solution ID:			EXTRACTION START:
Volume:			EXTRACTION END:
Spiker:	i i	-	EXTRACTION METHOD (1):
Witness:	-	1	EXTRACTION METHOD (1).
Date:			TIME STARTED:
Standard:	Cleanup	Recovery	TIME FINISHED:
Solution ID:	_		TIME I INICITED.
Volume:		26 75 4	EXTRACTS RECEIVED BY
Spiker:		m5//	VOI
Witness:		/ 1	19
Date:			DATE RECEIVED

Columbia Analytical Services, INC.

EB21067

Sulfuric Acid Cleanup: Silica Gel/Carbon Column:

Dioxin/Furan Analytical Report

10655 Richmond Avenue, Suite 130-A, Houston, TX 77042 Phone (713)266-1599 Fax (713)266-0130 www.caslab.com

PCDD/PCDF ANALYSIS DATA SHEET

CLIENT ID.

Use for Sample and Blank Results

METHOD BLANK

Lab Name: Columbia Analytical Services

Contract:

SDG No:

Lab Code: CAS Method:1613 Case No:

Client No:

Lab ID: EB21060-MB

Client Name:

Sample Wt/Vol: 10.000 g or mL: g

Matrix (Tissue): Solid

Initial Calibration Date: 10/25/04

Sample Receipt Date:

Instrument ID: AutoSpec-Ultima

Ext. Date: 05/13/05

GC Column: DB-5

Ext. Vol(ul):20.0

Inj. Vol(ul):1.0

Sample Data Filename: U22059#1

Analysis Date: 18-MAY-05 Time: 13:03:04

Blank Data Filename: U22059#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22058#1

Concentration Units (pg/L or ng/Kg wet weight): ng/Kg % Solids/Lipids:

	CONCENTRATION	DETECTION	Qual.	ION ABUND.	RRT	MEAN
ANALYTE	FOUND	LIMIT	(1)	RATIO (2)	(2)	RRF
2,3,7,8-TCDD	*	0.030	U	*	*	0.98
1,2,3,7,8-PeCDD	*	0.022	U	*	*	0.99
1,2,3,4,7,8-HxCDD	*	0.023	U	*	*	1.15
1,2,3,6,7,8-HxCDD	*	0.029	U	*	*	0.98
1,2,3,7,8,9-HxCDD	*	0.026	U	*	*	1.05
1,2,3,4,6,7,8-HpCI	DD 0.067	0.021	JK	0.63	1.000	1.01
OCDD	0.938	0.041	J	0.89	1.000	1.04
2,3,7,8-TCDF	*	0.027	U	*	*	1.03
1,2,3,7,8-PeCDF	*	0.013	U	*	*	1.02
2,3,4,7,8-PeCDF	*	0.014	U	*	*	1.09
1,2,3,4,7,8-HxCDF	*	0.017	U	*	*	1.15
1,2,3,6,7,8-HxCDF	*	0.017	U	*	*	1.23
1,2,3,7,8,9-HxCDF	*	0.017	U	*	*	1.32
2,3,4,6,7,8-HxCDF	*	0.015	U	*	×	1.18
1,2,3,4,6,7,8-HpCI)F *	0.016	U	*	*	1.52
1,2,3,4,7,8,9-HpCI		0.024	U	*	*	1.48
OCDF	0.091	0.039	J	0.99	1.004	1.24
Total Tetra-Dioxir	15 *	0.030	U			
Total Penta-Dioxir	ıs *	0.022	U			
Total Hexa-Dioxins	*	0.023	U			
Total Hepta-Dioxin	ns 0.116	0.021				
Total Tetra-Furans	*	0.027	U			
Total Penta-Furans	*	0.014	U			
Total Hexa-Furans	*	0.017	U			
Total Hepta-Furans	*	0.016	U			
• . · . · . · . · . · . · . · . · . ·	'					

⁽¹⁾ Qualifier U indicates not detected; The K indicates EMPC. The C needs value from second column analysis. The B indicates possible blank contamination.

⁽²⁾ RRTs and ion ratios are specified in Tables 2 and 9, Method 1613.

FORM 2: PCDD/PCDF LABELED COMPOUND AND

CLIENT ID.

CLEANUP STANDARD RECOVERIES METHOD BLANK

Lab Name: Columbia Analytical Services

Contract:

SDG No:

Lab Code: CAS Method: 1613 Case No:

Client No:

Lab ID: EB21060-MB

Client Name:

Sample Wt/Vol: 10.000

g or mL: g

Matrix (Tissue): Solid

Initial Calibration Date: 10/25/04

Sample Receipt Date:

Instrument ID: AutoSpec-Ultima

Ext. Date: 05/13/05

GC Column ID: DB-5

Analysis Date: 18-MAY-05 Time: 13:03:04

Sample Data Filename: U22059#1

Ext. Vol(uL): 20.0 Inj. Vol(uL): 1.0

Blank Data Filename: U22059#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22058#1

Concentration Units (pg/L or ng/Kg wet weight): ng/Kg % Solid/Lipids:

	SPIKE CONC.	CONC.	R(%) (1)	QC Limite(1)	ION ABUND. RATIO (2	RRT
LABELED COMPOUNDS						
13C-2,3,7,8-TCDD	2000	2290.98	114.55	25-164	0.79	1.011
13C-1,2,3,7,8-PeCDD	2000	2527.47	126.37	25-181	1.56	1.212
13C-1,2,3,4,7,8-HxCDD	2000	2115.88	105.79	32-141	1.38	0.990
13C-1,2,3,6,7,8-HxCDD	2000	2068.70	103.44	28-130	1.16	0.992
13C-1,2,3,4,6,7,8-HpCDD	2000	1910.91	95.55	23-140	1.05	1.070
13C-OCDD	4000	3713.61	92.84	17-157	0.90	1.144
13C-2,3,7,8-TCDF	2000	2505.39	125.27	24-169	0.78	0.970
13C-1,2,3,7,8-PeCDF	2000	2536.99	126.85	24-185	1.57	1.166
13C-2,3,4,7,8-PeCDF	2000	2330.24	116.51	21-178	1.57	1.197
13C-1,2,3,4,7,8-HxCDF	2000	1927.66	96.38	26-152	0.52	0.969
13C-1,2,3,6,7,8-HxCDF	2000	1867.29	93.36	26-123	0.53	0.972
13C-1,2,3,7,8,9-HxCDF	2000	2452.51	122.63	29-147	0.53	1.006
13C-2,3,4,6,7,8-HxCDF	2000	2138.23	106.91	.28-136	0.53	0.986
13C-1,2,3,4,6,7,8-HpCDF	2000	1909.28	95.46	28-143	0.45	1.047
13C-1,2,3,4,7,8,9-HpCDF	2000	2016.91	100.85	26-138	0.45	1.080
CLEANUP STANDARD						
and a a second						

37C1-2,3,7,8-TCDD

800 977.96

122.25

35-197

1.012

(2) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. NOTE: There is no ion abundance ratio for 37C14-2378-TCDD (cleanup standard).

⁽¹⁾ Contract-required limits for percent recovery (R) are specified in Table 7, Method 1613.

PCDD/PCDF ANALYSIS DATA SHEET Use for Sample and Blank Results CLIENT ID.

PSP-SB-001

Lab Name: Columbia Analytical Services

Contract:

SDG No:

Lab Code: CAS Method:1613 Case No:

Client No:

Lab ID: E0500374-001.01

Client Name: GEOMATRIX

Sample Wt/Vol: 20.171 $\,$ g or mL: $\,$ g

Matrix (Solid/Aqueous/Waste/Ash): Tissue Initial Calibration Date: 10/25/04

Sample Receipt Date: 05/12/05

Instrument ID: AutoSpec-Ultima

Ext. Date: 05/13/05

GC Column: DB-5

Ext. Vol(ul):20.0

Inj. Vol(ul):1.0

Sample Data Filename: U22060#1

Analysis Date: 18-MAY-05 Time: 13:47:55

Blank Data Filename: U22059#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22058#1

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solids/Lipids: 0.077

ANALYTE	CONCENTRATION FOUND	DETECTION LIMIT	Qual.	ION ABUND. RATIO (2)		MEAN RRF		
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD	* * *	0.024 0.030 0.017	U U	* * *	* *	0.98 0.99 1.15		
1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCD	* *	0.020 0.018	ប ប	*	*	0.98		
OCDD 2,3,7,8-TCDF	D 0.061 0.555 *	0.019 0.051	BJK BJ	0.73 0.86	1.000 1.000	1.01 1.04	÷	
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	*	0.026 0.017 0.020	U U	* *	*	1.03		
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	0.041	0.016 0.016	J U	1.19	* 1.000 *	1.09 1.15 1.23		
1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF	* * *	0.016 0.015	U U	*	* *	1.32		
1,2,3,4,7,8,9-HpCDF OCDF		0.016 0.021 0.038	U U BJ	*	*	1.52 1.48		
Total Tetra-Dioxins	*	0.024	Ū	1.02	1.004	1.24		
Total Hexa-Dioxins	*	0.030 0.017	บ บ	Re	sults	rawn.	tron	
Total Hepta-Dioxins Total Tetra-Furans Total Penta-Furans	* *	0.019	U U		will re	extrac	28,20	105
Total Hexa-Furans Total Hepta-Furans	0.041	0.020 0.016 0.016	ט	6	sults withd See re repor	t July	7	
(1) Oualifian 17 in 11			-					

⁽¹⁾ Qualifier U indicates not detected; The K indicates EMPC. The C needs value from second column analysis. The B indicates possible blank contamination.

⁽²⁾ RRTs and ion ratios are specified in Tables 2 and 9, Method 1613.

CLIENT ID.

FORM 2: PCDD/PCDF LABELED COMPOUND AND CLEANUP STANDARD RECOVERIES

PSP-SB-001

Lab Name: Columbia Analytical Services

Contract:

SDG No:

Lab Code: CAS Method:1613 Case No:

Client No:

Lab ID: E0500374-001.01

Client Name: GEOMATRIX

Sample Wt/Vol: 20.171

g or mL: q

Matrix (Solid/Aqueous/Waste/Ash): Tissue Initial Calibration Date: 10/25/04

Sample Receipt Date: 05/12/05

Instrument ID: AutoSpec-Ultima

Ext. Date: 05/13/05

GC Column ID: DB-5

Analysis Date: 18-MAY-05 Time: 13:47:55

Sample Data Filename: U22060#1

Ext.Vol(ul):20.0

Inj.Vol(ul):1.0

Blank Data Filename: U22059#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22058#1

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solid/Lipids: 0.077

					ION	
	SPIKE	CONC.	R(%)	QC	ABUND.	RRT
	CONC.	FOUND	(1)	Limite(1)	RATIO (2	2) (2)
LABELED COMPOUNDS						
13C-2,3,7,8-TCDD	2000	1249.34	62.47	25-164	0.79	1.011
13C-1,2,3,7,8-PeCDD	2000	1479.81	73.99	25-181	1.56	1.212
13C-1,2,3,4,7,8-HxCDD	2000	1297.60	64.88	32-141	1.24	0.990
13C-1,2,3,6,7,8-HxCDD	2000	1314.16	65.71	28-130	1.24	0.992
13C-1,2,3,4,6,7,8-HpCDD	2000	1183.77	59.19	23-140	1.04	1.070
13C-OCDD	4000	2088.09	52.20	17-157	0.89	1.144
13C-2,3,7,8-TCDF	2000	1257.70	62.89	24-169	0.78	0.970
13C-1,2,3,7,8-PeCDF	2000	1472.43	73.62	24-185	1.57	1.166
13C-2,3,4,7,8-PeCDF	2000	1290.65	64.53	21-178	1.58	1.197
13C-1,2,3,4,7,8-HxCDF	2000	1192.57	59.63	26-152	0.51	0.969
13C-1,2,3,6,7,8-HxCDF	2000	1125.38	56.27	26-123	0.52	0.972
13C-1,2,3,7,8,9-HxCDF	2000	1516.63	75.83	29-147	0.52	1.006
13C-2,3,4,6,7,8-HxCDF	2000	1256.56	62.83	28-136	0.53	0.986
13C-1,2,3,4,6,7,8-HpCDF	2000	1147.86	57.39	28-143	0.45	1.047
13C-1,2,3,4,7,8,9-HpCDF	2000	1286.37	64.32	26-138	0.44	1.080
·				0 0	1- 1-P	1110 211

CLEANUP STANDARD

37Cl-2,3,7,8-TCDD

800 587.83 73.48

(1) Contract-required limits for percent recovery (R) are specified in Table 7, Method 1613.

(2) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. NOTE: There is no ion abundance ratio for 37C14-2378-TCDD (cleanup standard).

PCDD/PCDF TOXICITY EQUIVALENCE SUMMARY

PSP-SB-001

CLIENT ID.

Use for Sample and Blank Results

Lab Name: Columbia Analytical Services

Contract:

SDG No:

Lab Code: CAS Method:1613 Case No:

Client No:

Lab ID: E0500374-001.01

Client Name: GEOMATRIX

Sample Wt/Vol: 20.171 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): Tissue Initial Calibration Date: 10/25/04

Sample Receipt Date: 05/12/05

Instrument ID: AutoSepc-Ultima

Ext. Date: 05/13/05

GC Column ID: DB-5

Ext. Vol(ul):20.0

Inj. Vol(ul):1.0

Sample Data Filename: U22060#1

Analysis Date: 18-MAY-05 Time: 13:47:55

Blank Data Filename: U22059#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22058#1

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solids/Lipids: 0.077

	CONCENTRATION	TEF(1)	TEF-ADJUSTED CONCENTRATION
2,3,7,8-TCDD	* .	X 1.0	*
1,2,3,7,8-PeCDD	*	X 1.0	×
1.2,3,4,7,8-HxCDD	*	X 0.1	*
1,2,3,6,7,8-HxCDD	*	x 0.1	*
1,2,3,7,8,9-HxCDD	*	X 0.1	*
1,2,3,4,6,7,8-HpCDD	0.061	X 0.01	6.14e-04
OCDD	0.555	X 0.0001	5.60e-05
2,3,7,8-TCDF	*	X 0.1	*
1,2,3,7,8-PeCDF	*	X 0.05	*
2,3,4,7,8-PeCDF	*	X 0.5	*
1,2,3,4,7,8-HxCDF	0.041	X 0.1	4.07e-03
1,2,3,6,7,8-HxCDF	*	X 0.1	*
1,2,3,7,8,9-HxCDF	*	X 0.1	*
2,3,4,6,7,8-HxCDF	*	X 0.1	*
1,2,3,4,6,7,8-HpCDF	*	X 0.01	*
1,2,3,4,7,8,9-HpCDF	*	X 0.01	*
OCDF	0.052	X 0.0001	5.00e-06

Total: 4.75e-03

Risults withdrawn

She re-extraction report sen from: Van der Berg, 1/18/05 (1) World Health Organization (WHO) adopted TEF's, taken from: Van der Berg, et al: Toxic Equivalency Factor (TEFs) for PCBs, PCDDs, PCDFs for Hummans and Wildlife (Environ Health perspect 106:775-792 (1998).

6/90

PCDD/PCDF ANALYSIS DATA SHEET Use for Sample and Blank Results

PSP-SB-001DUP

Lab Name: Columbia Analytical Services Contract:

SDG No:

CLIENT ID.

Lab Code: CAS Method:1613 Case No: Client No:

Lab ID: E0500374-002.01DUP

Client Name: GEOMATRIX

Sample Wt/Vol: 20.116 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): Tissue Initial Calibration Date: 10/25/04

Sample Receipt Date: 05/12/05

Instrument ID: AutoSpec-Ultima

Ext. Date: 05/13/05

GC Column: DB-5

Ext. Vol(ul):20.0

Inj. Vol(ul):1

Sample Data Filename: U22061#1

Analysis Date: 18-MAY-05 Time: 14:33:49

Blank Data Filename: U22059#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22058#1

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solids/Lipids: 0.089

	CONCENTRATION	DETECTION	Qual.	ION ABUI	ND. RRT	MEAN
ANALYTE	FOUND	LIMIT	(1)	RATIO	(2) (2)	RRF
2,3,7,8-TCDD	*	0.010	U	*	*	0.98
1,2,3,7,8-PeCDD	0.067	0.011	J	1.32	1.001	0.99
1,2,3,4,7,8-HxCDD	0.061	0.008	J	1.28	1.000	1.15
1,2,3,6,7,8-HxCDD	0.086	0.010	J	1.36	1.000	0.98
1,2,3,7,8,9-HxCDD	0.089	0.009	J	1.09	1.009	1.05
1,2,3,4,6,7,8-HpCI	OD 0.166	0.044	BJ	1.06	1.000	1.01
OCDD	0.835	0.042	ВJ	0.83	1.000	1.04
2,3,7,8-TCDF	*	0.014	Ŭ	*	*	1.03
1,2,3,7,8-PeCDF	0.055	0.007	J	1.59	1.001	1.02
2,3,4,7,8-PeCDF	0.069	0.008	JK	1.26	1.001	1.09
1,2,3,4,7,8-HxCDF	0.101	0.008	JK	1.00	1.000	1.15
1,2,3,6,7,8-HxCDF	0.088	0.007	J	1.24	1.000	1.23
1,2,3,7,8,9-HxCDF	0.087	0.007	J	1.24	1.000	1.32
2,3,4,6,7,8-HxCDF	0.092	0.007	J	1.25	1.000	1.18
1,2,3,4,6,7,8-HpCI	OF 0.101	0.023	J	1.04	1.000	1.52
1,2,3,4,7,8,9-HpCI	OF 0.077	0.029	BJ	0.90	1.000	1.48
OCDF	0.225	0.045		0.87	1.003	1.24
						•
Total Tetra-Dioxir	ıs *	0.010	U		no of	withdrawn
Total Penta-Dioxin	ıs 0.067	0.011			pesuis	w.w.quare
Total Hexa-Dioxins	0.236	0.008			See ru	Straction
Total Hepta-Dioxin	ıs 0.166	0.044				7/28/05
Total Tetra-Furans	*	0.014	U		rupo	1/28/25
Total Penta-Furans	0.055	0.008			- 4	1 3/03
Total Hexa-Furans	0.267	0.008				
Total Hepta-Furans	0.178	0.023				

⁽¹⁾ Qualifier U indicates not detected; The K indicates EMPC. The C needs value from second column analysis. The B indicates possible blank contamination.

⁽²⁾ RRTs and ion ratios are specified in Tables 2 and 9, Method 1613.

CLIENT ID.

FORM 2: PCDD/PCDF LABELED COMPOUND AND

CLEANUP STANDARD RECOVERIES

PSP-SB-001DUP

Lab Name: Columbia Analytical Services

Contract:

SDG No:

Lab Code: CAS Method:1613 Case No:

Client No:

Lab ID: E0500374-002.01DUP

Client Name: GEOMATRIX

Sample Wt/Vol: 20.116

q or mL: q

Matrix (Solid/Aqueous/Waste/Ash): Tissue Initial Calibration Date: 10/25/04

Sample Receipt Date: 05/12/05

Instrument ID: AutoSpec-Ultima

Ext. Date: 05/13/05

GC Column ID: DB-5

Analysis Date: 18-MAY-05 Time: 14:33:49

Sample Data Filename: U22061#1

Ext.Vol(ul):20.0

Inj. Vol(ul):1.0

Blank Data Filename: U22059#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22058#1

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solid/Lipids: 0.089

					ION	
	SPIKE	CONC.	R(%)	QC	ABUND.	RRT
	CONC.	FOUND	(1)	Limite(1)	RATIO (2) (2)
LABELED COMPOUNDS						
13C-2,3,7,8-TCDD	2000	1721.99	86.10	25-164	0.79	1.011
13C-1,2,3,7,8-PeCDD	2000	1939.84	96.99	25-181	1.56	1.212
13C-1,2,3,4,7,8-HxCDD	2000	1532.54	76.63	32-141	1.27	0.989
13C-1,2,3,6,7,8-HxCDD	2000	1523.02	76.15	28-130	1.28	0.992
13C-1,2,3,4,6,7,8-HpCDD	2000	1404.58	70.23	23-140	1.05	1.070
13C-OCDD	4000	2276.44	56.91	17-157	0.91	1.144
13C-2,3,7,8-TCDF	2000	1741.26	87.06	24-169	0.77	0.970
13C-1,2,3,7,8-PeCDF	2000	2007.89	100.39	24-185	1.56	1.166
13C-2,3,4,7,8-PeCDF	2000	1657.67	82.88	21-178	1.57	1.197
13C-1,2,3,4,7,8-HxCDF	2000	1447.20	72.36	26-152	0.53	0.969
13C-1,2,3,6,7,8-HxCDF	2000	1333.79	66.69	26-123	0.53	0.972
13C-1,2,3,7,8,9-HxCDF	2000	1837.58	91.88	29-147	0.52	1.006
13C-2,3,4,6,7,8-HxCDF	2000	1482.74	74.14	28-136	0.52	0.986
13C-1,2,3,4,6,7,8-HpCDF	2000	1326.32	66.32	28-143	0.45	1.047
13C-1,2,3,4,7,8,9-HpCDF	2000	1532.03	76.60	26-138	0.45	1.080
						1

CLEANUP STANDARD

37Cl-2,3,7,8-TCDD

800 766.88 95.86

Result withdraw, See reextraction

(1) Contract-required limits for percent recovery (R) are specified in Table 7, Method 1613.

(2) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. NOTE: There is no ion abundance ratio for 37C14-2378-TCDD (cleanup standard).

CLIENT ID.

Form 3

PCDD/PCDF TOXICITY EQUIVALENCE SUMMARY

PSP-SB-001DUP Use for Sample and Blank Results

Lab Name: Columbia Analytical Services SDG No: Contract:

Lab ID: E0500374-002.07 Client No: Lab Code: CAS Method:1613 Case No:

Sample Wt/Vol: 20.116 g or mL: g Client Name: GEOMATRIX

Matrix (Solid/Aqueous/Waste/Ash): Tissue Initial Calibration Date: 10/25/04

Instrument ID: AutoSepc-Ultima Sample Receipt Date: 05/12/05

GC Column ID: DB-5 Ext. Date: 05/13/05

Sample Data Filename: U22061#1 Inj. Vol(ul):1 Ext. Vol(ul):20.0

Blank Data Filename: U22059#1 Analysis Date: 18-MAY-05 Time: 14:33:49

Cal. Ver. Data Filename: U22058#1 Dilution Factor: 1

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solids/Lipids: 0.089

	CONCENTRATION	TEF(1)	TEF-ADJUSTED CONCENTRATION
2,3,7,8-TCDD	*	X 1.0	* 6.72e-02 6.11e-03 8.63e-03
1,2,3,7,8-PeCDD	0.067	X 1.0	
1,2,3,4,7,8-HxCDD	0.061	X 0.1	
1,2,3,6,7,8-HxCDD	0.086	X 0.1	
1,2,3,7,8,9-HxCDD	0.089	X 0.1	8.90e-03
1,2,3,4,6,7,8-HpCDD	0.166	X 0.01	1.66e-03
OCDD	0.835	X 0.0001	8.30e-05
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	* 0.055 0.069	X 0.1 X 0.05 X 0.5	* 2.76e-03 3.43e-02 1.01e-02
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF	0.101 0.088 0.087 0.092	X 0.1 X 0.1 X 0.1 X 0.1	8.80e-03 8.66e-03 9.22e-03
1,2,3,4,6,7,8-HpCDF	0.101	X 0.01	1.01e-03
1,2,3,4,7,8,9-HpCDF	0.077	X 0.01	7.69e-04
OCDF	0.225	X 0.0001	2.20e-05

(1) World Health Organization (WHO) adopted TEF's, taken from: Van der Berg, reference tal: Toxic Equivalency Factor (TEFs) for PCBs, PCDDs, PCDFs for Hummans and Wildlife (Environ Health perspect 100 777

6/90

CLIENT ID.

PCDD/PCDF ANALYSIS DATA SHEET Use for Sample and Blank Results

PSP-SB-002

Lab Name: Columbia Analytical Services Contract:

SDG No:

Lab Code: CAS Method:1613 Case No:

Client No:

Lab ID: E0500374-003.01

Client Name: GEOMATRIX

Sample Wt/Vol: 20.272 g or mL: g

Matrix (Tissue): Tissue

Initial Calibration Date: 10/25/04

Sample Receipt Date: 05/12/05

Instrument ID: AutoSpec-Ultima

Ext. Date: 05/13/05

GC Column: DB-5

Ext. Vol(ul):20.0

Inj. Vol(ul):1.0

Sample Data Filename: U22062#1

Analysis Date: 18-MAY-05 Time: 15:19:40 Blank Data Filename: U22059#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22058#1

Concentration Units (pg/L or ng/Kg wet weight): ng/Kg % Solids/Lipids: 1.565

	CONCENTRATION	DETECTION	Qual.	ION ABUND.	RRT	MEAN
ANALYTE	FOUND	LIMIT	(1)	RATIO (2)	(2)	RRF
2,3,7,8-TCDD	*	0.023	U	*	*	0.98
1,2,3,7,8-PeCDD	*	0.023	U	*	*	0.99
1,2,3,4,7,8-HxCDD	*	0.019	U	*	*	1.15
1,2,3,6,7,8-HxCDD	*	0.024	U	*	*	0.98
1,2,3,7,8,9-HxCDD	*	0.021	U	*	*	1.05
1,2,3,4,6,7,8-HpCD	D 0.172	0.022	BJ	1.02	1.000	1.01
OCDD	1.300	0.036	BJ	0.79	1.000	1.04
2,3,7,8-TCDF	*	0.024	U	*	*	1.03
1,2,3,7,8-PeCDF	*	0.014	U	*	*	1.02
2,3,4,7,8-PeCDF	*	0.017	U	*	*	1.09
1,2,3,4,7,8-HxCDF	0.029	0.017	JK	0.93	1.000	1.15
1,2,3,6,7,8-HxCDF	*	0.016	Ū	*	*	1.23
1,2,3,7,8,9-HxCDF	*	0.018	U	*	*	1.32
2,3,4,6,7,8-HxCDF	*	0.017	U	*	*	1.18
1,2,3,4,6,7,8-HpCD	F 0.030	0.018	J	1.04	1.000	1.52
1,2,3,4,7,8,9-HpCD	F *	0.023	U	*	*	1.48
OCDF	0.096	0.042	ВJ	0.84	1.004	1.24
, m	-					
Total Tetra-Dioxin		0.023	U			
Total Penta-Dioxin	-	0.023	U			
Total Hexa-Dioxins		0.019	U			
Total Hepta-Dioxin		0.022				
Total Tetra-Furans	*	0.024	U			
			_			
			Ü			
Total Hepta-Furans		0.018				
Total Penta-Furans Total Hexa-Furans	* 0.089	0.017 0.017 0.018	U U	TMDG	mh- o -	

⁽¹⁾ Qualifier U indicates not detected; The K indicates EMPC. The C needs value from second column analysis. The B indicates possible blank contamination.

⁽²⁾ RRTs and ion ratios are specified in Tables 2 and 9, Method 1613.

FORM 2: PCDD/PCDF LABELED COMPOUND AND

CLEANUP STANDARD RECOVERIES

CLIENT ID.

PSP-SB-002

Lab Name: Columbia Analytical Services Contract:

SDG No:

Lab Code: CAS Method: 1613 Case No:

Client No:

Lab ID: E0500374-003.01

Client Name: GEOMATRIX

Sample Wt/Vol: 20.272 g or mL: g

Matrix (Tissue): Tissue

Initial Calibration Date: 10/25/04

Sample Receipt Date: 05/12/05

Instrument ID: AutoSpec-Ultima

Ext. Date: 05/13/05

GC Column ID: DB-5

Analysis Date: 18-MAY-05 Time: 15:19:40

Sample Data Filename: U22062#1

Ext. Vol(uL): 20.0 Inj. Vol(uL): 1.0

Blank Data Filename: U22059#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22058#1

Concentration Units (pg/L or ng/Kg wet weight): ng/Kg % Solid/Lipids: 1.565

					ION	
	SPIKE	CONC.	R(%)	QC	ABUND.	RRT
	CONC.	FOUND	(1)	Limite(1)	RATIO (2) (2)
LABELED COMPOUNDS						
13C-2,3,7,8-TCDD	2000	1271.87	63.59	25-164	0.79	1.011
13C-1,2,3,7,8-PeCDD	2000	1432.45	71.62	25-181	1.56	1.212
13C-1,2,3,4,7,8-HxCDD	2000	1213.93	60.70	32-141	1.25	0.990
13C-1,2,3,6,7,8-HxCDD	2000	1173.96	58.70	28-130	1.26	0.992
13C-1,2,3,4,6,7,8-HpCDD	2000	1077.01	53.85	23-140	1.07	1.070
13C-OCDD	4000	1789.77	44.74	17-157	0.90	1.144
13C-2,3,7,8-TCDF	2000	1285.97	64.30	24-169	0.78	0.971
13C-1,2,3,7,8-PeCDF	2000	1491.78	74.59	24-185	1.57	1.166
13C-2,3,4,7,8-PeCDF	2000	1232.24	61.61	21-178	1.57	1.198
13C-1,2,3,4,7,8-HxCDF	2000	1086.78	54.34	26-152	0.52	0.969
13C-1,2,3,6,7,8-HxCDF	2000	1097.23	54.86	26-123	0.52	0.972
13C-1,2,3,7,8,9-HxCDF	2000	1372.52	68.63	29-147	0.53	1.006
13C-2,3,4,6,7,8-HxCDF	2000	1156.14	57.81	28-136	0.53	0.986
13C-1,2,3,4,6,7,8-HpCDF	2000	1013.08	50.65	28-143	0.45	1.047
13C-1,2,3,4,7,8,9-HpCDF	2000	1151.78	57.59	26-138	0.44	1.080
CLEANUP STANDARD						
37Cl-2,3,7,8-TCDD	800	750.59	93.82	35-197		1.012

⁽¹⁾ Contract-required limits for percent recovery (R) are specified in Table 7, Method 1613.

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. NOTE: There is no ion abundance ratio for 37C14-2378-TCDD (cleanup standard).

Form 3

CLIENT ID.

PCDD/PCDF TOXICITY EQUIVALENCE SUMMARY Use for Sample and Blank Results

PSP-SB-002

Lab Name: Columbia Analytical Services

Contract:

SDG No:

Lab Code: CAS Method: 1613 Case No:

Client No:

Lab ID: E0500374-003.01

Client Name: GEOMATRIX

Sample Wt/Vol: 20.272 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): Tissue Initial Calibration Date: 10/25/04

Sample Receipt Date: 05/12/05

Instrument ID: AutoSpec-Ultima

Ext. Date: 05/13/05

GC Column ID: DB-5

Ext. Vol(ul):20.0

Inj. Vol(ul):1.0

Sample Data Filename: U22062#1

Analysis Date: 18-MAY-05 Time: 15:19:40

Blank Data Filename: U22059#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22058#1

Concentration Units (pg/L or ng/Kg wet weight): ng/Kg % Solids/Lipids: 1.565

	CONCENTRATION	TE	F(1)		DJUSTED TRATION
2,3,7,8-TCDD	*	х	1.0	SV.	*
1,2,3,7,8-PeCDD	*	X	1.0		*
1,2,3,4,7,8-HxCDD	*	X	0.1		*
1,2,3,6,7,8-HxCDD	*	X	0.1		*
1,2,3,7,8,9-HxCDD	*	X	0.1		*
1,2,3,4,6,7,8-HpCDD	0.172	X	0.01	1.	72e-03
OCDD	1.300	X	0.0001	1.	30e-04
2,3,7,8-TCDF	*	X	0.1		*
1,2,3,7,8-PeCDF	*	X	0.05		*
2,3,4,7,8-PeCDF	*	X	0.5		*
1,2,3,4,7,8-HxCDF	0.029	X	0.1	2.	89e-03
1,2,3,6,7,8-HxCDF	*	X	0.1		*
1,2,3,7,8,9-HxCDF	*	X	0.1		*
2,3,4,6,7,8-HxCDF	*	X	0.1		*
1,2,3,4,6,7,8-HpCDF	0.030	X	0.01	2.	98e-04
1,2,3,4,7,8,9-HpCDF	*	X	0.01		*
OCDF	0.096	X	0.0001	1.	00e-05

Total: 5.05e-03

⁽¹⁾ World Health Organization (WHO) adopted TEF's, taken from: Van der Berg, et al: Toxic Equivalency Factor (TEFs) for PCBs, PCDDs, PCDFs for Hummans and Wildlife (Environ Health perspect 106:775-792 (1998).

PCDD/PCDF ANALYSIS DATA SHEET Use for Sample and Blank Results

CLIENT ID.

PSP-SB-003

Lab Name: Columbia Analytical Services Contract:

SDG No:

Lab Code: CAS Method:1613 Case No: Client No: Lab ID: E0500374-004.01

Client Name: GEOMATRIX

Sample Wt/Vol: 20.657 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): Tissue Initial Calibration Date: 10/25/04

Sample Receipt Date: 05/12/05

Instrument ID: AutoSpec-Ultima

Ext. Date: 05/13/05

GC Column:DB-5

Ext. Vol(ul):20.0 Inj. Vol(ul):1.0

Sample Data Filename: U22063#1

Analysis Date: 18-MAY-05 Time: 16:05:31 Blank Data Filename: U22059#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22058#1

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solids/Lipids: 0.803

	CONCENTRATION	DETECTION	Qual.	ION ABUND	. RRT	MEAN
ANALYTE	FOUND	LIMIT	(1)	RATIO (2)	(2)	RRF
2,3,7,8-TCDD	*	0.020	U	*	*	0.98
1,2,3,7,8-PeCDD	*	0.021	U	*	*	0.99
1,2,3,4,7,8-HxCDD	*	0.019	U	*	*	1.15
1,2,3,6,7,8-HxCDD	*	0.022	U	*	*	0.98
1,2,3,7,8,9-HxCDD	*	0.020	U	*	*	1.05
1,2,3,4,6,7,8-HpCI	DD 0.111	0.022	BJ	1.18	1.000	1.01
OCDD	1.063	0.045	BJ	0.90	1.000	1.04
2,3,7,8-TCDF	*	0.021	ט	*	*	1.03
1,2,3,7,8-PeCDF	*	0.013	U	*	*	1.02
2,3,4,7,8-PeCDF	*	0.013	U	*	· *	1.09
1,2,3,4,7,8-HxCDF	0.035	0.012	JK	1.44	1.000	1.15
1,2,3,6,7,8-HxCDF	*	0.011	J	*	*	1.23
1,2,3,7,8,9-HxCDF	*	0.011	J	*	*	1.32
2,3,4,6,7,8-HxCDF	*	0.011	J	*	*	1.18
1,2,3,4,6,7,8-HpCD	F *	0.013	J	*	*	1.52
1,2,3,4,7,8,9-HpCD	* *	0.016	U	*	*	1.48
OCDF	0.114	0.034	J	1.00	1.003	1.24
Total Tetra-Dioxin	s *	0.020				
Total Penta-Dioxin		0.021				
Total Hexa-Dioxins		0.019				
Total Hepta-Dioxin		0.022				
Total Tetra-Furans		0.021				
Total Penta-Furans		0.013				
Total Hexa-Furans	*	0.012				
Total Hepta-Furans	*	0.013				
/1) Ourlifier II ind						

⁽¹⁾ Qualifier U indicates not detected; The K indicates EMPC. The C needs value from second column analysis. The B indicates possible blank contamination.

⁽²⁾ RRTs and ion ratios are specified in Tables 2 and 9, Method 1613.

FORM 2: PCDD/PCDF LABELED COMPOUND AND

CLEANUP STANDARD RECOVERIES

PSP-SB-003

CLIENT ID.

Lab Name: Columbia Analytical Services Contract:

SDG No:

Lab Code: CAS Method:1613 Case No: Client No:

Lab ID: E0500374-004.01

Client Name: GEOMATRIX

Sample Wt/Vol: 20.657 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): Tissue Initial Calibration Date: 10/25/04

Sample Receipt Date: 05/12/05

Instrument ID: AutoSpec-Ultima

Ext. Date: 05/13/05

GC Column ID: DB-5

Analysis Date: 18-MAY-05 Time: 16:05:31 Sample Data Filename: U22063#1

Ext.Vol(ul):20.0

Inj.Vol(ul):1.0 Blank Data Filename: U22059#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22058#1

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solid/Lipids: 0.803

		SPIKE	CONC.	R(%)	QC	ION ABUND.	RRT
		CONC.		(1)	Limite(1)	RATIO (2	
	LABELED COMPOUNDS		1 0 0 1 1 2	(-)	TIMILE (I)	KAIIO (2	., (2)
	13C-2,3,7,8-TCDD	2000	1816.88	90.84	25-164	0.79	1.011
	13C-1,2,3,7,8-PeCDD	2000	2007.89	100.39	25-181	1.57	1.212
	13C-1,2,3,4,7,8-HxCDD	2000	1606.91	80.35	32-141	1.26	0.989
	13C-1,2,3,6,7,8-HxCDD	2000	1667.88	83.39	28-130	1.28	0.992
	13C-1,2,3,4,6,7,8-HpCDD	2000	1485.45	74.27	23-140	1.04	1.070
	13C-OCDD	4000	2416.99	60.42	17-157	0.91	1.144
				00.11	1, 10,	0.51	T. T. T. T.
	13C-2,3,7,8-TCDF	2000	1884.58	94.23	24-169	0.78	0.971
	13C-1,2,3,7,8-PeCDF	2000	2055.50	102.78	24-185	1.58	1.166
	13C-2,3,4,7,8-PeCDF	2000	1730.24	86.51	21-178	1.57	1.197
	13C-1,2,3,4,7,8-HxCDF	2000	1516.47	75.82	26-152	0.55	0.969
	13C-1,2,3,6,7,8-HxCDF	2000	1501.63	75.08	26-123	0.50	0.972
	13C-1,2,3,7,8,9-HxCDF	2000	1957.84	97.89	29-147	0.52	1.006
	13C-2,3,4,6,7,8-HxCDF	2000	1607.12	80.36	28-136	0.52	0.986
	13C-1,2,3,4,6,7,8-HpCDF	2000	1408.86	70.44	28-143	0.45	1.047
	13C-1,2,3,4,7,8,9-HpCDF	2000	1610.33	80.52	26-138	0.44	1.047
	, , , , , , , , , , , , , , , , , , ,		1010.00	00.52	20-130	0.44	1.000
C	LEANUP STANDARD						
	37Cl-2,3,7,8-TCDD	800	796.37	99.55	35-197		1.012

⁽¹⁾ Contract-required limits for percent recovery (R) are specified in Table 7, Method 1613.

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. NOTE: There is no ion abundance ratio for 37C14-2378-TCDD (cleanup standard).

Form 3

PCDD/PCDF TOXICITY EQUIVALENCE SUMMARY Use for Sample and Blank Results

PSP-SB-003

CLIENT ID.

Lab Name: Columbia Analytical Services

Contract:

SDG No:

Lab Code: CAS Method: 1613 Case No:

Client No:

Lab ID: E0500374-004.01

Client Name: GEOMATRIX

Sample Wt/Vol: 20.657 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): Tissue Initial Calibration Date: 10/25/04

Sample Receipt Date: 05/12/05

Instrument ID: AutoSepc-Ultima

Ext. Date: 05/13/05

GC Column ID: DB-5

Ext. Vol(ul):20.0

Inj. Vol(ul):1.0

Sample Data Filename: U22063#1

Analysis Date: 18-MAY-05 Time: 16:05:31

Blank Data Filename: U22059#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22058#1

net 196/2406

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solids/Lipids: 0.803

	CONCENTRATION	TEF(1)	TEF-ADJUSTED CONCENTRATION
2,3,7,8-TCDD	*	X 1.0	*
1,2,3,7,8-PeCDD	*	X 1.0	*
1,2,3,4,7,8-HxCDD	*	X 0.1	*
1,2,3,6,7,8-HxCDD	*	X 0.1	*
1,2,3,7,8,9-HxCDD	*	X 0.1	*
1,2,3,4,6,7,8-HpCDD	0.111	X 0.01	1.11e-03
OCDD	1.063	X 0.0001	1.06e-04
2,3,7,8-TCDF	*	X 0.1	*
1,2,3,7,8-PeCDF	*	X 0.05	*
2,3,4,7,8-PeCDF	*	X 0.5	*
1,2,3,4,7,8-HxCDF	0.035	X 0.1	3.52e-03
1,2,3,6,7,8-HxCDF	*	X 0.1	*
1,2,3,7,8,9-HxCDF	*	X 0.1	*
2,3,4,6,7,8-HxCDF	*	X 0.1	*
1,2,3,4,6,7,8-HpCDF	*	X 0.01	*
1,2,3,4,7,8,9-HpCDF	*	X 0.01	*
OCDF	0.114	X 0.0001	1.10e-05

Total: 4.74e-03

⁽¹⁾ World Health Organization (WHO) adopted TEF's, taken from: Van der Berg, et al: Toxic Equivalency Factor (TEFs) for PCBs, PCDDs, PCDFs for Hummans and Wildlife (Environ Health perspect 106:775-792 (1998).

PCDD/PCDF ANALYSIS DATA SHEET Use for Sample and Blank Results PSP-SB-004

CLIENT ID.

Lab Name: Columbia Analytical Services Contract:

SDG No:

Lab Code: CAS Method:1613 Case No: Client No: Lab ID: E0500374-005.01

Client Name: GEOMATRIX

Sample Wt/Vol: 20.190 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): Tissue Initial Calibration Date: 10/25/04

Sample Receipt Date: 05/12/05

Instrument ID: AutoSpec-Ultima

Ext. Date: 05/13/05

GC Column:DB-5

Ext. Vol(ul):20.0 Inj. Vol(ul):1.0 Sample Data Filename: U22064#1

Analysis Date: 18-MAY-05 Time: 16:51:24 Blank Data Filename: U22059#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22058#1

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solids/Lipids: 0.160

CONCENTED A TITOM DETERMINATION OF A

	CONCENTRATION	DETECTION	Qual.	ION ABUND.	RRT	MEAN
ANALYTE	FOUND	LIMIT	(1)	RATIO (2)	(2)	RRF
2 2 7 0 mapp				E:		¥:
2,3,7,8-TCDD	*	0.020	U	*	*	0.98
1,2,3,7,8-PeCDD	*	0.017	Ü	*	*	0.99
1,2,3,4,7,8-HxCDD	*	0.014	U	*	*	1.15
1,2,3,6,7,8-HxCDD	*	0.017	U	*	*	0.98
1,2,3,7,8,9-HxCDD	*	0.015	U	*	*	1.05
1,2,3,4,6,7,8-HpCI	OD 0.049	0.018	BJK	0.86	1.000	1.01
OCDD	0.277	0.038	BJ	0.78	1.000	1.04
2,3,7,8-TCDF	*	0.017	U	*	*	1.03
1,2,3,7,8-PeCDF	*	0.015	U	*	*	1.02
2,3,4,7,8-PeCDF	*	0.014	U	*	*	1.09
1,2,3,4,7,8-HxCDF	0.036	0.013	J	1.28	1.000	1.15
1,2,3,6,7,8-HxCDF	*	0.013	U	*	*	1.23
1,2,3,7,8,9-HxCDF	*	0.013	U	*	*	1.32
2,3,4,6,7,8-HxCDF	*	0.012	Ū	*	*	1.18
1,2,3,4,6,7,8-HpCD)F *	0.014	U	*	*	1.52
1,2,3,4,7,8,9-HpCD)F *	0.019	U	*	*	1.48
OCDF	*	0.034	J	*	*	1.24
Total Tetra-Dioxin	· -	0.020	U			
Total Penta-Dioxin	s *	0.017	U			
Total Hexa-Dioxins	*	0.014	ប			
Total Hepta-Dioxin	s *	0.018	U			
Total Tetra-Furans	*	0.017	U			
Total Penta-Furans	*	0.014	U			
Total Hexa-Furans	0.036	0.013				
Total Hepta-Furans	*	0.014	Ū			
(1) Qualifier II ind	idated not date				-1 -	6.

⁽¹⁾ Qualifier U indicates not detected; The K indicates EMPC. The C needs value from second column analysis. The B indicates possible blank contamination.

⁽²⁾ RRTs and ion ratios are specified in Tables 2 and 9, Method 1613.

FORM 2: PCDD/PCDF LABELED COMPOUND AND CLEANUP STANDARD RECOVERIES

CLIENT ID.

PSP-SB-004

Lab Name: Columbia Analytical Services

Contract:

SDG No:

Lab Code: CAS Method:1613 Case No: Client No:

Lab ID: E0500374-005.01

Client Name: GEOMATRIX

Sample Wt/Vol: 20.190 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): Tissue Initial Calibration Date: 10/25/04

Sample Receipt Date: 05/12/05

Instrument ID: AutoSpec-Ultima

Ext. Date: 05/13/05

GC Column ID: DB-5

Analysis Date: 18-MAY-05 Time: 16:51:24 Sample Data Filename: U22064#1

Ext.Vol(ul):20.0

Inj.Vol(ul):1.0

Blank Data Filename: U22059#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22058#1

net 20 6/2016

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solid/Lipids: 0.160

LABELED COMPOUNDS	SPIKE CONC.		R(%) (1)	QC Limite(1)	ION ABUND. RATIO (2	RRT 2) (2)
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD	2000 2000 2000 2000 2000 4000	1539.99 1728.46 1410.05 1511.18 1292.48	77.00 86.42 70.50 75.56 64.62	25-164 25-181 32-141 28-130 23-140	0.77 1.55 1.26 1.26 1.06	1.011 1.212 0.990 0.992 1.070
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF	2000 2000 2000 2000 2000 2000 2000 200	2161.72 1541.67 1766.33 1495.81 1344.31 1305.79 1663.59 1373.92 1268.44	54.04 77.08 88.32 74.79 67.22 65.29 83.18 68.70 63.42	17-157 24-169 24-185 21-178 26-152 26-123 29-147 28-136 28-143	0.89 0.78 1.57 1.58 0.52 0.52 0.52 0.53	1.144 0.970 1.166 1.197 0.969 0.972 1.006 0.986
13C-1,2,3,4,7,8,9-HpCDF CLEANUP STANDARD 37C1-2,3,7,8-TCDD	2000	1387.15	69.36 85.48	28-143 26-138 35-197	0.45 0.45	1.047 1.080

⁽¹⁾ Contract-required limits for percent recovery (R) are specified in Table 7, Method 1613.

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. NOTE: There is no ion abundance ratio for 37C14-2378-TCDD (cleanup standard).

Form 3

PCDD/PCDF TOXICITY EQUIVALENCE SUMMARY

Use for Sample and Blank Results

CLIENT ID.

