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General Guidelines 

 

After the complete data set has been corrected, the primary task required for computing sediment 

flux is to estimate SSC at the same frequency as discharge and turbidity were measured.  Once the 

SSC has been estimated, the sediment load (load, flux, and yield are all synonymous terms) can be 

simply calculated as  
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where t is the time between measurements, and qi and  ci are the instantaneous water discharge and 

estimated SSC for interval i.  Generally, the conversion factor k will also be required to express the 

result in the desired measurement units.  Before the advent of computers it was common to sum 

average fluxes, weighted by flow duration, over flow classes (i.e. the flow duration sediment rating 

curve method).  However, with today’s computing power, there is no longer any reason to use such 

an approximate method.   

Software 

Most of the methods described in this section are available in a set of procedures developed by 

Redwood Sciences Laboratory for use within R, a free software package for exploratory data 

analysis.  Instructions for using the procedures, after they are installed, are described below.  The 

procedures are designed to be used for estimating sediment loads for input files created specifically 

by TTS Adjuster.  Contact the authors to obtain the software. The FTS processing system, still 

under development at this writing is planned to include many of these methods as well. 

Surrogate variables 

Instantaneous SSC is normally estimated using one of three surrogate variables: turbidity, 

discharge, or time.  Turbidity is the preferred surrogate.  If the turbidity data are of high quality and 

if the range of turbidity is not too narrow, the relationship between turbidity and SSC is usually 

very good and certainly better than the relationship between discharge and SSC.  However, when 

turbidity data are of poor quality or missing, it may be necessary to fall back on discharge as the 

surrogate.  If enough pumped samples were collected during the period of bad turbidity data, then 



instead of using a relationship between discharge and SSC, a better estimate of SSC can be 

obtained simply by interpolating SSC over time between samples.  In the interpolation scenario, the 

surrogate variable is time. 

Defining the relationship between surrogate and SSC 

The selection of the data and determination of the surrogate relationship(s) are subjective, but must 

be guided by general principles.  The data used to determine a surrogate relationship should ideally 

1. be representative of the period whose flux is being estimated. 
2. span the range of both variables in the period whose flux is being estimated 
3. include enough samples to reasonably define the relationship 

Annual loads 

For calculating an annual sediment flux, assuming the turbidity data are complete, it may be 

reasonable to fit a single relationship between turbidity and SSC based on a whole year’s data.  

Such a relationship is likely to overestimate some storm events and underestimate others, but these 

errors tend to balance one another and the annual flux may often be estimated accurately enough 

(within 10%) by the one relationship. 

 

Replacing the estimated SSC during storm events using storm-based relationships can result in a 

more accurate estimate of annual load, and this can be used to validate or reject the first procedure.  

Storm event loads 

For calculating a storm event load, it is best to use only data from that storm event, assuming 

enough samples were collected.  Using a relationship based on the entire year or, worse, from a 

prior year is likely to severely miscalculate a storm event load.  If an inadequate number of samples 

were collected to reasonably define the relationship, or if the samples collected do not span the 

range of turbidity and/or SSC for the given event, then additional samples should be included from 

neighboring periods. 

Dividing the data 

Just as with annual loads, it may be more accurate to divide a storm event into multiple periods and 

multiple relationships.  This decision should be based on an examination of scatterplots between 

turbidity or discharge and SSC.  If the samples in the scatterplot are numbered, then it is easy to tell 

if a relationship has shifted during the event.  If the relationship clearly shifted, and if enough 

samples were collected to define both relationships, it usually best to divide the event into two 

periods.  The drawback to dividing the data is that the individual relationships will be less precise 

because they are defined by fewer points. 

The form of the relationship 

Linear regression 

Linear regression is usually the simplest relation considered.  If several different models seem to fit 

the scatterplot adequately, the simplest relationship is usually preferred.  However, there are other 

considerations.  When dissolved substances are present that cause turbidity, or when SSC is 

determined by filtration and the filtrate contains fines that cause turbidity, concentrations near zero 

will have significantly positive turbidity and linear relationships between turbidity and SSC will 



have a negative intercept.  The result is usually that predictions of SSC are negative for some range 

of low turbidity values that have been recorded.  The solution is to either set negative predictions to 

zero, or to adopt a model that never predicts negative SSC, e.g. log-log regression or a power 

function.  

Transformed linear regression and bias corrections 

Transformations can be used to produce models that cannot make negative predictions, to linearize 

relationships, to normalize residuals, to equalize variance, or a combination of the above.  

Sometimes a transformation can accomplish more than one of these objectives, but there are no 

guarantees.  Retransformed predictions from log-log regressions are always positive, but they have 

the draw back that they cannot be evaluated when the predictor is zero. The square root 

transformation may accomplish the same thing without eliminating predictions at zero. 

 

Transformation of the response (SSC) has a drawback.  The prediction must be retransformed back 

to the original units, and that step introduces a bias (Miller, 1984; Koch and Smillie, 1986).  The 

bias arises because regression predicts the mean of a normal distribution for a given x, and the 

transformed mean of a normal distribution is not equivalent to the mean of the transformed 

distribution.  To correct for retransformation bias, Duan (1983) introduced the non-parametric 

“smearing” estimator 
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where ˆ smy is the corrected prediction in original units, h is the inverse transformation, 0ŷ  is the 

prediction before retransformation, and ei  are the residuals from the regression. 