PSP-SB-004

Lab Name: Columbia Analytical Services

Contract:

SDG No:

Lab Code: CAS Method:1613 Case No:

Client No:

Lab ID: E0500374-005.01

Client Name: GEOMATRIX

Sample Wt/Vol: 20.190 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): Tissue Initial Calibration Date: 10/25/04

Sample Receipt Date: 05/12/05

Instrument ID: AutoSepc-Ultima

Ext. Date: 05/13/05

GC Column ID: DB-5

Ext. Vol(ul):20.0

Inj. Vol(ul):1.0 Sample Data Filename: U22064#1

Analysis Date: 18-MAY-05 Time: 16:51:24 Blank Data Filename: U22059#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22058#1

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solids/Lipids: 0.160

	CONCENTRATION	TE	F(1)	TEF-ADJUSTED
				CONCENTRATION
2,3,7,8-TCDD	*	X	1.0	*
1,2,3,7,8-PeCDD	*	X	1.0	*
1,2,3,4,7,8-HxCDD	*	X	0.1	*
1,2,3,6,7,8-HxCDD	*	X	0.1	*
1,2,3,7,8,9-HxCDD	*	X	0.1	*
1,2,3,4,6,7,8-HpCDD	0.049	X	0.01	4.86e-04
OCDD	0.277	X	0.0001	2.80e-05
2,3,7,8-TCDF	*	X	0.1	*
1,2,3,7,8-PeCDF	*	X	0.05	*
2,3,4,7,8-PeCDF	*	X	0.5	*
1,2,3,4,7,8-HxCDF	0.036	X	0.1	3.60e-03
1,2,3,6,7,8-HxCDF	*	Х	0.1	*
1,2,3,7,8,9-HxCDF	*	X	0.1	*
2,3,4,6,7,8-HxCDF	*	X	0.1	*
1,2,3,4,6,7,8-HpCDF	*	X	0.01	*
1,2,3,4,7,8,9-HpCDF	*	X	0.01	*
OCDF	*	X.	0.0001	*

Total: 4.12e-03

⁽¹⁾ World Health Organization (WHO) adopted TEF's, taken from: Van der Berg, et al: Toxic Equivalency Factor (TEFs) for PCBs, PCDDs, PCDFs for Hummans and Wildlife (Environ Health perspect 106:775-792 (1998).

PCDD/PCDF ANALYSIS DATA SHEET Use for Sample and Blank Results

CLIENT ID.

PSP-SB-005

Lab Name: Columbia Analytical Services Contract:

SDG No:

Lab Code: CAS Method:1613 Case No: Client No: Lab ID: E0500374-006.01

Client Name: GEOMATRIX

Sample Wt/Vol: 20.022 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): Tissue Initial Calibration Date: 10/25/04

Sample Receipt Date: 05/12/05

Instrument ID: AutoSpec-Ultima

Ext. Date: 05/13/05

GC Column: DB-5

Ext. Vol(ul):20.0 Inj. Vol(ul):1.0 Sample Data Filename: U22065#1

Analysis Date: 18-MAY-05 Time: 17:37:14 Blank Data Filename: U22059#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22058#1

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solids/Lipids: 0.206

	CONCENTRATION	DETECTION	Qual.	ION ABUND.	RRT	MEAN
ANALYTE	FOUND	LIMIT	(1)	RATIO (2)	(2)	RRF
2,3,7,8-TCDD	*	0.015	U	*	*	0.98
1,2,3,7,8-PeCDD	*	0.020	U	*	*	0.99
1,2,3,4,7,8-HxCDD	*	0.018	U	*	*	1.15
1,2,3,6,7,8-HxCDD	*	0.021	U	*	*	0.98
1,2,3,7,8,9-HxCDD	*	0.019	U	*	*	1.05
1,2,3,4,6,7,8-HpCD	D 0.058	0.016	BJK	1.48	1.001	1.01
OCDD	0.467	0.034	BJ	0.82	1.000	1.04
2,3,7,8-TCDF	*	0.016	U	*	*	1.03
1,2,3,7,8-PeCDF	*	0.011	U	*	*	1.02
2,3,4,7,8-PeCDF	*	0.011	U	*	*	1.09
1,2,3,4,7,8-HxCDF	0.034	0.010	J	1.29	1.000	1.15
1,2,3,6,7,8-HxCDF	*	0.010	U	*	*	1.23
1,2,3,7,8,9-HxCDF	*	0.010	U	*	*	132
2,3,4,6,7,8-HxCDF	*	0.010	U	*	*	1.18
1,2,3,4,6,7,8-HpCDI	₹ *	0.014	U	*	*	1.52
1,2,3,4,7,8,9-HpCDI	? *	0.019	U	*	*	1.48
OCDF	*	0.037	U	*	*	1.24
Total Tetra-Dioxins	*	0.015	U			
Total Penta-Dioxins	*	0.020	Ţ			
Total Hexa-Dioxins	*	0.018	U			
Total Hepta-Dioxins	*	0.016	U			
Total Tetra-Furans	*	0.016	U			
Total Penta-Furans	*	0.011	U	1		
Total Hexa-Furans	0.034	0.010		*		
Total Hepta-Furans	*	0.014	U			
(1) Qualifier II indi	anton met det-	1 mi				

⁽¹⁾ Qualifier U indicates not detected; The K indicates EMPC. The C needs value from second column analysis. The B indicates possible blank contamination.

⁽²⁾ RRTs and ion ratios are specified in Tables 2 and 9, Method 1613.

FORM 2: PCDD/PCDF LABELED COMPOUND AND CLEANUP STANDARD RECOVERIES

CLIENT ID.

PSP-SB-005

Lab Name: Columbia Analytical Services Contract:

SDG No:

Lab Code: CAS Method:1613 Case No: Client No:

Lab ID: E0500374-006.01

Client Name: GEOMATRIX

Sample Wt/Vol: 20.022

g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): Tissue Initial Calibration Date: 10/25/04

Sample Receipt Date: 05/12/05

Instrument ID: AutoSpec-Ultima

Ext. Date: 05/13/05

GC Column ID: DB-5

Analysis Date: 18-MAY-05 Time: 17:37:14 Sample Data Filename: U22065#1

Ext.Vol(ul):20.0

Inj.Vol(ul):1.0 Blank Data Filename: U22059#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22058#1

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solid/Lipids: 0.206

LABELED COMPOUNDS	SPIKE CONC.		R(%) (1)	QC Limite(1)	ION ABUND. RATIO (2	RRT 2) (2)
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD	2000 2000 2000 2000 2000 4000	1668.45 1888.64 1612.54 1591.45 1413.78 2303.49	83.42 94.43 80.63 79.57 70.69 57.59	25-164 25-181 32-141 28-130 23-140 17-157	0.77 1.56 1.24 1.25 1.05	1.012 1.213 0.990 0.992 1.070
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HyCDF	2000 2000 2000 2000 2000 2000 2000 200	1719.55 1946.33 1655.40 1436.27 1425.20 1820.27 1509.49 1374.40 1486.86	85.98 97.32 82.77 71.81 71.26 91.01 75.47 68.72 74.34	24-169 24-185 21-178 26-152 26-123 29-147 28-136 28-143 26-138	0.77 1.58 1.57 0.54 0.50 0.51 0.52 0.45	0.971 1.167 1.198 0.969 0.972 1.006 0.986 1.047 1.080
CLEANUP STANDARD 37C1-2,3,7,8-TCDD	800	765.22	95.65	35-197		1.012

⁽¹⁾ Contract-required limits for percent recovery (R) are specified in Table 7, Method 1613.

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. NOTE: There is no ion abundance ratio for 37C14-2378-TCDD (cleanup standard).

Form 3

CLIENT ID.

PCDD/PCDF TOXICITY EQUIVALENCE SUMMARY Use for Sample and Blank Results

PSP-SB-005

Lab Name: Columbia Analytical Services

Contract:

SDG No:

Lab Code: CAS Method: 1613 Case No:

Client No:

Lab ID: E0500374-006.01

Client Name: GEOMATRIX

Sample Wt/Vol: 20.022 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): Tissue Initial Calibration Date: 10/25/04

Sample Receipt Date: 05/12/05

Instrument ID: AutoSepc-Ultima

Ext. Date: 05/13/05

GC Column ID: DB-5

Ext. Vol(ul):20.0

Inj. Vol(ul):1.0 Sample Data Filename: U22065#1

Analysis Date: 18-MAY-05 Time: 17:37:14 Blank Data Filename: U22059#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22058#1

net no 6/20/06

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solids/Lipids: 0.206

	CONCENTRATION	TEF(1)	TEF-ADJUSTED CONCENTRATION
2,3,7,8-TCDD	*	X 1.0	*
1,2,3,7,8-PeCDD	*	X 1.0	*
1,2,3,4,7,8-HxCDD	*	X 0.1	*
1,2,3,6,7,8-HxCDD	*	X 0.1	*
1,2,3,7,8,9-HxCDD	*	X 0.1	*
1,2,3,4,6,7,8-HpCDD	0.058	X 0.01	5.80e-04
OCDD	0.467	X 0.0001	4.70e-05
2,3,7,8-TCDF	*	X 0.1	*
1,2,3,7,8-PeCDF	*	X 0.05	*
2,3,4,7,8-PeCDF	*	X 0.5	*
1,2,3,4,7,8-HxCDF	0.034	X 0.1	3.35e-03
1,2,3,6,7,8-HxCDF	*	X 0.1	*
1,2,3,7,8,9-HxCDF	*	X 0.1	*
2,3,4,6,7,8-HxCDF	*	X 0.1	*
1,2,3,4,6,7,8-HpCDF	*	X 0.01	*
1,2,3,4,7,8,9-HpCDF	*	X 0.01	*
OCDF	*	X 0.0001	*

Total: 3.98e-03

⁽¹⁾ World Health Organization (WHO) adopted TEF's, taken from: Van der Berg, et al: Toxic Equivalency Factor (TEFs) for PCBs, PCDDs, PCDFs for Hummans and Wildlife (Environ Health perspect 106:775-792 (1998).

An Employee - Owned Company

Accuracy & Precision Data

10655 Richmond Avenue, Suite 130-A, Houston, TX 77042 Phone (713)266-1599 Fax (713)266-0130 www.caslab.com

3DFA 1613 PCDD/PCDF SPIKED SAMPLE SUMMARY

CLIENT ID

Lab Name:

COLUMBIA ANALYTICAL SERVICES

LAB. ID:

LCS/LCSD EB21060

Lab Code: Matrix: CAS

LAB. 1D:

Solid (Solid, Aqueous, Ash, Waste)

CONCENTRATION UNITS: (pg/L or ng/Kg) ng/Kg

	SPIKE ADDED	LCS SAMPLE	LCSD SAMPLE		LCS%	I CCD*	RPD	00
7 3 7 3 T 3 7 F 3						LCSD%		QC
ANALYTE	(PG)	CONC.	CONC.		RECOV.	# RECOV. #	ક	LIMITS
2378-TCDD	200	20.751	21.893	П	103.76	109.47	5.36	50 - 150
12378-PeCDD	1000	93.942	96.357		93.94	96.36	2.54	50 - 150
123478-HxCDD	1000	87.815	90.564	1 1	87.82	90.56	3.08	50 - 150
123678-HxCDD	1000	104.326	108.056	1 1	104.33	108.06	3.51	50 - 150
123789-HxCDD	1000	97.446	102.293		97.45	102.29	4.85	50 - 150
1234678-HpCDD	1000	94.781	98.142		94.78	98.14	3.48	50 - 150
OCDD	2000	183.387	188.283	1 1	91.69	94.14	2.63	50 - 150
2378-TCDF	200	18.236	19.265		91.18	96.33	5.49	50 - 150
12378-PeCDF	1000	88.771	92.208		88.77	92.21	3.80	50 - 150
23478-PeCDF	1000	94.873	99.529		94.87	99.53	4.79	50 - 150
123478-HxCDF	1000	98.409	102.653	-	98.41	102.65	4.22	50 - 150
123678-HxCDF	1000	101.875	107.059		101.88	107.06	4.96	50 - 150
123789-HxCDF	1000	85.813	89.38	1	85.81	89.38	4.07	50 - 150
234678-HxCDF	1000	90.769	95.929		90.77	95.93	5.53	50 - 150
1234678-HpCDF	1000	91.431	94.468		91.43	94.47	3.27	50 - 150
1234789-HpCDF	1000	95.465	97.487		95.47	97.49	2.10	50 - 150
OCDF	2000	191.129	196.526		95.56	98.26	2.78	50 - 150

If an analyte is not detected in either analysis, enter 0 (zero) as the concentration.

[#] Column to be used to flag values outside QC limits.

^{*} Compound outside the QC advisory limits of 50 - 150

PCDD/PCDF ANALYSIS DATA SHEET Use for Sample and Blank Results

LCS

Lab Name: Columbia Analytical Services Contract:

SDG No:

Lab Code: CAS Method:1613 Case No: Client No: Lab ID: EB21060-LCS

CLIENT ID.

Client Name:

Sample Wt/Vol: 10.000 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): Solid Initial Calibration Date: 10/25/04

Sample Receipt Date:

Instrument ID: AutoSpec-Ultima

Ext. Date: 05/13/05

GC Column:DB-5

Ext. Vol(ul):20.0 Inj. Vol(ul):1.0 Sample Data Filename: U22052#1

Analysis Date: 16-MAY-05 Time: 15:58:04 Blank Data Filename: U22059#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22047#1

inch m 6/2406

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solids/Lipids:

	CONCENTRATION	DETECTION	Qual.	ION ABUND.	RRT	MEAN
ANALYTE	FOUND	LIMIT	(1)	RATIO (2)	(2)	RRF
2,3,7,8-TCDD	20.751	0.053		0.76	1.001	0.98
1,2,3,7,8-PeCDD	93.942	0.035		1.59	1.001	0.98
1,2,3,4,7,8-HxCDD		0.038		1.26	1.001	
1,2,3,6,7,8-HxCDD	104.326	0.049		1.26		1.15
1,2,3,7,8,9-HxCDD		0.049			1.000	0.98
1,2,3,4,6,7,8-HpCD				1.27	1.008	1.05
OCDD				1.06	1.000	1.01
	183.387	0.073		0.89	1.000	1.05
2,3,7,8-TCDF	18.236	0.038		0.74	1.001	1.03
1,2,3,7,8-PeCDF	88.771	0.025		1.54	1.000	1.01
2,3,4,7,8-PeCDF	94.873	0.027		1.54	1.001	1.08
1,2,3,4,7,8-HxCDF	98.409	0.022		1.25	1.000	1.28
1,2,3,6,7,8-HxCDF	101.875	0.023		1.24	1.000	1.23
1,2,3,7,8,9-HxCDF	85.813	0.024		1.25	1.000	1.32
2,3,4,6,7,8-HxCDF	90.769	0.022		1.22	1.000	1.18
1,2,3,4,6,7,8-HpCD	F 91.431	0.074		1.06	1.000	1.53
1,2,3,4,7,8,9-HpCD	F 95.465	0.101		1.06	1.000	1.48
OCDF	191.129	0.053		0.90	1.003	1.25
Total Tetra-Dioxins	3 20.751	0.053			3	
Total Penta-Dioxing		0.036				
Total Hexa-Dioxins	289.588	0.040				
Total Hepta-Dioxins		0.045				
Total Tetra-Furans	18.621	0.038				
Total Penta-Furans		0.027				
Total Hexa-Furans	376.866	0.027				
Total Hepta-Furans	186.897	0.074				
(1) Qualifier II indi			المراجعة المراجعة	THE TWO	The Car	

⁽¹⁾ Qualifier U indicates not detected; The K indicates EMPC. The C needs value from second column analysis. The B indicates possible blank contamination.

⁽²⁾ RRTs and ion ratios are specified in Tables 2 and 9, Method 1613.

CLIENT ID.

FORM 2: PCDD/PCDF LABELED COMPOUND AND CLEANUP STANDARD RECOVERIES

LCS

Lab Name: Columbia Analytical Services

Contract:

SDG No:

Lab Code: CAS Method:1613 Case No:

Client No:

Lab ID: EB21060-LCS

Client Name:

Sample Wt/Vol: 10.000 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): Solid

Initial Calibration Date: 10/25/04

Sample Receipt Date:

Instrument ID: AutoSpec-Ultima

Ext. Date: 05/13/05

GC Column ID: DB-5

Analysis Date: 16-MAY-05 Time: 15:58:04

Sample Data Filename: U22052#1

Ext. Vol(ul):20.0

Inj.Vol(ul):1.0

Blank Data Filename: U22059#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22047#1

Concentration Units (pg/L or ng/Kg ary weight): ng/Kg % Solid/Lipids:

	CDTVE	COVC	D (0)		ION	
	SPIKE	CONC.	R(%)	QC	ABUND.	RRT
LABELED COMPOUNDS	CONC.	FOUND	(1)	Limite(1)	RATIO (2	2) (2)
EABELED COMPOUNDS						
12C 2 2 7 6 mgpp						
13C-2,3,7,8-TCDD		1288.37	64.42	25-164	0.79	1.011
13C-1,2,3,7,8-PeCDD	2000	1430.93	71.55	25-181	1.57	1.213
13C-1,2,3,4,7,8-HxCDD		1222.25	61.11	32-141	1.26	0.990
13C-1,2,3,6,7,8-HxCDD		1149.57	57.48	28-130	1.27	0.992
13C-1,2,3,4,6,7,8-HpCDD	2000	1048.15	52.41	23-140	1.06	1.070
13C-OCDD	4000	2031.05	50.78	17-157	0.91	1.144
13C-2,3,7,8-TCDF	2000	1467.04	73.35	24-169	0.80	0.971
13C-1,2,3,7,8-PeCDF	2000	1488.19	74.41	24-185	1.59	1.167
13C-2,3,4,7,8-PeCDF	2000	1361.65	68.08	21-178	1.57	1.198
13C-1,2,3,4,7,8-HxCDF	2000	1140.77	57.04	26-152	0.54	0.969
13C-1,2,3,6,7,8-HxCDF	2000	1063.93	53.20	26-123	0.51	0.972
13C-1,2,3,7,8,9-HxCDF	2000 +	1413.38	70.67	29-147	0.52	1.006
13C-2,3,4,6,7,8-HxCDF		1225.34	61.27	28-136	0.52	0.986
13C-1,2,3,4,6,7,8-HpCDF		1060.20	53.01	28-143	0.32	
13C-1,2,3,4,7,8,9-HpCDF		1102.96	55.15	26-138		1.047
	2000 .	1102.50	55.15	40-138	0.45	1.080
CLEANUP STANDARD						
37Cl-2,3,7,8-TCDD	800	563.36	70.42	35-197		1.012

⁽¹⁾ Contract-required limits for percent recovery (R) are specified in Table 7, Method 1613.

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. NOTE: There is no ion abundance ratio for 37C14-2378-TCDD (cleanup standard).

PCDD/PCDF ANALYSIS DATA SHEET Use for Sample and Blank Results

LCSD

CLIENT ID.

Lab Name: Columbia Analytical Services

Contract:

SDG No:

Lab Code: CAS Method:1613 Case No: Client No: Lab ID: EB21060-LCSD

Client Name:

Sample Wt/Vol: 10.000 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): Solid Initial Calibration Date: 10/25/04

Sample Receipt Date:

Instrument ID: AutoSpec-Ultima

Ext. Date: 05/13/05

GC Column:DB-5

Ext. Vol(ul):20.0 Inj. Vol(ul):1.0 Sample Data Filename: U22053#1

Analysis Date: 16-MAY-05 Time: 16:43:56 Blank Data Filename: U22059#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22047#1

m6/2400 Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solids/Lipids:

	CONCENTRATION	DETECTION	Qual.			MEAN
ANALYTE	FOUND	LIMIT	(1)	RATIO	(2) (2)	RRF
	54 000					1-
2,3,7,8-TCDD	21.893	0.026		0.80	1.001	0.98
1,2,3,7,8-PeCDD	96.357	0.018		1.58	1.001	0.98
1,2,3,4,7,8-HxCDD	90.564	0.017		1.25	1.000	1,15
1,2,3,6,7,8-HxCDD	108.056	0.021		1.27	1.000	0.98
1,2,3,7,8,9-HxCDD	102.293	0.019		1.26	1.008	1.05
1,2,3,4,6,7,8-HpCI	OD 98.142	0.035		1.06	1.000	1.01
OCDD	188.283	0.029		0.90	1.000	1.05
2,3,7,8-TCDF	19.265	0.017		0.77	1.001	1.03
1,2,3,7,8-PeCDF	92.208	0.012		1.57	1.001	1.01
2,3,4,7,8-PeCDF	99.529	0.013		1.58	1.001	1.08
1,2,3,4,7,8-HxCDF	102.653	0.014		1.23	1.000	1.28
1,2,3,6,7,8-HxCDF	107.059	0.015		1.24	1.000	1.23
1,2,3,7,8,9-HxCDF	89.380	0.016		1.24	1.000	1.32
2,3,4,6,7,8-HxCDF	95.929	0.015	*	1.26	1.001	1.18
1,2,3,4,6,7,8-HpCI	F 94.468	0.080		1.05	1.000	1.53
1,2,3,4,7,8,9-HpCD	F 97.487	0.109		1.05	1.000	1.48
OCDF	196.526	0.033		0.91	1.003	1.25
Total Tetra-Dioxin	s 21.893	0.026				
Total Penta-Dioxin	s 96.357	0.018			A	
Total Hexa-Dioxins	300.913	0.017				
Total Hepta-Dioxin	s 98.142	0.035				
Total Tetra-Furans	19.265	0.017				
Total Penta-Furans	192.032	0.013				
Total Hexa-Furans	395.021	0.014				
Total Hepta-Furans		0.080				

⁽¹⁾ Qualifier U indicates not detected; The K indicates EMPC. The C needs value from second column analysis. The B indicates possible blank contamination.

⁽²⁾ RRTs and ion ratios are specified in Tables 2 and 9, Method 1613.

FORM 2: PCDD/PCDF LABELED COMPOUND AND

CLEANUP STANDARD RECOVERIES

CLIENT ID.

LCSD

Lab Name: Columbia Analytical Services Contract:

SDG No:

Lab Code: CAS Method:1613 Case No: Client No:

Lab ID: EB21060-LCSD

Client Name:

Sample Wt/Vol: 10.000

g or mL: q

Matrix (Solid/Aqueous/Waste/Ash): Solid

Initial Calibration Date: 10/25/04

Sample Receipt Date:

Instrument ID: AutoSpec-Ultima

Ext. Date: 05/13/05

GC Column ID: DB-5

Analysis Date: 16-MAY-05 Time: 16:43:56 Sample Data Filename: U22053#1

Ext. Vol (ul):20.0

Inj.Vol(ul):1.0

Blank Data Filename: U22059#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22047#1

net in 6/2/06

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solid/Lipids:

LABELED COMPOUNDS	SPIKI CONC		R(%) (1)	QC Limite(1)	ION ABUND. RATIO (RRT 2) (2)
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD	2000 2000 2000 2000 2000 4000	2475.04 2846.33 2472.25 2312.84 2116.12 4046.34	123.75 142.32 123.61 115.64 105.81	25-164 25-181 32-141 28-130 23-140 17-157	0.79 1.58 1.26 1.25 1.06 0.92	1.011 1.214 0.990 0.992 1.071 1.144
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF	2000 2000 2000 2000 2000 2000 2000 200	2811.37 2886.12 2692.78 2285.06 2152.19 2815.74 2487.28 2161.24 2246.67	140.57 144.31 134.64 114.25 107.61 140.79 124.36 108.06 112.33	24-169 24-185 21-178 26-152 26-123 29-147 28-136 28-143 26-138	0.80 1.58 1.57 0.55 0.52 0.53 0.54 0.46	0.971 1.166 1.198 0.969 0.972 1.006 0.986 1.047
CLEANUP STANDARD 37Cl-2,3,7,8-TCDD	800	1090.41	136.30	35-197		1.012

⁽¹⁾ Contract-required limits for percent recovery (R) are specified in Table 7, Method 1613.

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. NOTE: There is no ion abundance ratio for 37C14-2378-TCDD (cleanup standard).

July 5, 2005

Service Request No: K0500590

Ann Holbrow Geomatrix Consultants, Incorporated 2101 Webster Street 12th Floor Oakland, CA 94612

RE: Project No. 9329

Dear Ann:

Enclosed are the results of the sample(s) submitted to our laboratory on May 26, 2005. For your reference, these analyses have been assigned our service request number K0500590.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAC standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3376.

Respectfully submitted,

Columbia Analytical Services, Inc.

Gregory Salata, Ph.D.

Project Chemist

GS/jeb

Page 1 of _____

June 28, 2005

Dr. Gregory Salata Columbia Analytical Services, Inc. 1317 South 13th Avenue Kelso, WA 98626 USA

CAS/Houston SR: K0500590 Project: Geomatrix

Dear Greg,

Enclosed are the results of the sample(s) submitted to our laboratory on June 1, 2005. For your reference, these analyses have been assigned our service request number K0500590.

All analyses were performed according to our laboratory's quality assurance program. The test results meet the requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 23. You may also contact me via email at <u>ifreemyer@houston.caslab.com</u>.

Respectfully submitted,

COLUMBIA ANALYTICAL SERVICES, INC.

Jane Freemyer Project Manager

Page 1 of 412

Fane Jeennye

An Employee - Owned Company

Dioxins/Furans

10655 Richmond Avenue, Suite 130-A, Houston, TX 77042 Phone(713)266-1599 Fax (713)266-0130 www.caslab.com

COLUMBIA ANALYTICAL SERVICES, INC.

Client:

Geomatrix

Project: Sample Matrix: K0500590 Tissue Service Request No.: Date Received:

K0500590 06/01/05

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier IV. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Six tissue samples were received for analysis at Columbia Analytical Services on 06/01/05. The following discrepancies were noted upon initial sample inspection. The exceptions are also noted on the cooler receipt and preservation form included in this data package.

The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

No discrepancies were noted upon initial sample inspection.

Data Validation Notes and Discussion

B flags - Method Blanks

The Method BlankEB21091/U22434#1 contained low levels of OCDD and OCDF below the Method Reporting Limit (MRL). The associated compounds in the samples(s) are flagged with 'B' flags.

Y flags - Labeled Standards

Samples that had recoveries of labeled standards outside the acceptance limits are flagged with 'Y' flags on the Form 2s. In all cases, the signal-to-noise ratios are greater than 10:1, making these data acceptable.

MS/MSD

A Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) pair was analyzed and reported in lieu of the MS/MSD for these samples.

K flags

EMPC - When the ion abundance ratios associated with a particular compound are outside the QC limits, samples are flagged with a 'K' flag. A 'K' flag indicates an estimated maximum possible concentration for the associated compound.

Approved by

ngqiu Liang, Laboratøry Director

Client:

Geomatrix Consultants, Incorporated Project No. 9329/

Project:

Service Request: K0500590

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID		DATE	TIME
K0500590-001	Comp JST-SB-040/018		04/21/05	0830
K0500590-002	Comp WSP-SB-033/045		04/22/05	1100
K0500590-003	Comp WSP-SB-044/046		05/10/05	1245
K0500590-004	JST-SB-042	90.4	05/09/05	0935
K0500590-005	JST-SB-019		04/21/05	0830
K0500590-006	JST-SB-017		04/21/05	0830

Method 1613B/Dioxins & Furans Reporting Limits

CONCENER	CONGENER	CAS RN	REPORTING LIMITS Aqueous	REPORTING LIMITS Solids
			PG/L	NG/KG
2,3,7,8-Tetrachlorodibenzo-p-dioxin	2378-TCDD	1746-01-6	10	1.0
1,2,3,7,8-Pentachlorodibenzo-p-dioxins	12378-PeCDD	40321-76-4	50	5.0
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	123478-HxCDD	39227-28-6	50	5.0
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	123678-HxCDD	57653-85-7	50	5.0
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	123789-HxCDD	19408-74-3	50	5.0
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	1234678-HpCDD	35822-46-9	50	5.0
Octachlorodibenzo-p-dioxin	OCDD	3268-87-9	100	10
2,3,7,8-Tetrachlorodibenzofuran	2378-TCDF	51207-31-9	10	1.0
1,2,3,7,8-Pentachlorodibenzofuran	12378-PeCDF	57117-41-6	. 50	5.0
2,3,4,7,8-Pentachlorodibenzofuran	23478-PeCDF	57117-31-4	50	5.0
1,2,3,6,7,8-Hexachlorodibenzofuran	123478-HxCDF	70648-26-9	50	5.0
1,2,3,7,8,9-Hexachlorodibenzofuran	123678-HxCDF	57117-44-9	50	5.0
1,2,3,4,7,8-Hexachlorodibenzofuran	123789-HxCDF	72918-21-9	50	5.0
2,3,4,6,7,8-Hexachlorodibenzofuran	234678-HxCDF	60851-34-5	50	5.0
1,2,3,4,6,7,8-Heptachlorodibenzofuran	1234678-HpCDF	67562-39-4	50	5.0
1,2,3,4,7,8,9-Heptachlorodibenzofuran	1234789-HpCDF	55673-89-7	50	5.0
Octachlorodibenzofuran	OCDF	39001-02-0	100	10
Total Tetra-Dioxins	*	*	_10	1.0
Total Penta-Dioxins	*	*	50	5.0
Total Hexa-Dioxins	*	*	50	5.0
Total Hepta-Dioxins	*	*	50	5.0
Total Tetra-Furans	*	*	10	1.0
Total Penta-Furans	*	*	50	5.0
Total Hexa-Furans	*	*	50	5.0
Total Hepta-Furans	*	*	50	5.0

NOTE: Tissue samples are reported on a wet-weight basis and soil/sediment samples are reported on a dry-weight basis.

Data Qualifier Flags

- ❖ B Used when an associated analyte is found in the method blank, as well as in the sample
- ❖ C Confirmation of the TCDF compound: When 2378-TCDF is detected on the DB-5 column, confirmation analyses are performed on a second column (DB-225.) The results from both the DB-5 column and the DB-225 column are included in this data package. The results from the DB-225 analyses should be used to evaluate the 23788-TCDF in the samples. The confirmed result should be used in determining the TEQ value for TCDF. The samples requiring confirmation are indicated in the table above.
- ❖ E Indicates an estimated value used when the analyte concentration exceeds the upper end of the linear calibration range
- ❖ J Indicates an estimated value used when the analyte concentration is below the method reporting limit (MRL) and above the detection limit (DL)
- * K EMPC When the ion abundance ratios associated with a particular compound are outside the QC limits, samples are flagged with a 'K' flag. A 'K' flag indicates an estimated maximum possible concentration for the associated compound.
- ❖ U Indicates the compound was analyzed and not detected.
- ❖ X User defined; see case narrative for detailed explanation
- Samples that had recoveries of labeled standards outside the acceptance limits are flagged with 'Y' flags on the Form 2s. In all cases, the signal-to-noise ratios are greater than 10:1, making these data acceptable.
- * Indicates concentration is reported as 'Not Detected'

SR# Unique	1D Ko500 590							
	First Level - D	ata Processi	ng - to be t	filled by pers	on genera	ting the	forms	
Date 6	121/05	Person 1	be		,			
Date		Person 2	0				6	
	Second Level		v – to be fill	ed by perso	n doing pe	er revie	W	
Date	06/22/5	Reviewer	99.		F		111-7-1-11	
Date		Reviewer			=		4	4
CHORES L	Project Level - I	Review - to be	e filled by pe	erson doing	project cor	nplianc	e review	
Date	6/28/5	Reviewer	OF					
	0/20/5			- T - 2				
						¥ì		
		唐						
	į.				9			
*								31
	22							
								2
			ě					
		*						
	, 6				*			

An Employee - Owned Company

Chain-of-custody

10655 Richmond Avenue, Suite 130-A, Houston, TX 77042 Phone (713)266-1599 Fax (713)266-0130 www.caslab.com

Intra-Network Chain of Custody

1317 South 13th Avenue • Kelso, WA 98626 • 360-577-7222 • FAX 360-636-1068

CAS Contact: Gregory Salata, Ph.D.

Project No. 9329 **Project Name:** DIOXINS_FURANS
DF **Project Number:** Project Manager: Ann Holbrow Company: Geomatrix Consultants, Incorporated Sample Date Lab Code Client Sample ID Matrix Time Date Received K0500590-001 Comp JST-SB-040/018 **Animal Tissue** 04/21/05 0830 05/26/05 Ш K0500590-002 Comp WSP-SB-033/045 **Animal Tissue** 04/22/05 1100 05/26/05 III K0500590-003 Comp WSP-SB-044/046 **Animal Tissue** 05/10/05 1245 05/26/05 Ш K0500590-004 JST-SB-042 Animal Tissue 05/09/05 0935 05/26/05 Ш K0500590-005 JST-SB-019 Animal Tissue 04/21/05 0830 05/26/05 III

Animal Tissue

04/21/05

0830

6 CA3 5/31/05/180 Received By: Kenska 3- 9 Mme 6-1-05/1000

05/26/05

III

K0500590-006

JST-SB-017

Special Instructions/Comments	Turnaround Requirements	Report Requirements	Invoice Information
NGOD LIPIDS + TOTAL SOZIDS	RUSH (Surcharges Apply)	I. Results Only	
10660 41111	PLEASE CIRCLE WORK DAYS	II. Results + QC Summaries	PO#
ANALYZED IN HOUSTON.	1 2 3 4 5 X STANDARD 74	III. Results + QC and Calibration Summaries	K0500590
	STANDARD ZWOTE TAT	IV. Data Validation Report with Raw Data	Bill to
	Requested FAX Date:	PQL/MDL/J <u>N</u>	Din to
	Requested Report Date: 06/15/05	EDD <u>Y</u> Basic with QC	*
	20.		

Airbill Number:

Location: SUBBED

6 - -N/A N/A

Folder #:

K0500590

Client Name:

Geomatrix Consultants, Incorporated

Project Name:

Project No. 9329

Project Number:

Report To:

Ann Holbrow

Geomatrix Consultants, Incorporated

2101 Webster Street

12th Floor

Oakland, CA 94612

Phone Number: Fax Number:

510-663-4135

E-mail:

(510)663-4141

aholbrow@geomatrix.com

Project Chemist: Jane Freemyer

Originating Lab: KELSO

Logged By: FADAIR

Date Received: 05/26/2005 Internal Due Date: 06/12/2005

EDD: BASICWQC

Tier: MI

QAPP: LAB OAP

Qualifier Set: CAS Standard Formset: CAS Standard

Merged?: Y Report to MDL?: XY

P.O. Number:

				KELSO	KELSO	SVM
Client Samp No	Matrix	G.II.		UB_SAMPLE/ None	HOMOGEN/ SOP	IOXINS_FURA S_DF/ 1613B
					TTT	AZ
				***		III
		• •				Ш
•						III
JST-SB-019						Ш
JST-SB-017	Animal Tis	4/21/05	0830			III III
	Client Samp No. Comp JST-SB-040/018 Comp WSP-SB-033/045 Comp WSP-SB-044/046 JST-SB-042 JST-SB-019	Client Samp No. Matrix Comp JST-SB-040/018 Comp WSP-SB-033/045 Comp WSP-SB-044/046 JST-SB-042 JST-SB-019 JST-SB-019 Animal Tis Animal Tis Animal Tis	Client Samp No. Matrix Collect Comp JST-SB-040/018 Animal Tis 4/21/05 Comp WSP-SB-033/045 Animal Tis 4/22/05 Comp WSP-SB-044/046 Animal Tis 5/10/05 JST-SB-042 Animal Tis 5/9/05 JST-SB-019 Animal Tis 4/21/05	Client Samp No. Matrix Collected Comp JST-SB-040/018 Animal Tis 4/21/05 0830 Comp WSP-SB-033/045 Animal Tis 4/22/05 1100 Comp WSP-SB-044/046 Animal Tis 5/10/05 1245 JST-SB-042 Animal Tis 5/9/05 0935 JST-SB-019 Animal Tis 4/21/05 0830 JST-SB-017 Animal Tis 4/21/05 0830	Client Samp No. Matrix Collected S S E S E S E S E S E S E E S E E S E	Client Samp No. Comp JST-SB-040/018 Comp WSP-SB-033/045 Comp WSP-SB-044/046 JST-SB-042 JST-SB-019 Animal Tis 4/21/05 0830 Animal Tis 5/10/05 1245 JST-SB-019 Animal Tis 5/9/05 0935 JST-SB-019 Animal Tis 4/21/05 0830 Animal Tis 4/21/05 0830

Folder Comments: (+ Lipids) (+ Solids) (+ 6 | 3 | 5

Test Comments:

GenChem

SUB SAMPLE/None

Metals lab to sub-sample and return to SMO for outside shipping

Cooler Receipt And Preservation Form

Project/Client: Project No. 9329/Geomatrix Consultants, Incorporated Work Order: K0500590 Cooler received on 05/26/2005 and opened on Were custody seals on outside of cooler? Did all bottle labels and tags agree with custody papers? Y N Were seals intact and signature & date correct? NA N $(\widetilde{\mathbf{Y}})$ Were the correct types of bottles used for the tests indicated? NA Is the shipper's airbill available and filed? 11. Were all of the preserved bottles received at the lab with the appropriate pH? COC# 4. 12. Were VOA vials checked for absence of air bubbles, and if present, noted below? (NA) Were custody papers properly filled out (ink, signed, etc.)? (Y) N NA 13. Did the bottles originate from CAS/K or a branch laboratory? Type of packing material present Bubble wrap, ice N (T 14. Are CWA Microbiology samples received with >1/2 the 24 hr. hold time remaining Did all bottles arrive in good condition (unbroken)? V N NA from collection? Were all bottle labels complete (i.e. analysis, preservation, etc.)? NA (Y) N 15. Was Cl2/Res negative? Lab Code Sample Name K0500590-001 Comp JST-SB-040/018 N/A(N/A)**Received Conditions Expected Conditions Cooler** Rec Hq Seal **Bottle ID** Barcode рH Temp Temp Check HS **Intact? Corrective Action** K0500590-001.01 NA Test List: 1613B K0500590-002 Comp WSP-SB-033/045 N/A(N/A)**Received Conditions Expected Conditions Cooler** Rec Rec Seal **Bottle ID** Barcode HS pH **Temp** Temp Check HS **Intact? Corrective Action** K0500590-002.01 NA Test List: 1613B K0500590-003 Comp WSP-SB-044/046 N/A(N/A)**Received Conditions Expected Conditions Cooler** Rec pН Rec Seal **Bottle ID** Barcode HS \mathbf{pH} Temp Temp Check HS **Intact? Corrective Action** K0500590-003.01 NA Test List: 1613B K0500590-004 JST-SB-042

Sample Name

K0500590-004 JST-SB-042

N/A (N/A)

Bottle ID Barcode **Expected Conditions Cooler** pH **Temp**

HS

HS

рH

 $\mathbf{H}\mathbf{q}$

Temp

Temp

#

#

Received Conditions Rec рH Temp Check

Rec HS

NA

Intact? Corrective Action

Seal

Seal

K0500590-004.01

Test List: 1613B

K0500590-005 JST-SB-019

N/A(N/A)

Bottle ID

Barcode

K0500590-005.01 Test List: 1613B

K0500590-006 JST-SB-017

N/A (N/A)

Bottle ID Barcode

K0500590-006.01 Test List: 1613B

Received Conditions

Expected Conditions Cooler Rec рH Rec Temp Check

HS NA

NA

Intact? Corrective Action

Received Conditions Expected Conditions Cooler

Rec . pН Rec Temp Check HS

Seal **Intact? Corrective Action**

The following tests have no assigned bottles

K0500590-001 **HOMOGEN** SOP K0500590-001 SUB SAMPLE None K0500590-002 **HOMOGEN** SOP K0500590-002 SUB SAMPLE None K0500590-003 **HOMOGEN** SOP K0500590-003 SUB SAMPLE None K0500590-004 **HOMOGEN** SOP K0500590-004 SUB SAMPLE None K0500590-005 **HOMOGEN** SOP K0500590-005 SUB SAMPLE None K0500590-006 **HOMOGEN** SOP K0500590-006 SUB SAMPLE None

No	Project ID	Lab ID	Client ID	Sample Size	Tare Vial	Tare & Wet	Tare & Dry	P	culated ercent	Dry Weight	Sample Description
MB		EB21091-MB	MB	g 10,000		Sample	Sample	Solid	Moisture		
LCS-		EB21091-LCS	LCS	10.000		and the same of the same of	Section Company		275 - F		
LCSD		EB21091-LCSD	LCSD	10.000							
1	E0500447	E0500447-001.01	WSP-SB-006	10.000	12.054	1.0010		1020.242	\$15556474449;5469145		\$2000 b-\$6000000000000000000000000000000000000
2	E0500447	E0500447-002.01	WSP-SB-007	10,309	13.054 12.991	16.712	13.821	20.97	79.03	2.17	Tissue
3	E0500447	E0500447-003.01	WSP-SB-008	10.309	Established and the second	16.629	13.712	19.82	80.18	2.04	Tissue
4	E0500447	E0500447-004.01	JST-SB-009	10.434	12.959	17.450	13.903	21.02	78.98	2.12	Tissue
5	K0500590	K0500590-001.01	Comp JST-SB-040/018	9.997	13.005	16.668	13.804	22.07	77.93	2.30	Tissue
6	K0500590	K0500590-002.01	Comp WSP-SB-033/045	10.013	12.971	16.129	13,624	19.81	80.19	1.98	Tissue
7	K0500590	K0500590-003.01	Comp WSP-SB-044/046	10.133	12.971	16.678 16.831	13.648	the second second second	81.74	1.83	Tissue
8	K0500590	K0500590-004.01	JST-SB-042	9.760	13.017	15.612	13.714		81.19	1.91	Tissue
9	K0500590	K0500590-005.01	JST-SB-019	10.216	12.967	16.346	13.476	17.69	82.31	1.73	Tissue
10	K0500590	K0500590-006.01	JST-SB-017	10.467	12.989	16.296	13.714 13.692	22.11	77.89	2.26	Tissue
11	E0500449	E0500449-006.01	WR-PG-62	14.615	13.022	19.382	16.516	21.26	78.74	2.23	Tissue
12	E0500449	E0500449-007.01	WR-PG-60	15.481	13.041	18.575	16.103	55.33	45.06 44.67	8.03	Wet brown mud
13	E0500449	E0500449-008.01	WR-PG-58	13.665	12.989	18.475	16.334	60.97	39.03	8.57	Dry brown mud
14	E0500449	E0500449-009.01	WR-PG-56	15.280	12.976	18.820	16.264	56.26	43.74	8.33 8.60	Wet grey/brown mud
15	E0500448	E0500448-001.01	WR-PG-36	14.560	12.995	18.180	16.137	60.60	39.40	8.82	Wet brown mud Wet brown mud
16	E0500429	E0500429-052.01RE	mn-ss-1301-14 0-2"	5.224	12.800	15.305	14.798	79.76	20.24		Dry brown dirt
17								, , , , ,	20.24	4.1 /	Dry brown dift
18	A. Newscoop reconstruction	ANNA CONTRACTOR OF THE CONTRAC			-010000	volumes eccepture () ()		***************************************			
19					W.						
20			(/00000000000/////////////////////////	MARKETAN DOMESTIC	450.000.000.000		ee soenen voo o		55444364000000205566550 <u>5</u>		
21											
22								(15)			
237:											
24						Landan and Aller				and the second	
				Totales							
26					-0.1			W199000000000000		www.uubecccoopere	Maria Ma

SODIUM SULFATE C1-71-2 ACETONE C1-68-3 TOLUENE C1-74-5 GLASS WOOL GW1-1-4 DICHLOROMETHANE C1-73-3 ETHYL ACETATE C1-69-4 NONANE C1-67-5 HEXANE C1-73-2

SAND C1-33-1
TRIDECANE C1-74-2
SULFURIC ACID C1-74-3
BASIC SILICA GEL S1-24-3
CARBON: C1-73-5
ACIDIC SILICA GEL S1-24-4
SILICA GEL S1-22-6

Date:

6/15/2005

Standard: Internal Matrix Solution ID: D7-35-3B D7-28-3B EXTRACTION START: 6-14-05 Volume: 1000 uL 100 uL EXTRACTION END: 6-15-05 Spiker: **KYM KYM EXTRACTION METHOD: Soxhlet** Witness: Љ лв Date: 6/14/2005 6/14/2005 TIME STARTED: 1500 Standard: Cleanup Recovery TIME FINISHED: 0700 Solution ID: D7-33-5A/B Volume: 100 uL EXTRACTS RECEIVED BY Spiker: DHF Witness: JВ

DATE RECEIVED_

6-17-05

Columbia Analytical Services, INC.

EB21091

1613

Sulfuric Acid Cleanup: 6-15-05 Silica Gel/Carbon Column: 6-16-05

No	Project	Lab	Client	Sample	Tare	Dried	Percent	Sample	Quantity
	ID ID	ID	ID	Size	Vial	Extract	Lipid	Description	Analized
				g	g			1	- AMMIZOU
MB		EB21094-MB	Method Blank	10.000					
	E0500447	E0500447-001.01	WSP-SB-006	10.336	12.962	12.984	0.426		
r grand krown	E0500447	E0500447-002.01	WSP-SB-007	10.309	12.902	12.919	0.330	MASSACTION OF PROCESS :	4 3500 (Carrier, <u>2</u> ,
1	E0500447	E0500447-003.01	WSP-SB-008	10.082	12.993	13.004	0.22		
2	E0500447	E0500447-004.01	JST-SB-009	10.434	12.896	12.909	0.249	1000	
3	K0500590	K0500590-001.01	Comp JST-SB-040/018	9.997	12.758	12.763	0.100		
4	K0500590	K0500590-002.01	Comp WSP-SB-033/045	10.013	12.906	12.910	0.080		
5	K0500590	K0500590-003.01	Comp WSP-SB-044/046	10.133	13.092	13.102	0,197		
6	K0500590	K0500590-004.01	JST-SB-042	9.760	12.656	12.671	0.307		
7	K0500590	K0500590-005.01	JST-SB-019	10.216	12.668	12.701	0.646		
8	K0500590	K0500590-006.01	JST-SB-017	10.467	12.712	12.718	0.115		
9.									
10		74548 1999 1 29645483664446 00.00 (44.44424.00)		200-0000 200 30	HERRIN MERSON OFFICERS	P 10 (10 to 10 to	(C. 0) Sec. (C. C. C		
11									
12		2 724.4 1.000.000					(1 mm)	2 - W 12 - 11 - W 1 - W	
13									
14	Secondarios social pictures			1345333333353	TOTAL PROPERTY OF THE STATE OF				
15					E / T				
16	Kompan, promonencia	\$450+00050000000000000000000000000000000					() () () () () () () () () ()	ak/8000000000000000000000000000000000000	
17									
18					I I I I I I I I I I I I I I I I I I I				
19			210 23						
20				1000000000			***************************************	200	
. 21									
22		N	1045°	2002002020303				17000 P. NII SOSSEE ASSESSEE A	
23									
24) : 4100000000000000000000000000000000000						,		-773777
25									
26							CONTRACTOR DESCRIPTION	eces establishmendeltiliset	6000 110 SP0000 (10000000000

Percent Lipid Measurement OF 6/28/5

SODIUM SULFATE C1-71-2 ACETONE C1-68-3 TOLUENE C1-74-5 GLASS WOOL GW1-1-4 DICHLOROMETHANE C1-73-3 ETHYL ACETATE C1-69-4 NONANE C1-67-5 HEXANE C1-73-2

SAND C1-33-1 TRIDECANE C1-74-2 SULFURIC ACID C1-74-3 BASIC SILICA GEL S1-24-3 CARBON: C1-73-5 ACIDIC SILICA GEL S1-24-4 SILICA GEL S1-22-6

Standard:	Internal	Matrix	14
Solution ID:			EXTRACTION START: 6/14/05
Volume:	1000 ul	100 uL	EXTRACTION END: 6/16/05
Spiker:			EXTRACTION METHOD (1):
Witness:			(i).
Date:			TIME STARTED: 15:00
Standard:	Cleanup	Recovery	TIME FINISHED: 7:00
Solution ID:	_		
Volume:	100 uL		EXTRACTS RECEIVED BY
Spiker:			
Witness:			
Date:		-	DATE RECEIVED 6/17/05

Columbia Analytical Services, INC.

EB21094

Sulfuric Acid Cleanup: Silica Gel/Carbon Column:

Dioxin/Furan Analytical Report

10655 Richmond Avenue, Suite 130-A, Houston, TX 77042 Phone (713)266-1599 Fax (713)266-0130 www.caslab.com

PCDD/PCDF ANALYSIS DATA SHEET Use for Sample and Blank Results CLIENT ID.

METHOD BLANK

Lab Name: Columbia Analytical Services

SDG No:

Lab Code: CAS Method: 1613 Case No:

Client No:

Contract:

Lab ID: EB21091-MB

Client Name:

Sample Wt/Vol: 10.000 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): Solid

Initial Calibration Date: 10/25/04

Sample Receipt Date:

Instrument ID: AutoSpec-Ultima

Ext. Date: 06/14/05

GC Column: DB-5

Ext. Vol(ul):20.0 Inj. Vol(ul):1.0

Sample Data Filename: U22434#1

Analysis Date: 17-JUN-05 Time: 15:55:05 Blank Data Filename: U22434#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22433#1

WET CF Lelido
Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solids/Lipids:

ANALYTE	CONCENTRATION FOUND	DETECTION LIMIT	Qual.	ION ABUND. RATIO (2)		MEAN RRF
X 31.8% 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LOOMD	TITLITI	(1)	RAIIO (2)	(2)	KKE
2,3,7,8-TCDD	· *	0.044	IJ	*	*	0.98
1,2,3,7,8-PeCDD	*	0.046	Ū	*	*	0.98
1,2,3,4,7,8-HxCDD	*	0.057	-	*	*	1.15
1,2,3,6,7,8-HxCDD	*	0.072		*	*	0.98
1,2,3,7,8,9-HxCDD	*	0.065		*	*	1.05
1,2,3,4,6,7,8-HpCI	DD *	0.054		*	*	1.01
OCDD	0.442	0.115		0.93	1.000	1.05
2,3,7,8-TCDF	*	0.040	U	*	*	1.03
1,2,3,7,8-PeCDF	*	0.037	Ü	*	*	1.01
2,3,4,7,8-PeCDF	*	0.033	U	*	*	1.08
1,2,3,4,7,8-HxCDF	*	0.057	U	*	*	1.28
1,2,3,6,7,8-HxCDF	*	0.069	U	*	*	1.23
1,2,3,7,8,9-HxCDF	*	0.071	U	*	*	1.32
2,3,4,6,7,8-HxCDF	*	0.068	U	*	*	1.18
1,2,3,4,6,7,8-HpCL)F *	0.043	Ū 🕝	*	*	1.53
1,2,3,4,7,8,9-HpCI		0.056	U	*	*	1.48
OCDF	0.341	0.102	J	0.87	1.003	1.25
Total Tetra-Dioxin	ıs *	0.044	U			
Total Penta-Dioxin	.s *	0.046	U			
Total Hexa-Dioxins	*	0.057	U			
Total Hepta-Dioxin	.s *	0.054	U			
Total Tetra-Furans	*	0.040	U			
Total Penta-Furans	*	0.033	U			
Total Hexa-Furans	*	0.057	U			
Total Hepta-Furans		0.043	U			

⁽¹⁾ Qualifier U indicates not detected; The K indicates EMPC. The C needs value from second column analysis. The B indicates possible blank contamination.

(2) RRTs and ion ratios are specified in Tables 2 and 9, Method 1613.

USEPA, EAD

Contract:

FORM 2: PCDD/PCDF LABELED COMPOUND AND

CLEANUP STANDARD RECOVERIES

METHOD BLANK

SDG No:

CLIENT ID.

Lab ID:EB21091-MB Client No: Lab Code: CAS Method: 1613 Case No:

Sample Wt/Vol: 10.000 q or mL: q Client Name:

Initial Calibration Date: 10/25/04 Matrix (Solid/Aqueous/Waste/Ash): Solid

Instrument ID: AutoSpec-Ultima Sample Receipt Date:

GC Column ID: DB-5 Ext. Date: 06/14/05

Analysis Date: 17-JUN-05 Time: 15:55:05 Sample Data Filename: U22434#1

Blank Data Filename: U22434#1 Ext. Vol(uL): 20.0 Inj. Vol(uL): 1.0

Cal. Ver. Data Filename: U22433#1 Dilution Factor: 1

Lab Name: Columbia Analytical Services

 $\label{eq:wetation} \text{WET UF GIZC(6)} \\ \text{Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solid/Lipids:} \\$

LABELED COMPOUNDS	SPIKI CONC		R(%) (1)	QC Limite(1)	ION ABUND. RATIO (2)	RRT (2)
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD	2000 2000 2000 2000 2000 4000	1695.59 1876.05 1745.00 1605.34 1547.02 2534.51	84.78 93.80 87.25 80.27 77.35 63.36	25-164 25-181 32-141 28-130 23-140 17-157	1.54 1.26 1.25 1.05	1.012 1.227 0.989 0.992 1.071 1.144
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF	2000 2000 2000 2000 2000 2000 2000 200	1874.99 1630.08 1640.73 1597.07 1404.86 1839.33 1542.59 1453.78 1637.80	93.75 81.50 82.04 79.85 70.24 91.97 77.13 72.69 81.89	24-169 24-185 21-178 26-152 26-123 29-147 28-136 28-143 26-138	1.55 1.55 0.52 0.52 0.52 0.52 0.44	0.969 1.177 1.211 0.968 0.971 1.006 0.986 1.048
CLEANUP STANDARD						
37Cl-2,3,7,8-TCDD	800	782.43	97.80	35-197	;	1.013

⁽¹⁾ Contract-required limits for percent recovery (R) are specified in Table 7, Method 1613.

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. NOTE: There is no ion abundance ratio for 37C14-2378-TCDD (cleanup standard). RFP C500273T1

CLIENT ID.

Form 1

PCDD/PCDF ANALYSIS DATA SHEET

Comp JST-SB-040/018 Use for Sample and Blank Results

SDG No: Lab Name: Columbia Analytical Services Contract:

Lab ID: K0500590-001.01 Lab Code: CAS Method:1613 Case No: Client No:

Sample Wt/Vol: 9.997 g or mL: g Client Name: Geomatrix

Initial Calibration Date: 10/25/04 Matrix (Tissue): Tissue

Sample Receipt Date: 06/01/05 Instrument ID: AutoSpec-Ultima

Ext. Date: 06/14/05 GC Column:DB-5

Sample Data Filename: U22435#1 Ext. Vol(ul):20.0 Inj. Vol(ul):1.0

Analysis Date: 17-JUN-05 Time: 17:51:31 Blank Data Filename: U22434#1

Cal. Ver. Data Filename: U22433#1 Dilution Factor: 1

Concentration Units (pg/L or ng/Kg wet weight): ng/Kg % Solids/Lipids: 19.81/0.100

	CONCENTRATION	DETECTION	Qual.	ION ABUN	ID. RRT	MEAN	
ANALYTE	FOUND	LIMIT	(1)	RATIO ((2) (2)	RRF	
2,3,7,8-TCDD	*	0.046	U	*	*	0.98	
1,2,3,7,8-PeCDD	*	0.032	U	*	*	0.98	
1,2,3,4,7,8-HxCDD	*	0.039	U	*	*	1.15	
1,2,3,6,7,8-HxCDD	*	0.043	U	*	*	0.98	
1,2,3,7,8,9-HxCDD	*	0.041	U	*	*	1.05	
1,2,3,4,6,7,8-HpCI	DD 0.074	0.026	JK	1.24	1.000	1.01	
OCDD	0.438	0.077	JB	0.90	1.000	1.05	
2,3,7,8-TCDF	*	0.041	U	*	*	1.03	
1,2,3,7,8-PeCDF	*	0.029	U	*	*	1.01	
2,3,4,7,8-PeCDF	*	0.028	U	*	*	1.08	
1,2,3,4,7,8-HxCDF	*	0.021	U	*	*	1.28	
1,2,3,6,7,8-HxCDF	*	0.024	U	* •	*	1.23	
1,2,3,7,8,9-HxCDF	*	0.025	U	*	*	1.32	
2,3,4,6,7,8-HxCDF	*	0.024	U	*	*	1.18	
1,2,3,4,6,7,8-HpCI)F *	0.030	U	*	*	1.53	
1,2,3,4,7,8,9-HpCD)F *	0.036	U	*	*	1.48	
OCDF	0.409	0.074	JB	0.97	1.003	1.25	
Total Tetra-Dioxin		0.046	U				
Total Penta-Dioxin		0.032	U				
Total Hexa-Dioxins		0.039	U				
Total Hepta-Dioxin		0.026					
Total Tetra-Furans	*	0.041	U				
Total Penta-Furans	*	0.028	U				
Total Hexa-Furans	*	0.021	U				
Total Hepta-Furans	*	0.030	Ū				

⁽¹⁾ Qualifier U indicates not detected; The K indicates EMPC. The C needs value from second column analysis. The B indicates possible blank contamination.

⁽²⁾ RRTs and ion ratios are specified in Tables 2 and 9, Method 1613.

CLIENT ID.

FORM 2: PCDD/PCDF LABELED COMPOUND AND

CLEANUP STANDARD RECOVERIES

Comp JST-SB-040/018

Lab Name: Columbia Analytical Services Contract: SDG No:

Lab Code: CAS Method:1613 Case No: Client No: Lab ID: K0500590-001.01

Client Name: Geomatrix Sample Wt/Vol: 9.997 g or mL: g

Matrix (Tissue): Tissue Initial Calibration Date: 10/25/04

Sample Receipt Date: 06/01/05 Instrument ID: AutoSpec-Ultima

Ext. Date: 06/14/05 GC Column ID: DB-5

Analysis Date: 17-JUN-05 Time: 17:51:31 Sample Data Filename: U22435#1

Ext. Vol(uL): 20.0 Inj. Vol(uL): 1.0 Blank Data Filename: U22434#1

Dilution Factor: 1 Cal. Ver. Data Filename: U22433#1

Concentration Units (pg/L or ng/Kg wet weight): ng/Kg % Solid/Lipids: 19.81/0.100

					ION	
	SPIKE	CONC.	R(%)	QC	ABUND.	RRT
	CONC.	FOUND	(1)	Limite(1)	RATIO (2	2) (2)
LABELED COMPOUNDS						
13C-2,3,7,8-TCDD	2000	1718.97	85.95	25-164	0.80	1.013
13C-1,2,3,7,8-PeCDD	2000	1915.79	95.79			
				25-181	1.53	1.227
13C-1,2,3,4,7,8-HxCDD	2000	1487.42	74.37	32-141	1.24	0.989
13C-1,2,3,6,7,8-HxCDD	2000	1490.57	74.53	28-130	1.27	0.992
13C-1,2,3,4,6,7,8-HpCDD	2000	1514.36	75.72	23-140	1.05	1.072
13C-OCDD	4000	2536.25	63.41	17-157	0.91	1.144
13C-2,3,7,8-TCDF	2000	1920.46	96.02	24-169	0.78	0.969
13C-1,2,3,7,8-PeCDF	2000	1729.70	86.49	24-185	1.55	1.177
13C-2,3,4,7,8-PeCDF	2000	1654.09	82.70	21-178	1.56	1.211
13C-1,2,3,4,7,8-HxCDF	2000	1530.12	76.51	26-152	0.51	0.968
13C-1,2,3,6,7,8-HxCDF	2000	1351.94	67.60	26-123	0.53	0.971
13C-1,2,3,7,8,9-HxCDF	2000	1801.81	90.09	29-147	0.53	1.006
13C-2,3,4,6,7,8-HxCDF	2000	1473.79	73.69	28-136	0.51	0.986
13C-1,2,3,4,6,7,8-HpCDF	2000	1378.81	68.94	28-143	0.45	1.048
13C-1,2,3,4,7,8,9-HpCDF	2000	1617.23	80.86	26-138	0.45	1.081
					0.15	1.001
CLEANUP STANDARD						
37Cl-2,3,7,8-TCDD	800	819.99	102.50	35-197		1.013

⁽¹⁾ Contract-required limits for percent recovery (R) are specified in Table 7, Method 1613.

RFP C500273T1

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. NOTE: There is no ion abundance ratio for 37C14-2378-TCDD (cleanup standard).

CLIENT ID.

PCDD/PCDF TOXICITY EQUIVALENCE SUMMARY
Use for Sample and Blank Results

Comp JST-SB-040/7

Lab Name: Columbia Analytical Services Contract: SDG No:

Lab Code: CAS Method:1613 Case No: Client No: Lab ID: K0500590-001.01

Client Name: Geomatrix Sample Wt/Vol: 9.997 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): Tissue Initial Calibration Date: 10/25/04

Ext. Date: 06/14/05 GC Column ID: DB-5

Ext. Vol(ul):20.0 Inj. Vol(ul):1.0 Sample Data Filename: U22435#1

Analysis Date: 17-JUN-05 Time: 17:51:31 Blank Data Filename: U22434#1

Dilution Factor: 1 Cal. Ver. Data Filename: U22433#1

MET OF GIZAG

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solids/Lipids: 19.81/0.100

	CONCENTRATION	TEF (1)	TEF-ADJUSTED CONCENTRATION
2,3,7,8-TCDD	*	X 1.0	*
1,2,3,7,8-PeCDD	*	X 1.0	*
1,2,3,4,7,8-HxCDD	*	X 0.1	*
1,2,3,6,7,8-HxCDD	*	X 0.1	*
1,2,3,7,8,9-HxCDD	*	X 0.1	*
1,2,3,4,6,7,8-HpCDD	0.074	X 0.0	1 7.39e-04
OCDD	0.438	X 0.0	001 4.40e-05
2,3,7,8-TCDF	*	X 0.1	*
1,2,3,7,8-PeCDF	*	X 0.0	5 *
2,3,4,7,8-PeCDF	*	X 0.5	*
1,2,3,4,7,8-HxCDF	*	X 0.1	*
1,2,3,6,7,8-HxCDF	*	X 0.1	*
1,2,3,7,8,9-HxCDF	*	X 0.1	*
2,3,4,6,7,8-HxCDF	*	X 0.1	*
1,2,3,4,6,7,8-HpCDF	*	X 0.0	1 *
1,2,3,4,7,8,9-HpCDF	*	X 0.0	1 *
OCDF	0.409	X 0.0	001 4.10e-05

Total: 8.24e-04

⁽¹⁾ World Health Organization (WHO) adopted TEF's, taken from: Van der Berg, et al: Toxic Equivalency Factor (TEFs) for PCBs, PCDDs, PCDFs for Hummans and Wildlife (Environ Health perspect 106:775-792 (1998).

CLIENT ID.

PCDD/PCDF ANALYSIS DATA SHEET Use for Sample and Blank Results

Comp WSP-SB-033/045

Lab Name: Columbia Analytical Services

Contract:

SDG No:

Lab Code: CAS Method:1613 Case No: Client No:

Lab ID: K0500590-002.01

Client Name: Geomatrix

Sample Wt/Vol: 10.013 g or mL: g

Matrix (Tissue): Tissue

Initial Calibration Date: 10/25/04

Sample Receipt Date: 06/01/05

Instrument ID: AutoSpec-Ultima

Ext. Date: 06/14/05

GC Column: DB-5

Ext. Vol(ul):20.0

Inj. Vol(ul):1.0

Sample Data Filename: U22436#1

Analysis Date: 17-JUN-05 Time: 18:36:11

Blank Data Filename: U22434#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22433#1

Concentration Units (pg/L or ng/Kg wet weight): ng/Kg % Solids/Lipids: 18.26/0.080

	CONCENTRATION	DETECTION	Qual.	ION ABUND.	RRT	MEAN
ANALYTE	FOUND	LIMIT	(1)	RATIO (2)	(2)	RRF
2,3,7,8-TCDD	*	0.034	U	*	*	0.98
1,2,3,7,8-PeCDD	*	0.034	U	*	*	0.98
1,2,3,4,7,8-HxCDD	* 4	0.028	Ū	*	*	1.15
1,2,3,6,7,8-HxCDD	*	0.033	Ū	*	*	0.98
1,2,3,7,8,9-HxCDD	* *	0.031	Ū	*	*	1.05
1,2,3,4,6,7,8-HpCD	D 0.089	0.029	JK	0.86	1.000	1.01
OCDD	0.713	0.075	JB	0.83	1.000	1.05
2,3,7,8-TCDF	*	0.041	U	*	*	1.03
1,2,3,7,8-PeCDF	*	0.024	U	*	*	1.01
2,3,4,7,8-PeCDF	*	0.023	U	*	*	1.08
1,2,3,4,7,8-HxCDF	*	0.022	U	*	*	1.28
1,2,3,6,7,8-HxCDF	*	0.027	U	*	*	1.23
1,2,3,7,8,9-HxCDF	*	0.026	U	*	*	1.32
2,3,4,6,7,8-HxCDF	*	0.026	U	*	*	1.18
1,2,3,4,6,7,8-HpCD)F *	0.027	U	*	*	1.53
1,2,3,4,7,8,9-HpCD		0.033	U	*	*	1.48
OCDF	0.208	0.065	JB	0.88	1.003	1.25
Total Tetra-Dioxin		0.034	υ 			
Total Penta-Dioxin		0.034	U			
Total Hexa-Dioxins		0.028	U			
Total Hepta-Dioxin		0.029				
Total Tetra-Furans		0.041	Ŭ			
Total Penta-Furans		0.023	U			
Total Hexa-Furans	*	0.022	U			
Total Hepta-Furans		0.027	U		_1	
(1) Qualifier II ind	icates not det	ected: The	K india	cares EMPC.	The C 1	needs val

⁽¹⁾ Qualifier U indicates not detected; The K indicates EMPC. The C needs value from second column analysis. The B indicates possible blank contamination.

⁽²⁾ RRTs and ion ratios are specified in Tables 2 and 9, Method 1613.

CLIENT ID.

FORM 2: PCDD/PCDF LABELED COMPOUND AND

CLEANUP STANDARD RECOVERIES

Comp WSP-SB-033/045

SDG No: Contract: Lab Name: Columbia Analytical Services

Lab ID: K0500590-002.01 Lab Code: CAS Method:1613 Case No: Client No:

Sample Wt/Vol: 10.013 g or mL: g Client Name: Geomatrix

Initial Calibration Date: 10/25/04 Matrix (Tissue): Tissue

Instrument ID: AutoSpec-Ultima Sample Receipt Date: 06/01/05

GC Column ID: DB-5 Ext. Date: 06/14/05

Sample Data Filename: U22436#1 Analysis Date: 17-JUN-05 Time: 18:36:11

Blank Data Filename: U22434#1 Ext. Vol(uL): 20.0 Inj. Vol(uL): 1.0

Cal. Ver. Data Filename: U22433#1 Dilution Factor: 1

Concentration Units (pg/L or ng/Kg wet weight): ng/Kg % Solid/Lipids: 18.26/0.080

		(Ā			ION	
	SPIKE	CONC.	R(%)	QC	ABUND.	RRT
	CONC.	FOUND	(1)	Limite(1)	RATIO (2) (2)
LABELED COMPOUNDS						
13C-2,3,7,8-TCDD	2000	1632.12	81.61	25-164	0.78	1.013
13C-1,2,3,7,8-PeCDD	2000	1833.48	91.67	25-181	1.53	1.227
13C-1,2,3,4,7,8-HxCDD	2000	1521.18	76.06	32-141	1.24	0.989
13C-1,2,3,6,7,8-HxCDD	2000	1481.35	74.07	28-130	1.23	0.991
13C-1,2,3,4,6,7,8-HpCDD	2000	1465.33	73.27	23-140	1.05	1.071
13C-OCDD	4000	2446.95	61.17	17-157	0.89	1.144
				**		
13C-2,3,7,8-TCDF	2000	1844.99	92.25	24-169	0.77	0.969
13C-1,2,3,7,8-PeCDF	2000	1670.15	83.51	24-185	1.53·	1.178
13C-2,3,4,7,8-PeCDF	2000	1618.91	80.95	21-178	1.56	1.211
13C-1,2,3,4,7,8-HxCDF	2000	1464.17	73.21	26-152	0.51	0.968
13C-1,2,3,6,7,8-HxCDF	2000	1304.96	65.25	26-123	0.52	0.970
13C-1,2,3,7,8,9-HxCDF	2000	1751.28	87.56	29-147	0.52	1.006
13C-2,3,4,6,7,8-HxCDF	2000	1403.41	70.17	28-136	0.53	0.985
13C-1,2,3,4,6,7,8-HpCDF	2000	1329.77	66.49	28-143	0.44	1.048
13C-1,2,3,4,7,8,9-HpCDF	2000	1553.43	77.67	26-138	0.44	1.080
CLEANUP STANDARD						
37Cl-2,3,7,8-TCDD	800	818.69	102.34	35-197		1.013

⁽¹⁾ Contract-required limits for percent recovery (R) are specified in Table 7, Method 1613.

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. NOTE: There is no ion abundance ratio for 37C14-2378-TCDD (cleanup standard). RFP C500273T1

PCDD/PCDF TOXICITY EQUIVALENCE SUMMARY

Use for Sample and Blank Results

Comp WSP-SB-033/7

CLIENT ID.

SDG No: Contract: Lab Name: Columbia Analytical Services

Lab ID: K0500590-002.01 Lab Code: CAS Method:1613 Case No: Client No:

Sample Wt/Vol: 10.013 g or mL: g Client Name: Geomatrix

Matrix (Solid/Aqueous/Waste/Ash): Tissue Initial Calibration Date: 10/25/04

Instrument ID: AutoSepc-Ultima Sample Receipt Date: 06/01/05

GC Column ID: DB-5 Ext. Date: 06/14/05

Sample Data Filename: U22436#1 Ext. Vol(ul):20.0 Inj. Vol(ul):1.0

Blank Data Filename: U22434#1 Analysis Date: 17-JUN-05 Time: 18:36:11

Cal. Ver. Data Filename: U22433#1 Dilution Factor: 1

WET LF 4120/6

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solids/Lipids: 18.26/0.080

	CONCENTRATION	TEF(1)	TEF-ADJUSTED CONCENTRATION
2,3,7,8-TCDD	*	X 1.0	*
1,2,3,7,8-PeCDD	*	X 1.0	*
1,2,3,4,7,8-HxCDD	*	X 0.1	*
1,2,3,6,7,8-HxCDD	*	X 0.1	*
1,2,3,7,8,9-HxCDD	*	X 0.1	*
1,2,3,4,6,7,8-HpCDD	0.089	X 0.01	8.88e-04
OCDD	0.713	X 0.0001	7.10e-05
2,3,7,8-TCDF	*	X 0.1	*
1,2,3,7,8-PeCDF	*	X 0.05	*
2,3,4,7,8-PeCDF	*	X 0.5	*
1,2,3,4,7,8-HxCDF	*	X 0.1	*
1,2,3,6,7,8-HxCDF	*	X 0.1	*
1,2,3,7,8,9-HxCDF	*	X 0.1	*
2,3,4,6,7,8-HxCDF	*	X 0.1	*
1,2,3,4,6,7,8-HpCDF	*	X 0.01	*
1,2,3,4,7,8,9-HpCDF	*	X 0.01	*
OCDF	0.208	X 0.0001	2.10e-05

Total: 9.80e-04

6/90

⁽¹⁾ World Health Organization (WHO) adopted TEF's, taken from: Van der Berg, et al: Toxic Equivalency Factor (TEFs) for PCBs, PCDDs, PCDFs for Hummans and Wildlife (Environ Health perspect 106:775-792 (1998).

PCDD/PCDF ANALYSIS DATA SHEET Use for Sample and Blank Results

CLIENT ID.

Comp WSP-SB-044/046

Lab Name: Columbia Analytical Services

Contract:

SDG No:

Lab Code: CAS Method:1613 Case No: Client No:

Lab ID: K0500590-003.01

Client Name: Geomatrix

Sample Wt/Vol: 10.133 g or mL: g

Matrix (Tissue): Tissue

Initial Calibration Date: 10/25/04

Sample Receipt Date: 06/01/05

Instrument ID: AutoSpec-Ultima

Ext. Date: 06/14/05

GC Column: DB-5

Ext. Vol(ul):20.0 Inj. Vol(ul):1.0

Sample Data Filename: U22437#1

Analysis Date: 17-JUN-05 Time: 19:22:32

Blank Data Filename: U22434#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22433#1

Concentration Units (pg/L or ng/Kg wet weight): ng/Kg % Solids/Lipids: 18.81/0.197

	CONCENTRATIO	N DETECTION	[Qual.	ION ABUND.		MEAN
ANALYTE	FOUND	LIMIT	(1)	RATIO (2)	(2)	RRF
2,3,7,8-TCDD	*	0.029	U	*	*	0.98
1,2,3,7,8-PeCDD	*		Ū	*	*	0.98
1,2,3,4,7,8-HxCDD	*		Ü	*	*	1.15
1,2,3,6,7,8-HxCDD	*		Ū	*	*	0.98
1,2,3,7,8,9-HxCDD	*		Ū	*	*	1.05
1,2,3,4,6,7,8-HpCI	D 0.071		J	1.02	1.000	1.01
OCDD	0.369		JBK	0.72	1.000	1.05
2,3,7,8-TCDF	*		U	*	*	1.03
1,2,3,7,8-PeCDF	*		ŭ	*	*	1.01
2,3,4,7,8-PeCDF	*	0.023	U	*	*	1.08
1,2,3,4,7,8-HxCDF	*	0.022	U	*	*	1.28
1,2,3,6,7,8-HxCDF	*	0.025	U	*	*	1.23
1,2,3,7,8,9-HxCDF	*	0.026	υ	*	*	1.32
2,3,4,6,7,8-HxCDF	*	0.025	σ	*	*	1.18
1,2,3,4,6,7,8-HpCI)F *	0.034	U	*	*	1.53
1,2,3,4,7,8,9-HpCI		0.042	ប	*	*	1.48
OCDF	0.195	0.072	JB	0.77	1.003	1.25
Total Tetra-Dioxin	ng. *	0.029	U			
Total Penta-Dioxin			Ū			
Total Hexa-Dioxins			Ü			
Total Hepta-Dioxin						
Total Tetra-Furans			U			
Total Penta-Furans			Ū			
Total Hexa-Furans	*		Ü			
Total Hepta-Furans	*		Ü			
(1) Qualifier II ind				cates EMPC.	The C	needs val

⁽¹⁾ Qualifier U indicates not detected; The K indicates EMPC. The C needs value from second column analysis. The B indicates possible blank contamination.

⁽²⁾ RRTs and ion ratios are specified in Tables 2 and 9, Method 1613.

CLIENT ID.

FORM 2: PCDD/PCDF LABELED COMPOUND AND CLEANUP STANDARD RECOVERIES

Comp WSP-SB-044/046

Lab Name: Columbia Analytical Services Contract: SDG No:

Lab Code: CAS Method:1613 Case No: Client No: Lab ID:K0500590-003.01

Client Name: Geomatrix Sample Wt/Vol: 10.133 g or mL: g

Matrix (Tissue): Tissue Initial Calibration Date: 10/25/04

Ext. Date: 06/14/05 GC Column ID: DB-5

Analysis Date: 17-JUN-05 Time: 19:22:32 Sample Data Filename: U22437#1

Ext. Vol(uL): 20.0 Inj. Vol(uL): 1.0 Blank Data Filename: U22434#1

Dilution Factor: 1 Cal. Ver. Data Filename: U22433#1

Concentration Units (pg/L or ng/Kg wet weight): ng/Kg % Solid/Lipids: 18.81/0.197

LABELED COMPOUNDS	SPIKE	CONC. FOUND	R(%) (1)	QC Limite(1)	ION ABUND. RATIO (2)	RRT) (2)
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD	2000 2000 2000 2000 2000 4000	1636.79 1824.37 1523.69 1523.06 1478.46 2475.87	81.84 91.22 76.18 76.15 73.92 61.90	25-164 25-181 32-141 28-130 23-140 17-157	0.80 1.55 1.23 1.23 1.05 0.89	1.013 1.227 0.989 0.992 1.071 1.144
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	2000 2000 2000 2000 2000 2000 2000 200	1789.13 1630.27 1620.65 1482.86 1326.01 1769.94 1448.47 1367.81 1583.03	89.46 81.51 81.03 74.14 66.30 88.50 72.42 68.39 79.15	24-169 24-185 21-178 26-152 26-123 29-147 28-136 28-143 26-138	0.77 1.54 1.54 0.53 0.53 0.51 0.52 0.44	0.969 1.178 1.211 0.968 0.970 1.006 0.986 1.048
CLEANUP STANDARD 37C1-2,3,7,8-TCDD	800	783.13	97.89	35-197		1.013

(1) Contract-required limits for percent recovery (R) are specified in Table 7, Method 1613.

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. NOTE: There is no ion abundance ratio for 37C14-2378-TCDD (cleanup standard). RFP C500273T1

CLIENT ID.

PCDD/PCDF TOXICITY EQUIVALENCE SUMMARY

Use for Sample and Blank Results

Comp WSP-SB-044/7

Lab Name: Columbia Analytical Services

Contract:

SDG No:

Lab Code: CAS Method:1613 Case No: Client No:

Lab ID: K0500590-003.01

Client Name: Geomatrix

Sample Wt/Vol: 10.133 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): Tissue Initial Calibration Date: 10/25/04

Sample Receipt Date: 06/01/05

Instrument ID: AutoSepc-Ultima

Ext. Date: 06/14/05

GC Column ID: DB-5

Ext. Vol(ul):20.0

Inj. Vol(ul):1.0

Sample Data Filename: U22437#1

Analysis Date: 17-JUN-05 Time: 19:22:32 Blank Data Filename: U22434#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22433#1

WET UF 6/2016

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solids/Lipids: 18.81/0.197

	CONCENTRATION	TEF(1)	TEF-ADJUSTED CONCENTRATION
2,3,7,8-TCDD	*	X 1.0	*
1,2,3,7,8-PeCDD	*	X 1.0	*
1,2,3,4,7,8-HxCDD	*	X 0.1	*
1,2,3,6,7,8-HxCDD	*	X 0.1	*
1,2,3,7,8,9-HxCDD	*	X 0.1	*
1,2,3,4,6,7,8-HpCDD	0.071	X 0.01	7.10e-04
OCDD	0.369	X 0.0001	3.70e-05
2,3,7,8-TCDF	*	X 0.1	*
1,2,3,7,8-PeCDF	*	X 0.05	*
2,3,4,7,8-PeCDF	*	X 0.5	*
1,2,3,4,7,8-HxCDF	*	X 0.1	*
1,2,3,6,7,8-HxCDF	*	X 0.1	*
1,2,3,7,8,9-HxCDF	*	X 0.1	*
2,3,4,6,7,8-HxCDF	*	X 0.1	*
1,2,3,4,6,7,8-HpCDF	*	X 0.01	*
1,2,3,4,7,8,9-HpCDF	*	X 0.01	*
OCDF	0.195	X 0.0001	2.00e-05

Total: 7.66e-04

⁽¹⁾ World Health Organization (WHO) adopted TEF's, taken from: Van der Berg, et al: Toxic Equivalency Factor (TEFs) for PCBs, PCDDs, PCDFs for Hummans and Wildlife (Environ Health perspect 106:775-792 (1998).

CLIENT ID.

PCDD/PCDF ANALYSIS DATA SHEET Use for Sample and Blank Results

JST-SB-042

Lab Name: Columbia Analytical Services

Contract:

SDG No:

Lab Code: CAS Method:1613 Case No: Client No:

Lab ID: K0500590-004.01

Client Name: Geomatrix

Sample Wt/Vol: 9.760 g or mL: g

Matrix (Tissue): Tissue

Initial Calibration Date: 10/25/04

Sample Receipt Date: 06/01/05

Instrument ID: AutoSpec-Ultima

Ext. Date: 06/14/05

GC Column: DB-5

Ext. Vol(ul):20.0 Inj. Vol(ul):1.0

Sample Data Filename: U22438#1

Analysis Date: 17-JUN-05 Time: 20:08:52

Blank Data Filename: U22434#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22433#1

Concentration Units (pg/L or ng/Kg wet weight): ng/Kg % Solids/Lipids: 17.69/0.307

ANALYTE	CONCENTRATI FOUND	ON I	DETECTION LIMIT	Qual. (1)	ION ABU		RRT (2)	MEAN RRF
ANADITE	100111		DINII I	(+)	101110	(2)	(2)	1111
2,3,7,8-TCDD		*	0.044	U	E 8 *		*	0.98
1,2,3,7,8-PeCDD		*	0.039	U	. (a *		*	0.98
1,2,3,4,7,8-HxCDD		*	0.035	U	*		*	1.15
1,2,3,6,7,8-HxCDD		*	0.042	U	*		*	0.98
1,2,3,7,8,9-HxCDD		*	0.039	U	*		*	1.05
1,2,3,4,6,7,8-HpC		*	0.041	U	*		*	1.01
OCDD	0.37	' 3	0.053	JB	0.80		1.000	1.05
2,3,7,8-TCDF		*	0.035	U	*		*	1.03
1,2,3,7,8-PeCDF		*	0.032	U	*		*	1.01
2,3,4,7,8-PeCDF		*	0.031	U	· *		*	1.08
1,2,3,4,7,8-HxCDF		*	0.024	U	*		*	1.28
1,2,3,6,7,8-HxCDF		*	0.029	U	*		*	1.23
1,2,3,7,8,9-HxCDF		*	0.028	Ŭ	*		*	1.32
2,3,4,6,7,8-HxCDF		*	0.028	Ŭ	*		*	1.18
1,2,3,4,6,7,8-HpC	DF	*	0.035	U	*		*	1.53
1,2,3,4,7,8,9-HpC		*	0.043	U	*	(*	1.48
OCDF	0.15	1	0.051	JB	0.86	:	1.003	1.25
Total Tetra-Dioxi	ns	*	0.044	U				
Total Penta-Dioxi	ns	*	0.039	U				
Total Hexa-Dioxin	3	*	0.035	U				
Total Hepta-Dioxi	ns	*	0.041	U				
Total Tetra-Furans	3	*	0.035	U *				
Total Penta-Furans	3	*	0.031	Ŭ				
Total Hexa-Furans		*	0.024	U				14
Total Hepta-Furans	3	*	0.035	U				
(1) Qualifier II in	dicates not	detec	rted. The	K india	cates EM	י יסמו	The C	needs val

⁽¹⁾ Qualifier U indicates not detected; The K indicates EMPC. The C needs value from second column analysis. The B indicates possible blank contamination.

⁽²⁾ RRTs and ion ratios are specified in Tables 2 and 9, Method 1613.

USEPA, EAD

CLIENT ID.

FORM 2: PCDD/PCDF LABELED COMPOUND AND

CLEANUP STANDARD RECOVERIES

JST-SB-042

Lab Name: Columbia Analytical Services

Contract:

SDG No:

Lab Code: CAS Method:1613 Case No:

Client No:

Lab ID: K0500590-004.01

Client Name: Geomatrix

Sample Wt/Vol: 9.760

q or mL: q

Matrix (Tissue): Tissue

Initial Calibration Date: 10/25/04

Sample Receipt Date: 06/01/05

Instrument ID: AutoSpec-Ultima

Ext. Date: 06/14/05

GC Column ID: DB-5

Analysis Date: 17-JUN-05 Time: 20:08:52

Sample Data Filename: U22438#1

Ext. Vol(uL): 20.0 Inj. Vol(uL): 1.0

Blank Data Filename: U22434#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22433#1

Concentration Units (pg/L or ng/Kg wet weight): ng/Kg % Solid/Lipids: 17.69/0.307

						T 017		
						ION		
		SPIKE	CONC.	R(%)	QC	ABUND.	RRT	
	98	CONC.	FOUND	(1)	Limite(1)	RATIO (2) (2)	
	LABELED COMPOUNDS							
	13C-2,3,7,8-TCDD	2000	1777.71	88.89	25-164	0.81	1.012	
	13C-1,2,3,7,8-PeCDD	2000	1992.61	99.63	25-181	1.53	1.227	
	13C-1,2,3,4,7,8-HxCDD	2000	1766.26	88.31	32-141	1.27	0.990	
	13C-1,2,3,6,7,8-HxCDD	2000	1585.53	79.28	28-130	1.26	0.992	
	13C-1,2,3,4,6,7,8-HpCDD	2000	1587.53	79.38	23-140	1.05	1.072	
	13C-OCDD	4000	2714.81	67.87	17-157	0.90	1.144	
	100 0022							
	13C-2,3,7,8-TCDF	2000	2003.79	100.19	24-169	0.77-	0.968	
100	13C-1,2,3,7,8-PeCDF	2000	1785.47	89.27	24-185	1.55	1.177	
	13C-2,3,4,7,8-PeCDF	2000	1740.78	87.04	21-178	1.55	1.211	
	13C-1,2,3,4,7,8-HxCDF	2000	1609.28	80.46	26-152	0.53	0.968	
	13C-1,2,3,4,7,8-HxCDF	2000	1400.08	70.00	26-123	0.53	0.971	
	13C-1,2,3,7,8,9-HxCDF	2000	1926.45	96.32	29-147	0.52	1.006	
	13C-2,3,4,6,7,8-HxCDF	2000	1525.07	76.25	28-136	0.53	0.986	
		2000	1467.00	73.35	28-143	0.44	1.048	
	13C-1,2,3,4,6,7,8-HpCDF		1707.38	85.37	26-138	0.45	1.040	
	13C-1,2,3,4,7,8,9-HpCDF	2000	1/0/.38	05.37	20-130	0.45	1.001	
(CLEANUP STANDARD							
		222	000 77	100 50	25 105		1 012	
	37Cl-2,3,7,8-TCDD	800	828.76	103.59	35-197		1.013	

⁽¹⁾ Contract-required limits for percent recovery (R) are specified in Table 7, Method 1613.

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. NOTE: There is no ion abundance ratio for 37C14-2378-TCDD (cleanup standard). RFP C500273T1

CLIENT ID.

Form 3

PCDD/PCDF TOXICITY EQUIVALENCE SUMMARY

JST-SB-042 Use for Sample and Blank Results

SDG No: Lab Name: Columbia Analytical Services Contract:

Lab Code: CAS Method:1613 Case No: Client No: Lab ID: K0500590-004.01

Sample Wt/Vol: 9.760 g or mL: g Client Name: Geomatrix

Matrix (Solid/Aqueous/Waste/Ash): Tissue Initial Calibration Date: 10/25/04

Sample Receipt Date: 06/01/05 Instrument ID: AutoSepc-Ultima

Ext. Date: 06/14/05 GC Column ID: DB-5

Sample Data Filename: U22438#1 Inj. Vol(ul):1.0 Ext. Vol(ul):20.0

Blank Data Filename: U22434#1 Analysis Date: 17-JUN-05 Time: 20:08:52

Cal. Ver. Data Filename: U22433#1 Dilution Factor: 1

WET OF GEROLE

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solids/Lipids: 17.69/0.307

	CONCENTRATION	TE	F(1)	TEF-ADJUSTED CONCENTRATION
2,3,7,8-TCDD	*	x	1.0	*
1,2,3,7,8-PeCDD	*	X	1.0	*
1,2,3,4,7,8-HxCDD	*	X	0.1	*
1,2,3,6,7,8-HxCDD	*	X	0.1	*
1,2,3,7,8,9-HxCDD	*	X	0.1	*
1,2,3,4,6,7,8-HpCDD	*	X	0.01	*
OCDD	0.373	X	0.0001	3.70e-05
2,3,7,8-TCDF	*	X	0.1	*
1,2,3,7,8-PeCDF	*	X	0.05	*
2,3,4,7,8-PeCDF	*	X	0.5	*
1,2,3,4,7,8-HxCDF	*	X	0.1	*
1,2,3,6,7,8-HxCDF	*	X	0.1	*
1,2,3,7,8,9-HxCDF	*	X	0.1	*
2,3,4,6,7,8-HxCDF	*	X	0.1	*
1,2,3,4,6,7,8-HpCDF	*	X	0.01	*
1,2,3,4,7,8,9-HpCDF	*	X	0.01	*
OCDF	0.151	X	0.0001	1.50e-05

Total: 5.20e-05

⁽¹⁾ World Health Organization (WHO) adopted TEF's, taken from: Van der Berg, et al: Toxic Equivalency Factor (TEFs) for PCBs, PCDDs, PCDFs for Hummans and Wildlife (Environ Health perspect 106:775-792 (1998).

PCDD/PCDF ANALYSIS DATA SHEET
Use for Sample and Blank Results

CLIENT ID.

Lab Name: Columbia Analytical Services Contract: SDG No:

Lab Code: CAS Method:1613 Case No: Client No: Lab ID: K0500590-005.01

Client Name: Geomatrix Sample Wt/Vol: 10.216 g or mL: g

Matrix (Tissue): Tissue Initial Calibration Date: 10/25/04

Ext. Date: 06/14/05 GC Column:DB-5

Ext. Vol(ul):20.0 Inj. Vol(ul):1.0 Sample Data Filename: U22439#1

Analysis Date: 17-JUN-05 Time: 20:55:12 Blank Data Filename: U22434#1

Dilution Factor: 1 Cal. Ver. Data Filename: U22433#1

Concentration Units (pg/L or ng/Kg wet weight): ng/Kg % Solids/Lipids: 22.11/0.646

	CONCENTRATION	DETECTION	Qual.	ION ABUND.		MEAN
ANALYTE	FOUND	LIMIT	(1)	RATIO (2)	(2)	RRF
2,3,7,8-TCDD	*	0.048	υ	*	*	0.98
1,2,3,7,8-PeCDD	*	0.042	Ü	*	*	0.98
1,2,3,4,7,8-HxCDD	*	0.040	U	*	*	1.15
1,2,3,6,7,8-HxCDD	*	0.049	U	*	*	0.98
1,2,3,7,8,9-HxCDD	*	0.045	·U	*	*	1.05
1,2,3,4,6,7,8-HpCI	D 0.101	0.026	J	1.06	1.000	1.01
OCDD	0.897	0.077	JB	0.89	1.000	1.05
2,3,7,8-TCDF	*	0.036	U	*	*	1.03
1,2,3,7,8-PeCDF	*	0.029	U	*	*	1.01
2,3,4,7,8-PeCDF	*	0.029	U	*	*	1.08
1,2,3,4,7,8-HxCDF	*	0.023	U	*	*	1.28
1,2,3,6,7,8-HxCDF	*	0.027	U	*	*	1.23
1,2,3,7,8,9-HxCDF	*	0.027	U	*	*	1.32
2,3,4,6,7,8-HxCDF	*	0.027	U	*	*	1.18
1,2,3,4,6,7,8-HpCI)F *	0.029	U	*	*	1.53
1,2,3,4,7,8,9-HpCI)F *	0.027	U	*	*	1.48
OCDF	0.202	0.070	JB	0.79	1.003	1.25
Total Tetra-Dioxin	ıs *	0.048	U			
Total Penta-Dioxin		0.042	Ū			
Total Hexa-Dioxins		0.040	U			
Total Hepta-Dioxin		0.026				
Total Tetra-Furans		0.036	U			
Total Penta-Furans		0.029	U			
Total Hexa-Furans	*	0.023	U			
Total Hepta-Furans	*	0.029	Ū			
(1) Qualifier II ind		acted. The	K india	rated FMDC	The C no	ferr phae

⁽¹⁾ Qualifier U indicates not detected; The K indicates EMPC. The C needs value from second column analysis. The B indicates possible blank contamination.

⁽²⁾ RRTs and ion ratios are specified in Tables 2 and 9, Method 1613.

USEPA, EAD

CLIENT ID.

FORM 2: PCDD/PCDF LABELED COMPOUND AND

CLEANUP STANDARD RECOVERIES

JST-SB-019

Lab Name: Columbia Analytical Services Contract:

SDG No:

Lab Code: CAS Method:1613 Case No:

Client No:

Lab ID: K0500590-005.01

Client Name: Geomatrix

Sample Wt/Vol: 10.216 g or mL: g

Matrix (Tissue): Tissue

Initial Calibration Date: 10/25/04

Sample Receipt Date: 06/01/05

Instrument ID: AutoSpec-Ultima

Ext. Date: 06/14/05

GC Column ID: DB-5

Analysis Date: 17-JUN-05 Time: 20:55:12

Sample Data Filename: U22439#1

Ext. Vol(uL): 20.0 Inj. Vol(uL): 1.0

Blank Data Filename: U22434#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22433#1

Concentration Units (pg/L or ng/Kg wet weight): ng/Kg % Solid/Lipids: 22.11/0.646

LABELED COMPOUNDS	SPIKE CONC.		R(%) (1)	QC Limite(1)	ION ABUND. RATIO (2	RRT) (2)
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD	2000	1690.47 1845.71	84.52 92.29	25-164 25-181	0.80	1.012 1.227
13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD	2000 2000	1546.01 1470.98	77.30 73.55	32-141 28-130	1.26 1.27	0.989 0.992
13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD	2000 4000	1423.41 2272.43	71.17 56.81	23-140 17-157	1.05 0.91	1.071 1.144
13C-2,3,7,8-TCDF	2000	1913.14	95.66	24-169	0.78	0.968
13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF	2000 2000	1678.93 1565.29	83.95 78.26	24-185 21-178	1.54 1.56	1.177 1.211
13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF	2000 2000	1470.69 1317.03	73.53 65.85	26-152 26-123	0.52 0.51	0.968 0.970
13C-1,2,3,7,8,9-HxCDF 13C-2,3,4,6,7,8-HxCDF	2000	1749.51 1404.09	87.48 70.20	29-147 28-136	0.52	1.006
13C-1,2,3,4,6,7,8-HpCDF	2000	1074.73	53.74	28-143	0.45	1.048
13C-1,2,3,4,7,8,9-HpCDF	2000	1527.91	76.40	26-138	0.43	1.081
CLEANUP STANDARD						
37C1-2,3,7,8-TCDD	800	856.51	107.06	35-197		1.013

⁽¹⁾ Contract-required limits for percent recovery (R) are specified in Table 7, Method 1613.

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. NOTE: There is no ion abundance ratio for 37C14-2378-TCDD (cleanup standard).