 

Log transformation. For transformations by ln (logarithm to the base e), the bias is always negative, 

and increases with regression variance.  The smearing estimator becomes 0
ˆ ˆexp( )smy y e=  where 

/ie e n=∑ . If the ln-transformed regression has normally distributed residuals, there is an exact, 

minimum variance unbiased estimator (Cohn et al., 1989), but it is quite complex and 

computationally demanding.  A more widely known, approximate correction for ln transformations 

with normally distributed residuals is 
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where s is the residual standard error of the transformed regression.  The QMLE subscript stands 

for quasi-maximum likelihood estimator (Cohn et al., 1989).  This estimator has also been called 

the naive correction, or the Baskerville (1972) correction.  More generally, for logarithms to the 

base b, the QMLE correction factor is exp[0.5ln(b)
2
s
2
], which, for base 10 logarithms, yields 
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Square root transformation. For square root transformations, the smearing estimator takes the form 
2 2

0 0
ˆ ˆ ˆ2smy y y e e= + +  where, as before e  is the mean residual. 



Power function 

The power function ky cx=  can be obtained by retransforming 0 1log ( ) log ( )b by a a x= +  to obtain 

0ac b=  and k=a1, but it can also be fitted directly using non-linear least squares (NLS) estimation 

(Bates and Watts, 1988).  The estimated coefficients will be different from the retransformed linear 

regression, with or without correction.  The log-log regression gives more weight to data with small 

x.   Algorithms for NLS are iterative calculations that are provided in many statistical packages 

such as Splus and R.  Fitting a power function by NLS instead of log-transformed regression has 

the advantages that no bias-correction is necessary and data with large x are not de-emphasized. 

(Note: in Microsoft Excel, a power function is computed by retransforming the log-log regression. 

Excel ignores the bias correction, so predictions based on Excel power models are negatively 

biased).  

Loess 

Locally weighted regression (loess) is a non-parametric curve-fitting technique that can estimate a 

very wide class of regression functions without distortion (Cleveland, 1979; Cleveland et al., 1988).  

It is similar to a moving average.  The fitted value at each x is the value of a regression fit to data 

near x using weighted least squares, with the closest points more heavily weighted.  The amount of 

smoothing, which affects the number of points in the regression, is determined by the user. The 

advantage of loess is its flexibility - it nearly always can produce an acceptable fit to the data – but 

care must be taken not to over-fit the data.  With SSC and turbidity, we recommend smoothing 

until no more than one inflection point (where curvature switches between convex and concave) is 

present.  A statistic that characterizes the amount of smoothing is the equivalent number of 

parameters, which can be compared to the number of parameters estimated by a polynomial fit. 

The loess computation seems to require at least 2 more data points than the equivalent number of 

parameters, so it cannot generally be applied with less than about 5 samples. 

 

At many sites, organic sediment becomes dominant at low values of turbidity, causing a reduction 

in the slope of the rating curve near zero.  The slope change is most apparent in annual plots of 

turbidity and SSC.  Loess is often the most satisfactory modeling method to capture this slope 

change.  

 

 
 

Prediction.  Since there is no simple algebraic expression for a loess curve, prediction is usually 

done within the statistical package that computed the curve.  Splus and R have prediction 

capabilities, but they do not permit extrapolation beyond the range of the data used to fit the model.  



Extrapolation can be done manually by computing regression lines for the last few points of the 

curve at either end of the range. 

Hysteresis and pairwise fitting 

It is fairly common for the relationship between surrogate and target variable to shift during an 

event.  The shift is usually near the turbidity or discharge peak and, on a scatterplot, the shift often 

appears as a loop pattern.  This is known as hysteresis.  Hysteresis loops for SSC and turbidity are 

less common and narrower than loops for SSC and discharge.  It might be possible to approximate 

the loop as two curves, in which case the data could be divided into two periods, as discussed 

above, applying two of the previous methods to estimate the load. 

 

Another approach to hysteresis loops, which is occasionally useful, is to connect each consecutive 

pair of samples with a line segment, using each segment to predict the period between that pair’s 

sample collection times.  The reason this method is only occasionally useful is that, if turbidity or 

discharge is the surrogate variable, all the line segments must have positive slopes to produce a 

reasonable result.  If any of the segments have negative slope, and some usually do have negative 

slope near the peak, the surrogate time series for that segment will be inverted, i.e. surrogate peaks 

will be converted to SSC troughs and vice versa. 

 

 
 

Linear time-interpolation 

The one situation in which pairwise fitting is more commonly useful is when time is the surrogate 

variable.  In that case, pairwise fitting becomes linear interpolation between consecutive sample 

times.  SSC need not always move in the same direction as time, so the positive slope restriction, 

which makes sense when turbidity or discharge is the surrogate, does not apply.  As mentioned 

when surrogate variables were first discussed, if enough pumped samples were collected during a 

period of bad turbidity data, then instead of using a relationship between discharge and SSC, a 

better estimate of SSC can often be obtained simply by linear time-interpolation. 