RFP C500273T1

CLIENT ID. PCDD/PCDF TOXICITY EQUIVALENCE SUMMARY

Use for Sample and Blank Results

JST-SB-019

Lab Name: Columbia Analytical Services

Contract:

SDG No:

Lab Code: CAS Method: 1613 Case No:

Client No:

Lab ID: K0500590-005.01

Client Name: Geomatrix

Sample Wt/Vol: 10.216 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): Tissue Initial Calibration Date: 10/25/04

Sample Receipt Date: 06/01/05

Instrument ID: AutoSepc-Ultima

Ext. Date: 06/14/05

GC Column ID: DB-5

Ext. Vol(ul):20.0

Inj. Vol(ul):1.0

Sample Data Filename: U22439#1

Analysis Date: 17-JUN-05 Time: 20:55:12 Blank Data Filename: U22434#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22433#1

WET UF 6120les

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solids/Lipids: 22.11/0.646

	CONCENTRATION	TEF(1)	TEF-ADJUSTED CONCENTRATION
2,3,7,8-TCDD	*	x 1.0	*
1,2,3,7,8-PeCDD	*	X 1.0	*
1,2,3,4,7,8-HxCDD	*	X 0.1	*
1,2,3,6,7,8-HxCDD	*	X 0.1	*
1,2,3,7,8,9-HxCDD	*	X 0.1	*
1,2,3,4,6,7,8-HpCDD	0.101	X 0.01	1.01e-03
OCDD	0.897	X 0.0001	9.00e-05
2,3,7,8-TCDF	*	X 0.1	*
1,2,3,7,8-PeCDF	*	X 0.05	*
2,3,4,7,8-PeCDF	*	X 0.5	*
1,2,3,4,7,8-HxCDF	*	X 0.1	*
1,2,3,6,7,8-HxCDF	*	X 0.1	*
1,2,3,7,8,9-HxCDF	*	X 0.1	*
2,3,4,6,7,8-HxCDF	*	X 0.1	*
1,2,3,4,6,7,8-HpCDF	*	X 0.01	*
1,2,3,4,7,8,9-HpCDF	*	X 0.01	*
OCDF	0.202	X 0.0001	2.00e-05

Total: 1.12e-03

⁽¹⁾ World Health Organization (WHO) adopted TEF's, taken from: Van der Berg, et al: Toxic Equivalency Factor (TEFs) for PCBs, PCDDs, PCDFs for Hummans and Wildlife (Environ Health perspect 106:775-792 (1998).

PCDD/PCDF ANALYSIS DATA SHEET Use for Sample and Blank Results CLIENT ID.

JST-SB-017

Lab Name: Columbia Analytical Services

SDG No:

Lab Code: CAS Method:1613 Case No: Client No:

Contract:

Lab ID: K0500590-006.01

Client Name: Geomatrix

Sample Wt/Vol: 10.467 g or mL: g

Matrix (Tissue): Tissue

Initial Calibration Date: 10/25/04

Sample Receipt Date: 06/01/05

Instrument ID: AutoSpec-Ultima

Ext. Date: 06/14/05

GC Column:DB-5

Ext. Vol(ul):20.0

Inj. Vol(ul):1.0

Sample Data Filename: U22440#1

Analysis Date: 17-JUN-05 Time: 21:41:32

Blank Data Filename: U22434#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22433#1

Concentration Units (pg/L or ng/Kg wet weight): ng/Kg % Solids/Lipids: 21.26/0.115

	CONCENTRATION	DETECTION	Qual.	ION ABUND.	RRT	MEAN
ANALYTE	FOUND	LIMIT	(1)	RATIO (2)	(2)	RRF
2,3,7,8-TCDD	*	0.045	U	*	*	0.98
1,2,3,7,8-PeCDD	*	0.037	Ū	*	*	0.98
1,2,3,4,7,8-HxCDD	*	0.032	U	*	*	1.15
1,2,3,6,7,8-HxCDD	*	0.037	U	*	*	0.98
1,2,3,7,8,9-HxCDD	*	0.035	U	*	*	1.05
1,2,3,4,6,7,8-HpC	DD 0.063	0.038	JK	0.77	1.000	1.01
OCDD	0.475	0.085	JBK	0.74	1.000	1.05
2,3,7,8-TCDF	*	0.037	U	*	*	1.03
1,2,3,7,8-PeCDF	*	0.029	U	*	*	1.01
2,3,4,7,8-PeCDF	*	0.030	U	*	*	1.08
1,2,3,4,7,8-HxCDF	*	0.021	U	*	*	1.28
1,2,3,6,7,8-HxCDF	*	0.026	U	*	*	1.23
1,2,3,7,8,9-HxCDF	*	0.025	U	*	*	1.32
2,3,4,6,7,8-HxCDF	*	0.026	U	*	*	1.18
1,2,3,4,6,7,8-HpCI)F *	0.035	U	*	*	1.53
1,2,3,4,7,8,9-HpCI)F *	0.038	U	*	*	1.48
OCDF	0.285	0.070	JB	0.95	1.003	1.25
Total Tetra-Dioxin	ıs *	0.045	U			
Total Penta-Dioxir	· *	0.037	U			
Total Hexa-Dioxins	*	0.032	Ū			
Total Hepta-Dioxin	s 0.073	0.038				
Total Tetra-Furans	*	0.037	U			
Total Penta-Furans	*	0.030	U			
Total Hexa-Furans	*	0.021	Ū			
Total Hepta-Furans	*	0.035	Ū			
(1) Qualifier II ind			r india	atos EMDO	mh a C	

⁽¹⁾ Qualifier U indicates not detected; The K indicates EMPC. The C needs value from second column analysis. The B indicates possible blank contamination.

⁽²⁾ RRTs and ion ratios are specified in Tables 2 and 9, Method 1613.

USEPA, EAD

CLIENT ID. FORM 2: PCDD/PCDF LABELED COMPOUND AND

CLEANUP STANDARD RECOVERIES

JST-SB-017

Lab Name: Columbia Analytical Services

Contract:

SDG No:

Lab Code: CAS Method:1613 Case No: Client No:

Lab ID: K0500590-006.01

Client Name: Geomatrix

Sample Wt/Vol: 10.467 g or mL: g

Matrix (Tissue): Tissue

Initial Calibration Date: 10/25/04

Sample Receipt Date: 06/01/05

Instrument ID: AutoSpec-Ultima

Ext. Date: 06/14/05

GC Column ID: DB-5

Analysis Date: 17-JUN-05 Time: 21:41:32

Sample Data Filename: U22440#1

Ext. Vol(uL): 20.0 Inj. Vol(uL): 1.0

Blank Data Filename: U22434#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22433#1

Concentration Units (pg/L or ng/Kg wet weight): ng/Kg % Solid/Lipids: 21.26/0.115

LABELED COMPOUNDS	SPIKE CONC.		R(%) (1)	QC Limite(1)	ION ABUND. RATIO (2	RRT 2) (2)
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD	2000 2000 2000 2000 2000 4000	1776.12 1965.47 1600.49 1581.27 1479.78 2125.35	88.81 98.27 80.02 79.06 73.99 53.13	25-164 25-181 32-141 28-130 23-140 17-157	0.76 1.54 1.28 1.26 1.06 0.92	1.013 1.228 0.989 0.992 1.071
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF	2000 2000 2000 2000 2000 2000 2000 200	1976.32 1755.24 1636.05 1560.51 1396.65 1863.40 1469.19 1267.43 1569.41	98.82 87.76 81.80 78.03 69.83 93.17 73.46 63.37 78.47	24-169 24-185 21-178 26-152 26-123 29-147 28-136 28-143 26-138	0.77 1.56 1.57 0.52 0.52 0.52 0.52 0.45 0.43	0.969 1.178 1.212 0.968 0.971 1.006 0.985 1.048 1.081
CLEANUP STANDARD						
37C1-2,3,7,8-TCDD	800	831.13	103.89	35-197		1.014

⁽¹⁾ Contract-required limits for percent recovery (R) are specified in Table 7, Method 1613.

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. NOTE: There is no ion abundance ratio for 37C14-2378-TCDD (cleanup standard). RFP C500273T1

PCDD/PCDF TOXICITY EQUIVALENCE SUMMARY Use for Sample and Blank Results

JST-SB-017

Lab Name: Columbia Analytical Services

Contract:

SDG No:

CLIENT ID.

Lab Code: CAS Method: 1613 Case No:

Client No:

Lab ID: K0500590-006.01

Client Name: Geomatrix

Sample Wt/Vol: 10.467 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): Tissue Initial Calibration Date: 10/25/04

Sample Receipt Date: 06/01/05

Instrument ID: AutoSepc-Ultima

Ext. Date: 06/14/05

GC Column ID: DB-5

Ext. Vol(ul):20.0

Inj. Vol(ul):1.0 Sample Data Filename: U22440#1

Analysis Date: 17-JUN-05 Time: 21:41:32 Blank Data Filename: U22434#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22433#1

الكات (كالمنافة (pg/L or ng/Kg dry weight): ng/Kg % Solids/Lipids: 21.26/0.115

	CONCENTRATION	TE:	F(1)	TEF-ADJUSTED CONCENTRATION
2,3,7,8-TCDD	*	X	1.0	*
1,2,3,7,8-PeCDD	*		1.0	*
1,2,3,4,7,8-HxCDD	*		0.1	*
1,2,3,4,7,8-HxCDD	*		0.1	*
1,2,3,7,8,9-HxCDD	*	==	0.1	*
1,2,3,4,6,7,8-HpCDD	0.063		0.01	6.31e-04
OCDD	0.475		0.0001	4.80e-05
2,3,7,8-TCDF	*	X	0.1	*
1,2,3,7,8-PeCDF	*	X	0.05	*
2,3,4,7,8-PeCDF	*	X	0.5	*
1,2,3,4,7,8-HxCDF	*	X	0.1	*
1,2,3,6,7,8-HxCDF	*	X	0.1	*
1,2,3,7,8,9-HxCDF	*	X	0.1	*
2,3,4,6,7,8-HxCDF	*	X	0.1	*
1,2,3,4,6,7,8-HpCDF	*	X	0.01	*
1,2,3,4,7,8,9-HpCDF	*	X	0.01	*
OCDF	0.285	X	0.0001	2.90e-05

Total: 7.07e-04

⁽¹⁾ World Health Organization (WHO) adopted TEF's, taken from: Van der Berg, et al: Toxic Equivalency Factor (TEFs) for PCBs, PCDDs, PCDFs for Hummans and Wildlife (Environ Health perspect 106:775-792 (1998).

An Employee - Owned Company

Accuracy & Precision Data

10655 Richmond Avenue, Suite 130-A, Houston, TX 77042 Phone (713)266-1599 Fax (713)266-0130 www.caslab.com

3DFA 1613 PCDD/PCDF SPIKED SAMPLE SUMMARY

CLIENT ID

Lab Name:

COLUMBIA ANALYTICAL SERVICES

Lab Code:

CAS_ LAB. ID:

LCS/LCSD

Matrix:

Solid (Solid, Aqueous, Ash, Waste)

CONCENTRATION UNITS: (pg/L or ng/Kg)

ng/Kg

EB21091

	SPIKE ADDED	LCS SAMPLE	LCSD SAMPLE		LCS%	LCSD%	RPD	OC
ANALYTE	(PG)	CONC.	CONC.		RECOV. #			LIMITS
2378-TCDD	200	23.779	20.507		118.90	102.54	14.78	50 - 150
12378-PeCDD	1000	102.438	97.309		102.44	97.31	5.14	50 - 150
123478-HxCDD	1000	108.225	94.522		108.23	94.52	13.52	50 - 150
123678-HxCDD	1000	121.061	109.173		121.06	109.17	10.33	50 - 150
123789-HxCDD	1000	118.641	105.295		118.64	105.30	11.92	50 - 150
1234678-HpCDD	1000	107.147	100.826		107.15	100.83	6.08	50 - 150
OCDD	2000	218.340	211.319		109.17	105.66	3.27	50 - 150
2378-TCDF	200	17.648	15.299		88.24	76.50	14.26	50 - 150
12378-PeCDF	1000	112.696	99.357		112.70	99.36	12.58	50 - 150
23478-PeCDF	1000	108.158	95.257		108.16	95.26	12.68	50 - 150
123478-HxCDF	1000	106.364	92.205		106.36	92.21	14.26	50 - 150
123678-HxCDF	1000	118.670	106.754		118.67	106.75	10.57	50 - 150
123789-HxCDF	1000	99.088	86.112	- * 1	99.09	86.11	14.01	50 - 150
234678-HxCDF	1000	107.897	96.028		107.90	96.03	11.64	50 - 150
1234678-HpCDF	1000	100.740	92.807	1222 23	100.74	92.81	8.20	50 - 150
1234789-HpCDF	1000	99.558	92.764		99.56	92.76	7.07	50 - 150
OCDF	2000	218.292	188.009		109.15	94.00	14.91	50 - 150

If an analyte is not detected in either analysis, enter 0 (zero) as the concentration.

[#] Column to be used to flag values outside QC limits.

^{*} Compound outside the QC advisory limits of 50 - 150

Form 1

CLIENT ID.

PCDD/PCDF ANALYSIS DATA SHEET
Use for Sample and Blank Results

Use for Sample and Blank Results LCS

Lab Name: Columbia Analytical Services Contract: SDG No:

Lab Code: CAS Method:1613 Case No: Client No: Lab ID: EB21091-LCS

Client Name: Sample Wt/Vol: 10.000 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): solid Initial Calibration Date: 08/10/04

Sample Receipt Date: Instrument ID: 70S

Ext. Date: 06/14/05 GC Column:DB-5

Ext. Vol(ul):20.0 Inj. Vol(ul):1.0 Sample Data Filename: C14093#3

Analysis Date: 23-JUN-05 Time: 13:56:23 Blank Data Filename: U22434#1

Dilution Factor: 1 Cal. Ver. Data Filename: C14093#2

WET CF CEIZENG

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solids/Lipids:

	CONCENTRATION	DETECTION	Qual. ION ABUND	. RRT	MEAN
ANALYTE	FOUND	LIMIT	(1) RATIO (2) (2)	RRF
2,3,7,8-TCDD	23,779	0.113	0.77	1.001	0.95
1,2,3,7,8-PeCDD	102.438	0.098	1.60	1.000	1.04
1,2,3,4,7,8-HxCDD	108.225	0.073	1.24	1.000	1.07
1,2,3,6,7,8-HxCDD	121.061	0.084	1.23	1.000	0.95
1,2,3,7,8,9-HxCDD	118.641	0.080	1.22	1.009	0.99
1,2,3,4,6,7,8-HpCI	DD 107.147	0.118	1.05	1.000	0.99
OCDD	218.340	0.239	0.88	1.000	1.02
2,3,7,8-TCDF	17.648	0.082	0.76	1.001	1.08
1,2,3,7,8-PeCDF	112.696	0.081	1.54	1.000	0.93
2,3,4,7,8-PeCDF	108.158	0.078	1.53	1.000	1.01
1,2,3,4,7,8-HxCDF	106.364	0.051	1.23	1.000	1.21
1,2,3,6,7,8-HxCDF	118.670	0.058	1.24	1.000	1.19
1,2,3,7,8,9-HxCDF	99.088	0.067	1.25	1.000	1.26
2,3,4,6,7,8-HxCDF	107.897	0.058	1.24	1.000	1.14
1,2,3,4,6,7,8-HpCI	F 100.740	0.089	1.02	1.000	1.43
1,2,3,4,7,8,9-HpCI	F 99.558	0.147	1.02	1.000	1.41
OCDF	218.292	0.327	0.88	1.005	1.37
Total Tetra-Dioxin	s 23.779	0.113			
Total Penta-Dioxin	s 102.438	0.098			
Total Hexa-Dioxins	347.928	0.084			
Total Hepta-Dioxin	s 109.655	0.118			
Total Tetra-Furans	18.106	0.082			
Total Penta-Furans	222.225	0.078			
Total Hexa-Furans	432.020	0.058			
Total Hepta-Furans	200.298	0.089			
(1) Qualifier II ind	icates not dete	acted. The I	indicated FMDC	Tho C n	ooda malu

⁽¹⁾ Qualifier U indicates not detected; The K indicates EMPC. The C needs value from second column analysis. The B indicates possible blank contamination.

⁽²⁾ RRTs and ion ratios are specified in Tables 2 and 9, Method 1613.

CLIENT ID.

FORM 2: PCDD/PCDF LABELED COMPOUND AND CLEANUP STANDARD RECOVERIES

LCS

Lab Name: Columbia Analytical Services Contract:

SDG No:

Lab Code: CAS Method:1613 Case No:

Client No:

Lab ID:EB21091-LCS

Client Name:

Sample Wt/Vol: 10.000 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): solid

Initial Calibration Date: 08/10/04

Sample Receipt Date:

Instrument ID: 70S

Ext. Date: 06/14/05

GC Column ID: DB-5

Analysis Date: 23-JUN-05 Time: 13:56:23 Sample Data Filename: C14093#3

Ext. Vol(uL): 20.0 Inj. Vol(uL): 1.0 Blank Data Filename: U22434#1

Dilution Factor: 1

Cal. Ver. Data Filename: C14093#2

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solid/Lipids:

	SPIKI CONC		R(%) (1)	QC Limite(1)	ION ABUND. RATIO (:	RRT 2) (2)
LABELED COMPOUNDS						
13C-2,3,7,8-TCDD	2000	7627 70	0.1 = 0			
13C-1,2,3,7,8-PeCDD	2000	1631.79	81.59	25-164	0.79	1.008
	2000	1603.49	80.17	25-181	1.54	1.184
13C-1,2,3,4,7,8-HxCDD	2000	1830.51	91.53	32-141	1.23	0.989
13C-1,2,3,6,7,8-HxCDD	2000	1571.38	78.57	28-130	1.25	0.991
13C-1,2,3,4,6,7,8-HpCDD	2000	1445.16	72.26	23-140	1.05	1.077
13C-OCDD	4000	1868.08	46.70	17-157	0.85	1.167
13C-2,3,7,8-TCDF	2000	1936.37	96.82	24-169	0.79	0.977
13C-1,2,3,7,8-PeCDF	2000	1600.46	80.02	24-185	1.55	1.141
13C-2,3,4,7,8-PeCDF	2000	1481.69	74.08	21-178	1.55	1.170
13C-1,2,3,4,7,8-HxCDF	2000	1901.23	95.06	26-152	0.48	0.969
13C-1,2,3,6,7,8-HxCDF	2000	1587.91	79.40	26-123	0.49	0.972
13C-1,2,3,7,8,9-HxCDF	2000	1854.41	92.72	29-147	0.49	1.006
13C-2,3,4,6,7,8-HxCDF	2000	1726.80	86.34	28-136	0.48	0.986
13C-1,2,3,4,6,7,8-HpCDF	2000	1640.62	82.03	28-143	0.44	1.050
13C-1,2,3,4,7,8,9-HpCDF	2000	1447.98	72.40	26-138	0.43	1.089
CLEANUP STANDARD						
37C1-2,3,7,8-TCDD	800	734.82	91.85	35-197		1.009

⁽¹⁾ Contract-required limits for percent recovery (R) are specified in Table 7, Method 1613.

RFP C500273T1

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. NOTE: There is no ion abundance ratio for 37C14-2378-TCDD (cleanup standard).

PCDD/PCDF ANALYSIS DATA SHEET Use for Sample and Blank Results CLIENT ID.

LCSD

Lab Name: Columbia Analytical Services

Lab Code: CAS Method:1613 Case No: Client No:

Contract:

Lab ID: EB21091-LCSD

SDG No:

Client Name:

Sample Wt/Vol: 10.000 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): Solid Initial Calibration Date: 10/25/04

Sample Receipt Date:

Instrument ID: AutoSpec-Ultima

Ext. Date: 06/14/05

GC Column: DB-5

Ext. Vol(ul):20.0

Inj. Vol(ul):1.0

Sample Data Filename: U22461#1

Analysis Date: 20-JUN-05 Time: 01:09:14 Blank Data Filename: U22434#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22448#1

WAT OF 6/20/6

Concentration Units (pg/L or ng/Kg ary weight): ng/Kg % Solids/Lipids:

ANALYTE	CONCENTRATION FOUND	DETECTION LIMIT		ION ABUND. RATIO (2)		MEAN RRF
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCD OCDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	211.319 15.299 99.357 95.257 92.205 106.754 86.112	0.040 0.029 0.031 0.037 0.034 0.070 0.092 0.040 0.031 0.031 0.040 0.047		0.74 1.55 1.24 1.23 1.21 1.07 0.87 0.74 1.55 1.53 1.21 1.21	1.001 1.000 1.000 1.000 1.000 1.000 1.001 1.001 1.000 1.000 1.000	0.98 0.98 1.15 0.98 1.05 1.01 1.05 1.03 1.01 1.08 1.28 1.23 1.32
1,2,3,4,6,7,8-HpCD 1,2,3,4,7,8,9-HpCD OCDF	F 92.807	0.275 0.384 0.071		1.01 1.01 0.88	1.000 1.000 1.003	1.53 1.48 1.25
Total Tetra-Dioxing Total Penta-Dioxing Total Hexa-Dioxing Total Hepta-Dioxing Total Tetra-Furans Total Penta-Furans Total Hexa-Furans Total Hepta-Furans	97.309 308.990 103.672 15.299 194.614 381.099	0.040 0.029 0.031 0.070 0.040 0.031 0.040				4)
Total Hepta-Furans	187.553	0.275	Lindia	ates FMDC	The Cne	ande rral

⁽¹⁾ Qualifier U indicates not detected; The K indicates EMPC. The C needs value from second column analysis. The B indicates possible blank contamination. (2) RRTs and ion ratios are specified in Tables 2 and 9, Method 1613.

FORM 2: PCDD/PCDF LABELED COMPOUND AND

CLEANUP STANDARD RECOVERIES

LCSD

Lab Name: Columbia Analytical Services Contract: SDG No:

Lab Code: CAS Method:1613 Case No: Client No: Lab ID:EB21091-LCSD

Client Name: Sample Wt/Vol: 10.000 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): Solid Initial Calibration Date: 10/25/04

Sample Receipt Date: Instrument ID: AutoSpec-Ultima

Ext. Date: 06/14/05 GC Column ID: DB-5

Analysis Date: 20-JUN-05 Time: 01:09:14 Sample Data Filename: U22461#1

Ext. Vol(uL): 20.0 Inj. Vol(uL): 1.0 Blank Data Filename: U22434#1

Dilution Factor: 1 Cal. Ver. Data Filename: U22448#1

WET OF G12016

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solid/Lipids:

						ION	
		SPIKE	CONC.	R(%)	QC	ABUND.	RRT
		CONC.	FOUND	(1)	Limite(1)	RATIO (2	2) (2)
]	LABELED COMPOUNDS						
		111					
	13C-2,3,7,8-TCDD	2000	1765.34	88.27	25-164	0.77	1.013
	13C-1,2,3,7,8-PeCDD	2000	1847.69	92.38	25-181	1.54	1.230
	13C-1,2,3,4,7,8-HxCDD	2000	1695.35	84.77	32-141	1.23	0.989
	13C-1,2,3,6,7,8-HxCDD	2000	1614.06	80.70	28-130	1.23	0.991
	13C-1,2,3,4,6,7,8-HpCDD	2000	1340.87	67.04	23-140	1.05	1.072
	13C-OCDD	4000	1828.59	45.71	17-157	0.89	1.144
	13C-2,3,7,8-TCDF	2000	1690.64	84.53	24-169	0.76	0.969
	13C-1,2,3,7,8-PeCDF	2000	1597.02	79.85	24-185	1.53	1.180
	13C-2,3,4,7,8-PeCDF	2000	1494.45	74.72	21-178	1.55	1.213
	13C-1,2,3,4,7,8-HxCDF	2000	1514.47	75.72	26-152	0.52	0.968
	13C-1,2,3,6,7,8-HxCDF	2000	1386.63	69.33	26-123	0.52	0.970
	13C-1,2,3,7,8,9-HxCDF	2000	1745.83	87.29	29-147	0.52	1.006
	13C-2,3,4,6,7,8-HxCDF	2000	1443.23	72.16	28-136	0.51	0.985
	13C-1,2,3,4,6,7,8-HpCDF	2000	1296.64	64.83	28-143	0.43	1.048
	13C-1,2,3,4,7,8,9-HpCDF	2000	1295.42	64.77	26-138	0.44	1.081
	<u> </u>					77.	_, 002
CL	EANUP STANDARD						
	37Cl-2,3,7,8-TCDD	800	787.15	98.39	35-197		1.014

⁽¹⁾ Contract-required limits for percent recovery (R) are specified in Table 7, Method 1613.

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. NOTE: There is no ion abundance ratio for 37C14-2378-TCDD (cleanup standard). RFP C500273T1

	المرازات		L.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

July 28, 2005

Service Request No: K2502124

Ann Holbrow Geomatrix Consultants 2101 Webster St. 12th Floor Oakland, CA 94612

RE: 9329

Dear Ann:

Enclosed is the revised report for the sample(s) submitted to our laboratory on March 24, 2005. For your reference, these analyses have been assigned our service request number K2502124.

We apologize for any inconvenience this may have created.

Please call if you have any questions. My extension is 3376.

Respectfully submitted,

Columbia Analytical Services, Inc.

Gregory Salata, Ph.D.

Project Chemist

GS/jeb

Page 1 of <u>313</u>

July 21, 2005

Dr. Gregory Salata Columbia Analytical Services, Inc. 1317 South 13th Avenue Kelso, WA 98626

Subject:

Report Amendment; E0500374 K2502124/Geomatrix

Dear Greg,

Samples PSP-SB-001 and PSP-SB-001DUP were originally reported as duplicate samples. The Toxicity Equivalence values did not agree well and the samples were re-extracted and re-analyzed.

Please replace the results for E0500374-001 and E0500374-002 with the enclosed data package.

Should you have any questions or need additional information, please call Jane Freemyer at 713-266-1599.

Sincerely,

COLUMBIA ANALYTICAL SERVICES, INC.

Jane Freemyer

HRMS Chemist: Quality Assurance/Projects

jfreemyer@houston.caslab.com

Dioxin/Furan Testing

10655 Richmond Avenue, Suite 130-A, Houston, TX 77042 Phone (713)266-1599 Fax (713)266-0130 www.caslab.com

COLUMBIA ANALYTICAL SERVICES, INC.

Client: Project:

Geomatrix, Inc.

K2502124

Sample Matrix:

tissue

Service Request No.: Date Received:

E0500374_RE

05/12/05

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier IV. When appropriate to the method, method blank results have been reported with each analytical test.

This amendment contains the re-extracted and re-analyzed Method 1613B test results for PSP-SB-001 and PSP-SB-001DUP. The samples were re-extracted because the compounds detected did not duplicate well at low levels. Since the samples are so clean and we are working at such low levels of detection, we decided re-extraction and re-analysis would best resolve the discrepancies in the duplicate results.

The re-extracted and re-analyzed results, reported as E0500374-001.01RE and E0500374-002.01RE are the results to use when reporting Method 1613B test results. The enclosed results replace the results reported previously for these samples.

Sample Receipt

Please see the original report for E0500374 for the sample receipt information.

Data Validation Notes and Discussion

B flags - Method Blanks

The Method Blank EB22015-MB/U12409#1contained low levels of 1234678-HpCDD and OCDD below the Method Reporting Limit (MRL). The Method Blank EB22015-MB/U22665#1contained low levels of 1234678-HpCDD and OCDD below the Method Reporting Limit (MRL). The associated compounds in the samples(s) are flagged with 'B' flags.

MS/MSD

A Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) was analyzed and reported in lieu of the MS/MSD for these samples.

K flags

EMPC - When the ion abundance ratios associated with a particular compound are outside the QC limits, samples are flagged with a 'K' flag. A 'K' flag indicates an estimated maximum possible concentration for the associated compound.

Approved by

Xiangqiu Liang, Laboratory Director

Date_7/22/05

Client: Project:

Columbia Analytical Services,Inc.

1613B_Full List/K2502124

Service Request: E0500374

SAMPLE CROSS-REFERENCE

SAMPLE#	CLIENT SAMPLE ID		<u>DATE</u>	<u>TIME</u>
E0500374-001 RE	PSP-SB-001		03/16/05	1500
	PSP-SB-001 DUP	24	03/16/05	1500
E0500374-003	PSP-SB-002		03/16/05	1500
E0500374-004	PSP-SB-003		03/16/05	1500
E0500374-005	PSP-SB-004		03/16/05	1500
E0500374-006	PSP-SB-005		03/16/05	1500

OF 9/21/5

An Employee - Owned Company

Dioxin/Furan Testing

10655 Richmond Avenue, Suite 130-A, Houston, TX 77042 Phone (713)266-1599 Fax (713)266-0130 www.caslab.com

Method 1613B/Dioxins & Furans Reporting Limits

Congener	CONGENER ABBREVIATION	CAS RN	REPORTING LIMITS Aqueous PG/L	REPORTING LIMITS Solids NG/KG
2,3,7,8-Tetrachlorodibenzo-p-dioxin	2378-TCDD	1746-01-6	10	1.0
1,2,3,7,8-Pentachlorodibenzo-p-dioxins	12378-PeCDD	40321-76-4	50	5.0
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	123478-HxCDD	39227-28-6	50	5.0
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	123678-HxCDD	57653-85-7	50	5.0
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	123789-HxCDD	19408-74-3	50	5.0
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	1234678-HpCDD	35822-46-9	50	5.0
Octachlorodibenzo-p-dioxin	OCDD	3268-87-9	100	10
2,3,7,8-Tetrachlorodibenzofuran	2378-TCDF	51207-31-9	10	1.0
1,2,3,7,8-Pentachlorodibenzofuran	12378-PeCDF	57117-41-6	50	5.0
2,3,4,7,8-Pentachlorodibenzofuran	23478-PeCDF	57117-31-4	50	5.0
1,2,3,6,7,8-Hexachlorodibenzofuran	123478-HxCDF	70648-26-9	50	.5.0
1,2,3,7,8,9-Hexachlorodibenzofuran	123678-HxCDF	57117-44-9	50	5.0
1,2,3,4,7,8-Hexachlorodibenzofuran	123789-HxCDF	72918-21-9	50	5.0
2,3,4,6,7,8-Hexachlorodibenzofuran	234678-HxCDF	60851-34-5	50	5.0
1,2,3,4,6,7,8-Heptachlorodibenzofuran	1234678-HpCDF	67562-39-4	50	5.0
1,2,3,4,7,8,9-Heptachlorodibenzofuran	1234789-HpCDF	55673-89-7	50	5.0
Octachlorodibenzofuran	OCDF	39001-02-0	100	10
Total Tetra-Dioxins	*	*	10	1.0
Total Penta-Dioxins	*	*	50	5.0
Total Hexa-Dioxins	*	*	50	5.0
Total Hepta-Dioxins	*	*	50	5.0
Total Tetra-Furans	*	*	10	1.0
Total Penta-Furans	*	*	50	5.0
Total Hexa-Furans	*	*	50	5.0
Total Hepta-Furans	*	*	50	5.0

NOTE: Tissue samples are reported on a wet-weight basis and soil/sediment samples are reported on a dry-weight basis.

Data Qualifier Flags

- ❖ B Used when an associated analyte is found in the method blank, as well as in the sample
- Confirmation of the TCDF compound: When 2378-TCDF is detected on the DB-5 column, confirmation analyses are performed on a second column (DB-225.) The results from both the DB-5 column and the DB-225 column are included in this data package. The results from the DB-225 analyses should be used to evaluate the 23788-TCDF in the samples. The confirmed result should be used in determining the TEQ value for TCDF. The samples requiring confirmation are indicated in the table above.
- ♣ E Indicates an estimated value used when the analyte concentration exceeds the upper end of the linear calibration range
- ❖ J Indicates an estimated value used when the analyte concentration is below the method reporting limit (MRL) and above the detection limit (DL)
- * K EMPC When the ion abundance ratios associated with a particular compound are outside the QC limits, samples are flagged with a 'K' flag. A 'K' flag indicates an estimated maximum possible concentration for the associated compound.
- ❖ U Indicates the compound was analyzed and not detected.
- ❖ X User defined; see case narrative for detailed explanation
- Samples that had recoveries of labeled standards outside the acceptance limits are flagged with 'Y' flags on the Form 2s. In all cases, the signal-to-noise ratios are greater than 10:1, making these data acceptable.
- * Indicates concentration is reported as 'Not Detected'

CAS/HOU - Form Production, Peer Review & Project Review Signatures

SR# Unique ID	E050	0374 RE					
	First Level - D	ata Processing	- to be filled	by person ge	nerating the form	S	
Date	07/14/10	Person 1					h.
Date		Person 2					
	Second Level	- Data Review –	to be filled l	y person doin	g peer review		
Date 0	7/18/05	Reviewer	gy.			TC.	6
Date		Reviewer			3.4	7 4	-27
	Project Level -	Review - to be fi	lled by perso	n doing projec	t compliance revi	ew	
Date チ	119/5	Reviewer p	-				

Chain-of-custody

10655 Richmond Avenue, Suite 130-A, Houston, TX 77042 Phone (713)266-1599 Fax (713)266-0130 www.caslab.com

Nonconformity and Corrective Action Report

	NOCA R	eport No. <u>60500374</u>
PROCEDURE (SOP of METHOD):	Ev	ENT DATE: 4/7/5
EVENT: Missed Holding Time Method Blank Contamination Equipment Failure	☐ C Failure ☐ Lab Error (sp. n ☐ Login Error ☐ Project Mana ☐ Unacceptable PT Sample Result	
SAMPLES / PROJECTS / CUSTOMERS / SYST	EMS.AFFECTED	
Duplicates do not	match - reextrac	t samples
DETAILED DESCRIPTION	-001 and -0	02
	· · · · · · · · · · · · · · · · · · ·	
ORIGINATOR: Tane July		DATE: 7/7/5
PROFECT CHEMIST(s):	NOTERED BY:	DATE.
CORRECTIVE ACTION AND OUT	TCOME	¥
Re-establishment of conformity must be demonstra to correct the particular Nonconformity and preven	ated and documented Describe the steps that w	vere taken, or are planned to be taken,
Report results as E050	00374-001.01RE and	NUCLOUS LIVE.
E0500374-002.011	RE	
. #	1.00	./
# (#)		
Is the data to be flagged in the Analytical R	Report with an appropriate qualifier?	⊡No □ Yes
d: .000	Report with an appropriate qualifier?	□No □ Yes
Is the data to be flagged in the Analytical R		□No □Yes Date:
Is the data to be flagged in the Analytical R APPROVAL AND NOTIFICATION Supervisor Verification and Approval of Co	orrective Action	
Is the data to be flagged in the Analytical R APPROVAL AND NOTIFICATION Supervisor Verification and Approval of Co Comments: QA PM Verification and Approval of Corre	ective Action	Date:

Original: Customer File

Page 1 of 1 Photocopies: Supervisor and QAPM

N&CA Report 2004.doc 3/26/2004

No	Project	Lab	Client	Sample	Tare	Tare &	Tare &	Calculated			Sample
	ID	ID	ID	Size	Vial	Wet	Dry		ercent Moisture	Weight	Description
MB		EB22015-MB	MB	10.000		Sample	Sample	Sona	Moisture	41	
LCS		EB22015-LCS	LCS	10.000							
LCSD		EB22015-LCSD	LCSD	10.000							
1	E0500506	E0500506-001.01	3204	5.004	44 F C 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1						Powdered Milk
2	E0500510	E0500510-001.01	WFI Ash 2Q05	13.487	13.022	15.507	14.951	77.63	22.37	10.47	Black Moist Soil
3	J0502657	J0502657-001.01	BG-9	15.930	13.078	18,305	17.059	76.16	23.84	12.13	Wet Grayish Soil
4	J0502657	J0502657-002.01	BG-8	14.297	12.821	17.388	13.866	22.88	77.12	3.27	Wet Black Soil
5	J0502657	J0502657-003.01	BG-7	13.217	13.068	17.091	13.763	17.28	82.72	2.28	Wet Black Soil
6	J0502781	J0502781-001.01	BG-6	12.751	12.835	16.495	13.978	A 12 C T T T T T T T T T T T T T T T T T T	68.77	3.98	Wet Grayish Soil
7	J0502781	J0502781-002.01	BG-6D	16.727	13.031	16.704	13.892	CONTRACTOR SANCTON	76.56	3.92	Wet Grayish Soil
8	J0502781	J0502781-003.01	BG-5	14.328	12.853	15.895	13.506	21.47	78.53	3.08	Wet Grayish Soil
9	J0502781	J0502781-004.01	B G-4	15.028	13.036	16.359	15.442	72.40	27.60	AND PROPERTY OF THE PROPERTY O	Wet Black Soil
10	E0500512	E0500512-001.01	#10 Boiler Ash	11.995	13.000	15.640	14.897	71.86	28.14	8.62	Moist Black Ash
11	E0500512	E0500512-002.01		12.834	13.021	16.160	14.320	41.38	58.62	5.31	Brown Loose Pebbles/Sludge
12	E0500374	E0500374-001.01 RE	PSP-SB-001	4.453				o reactional virtue of	Cation people of the markets may		Tissue
13	E0500374	E0500374-002.01 RE	PSP-SB-001 DUP	5.851	No.						Tissue
14	kerasianin koloniakan meturoadan										
15.		500									
16		P.					0.000000000000000000000000000000000000	Onderland (confidence)		ina square uncrease.	
17											11.25
18		95045454444456674557446655566644665557475				400000000000000000000000000000000000000	hanasasasan karanta	enenenenenenen			
19											Carry 10, July 10, 100 and 100
20			(**)								
21		1 P. 200	Said - Company								The second secon
22 23							sanon no saakka				
SCHLASTICS.											
24							est mention over				•
25	**************************************										
26					L						

SODIUM SULFATE C1-71-2 ACETONE C1-68-3 TOLUENE C1-74-5 GLASS WOOL GW1-1-4 DICHLOROMETHANE C1-73-3 ETHYL ACETATE C1-69-4 NONANE C1-67-5 HEXANE C1-73-2

Columbia Analytical Services, INC.

EB22015

1613

SAND C1-33-1 TRIDECANE C1-74-2 SULFURIC ACID C1-74-3 BASIC SILICA GEL S1-24-3 CARBON: C1-73-5 ACIDIC SILICA GEL S1-24-4 SILICA GEL S1-22-6

Standard: Internal Matrix Solution ID: D7-42-3B D7-28-3B EXTRACTION START: 07/7/05 1000 uL EXTRACTION END: 07/08/05 Volume: 100 uL Spiker: DHF DHF **EXTRACTION METHOD:Soxlet** Witness: JB JB 7/7/2005 7/7/2005 TIME STARTED: 900 Date: Cleanup TIME FINISHED: 1300 Standard: Recovery Solution ID: D7-41-4A/B Volume: 100 uL EXTRACTS RECEIVED BY Spiker: JΒ Ic KO Witness:

Date:

7/11/2005

DATE RECEIVED ___07/11/05_

Sulfuric Acid Cleanup: 7/11/05 Silica Gel/Carbon Column:07/11/05

Dioxin/Furan Analytical Report

10655 Richmond Avenue, Suite 130-A, Houston, TX 77042 Phone (713)266-1599 Fax (713)266-0130 www.caslab.com

PCDD/PCDF ANALYSIS DATA SHEET Use for Sample and Blank Results CLIENT ID.

METHOD BLANK

Lab Name: Columbia Analytical Services Contract:

SDG No:

Lab Code: CAS Method:1613 Case No:

Client No:

Lab ID: EB22015-MB

Client Name:

Sample Wt/Vol: 10.000 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): Solid

Initial Calibration Date: 09/30/04

Sample Receipt Date:

Instrument ID: AutoSpec-Ultima

Ext. Date: 07/07/05

GC Column: DB-5

Ext. Vol(ul):20.0

Inj. Vol(ul):1.0

Sample Data Filename: U12409#1

Analysis Date: 13-JUL-05 Time: 13:31:46

Blank Data Filename: U12409#1

Dilution Factor: 1

Cal. Ver. Data Filename: Ul2408#1

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solids/Lipids:

	CONCENTRATION	DETECTION	Qual.	ION ABUND.	RRT	MEAN
ANALYTE	FOUND	LIMIT	(1)	RATIO (2)	(2)	RRF
0.3.5.0.5.5.1						
2,3,7,8-TCDD	*	0.093	U	*	*	1.06
1,2,3,7,8-PeCDD	*	0.060	U	*	*	0.99
1,2,3,4,7,8-HxCDD	*	0.059	U	*	*	1.10
1,2,3,6,7,8-HxCDD	*	0.065	U	*	*	0.97
1,2,3,7,8,9-HxCDD	*	0.057	Ū	*	*	1.12
1,2,3,4,6,7,8-HpCD	D 0.074	0.060	JK	1.44	1.000	0.93
OCDD	0.623	0.073	J	0.98	1.000	1.08
2,3,7,8-TCDF	*	0.086	Ū	*	*	0.91
1,2,3,7,8-PeCDF	*	0.051	U	*	*	0.88
2,3,4,7,8-PeCDF	*	0.048	Ŭ	*	*	0.94
1,2,3,4,7,8-HxCDF	*	0.058	Ū	*	*	1.13
1,2,3,6,7,8-HxCDF	*	0.062	U	*	*	1.12
1,2,3,7,8,9-HxCDF	*	0.068	U	*	*	1.16
2,3,4,6,7,8-HxCDF	*	0.065	U	*	*	1.06
1,2,3,4,6,7,8-HpCDE	*	0.051	U	*	*	1.34
1,2,3,4,7,8,9-HpCDF	*	0.067	U	*	*	1.31
OCDF	*	0.133	U	*	*	1.12
Total Tetra-Dioxins		0.093	U			
Total Penta-Dioxins	*	0.060	U			
Total Hexa-Dioxins	*	0.059	Ŭ			
Total Hepta-Dioxins	*	0.060	U			
Total Tetra-Furans	*	0.086	U			
Total Penta-Furans	*	0.048	U			
Total Hexa-Furans	*	0.058	U			
Total Hepta-Furans	*	0.051	Ū			
1) Ovalifion II indi	aataa 7					

⁽¹⁾ Qualifier U indicates not detected; The K indicates EMPC. The C needs value from second column analysis. The B indicates possible blank contamination.

(2) RRTs and ion ratios are specified in Tables 2 and 9, Method 1613.

CLIENT ID.

FORM 2: PCDD/PCDF LABELED COMPOUND AND

CLEANUP STANDARD RECOVERIES

METHOD BLANK

Lab Name: Columbia Analytical Services Contract:

SDG No:

Lab Code: CAS Method:1613 Case No: Client No:

Lab ID:EB22015-MB

Client Name:

Sample Wt/Vol: 10.000 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): Solid

Initial Calibration Date: 09/30/04

Instrument ID: AutoSpec-Ultima

Sample Receipt Date:

GC Column ID: DB-5

Ext. Date: 07/07/05

Sample Data Filename: U12409#1

Analysis Date: 13-JUL-05 Time: 13:31:46

Ext. Vol (ul):20.0

Inj.Vol(ul):1.0

Blank Data Filename: U12409#1

Dilution Factor: 1

Cal. Ver. Data Filename: U12408#1

Wet CF Colore

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solid/Lipids:

	W		0			ION	
		SPIKE	CONC.	R(%)	QC	ABUND.	RRT
		CONC.	FOUND	(1)	Limite(1)	RATIO (2) (2)
	LABELED COMPOUNDS						
	13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD	2000 2000 2000 2000 2000 4000	1285.66 1210.83 1501.66 1489.31 1243.55 2287.45	64.28 60.54 75.08 74.47 62.18 57.19	25-164 25-181 32-141 28-130 23-140 17-157	0.76 1.57 1.24 1.24 1.05 0.90	1.010 1.193 0.990 0.992 1.068 1.142
	13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF	2000 2000 2000 2000 2000 2000 2000 200	1248.55 1100.04 1040.28 1453.62 1412.36 1455.22 1381.90 1348.11 1314.13	62.43 55.00 52.01 72.68 70.62 72.76 69.10 67.41 65.71	24-169 24-185 21-178 26-152 26-123 29-147 28-136 28-143 26-138	0.78 1.56 1.56 0.53 0.53 0.53 0.51 0.44	0.974 1.150 1.180 0.970 0.973 1.006 0.987 1.045 1.077
,	CLEANUP STANDARD						
	37Cl-2,3,7,8-TCDD	800	568.43	71.05	35-197		1.011

⁽¹⁾ Contract-required limits for percent recovery (R) are specified in Table 7, Method 1613.

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. NOTE: There is no ion abundance ratio for 37C14-2378-TCDD (cleanup standard). RFP C500273T1

PCDD/PCDF ANALYSIS DATA SHEET Use for Sample and Blank Results METHOD BLANK

CLIENT ID.

Lab Name: Columbia Analytical Services Contract:

SDG No:

Lab Code: CAS Method:1613 Case No: Client No: Lab ID: EB22015-MB

Client Name:

Sample Wt/Vol: 10.00 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): Solid Initial Calibration Date: 10/25/04

Sample Receipt Date:

Instrument ID: AutoSpec-Ultima

Ext. $Vol(ul): 20.\nu$ Inj. Vol(ul): 10 Sample Data Filename: U22665#1

Analysis Date: 11-JUL-05 Time: 18:36:59 Blank Data Filename: U22665#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22663#1

wet ortonolo

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solids/Lipids:

	CONCENTRATION	DETECTION	Qual.	ION ABUND.	RRT	MEAN
ANALYTE	FOUND	LIMIT	(1)	RATIO (2)	(2)	RRF
						0.00
2,3,7,8-TCDD	*	0.038	U	*	*	0.98
1,2,3,7,8-PeCDD	*	0.032	U	*	*	0.98
1,2,3,4,7,8-HxCDD	*	0.034	U	*	*	1.15
1,2,3,6,7,8-HxCDD	*	0.041	U	*	*	0.98
1,2,3,7,8,9-HxCDD	*	0.038	U	*	*	1.05
1,2,3,4,6,7,8-HpCI	OD 0.096	0.039	J	1.03	1.000	
OCDD	0.316	0.077	J	0.90	1.000	1.05
2,3,7,8-TCDF	*	0.041	U	*	*	1.03
1,2,3,7,8-PeCDF	*	0.026	U	*	*	1.01
2,3,4,7,8-PeCDF	*	0.024	U	*	*	1.08
1,2,3,4,7,8-HxCDF	*	0.028	U	*	*	1.28
1,2,3,6,7,8-HxCDF	*	0.033	U	*	*	1.23
1,2,3,7,8,9-HxCDF	*	0.035	U	*	*	1.32
2,3,4,6,7,8-HxCDF	*	0.033	U	*	*	1.18
1,2,3,4,6,7,8-HpCI		0.030	U	*	*	1.53
1,2,3,4,7,8,9-HpCI		0.041	Ū	*	*	1.48
0CDF	*	0.069	U	*	*	1.25
OCDF		0.009	0			
Total Tetra-Dioxir	ns *	0.038	U			
Total Penta-Dioxin		0.032	U			
Total Hexa-Dioxins		0.034	U			
Total Hepta-Dioxin		0.039	-			
Total Tetra-Furans		0.041	U			
Total Penta-Furans		0.024	Ū			
Total Hexa-Furans	*	0.024	Ū			
		0.028	U			
Total Hepta-Furans	,		_	aston EMDC	The C	needa wa

⁽¹⁾ Qualifier U indicates not detected; The K indicates EMPC. The C needs value from second column analysis. The B indicates possible blank contamination.

⁽²⁾ RRTs and ion ratios are specified in Tables 2 and 9, Method 1613.

CLIENT ID.