 



 

Variance of the estimated sediment load 

The variance of the estimated sediment load is the variance of the sum of the estimated fluxes for 

all the intervals in the period being estimated.  The variance of a sum is the sum of the variances 

and covariances among the items being summed.  The covariances cannot be ignored because flux 

estimates for similar values of turbidity are highly correlated. The covariance matrix of estimated 

fluxes is derived from the covariance matrix of the regression coefficients, assuming that the 

surrogate variable for intervals to be predicted is just a set of constants (not random).   

Simple linear regression 

The derivation is not difficult for simple linear regression, but the computation is demanding 

because the dimension of the covariance matrix of estimated fluxes is N×N, where N is the number 
of intervals being predicted. The elements of this covariance matrix must be summed to obtain the 

estimated variance of the load:  

 

 2 -1( )s ′ ′=V Z X X Z  (4) 

  

where s is the residual standard error of the regression; X is the n×2 design matrix whose rows are 
(1,xi), xi is the ith sampled turbidity value; and Z is the N×2 matrix whose rows are (ktqj, ktqjxj),  qj 
and xj are the discharge and turbidity for the jth interval to be predicted, t is the length of the 

interval between instantaneous discharge readings, and k is a units conversion factor that expresses 

the load in the desired units. 

 

Log-log regression 

Variance computation is much more complicated for retransformed predictions from log-log 

regression (Gilroy et al., 1990). 

Power functions 

An approximate covariance matrix can be obtained for power functions using the delta method for 

vector-valued functions (Rice, 1994). If the power function is 1

0

bb X , where X is an N×1 vector of 
surrogate variables, the N×N covariance matrix of estimated concentrations is 
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where 0 1=( , )b b ′B  and V(B) is the coefficient covariance matrix estimated using non-linear least 

squares.  The dimensions of the first bracketed matrix is N×2, V(B) is 2×2, and the last matrix is 
2×N.  The covariance matrix of estimated fluxes also includes the discharge, time interval, and 
units conversion factor: 

 

 ( )2kt=V QCQ  (6) 

 

where Q is an N×N  diagonal matrix containing the discharges for each interval, and k and t are 
scalars defined as before. 

Loess 

The author is not aware of any methods that have been developed for estimating the covariance 

matrix for loess predictions or derived fluxes.  

Coefficient of variation 

A more intuitive way of expressing the variance of the estimated sediment load is the coefficient of 

variation, which is the standard error as a proportion or percentage of the estimated load.  The 

standard error is just the square root of the variance, so the coefficient of variation is given by 

 100
V
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where V is the sum of the elements of the matrix V defined by equation (4), or equations (5) and 

(6), above and L is the estimated sediment load defined by equation (1) above.  In the R sediment 

load procedures a slightly different version of CV is calculated for QMLE and Duan’s smearing 

estimator. Since they are both slightly biased, an estimate of mean square error from Gilroy et al. 

(1990) is substituted for V.  Mean square error is the sum of variance and the square of bias. 

Statistical criteria for selecting among models 

There are several statistical criteria available for selecting between competing models.  But no 

statistic should be used as a yardstick without considering the other factors mentioned previously in 

the sections Storm event loads and The form of the relationship.  Models that are based on different 

data sets (e.g. with or without certain data pairs) should not be selected based on a statistic.  And 

for small sample sizes, statistics are not very reliable. All other things being equal, the model that 

expresses the relationship in simplest terms should be the model chosen.  In particular, models with 

too many parameters will tend to have greater prediction error.  

Coefficient of determination (r
2
) 

The coefficient of determination, r
2
, is an expression of the shape of a scatterplot.  It is the squared 

correlation of predicted and observed values and can be interpreted as the proportion of total 

variance of y that is explained by x, a value always between 0 and 1.  r
2
 depends strongly on the 

range of the data sampled.  If the range of x is very small, on the order of the residual standard 

error, then r
2
 will be close to 0.  If the range of x is much larger than the residual standard error, 

even due to one extreme value, then r
2
 will be close to 1.  r

2
 can be heavily influenced by a few 

points, so it is best to not to use r
2
 if the values of x are not evenly distributed.  Because r

2
 is 



unitless, it is possible to compare r
2
 between transformed and untransformed regressions.  It is 

available from loess as well as linear and non-linear regression models. 

Residual standard error (s) 

Residual standard error is an expression of the average deviation of points from the regression line.  

It is expressed in the same units as the y measurement, therefore it cannot be used to compare 

regressions on transformed and untransformed data.  It is available from loess as well as linear and 

non-linear regression models. 

Coefficient of the variation of the estimated load (CV) 

Coefficient of variation is a good yardstick for comparing loads estimated by transformed and/or 

untransformed linear regression, but may not be available for models other than linear regression.  

For small sample sizes, CV may be a poor error estimate, and is likely to be the least reliable of the 

criteria mentioned here.  

 

Other statistics 

There are other statistical criteria for selecting among competing regression models that are beyond 

the scope of this report.  These include PRESS (prediction residual sum of squares), Mallows’ Cp , 

and Akaike’s information criterion (AIC).  In recent years, various versions of AIC have become 

widely accepted for selecting models (with the same response) that have differing numbers of 

parameters. A corrected AIC has been formulated for loess models (Hurvich et al., 1998).  

Subjective quality criterion 

There are many considerations that determine the quality of a sediment load estimate determined 

using the methods described in this report.  The following factors can be used to qualitatively rate a 

sediment load estimate. 

   

A. Sediment sample coverage 
1. How many samples were collected?   

a. For a simple turbidigraph with one peak and no spikes, need at least 4 samples, 
and more is better. 

b. Extra samples are desirable for complex turbidigraphs with multiple peaks or 
spikes.  We’d like to have at least 2-3 samples for each additional extended peak 

and one sample for each spike.  

2. Are there samples covering the whole range of turbidity for the storm?  If the range of 
samples is too small, the regression slope will be unreliable, and extrapolation errors are 

likely.  If the range or number of samples is too small, samples from a neighboring 

storm event should be considered for inclusion. 

3. Are samples well-distributed temporally? 
a. Were samples collected near the start, peak, and end of the storm? 
b. Are there any extended periods with no samples? 

4. If there were periods of bad or questionable turbidity, were samples collected during 
those times?  These are needed to validate the turbidity and to permit time-interpolation 

if they show that the turbidity was bad. 

B. Relationship of SSC to turbidity 



1. What is the variance about the regression line?  Note well: low variance doesn’t mean a 
thing if you have only 2 data points or if one end of the regression line is based on a 

single point. 

2. What is the coefficient of variation (CV) of the estimated load?  This expresses the error 
of the estimate as a percentage. As with regression variance, if the sample coverage is 

poor this measure is meaningless. 

3. Can the relation be expressed by a single regression?  For a given data set, using more 
relationships divides the data into smaller groups, so there is greater uncertainty about 

each relationship. 

4. Can the relation be expressed as a simple linear regression?  Curvilinear fits are more 
susceptible to extrapolation error and require more data for support. 

C. Quality of recorded turbidity 
D. Quality of pumped samples 

1. Were the volumes too low or too high?   
2. Are there known problems in the transport or processing of the samples? 
3. Were there any conditions (e.g. particle sizes, stream velocity, freezing conditions, 

pumping sampler problems) that might have compromised the quality or 

representativeness of pumped samples? 
 



Procedures For Developing TTS Sediment Loads in R 

Overview 

  

1. Enter laboratory data into the stnhy.isc file, where stn is the 3-letter station name and hy is the 
2-digit water year.  File it in the proper locations as per the TTS Adjuster manual and help file.  

Double check for data entry errors. 

2. Clean up stage and turbidity data using TTS Adjuster.  This creates the stnhy.flo file. 
3. Define the storms for which you want to estimate loads. 
4. The rest is done in R. 
5. Read the corrected data for one water year from the stnhy.flo file using read.flo, and from the 

stnhy.isc file using read.lab.  Save the results in R objects named stnhy.flo and stnhy.lab. 

6. Check for unmatched samples in both the electronic data and lab data using mismatches. 

7. Merge the electronic data with each sediment sample using merge.flo to create an R object 

named stnhy.sed.  

8. Plot concentration vs turbidity for a storm event (turbsscplot). 
9. If turbidity is good for the whole storm, and if SSC vs. turbidity is linear, then 

a. Use turbsrc to estimate the load. 
b. Save the results as an R object named however you like. 
c. Plot the results with ttsplot. 

10. If turbidity is good for whole storm but some predicted concentrations are negative or the 
relationship between SSC and turbidity is nonlinear or inconsistent, choose between the 

following alternative methods for estimating SSC from turbidity. 

a. Use turbsrc with type=”logxy” to avoid negative predictions.  Zero is not permitted in the 
data.  CV is calculated.  

b. Use turbsrc with type=”sqrt” to avoid negative predictions.  Zero is permitted in the data.  
CV is not calculated. 

c. Use turbsrc with type=”power” option to fit a power function by non-linear least squares 
(similar to type=”logxy” but no bias-correction is needed and calculations are simpler and 

faster).  CV is approximated using the delta method. 

d. Use turbsrc with type=”loess” to fit a nonparametric loess model (locally weighted 
regression).  Calculation of CV awaits further study and may not be possible. 

e. Use turbsrc twice with the default linear regression, if there are 2 different linear relations. 
f. Use turbsrc with type=”pairs” if there is nonlinear hysteresis present and all pairs have 

positive slope.  This does a piecewise fit using one pair of points at a time.  It is likely to 

overfit the data and, in practice, is not used very often.  If some pairs have a negative slope 

this method won’t work well, because for those pairs predictions will have the opposite 

shape as turbidity.  No statistics are available with this method. 

g. Use turbsrc with the type=”logx” option to try to linearize the scatter.  This option is rarely 
helpful. 

11. If turbidity is not good for whole storm, but there is a decent relationship between SSC and 
discharge for the periods when turbidity is not good, try using flowsrc to estimate loads from 

discharge for those periods.  It is perfectly analogous to turbsrc in its usage except that the 

default method is type = “logxy” instead of “linear”.  The two functions take all the same 

arguments.  Save the results as an R object named however you like.   