FORM 2: PCDD/PCDF LABELED COMPOUND AND CLEANUP STANDARD RECOVERIES

METHOD BLANK

SDG No: Lab Name: Columbia Analytical Services Contract:

Lab Code: CAS Method:1613 Case No: Client No: Lab ID:EB22015-MB

Sample Wt/Vol: 10.00 g or mL: g Client Name:

Matrix (Solid/Aqueous/Waste/Ash): Solid Initial Calibration Date: 10/25/04

Instrument ID: AutoSpec-Ultima Sample Receipt Date:

Ext. Date: 07/07/05 GC Column ID: DB-5

Analysis Date: 11-JUL-05 Time: 18:36:59 Sample Data Filename: U22665#1

Ext. Vol(ul):20.0 Inj. Vol(ul):1.0 Blank Data Filename: U22665#1

Cal. Ver. Data Filename: U22663#1 Dilution Factor: 1

wet atlante

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solid/Lipids:

					ION	
	SPIKE	CONC.	R (웅)	QC	ABUND.	RRT
	CONC.	FOUND	(1)	Limite(1)	RATIO (2)	(2)
LABELED COMPOUNDS						
13C-2,3,7,8-TCDD	2000	1422.40	71.12	25-164	0.78	1.013
13C-1,2,3,7,8-PeCDD	2000	1579.82	78.99	25-181	1.55	1.236
13C-1,2,3,4,7,8-HxCDD	2000	1338.37	66.92	32-141	1.23	0.989
13C-1,2,3,6,7,8-HxCDD	2000	1354.59	67.73	28-130	1.23	0.992
13C-1,2,3,4,6,7,8-HpCDD	2000	1304.71	65.24	23-140	1.04	1.072
13C-OCDD	4000	2432.78	60.82	17-157	0.88	1.145
13C-2,3,7,8-TCDF	2000	1535.23	76.76	24-169	0.78	0.969
13C-1,2,3,7,8-PeCDF	2000	1385.11	69.26	24-185	1.55	1.185
13C-2,3,4,7,8-PeCDF	2000	1349.27	67.46	21-178	1.55	1.219
13C-1,2,3,4,7,8-HxCDF	2000	1248.70	62.44	26-152	0.53	0.968
13C-1,2,3,6,7,8-HxCDF	2000	1150.47	57.52	26-123	0.53	0.970
13C-1,2,3,7,8,9-HxCDF	2000	1468.35	73.42	29-147	0.53	1.006
13C-2,3,4,6,7,8-HxCDF	2000	1192.98	59.65	28-136	0.52	0.986
13C-1,2,3,4,6,7,8-HpCDF	2000	1240.93	62.05	28-143	0.45	1.048
13C-1,2,3,4,7,8,9-HpCDF	2000	1336.52	66.83	26-138	0.44	1.082
CLEANUP STANDARD						
37Cl-2,3,7,8-TCDD	800	641.18	80.15	35-197		1.014

C

⁽¹⁾ Contract-required limits for percent recovery (R) are specified in Table 7, Method 1613.

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. NOTE: There is no ion abundance ratio for 37C14-2378-TCDD (cleanup standard). RFP C500273T1

CLIENT ID.

PSP-SB-001

Form 1

PCDD/PCDF ANALYSIS DATA SHEET

Use for Sample and Blank Results

Lab Name: Columbia Analytical Services Contract: SDG No:

Lab Code: CAS Method:1613 Case No: Client No: Lab ID: E0500374-001.01RE

Client Name: GEOMATRIX Sample Wt/Vol: 4.453 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): TISSUE Initial Calibration Date: 09/30/04

Ext. Date: 07/07/05 GC Column:DB-5

Ext. Vol(u1):20.0 Inj. Vol(u1):1.0 Sample Data Filename: U12410#1

Analysis Date: 13-JUL-05 Time: 14:16:49 Blank Data Filename: U12409#1

Dilution Factor: 1 Cal. Ver. Data Filename: U12408#1

WET CECHANG

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solids/Lipids:

	CONCENTRATION	DETECTION	Qual.	ION ABUND.	RRT	MEAN
ANALYTE	FOUND	LIMIT	(1)	RATIO (2)	(2)	RRF
	€:					
2,3,7,8-TCDD	*	0.273	U	*	*	1.06
1,2,3,7,8-PeCDD	*	0.153	U	*	*	0.99
1,2,3,4,7,8-HxCDD	*	0.117	U	*	*	1.10
1,2,3,6,7,8-HxCDD	*	0.133	U	*	*	0.97
1,2,3,7,8,9-HxCDD	*	0.115	U	*	*	1.12
1,2,3,4,6,7,8-HpCI	DD *	0.298	U	*	*	0.93
OCDD	1.575	0.227	BJ	0.89	1.001	1.08
2,3,7,8-TCDF	*	0.294	U	*	*	0.91
1,2,3,7,8-PeCDF	*	0.112	U	*	*	0.88
2,3,4,7,8-PeCDF	*	0.109	U	*	*	0.94
1,2,3,4,7,8-HxCDF	*	0.103	U	*	*	1.13
1,2,3,6,7,8-HxCDF	*	0.111	U	*	*	1.12
1,2,3,7,8,9-HxCDF	*	0.134	U	*	*	1.16
2,3,4,6,7,8-HxCDF	*	0.116	U	*	*	1.06
1,2,3,4,6,7,8-HpCI	OF *	0.195	U	*	*	1.34
1,2,3,4,7,8,9-HpCI		0.277	U	*	*	1.31
OCDF	2.854	0.292	J	1.01	1.004	1.12
Total Tetra-Dioxir		0.273	U			
Total Penta-Dioxir		0.153	U			
Total Hexa-Dioxins		0.117	U			
Total Hepta-Dioxir		0.298	U			
Total Tetra-Furans		0.294	U			
Total Penta-Furans	*	0.109	U			
Total Hexa-Furans	*	0.103	U			
Total Hepta-Furans		0.195	U			
Total Hepta-Furans	,	0.195	_	-t HMDC	mba C ~	المعدد مالامما

⁽¹⁾ Qualifier U indicates not detected; The K indicates EMPC. The C needs value from second column analysis. The B indicates possible blank contamination.

⁽²⁾ RRTs and ion ratios are specified in Tables 2 and 9, Method 1613.

CLIENT ID.

FORM 2: PCDD/PCDF LABELED COMPOUND AND

CLEANUP STANDARD RECOVERIES

PSP-SB-001

Lab Name: Columbia Analytical Services Contract: SDG No:

Lab Code: CAS Method:1613 Case No: Client No: Lab ID:E0500374-001.01RE

Client Name: GEOMATRIX Sample Wt/Vol: 4.453 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): TISSUE Initial Calibration Date: 09/30/04

Ext. Date: 07/07/05 GC Column ID: DB-5

Analysis Date: 13-JUL-05 Time: 14:16:49 Sample Data Filename: U12410#1

Ext.Vol(ul):20.0 Inj.Vol(ul):1.0 Blank Data Filename: U12409#1

Dilution Factor: 1 Cal. Ver. Data Filename: U12408#1

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solid/Lipids:

	SPIKE	CONC. FOUND		R(%) (1)	QC Limite(1)	ION ABUND. RATIO (2	RRT (2)	
LABELED COMPOUNDS		2 0 0 2 1 2		_				
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD	2000 2000 2000 2000 2000 4000	1195.56 1085.80 1364.49 1319.83 694.04 1857.90	e e	59.78 54.29 68.22 65.99 34.70 46.45	25-164 25-181 32-141 28-130 23-140 17-157	0.77 1.55 1.24 1.25 1.04 0.90	1.010 1.193 0.990 0.992 1.067 1.141	
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF	2000 2000 2000 2000 2000 2000 2000 200	1122.30 1035.42 952.65 1378.69 1340.20 1235.43 1308.50 1199.18 1111.48		56.11 51.77 47.63 68.93 67.01 61.77 65.42 59.96 55.57	24-169 24-185 21-178 26-152 26-123 29-147 28-136 28-143 26-138	0.77 1.56 1.54 0.53 0.54 0.51 0.45 0.45	0.975 1.150 1.179 0.970 0.973 1.006 0.987 1.045 1.077	
CLEANUP STANDARD								
37Cl-2,3,7,8-TCDD	800	638,00		79.75	35-197		1.011	

⁽¹⁾ Contract-required limits for percent recovery (R) are specified in Table 7, Method 1613.

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613, NOTE: There is no ion abundance ratio for 37C14-2378-TCDD (cleanup standard).

RFP C500273T1

CLIENT ID.

PCDD/PCDF TOXICITY EQUIVALENCE SUMMARY
Use for Sample and Blank Results

PSP-SB-001

Lab Name: Columbia Analytical Services Contract: SDG No:

Lab Code: CAS Method:1613 Case No: Client No: Lab ID: E0500374-001.07

Client Name: GEOMATRIX Sample Wt/Vol: 4.453 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): TISSUE Initial Calibration Date: 09/30/04

Ext. Date: 07/07/05 GC Column ID: DB-5

Ext. Vol(ul):20.0 Inj. Vol(ul):1.0 Sample Data Filename: U12410#1

Analysis Date: 13-JUL-05 Time: 14:16:49 Blank Data Filename: U12409#1

Dilution Factor: 1 Cal. Ver. Data Filename: U12408#1

EXT GEORIAL

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solids/Lipids:

	CONCENTRATION	TEF(1)	TEF-ADJUSTED CONCENTRATION
	*	X 1.0	*
2,3,7,8-TCDD	^ *	X 1.0 X 1.0	*
1,2,3,7,8-PeCDD			*
1,2,3,4,7,8-HxCDD	*	X 0.1	
1,2,3,6,7,8-HxCDD	*	X 0.1	*
1,2,3,7,8,9-HxCDD	*	X 0.1	*
1,2,3,4,6,7,8-HpCDD	*	X 0.01	*
OCDD	1.575	X 0.0001	1.57e-04
2,3,7,8-TCDF	*	X 0.1	*
1,2,3,7,8-PeCDF	*	X 0.05	*
2,3,4,7,8-PeCDF	*	X 0.5	*
1,2,3,4,7,8-HxCDF	*	X 0.1	*
1,2,3,6,7,8-HxCDF	*	X 0.1	*
1,2,3,7,8,9-HxCDF	*	X 0.1	*
2,3,4,6,7,8-HxCDF	*	X 0.1	*
1,2,3,4,6,7,8-HpCDF	*	X 0.01	*
1,2,3,4,7,8,9-HpCDF	*	X 0.01	*
OCDF	2.854	X 0.0001	2.85e-04

Total: 4.43e-04

6/90

⁽¹⁾ World Health Organization (WHO) adopted TEF's, taken from: Van der Berg, et al: Toxic Equivalency Factor (TEFs) for PCBs, PCDDs, PCDFs for Hummans and Wildlife(Environ Health perspect 106:775-792 (1998).

CLIENT ID.

PCDD/PCDF ANALYSIS DATA SHEET Use for Sample and Blank Results

PSP-SB-001 DUP

Lab Name: Columbia Analytical Services Contract: SDG No:

Lab Code: CAS Method:1613 Case No: Client No: Lab ID: E0500374-002.01RE

Client Name: GEOMATRIX Sample Wt/Vol: 5.851 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): TISSUE Initial Calibration Date: 09/30/04

Ext. Date: 07/07/05 GC Column:DB-5

Ext. Vol(ul):20.0 Inj. Vol(ul):1.0 Sample Data Filename: U12411#1

Analysis Date: 13-JUL-05 Time: 15:03:18 Blank Data Filename: U12409#1

Dilution Factor: 1 Cal. Ver. Data Filename: U12408#1

WET UT larde

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solids/Lipids:

ANALYTE FOUND LIMIT (1) RATIO (2) (2) RRF 2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD 1.071 0.192 BJ 0.89 1.000 1.08 2,3,7,8-TCDF * 0.168 U * * 0.91 1,2,3,7,8-PeCDF * 0.090 U * * 0.88 2,3,4,7,8-PeCDF * 0.094 U * * 0.94 1,2,3,4,7,8-HxCDF * 0.075 U * 1.13 1,2,3,6,7,8-HxCDF * 0.083 U * 1.12 1,2,3,7,8,9-HxCDF * 0.090 U * 1.16 2,3,4,6,7,8-HxCDF * 0.087 U * 1.06
OCDD 1.071 0.192 BJ 0.89 1.000 1.08 2,3,7,8-TCDF * 0.168 U * * 0.91 1,2,3,7,8-PeCDF * 0.090 U * * 0.88 2,3,4,7,8-PeCDF * 0.094 U * * 0.94 1,2,3,4,7,8-HxCDF * 0.075 U * * 1.13 1,2,3,6,7,8-HxCDF * 0.083 U * * 1.12 1,2,3,7,8,9-HxCDF * 0.090 U * * 1.16 2,3,4,6,7,8-HxCDF * 0.087 U * * 1.06
1,2,3,7,8-PeCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HXCDF
1,2,3,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF * 0.090 U * * 1.16 2,3,4,6,7,8-HxCDF * 0.087 U * * 1.06
2,3,4,6,7,8-HxCDF * 0.087 U * * 1.06
-141711101110 mp
1,2,3,4,7,8,9-HpCDF * 0.166 U * * 1.31
OCDF * 0.261 U * * 1.12
Total Tetra-Dioxins * 0.155 U
Total Penta-Dioxins * 0.139 U
Total Hexa-Dioxins * 0.087 U
Total Hepta-Dioxins 0.211 0.143
Total Tetra-Furans * 0.168 U
Total Penta-Furans * 0.094 U
Total Hexa-Furans * 0.075 U
Total Hepta-Furans * 0.131 U

⁽¹⁾ Qualifier U indicates not detected; The K indicates EMPC. The C needs value from second column analysis. The B indicates possible blank contamination.

⁽²⁾ RRTs and ion ratios are specified in Tables 2 and 9, Method 1613.

CLIENT ID.

FORM 2: PCDD/PCDF LABELED COMPOUND AND

CLEANUP STANDARD RECOVERIES

PSP-SB-001 DUP

Lab Name: Columbia Analytical Services Contract:

SDG No:

Lab Code: CAS Method:1613 Case No: Client No: Lab ID:E0500374-002.01RE

Client Name: GEOMATRIX

Sample Wt/Vol: 5.851 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): TISSUE Initial Calibration Date: 09/30/04

Sample Receipt Date: 05/12/05

Instrument ID: AutoSpec-Ultima

Ext. Date: 07/07/05

GC Column ID: DB-5

Analysis Date: 13-JUL-05 Time: 15:03:18 Sample Data Filename: U12411#1

Ext.Vol(ul):20.0 Inj.Vol(ul):1.0 Blank Data Filename: U12409#1

Dilution Factor: 1

Cal. Ver. Data Filename: U12408#1

WET OF COIDER

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solid/Lipids:

					ION	
	SPIKE	CONC.	R(%)	QC	ABUND.	RRT
	CONC.	FOUND	(1)	Limite(1)	RATIO (2) (2)
LABELED COMPOUNDS	002.00		, .			
13C-2,3,7,8-TCDD	2000	1224.58	61.23	25-164	0.78	1.009
13C-1,2,3,7,8-PeCDD	2000	1116.11	55.81	25-181	1.54	1.192
13C-1,2,3,4,7,8-HxCDD	2000	1337.00	66.85	32-141	1.23	0.990
13C-1,2,3,6,7,8-HxCDD	2000	1339.05	66.95	28-130	1.23	0.992
13C-1,2,3,4,6,7,8-HpCDD	2000	987.96	49.40	23-140	1.03	1.067
13C-OCDD	4000	1718.14	42.95	17-157	0.89	1.141
130 0022						
13C-2,3,7,8-TCDF	2000	1147.07	57.35	24-169	0.77	0.975
13C-1,2,3,7,8-PeCDF	2000	1041.10	52.05	24-185	1.56	1.150
13C-2,3,4,7,8-PeCDF	2000	914.41	45.72	21-178	1.56	1.179
13C-1,2,3,4,7,8-HxCDF	2000	1320.71	66.04	26-152	0.51	0.970
13C-1,2,3,4,7,8-HxCDF	2000	1303.88	65.19	26-123	0.50	0.973
	2000	1330.68	66.53	29-147	0.53	1.006
13C-1,2,3,7,8,9-HxCDF	2000	1245.96	62.30	28-136	0.51	0.987
13C-2,3,4,6,7,8-HxCDF	2000	1122.91	56.15	28-143	0.44	1.045
13C-1,2,3,4,6,7,8-HpCDF	2000	1156.76	57.84	26-138	0.45	1.077
13C-1,2,3,4,7,8,9-HpCDF	2000	TT30 = 10	J / . U T	20 100		
CLEANUP STANDARD						
37Cl-2,3,7,8-TCDD	800	640.11	80.01	35-197		1.011

⁽¹⁾ Contract-required limits for percent recovery (R) are specified in Table 7, Method 1613.

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. NOTE: There is no ion abundance ratio for 37C14-2378-TCDD (cleanup standard). RFP C500273T1

CLIENT ID.

PCDD/PCDF TOXICITY EQUIVALENCE SUMMARY Use for Sample and Blank Results

PSP-SB-001 DUP

Lab Name: Columbia Analytical Services Contract:

SDG No:

Lab Code: CAS Method:1613 Case No:

Client No: Lab ID: E0500374-002.07

Client Name: GEOMATRIX

Sample Wt/Vol: 5.851 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): TISSUE Initial Calibration Date: 09/30/04

Sample Receipt Date: 05/12/05

Instrument ID: AutoSepc-Ultima

Ext. Date: 07/07/05

GC Column ID: DB-5

Ext. Vol(ul):20.0 Inj. Vol(ul):1.0 Sample Data Filename: U12411#1

Analysis Date: 13-JUL-05 Time: 15:03:18 Blank Data Filename: U12409#1

Dilution Factor: 1

Cal. Ver. Data Filename: U12408#1

WET UF 6/20/16

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solids/Lipids:

	CONCENTRATION	TEF(1)	TEF-ADJUSTED CONCENTRATION
2,3,7,8-TCDD	*	X 1.0	*
1,2,3,7,8-PeCDD	*	X 1.0	*
1,2,3,4,7,8-HxCDD	*	X 0.1	*
1,2,3,6,7,8-HxCDD	*	X 0.1	*
1,2,3,7,8,9-HxCDD	*	X 0.1	*
1,2,3,4,6,7,8-HpCDD	0.211	X 0.01	2.11e-03
OCDD	1.071	X 0.0001	1.07e-04
2,3,7,8-TCDF	*	X 0.1	*
1,2,3,7,8-PeCDF	*	X 0.05	*
2,3,4,7,8-PeCDF	*	X 0.5	*
1,2,3,4,7,8-HxCDF	*	X 0.1	*
1,2,3,6,7,8-HxCDF	*	X 0.1	*
1,2,3,7,8,9-HxCDF	*	X 0.1	*
2,3,4,6,7,8-HxCDF	*	X 0.1	*
1,2,3,4,6,7,8-HpCDF	*	X 0.01	*
1,2,3,4,7,8,9-HpCDF	*	X 0.01	*
OCDF	*	X 0.0001	*

Total: 2.22e-03

⁽¹⁾ World Health Organization (WHO) adopted TEF's, taken from: Van der Berg, et al: Toxic Equivalency Factor (TEFs) for PCBs, PCDDs, PCDFs for Hummans and Wildlife (Environ Health perspect 106:775-792 (1998)

PCDD/PCDF ANALYSIS DATA SHEET Use for Sample and Blank Results LCS

CLIENT ID.

Lab Name: Columbia Analytical Services Contract:

SDG No:

Lab Code: CAS Method:1613 Case No: Client No: Lab ID: EB22015-LCS

Client Name:

Sample Wt/Vol: 10.000 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): Solid Initial Calibration Date: 10/25/04

Sample Receipt Date:

Instrument ID: AutoSpec-Ultima

Ext. Date: 07/07/05

GC Column:DB-5

Ext. Vol(ul):20.0 Inj. Vol(ul):1.0 Sample Data Filename: U22672#1

Analysis Date: 12-JUL-05 Time: 00:01:11 Blank Data Filename: U22665#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22663#1

WET OF 6/2016

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solids/Lipids:

	CONCENTRATION	DETECTION	Qual.	ION ABUND.		MEAN
ANALYTE	FOUND	LIMIT	(1)	RATIO (2)	(2)	RRF
2,3,7,8-TCDD	22.922	0.036		0.77	1.001	0.98
1,2,3,7,8-PeCDD	108.006	0.024		1.58	1.001	0.98
1,2,3,4,7,8-HxCDD	102.897	0.024		1.22	1.000	1.15
1,2,3,6,7,8-HxCDD	120.866	0.030		1.22	1.000	0.98
1,2,3,7,8,9-HxCDD	116.780	0.027		1.25	1.009	1.05
1,2,3,4,6,7,8-HpCD		0.028		1.06	1.000	1.01
OCDD	218.308	0.051		0.87	1.000	1.05
2,3,7,8-TCDF	17.774	0.035		0.78	1.001	1.03
1,2,3,7,8-PeCDF	107.905	0.016		1.54	1.001	1.01
2,3,4,7,8-PeCDF	104.506	0.017		1.54	1.001	1.08
1,2,3,4,7,8-HxCDF	101.772	0.023		1.27	1.000	1.28
1,2,3,6,7,8-HxCDF	118.108	0.029		1.23	1.000	1.23
1,2,3,7,8,9-HxCDF	95.474	0.029		1.24	1.000	1.32
2,3,4,6,7,8-HxCDF	106.031	0.029		1.22	1.000	1.18
1,2,3,4,6,7,8-HpCD	F 101.508	0.042		1.03	1.000	1.53
1,2,3,4,7,8,9-HpCD		0.055		1.03	1.000	1.48
OCDF	222.859	0.031		0.90	1.003	1.25
Total Tetra-Dioxin	s 22.972	0.036				
Total Penta-Dioxin	-	0.024				
Total Hexa-Dioxins		0.024				
Total Hepta-Dioxin		0.028				
Total Tetra-Furans		0.035				
Total Penta-Furans		0.017				
Total Hexa-Furans		0.023				
Total Hepta-Furans	204.710	0.042			mh a C -	
(7) Onalifiam II ind	idated not det	ected. The R	מומחוו	ares EMPC.	ine C r	ieeus val

⁽¹⁾ Qualifier U indicates not detected; The K indicates EMPC. The C needs value from second column analysis. The B indicates possible blank contamination.

⁽²⁾ RRTs and ion ratios are specified in Tables 2 and 9, Method 1613.

CLIENT ID.

FORM 2: PCDD/PCDF LABELED COMPOUND AND

CLEANUP STANDARD RECOVERIES

LCS

Lab Name: Columbia Analytical Services Contract: SDG No:

Lab Code: CAS Method:1613 Case No: Client No: Lab ID:EB22015-LCS

Client Name: Sample Wt/Vol: 10.000 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): Solid Initial Calibration Date: 10/25/04

Sample Receipt Date: Instrument ID: AutoSpec-Ultima

Ext. Date: 07/07/05 GC Column ID: DB-5

Analysis Date: 12-JUL-05 Time: 00:01:11 Sample Data Filename: U22672#1

Ext.Vol(ul):20.0 Inj.Vol(ul):1.0 Blank Data Filename: U22665#1

Dilution Factor: 1 Cal. Ver. Data Filename: U22663#1

WET CF Ghods

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solid/Lipids:

	SPIKE	CONC.	R (응)	QC	ION ABUND.	RRT
	CONC.	FOUND =	(1)	Limite(1)	RATIO (2	2) (2)
LABELED COMPOUNDS						
13C-2,3,7,8-TCDD	2000	1576.11	78.81	25-164	0.79	1.014
13C-1,2,3,7,8-PeCDD	2000	1765.66	88.28	25-181	1.53	1.237
13C-1,2,3,4,7,8-HxCDD	2000	1489.30	74.47	32-141	1.24	0.989
13C-1,2,3,6,7,8-HxCDD	2000	1407.28	70.36	28-130	1.23	0.992
13C-1,2,3,4,6,7,8-HpCDD	2000	1479.23	73.96	23-140	1.04	1.072
13C-OCDD	4000	2687.63	67.19	17-157	0.88	1.145
130 0000						
13C-2,3,7,8-TCDF	2000	1614.44	80.72	24-169	0.76	0.970
13C-1,2,3,7,8-PeCDF	2000	1567.54	78.38	24-185	1.54	1.186
13C-2,3,4,7,8-PeCDF	2000	1450.70	72.54	21-178	1.57	1.221
13C-1,2,3,4,7,8-HxCDF	2000	1306.38	65.32	26-152	0.52	0.967
13C-1,2,3,6,7,8-HxCDF	2000	1237.67	61.88	26-123	0.52	0.970
13C-1,2,3,7,8,9-HxCDF	2000	1643.48	82.17	29-147	0.52	1.006
13C-2,3,4,6,7,8-HxCDF	2000	1243.51	62.18	28-136	0.52	0.986
13C-1,2,3,4,6,7,8-HpCDF	2000	1359.95	68.00	28-143	0.45	1.048
13C-1,2,3,4,7,8,9-HpCDF	2000	1523.03	76.15	26-138	0.44	1.082
130 1/2/3/1///						
CLEANUP STANDARD						
37Cl-2,3,7,8-TCDD	800	718.16	89.77	35-197		1.015

⁽¹⁾ Contract-required limits for percent recovery (R) are specified in Table 7, Method 1613.

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. NOTE: There is no ion abundance ratio for 37C14-2378-TCDD (cleanup standard).

RFP C500273T1

CLIENT ID.

PCDD/PCDF ANALYSIS DATA SHEET Use for Sample and Blank Results

LCSD

Lab Name: Columbia Analytical Services Contract: SDG No:

Lab Code: CAS Method:1613 Case No: Client No: Lab ID: EB22015-LCSD

Client Name: Sample Wt/Vol: 10.000 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): Solid Initial Calibration Date: 10/25/04

Sample Receipt Date: Instrument ID: AutoSpec-Ultima

Ext. Date: 07/07/05 GC Column:DB-5

Ext. Vol(ul):20.0 Inj. Vol(ul):1.0 Sample Data Filename: U22673#1

Analysis Date: 12-JUL-05 Time: 00:47:29 Blank Data Filename: U22665#1

Dilution Factor: 1 Cal. Ver. Data Filename: U22663#1

WET COURSE

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solids/Lipids:

ANALYTE	CONCENTRATION FOUND	DETECTION LIMIT	Qual. ION ABUND. (1) RATIO (2)	RRT	MEAN RRF
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCD OCDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HyCDF 1,2,3,4,6,7,8-HpCD 1,2,3,4,6,7,8-HpCD 1,2,3,4,7,8,9-HpCD	117.141 111.630 222.004 17.846 110.258 107.329 105.179 119.555 99.248 107.574 F 104.715	0.036 0.025 0.032 0.041 0.037 0.026 0.054 0.038 0.021 0.021 0.021 0.021 0.022 0.021 0.021 0.021	0.79 1.56 1.23 1.25 1.24 1.04 0.86 0.76 1.52 1.53 1.25 1.27 1.28 1.26 1.02 1.00	1.001 1.000 1.000 1.000 1.000 1.000 1.001 1.001 1.000 1.000 1.000 1.000 1.000	0.98 0.98 1.15 0.98 1.05 1.01 1.05 1.03 1.01 1.08 1.28 1.23 1.32 1.18 1.53 1.48 1.25
Total Tetra-Dioxin Total Penta-Dioxins Total Hexa-Dioxins Total Hepta-Dioxin Total Tetra-Furans Total Penta-Furans Total Hexa-Furans Total Hexa-Furans	s 110.988 230.314 s 111.630 17.857 218.074 431.557 209.854	0.036 0.025 0.032 0.026 0.038 0.021 0.017 0.081	v indicator EMDC	The Car	needs wal

⁽¹⁾ Qualifier U indicates not detected; The K indicates EMPC. The C needs value from second column analysis. The B indicates possible blank contamination.

⁽²⁾ RRTs and ion ratios are specified in Tables 2 and 9, Method 1613.

CLIENT ID.

FORM 2: PCDD/PCDF LABELED COMPOUND AND

LCSD CLEANUP STANDARD RECOVERIES

Lab Name: Columbia Analytical Services Contract: SDG No:

Lab Code: CAS Method:1613 Case No: Client No: Lab ID:EB22015-LCSD

Sample Wt/Vol: 10.000 g or mL: g Client Name:

Matrix (Solid/Aqueous/Waste/Ash): Solid Initial Calibration Date: 10/25/04

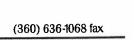
Instrument ID: AutoSpec-Ultima Sample Receipt Date:

GC Column ID: DB-5 Ext. Date: 07/07/05

Analysis Date: 12-JUL-05 Time: 00:47:29 Sample Data Filename: U22673#1

Blank Data Filename: U22665#1 Ext. Vol(ul):20.0 Inj. Vol(ul):1.0

Cal. Ver. Data Filename: U22663#1 Dilution Factor: 1


WET OF 6/20/6

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solid/Lipids:

					ION	
	SPIKE	CONC.	R(%)	QC	ABUND.	RRT
	CONC.	FOUND	(1)	Limite(1)	RATIO (2	(2)
LABELED COMPOUNDS						
				ŭ.		
13C-2,3,7,8-TCDD	2000	1348.73	67.44	25-164	0.80	1.014
13C-1,2,3,7,8-PeCDD	2000	1551.78	77.59	25-181	1.54	1.237
13C-1,2,3,4,7,8-HxCDD	2000	1316.43	65.82	32-141	1.23	0.989
13C-1,2,3,6,7,8-HxCDD	2000	1251.23	62.56	28-130	1.24	0.992
13C-1,2,3,4,6,7,8-HpCDD	2000	1263.70	63.18	23-140	1.05	1,072
13C-OCDD	4000	2236.13	55.90	17-157	0.89	1.145
250 0022						
13C-2,3,7,8-TCDF	2000	1395.57	69.78	24-169	0.77	0.970
13C-1,2,3,7,8-PeCDF	2000	1360.30	68.01	24-185	1.54	1.186
13C-2,3,4,7,8-PeCDF	2000	1274.77	63.74	21-178	1.54	1.221
13C-1,2,3,4,7,8-HxCDF	2000	1152.61	57.63	26-152	0.52	0.967
13C-1,2,3,6,7,8-HxCDF	2000	1106.92	55.35	26-123	0.52	0.970
13C-1,2,3,7,8,9-HxCDF	2000	1428.81	71.44	29-147	0.52	1.006
13C-2,3,4,6,7,8-HxCDF	2000	1109.46	55.47	28-136	0.53	0.986
13C-1,2,3,4,6,7,8-HpCDF	2000	1182.80	59.14	28-143	0.44	1.048
13C-1,2,3,1,6,7,6 11F0DF	2000	1293.61	64.68	26-138	0.44	1.082
130 1,2,3,1,,,0,3 11,001						
CLEANUP STANDARD						
37Cl-2,3,7,8-TCDD	800	608.46	76.06	35-197		1.015

⁽¹⁾ Contract-required limits for percent recovery (R) are specified in Table 7, Method 1613.

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. NOTE: There is no ion abundance ratio for 37C14-2378-TCDD (cleanup standard). RFP C500273T1

September 21, 2005

Service Request No: K0503777

Ann Holbrow Geomatrix Consultants, Incorporated 2101 Webster Street 12th Floor Oakland, CA 94612

RE: 9329

Dear Ann:

Enclosed are the results of the sample(s) submitted to our laboratory on March 24, 2005. For your reference, these analyses have been assigned our service request number K0503777.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAC standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3376.

Respectfully submitted,

Columbia Analytical Services, Inc.

Gregory Salata, Ph.D.

Project Chemist

GS/jeb

Page 1 of _____

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- $\,U\,\,\,\,\,\,\,$ The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Case Narrative

COLUMBIA ANALYTICAL SERVICES, INC.

Client: Project:

Sample Matrix:

Geomatrix Consultants, Inc.

9329

Tissue

Service Request No.:

Date Received:

K0503777

03/24/05

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier III validation deliverables including summary forms and all of the associated raw data for each of the analyses. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Five samples were received at Columbia Analytical Services on 03/24/05 and analyzed under service request K2502124. The samples were stored frozen at -20°C upon receipt at the laboratory. Total solids were not determined on five of the samples received on the original service request. The total solids determination was performed under this service request.

Total Solids

No anomalies associated with the analysis of these samples were observed.

Approved by July Ally

_Date__

00005

Total Solids

COLUMBIA ANALYTICAL SERVICES, INC.

Analytical Report

Client:

Geomatrix Consultants, Incorporated

Project:

9329

Sample Matrix:

Tissue

Service Request: K0503777

Date Collected: 3/16/05

Date Received: 3/24/05

Units: PERCENT

Basis: Wet

Solids, Total

Prep Method:

NONE

Analysis Method: Freeze Dry

Test Notes:

		Date	Result
Sample Name	Lab Code	Analyzed	Result Notes
PSP-SB-001	K0503777-001	9/16/05	24.0
PSP-SB-002	K0503777-002	9/16/05	23.9
PSP-SB-003	K0503777-003	9/16/05	24.5
PSP-SB-003	K0503777-004	9/16/05	22.9
PSP-SB-005	K0503777-005	9/16/05	25.5

COLUMBIA ANALYTICAL SERVICES, INC.

QA/QC Report

Client:

Geomatrix Consultants, Incorporated

Project:

9329

Sample Matrix: Tissue

Service Request: K0503777

Date Collected: 03/16/05

Date Received: 03/24/05

Date Extracted: NA

Date Analyzed: 09/16/05

Duplicate Summary

Sample Name:

PSP-SB-001

Lab Code:

K0503777-001D

Test Notes:

Units: PERCENT

Basis: Wet

Relative Duplicate Result Percent Sample Sample Prep Analysis Average Difference Notes Result Result Method Method Analyte 7 23.2 24.0 22.3 Freeze Dry NA Solids, Total

Service Request #:

K0503777

Extr/Prep Batch KP0501357

Analysis For:

Freeze Dried Solids

Lab Code	Wet Weight (g)	Tare (g)	Tare + Dry Wt.(g)	Dry Weight (g)	% Total Solids
(0503777-1	1,7470	15.2018	15.6203	0.4185	24.0
-ldup	2.7374	15.1897	15.7995	0.6098	22.3
5-	7.4688	15.1021	15.6915	0.5894	23,9
-3	7.3777	15,1630	15.7446	0.5816	24.5
-4	2.5616	15,1967	15.7837	0.5870	22.9
1 - 5	1,3119	15,1808	15.5158	0.3350	25.5
\					
*					
9	. \	La			
			3		
72				w*	ii.
		1/4			
		m	9/16/05		
			116/05		
				_	_
					\rightarrow
	Time in		Time Out		
mmenis filet- a		2502124	inite Out		
0	0 6				
.8					
				<u> </u>	RPI. =
					±
	0	4 /4			
aiyst. Noughly	Allaa	, IE	vate 9/16/05 vate 9/16/05		
viewed By	Zt	!5.	Pare 9/19/1.	s `	

An Employee - Owned Company

June 24, 2005

Service Request No: E0500447

Gregory Salata Columbia Analytical Services 1317 South 13th Avenue Kelso, WA 98626

RE: 1613B Full List/K2502124

Dear Gregory:

Enclosed are the results of the sample(s) submitted to our laboratory on June 1, 2005. For your reference, these analyses have been assigned our service request number E0500447.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 23. You may also contact me via email at JFreemyer@houston.caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Jane Freemyer

Project Manager

Page 1 of 374

June 30, 2005

Dr. Gregory Salata Columbia Analytical Services, Inc. 1317 South 13th Avenue Kelso, WA 98626

Subject:

Report Amendment; E0500447 K2502124/Geomatrix

Dear Greg,

Enclosed please find the revisions to the Form 3 results. The Toxicity Equivalence calculations have been revised to reflect the World Health Organization toxicity values.

Please replace pages 19, 22, 25 and 28 in the original report with the enclosed pages 19A, 22A, 25 and 28A.

Should you have any questions or need additional information, please call Jane Freemyer at 713-266-1599.

Sincerely,

COLUMBIA ANALYTICAL SERVICES, INC.

Fane Leeny a

HRMS Chemist: Quality Assurance/Projects

jfreemyer@houston.caslab.com

An Employee - Owned Company

Dioxins/Furans

10655 Richmond Avenue, Suite 130-A, Houston, TX 77042 Phone(713)266-1599 Fax (713)266-0130 www.caslab.com

COLUMBIA ANALYTICAL SERVICES, INC.

Client:

Columbia Analytical Services, Inc.

Service Request No.:

E0500447

Project: Sample Matrix: K2502124 Tissue Date Received:

06/01/05

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier IV. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Four tissue samples were received for analysis at Columbia Analytical Services on 06/01/05. The following discrepancies were noted upon initial sample inspection. The exceptions are also noted on the cooler receipt and preservation form included in this data package.

The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

No discrepancies were noted upon initial sample inspection.

Data Validation Notes and Discussion

B flags - Method Blanks

The Method Blank EB21091/U22433#1 contained low levels of OCDD and OCDF below the Method Reporting Limit (MRL). The associated compounds in the samples(s) are flagged with 'B' flags.

MS/MSD

A Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) was analyzed and reported in lieu of the MS/MSD for these samples.

K flags

EMPC - When the ion abundance ratios associated with a particular compound are outside the QC limits, samples are flagged with a 'K' flag. A 'K' flag indicates an estimated maximum possible concentration for the associated compound.

Approved by

Xiangqiu Liang, Laboratory Director

Date 6/28/05

Client:

Project:

Columbia Analytical Services,Inc. 1613B_Full List/K2502124

Service Request: E0500447

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID		DATE	TIME
E0500447-001	WSP-SB-006	9	03/16/05	1500
E0500447-002	WSP-SB-007		03/16/05	1500
E0500447-003	WSP-SB-008		03/16/05	1500
E0500447-004	JST-SB-009		03/16/05	1500

Method 1613B/Dioxins & Furans Reporting Limits

Total Hepta-Furans	Total Hexa-Furans	10tal relitari mans	Tatal Donta Engage	Total Tetra-Furans	Total Hepta-Dioxins		Total Hexa-Dioxins	Total Penta-Dioxins	Total Tetra-Dioxilis	H . H the Dioxing	Octachlorodibenzofuran	1,2,3,4,7,8,9-Heptachlorodibenzoturan	1,2,3,4,6,/,8-Heptachlorodipenzorman	2,3,4,0,7,0-11CAACIIIOTOCIIOCIIIOTOCII	2 4 6 7 8 Heyachlorodibenzofitan	1,23,478-Hexachlorodibenzofuran	1 2 3 7 8 9-Hexachlorodibenzofuran	1,2,3,6,7,8-Hexachlorodibenzoturan	2,3,4,/,8-Pentachlorocubenzoruran	1,2,3,/,0-r cutacinoromomoran	1 0 2 7 9 Dentachlorodihenzofiran	2.7.8 Tetrachlorodihenzofiran	Octoblorodihenzo-n-dioxin	1 2 3 4 6 7 8-Hentachlorodibenzo-p-dioxin	1 2 3 7 8 9-Hexachlorodibenzo-p-dioxin	1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	1,2,3,4,/,8-Hexachlorodibenzo-p-doxin	1,2,3,/,8-Pentacinoromocnico-p-mosmis	2,3,/,8-1 ettachioromocnzo-p-mozna	O TO TO TO THE STREET AND A LINE	OCT OTY ATTOR	CONGENER			
	*	*	*		*	*	ð	*	*	*	OCDF	1234/07-11pCD1	123.4780 HaCTH	1234678-HpCDF	234678-HxCDF	123789-HxCDF	123678-HxCDF	1234/6-118001	123 179 H-CDE	23478-PeCDF	12378-PeCDF	2378-TCDF	OCDD	1234678-HpCDD	123/89-HxCDD	1230/o-11xCLL	123678 H-CDD	123478-HxCDD	12378-PeCDD	2378-TCDD		ABBREVIATION	CONGENER	781 738	
	*	*	-	×	*	*	(*	*)	J2001-02-0	30001 02 0	55673-89-7	67562-39-4	60851-34-5	72918-21-9	5/11/-44-9	E7117 44 0	70648-26-9	57117-31-4	57117-41-6	51207-31-9	3268-87-9	35822-46-9	19400-74-5	10400 74 3	57653-85-7	39227-28-6	40321-76-4	1746-01-6		CAS RIN		55	
	50	50	1 6	50	10	30	л О	50	50	10	10	100	50	50	50	50	n (0	, TO	50	50	50	10	100	100		50	50	50	50	10	PG/L	Aqueous	REPORTING LIMITS		
	5.0	5.0		5.0	1:0		5.0	5.0	5.0		1.0	10	5.0	3.0		л (:	50	5.0	5.0	5.0	5.0	7 :	10	10	л О	5.0	5.0	5.0	5.0	1.0	NG/KG	Solids	REPORTING LIMITS		The state of the s

NOTE: Tissue samples are reported on a wet-weight basis and soil/sediment samples are reported on a dry-weight basis.

Data Qualifier Flags

- ❖ B Used when an associated analyte is found in the method blank, as well as in the sample
- ❖ C Confirmation of the TCDF compound: When 2378-TCDF is detected on the DB-5 column, confirmation analyses are performed on a second column (DB-225.) The results from both the DB-5 column and the DB-225 column are included in this data package. The results from the DB-225 analyses should be used to evaluate the 23788-TCDF in the samples. The confirmed result should be used in determining the TEQ value for TCDF. The samples requiring confirmation are indicated in the table above.
- ❖ E Indicates an estimated value used when the analyte concentration exceeds the upper end of the linear calibration range
- ❖ J Indicates an estimated value used when the analyte concentration is below the method reporting limit (MRL) and above the detection limit (DL)
- ❖ K EMPC When the ion abundance ratios associated with a particular compound are outside the QC limits, samples are flagged with a 'K' flag. A 'K' flag indicates an estimated maximum possible concentration for the associated compound.
- ❖ U Indicates the compound was analyzed and not detected.
- ❖ X User defined; see case narrative for detailed explanation
- Samples that had recoveries of labeled standards outside the acceptance limits are flagged with 'Y' flags on the Form 2s. In all cases, the signal-to-noise ratios are greater than 10:1, making these data acceptable.
- * Indicates concentration is reported as 'Not Detected'

CAS/HOU - Form Production, Peer Review & Project Review Signatures

	First Level - D	ata Processi	ng - to be fille	d by person gene	erating the forn	ns	Live I
Date 6	6/22/0(-	Person 1	We-				
Date	1	Person 2		100			
	Second Level	- Data Revie	w – to be filled	by person doing	peer review		
Date	06/24/05	Reviewer	200	* *			
Date		Reviewer			j.	¥ 1 4	
	Project Level -	Review - to b	e filled by pers	on doing project	compliance rev	view	
Date	6/24/5	Reviewer	e filled by pers	on doing project	compliance rev	VIEW	

An Employee - Owned Company

Chain-of-custody

10655 Richmond Avenue, Suite 130-A, Houston, TX 77042 Phone (713)266-1599 Fax (713)266-0130 www.caslab.com

1 OF 1

HIVE FREEMYER

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

Columbia Analytical Services

图 002

K2502124-006-009

T 17		
	H	C.11.

11)655 Richmond Ave., Suite 130A, Houston, 1A	11042	
(711) 266 1500 EAV (713) 766-0130		

	(71.7250 1337 21.22 (7.157)			-				Ľ					Description		
	Client Company Name:		Consultant					tain				22 11 11 10 10			
	Client Address:	2101 Web	ster St. 120	i Fl. Oakla	ind, CA. 94	512		200		4 5	4	14	[₹	F	
CAS	Project Name/Number:	9329						'e	EPA	EPA DD	Dioxins by EPA 8290 (full list)	Divxins by EPA 8290 (2,3,7,8 TCDD	EP,		
Z	Client Project Manager:	Ann Holbs						肾	î by	E, o	s by	s by	\$ E		*
SIC		E	or composi	te sample	s *			Į,	a E	3 E E	S C C	nix o	di Xi		
+++ HOUSTON/CAS		St	art	S	lop		Sample	ے	Dioxins by 1 1613 B (full list)	Diaxins by EPA 1613 B (2,3,7,8 TCDD & TCDF, only)	Dio 825	828	Dioxins by EPA 8280 (full list)	REMARKS	
† †	Sample I.D.	Date	Time	Date	Time	LAB ID	Matrix								
1	*					-									
	WSP-SB-006	16-Mar	1500				tissue	1						K2502124-006	
	WSP-SB-007	16-Mar	1500				tissue	1	/					K2502124-007	· · · · · · · · · · · · · · · · · · ·
	WSP-SB-008	16-Mar	1500	9			tissue	1	/					K2502124-008	
	JST-SB-009	16-Mar	1500				tissue	1	/					C2502124-009	
0													- 2		
ELS															
CAS KELSO		1									(#)				*
CAS		+ - 1					1								
		\vdash					1				_				
		\vdash	-		_		1								
		\vdash					1-	-							
		\vdash	•	_				-							
					REPORT		Совител	ts/Sp	ecial Instru	ctions:			-		
	TURNAROUND REQUIREMENTS			R	EQUIREMEN	ITS		_		olumn's date and	l tinte.			i	
	24 br48 br	S day	I. Re		1: Results, Me	thod Blank,	CAS Proje	ct Che	ndst:	Gregory Salata I	P.H.D.				
×	X Standard TAT		W 00	Surrogate	onorde: MS I	havintom as CDS.	1								
FAX	Provide FAX Preliminary Results II. QC Summary Reports: MS, MSD as required III. Data Validation Report (Includes raw data)						1								
15	Requested Report Date: EDD RELINQUISHED BY: RECRIVED BY:														
11:						0	9	REL	INQUISHE	D BY:			RECEIV	ED BY:	
A							Signa	lure:			_	Signature			
Printed Name: Tracy Black APAINT Printed Name: Lessia 4. Moore Firm: CAS Firm: CAS Houston						Printe	ed Name:						·		
9	Firm: CAS-Houston						Firm:					Firm:			
밁	Date/Time: 5/31/05 (600 Date/Time: 6-1-05 / 1000					11000	Date/Time: Date/Time:				e;				

Service Request Summary

Project Chemist: Jane Freemyer Folder #: E0500447 Client Name: Columbia Analytical Services Originating Lab: HOUSTON Created By: RDIAZ 1613B Full List Project Name: Due Date: 06/15/2005 K2502124 Project Number: EDD: BASICwQC Report To: Gregory Salata Tier: IV Columbia Analytical Services QAPP: LAB QAP 1317 South 13th Avenue Qualifier Set: CAS Standard Kelso, WA 98626 Formset: CAS Standard 1-360-577-7222 Phone Number: Merged?: Y Fax Number: 1-360-636-1079 Report to MDL?: Y gsalata@kelso.caslab.com E-mail:

Notes Notes

Lab Code	Client Sample	16	COC Matrix	Sample Date	Sample Time	Receive Date
E0500447-001 E - 16131 DIOXIN	WSP-SB-006 B S_FURANS_		Animal Tissue	03/16/2005	1500	06/01/2005
1613B		XINS_FURANS_ I	Full List (17 Congeners)			
E0500447-002 E - 1613 DIOXIN	WSP-SB-007 B S_FURANS_		Animal Tissue	03/16/2005	1500	06/01/2005
1613B	DIO	XINS_FURANS_ 1	Full List (17 Congeners)			
E0500447-003 E - 1613 DIOXIN	WSP-SB-008 B S_FURANS_		Animal Tissue	03/16/2005	1500	06/01/2005
1613B	DIO	XINS_FURANS_	Full List (17 Congeners)			
E0500447-004 E - 1613 DIOXIN			Animal Tissue	03/16/2005	1500	06/01/2005
1613B	DIO	XINS_FURANS_	Full List (17 Congeners)			

Columbia Analytical Services Inc. Cooler Receipt And Preservation Form

Work Order: E0500447 Project/Client: 1613B Full List/Columbia Analytical Services, Inc. Cooler received on 06/01/2005 and opened on 6-1-05Did all bottle labels and tags agree with custody papers? Were custody seals on outside of cooler? 10. Were the correct types of bottles used for the tests indicated? $\langle \hat{\mathbf{Y}} \rangle$ N Were seals intact and signature & date correct? 11. Were all of the preserved bottles received at the lab with the appropriate pH? YN Is the shipper's airbill available and filed? 12. Were VOA vials checked for absence of air bubbles, and if present, noted below? CM 6-1-05 COC# 4. 13. Did the bottles originate from CAS/E or a branch laboratory? Were custody papers properly filled out (ink, signed, etc.)? 14. Are CWA Microbiology samples received with >1/2 the 24 hr. hold time remaining Type of packing material present Bubble was ice Y from collection? Did all bottles arrive in good condition (unbroken)? NA Y N 15. Was Cl2/Res negative? Were all bottle labels complete (i.e. analysis, preservation, etc.)? NA Sample Name Lab Code WSP-SB-006 E0500447-001 16oz-Glass Jar WM CLEAR Teflon Liner(Unpreserved) **Received Conditions** Seal **Expected Conditions Cooler** рH Rec Rec HS **Intact? Corrective Action** Temp Check HS pH. Temp Barcode **Bottle ID** NA E0500447-001.01 Test List: 1613B WSP-SB-007 E0500447-002 16oz-Glass Jar WM CLEAR Teflon Liner(Unpreserved) **Received Conditions Expected Conditions Cooler** рH Rec Seal Rec **Intact? Corrective Action** HS Check Temp pHTemp **Bottle ID** Barcode NA 2.0 E0500447-002.01 1613B Test List: WSP-SB-008 E0500447-003 16oz-Glass Jar WM CLEAR Teflon Liner(Unpreserved) Received Conditions \mathbf{pH} Rec Seal Rec **Expected Conditions Cooler Intact? Corrective Action** HS Check Temp Temp HS рH Barcode **Bottle ID** NA

E0500447-003.01

Test List: 1613B E0500447-004 JST-SB-009

Columbia Analytical Services Inc. **Cooler Receipt And Preservation Form**

Lab Code

Bottle ID

Sample Name

Barcode

E0500447-004

JST-SB-009

16oz-Glass Jar WM CLEAR Teflon Liner(Unpreserved)

Expected Conditions Cooler HS pН Temp

Received Conditions Rec Temp

Rec HS

Seal **Intact? Corrective Action**

E0500447-004.01

2.0

NA

pН

Check

Test List: 1613B

All tests have one or more assigned bottles

No	Project ID	Lab ID	Client ID	Sample Size	Tare Vial	Tare & Wet	Tare & Dry	Pe	culated ercent	Dry Weight	Sample Description
				g		Sample	Sample	Solid	Moisture		
MB	-	EB21091-MB	MB	10.000	No. of Supplement	000000000000000000000000000000000000000	900 - 1000 1000 1000				
LCS		EB21091-LCS	LCS	10.000							Park Comment of the C
LCSD		EB21091-LCSD	LCSD	10.000		Up and the second		000000000000000000000000000000000000000	Consist Conti		
1	E0500447	E0500447-001.01	WSP-SB-006	10.336	13.054	16.712	13.821	20,97	79 .03	2,17	Tissue
2	E0500447	E0500447-002.01	WSP-SB-007	10.309	12.991	16.629	13.712	19.82	80.18	2.04	Tissue
3	E0500447	E0 5 00447-003.01	WSP-SB-008	10.082	12.959	17.450	13.903	21.02	78.98	2:12	Tissue
4	E0500447	E0500447-004.01	JST-SB-009	10.434	12.993	16.668	13.804	22.07	77.93	2.30	Tissue
5	K0500590	K0500590-001.01	Comp JST-SB-040/018	9.997	-13.005	16.129	13.624	19.81	80.19	1.98	Tissue
6	K0500590	K0500590-002.01	Comp WSP-SB-033/045	10.013	12.971	16.678	13.648	The same of the sa	81.74	1.83	Tissue
7	K0500590	K0500590-003.01	Comp WSP-SB-044/046	10.133	12.992	16.831	13.714		81.19	1.91	Tissue
8	K0500590	K0500590-004.01	JST-SB-042	9.760	13.017	15.612	13.476	17.69	82.31	1.73	Tissue
9	K0500590	K0500590-005.0J	JST-SB-019	10.216	12.967	16,346	13.714	22:11	77.89	2.26	Tissue
10	K0500590	K0500590-006.01	JST-SB-017	10.467	12.989	16.296	13.692	21.26	78.74	2.23	Tissue
11	E0500449	E0500449-006.01	WR-PG-62	14.615	13:022	19.382	16.516	54.94.	45.06	8.03	Wet brown mud
12	E0500449	E0500449-007.01	WR-PG-60	15.481	13.041	18.575	16.103	55.33	44.67	8.57	Dry brown mud
13	E0500449	E0500449-008.01	WR-PG-58	13.665	12.989	18.475	16,334	60.97	39.03	8.33	Wet grey/brown mud
14	E0500449	E0500449-009.01	WR-PG-56	15.280	12.976	18.820	16.264	56.26	43.74	8.60	Wet brown mud
15	E0500448	E0500448-001.01	WR-PG-36	14.560	12.995	18.180	16.137	60.60	39.40	8.82	Wet brown mud
16	E0500429	E0500429-052.01RE	mn-ss-1301-14 0-2"	5.224	12.800	15.305	14.798	79.76	20.24	4.17	Dry brown dirt
17	L0500425	10000127 00211								1	900
18										a successor of the	
19											
20		ege, pergelo do la constalia disponenti del processo				A.S.C.1011010101010101010101010101010101010	Secondario de Company				
1,580.33											
21	UNITED 1		MANAGEMENT OF THE STATE OF THE					Linear series			
23					200						
			4	A2301000/II							
2/4 25											
26				TAIL WILLIAM							

SODIUM SULFATE C1-71-2 ACETONE C1-68-3 TOLUENE C1-74-5 GLASS WOOL GW1-1-4 DICHLOROMETHANE C1-73-3 ETHYL ACETATE C1-69-4 NONANE C1-67-5 HEXANE C1-73-2

Columbia Analytical Services, INC.

EB21091

1613

SAND C1-33-1
TRIDECANE C1-74-2
SULFURIC ACID C1-74-3
BASIC SILICA GEL S1-24-3
CARBON: C1-73-5
ACIDIC SILICA GEL S1-24-4
SILICA GEL S1-22-6

Standard:	Internal	Matrix		
Solution ID:	D7-35-3B	D7-28-3B	EXTRACTION START: 6-14-05	
Volume:	1000 uL	100 uL	EXTRACTION END: 6-15-05	•
Spiker:	KYM	KYM	EXTRACTION METHOD: Soxhlet	
Witness:	лв	JB .		
Date:	6/14/2005		TIME STARTED: 1500	
Standard:	Cleanup	Recovery	TIME FINISHED: 0700	11 0
Solution ID:	D7-33-5A/B	06 75-	8	10
Volume:	100 uL	ingel	EXTRACTS RECEIVED BY	
Spiker:	DHF		1	
Witness:	ЛВ	be		-{i±
Date:	6/15/2005		DATE RECEIVED6-17-05	

Sulfuric Acid Cleanup: 6-15-05 Silica Gel/Carbon Column: 6-16-05

Dioxin/Furan Analytical Report

10655 Richmond Avenue, Suite 130-A, Houston, TX 77042 Phone (713)266-1599 Fax (713)266-0130 www.caslab.com Form 1

PCDD/PCDF ANALYSIS DATA SHEET Use for Sample and Blank Results CLIENT ID.

METHOD BLANK

SDG No:

Lab Name: Columbia Analytical Services

Lab Code: CAS Method: 1613 Case No:

Contract:

Client No:

Lab ID: EB21091-MB

Client Name:

Sample Wt/Vol: 10.000 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): Solid

Initial Calibration Date: 10/25/04

Sample Receipt Date:

Instrument ID: AutoSpec-Ultima

Ext. Date: 06/14/05

GC Column: DB-5

Ext. Vol(ul):20.0

Inj. Vol(ul):1.0

Sample Data Filename: U22434#1

Analysis Date: 17-JUN-05 Time: 15:55:05

Blank Data Filename: U22434#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22433#1

WET WEIZOIG

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solids/Lipids:

ANALYTE	CONCENTRATION FOUND	DETECTION LIMIT	Qual. (1)	ION ABUND. RATIO (2)		MEAN RRF
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD	* *	0.044 0.046 0.057	n n	* *	* *	0.98 0.98 1.15
1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCI	* * *	0.072 0.065 0.054	U U	* *	* *	0.98 1.05 1.01
OCDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDF	0.442	0.115 0.040 0.037	រ ប ប	0.93 * *	1.000	1.05 1.03 1.01
2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	* * *	0.033 0.057 0.069	U U	* *	* *	1.08 1.28 1.23
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCI	* *	0.071 0.068 0.043	บ บ บ	* *	* *	1.32 1.18 1.53
1,2,3,4,0,7,8,9-HpCI OCDF	OF * 0.341	0.056	U J	* 0.87	* 1.003	1.48 1.25
Total Tetra-Dioxir	ıs *	0.044 0.046 0.057	ט ט ט	ឆ្		
Total Hexa-Dioxing Total Hepta-Dioxing Total Tetra-Furans	15 * *	0.054 0.040	U U U			
Total Penta-Furans Total Hexa-Furans Total Hepta-Furans	* *	0.033 0.057 0.043	U U	rator FMDC	The Cr	eeds val

(1) Qualifier U indicates not detected; The K indicates EMPC. The C needs value from second column analysis. The B indicates possible blank contamination.

(2) RRTs and ion ratios are specified in Tables 2 and 9, Method 1613.

USEPA, EAD

CLIENT ID.

FORM 2: PCDD/PCDF LABELED COMPOUND AND CLEANUP STANDARD RECOVERIES

METHOD BLANK.

Lab Name: Columbia Analytical Services Contract: SDG No:

Lab Code: CAS Method:1613 Case No: Client No: Lab ID:EB21091-MB

Client Name: Sample Wt/Vol: 10.000 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): Solid Initial Calibration Date: 10/25/04

Sample Receipt Date: Instrument ID: AutoSpec-Ultima

Ext. Date: 06/14/05 GC Column ID: DB-5

Analysis Date: 17-JUN-05 Time: 15:55:05 Sample Data Filename: U22434#1

Ext. Vol(uL): 20.0 Inj. Vol(uL): 1.0 Blank Data Filename: U22434#1

Dilution Factor: 1 Cal. Ver. Data Filename: U22433#1

WET OF GROW

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solid/Lipids:

LABELED COMPOUNDS	SPIKE CONC.		R (%) (1)	QC Limite(1)	ION ABUND. RATIO (2	RRT 2) (2)
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD	2000 2000 2000 2000 2000 4000	1695.59 1876.05 1745.00 1605.34 1547.02 2534.51	84.78 93.80 87.25 80.27 77.35 63.36	25-164 25-181 32-141 28-130 23-140	0.77 1.54 1.26 1.25 1.05 0.90	1.012 1.227 0.989 0.992 1.071
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF	2000 2000 2000 2000 2000 2000 2000 200	1874.99 1630.08 1640.73 1597.07 1404.86 1839.33 1542.59 1453.78 1637.80	93.75 81.50 82.04 79.85 70.24 91.97 77.13 72.69 81.89	24-169 24-185 21-178 26-152 26-123 29-147 28-136 28-143 26-138	0.77 1.55 1.55 0.52 0.52 0.52 0.52 0.44 0.44	0.969 1.177 1.211 0.968 0.971 1.006 0.986 1.048 1.081
CLEANUP STANDARD						
37Cl-2,3,7,8-TCDD	800	782.43	97.80	35-197		1.013

⁽¹⁾ Contract-required limits for percent recovery (R) are specified in Table 7, Method 1613.

RFP C500273T1

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. NOTE: There is no ion abundance ratio for 37C14-2378-TCDD (cleanup standard).

Form 1

PCDD/PCDF ANALYSIS DATA SHEET Use for Sample and Blank Results CLIENT ID.

WSP-SB-006

Lab Name: Columbia Analytical Services

Contract:

SDG No:

Lab Code: CAS Method: 1613 Case No:

Client No:

Lab ID: E0500447-001.01

Client Name: Geomatrix

Sample Wt/Vol: 10.336 g or mL: g

Matrix (Tissue): Tissue

Initial Calibration Date: 10/25/04

Sample Receipt Date: 06/01/05

Instrument ID: AutoSpec-Ultima

Ext. Date: 06/14/05

GC Column:DB-5

Ext. Vol(ul):20.0

Inj. Vol(ul):1.0

Sample Data Filename: U22441#1

Analysis Date: 17-JUN-05 Time: 22:27:52 Blank Data Filename: U22434#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22433#1

Concentration Units (pg/L or ng/Kg wet weight): ng/Kg % Solids/Lipids: 20.97/0.426

	CONCENTRATION	DETECTION	Qual.	ION ABUND.	RRT	MEAN
ANALYTE	FOUND	LIMIT	(1)	RATIO (2)	(2)	RRF
2,3,7,8-TCDD	*	0.041	U	*	*	0.98
1,2,3,7,8-PeCDD	*	0.015	Ū	*	*	0.98
1,2,3,4,7,8-HxCDD	*	0.035	Ū	*	*	1.15
1,2,3,6,7,8-HxCDD	*	0.039	Ü	*	*	0.98
1,2,3,7,8,9-HxCDD	*	0.037	Ü	*	*	1.05
1,2,3,4,6,7,8-HpC		0.038	J	0.95	1.000	1.01
OCDD OCDD	0.708	0.059	JВ	0.99	1.000	1.05
2,3,7,8-TCDF	*	0.042	Ū	*	*	1.03
1,2,3,7,8-PeCDF	*	0.028	Ū	*	*	1.01
2,3,4,7,8-PeCDF	*		U	*	*	1.08
1,2,3,4,7,8-HxCDF		0.025	U	*	*	1.28
1,2,3,6,7,8-HxCDF		0.030	U	*	*	1.23
1,2,3,7,8,9-HxCDF		0.031	U	*	*	1.32
2,3,4,6,7,8-HxCDF		0.028	U	*	*	1:18
1,2,3,4,6,7,8-HpC		0.030	U	*	*	1.53
1,2,3,4,7,8,9-HpC		0.038	U	*	*	1.48
OCDF	0.274	0.048	JВ	0.84	1.003	1.25
Total Tetra-Dioxi	ns *	0.041	Ŭ			
Total Penta-Dioxi	ns *	0.045	U			
Total Hexa-Dioxin	s *	0.035	U			
Total Hepta-Dioxi	ns 0.249	0.038				
Total Tetra-Furan		0.042	U			5
Total Penta-Furan	.s *	0.027	U			
Total Hexa-Furans	*	0.025	U			
Total Hepta-Furan	.s *	0.030	U			
(1) Ouglifier II in	diasted not de	teated. The	K indi	cated FMDC	The C	needa walı

⁽¹⁾ Qualifier U indicates not detected; The K indicates EMPC. The C needs value from second column analysis. The B indicates possible blank contamination.

⁽²⁾ RRTs and ion ratios are specified in Tables 2 and 9, Method 1613.

USEPA, EAD

FORM 2: PCDD/PCDF LABELED COMPOUND AND

CLEANUP STANDARD RECOVERIES

CLIENT ID.

WSP-SB-006

SDG No: Lab Name: Columbia Analytical Services Contract:

Lab ID:E0500447-001.01 Lab Code: CAS Method: 1613 Case No: Client No:

Client Name: Geomatrix Sample Wt/Vol: 10.336 g or mL: g

Initial Calibration Date: 10/25/04 Matrix (Tissue): Tissue

Instrument ID: AutoSpec-Ultima Sample Receipt Date: 06/01/05

Ext. Date: 06/14/05 GC Column ID: DB-5

Analysis Date: 17-JUN-05 Time: 22:27:52 Sample Data Filename: U22441#1

Blank Data Filename: U22434#1 Ext. Vol(uL): 20.0 Inj. Vol(uL): 1.0

Cal. Ver. Data Filename: U22433#1 Dilution Factor: 1

Concentration Units (pg/L or ng/Kg wet weight): ng/Kg % Solid/Lipids: 20.97/0.426

LABELED COMPOUNDS	SPIKE CONC.	CONC. FOUND	R(%) (1)	QC Limite(1)	ION ABUND. RATIO (2)	RRT (2)
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD	2000 2000 2000 2000 2000 4000	1675.05 1816.31 1542.50 1591.63 1432.24 2548.84	83.75 90.82 77.13 79.58 71.61 63.72	25-164 25-181 32-141 28-130 23-140 17-157	1.56 1.23 1.26 1.04	1.013 1.228 0.989 0.992 1.071 1.144
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	2000 2000 2000 2000 2000 2000 2000 200	1859.71 1635.62 1595.85 1482.74 1358.71 1783.46 1468.08 1356.13 1539.93	92.99 81.78 79.79 74.14 67.94 89.17 73.40 67.81 77.00	24-169 24-185 21-178 26-152 26-123 29-147 28-136 28-143 26-138	1.56 1.56 0.53 0.52 0.52 0.51	0.969 1.178 1.212 0.968 0.970 1.006 0.985 1.048
CLEANUP STANDARD				•		
37Cl-2,3,7,8-TCDD	800	789.04	98.63	35-197		1.013

⁽¹⁾ Contract-required limits for percent recovery (R) are specified in Table 7, Method 1613.

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. NOTE: There is no ion abundance ratio for 37C14-2378-TCDD (cleanup standard). RFP C500273T1

Form 3

CLIENT ID.

PCDD/PCDF TOXICITY EQUIVALENCE SUMMARY Use for Sample and Blank Results

WSP-SB-006

Lab Name: Columbia Analytical Services

Contract:

SDG No:

Lab Code: CAS Method:1613 Case No:

Client No:

Lab ID: E0500447-001.01

Client Name: Geomatrix

Sample Wt/Vol: 10.336 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): Tissue Initial Calibration Date: 10/25/04

Sample Receipt Date: 06/01/05

Instrument ID: AutoSepc-Ultima

Ext. Date: 06/14/05

GC Column ID: DB-5

Ext. Vol(ul):20.0

Inj. Vol(ul):1.0

Sample Data Filename: U22441#1

Analysis Date: 17-JUN-05 Time: 22:27:52 Blank Data Filename: U22434#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22433#1

WET CF 6/2016

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solids/Lipids: 20.97/0.426

	CONCENTRATIO	n te	F(1)	TEF-ADJUSTED CONCENTRATION
2,3,7,8-TCDD	*	х	1.0	*
1,2,3,7,8-PeCDD	*	X	1.0	*
1,2,3,4,7,8-HxCDD	*	X	0.1	*
1,2,3,6,7,8~HxCDD	*	X	0.1	*
1,2,3,7,8,9-HxCDD	*	X	0.1	*
1,2,3,4,6,7,8-HpCDD	0.117	X	0.01	1.17e-03
OCDD	0.708	X	0.0001	7.10e-05
2,3,7,8-TCDF	*	X	0.1	*
1,2,3,7,8-PeCDF	*	X	0.05	*
2,3,4,7,8-PeCDF	*	X	0.5	*
1,2,3,4,7,8-HxCDF	*	X	0.1	*
1,2,3,6,7,8-HxCDF	*	X	0.1	*
1,2,3,7,8,9-HxCDF	*	X	0.1	*
2,3,4,6,7,8-HxCDF	*	X	0.1	*
1,2,3,4,6,7,8-HpCDF	*	X	0.01	*
1,2,3,4,7,8,9-HpCDF	*	X	0.01	*
OCDF	0.274	X	0.0001	2.70e-05

Total: 1.27e-03

⁽¹⁾ World Health Organization (WHO) adopted TEF's, taken from: Van der Berg, et al: Toxic Equivalency Factor (TEFs) for PCBs, PCDDs, PCDFs for Hummans and Wildlife (Environ Health perspect 106:775-792 (1998).

Form 1

CLIENT ID. PCDD/PCDF ANALYSIS DATA SHEET

Use for Sample and Blank Results WSP-SB-007

Lab Name: Columbia Analytical Services Contract: SDG No:

Lab Code: CAS Method:1613 Case No: Client No: Lab ID: E0500447-002.01

Client Name: Geomatrix Sample Wt/Vol: 10.309 g or mL: g

Matrix (Tissue): Tissue Initial Calibration Date: 10/25/04

Ext. Date: 06/14/05 GC Column:DB-5

Ext. Vol(ul):20.0 Inj. Vol(ul):1.0 Sample Data Filename: U22442#1

Analysis Date: 17-JUN-05 Time: 23:14:10 Blank Data Filename: U22434#1

Dilution Factor: 1 Cal. Ver. Data Filename: U22433#1

Concentration Units (pg/L or ng/Kg wet weight): ng/Kg % Solids/Lipids: 19.82/0.330

	CONCENTRATION	DETECTION	Qual.	ION ABUND.		MEAN	
ANALYTE	FOUND	LIMIT	(1)	RATIO (2)	(2)	RRF	
2,3,7,8-TCDD	*	0.051	U	*	*	0.98	
1,2,3,7,8-PeCDD	*	0.029	Ū	*	*	0.98	
1,2,3,4,7,8-HxCDD		0.029	Ū	*	*	1.15	
1,2,3,6,7,8-HxCDD		0.033	Ū	*	*	0.98	
1,2,3,7,8,9-HxCDD		0.031	Ū	*	*	1.05	
1,2,3,4,6,7,8-HpC		0.028	Ĵ	1.03	1.000	1.01	
OCDD	0.362	0.064	JB	1.01	1.000	1.05	
2,3,7,8-TCDF	*	0.043		*	*	1.03	
1,2,3,7,8-PeCDF	*	0.015	U	*	*	1.01	
2,3,4,7,8-PeCDF	*	0.016	U	*	*	1.08	
1,2,3,4,7,8-HxCDF	*	0.020	U	*	*	1.28	
1,2,3,6,7,8-HxCDF		0.025	U	*	*	1.23	
1,2,3,7,8,9-HxCDF	*	0.025	U	*	*	1.32	
2,3,4,6,7,8-HxCDF		0.024	U	*	*	1.18	
1,2,3,4,6,7,8-HpC	DF *	0.025	U	*	*	1.53	
1,2,3,4,7,8,9-HpC	DF *	0.033	U	*	*	1.48	
OCDF	0.128	0.050	JB	0.91	1.004	1.25	
Total Tetra-Dioxi	ns *	0.051	U				
Total Penta-Dioxi		0.029	บ				
Total Hexa-Dioxin		0.029	Ū				
Total Hepta-Dioxi		0.028	J				
Total Tetra-Furan		0.043	U				
Total Penta-Furan		0.016	Ü				
Total Hexa-Furans		0.020	Ü				
Total Hepta-Furan		0.025	Ū				

⁽¹⁾ Qualifier U indicates not detected; The K indicates EMPC. The C needs value from second column analysis. The B indicates possible blank contamination.

⁽²⁾ RRTs and ion ratios are specified in Tables 2 and 9, Method 1613.

USEPA, EAD

FORM 2: PCDD/PCDF LABELED COMPOUND AND CLEANUP STANDARD RECOVERIES

CLIENT ID.
WSP-SB-007

Lab Name: Columbia Analytical Services Contract: SDG No:

Lab Code: CAS Method:1613 Case No: Client No: Lab ID:E0500447-002.01

Client Name: Geomatrix Sample Wt/Vol: 10.309 g or mL: g

Matrix (Tissue): Tissue Initial Calibration Date: 10/25/04

Ext. Date: 06/14/05 GC Column ID: DB-5

Analysis Date: 17-JUN-05 Time: 23:14:10 Sample Data Filename: U22442#1

Ext. Vol(uL): 20.0 Inj. Vol(uL): 1.0 Blank Data Filename: U22434#1

Dilution Factor: 1 Cal. Ver. Data Filename: U22433#1

Concentration Units (pg/L or ng/Kg wet weight): ng/Kg % Solid/Lipids: 19.82/0.330

					ION	
	SPIKE	CONC.	R(%)	QC	ABUND.	RRT
	CONC.	FOUND	(1)	Limite(1)	RATIO (2) (2)
LABELED COMPOUNDS				3		
13C-2,3,7,8-TCDD	2000	1681.58	84.08	25-164	0.80	1.012
13C-1,2,3,7,8-PeCDD	2000	1830.53	91.53	25-181	1.56	1.228
13C-1,2,3,7,8-FECDD	2000	1509.38	75.47	32-141	1.27	0.989
13C-1,2,3,4,7,6 HXCDD	2000	1504.10	75.20	28-130	1.25	0.991
13C-1,2,3,4,6,7,8-HpCDD	2000	1444.01	72.20	23-140	1.04	1.071
13C-OCDD	4000	2202.47	55.06	17-157	0.91	1.143
13C-2,3,7,8-TCDF	2000	1893.03	94.65	24-169	0.76	0.968
13C-1,2,3,7,8-PeCDF	2000	1684.88	84.24	24-185	1.54	1.178
13C-2,3,4,7,8-PeCDF	2000	1608.02	80.40	21-178	1.55	1.212
13C-1,2,3,4,7,8-HxCDF	2000	1501.19	75.06	26-152	0.52	0.968
13C-1,2,3,6,7,8-HxCDF	2000	1344.77	67.24	26-123	0.52	0.970
13C-1,2,3,7,8,9-HxCDF	2000	1784.35	89.22	29-147	0.51	1.006
13C-2,3,4,6,7,8-HxCDF	2000	1448.69	72.43	28-136	0.52	0.985
13C-1,2,3,4,6,7,8-HpCDF	2000	1357.88	67.89	28-143	0.45	1.048
13C-1,2,3,4,7,8,9-HpCDF	2000	1512.61	75.63	26-138	0.44	1.080
CLEANUP STANDARD						
	0.00	B.C.B. 4.E.	05 03	25 107		1 012
37Cl-2,3,7,8-TCDD	800	767.45	95.93	35-197		1.013

⁽¹⁾ Contract-required limits for percent recovery (R) are specified in Table 7, Method 1613.

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. NOTE: There is no ion abundance ratio for 37C14-2378-TCDD (cleanup standard).

RFP C500273T1

Form 3

CLIENT ID.

PCDD/PCDF TOXICITY EQUIVALENCE SUMMARY Use for Sample and Blank Results

WSP-SB-007

Lab Name: Columbia Analytical Services

Contract:

SDG No:

Lab Code: CAS Method: 1613 Case No:

Client No:

Lab ID: E0500447-002.01

Client Name: Geomatrix

Sample Wt/Vol: 10.309 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): Tissue Initial Calibration Date: 10/25/04

Sample Receipt Date: 06/01/05

Instrument ID: AutoSepc-Ultima

Ext. Date: 06/14/05

GC Column ID: DB-5

Ext. Vol(ul):20.0

Inj. Vol(ul):1.0

Sample Data Filename: U22442#1

Analysis Date: 17-JUN-05 Time: 23:14:10 Blank Data Filename: U22434#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22433#1

WET UF 6/20/6

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solids/Lipids: 19.82/0.330

	CONCENTRATION	TEF(1)	TEF-ADJUSTED CONCENTRATION
2,3,7,8-TCDD	*	X 1.0	*
1,2,3,7,8-PeCDD	*	X 1.0	*
1,2,3,4,7,8-HxCDD	*	X 0.1	*
1,2,3,6,7,8-HxCDD	*	X 0.1	*
1,2,3,7,8,9-HxCDD	*	X 0.1	*
1,2,3,4,6,7,8-HpCDD	0.058	X 0.01	5.75e-04
OCDD	0.362	X 0.0001	3.60e-05
2,3,7,8-TCDF	*	X 0.1	*
1,2,3,7,8-PeCDF	*	X 0.05	*
2,3,4,7,8-PeCDF	*	X 0.5	*
1,2,3,4,7,8-HxCDF	*	X 0.1	*
1,2,3,6,7,8-HxCDF	*	X 0.1	*
1,2,3,7,8,9-HxCDF	*	X 0.1	*
2,3,4,6,7,8-HxCDF	*	X 0.1	*
1,2,3,4,6,7,8-HpCDF	*	X 0.01	*
1,2,3,4,7,8,9-HpCDF	*	X 0.01	*
OCDF	0.128	X 0.0001	1.30e-05

Total: 6.24e-04

⁽¹⁾ World Health Organization (WHO) adopted TEF's, taken from: Van der Berg, et al: Toxic Equivalency Factor (TEFs) for PCBs, PCDDs, PCDFs for Hummans and Wildlife (Environ Health perspect 106:775-792 (1998).

Form 1

PCDD/PCDF ANALYSIS DATA SHEET Use for Sample and Blank Results CLIENT ID.

WSP-SB-008

Lab Name: Columbia Analytical Services

Contract:

SDG No:

Lab Code: CAS Method: 1613 Case No:

Client No:

Lab ID: E0500447-003.01

Client Name: Geomatrix

Sample Wt/Vol: 10.082 g or mL: g

Matrix (Tissue): Tissue

Initial Calibration Date: 10/25/04

Sample Receipt Date: 06/01/05

Instrument ID: AutoSpec-Ultima

Ext. Date: 06/14/05

GC Column: DB-5

Ext. Vol(ul):20.0

Inj. Vol(ul):1.0

Sample Data Filename: U22443#1

Analysis Date: 18-JUN-05 Time: 00:00:30 Blank Data Filename: U22434#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22433#1

Concentration Units (pg/L or ng/Kg wet weight): ng/Kg % Solids/Lipids: 21.02/0.22

ANALYTE	CONCENTRATION FOUND	N	DETECTION LIMIT	Qual. (1)	ION ABUND. RATIO (2)	RRT (2)	MEAN RRF
2,3,7,8-TCDD	t,	r	0.041	U	*	*	0.98
1,2,3,7,8-1CDD 1,2,3,7,8-PeCDD	,	k	0.042	IJ	*	*	0.98
1,2,3,7,8-FECDD			0.044	Ü	*	*	1.15
1,2,3,4,7,8 HXCDD	4	ŀ	0.050	Ü	*	*	0.98
1,2,3,7,8,9-HxCDD			0.033	Ū	*	*	1.05
1,2,3,4,6,7,8-HpC	מח	k	0.047	Ū	*	*	1.01
OCDD	0.354	1	0.083	ĴВ	0.80	1.000	1.05
2,3,7,8-TCDF		÷	0.040	- U	*	*	1.03
1,2,3,7,8-PeCDF		*	0.035	Ū	*	*	1.01
2,3,4,7,8-PeCDF	1 19	*	0.035	Ū	*	*	1.08
1,2,3,4,7,8-HxCDF		*	0.026	Ū	*	*	1.28
1,2,3,6,7,8-HxCDF		*	0.031	Ü	*	*	1.23
1,2,3,7,8,9-HxCDF		*	0.033	U	*	*	1.32
2,3,4,6,7,8-HxCDF	,	*	0.029	U	*	*	1.18
1,2,3,4,6,7,8-HpC	DF	*	0.040	U	*	*	1.53
1,2,3,4,7,8,9-HpC	DF	*	0.055	U	*	*	1.48
OCDF	0.14	5	0.096	JB	0.80	1.003	1.25
Total Tetra-Dioxi	ns	*	0.041	U		va.	
Total Penta-Dioxi		*	0.042	U			
Total Hexa-Dioxir		*	0.044	U			
Total Hepta-Dioxi		*	0.047	U.			
Total Tetra-Furar		*	0.040	U		- 1	
Total Penta-Furar		*	0.035	U			
Total Hexa-Furans		*	0.026	U			
Total Hepta-Furar		*	0.040	U			
/- \ O = 7 ! C!	3	a	toatod. Tho	V indi	COTOC EMPC	The C.	needs va

⁽¹⁾ Qualifier U indicates not detected; The K indicates EMPC. The C needs value from second column analysis. The B indicates possible blank contamination.

⁽²⁾ RRTs and ion ratios are specified in Tables 2 and 9, Method 1613.

USEPA, EAD

FORM 2: PCDD/PCDF LABELED COMPOUND AND CLEANUP STANDARD RECOVERIES

CLIENT ID. WSP-SB-008

SDG No: Lab Name: Columbia Analytical Services Contract:

Lab ID:E0500447-003.01 Lab Code: CAS Method:1613 Case No: Client No:

Sample Wt/Vol: 10.082 g or mL: g Client Name: Geomatrix

Matrix (Tissue): Tissue Initial Calibration Date: 10/25/04

Instrument ID: AutoSpec-Ultima Sample Receipt Date: 06/01/05

GC Column ID: DB-5 Ext. Date: 06/14/05

Sample Data Filename: U22443#1 Analysis Date: 18-JUN-05 Time: 00:00:30

Blank Data Filename: U22434#1 Ext. Vol(uL): 20.0 Inj. Vol(uL): 1.0

Cal. Ver. Data Filename: U22433#1 Dilution Factor: 1

Concentration Units (pg/L or ng/Kg wet weight): ng/Kg % Solid/Lipids: 21.02/0.22

	LABELED COMPOUNDS	SPIKE CONC.	CONC. FOUND	ō N°	R(%) (1)	QC Limite(1)	ION ABUND. RATIO (2	RRT) (2)	
	13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD	2000 2000 2000 2000 2000 4000	1605.71 1743.27 1517.49 1512.85 1328.66 1787.30		80.29 87.16 75.87 75.64 66.43 44.68	25-164 25-181 32-141 28-130 23-140 17-157	0.80 1.54 1.32 1.16 1.05 0.91	1.013 1.228 0.989 0.992 1.071	
	13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	2000 2000 2000 2000 2000 2000 2000 200	1834.21 1548.72 1531.82 1471.46 1327.39 1675.55 1444.74 1259.75 1345.24		91.71 77.44 76.59 73.57 66.37 83.78 72.24 62.99 67.26	24-169 24-185 21-178 26-152 26-123 29-147 28-136 28-143 26-138	0.76 1.55 1.55 0.52 0.53 0.51 0.52 0.44 0.44	0.969 1.179 1.212 0.968 0.970 1.006 0.986 1.048	
į	CLEANUP STANDARD								
	37Cl-2,3,7,8-TCDD	800	773.46		96.68	35-197		1.013	

337

24

⁽¹⁾ Contract-required limits for percent recovery (R) are specified in Table 7, Method 1613.

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. NOTE: There is no ion abundance ratio for 37C14-2378-TCDD (cleanup standard). RFP C500273T1

Form 3

CLIENT ID.

PCDD/PCDF TOXICITY EQUIVALENCE SUMMARY Use for Sample and Blank Results

WSP-SB-008

Lab Name: Columbia Analytical Services

Contract:

SDG No:

Lab Code: CAS Method: 1613 Case No:

Client No:

Lab ID: E0500447-003.01

Client Name: Geomatrix

Sample Wt/Vol: 10.082 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): Tissue Initial Calibration Date: 10/25/04

Sample Receipt Date: 06/01/05

Instrument ID: AutoSepc-Ultima

Ext. Date: 06/14/05

GC Column ID: DB-5

Ext. Vol(ul):20.0

Inj. Vol(ul):1.0

Sample Data Filename: U22443#1

Analysis Date: 18-JUN-05 Time: 00:00:30

Blank Data Filename: U22434#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22433#1

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solids/Lipids: 21.02/0.22

	CONCENTRATION	TEF (1)	TEF-ADJUSTED CONCENTRATION
2,3,7,8-TCDD	*	X 1.0	*
1,2,3,7,8~PeCDD	*	X 1.0	*
1,2,3,4,7,8-HxCDD	*	X 0.1	*
1,2,3,6,7,8-HxCDD	*	X 0.1	*
1,2,3,7,8,9-HxCDD	*	X 0.1	*
1,2,3,4,6,7,8-HpCDD	*	X 0.01	*
OCDD	0.354	X 0.0001	3.50e-05
2,3,7,8-TCDF	*	X 0.1	*
1,2,3,7,8-PeCDF	*	X 0.05	*
2,3,4,7,8-PeCDF	*	X 0.5	*
1,2,3,4,7,8-HxCDF	*	X 0.1	*
1,2,3,6,7,8-HxCDF	*	X 0.1	*
1,2,3,7,8,9-HxCDF	*	X 0.1	*
2,3,4,6,7,8-HxCDF	*	X 0.1	*
1,2,3,4,6,7,8-HpCDF	*	X 0.01	*
1,2,3,4,7,8,9-HpCDF	*	X 0.01	*
OCDF	0.145	X 0.0001	1.40e-05

Total: 5.00e-05

⁽¹⁾ World Health Organization (WHQ) adopted TEF's, taken from: Van der Berg, et al: Toxic Equivalency Factor (TEFs) for PCBs, PCDDs, PCDFs for Hummans and Wildlife (Environ Health perspect 106:775-792 (1998).

Form 1

PCDD/PCDF ANALYSIS DATA SHEET Use for Sample and Blank Results CLIENT ID.

JST-SB-009

Lab Name: Columbia Analytical Services

Contract:

SDG No:

Lab Code: CAS Method:1613 Case No:

Client No:

Lab ID: E0500447-004.01

Client Name: Geomatrix

Sample Wt/Vol: 10.434 g or mL: g

Matrix (Tissue): Tissue

Initial Calibration Date: 10/25/04

Sample Receipt Date: 06/01/05

Instrument ID: AutoSpec-Ultima

Ext. Date: 06/14/05

GC Column: DB-5

Ext. Vol(ul):20.0

Inj. Vol(ul):1.0

Sample Data Filename: U22484#1

Analysis Date: 22-JUN-05 Time: 13:28:34 Blank Data Filename: U22434#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22481#1

Concentration Units (pg/L or ng/Kg wet weight): ng/Kg % Solids/Lipids: 22.07/0.249

ANALYTE	CONCENTRATION FOUND	DETECTION LIMIT	Qual.	ION ABUND. RATIO (2)	RRT (2)	MEAN RRF
	*	0.033	U	*	*	0.98
2,3,7,8-TCDD	*	0.033	U	*	*	0.98
1,2,3,7,8-PeCDD	*	0.028	Ü	*	*	1.15
1,2,3,4,7,8-HxCDD		0.017	Ū	*	*	0.98
1,2,3,6,7,8-HxCDD	*	0.022	U	*	*	1.05
1,2,3,7,8,9-HxCDD			J		1.000	1.01
1,2,3,4,6,7,8-HpC	DD 0.076	0.018	JВ	0.85	1.000	1.05
OCDD	0.452	0.032	U	*	*	1.03
2,3,7,8-TCDF		0.037		*	*	1.01
1,2,3,7,8-PeCDF	*	0.016	U	*	*	1.08
2,3,4,7,8-PeCDF	*	0.017	U	*	*	1.28
1,2,3,4,7,8-HxCDF	*	0.017	U	*	*	1.23
1,2,3,6,7,8-HxCDF	*	0.020	U	*	*	1.32
1,2,3,7,8,9-HxCDF	*	0.019	U	*	*	1.18
2,3,4,6,7,8-HxCDF	*	0.021	U	*	^ *	1.53
1,2,3,4,6,7,8-HpC	DF *	0.016	U	*	*	1.48
1,2,3,4,7,8,9-HpC	DF *	0.019	U			
OCDF	0.118	0.028	JK	0.75	1.003	1.25
Total Tetra-Dioxi	ns *	0.033	U			
Total Penta-Dioxi		0.028	U			
Total Hexa-Dioxin		0.017	U			
Total Hepta-Dioxi		0.018				
Total Tetra-Furan		0.037	U			
Total Penta-Furan		0.017	U			
Total Hexa-Furans		0.017	U			
Total Henta-Furar	ns *	0.016	U			
(1) Qualifier II in	ndicates not de	etected: The	K indi	cates EMPC.	The C	needs val

⁽¹⁾ Qualifier U indicates not detected; The K indicates EMPC. The C needs value from second column analysis. The B indicates possible blank contamination.

⁽²⁾ RRTs and ion ratios are specified in Tables 2 and 9, Method 1613.

USEPA, EAD

FORM 2: PCDD/PCDF LABELED COMPOUND AND

CLEANUP STANDARD RECOVERIES

CLIENT ID.

JST-SB-009

Lab Name: Columbia Analytical Services

Contract:

SDG No:

Lab Code: CAS Method: 1613 Case No:

Client No:

Lab ID:E0500447-004.01

Client Name: Geomatrix

Sample Wt/Vol: 10.434 g or mL: g

Matrix (Tissue): Tissue

Initial Calibration Date: 10/25/04

Sample Receipt Date: 06/01/05

Instrument ID: AutoSpec-Ultima

Ext. Date: 06/14/05

GC Column ID: DB-5

Analysis Date: 22-JUN-05 Time: 13:28:34

Sample Data Filename: U22484#1

Ext. Vol(uL): 20.0 Inj. Vol(uL): 1.0

Blank Data Filename: U22434#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22481#1

Concentration Units (pg/L or ng/Kg wet weight): ng/Kg % Solid/Lipids: 22.07/0.249

			ION
	SPIKE CONC.	R(%) QC	ABUND. RRT
	CONC. FOUND	(1) Limite (1)	RATIO (2) (2)
LABELED COMPOUNDS		E	
13C-2,3,7,8-TCDD	2000 1572.13	78.61 25-164	0.75 1.013
13C-1,2,3,7,8-PeCDD	2000 1739.42	86.97 25-181	1.55 1.231
13C-1,2,3,4,7,8-HxCDD	2000 1510.69	75.53 32-141	1.24 0.989
13C-1,2,3,6,7,8-HxCDD	2000 1428.27	71.41 28-130	1.24 0.992
13C-1,2,3,4,6,7,8-HpCDD	2000 1511.31	75.57 23-140	1.05 1.072
13C-OCDD	4000 3071.92	76.80 17-157	0.90 1.144
13C-2,3,7,8-TCDF	2000 1722.13	86.11 24-169	0.78 0.969
13C-1,2,3,7,8-PeCDF	2000 1644.46	82.22 24-185	1.53 1.182
13C-2,3,4,7,8-PeCDF	2000 1471.12	73.56 21-178	1.57 1.215
13C-1,2,3,4,7,8-HxCDF	2000 1434.85	71.74 26-152	0.53 0.967
13C-1,2,3,6,7,8-HxCDF	2000 1318.24	65.91 26-123	0.53 0.970
13C-1,2,3,7,8,9-HxCDF	2000 1806.02	90.30 29-147	0.52 1.006
13C-2,3,4,6,7,8-HxCDF	2000 1332.18	66.61 28-136	0.52 0.986
13C-1,2,3,4,6,7,8-HpCDF	2000 1458.05	72.90 28-143	0.44 1.048
13C-1,2,3,4,7,8,9-HpCDF	2000 1689.46	84.47 26-138	0.44 1.081
CLEANUP STANDARD			
37C1-2,3,7,8-TCDD	800 729.10	91.14 35-197	1.014
3,01 2,3,,,0 1000		2	

⁽¹⁾ Contract-required limits for percent recovery (R) are specified in Table 7, Method 1613.

RFP C500273T1

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. NOTE: There is no ion abundance ratio for 37C14-2378-TCDD (cleanup standard).

Form 3

PCDD/PCDF TOXICITY EQUIVALENCE SUMMARY

Use for Sample and Blank Results JST-SB-009

Lab Name: Columbia Analytical Services Contract: SDG No:

Lab Code: CAS Method:1613 Case No: Client No: Lab ID: E0500447-004.01

Client Name: Geomatrix Sample Wt/Vol: 10.434 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): Tissue Initial Calibration Date: 10/25/04

Ext. Date: 06/14/05 GC Column ID: DB-5

Ext. Vol(ul):20.0 Inj. Vol(ul):1.0 Sample Data Filename: U22484#1

Analysis Date: 22-JUN-05 Time: 13:28:34 Blank Data Filename: U22434#1

Dilution Factor: 1 Cal. Ver. Data Filename: U22481#1

WET UF 6/20/6

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solids/Lipids: 22.07/0.249

21	CONCENTRATION	TE.	F(1)	TEF-ADJUSTED CONCENTRATION
2,3,7,8-TCDD	*	Х	1.0	*
1,2,3,7,8~PeCDD	*	Х	1.0	*
1,2,3,4,7,8-HxCDD	*	X	0.1	*
1,2,3,6,7,8-HxCDD	*	X	0.1	*
1,2,3,7,8,9-HxCDD	*	X	0.1	*
1,2,3,4,6,7,8-HpCDD	0.076	X	0.01	7.62e-04
OCDD	0.452	X	0.0001	4.50e-05
2,3,7,8-TCDF	*	X	0.1	*
1,2,3,7,8-PeCDF	*	X	0.05	*
2,3,4,7,8-PeCDF	*	X	0.5	*
1,2,3,4,7,8-HxCDF	*	X	0.1	*
1,2,3,6,7,8-HxCDF	*	X	0.1	*
1,2,3,7,8,9-HxCDF	*	X	0.1	*
2,3,4,6,7,8-HxCDF	*	X	0.1	*
1,2,3,4,6,7,8-HpCDF	*	X	0.01	*
1,2,3,4,7,8,9-HpCDF	*	X	0.01	*
OCDF	0.118	X	0.0001	1.20e-05

Total: 8.19e-04

⁽¹⁾ World Health Organization (WHO) adopted TEF's, taken from: Van der Berg, et al: Toxic Equivalency Factor (TEFs) for PCBs, PCDDs, PCDFs for Hummans and Wildlife(Environ Health perspect 106:775-792 (1998).

An Employee - Owned Company

Accuracy & Precision Data

10655 Richmond Avenue, Suite 130-A, Houston, TX 77042 Phone (713)266-1599 Fax (713)266-0130 www.caslab.com

3DFA 1613 PCDD/PCDF SPIKED SAMPLE SUMMARY

CLIENT ID

LCS/LCSD

Lab Name: Lab Code: COLUMBIA ANALYTICAL SERVICES

CAS

LAB. ID:

EB21091

Matrix:

Solid (Solid, Aqueous, Ash, Waste)

CONCENTRATION UNITS: (pg/L or ng/Kg)

ng/Kg

	SPIKE	LCS	LCSD					
	ADDED	SAMPLE	SAMPLE		LCS%	LCSD%	RPD	QC
ANALYTE	(PG)	CONC.	CONC.		RECOV. #	RECOV. #	ક	LIMITS
		1						
2378-TCDD	200	23.779	20.507		118.90	102.54	14.78	50 - 150
12378-PeCDD	1000	102.438	97.309		102.44	97.31	5.14	- 11
123478-HxCDD	1000	108.225	94.522		108.23	94.52	13.52	
123678-HxCDD	1000	121.061	109.173		121.06	109.17	10.33	- 11
123789-HxCDD	1000	118.641	105.295		118.64	105.30	11.92	
1234678-HpCDD	1000	107.147	100.826		107.15	100.83	6.08	
OCDD	2000	218.340	211.319		109.17	105.66	3.27	1
2378-TCDF	200	17.648	15.299		88.24	76.50	14.26	1 11
12378-PeCDF	1000	112.696	99.357		112.70	99.36	12.58	
23478-PeCDF	1000	108.158	95.257		108.16	95.26	12.68	
123478-HxCDF	1000	106.364	92.205		106.36	92.21	14.26	
123678-HxCDF	1000	118.670	106.754		118.67	106.75	10.57	
123789-HxCDF	1000	99.088	86.112	× .	99.09	86.11	14.01	
234678-HxCDF	1000	107.897	96.028		107.90	96.03	11.64	1
1234678-HpCDF	1000	100.740	92.807	10 1 5	100.74	92.81	8.20	1
1234789-HpCDF	1000	99.558	92.764		99.56	92.76	7.07	1 3
OCDF	2000	218.292	188.009		109.15	94.00	14.91	50 - 150

If an analyte is not detected in either analysis, enter 0 (zero) as the concentration.