12. If neither turbsrc nor flowsrc does a good job of estimating SSC, you may still be able to get a 
good estimate using lineartime (linear time-interpolation between consecutive pairs) or 

cubictime (cubic spline time-interpolation).  This works well when the samples are fairly close 

together in time, which often occurs in TTS when the turbidity sensor is fouled. Save the results 

as an R object.    

13. Assign the results of each fit to an object, using the argument long=T (default) to include the 
time, predicted SSC, and (for turbsrc only) turbidity with the returned object, for use by 

ttsplot(). 

a. Pass the objects returned by turbsrc, flowsrc, lineartime, and/or cubictime as arguments 

to ttsplot to get a plot of the whole storm and the total estimated sediment load. ttsplot can 

handle up to 5 estimation periods (a maximum of two objects created by turbsrc and three 

others).  

b. If the concentration curves for two methods do not meet properly, a continuous transition 
can often be achieved by moving the boundary between the two periods forward or 

backward in time.  You can get a continuous transition whenever methods applied to 

adjacent periods intersect, and this can be determined by including overlapping time periods 

in adjacent objects.  Once the intersection, if any, has been determined, the objects should 

be recreated for non-overlapping periods that are contiguous at the intersection point.  

14. After computing the sediment load for an event, save the predicted concentrations in an object 
using tts.ssc.  Name the object stnxx.ssc or stnxxx.ssc, where stn is a 3-letter station designator, 

and xx or xxx is typically a storm number (but could be any 2 or 3 character identifying 

information).  Run write.ssc to combine and export all objects named using that convention to a 

text file.  The output will include date, time, flow, turbidity, turbidity quality, SSC, and method.  

The method identifies the surrogate used to estimate SSC: 1=turbidity, 2=discharge, 3=time.  

 

General rules for specifying function arguments 

 

To see function arguments at any time in R, use the args command (see below for examples).  The 

args command shows the order and names of arguments that a function can take.  The args 

function shows default values as argname = defaultvalue.  When evoking a function in R, 

arguments can be specified in order or by name.  If they are specified in order, the names of the 

arguments are not needed, but then to use an argument all preceding arguments must also be 

included.  If they are specified by name, any order can be used.  Often the first few arguments are 

specified in order and subsequent arguments are specified by name, for example: 
 

> turbsrc(“ftr”,99,990201,1200,990204,1200,interval=15,adj=F) 

 

In the example, the first 6 arguments are specified in order, but interval and adj are specified by 

name.  

 

Reading in the data: read.flo and read.lab 

 



read.flo reads in a comma-delimited file containing year, Campbell julian day, time, dump, bottle, 

discharge, turbidity, and turbidity code. The input file is assumed to be in the stn folder, as per TTS 

Adjuster’s file organization. Result is a data frame that you should name stnhy.flo.  

 

read.lab reads in the comma-delimited stnhy.isc file, containing dump, bottle number, and lab 

concentration  in the first 3 columns. The input file is assumed to be in the stn/rawhy subfolder, as 

per TTS Adjuster’s file organization.  Result is a data frame that you should name stnhy.lab. 
 

> args(read.flo) 

function (stn, hy, ttshome = ".") 

 

> args(read.lab) 

function (stn, hy, ttshome = ".")  

Required arguments 

 

stn  3-character string in quotes identifying the station (e.g. “nfc”) 

hy  2-digit water year 

Optional argument 

 

ttshome TTS data location in quotes, using double backslash (“\\”) as subfolder/file 

delimiter. File .RData in the TTS home directory in order to use the default. The file 

system is assumed to be that used by TTS Adjuster and described in the Adjuster 

User’s Manual. That is, the stnhy.flo file is located in a 3-letter station subfolder 

beneath ttshome, and the stnhy.isc file is located in a raw data subfolder, named 

rawhy, beneath the station subfolder. For example, ttshome = “C:\\TTS” specifies 

that EEl River 2004 data should be stored as C:\TTS\eel\eel04.flo and 

C:\TTS\eel\raw04\eel04.isc.  

 

Merging the lab and electronic data: mismatches and merge.flo 

 

mismatches checks for unmatched bottles in stnhy.flo and stnhy.lab.  The user should review the 

output to identify bottle numbering errors or data that still need to be entered.  If changes to the data 

are needed, they should be made outside of R, and the data should be read back into R using 

read.flo and/or read.lab before proceeding. 

 

merge.flo merges the data from stnhy.flo and stnhy.lab to create stnhy.sed. Result contains one 

line per pumped sample, with all pertinent info.  Result is a data frame that you should name 

stnhy.sed. 

 
> args(mismatches) 

function (stn, hy) 

 

> args(merge.flo) 

function (stn, hy, all.lab = F, all.flo = F) 



Required arguments for mismatches and merge.flo 

  

stn  3-letter station name (e.g. "yoc") 

hy  2-digit water year 

Optional arguments for merge.flo (used primarily within the mismatches function) 

 

all.lab  logical; if TRUE, then extra rows will be added to the output, one 

for each pumped sample that has no matching .flo record.  These rows will have NA 

in those columns that are usually filled with values from the .flo object.  The default 

is FALSE, so that only rows with data from both .flo and .lab are included in the 

output. 
 

all.flo  logical; analogous to all.lab above, but output includes .flo 

  records that have no matching .lab records. 
 

Scatterplot functions: turbsscplot and qsscplot 
 

turbsscplot plots SSC vs. turbidity for a specified period or any set of dumps and bottles. 

 

qsscplot plots SSC vs. discharge for a specified period or any set of dumps and bottles. 
 

> args(turbsscplot) 

function(stn, hy, sdate, stime = 0, edate, etime = 2400, dumps, bottles,  

    exclude = NULL, type = ”linear”, col = T, textsize = 0.6, span = 1, 

    degree = 1, txt = "bottle", ...) 

NULL 

> args(qsscplot) 

function(stn, hy, sdate, stime = 0, edate, etime = 2400, dumps, bottles,  

    exclude = NULL, type = “logxy”, col = T, textsize = 0.6, span = 1, 

    degree = 1, txt = "bottle", units = "cfs", ...) 

Definitions of scatterplot functions’ required arguments 

 

stn  3-letter station name (e.g. "nfc") 

hy  2-digit water year 

sdate  start date (yymmdd), not required if dumps and bottles are specified 

edate  end date (yymmdd), not required if dumps and bottles are specified 

dumps vector of dump numbers, same length as bottles. Not required if start and end date 

are specified.  

bottles  vector of bottle numbers, same length as dumps. Overrides the date/time selection of 

samples to use in the model.  Not required if start and end date are specified. 

Definitions of scatterplot functions’ optional arguments 

 

stime start time (hhmm), defaults to 0000 

etime   end time (hhmm), defaults to 2400 



exclude  the plot excludes data with turbidity codes matching these (The NULL default 

causes nothing to be excluded)  

type character string: "linear", "logx", "logxy", “sqrt”, "power", "loess", or "pairs" 

col  logical value: whether or not to use color to identify data dumps 

textsize  relative text size for plotting txt symbols 

span     when type=”loess”, this is the smoothing parameter used (positive values usually no 

greater than 1).  Specifying “span=0” will select the span, among values from 0.5 to 

1.0, that minimizes corrected AIC (Hurvich et al., 1998).  For storm events, this 

seems to always result in span=1.0 because of the relatively small sample sizes. 

Optimization is therefore most useful for annual data sets. 

degree when type=”loess”, this is the degree of the local regression (1 or 2). 

txt name of column in sediment data frame to use as plotting symbol for samples 

(usually “bottle” or “dump”) 

units    discharge units in input (sed) object.  default is “cfs” (ft
3
/sec).  The alternative is 

“cumecs” (m
3
/sec) (qsscplot only) 

...      other graphical parameters that are passed through to plot().  Use help(par) for 

more information about graphical parameters.  

 

Prediction functions: turbsrc, flowsrc, lineartime, and cubictime 

 

turbsrc fits a turbidity/SSC rating curve to samples from any specified time period and uses the 

curve to predict SSC from turbidity.  Can fit a linear function (type=”linear”), linear function to 

log(x) (type=”logx”), linear function to log(x) and log(y) (type=”logxy”), linear function to sqrt(x) 

and sqrt(y) (type=”sqrt”), power function fitted by non-linear least squares (type=”power”), loess 

model (type=”loess”), or pairwise linear functions (type=”pairs”, see below). If only one set of 

dates and times are given it uses samples from the period being estimated.  If two sets of dates and 

times are given, samples from the second period are used to fit a curve that is applied to the first 

period.  Or dumps and bottles can be specified by number for the rating curve. 

 

turbsrc(type=”pairs”) requires a little more explanation.  It fits pairwise line segments, SSC as a 

function of turbidity, using approx (a built-in Splus function), to consecutive pairs of samples.  

Will not extrapolate however beyond the range of 2 samples before and after the point being 

estimated.  Below the minimum turbidity represented by the pumped samples, it extrapolates using 

a line segment to (0,0) at the lower end, unless opt=2, in which case it extrapolates using a simple 

linear regression based on all samples in the specified period.  Above the maximum turbidity in the 

set of pumped samples, extrapolation always uses the regression based on all samples.  This 

method can be used to model hysteresis, but performs poorly unless the loop is smooth and all 

pairwise segments have positive slopes.  It can invert peaks if these conditions are not met.  

Therefore it is not commonly used. 

 

flowsrc is exactly analogous to turbsrc in its usage, except the predictor of SSC is discharge 

instead of turbidity, and the default type is “logxy” instead of “linear”. 
 

lineartime interpolates SSC linearly between samples.  Specify ssc1 for the starting SSC if there is 

no sample at the start time and ssc2 for the ending SSC if there is no sample at the end time. You 



can get the start and end SSC of an adjacent modeled segment, by using the endpoints function, 

e.g. endpoints(tts1) gives the predicted SSC at the start and end of the period represented by the 

object tts1. 

 

cubictime interpolates SSC using a natural cubic interpolating spline between samples.  Otherwise 

it works just like lineartime. 