[#] Column to be used to flag values outside QC limits.

^{*} Compound outside the QC advisory limits of 50 - 150

Form 1

CLIENT ID.

PCDD/PCDF ANALYSIS DATA SHEET Use for Sample and Blank Results

LCS

Lab Name: Columbia Analytical Services Contract:

SDG No:

Lab Code: CAS Method:1613 Case No:

Client No: Lab ID: EB21091-LCS

Client Name:

Sample Wt/Vol: 10.000 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): solid Initial Calibration Date: 08/10/04

Sample Receipt Date:

Instrument ID: 70S

Ext. Date: 06/14/05

GC Column:DB-5

Ext. Vol(ul):20.0

Inj. Vol(ul):1.0 Sample Data Filename: C14093#3

Analysis Date: 23-JUN-05 Time: 13:56:23 Blank Data Filename: U22434#1

Dilution Factor: 1

Cal. Ver. Data Filename: C14093#2

WET OF 6/2016

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solids/Lipids:

ANALYTE	CONCENTRATION FOUND	DETECTION LIMIT	Qual. ION ABUN		MEAN
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF	218.340 17.648 112.696 108.158 106.364 118.670 99.088 107.897 100.740 99.558	0.113 0.098 0.073 0.084 0.080 0.118 0.239 0.082 0.081 0.078 0.051 0.058 0.067 0.058	0.77 1.60 1.24 1.23 1.22 1.05 0.88 0.76 1.54 1.53 1.23 1.24 1.25 1.24	1.001 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.95 1.04 1.07 0.95 0.99 0.99 1.02 1.08 0.93 1.01 1.21 1.19 1.26 1.14 1.43 1.41
Total Tetra-Dioxins Total Penta-Dioxins Total Hexa-Dioxins Total Hepta-Dioxins Total Tetra-Furans Total Penta-Furans Total Hexa-Furans Total Hexa-Furans (1) Qualifier U indice	218.292 23.779 102.438 347.928 109.655 18.106 222.225 432.020 200.298	0.327 0.113 0.098 0.084 0.118 0.082 0.078 0.058 0.089	0.88	1.005	1.37

⁽¹⁾ Qualifier U indicates not detected; The K indicates EMPC. The C needs value from second column analysis. The B indicates possible blank contamination.

(2) RRTs and ion ratios are specified in Tables 2 and 9, Method 1613.

USEPA, EAD

CLIENT ID.

FORM 2: PCDD/PCDF LABELED COMPOUND AND

CLEANUP STANDARD RECOVERIES LCS

Lab Code: CAS Method:1613 Case No: Client No: Lab ID: EB21091-LCS

Client Name: Sample Wt/Vol: 10.000 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): solid Initial Calibration Date: 08/10/04

Instrument ID: 70S Sample Receipt Date:

Lab Name: Columbia Analytical Services Contract:

Ext. Date: 06/14/05 GC Column ID: DB-5

Analysis Date: 23-JUN-05 Time: 13:56:23 Sample Data Filename: C14093#3

Ext. Vol(uL): 20.0 Inj. Vol(uL): 1.0 Blank Data Filename: U22434#1

Dilution Factor: 1 Cal. Ver. Data Filename: C14093#2

WET CF 6/2016

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solid/Lipids:

					ION		
	SPIKE	CONC.	R(%)	QC	ABUND.	RRT	
	CONC.	FOUND	(1)	Limite(1)	RATIO (2) (2)	
LABELED COMPOUNDS							
13C-2,3,7,8-TCDD	2000	1631.79	81.59	25-164	0.79	1.008	
13C-1,2,3,7,8-PeCDD	2000	1603.49	80.17	25-181	1.54	1.184	
13C-1,2,3,4,7,8-HxCDD	2000	1830.51	91.53	32-141	1.23	0.989	
13C-1,2,3,6,7,8-HxCDD	2000	1571.38	78.57	28-130	1.25	0.991	
13C-1,2,3,4,6,7,8-HpCDD	2000	1445.16	72.26	23-140	1.05	1.077	
13C-OCDD	4000	1868.08	46.70	17-157	0.85	1.167	
13C-2,3,7,8-TCDF	2000	1936.37	96.82	24-169	0.79	0.977	
13C-1,2,3,7,8-PeCDF	2000	1600.46	80.02	24-185	1.55	1.141	
13C-2,3,4,7,8-PeCDF	2000	1481.69	74.08	21-178	1.55	1.170	
13C-1,2,3,4,7,8-HxCDF	2000	1901.23	95.06	26-152	0.48	0.969	
13C-1,2,3,6,7,8-HxCDF	2000	1587.91	79.40	26-123	0 . 49	0.972	
13C-1,2,3,7,8,9-HxCDF	2000	1854.41	92.72	29-147	0.49	1.006	
13C-2,3,4,6,7,8-HxCDF	2000	1726.80	86.34	28-136	0.48	0.986	
13C-1,2,3,4,6,7,8-HpCDF	2000	1640.62	82.03	28-143	0.44	1.050	
13C-1,2,3,4,7,8,9-HpCDF	2000	1447.98	72.40	26-138	0.43	1.089	
CLEANUP STANDARD							
	2.2.2	T24 66	0.1. 0	25 105		7 000	
37Cl-2,3,7,8-TCDD	800	734.82	91.85	35-197		1.009	

RFP C500273T1

SDG No:

⁽¹⁾ Contract-required limits for percent recovery (R) are specified in Table 7, Method 1613.

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. NOTE: There is no ion abundance ratio for 37C14-2378-TCDD (cleanup standard).

Form 1

CLIENT ID.

Client No:

LCSD

Lab ID: EB21091-LCSD

PCDD/PCDF ANALYSIS DATA SHEET Use for Sample and Blank Results

Lab Name: Columbia Analytical Services Contract: SDG No:

Client Name: Sample Wt/Vol: 10.000 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): Solid Initial Calibration Date: 10/25/04

Sample Receipt Date: Instrument ID: AutoSpec-Ultima

Ext. Date: 06/14/05 GC Column:DB-5

Lab Code: CAS Method:1613 Case No:

Ext. Vol(ul):20.0 Inj. Vol(ul):1.0 Sample Data Filename: U22461#1

Analysis Date: 20-JUN-05 Time: 01:09:14 Blank Data Filename: U22434#1

Dilution Factor: 1 Cal. Ver. Data Filename: U22448#1

WET Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solids/Lipids:

ANALYTE	CONCENTRATION FOUND	DETECTION LIMIT		ON ABUND. RATIO (2)		MEAÑ RRF
2,3,7,8-TCDD	20.507	0.040		0.74	1.001	0.98
1,2,3,7,8-PeCDD	97.309	0.029		1.55	1.000	0.98
1,2,3,4,7,8-HxCDD	94.522	0.031		1.24	1.000	1.15
1,2,3,6,7,8-HxCDD		0.037		1.23	1.000	0.98
1,2,3,7,8,9-HxCDD		0.034		1.21	1.009	1.05
1,2,3,4,6,7,8-HpCl		0.070		1.07	1.000	1.01
OCDD	211.319	0.092		0.87	1.000	1.05
2,3,7,8-TCDF	15.299	0.040		0.74	1.001	1.03
1,2,3,7,8-PeCDF	99.357	0.031		1.55	1.001	1.01
2,3,4,7,8-PeCDF	95.257	0.031		1.53	1.001	1.08
1,2,3,4,7,8-HxCDF	92.205	0.040		1.21	1.000	1.28
1,2,3,6,7,8-HxCDF		0.047		1.21	1.000	1.23
1,2,3,7,8,9-HxCDF	86.112	0.050		1.21	1.000	1.32
2,3,4,6,7,8-HxCDF	96.028	0.047		1.27	1.001	1.18
1,2,3,4,6,7,8-HpCI	OF 92.807	0.275		1.01	1.000	1.53
1,2,3,4,7,8,9-HpCI	OF 92.764	0.384		1.01	1.000	1.48
OCDF	188.009	0.071		0.88	1.003	1.25
Total Tetra-Dioxir	as 20.507	0.040				
Total Penta-Dioxir	ıs 97.309	0.029				
Total Hexa-Dioxins	308.990	0.031				
Total Hepta-Dioxin	ıs 103.672	0.070				
Total Tetra-Furans	15.299	0.040				
Total Penta-Furans	194.614	0.031				
Total Hexa-Furans		0.040				
Total Hepta-Furans		0.275	r indian.	tos BMDC	The Cre	5.da **0.l

⁽¹⁾ Qualifier U indicates not detected; The K indicates EMPC. The C needs value from second column analysis. The B indicates possible blank contamination.

⁽²⁾ RRTs and ion ratios are specified in Tables 2 and 9, Method 1613.

USEPA, EAD

CLIENT ID.

FORM 2: PCDD/PCDF LABELED COMPOUND AND

CLEANUP STANDARD RECOVERIES

LCSD

Lab Name: Columbia Analytical Services Contract:

SDG No:

Lab Code: CAS Method: 1613 Case No:

Client No:

Lab ID: EB21091-LCSD

Client Name:

Sample Wt/Vol: 10.000 g or mL: g

Matrix (Solid/Aqueous/Waste/Ash): Solid

Initial Calibration Date: 10/25/04

Sample Receipt Date:

Instrument ID: AutoSpec-Ultima

Ext. Date: 06/14/05

GC Column ID: DB-5

Analysis Date: 20-JUN-05 Time: 01:09:14

Sample Data Filename: U22461#1

Ext. Vol(uL): 20.0 Inj. Vol(uL): 1.0

Blank Data Filename: U22434#1

Dilution Factor: 1

Cal. Ver. Data Filename: U22448#1

WET UF 6/20/6

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Solid/Lipids:

LABELED COMPOUNDS	SPIKE CONC.		R(%) (1)	QC Limite(1)	ION ABUND. RATIO (2	RRT 2) (2)
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD	2000 2000 2000 2000 2000 4000	1765.34 1847.69 1695.35 1614.06 1340.87 1828.59	88.27 92.38 84.77 80.70 67.04 45.71	25-164 25-181 32-141 28-130 23-140 17-157	0.77 1.54 1.23 1.23 1.05 0.89	1.013 1.230 0.989 0.991 1.072 1.144
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	2000 2000 2000 2000 2000 2000 2000 200	1690.64 1597.02 1494.45 1514.47 1386.63 1745.83 1443.23 1296.64 1295.42	84.53 79.85 74.72 75.72 69.33 87.29 72.16 64.83 64.77	24-169 24-185 21-178 26-152 26-123 29-147 28-136 28-143 26-138	0.76 1.53 1.55 0.52 0.52 0.52 0.51 0.43	0.969 1.180 1.213 0.968 0.970 1.006 0.985 1.048 1.081
CLEANUP STANDARD						
37Cl-2,3,7,8-TCDD	800	787.15	98.39	35-197		1.014

⁽¹⁾ Contract-required limits for percent recovery (R) are specified in Table 7, Method 1613.

RFP C500273T1

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. NOTE: There is no ion abundance ratio for 37C14-2378-TCDD (cleanup standard).

APPENDIX D

Quality Assurance/Quality Control Review for Sediment Samples

LAB REPORT QUALITY ASSURANCE CHECKLIST

Project Infori	nation					
Project Name:	SPI Arcata	La	ıb Name:		Columbia Analytical	
Project Number:	9329.000 Task	La	b Report	Number:	K2407209	
Sample Numbers: (Attach list if needed) RB-x (x=1,2,3), 107-GSEI C05-x (x=0.5,1.0,2.0,3.0), GSED-C01-2.0, 110-GSEI				O-C02-x (x	=0.5,1.0,2.0,3.0), 109-	
Report Comp	latanace		-		Comments	
	isted on the COC included	in I	X Yes		Committee	
•.	ate any differences in Comment		□ No			
<u> </u>	I tests listed on the COC fo	1	X Yes			
	uded in the report? (Indicate tents column and resolve with the		□No			
	uired by the contract with		X Yes	No co	ntract. Standard items	
lab included in the Comments column	ne report? (Indicate any excep	tions in	□ No	includ	ed.	
				<u> </u>		
QA Review o	f Lab Performance					
X Attached C	Organic Data Assessment S	ummar	y form			
☐ Attached In	norganic Data Assessment	Summa	ry form			
Field Blank (QA Review					
	etections in the trip	□ Yes	If yes, id	entify associ	ated samples:	
blanks? N/A		□ No	·			
Are there any de	etections in the equipment	□ Yes	If yes, id	If yes, identify associated samples:		
blanks? N/A		□ No				
Invoice Revie	èw .					
	t the promised turnaround	X Yes	If no, do	es a discoun	t apply?	
times?		□ No				
	ns result in unusable	☐ Yes			her the lab should be paid fo	
sample results?			the anal	ysis.		
Are all items required by the contract with the lab included in the report?		X Yes	No cor	tract. Star	ndard items included.	
		□ No				
-						
Completed by:	Gypsy Achong		Date:		10/18/04	
Reviewed by:	MyBaire		Date:		10/20/04	

ORGANIC DATA ASSESSMENT SUMMARY

Project Information						
Project Name:	SPI Arcata	Lab Name:	Columbia Analytical			
Project Number:	9329 Task	Lab Report Number:	K2407209			
Reviewer's Signature:	Groy A Pul	Number of Samples:	23			
Review Date:	10/18/04 71/10/2019	Matrix:	Soil and Water			

Assessment Summary

Using the codes O, M, Z, and X described below, complete the table for a single quality control batch or sample delivery group. Identify comments by means of a footnote, e.g. M⁽²⁾, describe in the space provided.

TOC (Water) 415.1
115.1
O11
<u>نم</u> بين

О
O12
O13
0

Assessment Codes:

- O = No quality controls (QC) problems were identified for these criteria.
- M = The results are qualified due to QC problems. The quantitative results will be qualified with a QC flag indicating that the results are estimated due to error greater than specified in the method.
- Z = The results are unacceptable due to gross QC problems. The results will be qualified as rejected (R).
- X = QC problems were identified, but they do not affect the results, or the reviewer is not certain of the effect on the results; or supporting documentation or data is not present in the

Assessment Code	Description	Action Required
O1	No technical holding time has been	
	established for soil matrices. All	
	sediment samples were within method	
	holding time: extraction within 10 days	
	of laboratory receipt; analysis within 40	
	days of extraction.	
	Surrogate recovery control limits:	
O2	2-Fluorophenol: 28-109%	
	2,4,6-Tribromophenol: 35-138%	
	Two samples were used for MS/MSD	No action required. 2-Chlorophenol not
M3	analysis.	detected in project samples.
	MS/MSD/Analyte recovery limits for	1 3
	107-GSED-C32-2.0:	
	2-Chlorophenol: 113/66/35-115%	
	2,4-Dichlorophenol: 78/81/39-123%	·
	2,4,6-Trichlorophenol: 82/92/38-129%	
	2,4,5-Trichlorophenol: 81/92/34-138%	
	Pentachlorophenol: 59/49/10-150%	
	RPDs ranged from 4 to 53. RPD limits:	
	40	·
	The RPD for 2-Chlorophenol (53) in the	
	MS/MSD analysis was outside of the	
	8270C method limit (40).	
	8270C mediod mint (40).	
	MS/MSD/Analyte recovery limits for	
	109-GSED-C01-2.0:	
	2-Chlorophenol: 72/88/35-115%	
	2,4-Dichlorophenol: 78/84/39-123%	-
	1 · ·	
	2,4,6-Trichlorophenol: 81/84/38-129%	
	2,4,5-Trichlorophenol: 82/81/34-138%	
1	Pentachlorophenol: 68/55/10-150%	
1	RPDs ranged from 1 to 22. RPD limits:	
<u> </u>	40	
04	LCS/LCSD/Analyte recovery limits:	
	2-Chlorophenol: 84/71/39-119%	
	2,4-Dichlorophenol: 82/68/42-120%	
	2,4,6-Trichlorophenol: 84/75/40-124%	
	2,4,5-Trichlorophenol: 84/74/44-122%	,
	Pentachlorophenol: 84/71/29-130%	
	RPDs ranged from 12 to 19. RPD limits:	

	40	
M5	Hold time for water samples is 7 days from date of sample collection to extraction; 40 days from extraction to analysis. RB-1,RB-2 and RB-3 were extracted 15, 14 and 13 days, respectively, from date of sample collection.	Non-detection in samples RB-1, RB-2 and RB-3 are qualified as approximate (UJ).
M6	Surrogate recovery control limits: 2-Fluorophenol: 33-109% 2,4,6-Tribromophenol: 34-130% The Lab Control Sample has recovery of 2-Fluorophenol outside of the SVOC method limits (114%).	No action required. Only one surrogate out of specification.
O7	LCS/LCSD/Analyte recovery limits: 2-Chlorophenol: 117/108/43-120% 2,4-Dichlorophenol: 114/107/43-120% 2,4,6-Trichlorophenol: 116/109/48- 116% 2,4,5-Trichlorophenol: 115/114/46- 120% Pentachlorophenol: 99/98/23-125% RPDs ranged from 1 to 8. RPD limits: 30	
O8	Holding time for TOC analysis of soil samples was 12-14 days. Limit is 14 days from time of sample collection.	
O9	Duplicate analysis: RPD 9% for 107-GSED-C32-2.0 and 4% for 109-GSED-C01-2.0 (Limit: 20%) MS recovery: 102% for 107-GSED-C32-2.0 and 101% for 109-GSED-C01-	
O10	2.0 (Limit: 75-125%) LCS recovery: 107% (Limit: 85-115%)	
O11	Holding time for TOC analysis of water samples was 9 days. Limit is 28 days from time of sample collection. Duplicate analysis: RPD <1 (Limit:	
O12	20%) MS recovery: 99% (Limit: 76-121%) LCS recovery: 103% (Limit: 92-106%)	

LAB REPORT QUALITY ASSURANCE CHECKLIST

Project Informat	tion					
Project Name:	SPI Arcata	La	b Name:		Columbia Analytical	
Project Number:	9329.000 Task	La	b Report	Number:	K2407143	
Sample Numbers: (Attach list if needed)	101-GSED-C09-x (x=0.5,1.0,2.0,3.0), (x=0.5,1.0,2.0), 100	SED-C07-	x (x=0.5,1)	.0), 104-GSED-C06-x		
Report Complet	eness				Comments	
	d on the COC included	in	X Yes			
column and resolve with			□ No			
	sts listed on the COC fo		X Yes			
	d in the report? (Indicate s column and resolve with the		□ No			
	ed by the contract with		X Yes		ntract. Standard items	
	eport? (Indicate any except	tions in	□ No	includ	led.	
the Comments column.)						
QA Review of L	ab Performance					
	nic Data Assessment S	ummary	form			
	ganic Data Assessment	Summa	ry form			
Field Blank QA	Review					
Are there any detect	tions in the trip	□ Yes	If yes, id	entify associ	ated samples:	
blanks? N/A		□ No				
	tions in the equipment	☐ Yes	If yes, id	If yes, identify associated samples:		
blanks? N/A		□ No		,		
Invoice Review						
Did the lab meet the	e promised turnaround	X Yes	If no, do	es a discoun	t apply?	
times?		□ No				
Did any problems re	esult in unusable	☐ Yes			her the lab should be paid for	
sample results?			the anal	ysis.		
Are all items required by the contract X			No cor	tract. Star	ndard items included.	
with the lab included in the report?						
(Indicate any exception column.)	s in the Comments	□ No				
		<u>I</u>	<u></u>			
Completed by: Gy	ypsy Achong		Date:	· 	10/18/04	

ORGANIC DATA ASSESSMENT SUMMARY

Project Information					
Project Name:	SPI Arcata	Lab Name:	Columbia Analytical		
Project Number:	9329 Task	Lab Report Number:	K2407143		
Reviewer's Signature:		Number of Samples:	18		
Review Date:	10/18/04	Matrix:	Soil		

Assessment Summary

Using the codes O, M, Z, and X described below, complete the table for a single quality control batch or sample delivery group. Identify comments by means of a footnote, e.g. M⁽²⁾, describe in the space provided.

1 1				
Method Name:	SVOC	TOC		
Method Number:	8270C	ASTM D4129-82M		·
1. Preservation/hold times	O1	O5		
2. GC/MS tune, instr. performance				
3. Calibrations				
4. Blanks	O	О		
5. Surrogates	O2			
6. Matrix spike/dup	O3	O6		
7. Lab QC samples	O4	. 07	·	
8. Internal standards				
9. Compound ID				
10. System performance				
11. Field duplicates				
12. Overall assessment	0	0		·
	•	·		

Assessment Codes:

- O = No quality controls (QC) problems were identified for these criteria.
- M = The results are qualified due to QC problems. The quantitative results will be qualified with a QC flag indicating that the results are estimated due to error greater than specified in the method.
- Z = The results are unacceptable due to gross QC problems. The results will be qualified as rejected (R).
- X = QC problems were identified, but they do not affect the results, or the reviewer is not certain of the effect on the results; or supporting documentation or data is not present in the

Assessment Code	Description	Action Required
O1	No technical holding time has been	
	established for soil matrices. Method	·
	holding time: extraction within 10 days	
•	of laboratory receipt; analysis within 40	
	days of extraction.	
	Surrogate recovery control limits:	
O2	2-Fluorophenol: 28-109%	
	2,4,6-Tribromophenol: 35-138%	
	MS/MSD/Analyte recovery limits:	·
O3	2-Chlorophenol: 78/80/35-115%	
	2,4-Dichlorophenol: 87/85/39-123%	
	2,4,6-Trichlorophenol: 105/102/38-	·
•	129%	
	2,4,5-Trichlorophenol: 108/101/34-	
	138%	
=	Pentachlorophenol: 86/66/10-150%	
	RPDs ranged from 2 to 27. RPD limits:	· ·
	40	
O4	LCS/LCSD/Analyte recovery limits:	
	2-Chlorophenol: 91/70/39-119%	·
	2,4-Dichlorophenol: 67/74/42-120%	<u> </u>
	2,4,6-Trichlorophenol: 94/87/40-124%	
	2,4,5-Trichlorophenol: 97/89/44-122%	· ·
	Pentachlorophenol: 85/80/29-130%	
	RPDs ranged from 6 to 25. RPD limits:	
	40	
	Holding time for TOC analysis of soil	
O5	was 13 or 14 days. Limit is 14 days	
	from time of sample collection.	
	Duplicate analysis: RPD 12% (Limit:	
O6	20%)	
	MS recovery: 104% (Limit: 75-125%)	
	LCS recovery: 103% (Limit: 85-115%)	
07		
	,	

·	·
·	

APPENDIX E

Quality Assurance/Quality Control Review for Fish Tissue Samples

LAB REPORT QUALITY ASSURANCE CHECKLIST

					1110	L CITE.	
Project Info	rmatio	n					
Project Name:		SPI		Lab Nar	ne:		Columbia
Project Numbe	r:	9329.000.0 Task 2	20	Lab Rep	ort N	umber:	K2502124
Sample Number (Attach list if need		PSP-SB-00x (x=1 JST-SB-009	to 5);	PSP-SB	-001D	UP; WSI	S-SB-00x (x=6 to 8);
		ı				T	
Report Com			- •				Comments
		on the COC included		X Yes	;		
column and resolv	licate any with the	differences in Commen	its	□ No			
		listed on the COC fo	or	XYes		Analyz	ed for 1613B (Full
each sample in	cluded ir	n the report? (Indicate lumn and resolve with the	te any		-	list).	ed for 1013B (1 an
		by the contract with		X Yes		No con	tract. Standard items
lab included in	the repo	ort? (Indicate any excep		n		include	
the Comments col	umn.)			□ No			
QA Review of Lab Performance							
X Attached	Organic Dioxin/Fur	Data Assessment S an Data Review, August 2	umma 2002, EP	ry form 1 A-540-R-02	ref Natio 2-003	onal Functio	nal Guidelines for Chlorinated
☐ Attached	Inorgani	c Data Assessment	Summ	nary form	1		
Field Blank	QA Re	view					
Are there any d			□Y€	If yes	, ident	ify associat	ed samples:
blanks? N/A					·		
Are there any d	etection	s in the equipment	·	1	ident	if, associat	ad samples.
blanks? N/A	Ciccions	s in the eduthment	□Y€	es ligges	If yes, identify associated samples:		
Olaillio. 1 1				0			
Invoice Revi		`					
	t the pro	omised turnaround	X Ye	s If no,	If no, does a discount apply?		pply?
times?				1			
Did any probler	ms result	in unusable	□Ye	Ifmaa	, evalu	ate whether	r the lab should be paid for
sample results?			l	the a	nalysis.		
A ma all itama ma			X No			1	
Are all items rewith the lab inc		·	X Ye	s No c	ontra	ct. Stand	ard items included.
(Indicate any excep			□ No	5 T			
column.)							
Completed by:	Gypsy	Achong TCK	101	Date	:		7/1/05
Reviewed by: 8129 100		Date	:				

ORGANIC DATA ASSESSMENT SUMMARY

Project Information						
Project Name:	SPI	Lab Name:	Columbia Analytical			
Project Number:	9329.000.0 Task 20	Lab Report Number:	K2502124			
Reviewer's Signature:	Darmero	Number of Samples:	10			
Review Date:	8/29/06	Matrix:	Fish Tissue			

Assessment Summary

Using the codes O, M, Z, and X described below, complete the table for a single quality control batch or sample delivery group. Identify comments by means of a footnote, e.g. M⁽²⁾, describe in the space provided.

in the space provided.		·	
Method Name:	PCDD/PCDF	PCDD/PCDF	
Method Number:	1613b	1613b	
Service Request Number:	E0500374	E0500447	
1. Preservation/hold times	M1	M8	
2. GC/MS tune, instr. performance			
3. Calibrations	M2	M2	
4. Blanks	M3	M9	·
5. Surrogates	O4	O4	
6. Matrix spike/dup			
7. Lab QC samples	O5	O10	
8. Internal standards			
9. Compound ID	M6	M6	
10. System performance	· <u></u>		
11. Field duplicates	O7		·
12. Overall assessment	М	М	

Assessment Codes:

- O = No quality controls (QC) problems were identified for these criteria.
- M = The results are qualified due to QC problems. The quantitative results will be qualified with a QC flag indicating that the results are estimated due to error greater than specified in the method.
- Z = The results are unacceptable due to gross QC problems. The results will be qualified as rejected (R).

X = QC problems were identified, but they do not affect the results, or the reviewer is not certain of the effect on the results; or supporting documentation or data is not present in the laboratory data package.

Assessment Code	Description	Action Required
M1	Samples collected 3/16/05; extracted 5/13/05 (holding time is less than required 1yr); analyzed 5/18/05 (samples were analyzed within required 30 days of extraction). Samples received at 5.6C on 3/16/05. Samples stored at -20C (below required limit of 10C).	Since samples were received at a temp above 4C, all detections and detection limits are estimates and should be qualified as "J" and "UJ" respectively.
M2	Lowest calibration standard used by laboratory according to the method is the reporting limit noted in report.	Detections less than the reporting limit are estimates and are qualified as "J".
M3	There were detections of the following compounds in the method blank: 1,2,3,4,6,7,8-HpCDD (0.067, 0.335), OCDD (0.938, 4.69); OCDF (0.091, 0.455); Total hepta-dioxins (0.116, 0.58); and in the first method blank for the reextraction of PSP-SB-001 and PSP-SB-001-DUP: 1,2,3,4,6,7,8-HpCDD (0.074, 0.37); OCDD (0.623, 3.115). Numbers in brackets are (1) detection, and (2) 5x the blank detection.	Detections of OCDD, 1,2,3,4,6,7,8-HpCDD, and Total hepta-dioxins are less than 5x the blank amount, therefore, all results are qualified "UJ".
O4	All surrogates are recovered within recovery limits.	None.
O5	Spike recoveries in LCS/LCSD are within QC limits (50-150%). The RPDs ranged from 2.10 to 5.53% in the primary data, and from 0.31 to 3.88% in the reextraction data for PSP-SB-001 and PSP-SB-001-DUP, which is within the limit of 35%.	None.
M6	Several detections were flagged by the laboratory as "K", indicating ion abundance ratios outside their associated QC limits. The detection is an estimated maximum possible concentration.	"K" flagged detections are reported and qualified as "U".

O7	RPDs were not calculated for PSP-SB-001 and PSP-SB-001DUP since detections were below reporting limits. However, the RPD for Total TEF-adjusted concentration was 189%. On reextraction, the RPD for Total TEF-adjusted concentration was 133%.	None.
M8	Samples collected 3/16/05; extracted 6/14/05 (holding time is less than required 1yr); analyzed 6/17/05 (samples were analyzed within required 30 days of extraction). Samples received at 5.6C on 3/16/05. Samples stored at -20C (below required limit of -10C).	Since samples were received at a temp above 4C, all detections and detection limits are estimates and should be qualified as "J" and "UJ" respectively.
M9	There were detections of the following compounds in the method blank: OCDD (0.442, 2.21); OCDF (0.341, 1.705). Numbers in brackets are (1) detection, and (2) 5x the blank detection.	The detections of OCDD and OCDF are all less than 5x the method blank concentrations, thereofore, all OCDD and OCDF results are qualified as "UJ".
O10	Spike recoveries in LCS/LCSD are within QC limits (50-150%). The RPDs ranged from 3.27 to 14.91%, which is within the limit of 35%.	None.

LAB REPORT QUALITY ASSURANCE CHECKLIST

Project Info	rmatio	n					
Project Name:		SPI		Lab Na	ame:		Columbia
Project Number	r:	9329.000.0 Task 2	20	Lab Re	b Report Number:		K0500590 ·
Sample Numbers: Comp JST-SB-040/0 (Attach list if needed) 044/046; JST-SB-042				•			
Report Com	pleten	ess					Comments
•	licate any	n the COC included differences in Commental lab.)		X Y	-		
each sample inc	cluded in	isted on the COC for the report? (Indicate	e any	ΧΥ		Analyz list).	ed for 1613B (Full
		lumn and resolve with the)			
	the repo	by the contract with ort? (Indicate any except		$n \mid X \mid Y$		include	tract. Standard items ed.
ine comments con							
OA Review	of Lab	Performance					
X Attached	Organic Data Assessment Summary form according to National Functional						
☐ Attached	Inorgani	c Data Assessment	Sumn	nary for	rm		
			,			•	
Field Blank	QA Re	eview					,
Are there any d blanks? N/A				cs	If yes, identify associated samples:		
Are there any d	etection	s in the equipment		T.C.	If yes, identify associated samples:		
blanks? N/A				ı			
t			1,,,,,,,,,,			`	
Invoice Revi	ew				_		
		omised turnaround	X Y	es If	If no, does a discount apply?		upply?
times:			\square N	o			
Did any problems result in unusable sample results?			□ Y		es, e anal		r the lab should be paid for
sample results:			X N				
Are all items required by the contract with the lab included in the report?		X Y	es No	o cor	ntract. Stand	ard items included.	
(Indicate any exceptions in the Comments column.)		□N	О				
Completed by:	Gypsy	Achong DO	<u> </u>	Da	ate:		7/11/05
Reviewed by:		Da	ite:				

ORGANIC DATA ASSESSMENT SUMMARY

Project Information						
Project Name:	SPI	Lab Name:	Columbia Analytical			
Project Number:	9329.000.0 Task 20	Lab Report Number:	K0500590			
Reviewer's Signature:	Danny tour	Number of Samples:	6			
Review Date:	8/29/06	Matrix:	Fish Tissue			

Assessment Summary

Using the codes O, M, Z, and X described below, complete the table for a single quality control batch or sample delivery group. Identify comments by means of a footnote, e.g. M⁽²⁾, describe in the space provided.

Method Name:	PCDD/PCDF		
Method Number:	1613b		
1. Preservation/hold times	O1		
2. GC/MS tune, instr. performance			
3. Calibrations	M2		
4. Blanks	M3		
5. Surrogates	O4	·	
6. Matrix spike/dup			
7. Lab QC samples	O5		
8. Internal standards			
9. Compound ID	M6		
10. System performance			
11. Field duplicates			
12. Overall assessment	М		
		 I	·

Assessment Codes:

- O = No quality controls (QC) problems were identified for these criteria.
- M = The results are qualified due to QC problems. The quantitative results will be qualified with a QC flag indicating that the results are estimated due to error greater than specified in the method.
- Z =The results are unacceptable due to gross QC problems. The results will be qualified as rejected (R).
- X = QC problems were identified, but they do not affect the results, or the reviewer is not certain of the effect on the results; or supporting documentation or data is not present in the

Assessment Code	Description	Action Required
O1	Samples collected 4/21, 4/22, 5/9 and	None.
	5/10/2005; extracted 6/14/05 (holding	
	time is less than required 1yr); analyzed	
	6/17/05 (samples were analyzed within	
	required 30 days of extraction).	
M2	Lowest calibration standard used by	Detections less than the reporting limit are
	laboratory according to the method is	estimates and are qualified as "J".
	the reporting limit noted in report.	
M3	There were detections of OCDD (0.442	Detections of OCDD and OCDF are less
	ng/kg) and OCDF (0.341 ng/kg) in the	than 5x the blank amount, therefore, all
	method blank.	OCDD and OCDF results are qualified
	5x OCDD = 0.221	"UJ".
	5x ODDF = 1.705	
	All surrogates are recovered within	None.
O4	recovery limits.	
MESS GRE, with	Spike recoveries in LCS/LCSD are	None.
·	within QC limits (50-150%). The RPDs	
O5	ranged from 3.27 to 14.91%, which is	·
	within the limit of 35%.	
M6	Several detections were flagged by the	"K" flagged detections are reported and
	laboratory as "K", indicating ion	qualified as "U".
	abundance ratios outside their associated	
	QC limits. The detection is an estimated	
	maximum possible concentration.	

APPENDIX F

Calculation of 2,3,7,8-TCDD Toxicity Equivalents

APPENDIX F CALCULATION OF 2,3,7,8-TCDD

TOXIC EQUIVALENTS

Sierra Pacific Industries Arcata Division Sawmill Arcata, Califronia

Sample Location		North of Same	oa Bridge		North of Samoa Bridge North of Samoa Bridge				North of Samoa	a Bridge			North of Samo	amoa Bridge North of Samoa Bridge										
Sample ID		PSP-SB-	001			PSP-SB-001 I	DUP ¹			PSP-SB-0	02			PSP-SB-0	03			PSP-SB-0	004			PSP-SE	3-005	
Date		3/16/0	5			3/16/05				3/16/05				3/16/05				3/16/05			3/16/	05		
Species		Pile Surfper	ch			Pile Surfperc	h		Pile Pile Surfperch Surfperch		Pile Surfperch				Pile Surfperch									
	Reported Concen- tration (ng/kg)	TEQ Calculation Conc. ² (ng/kg)	TEFs	2,3,7,8- TCDD TEQ (ng/kg)	Reported Concen- tration (ng/kg)	TEQ Calculation Conc. (ng/kg)	TEFs	2,3,7,8- TCDD TEQ (ng/kg)	Reported Concen- tration (ng/kg)	TEQ Calculation Conc. (ng/kg)	TEFs	2,3,7,8- TCDD TEQ (ng/kg)	Reported Concen- tration (ng/kg)	TEQ Calculation Conc. (ng/kg)	TEFs	2,3,7,8- TCDD TEQ (ng/kg)	Reported Concen- tration (ng/kg)	TEQ Calculation Conc. (ng/kg)	TEFs	2,3,7,8- TCDD TEQ (ng/kg)	Reported Concen- tration (ng/kg)	TEQ Calculation Conc. (ng/kg)	TEFs	2,3,7,8-TCDD TEQ (ng/kg)
Dioxin	. 0 0			. 0 0.				. 0 0.	. 0 0											, 0 0.	, O O			
2,3,7,8-TCDD	0.273 UJ	0.137	1	1.37E-01	0.155 UJ	0.078	1	7.75E-02	0.023 UJ	0.012	1	1.15E-02	0.02 UJ	0.010	1	1.00E-02	0.02 UJ	0.010	1	1.00E-02	0.015 U.	0.008	1	7.50E-03
1,2,3,7,8-PeCDD	0.153 UJ	0.077	1	7.65E-02	0.139 UJ	0.070	1	6.95E-02	0.023 UJ	0.012	1	1.15E-02	0.021 UJ	0.011	1	1.05E-02	0.017 UJ	0.009	1	8.50E-03	0.020 U.	0.010	1	1.00E-02
1,2,3,4,7,8-HxCDD	0.117 UJ	0.059	0.1	5.85E-03	0.087 UJ	0.044	0.1	4.35E-03	0.019 UJ	0.010	0.1	9.50E-04	0.019 UJ	0.010	0.1	9.50E-04	0.014 UJ	0.007	0.1	7.00E-04	0.018 U.	0.009	0.1	9.00E-04
1,2,3,6,7,8-HxCDD	0.133 UJ	0.067	0.1	6.65E-03	0.101 UJ	0.051	0.1	5.05E-03	0.024 UJ	0.012	0.1	1.20E-03	0.022 UJ	0.011	0.1	1.10E-03	0.017 UJ	0.009	0.1	8.50E-04	0.021 U.	0.011	0.1	1.05E-03
1,2,3,7,8,9-HxCDD	0.115 UJ	0.058	0.1	5.75E-03	0.086 UJ	0.043	0.1	4.30E-03	0.021 UJ	0.011	0.1	1.05E-03	0.02 UJ	0.010	0.1	1.00E-03	0.015 UJ	0.008	0.1	7.50E-04	0.019 U.	0.010	0.1	9.50E-04
1,2,3,4,6,7,8-HpCDD	0.298 UJ	0.149	0.01	1.49E-03	0.211 UJ	0.106	0.01	1.06E-03	0.172 UJ	0.086	0.01	8.60E-04	0.111 UJ	0.056	0.01	5.55E-04	0.049 UJ	0.025	0.01	2.45E-04	0.058 U.	0.029	0.01	2.90E-04
OCDD	1.575 UJ	0.788	0.0001	7.88E-05	1.071 UJ	0.536	0.0001	5.36E-05	1.3 UJ	0.650	0.0001	6.50E-05	1.063 UJ	0.532	0.0001	5.32E-05	0.277 UJ	0.139	0.0001	1.39E-05	0.467 U.	0.234	0.0001	2.34E-05
Furan																								
2,3,7,8-TCDF	0.294 UJ	0.147	0.1	1.47E-02	0.168 UJ	0.084	0.1	8.40E-03	0.024 UJ	0.012	0.1	1.20E-03	0.021 UJ	0.011	0.1	1.05E-03	0.017 UJ	0.009	0.1	8.50E-04	0.016 U.	800.0	0.1	8.00E-04
1,2,3,7,8-PeCDF	0.112 UJ	0.056	0.05	2.80E-03	0.090 UJ	0.045	0.05	2.25E-03	0.014 UJ	0.007	0.05	3.50E-04	0.013 UJ	0.007	0.05	3.25E-04	0.015 UJ	0.008	0.05	3.75E-04	0.011 U.	0.006	0.05	2.75E-04
2,3,4,7,8-PeCDF	0.109 UJ	0.055	0.5	2.73E-02	0.094 UJ	0.047	0.5	2.35E-02	0.017 UJ	0.009	0.5	4.25E-03	0.013 UJ	0.007	0.5	3.25E-03	0.014 UJ	0.007	0.5	3.50E-03	0.011 U.	0.006	0.5	2.75E-03
1,2,3,4,7,8-HxCDF	0.103 UJ	0.052	0.1	5.15E-03	0.075 UJ	0.038	0.1	3.75E-03	0.029 UJ	0.015	0.1	1.45E-03	0.035 UJ	0.018	0.1	1.75E-03	0.036 J	0.036	0.1	3.60E-03	0.034 J	0.034	0.1	3.40E-03
1,2,3,6,7,8-HxCDF	0.111 UJ	0.056	0.1	5.55E-03	0.083 UJ	0.042	0.1	4.15E-03	0.016 UJ	0.008	0.1	8.00E-04	0.011 UJ	0.006	0.1	5.50E-04	0.013 UJ	0.007	0.1	6.50E-04	0.010 U.	0.005	0.1	5.00E-04
1,2,3,7,8,9-HxCDF	0.134 UJ	0.067	0.1	6.70E-03	0.090 UJ	0.045	0.1	4.50E-03	0.018 UJ	0.009	0.1	9.00E-04	0.011 UJ	0.006	0.1	5.50E-04	0.013 UJ	0.007	0.1	6.50E-04	0.010 U.	0.005	0.1	5.00E-04
2,3,4,6,7,8-HxCDF	0.116 UJ	0.058	0.1	5.80E-03	0.087 UJ	0.044	0.1	4.35E-03	0.017 UJ	0.009	0.1	8.50E-04	0.011 UJ	0.006	0.1	5.50E-04	0.012 UJ	0.006	0.1	6.00E-04	0.010 U.	0.005	0.1	5.00E-04
1,2,3,4,6,7,8-HpCDF	0.195 UJ	0.098	0.01	9.75E-04	0.131 UJ	0.066	0.01	6.55E-04	0.03 J	0.030	0.01	3.00E-04	0.013 UJ	0.007	0.01	6.50E-05	0.014 UJ	0.007	0.01	7.00E-05	0.014 U.	0.007	0.01	7.00E-05
1,2,3,4,7,8,9-HpCDF	0.277 UJ	0.139	0.01	1.39E-03	0.166 UJ	0.083	0.01	8.30E-04	0.023 UJ	0.012	0.01	1.15E-04	0.016 UJ	0.008	0.01	8.00E-05	0.019 UJ	0.010	0.01	9.50E-05	0.019 U.	0.010	0.01	9.50E-05
OCDF	2.854 J	2.854	0.0001	2.85E-04	0.261 UJ	0.131	0.0001	1.31E-05	0.096 UJ	0.048	0.0001	4.80E-06	0.114 UJ	0.057	0.0001	5.70E-06	0.034 UJ	0.017	0.0001	1.70E-06	0.037 U.	0.019	0.0001	1.85E-06
Total 2,3,7,8-TCDD TEQ (ng/kg)				3.03E-01				2.14E-01				3.73E-02				3.23E-02				3.15E-02				2.96E-02

Bold values are detected concentrations. Plain text values are below detection limit shown.