 

Note: The prediction functions have similar arguments to the scatterplot functions, so once you 

have settled on an appropriate model, the argument list can often be copied verbatim from a 

scatterplot function to the corresponding prediction function. 
 

> args(turbsrc) 

function(stn, hy, sdate1, stime1, edate1, etime1, sdate2 = sdate1, stime2 =  

 stime1, edate2 = edate1, etime2 = etime1, dumps, bottles, interval = 10, 

 exclude = NULL, long = T, adj = F, var = T, type = "linear", bias 

  = "mvue", units = "cfs", span = 1, degree = 1) 

 

> args(flowsrc) 

function(stn, hy, sdate1, stime1, edate1, etime1, sdate2 = sdate1, stime2 =  

 stime1, edate2 = edate1, etime2 = etime1, dumps, bottles, interval = 10, 

 exclude = NULL, long = T, adj = F, var = T, type = "linear", bias 

  = "mvue", units = "cfs", span = 1, degree = 1) 

 

> args(lineartime) 

function(stn, hy, sdate, stime, edate, etime, interval = 10, ssc1 = 0, ssc2 = 0, 

 long = T, adj = F, units = “cfs”) 

 

> args(cubictime) 

function(stn, hy, sdate, stime, edate, etime, interval = 10, ssc1 = 0, ssc2 = 0, 

 long = T, adj = F, units = “cfs”) 

 

Definitions of prediction functions’ required arguments 

 

stn 3-letter station name (e.g. "nfc") 

hy 2-digit water year 

sdate start date (yymmdd) 

stime start time (hhmm) 

edate end date (yymmdd) 

etime    end time (hhmm) 

(If 2 sets of start and end dates are given, the first is the period estimated and the second is the 

period defining the samples to use in the model) 

Definitions of prediction functions’ optional arguments 

 

interval data logger interval in minutes (default=10) 

dumps vector of dump numbers, same length as bottles  

bottles  vector of bottle numbers, same length as dumps. Overrides the date/time selection of 

samples to use in the model 



exclude vector of turbidity codes flagging data to be omitted from prediction model.  The 

default (NULL) omits nothing. 

long logical value (T or F), indicates long output if T, short if F 

adj logical value (T or F), indicates whether to adjust SSC to cross-section mean.  If T, 

then a data frame called discoef must be present.  See bottom of this document for a 

description of discoef. 

var logical value (T or F), indicates whether to compute variance (turbsrc and flowsrc 

only).  If estimating a record of more than a few days using log-transformed 

regression and bias-correction method “mvue” (see bias argument above), variance 

computations are very tedious and may appear to hang the computer.  To proceed 

without computing variance, specify var = F, or try using bias = “duan” or bias = 

“qmle”.  There are no variance calculations for type = “sqrt” or type = “loess” in 

the current implementation.  For loess models, I am not aware of an accepted 

computational method for covariance of predictions. 

type character string: "linear", "logx", "logxy", "sqrt",  "power", "loess", or "pairs" 

bias "mvue" (default), "qmle", or "duan" specifies bias-correction method when 

type=”logxy”.  “mvue” is the minimum-variance unbiased estimate, hence is 

preferred but is computationally more demanding.  “qmle” is the more easily 

computed and well-known quasi-maximum likelihood estimate.  “duan” specifies 

Duan’s non-parametric smearing estimate.  All three estimates have similar mean 

squared error, but only MVUE is unbiased.  Duan’s estimate may be preferred in 

some instances because it makes no assumptions about normality of residuals.  See 

Gilroy et al. (1990) for brutal details.  Duan’s smearing correction is the only bias 

correction option for type=”sqrt”, in which case no bias argument is needed. 

units input discharge units.  default is “cfs” (ft
3
/sec), alternative is “cumecs” (m

3
/sec).  

(Output will always be in metric) 

ssc1 starting SSC for lineartime and cubictime functions (default = 0) 

ssc2 ending SSC for lineartime and cubictime functions (default = 0) 

span when type=”loess”, this is the smoothing parameter used (positive values usually no 

greater than 1). 

degree when type=”loess”, this is the degree of the local regression (1 or 2).  For TTS 

applications, degree = 1 is recommended. 

 

 

Summary stats: total, tts.tot, msc.tot, and sum.tot 
 

total replaces the old functions tts.tot, msc.tot, and sum.tot, but places no restrictions on the 

names of the objects. The old functions do still work however. 

 

tts.tot may be used when objects are named tts1, tts2, etc. 

 

msc.tot may be used when objects are named msc1, msc2, etc. 

 

sum.tot may be used when mixtures of the above objects are present. 



Examples of summary stats on objects produced by prediction functions 

 

total(obj1, obj2, obj3) would summarize the objects obj1, obj2, and obj3.  

tts.tot(1:2) would summarize objects tts1 and tts2 

msc.tot(1:3) would summarize msc1, msc2, and msc3 

sum.tot(tts=1:2, msc=1:3) would summarize all of the above 

sum.tot(msc=1:3) is equivalent to msc.tot(1:3) 

 

Summary plots: ttsplot 

  

> args(ttsplot) 

function(stn, hy, ..., stagetics = seq(0, 4, 0.1), adj = F, number = T, 

 units = “cfs”, split = 0.35) 

Definitions of ttsplot required arguments 

 

stn 3-letter station name (e.g. "nfc") 

hy 2-digit water year 

... One or more objects created by turbsrc, flowsrc, lineartime, and cubictime, but no 

more than two objects produced by turbsrc, and no more than three produced by 

flowsrc, lineartime, and cubictime.  Multiple objects are delimited by commas. 

Definitions of ttsplot optional arguments 

 

adj logical value (T or F), indicates whether to adjust SSC to cross-section average.  If 

T, looks for an object called discoef containing regression coefficients for each 

station 

number logical value (T or F) denoting whether to plot sediment samples using sample 

number (T) or a solid circle (F) 

units input discharge units: "cfs"=ft
3
/sec or "cumecs"=m

3
/sec. Discharge will be 

converted to metric if input is “cfs”. 

split the proportion of the figure region that will be devoted to the discharge hydrograph. 

 

Functions to save results and export to text file: tts.ssc and write.ssc 

 

tts.ssc saves an object containing data and time, concentration, and sediment surrogate (turbidity = 

1, discharge = 2, time = 3).  You should save the result as stn...ssc or stn....ssc, where stn is the 3-

letter station name and “.” represents any character.  For example, the first two dots could represent 

a storm number (e.g. cas09.ssc) 

 

write.ssc searches for all objects named stn...ssc or stn....ssc, where stn is the 3-letter station name 

and “.” represents any character.  For example, the first two dots could represent a storm number 

(e.g. cas09.ssc).  These objects, presumably created by tts.ssc, are then appended together and 



sorted.  write.ssc then looks up the discharge, turbidity and turbidity code in stnhy.flo, and merges 

that information with all the rest.  The output file is a text file containing date, time, flow, turbidity, 

turbidity code, SSC, and method.  The method identifies the surrogate used to estimate SSC: 

1=turbidity (from turbsrc), 2=discharge (from flowsrc), 3=time (from lineartime or cubictime).  
 
> args(tts.ssc)  

function(...) 

Required arguments 

...         One or more objects created by turbsrc, flowsrc, lineartime, and 

            cubictime. These are the same objects passed to functions ttsplot 

            and total.  Multiple objects must be delimited by commas. 

 

> args(write.ssc) 

function (file, stn, hy, path = “.”) 

Required arguments 

 

file Name of output file 

stn 3-letter station name 

hy 2-digit water year (needed to find flo object) 

Optional arguments 

 

path location on system where output file is to be written. Default is same location as 

.RData 

 

Cross-section coefficients (discoef) 

 

discoef is a an optional data frame that must be present in the working directory if you want to have 

concentrations adjusted to a cross-sectional mean value.  The coefficients are presumably from a 

regression of point SSC versus cross-sectionally and vertically integrated SSC.  The format of 

discoef is as follows: 
 

     n      a      b  max 

ARF  0 0.0000 1.0000   NA 

CAR 39 0.5313 0.9268  450 

DOL 53 0.2547 0.9592 2000 

EAG 47 0.3101 0.9645 2000 

FTR  0 0.0000 1.0000   NA 

HEN 46 0.2663 0.9819  900 

IVE  0 0.0000 1.0000   NA 

MUN  0 0.0000 1.0000   NA 

NFC 55 0.2624 0.9424  800 

 

The first column contains the row names of the data frame and must consist of the first 2 characters 

of each station name.  The column names are n, a, and b.  The n column contains the number of 

data points in the regression and is not required.  The a and b columns are the cross-section 



coefficients.  max should normally be the highest point SSC represented in the regression.  For 

point SSC less than max, the adjustment is computed as follows: 
 

y = e
a
x
b
 

 

where y is the adjusted SSC and x is the laboratory SSC.  The constant a is assumed to include a 

bias correction, if needed (i.e. if the coefficients were computed by log-log regression, ln(y) = b0 + 

b1ln(x), then a = b0 + 0.5*s
2
  and b = b1, where s is the residual standard error from the regression). 

 

For point SSC higher than max, extrapolation error may become large as the predicted y diverges 

from x. Therefore, for extrapolation above max, the adjustment is computed as: 

 

y = (e
a
x)max

b-1 

 

This modification changes the regression line to a slope of 1, parallel to the line y=x, above the 

point where x = max.   The modification for extrapolations has been implemented for load 

estimation under R 2.2.0, but has not been implemented in procedures for R 1.3.0. 

 

Customization 

 

It may be useful to customize the default file locations in read.flo, read.lab, 

and write.ssc.  To do so, run fix(funcname) at the R command line, where 

funcname is the name of one of the functions; then modify the argument list in 

NotePad, save and exit.  Finally, save workspace from the R file menu, or quit 

and save when prompted. 

 

Add your discharge rating equations to the function called qcalc.  This is not 

critical.  Its only use is in placing stage tick marks on the right-hand axis of 

the hydrograph produced by ttsplot.  Modify the existing function using 

fix(qcalc).  Save and exit NotePad, then save workspace. 
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