1. Duplicate of sampe PSP-SB-001

2. Concentration of non-detected (U or UJ) compounds set at one-half of the detection limit

Abbreviations:

TCDD = tetrachlorodibenzo-p-dioxin

PeCDD = pentachlorodibenzo-p-dioxin HxCDD = hexachlorodibenzo-p-dioxin

HpCDD = heptachlorodibenzo-p-dioxin OCDD = octachlorodibenzo-p-dioxin

TCDF = tetrachlorodibenzofuran

PeCDF = pentachlorodibenzofuran

HxCDF = hexachlorodibenzofuran

HpCDF = heptachlorodibenzofuranOCDF = octachlorodibenzofuran

2,3,7,8-TCDD TEQ = 2,3,7,8-tetrachlorodibenzodioxin toxicity equivalent

TEF = toxicity equivalency factor (unitless) (OEHHA, 2003b)

EPA = U.S. Environmental Protection Agency

NM = not measured

U = indicates compound was not detected above detection limit shown

UJ = indicates compound was estimated as a non-detect at the detection limit shown

J = indicated compounds is reported at an estimated value

ng/kg = nanograms per kilogram wet weight

APPENDIX F CALCULATION OF 2,3,7,8-TCDD

TOXIC EQUIVALENTS

Sierra Pacific Industries Arcata Division Sawmill Arcata, Califronia

Sample Location		North of Samo	a Bridge			North of Samo	a Bridge			North of Samo	oa Bridge			North of Samo	a Bridge			North of Samo	a Bridge	
Sample ID		JST-SB-0	009			JST-SB-	017			Comp JST-SE	3-040/018			JST-SB-()19			JST-SB-	042	
Date		3/16/05	i			4/21/0	5			4/21/05 and	5/9/05			4/21/05	5			5/9/05	;	
Species		Jacksme	lt			Jacksm	elt		Jacksmelt				Jacksme	elt		Jacksmelt				
	Reported Concen-tration (ng/kg)	TEQ Calculation Conc. (ng/kg)	TEFs	2,3,7,8- TCDD TEQ (ng/kg)	Reported Concen- tration (ng/kg)	TEQ Calculation Conc. (ng/kg)	TEFs	2,3,7,8-TCDD TEQ (ng/kg)	Reported Concen- tration (ng/kg)	TEQ Calculation Conc. (ng/kg)	TEFs	2,3,7,8- TCDD TEQ (ng/kg)	Reported Concen- tration (ng/kg)	TEQ Calculation Conc. (ng/kg)	TEFs	2,3,7,8- TCDD TEQ (ng/kg)	Reported Concen- tration (ng/kg)	TEQ Calculation Conc. (ng/kg)	TEFs	2,3,7,8- TCDD TEQ (ng/kg)
Dioxin																				
2,3,7,8-TCDD	0.033 UJ	0.017	1	1.65E-02	0.045 U	0.023	1	2.25E-02	0.046 U	0.023	1	2.30E-02	0.048 U	0.024	1	2.40E-02	0.044 U	0.022	1	2.20E-02
1,2,3,7,8-PeCDD	0.028 UJ	0.014	1	1.40E-02	0.037 U	0.019	1	1.85E-02	0.032 U	0.016	1	1.60E-02	0.042 U	0.021	1	2.10E-02	0.039 U	0.020	1	1.95E-02
1,2,3,4,7,8-HxCDD	0.017 UJ	0.009	0.1	8.50E-04	0.032 U	0.016	0.1	1.60E-03	0.039 U	0.020	0.1	1.95E-03	0.040 U	0.020	0.1	2.00E-03	0.035 U	0.018	0.1	1.75E-03
1,2,3,6,7,8-HxCDD	0.022 UJ	0.011	0.1	1.10E-03	0.037 U	0.019	0.1	1.85E-03	0.043 U	0.022	0.1	2.15E-03	0.049 U	0.025	0.1	2.45E-03	0.042 U	0.021	0.1	2.10E-03
1,2,3,7,8,9-HxCDD	0.020 UJ	0.010	0.1	1.00E-03	0.035 U	0.018	0.1	1.75E-03	0.041 U	0.021	0.1	2.05E-03	0.045 U	0.023	0.1	2.25E-03	0.039 U	0.020	0.1	1.95E-03
1,2,3,4,6,7,8-HpCDD	0.076 J	0.076	0.01	7.60E-04	0.063 UJ	0.032	0.01	3.15E-04	0.074 UJ	0.037	0.01	3.70E-04	0.101 J	0.101	0.01	1.01E-03	0.041 U	0.021	0.01	2.05E-04
OCDD	0.452 UJ	0.226	0.0001	2.26E-05	0.475 UJ	0.238	0.0001	2.38E-05	0.438 UJ	0.219	0.0001	2.19E-05	0.897 UJ	0.449	0.0001	4.49E-05	0.373 UJ	0.187	0.0001	1.87E-05
Furan																				
2,3,7,8-TCDF	0.037 UJ	0.019	0.1	1.85E-03	0.037 U	0.019	0.1	1.85E-03	0.041 U	0.021	0.1	2.05E-03	0.036 U	0.018	0.1	1.80E-03	0.035 U	0.018	0.1	1.75E-03
1,2,3,7,8-PeCDF	0.016 UJ	0.008	0.05	4.00E-04	0.029 U	0.015	0.05	7.25E-04	0.029 U	0.015	0.05	7.25E-04	0.029 U	0.015	0.05	7.25E-04	0.032 U	0.016	0.05	8.00E-04
2,3,4,7,8-PeCDF	0.017 UJ	0.009	0.5	4.25E-03	0.030 U	0.015	0.5	7.50E-03	0.028 U	0.014	0.5	7.00E-03	0.029 U	0.015	0.5	7.25E-03	0.031 U	0.016	0.5	7.75E-03
1,2,3,4,7,8-HxCDF	0.017 UJ	0.009	0.1	8.50E-04	0.021 U	0.011	0.1	1.05E-03	0.021 U	0.011	0.1	1.05E-03	0.023 U	0.012	0.1	1.15E-03	0.024 U	0.012	0.1	1.20E-03
1,2,3,6,7,8-HxCDF	0.020 UJ	0.010	0.1	1.00E-03	0.026 U	0.013	0.1	1.30E-03	0.024 U	0.012	0.1	1.20E-03	0.027 U	0.014	0.1	1.35E-03	0.029 U	0.015	0.1	1.45E-03
1,2,3,7,8,9-HxCDF	0.019 UJ	0.010	0.1	9.50E-04	0.025 U	0.013	0.1	1.25E-03	0.025 U	0.013	0.1	1.25E-03	0.027 U	0.014	0.1	1.35E-03	0.028 U	0.014	0.1	1.40E-03
2,3,4,6,7,8-HxCDF	0.021 UJ	0.011	0.1	1.05E-03	0.026 U	0.013	0.1	1.30E-03	0.024 U	0.012	0.1	1.20E-03	0.027 U	0.014	0.1	1.35E-03	0.028 U	0.014	0.1	1.40E-03
1,2,3,4,6,7,8-HpCDF	0.016 UJ	0.008	0.01	8.00E-05	0.035 U	0.018	0.01	1.75E-04	0.030 U	0.015	0.01	1.50E-04	0.029 U	0.015	0.01	1.45E-04	0.035 U	0.018	0.01	1.75E-04
1,2,3,4,7,8,9-HpCDF	0.019 UJ	0.010	0.01	9.50E-05	0.038 U	0.019	0.01	1.90E-04	0.036 U	0.018	0.01	1.80E-04	0.027 U	0.014	0.01	1.35E-04	0.043 U	0.022	0.01	2.15E-04
OCDF	0.118 UJ	0.059	0.0001	5.90E-06	0.285 UJ	0.143	0.0001	1.43E-05	0.409 UJ	0.205	0.0001	2.05E-05	0.202 UJ	0.101	0.0001	1.01E-05	0.151 UJ	0.076	0.0001	7.55E-06
Total 2,3,7,8-TCDD TEQ (ng/kg)				4.48E-02				6.19E-02				6.04E-02				6.80E-02				6.37E-02

I:\Doc_Safe\9000s\9329\20-Task\Revised Supplement to HHRA_2006\Appendix F\9329_Appendix F\v2) (TEQ)

APPENDIX F CALCULATION OF 2,3,7,8-TCDD

TOXIC EQUIVALENTS

Sierra Pacific Industries Arcata Division Sawmill Arcata, Califronia

Sample Location		North of Samoa	Bridge			North of Samoa	Bridge			North of Samoa	a Bridge			North of Samo	a Bridge		North of Samoa Bridge			
Sample ID		WSP-SB-0	006			WSP-SB-0	07			WSP-SB-0	008			Comp WSP-SB	-033/045			Comp WSP-SB	-044/046	
Date		3/16/05				3/16/05				3/16/05				4/22/05 and 5	5/10/05			5/10/05	;	
Species		Walleye Surfperc				Walleye Surfpercl	ı		Walleye Surfperch					Walley Surfper			Walleye Surfperch			
	Reported Concen- tration (ng/kg)	TEQ Calculation Conc. (ng/kg)	TEFs	2,3,7,8- TCDD TEQ (ng/kg)	Reported Concen-tration (ng/kg)	TEQ Calculation Conc. (ng/kg)	TEFs	2,3,7,8- TCDD TEQ (ng/kg)	Reported Concen- tration (ng/kg)	TEQ Calculation Conc. (ng/kg)	TEFs	2,3,7,8- TCDD TEQ (ng/kg)	Reported Concen- tration (ng/kg)	TEQ Calculation Conc. (ng/kg)	TEFs	2,3,7,8- TCDD TEQ (ng/kg)	Reported Concen- tration (ng/kg)	TEQ Calculation Conc. (ng/kg)	TEFs	2,3,7,8- TCDD TEQ (ng/kg)
Dioxin																				
2,3,7,8-TCDD	0.041 UJ	0.021	1	2.05E-02	0.051 UJ	0.026	1	2.55E-02	0.041 UJ	0.021	1	2.05E-02	0.034 U	0.017	1	1.70E-02	0.029 U	0.015	1	1.45E-02
1,2,3,7,8-PeCDD	0.045 UJ	0.023	1	2.25E-02	0.029 UJ	0.015	1	1.45E-02	0.042 UJ	0.021	1	2.10E-02	0.034 U	0.017	1	1.70E-02	0.026 U	0.013	1	1.30E-02
1,2,3,4,7,8-HxCDD	0.035 UJ	0.018	0.1	1.75E-03	0.029 UJ	0.015	0.1	1.45E-03	0.044 UJ	0.022	0.1	2.20E-03	0.028 U	0.014	0.1	1.40E-03	0.035 U	0.018	0.1	1.75E-03
1,2,3,6,7,8-HxCDD	0.039 UJ		0.1	1.95E-03	0.033 UJ	0.017	0.1	1.65E-03	0.050 UJ	0.025	0.1	2.50E-03	0.033 U	0.017	0.1	1.65E-03	0.041 U	0.021	0.1	2.05E-03
1,2,3,7,8,9-HxCDD	0.037 UJ	0.019	0.1	1.85E-03	0.031 UJ	0.016	0.1	1.55E-03	0.047 UJ	0.024	0.1	2.35E-03	0.031 U	0.016	0.1	1.55E-03	0.038 U	0.019	0.1	1.90E-03
1,2,3,4,6,7,8-HpCDD	0.117 J	0.117	0.01	1.17E-03	0.058 J	0.058	0.01	5.80E-04	0.047 UJ	0.024	0.01	2.35E-04	0.089 UJ		0.01	4.45E-04	0.071 J	0.071	0.01	7.10E-04
OCDD	0.708 UJ	0.354	0.0001	3.54E-05	0.362 UJ	0.181	0.0001	1.81E-05	0.354 UJ	0.177	0.0001	1.77E-05	0.713 UJ	0.357	0.0001	3.57E-05	0.369 UJ	0.185	0.0001	1.85E-05
Furan																				
2,3,7,8-TCDF	0.042 UJ	0.021	0.1	2.10E-03	0.043 UJ	0.022	0.1	2.15E-03	0.040 UJ	0.020	0.1	2.00E-03	0.041 U	0.021	0.1	2.05E-03	0.039 U	0.020	0.1	1.95E-03
1,2,3,7,8-PeCDF	0.028 UJ		0.05	7.00E-04	0.015 UJ	0.008	0.05	3.75E-04	0.035 UJ	0.018	0.05	8.75E-04	0.024 U	0.012	0.05	6.00E-04	0.024 U	0.012	0.05	6.00E-04
2,3,4,7,8-PeCDF	0.027 UJ		0.5	6.75E-03	0.016 UJ	0.008	0.5	4.00E-03	0.035 UJ	0.018	0.5	8.75E-03	0.023 U	0.012	0.5	5.75E-03	0.023 U	0.012	0.5	5.75E-03
1,2,3,4,7,8-HxCDF	0.025 UJ		0.1	1.25E-03	0.020 UJ	0.010	0.1	1.00E-03	0.026 UJ	0.013	0.1	1.30E-03	0.022 U	0.011	0.1	1.10E-03	0.022 U	0.011	0.1	1.10E-03
1,2,3,6,7,8-HxCDF	0.03 UJ	0.015	0.1	1.50E-03	0.025 UJ	0.013	0.1	1.25E-03	0.031 UJ	0.016	0.1	1.55E-03	0.027 U	0.014	0.1	1.35E-03	0.025 U	0.013	0.1	1.25E-03
1,2,3,7,8,9-HxCDF	0.031 UJ		0.1	1.55E-03	0.025 UJ	0.013	0.1	1.25E-03	0.033 UJ	0.017	0.1	1.65E-03	0.026 U	0.013	0.1	1.30E-03	0.026 U	0.013	0.1	1.30E-03
2,3,4,6,7,8-HxCDF	0.028 UJ		0.1	1.40E-03	0.024 UJ	0.012	0.1	1.20E-03	0.029 UJ	0.015	0.1	1.45E-03	0.026 U	0.013	0.1	1.30E-03	0.025 U	0.013	0.1	1.25E-03
1,2,3,4,6,7,8-HpCDF	0.03 UJ	0.015	0.01	1.50E-04	0.025 UJ	0.013	0.01	1.25E-04	0.040 UJ	0.020	0.01	2.00E-04	0.027 U	0.014	0.01	1.35E-04	0.034 U	0.017	0.01	1.70E-04
1,2,3,4,7,8,9-HpCDF	0.038 UJ	0.019	0.01	1.90E-04	0.033 UJ	0.017	0.01	1.65E-04	0.055 UJ	0.028	0.01	2.75E-04	0.033 U	0.017	0.01	1.65E-04	0.042 U	0.021	0.01	2.10E-04
OCDF	0.274 UJ	0.137	0.0001	1.37E-05	0.128 UJ	0.064	0.0001	6.40E-06	0.145 UJ	0.073	0.0001	7.25E-06	0.208 UJ	0.104	0.0001	1.04E-05	0.195 UJ	0.098	0.0001	9.75E-06
Total 2,3,7,8-TCDD TEQ (ng/kg)				6.54E-02				5.68E-02				6.69E-02				5.28E-02				4.75E-02

I:\Doc_Safe\9000s\9329\20-Task\Revised Supplement to HHRA_2006\Appendix F\9329_Appendix F\v2) (TEQ)

APPENDIX G

Risk Calculation Using 2002 Data

FIN FISH INGESTION: RESIDENT

Chemical	Concentration in Fish Tissue (Cf)	Oral Absorption Factor (ABSo)	Annual Average Daily Dose (AADD)	Oral Chronic Reference Dose (RfDo)	Hazard Quotient	Lifetime Average Daily Dose (LADD)	Oral Slope Factor (SFo)	Excess Cancer Risk
	(mg/kg)	()	(mg/kg-d)	(mg/kg-d)	()	(mg/kg-d)	(mg/kg-d) ⁻¹	()
2,3,7,8-TCCD TEQs	2.60E-07	1	9.0E-11	1.00E-08	9.0E-03	3.2E-11	1.30E+05	4.2E-06
Zinc	1.40E+01	1	4.8E-03	0.3	1.6E-02	1.7E-03	NA	NA
					2.5E-02			4E-06

AADD =	(Cs x IRs x ABSos x EFig x ED x CFmg-kg) (BW x ATnc)	Hazard Quotient =	AADD RfDo
LADD =	(Cs x IRs x ABSos x EFig x ED x CFmg-kg) (BW x ATca)	Excess Cancer Risk =	LADD x SFo

Parameter	Symbol	Value	Units
Exposure Frequency	EFig	350	d/yr
Exposure Duration	ED	30	yr
Body Weight	BW	70	kg
Averaging Time-Non-cancer	ATnc	9,125	days
Averaging Time-Cancer	ATca	25,550	days
Ingestion Rate	IRff	21	g/day
Conversion Factor from mg to kg	CF_{g-kg}	1E-03	kg/g

FIN FISH INGESTION: ADULT ANGLER

Chemical	Concentration in Fish Tissue (Cf)	Oral Absorption Factor (ABSo)	Annual Average Daily Dose (AADD)	Oral Chronic Reference Dose (RfDo)	Hazard Quotient	Lifetime Average Daily Dose (LADD)	Oral Slope Factor (SFo)	Excess Cancer Risk
	(mg/kg)	()	(mg/kg-d)	(mg/kg-d)	()	(mg/kg-d)	(mg/kg-d) ⁻¹	()
2,3,7,8-TCCD TEQs	3.80E-07	1	1.0E-09	1.00E-08	1.0E-01	3.6E-10	1.30E+05	4.7E-05
Zinc	1.50E+01	1	4.0E-02	0.3	1.3E-01	1.4E-02	NA	NA
		•	•		2.3E-01			5E-05

AADD =	(Cs x IRs x ABSos x EFig x ED x CFmg-kg) (BW x ATnc)	Hazard Quotient =	AADD RfDo
LADD =	(Cs x IRs x ABSos x EFig x ED x CFmg-kg) (BW x ATca)	Excess Cancer Risk =	LADD x SFo

Parameter	Symbol	Value	Units
Exposure Frequency	EFig	350	d/yr
Exposure Duration	ED	30	yr
Body Weight	BW	70	kg
Averaging Time-Non-cancer	ATnc	9,125	days
Averaging Time-Cancer	ATca	25,550	days
Ingestion Rate	IRff	161	g/day
Conversion Factor from mg to kg	CF_{g-kg}	1E-03	kg/g

OYSTER INGESTION: RESIDENT

Chemical	Concentration in Fish Tissue (Cf)	Oral Absorption Factor (ABSo)	Annual Average Daily Dose (AADD)	Oral Chronic Reference Dose (RfDo)	Hazard Quotient	Lifetime Average Daily Dose (LADD)	Oral Slope Factor (SFo)	Excess Cancer Risk
	(mg/kg)	()	(mg/kg-d)	(mg/kg-d)	()	(mg/kg-d)	(mg/kg-d) ⁻¹	()
2,3,7,8-TCCD TEQs	8.50E-07	1	2.4E-12	1.00E-08	2.4E-04	8.5E-13	1.30E+05	1.1E-07
Zinc	9.40E+01	1	2.6E-04	3.00E-01	8.8E-04	9.4E-05	NA	NA
_	•		•	·	1.1E-03			1E-07

AADD =	(Cs x IRs x ABSos x EFig x ED x CFmg-kg) (BW x ATnc)	Hazard Quotient =	<u>AADD</u> RfDo
LADD =	(Cs x IRs x ABSos x EFig x ED x CFmg-kg) (BW x ATca)	Excess Cancer Risk =	LADD x SFo

Parameter	Symbol	Value	Units
Exposure Frequency	EFig	350	d/yr
Exposure Duration	ED	30	yr
Body Weight	BW	70	kg
Averaging Time-Non-cancer	ATnc	9,125	days
Averaging Time-Cancer	ATca	25,550	days
Ingestion Rate	IRo	0.17	g/day
Conversion Factor from mg to kg	$CF_{\sigma-k\sigma}$	1E-03	kg/g

OYSTER INGESTION: ADULT ANGLER

Chemical	Concentration in Fish Tissue (Cf)	Oral Absorption Factor (ABSo)	Annual Average Daily Dose (AADD)	Oral Chronic Reference Dose (RfDo)	Hazard Quotient	Lifetime Average Daily Dose (LADD)	Oral Slope Factor (SFo)	Excess Cancer Risk
	(mg/kg)	()	(mg/kg-d)	(mg/kg-d)	()	(mg/kg-d)	(mg/kg-d) ⁻¹	()
2,3,7,8-TCCD TEQs	2.22E-06	1	5.0E-11	1.00E-08	5.0E-03	1.8E-11	1.30E+05	2.3E-06
Zinc	1.10E+02	1	2.5E-03	3.00E-01	8.2E-03	8.8E-04	NA	NA
					1.3E-02			2E-06

AADD =	(Cs x IRs x ABSos x EFig x ED x CFmg-kg) (BW x ATnc)	Hazard Quotient =	AADD RfDo
LADD =	(Cs x IRs x ABSos x EFig x ED x CFmg-kg) (BW x ATca)	Excess Cancer Risk =	LADD x SFo

Parameter	Symbol	Value	Units
Exposure Frequency	EFig	350	d/yr
Exposure Duration	ED	30	yr
Body Weight	BW	70	kg
Averaging Time-Non-cancer	ATnc	9,125	days
Averaging Time-Cancer	ATca	25,550	days
Ingestion Rate	IRo	1.36	g/day
Conversion Factor from mg to kg	CF_{g-kg}	1E-03	kg/g

SHRIMP INGESTION: RESIDENT

Chemical	Concentration in Fish Tissue (Cf)	Oral Absorption Factor (ABSo)	Annual Average Daily Dose (AADD)	Oral Chronic Reference Dose (RfDo)	Hazard Quotient	Lifetime Average Daily Dose (LADD)	Oral Slope Factor (SFo)	Excess Cancer Risk
	(mg/kg)	()	(mg/kg-d)	(mg/kg-d)	()	(mg/kg-d)	(mg/kg-d) ⁻¹	()
2,3,7,8-TCCD TEQs	1.50E-07	1	6.4E-12	1.00E-08	6.4E-04	2.3E-12	1.30E+05	3.0E-07
Zinc	1.10E+01	1	4.7E-04	3.00E-01	1.6E-03	1.7E-04	NA	NA
			•		2.2E-03			3E-07

AADD =	(Cs x IRs x ABSos x EFig x ED x CFmg-kg) (BW x ATnc)	Hazard Quotient =	<u>AADD</u> RfDo
LADD =	(Cs x IRs x ABSos x EFig x ED x CFmg-kg) (BW x ATca)	Excess Cancer Risk =	LADD x SFo

Parameter	Symbol	Value	Units
Exposure Frequency	EFig	350	d/yr
Exposure Duration	ED	30	yr
Body Weight	BW	70	kg
Averaging Time-Non-cancer	ATnc	9,125	days
Averaging Time-Cancer	ATca	25,550	days
Ingestion Rate	IRs	2.6	g/day
Conversion Factor from mg to kg	CF_{g-kg}	1E-03	kg/g

SHRIMP INGESTION: ADULT ANGLER

Chemical	Concentration in Fish Tissue (Cf)	Oral Absorption Factor (ABSo)	Annual Average Daily Dose (AADD)	Oral Chronic Reference Dose (RfDo)	Hazard Quotient	Lifetime Average Daily Dose (LADD)	Oral Slope Factor (SFo)	Excess Cancer Risk
	(mg/kg)	()	(mg/kg-d)	(mg/kg-d)	()	(mg/kg-d)	(mg/kg-d) ⁻¹	()
2,3,7,8-TCCD TEQs	2.50E-07	1	8.5E-11	1.00E-08	8.5E-03	3.1E-11	1.30E+05	4.0E-06
Zinc	1.10E+01	1	3.8E-03	3.00E-01	1.3E-02	1.3E-03	NA	NA
	•		•	•	2.1E-02			4E-06

AADD =	(Cs x IRs x ABSos x EFig x ED x CFmg-kg) (BW x ATnc)	Hazard Quotient =	AADD RfDo
LADD =	(Cs x IRs x ABSos x EFig x ED x CFmg-kg) (BW x ATca)	Excess Cancer Risk =	LADD x SFo

Parameter	Symbol	Value	Units
Exposure Frequency	EFig	350	d/yr
Exposure Duration	ED	30	yr
Body Weight	BW	70	kg
Averaging Time-Non-cancer	ATnc	9,125	days
Averaging Time-Cancer	ATca	25,550	days
Ingestion Rate	IRs	20.8	g/day
Conversion Factor from mg to kg	CF_{g-kg}	1E-03	kg/g

CRAB INGESTION: RESIDENT

Chemical	Concentration in Fish Tissue (Cf)	Oral Absorption Factor (ABSo)	Annual Average Daily Dose (AADD)	Oral Chronic Reference Dose (RfDo)	Hazard Quotient	Lifetime Average Daily Dose (LADD)	Oral Slope Factor (SFo)	Excess Cancer Risk
	(mg/kg)	()	(mg/kg-d)	(mg/kg-d)	()	(mg/kg-d)	(mg/kg-d) ⁻¹	()
2,3,7,8-TCCD TEQs	7.80E-07	1	3.8E-12	1.00E-08	3.8E-04	1.4E-12	1.30E+05	1.8E-07
Zinc	3.22E+01	1	1.6E-04	3.00E-01	5.3E-04	5.7E-05	NA	NA
					9.1E-04			2E-07

AADD =	(Cs x IRs x ABSos x EFig x ED x CFmg-kg) (BW x ATnc)	Hazard Quotient =	AADD RfDo
LADD =	(Cs x IRs x ABSos x EFig x ED x CFmg-kg) (BW x ATca)	Excess Cancer Risk =	LADD x SFo

Parameter	Symbol	Value	Units
Exposure Frequency	EFig	350	d/yr
Exposure Duration	ED	30	yr
Body Weight	BW	70	kg
Averaging Time-Non-cancer	ATnc	9,125	days
Averaging Time-Cancer	ATca	25,550	days
Ingestion Rate	IRc	0.3	g/day
Conversion Factor from mg to kg	CF_{g-kg}	1E-03	kg/g

CRAB INGESTION: ADULT ANGLER

Chemical	Concentration in Fish Tissue (Cf)	Oral Absorption Factor (ABSo)	Annual Average Daily Dose (AADD)	Oral Chronic Reference Dose (RfDo)	Hazard Quotient	Lifetime Average Daily Dose (LADD)	Oral Slope Factor (SFo)	Excess Cancer Risk
	(mg/kg)	()	(mg/kg-d)	(mg/kg-d)	()	(mg/kg-d)	(mg/kg-d) ⁻¹	()
2,3,7,8-TCCD TEQs	1.76E-06	1	6.9E-11	1.00E-08	6.9E-03	2.5E-11	1.30E+05	3.2E-06
Zinc	4.19E+01	1	1.7E-03	0.3	5.5E-03	5.9E-04	NA	NA
					1.2E-02			3E-06

AADD =	(Cs x IRs x ABSos x EFig x ED x CFmg-kg) (BW x ATnc)	Hazard Quotient =	<u>AADD</u> RfDo
LADD =	(Cs x IRs x ABSos x EFig x ED x CFmg-kg) (BW x ATca)	Excess Cancer Risk =	LADD x SFo

Parameter	Symbol	Value	Units
Exposure Frequency	EFig	350	d/yr
Exposure Duration	ED	30	yr
Body Weight	BW	70	kg
Averaging Time-Non-cancer	ATnc	9,125	days
Averaging Time-Cancer	ATca	25,550	days
Ingestion Rate	IRc	2.4	g/day
Conversion Factor from mg to kg	CF_{g-kg}	1E-03	kg/g

APPENDIX H

Representative Concentrations and ProUCL Output for Finfish Samples

APPENDIX H-1

ANALYTICAL RESULTS OF DIOXINS/FURANS IN FIN FISH FROM MAD RIVER SLOUGH-2005 SAMPLING EVENT

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

~ . <u>.</u>					2,3,7,8-TCDD
Sample ID/ Station Identifier	Dete	g •	0/ 1 1 1	0/ 5-1-1	TEQ
	Date	Species	% Lipids	% Solids	(ng/kg)
JST-SB-009	3/16/2005	Jacksmelt	0.249	22.07	0.04
JST-SB-017	4/21/2005	Jacksmelt	0.115	21.26	0.06
	4/21/2005,				
Comp JST-SB-040/018	5/9/2005	Jacksmelt	0.100	19.81	0.06
JST-SB-019	4/21/2005	Jacksmelt	0.646	22.11	0.07
JST-SB-042	5/9/2005	Jacksmelt	0.307	17.69	0.06
				Average	0.06
PSP-SB-001 ¹	3/16/2005	Pile Surfperch	0.077	24.00	0.30
PSP-SB-002	3/16/2005	Pile Surfperch	1.565	23.90	0.04
PSP-SB-003	3/16/2005	Pile Surfperch	0.803	24.50	0.03
PSP-SB-004	3/16/2005	Pile Surfperch	0.160	22.90	0.03
PSP-SB-005	3/16/2005	Pile Surfperch	0.206	25.50	0.03
				Average	0.09
WSP-SB-006	3/16/2005	Walleye Surfperch	0.426	20.97	0.07
WSP-SB-007	3/16/2005	Walleye Surfperch	0.330	19.82	0.06
WSP-SB-008	3/16/2005	Walleye Surfperch	0.220	21.02	0.07
	4/22/2005,				
Comp WSP-SB-033/045	5/10/2005	Walleye Surfperch	0.080	18.26	0.05
Comp WSP-SB-044/046	38482	Walleye Surfperch	0.197	18.81	0.05
-		•	•	Average	0.06

Notes:

1. Duplicate sample collected. The highest concentration of the duplicate samples is presented.

Abbreviations:

ng/kg = nanograms per kilogram wet weight

2,3,7,8-TCDD TEQ = 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicity equivalent

APPENDIX H-2

REPRESENTATIVE CONCENTRATIONS AND ProUCL OUTPUT FOR FIN FISH

Sierra Pacific Industries Arcata Saw Mill Arcata, California

Concentrations reported in nanograms per kilogram (ng/kg)

Concentr	-		
Jacksmelt			
Raw Statistics		Normal Distribution Test	
Number of Valid Samples	5	Shapiro-Wilk Test Statisitic	0.8281747
Number of Unique Samples	3	Shapiro-Wilk 5% Critical Value	0.762
Minimum	0.04	Data are normal at 5% significance level	0.7.02
Maximum	0.07	Buttu are normal at 5 / v significance level	
Mean	0.058	95% UCL (Assuming Normal Distribution)
Median	0.06	Student's-t UCL	0.0684439
Standard Deviation	0.0109545	Students to CE	0.0001137
Variance	0.00012	Gamma Distribution Test	
Coefficient of Variation	0.1888698	A-D Test Statistic	0.6900475
Skewness	-1.293234	A-D 5% Critical Value	0.6785363
Skewness	-1.293234	K-S Test Statistic	0.0783303
Gamma Statistics		K-S 5% Critical Value	0.3570527
k hat	30.725605	Data do not follow gamma distribution	0.3370327
k star (bias corrected)	12.423575	at 5% significance level	
Theta hat		at 5% significance level	
	0.0018877	050/ UCL a (Assuming Commo Distribution)	
Theta star	0.0046685	95% UCLs (Assuming Gamma Distribution)	0.0724260
nu hat	307.25605	Approximate Gamma UCL	0.0724269
nu star	124.23575	Adjusted Gamma UCL	0.0802317
Approx.Chi Square Value (.05)	99.488877	I ID' ('I (' T (
Adjusted Level of Significance	0.0086	Lognormal Distribution Test	0.5000001
Adjusted Chi Square Value	89.810843	Shapiro-Wilk Test Statisitic	0.7880301
		Shapiro-Wilk 5% Critical Value	0.762
Log-transformed Statistics		Data are lognormal at 5% significance level	
Minimum of log data	-3.218876		
Maximum of log data	-2.65926	95% UCLs (Assuming Lognormal Distributi	
Mean of log data	-2.863674	95% H-UCL	0.0735589
Standard Deviation of log data	0.2094831	95% Chebyshev (MVUE) UCL	0.0817427
Variance of log data	0.0438831	97.5% Chebyshev (MVUE) UCL	0.0919876
		99% Chebyshev (MVUE) UCL	0.1121116
		95% Non-parametric UCLs	
		CLT UCL	0.0660581
		Adj-CLT UCL (Adjusted for skewness)	0.0630306
		Mod-t UCL (Adjusted for skewness)	0.0679716
		Jackknife UCL	0.0684439
		Standard Bootstrap UCL	N/R
		Bootstrap-t UCL	N/R
RECOMMENDATION		Hall's Bootstrap UCL	N/R
Data are normal (0.05)		Percentile Bootstrap UCL	N/R
= =====================================		BCA Bootstrap UCL	N/R
Use Student's-t UCL		95% Chebyshev (Mean, Sd) UCL	0.0793542
		97.5% Chebyshev (Mean, Sd) UCL	0.0885941
		99% Chebyshev (Mean, Sd) UCL	0.1067442
		(,,,,,,,	

APPENDIX H-3 REPRESENTATIVE CONCENTRATIONS AND ProUCL OUTPUT FOR FIN FISH

Sierra Pacific Industries Arcata Saw Mill Arcata, California

Concentrations reported in nanograms per kilogram (ng/kg)

Pile Surfperch			
Raw Statistics		Normal Distribution Test	
Number of Valid Samples	5	Shapiro-Wilk Test Statisitic	0.576958
Number of Unique Samples	3	Shapiro-Wilk 5% Critical Value	0.76
Minimum	0.03	Data not normal at 5% significance level	0.7.0.
Maximum	0.3	2 am not normal at \$70 significance to 161	
Mean	0.086	95% UCL (Assuming Normal Distribution)
Median	0.03	Student's-t UCL	0.2001284
Standard Deviation	0.119708	Statement CCE	0.200120
Variance	0.01433	Gamma Distribution Test	
Coefficient of Variation	1.3919532	A-D Test Statistic	1.1410853
Skewness	2.228848	A-D 5% Critical Value	0.6906439
SKC WIESS	2.220010	K-S Test Statistic	0.441253
Gamma Statistics		K-S 5% Critical Value	0.3640247
k hat	1.0703137	Data do not follow gamma distribution	J.JUTU27
k star (bias corrected)	0.5614588	at 5% significance level	
Theta hat	0.0803503	at 570 significance rever	
Theta nat Theta star	0.0803303	95% UCLs (Assuming Gamma Distribution)	
nu hat	10.703137	Approximate Gamma UCL	0.3339885
nu star	5.6145883	Adjusted Gamma UCL	0.533388.
Approx.Chi Square Value (.05)	1.445722	Adjusted Gaillina OCL	0.077330.
Adjusted Level of Significance	0.0086	Lognormal Distribution Test	
Adjusted Chi Square Value	0.7126684	Shapiro-Wilk Test Statisitic	0.6330054
Adjusted Clif Square Value	0.7120064	Shapiro-Wilk 5% Critical Value	0.0330032
Log transformed Statistics		•	0.762
Log-transformed Statistics	2 506559	Data not lognormal at 5% significance level	
Minimum of log data	-3.506558	050/ HCI - (A	\
Maximum of log data	-1.203973	95% UCLs (Assuming Lognormal Distributi	
Mean of log data	-2.988504	95% H-UCL	0.993968
Standard Deviation of log data	1.0053311	95% Chebyshev (MVUE) UCL	0.2119735
Variance of log data	1.0106906	97.5% Chebyshev (MVUE) UCL	0.271822
		99% Chebyshev (MVUE) UCL	0.389383
		95% Non-parametric UCLs	
		CLT UCL	0.1740573
		Adj-CLT UCL (Adjusted for skewness)	0.2310756
		Mod-t UCL (Adjusted for skewness)	0.209022
		Jackknife UCL	0.2001284
		Standard Bootstrap UCL	N/R
		Bootstrap-t UCL	N/R
RECOMMENDATION		Hall's Bootstrap UCL	N/R
Data are Non-parametric (0.03	5)	Percentile Bootstrap UCL	N/R
-		BCA Bootstrap UCL	N/R
Use 99% Chebyshev (Mean, Sd)) UCL	95% Chebyshev (Mean, Sd) UCL	0.319353
• , , ,		97.5% Chebyshev (Mean, Sd) UCL	0.4203262
		99% Chebyshev (Mean, Sd) UCL	0.6186669
Recommended UCL exceeds the m	aximum observa	•	

APPENDIX H-4

REPRESENTATIVE CONCENTRATIONS AND ProUCL OUTPUT FOR FIN FISH

Sierra Pacific Industries Arcata Saw Mill Arcata, California

Concentrations reported in nanograms per kilogram (ng/kg)

rations reported	in nanograms per knogram (ng/kg)	
	Normal Distribution Test	
5	Shapiro-Wilk Test Statisitic	0.820654
	*	0.76
	•	
	95% UCL (Assuming Normal Distribution)
	Student's-t UCL	0.069533
	Gamma Distribution Test	
	A-D Test Statistic	0.534794
		0.678338
0.002 10		0.270798
		0.356914
44.538103		
	•	
	at 5 % significance to ver	
	95% UCLs (Assuming Gamma Distribution)	
		0.072037
		0.078336
	Adjusted Gamma CCL	0.070330
	Lognormal Distribution Test	
		0.819505
137.4720	*	0.017303
	•	0.70
-2 995732	Data are lognormal at 370 significance level	
	95% LICLs (Assuming Lognormal Distributi	on)
		0.072063
		0.072603
		0.075075
0.0205451	· · · · · · · · · · · · · · · · · · ·	0.104909
	7770 Chebyshev (Wrv OL) OCL	0.104707
	95% Non-parametric UCLs	
	CLT UCL	0.06735
	Adj-CLT UCL (Adjusted for skewness)	0.06735
		0.069533
	Jackknife UCL	0.069533
		N/R
	•	N/R
	*	N/R
	*	N/R
	*	N/R
	95% Chebyshev (Mean, Sd) UCL	0.079493
	7.770 CHEDYSHEV HVICAH, MILLUCH	
	97.5% Chebyshev (Mean, Sd) UCL	0.087928
	5 3 0.05 0.07 0.06 0.06 0.01 0.0001 0.1666667 3.53E-15 44.538103 17.948574 0.0013472 0.0033429 445.38103 179.48574 149.49319 0.0086 137.4728 -2.995732 -2.65926 -2.824679 0.168354 0.0283431	5 Shapiro-Wilk Test Statisitic 3 Shapiro-Wilk 5% Critical Value 0.05 Data are normal at 5% significance level 0.07 0.06 95% UCL (Assuming Normal Distribution 0.06 Student's-t UCL 0.01 0.0001 Gamma Distribution Test 0.1666667 A-D Test Statistic 3.53E-15 A-D 5% Critical Value K-S Test Statistic K-S 5% Critical Value 44.538103 Data follow gamma distribution 17.948574 at 5% significance level 0.0013472 0.0033429 95% UCLs (Assuming Gamma Distribution) 445.38103 Approximate Gamma UCL 179.48574 Adjusted Gamma UCL 149.49319 0.0086 Lognormal Distribution Test 137.4728 Shapiro-Wilk Test Statisitic Shapiro-Wilk 5% Critical Value Data are lognormal at 5% significance level -2.995732 -2.65926 95% UCLs (Assuming Lognormal Distribution -2.824679 95% H-UCL 0.168354 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL 95% Non-parametric UCLs CLT UCL Adj-CLT UCL (Adjusted for skewness) Mod-t UCL (Adjusted for skewness)

APPENDIX I

Risk Calculations Using 2002/2005 Data

FIN FISH INGESTION: RESIDENT

Chemical	Concentration in Fish Tissue (Cf)	Oral Absorption Factor (ABSo)	Annual Average Daily Dose (AADD)	Oral Chronic Reference Dose (RfDo)	Hazard Quotient	Lifetime Average Daily Dose (LADD)	Oral Slope Factor (SFo)	Excess Cancer Risk
	(mg/kg)	()	(mg/kg-d)	(mg/kg-d)	()	(mg/kg-d)	(mg/kg-d) ⁻¹	()
2,3,7,8-TCCD TEQs	9.00E-08	1	3.1E-11	1.00E-08	3.1E-03	1.1E-11	1.30E+05	1.4E-06
Zinc	1.40E+01	1	4.8E-03	0.3	1.6E-02	1.7E-03	NA	NA
			•	•	1.9E-02			1E-06

AADD =	(Cs x IRs x ABSos x EFig x ED x CFmg-kg) (BW x ATnc)	Hazard Quotient =	AADD RfDo
LADD =	(Cs x IRs x ABSos x EFig x ED x CFmg-kg) (BW x ATca)	Excess Cancer Risk =	LADD x SFo

Parameter	Symbol	Value	Units
Exposure Frequency	EFig	350	d/yr
Exposure Duration	ED	30	yr
Body Weight	BW	70	kg
Averaging Time-Non-cancer	ATnc	9,125	days
Averaging Time-Cancer	ATca	25,550	days
Ingestion Rate	IRff	21	g/day
Conversion Factor from mg to kg	$CF_{\sigma-k\sigma}$	1E-03	kg/g

FIN FISH INGESTION: ADULT ANGLER

Chemical	Concentration in Fish Tissue (Cf)	Oral Absorption Factor (ABSo)	Annual Average Daily Dose (AADD)	Oral Chronic Reference Dose (RfDo)	Hazard Quotient	Lifetime Average Daily Dose (LADD)	Oral Slope Factor (SFo)	Excess Cancer Risk
	(mg/kg)	()	(mg/kg-d)	(mg/kg-d)	()	(mg/kg-d)	(mg/kg-d) ⁻¹	()
2,3,7,8-TCCD TEQs	3.00E-07	1	7.9E-10	1.00E-08	7.9E-02	2.8E-10	1.30E+05	3.7E-05
Zinc	1.50E+01	1	4.0E-02	0.3	1.3E-01	1.4E-02	NA	NA
				·	2.1E-01		•	4E-05

AADD =	(Cs x IRs x ABSos x EFig x ED x CFmg-kg) (BW x ATnc)	Hazard Quotient = <u>AADD</u> RfDo
LADD =	(Cs x IRs x ABSos x EFig x ED x CFmg-kg) (BW x ATca)	Excess Cancer Risk = LADD x SFo

Parameter	Symbol	Value	Units
Exposure Frequency	EFig	350	d/yr
Exposure Duration	ED	30	yr
Body Weight	BW	70	kg
Averaging Time-Non-cancer	ATnc	9,125	days
Averaging Time-Cancer	ATca	25,550	days
Ingestion Rate	IRff	161	g/day
Conversion Factor from mg to kg	CF_{g-kg}	1E-03	kg/g

OYSTER INGESTION: RESIDENT

Chemical	Concentration in Fish Tissue (Cf)	Oral Absorption Factor (ABSo)	Annual Average Daily Dose (AADD)	Oral Chronic Reference Dose (RfDo)	Hazard Quotient	Lifetime Average Daily Dose (LADD)	Oral Slope Factor (SFo)	Excess Cancer Risk
	(mg/kg)	()	(mg/kg-d)	(mg/kg-d)	()	(mg/kg-d)	(mg/kg-d) ⁻¹	()
2,3,7,8-TCCD TEQs	8.50E-07	1	2.4E-12	1.00E-08	2.4E-04	8.5E-13	1.30E+05	1.1E-07
Zinc	9.40E+01	1	2.6E-04	3.00E-01	8.8E-04	9.4E-05	NA	NA
			•		1.1E-03			1E-07

AADD =	(Cs x IRs x ABSos x EFig x ED x CFmg-kg) (BW x ATnc)	Hazard Quotient =	<u>AADD</u> RfDo
LADD =	(Cs x IRs x ABSos x EFig x ED x CFmg-kg) (BW x ATca)	Excess Cancer Risk =	LADD x SFo

Parameter	Symbol	Value	Units
Exposure Frequency	EFig	350	d/yr
Exposure Duration	ED	30	yr
Body Weight	BW	70	kg
Averaging Time-Non-cancer	ATnc	9,125	days
Averaging Time-Cancer	ATca	25,550	days
Ingestion Rate	IRo	0.17	g/day
Conversion Factor from mg to kg	$CF_{\sigma-k\sigma}$	1E-03	kg/g

OYSTER INGESTION: ADULT ANGLER

Chemical	Concentration in Fish Tissue (Cf)	Oral Absorption Factor (ABSo)	Annual Average Daily Dose (AADD)	Oral Chronic Reference Dose (RfDo)	Hazard Quotient	Lifetime Average Daily Dose (LADD)	Oral Slope Factor (SFo)	Excess Cancer Risk
	(mg/kg)	()	(mg/kg-d)	(mg/kg-d)	()	(mg/kg-d)	(mg/kg-d) ⁻¹	()
2,3,7,8-TCCD TEQs	2.22E-06	1	5.0E-11	1.00E-08	5.0E-03	1.8E-11	1.30E+05	2.3E-06
Zinc	1.10E+02	1	2.5E-03	3.00E-01	8.2E-03	8.8E-04	NA	NA
					1.3E-02			2E-06

AADD =	(Cs x IRs x ABSos x EFig x ED x CFmg-kg) (BW x ATnc)	Hazard Quotient =	AADD RfDo
LADD =	(Cs x IRs x ABSos x EFig x ED x CFmg-kg) (BW x ATca)	Excess Cancer Risk =	LADD x SFo

Parameter	Symbol	Value	Units
Exposure Frequency	EFig	350	d/yr
Exposure Duration	ED	30	yr
Body Weight	BW	70	kg
Averaging Time-Non-cancer	ATnc	9,125	days
Averaging Time-Cancer	ATca	25,550	days
Ingestion Rate	IRo	1.36	g/day
Conversion Factor from mg to kg	CF_{g-kg}	1E-03	kg/g

SHRIMP INGESTION: RESIDENT

Chemical	Concentration in Fish Tissue (Cf)	Oral Absorption Factor (ABSo)	Annual Average Daily Dose (AADD)	Oral Chronic Reference Dose (RfDo)	Hazard Quotient	Lifetime Average Daily Dose (LADD)	Oral Slope Factor (SFo)	Excess Cancer Risk
	(mg/kg)	()	(mg/kg-d)	(mg/kg-d)	()	(mg/kg-d)	(mg/kg-d) ⁻¹	()
2,3,7,8-TCCD TEQs	1.50E-07	1	6.4E-12	1.00E-08	6.4E-04	2.3E-12	1.30E+05	3.0E-07
Zinc	1.10E+01	1	4.7E-04	3.00E-01	1.6E-03	1.7E-04	NA	NA
					2.2E-03			3E-07

AADD =	(Cs x IRs x ABSos x EFig x ED x CFmg-kg) (BW x ATnc)	Hazard Quotient =	<u>AADD</u> RfDo
LADD =	(Cs x IRs x ABSos x EFig x ED x CFmg-kg) (BW x ATca)	Excess Cancer Risk =	LADD x SFo

Parameter	Symbol	Value	Units
Exposure Frequency	EFig	350	d/yr
Exposure Duration	ED	30	yr
Body Weight	BW	70	kg
Averaging Time-Non-cancer	ATnc	9,125	days
Averaging Time-Cancer	ATca	25,550	days
Ingestion Rate	IRs	2.6	g/day
Conversion Factor from mg to kg	CF_{g-kg}	1E-03	kg/g

SHRIMP INGESTION: ADULT ANGLER

Chemical	Concentration in Fish Tissue (Cf)	Oral Absorption Factor (ABSo)	Annual Average Daily Dose (AADD)	Oral Chronic Reference Dose (RfDo)	Hazard Quotient	Lifetime Average Daily Dose (LADD)	Oral Slope Factor (SFo)	Excess Cancer Risk
	(mg/kg)	()	(mg/kg-d)	(mg/kg-d)	()	(mg/kg-d)	(mg/kg-d) ⁻¹	()
2,3,7,8-TCCD TEQs	2.50E-07	1	8.5E-11	1.00E-08	8.5E-03	3.1E-11	1.30E+05	4.0E-06
Zinc	1.10E+01	1	3.8E-03	3.00E-01	1.3E-02	1.3E-03	NA	NA
					2.1E-02			4E-06

AADD =	(Cs x IRs x ABSos x EFig x ED x CFmg-kg) (BW x ATnc)	Hazard Quotient = <u>AADD</u> RfDo
LADD =	(Cs x IRs x ABSos x EFig x ED x CFmg-kg) (BW x ATca)	Excess Cancer Risk = LADD x SFo

Parameter	Symbol	Value	Units
Exposure Frequency	EFig	350	d/yr
Exposure Duration	ED	30	yr
Body Weight	BW	70	kg
Averaging Time-Non-cancer	ATnc	9,125	days
Averaging Time-Cancer	ATca	25,550	days
Ingestion Rate	IRs	20.8	g/day
Conversion Factor from mg to kg	$CF_{\sigma-k\sigma}$	1E-03	kg/g

CRAB INGESTION: RESIDENT

Chemical	Concentration in Fish Tissue (Cf)	Oral Absorption Factor (ABSo)	Annual Average Daily Dose (AADD)	Oral Chronic Reference Dose (RfDo)	Hazard Quotient	Lifetime Average Daily Dose (LADD)	Oral Slope Factor (SFo)	Excess Cancer Risk
	(mg/kg)	()	(mg/kg-d)	(mg/kg-d)	()	(mg/kg-d)	(mg/kg-d) ⁻¹	()
2,3,7,8-TCCD TEQs	7.80E-07	1	3.8E-12	1.00E-08	3.8E-04	1.4E-12	1.30E+05	1.8E-07
Zinc	3.22E+01	1	1.6E-04	3.00E-01	5.3E-04	5.7E-05	NA	NA
					9.1E-04			2E-07

AADD =	(Cs x IRs x ABSos x EFig x ED x CFmg-kg) (BW x ATnc)	Hazard Quotient =	AADD RfDo
LADD =	(Cs x IRs x ABSos x EFig x ED x CFmg-kg) (BW x ATca)	Excess Cancer Risk =	LADD x SFo

Parameter	Symbol	Value	Units
Exposure Frequency	EFig	350	d/yr
Exposure Duration	ED	30	yr
Body Weight	BW	70	kg
Averaging Time-Non-cancer	ATnc	9,125	days
Averaging Time-Cancer	ATca	25,550	days
Ingestion Rate	IRc	0.3	g/day
Conversion Factor from mg to kg	CF_{g-kg}	1E-03	kg/g

CRAB INGESTION: ADULT ANGLER

Chemical	Concentration in Fish Tissue (Cf)	Oral Absorption Factor (ABSo)	Annual Average Daily Dose (AADD)	Oral Chronic Reference Dose (RfDo)	Hazard Quotient	Lifetime Average Daily Dose (LADD)	Oral Slope Factor (SFo)	Excess Cancer Risk
	(mg/kg)	()	(mg/kg-d)	(mg/kg-d)	()	(mg/kg-d)	(mg/kg-d) ⁻¹	()
2,3,7,8-TCCD TEQs	1.76E-06	1	6.9E-11	1.00E-08	6.9E-03	2.5E-11	1.30E+05	3.2E-06
Zinc	4.19E+01	1	1.7E-03	0.3	5.5E-03	5.9E-04	NA	NA
					1.2E-02			3E-06

AADD =	(Cs x IRs x ABSos x EFig x ED x CFmg-kg) (BW x ATnc)	Hazard Quotient =	AADD RfDo
LADD =	(Cs x IRs x ABSos x EFig x ED x CFmg-kg) (BW x ATca)	Excess Cancer Risk =	LADD x SFo

Parameter	Symbol	Value	Units
Exposure Frequency	EFig	350	d/yr
Exposure Duration	ED	30	yr
Body Weight	BW	70	kg
Averaging Time-Non-cancer	ATnc	9,125	days
Averaging Time-Cancer	ATca	25,550	days
Ingestion Rate	IRc	2.4	g/day
Conversion Factor from mg to kg	CF_{g-kg}	1E-03	kg/g