

Chemical And Biological Measures of Sediment Quality In The Central Coast Region

Final Report

California State Water Resources Control Board Division of Water Quality Bay Protection and Toxic Cleanup Program

California Regional Water Quality Control Board Central Coast Region

California Department of Fish and Game Marine Pollution Studies Laboratory

University of California, Santa Cruz Institute of Marine Sciences

San Jose State University Moss Landing Marine Laboratories

> October 1998 New Series No. 5

CHEMICAL AND BIOLOGICAL MEASURES OF SEDIMENT QUALITY IN THE CENTRAL COAST REGION

FINAL REPORT

October 31, 1998

California State Water Resources Control Board Central Coast Regional Water Quality Control Board California Department of Fish and Game

Moss Landing Marine Laboratories

University of California Santa Cruz

AUTHORS

James Downing, Russell Fairey, Cassandra Roberts, Eli Landrau and Ross Clark San Jose State University/Moss Landing Marine Laboratories

John Hunt, Brian Anderson and Bryn Phillips University of California Santa Cruz

Craig J. Wilson, Fred LaCaro, and Gita Kapahi California State Water Resources Control Board

Karen Worcester Central Coast Regional Water Quality Control Board

Mark Stephenson and Max Puckett California Department of Fish and Game

EXECUTIVE SUMMARY

This report describes and evaluates chemical and biological data collected from water bodies in the Central Coast Region between August, 1992 and May, 1997. The study was conducted as part of the ongoing Bay Protection and Toxic Cleanup Program, a legislatively mandated program designed to assess the degree of chemical pollution and associated biological effects in California's bays, estuaries and harbors. The workplan for this study was synthesized by the State Water Resources Control Board. Monitoring and reporting aspects of the study were conducted by the Oil Spill Prevention and Response Division of the California Department of Fish and Game and its subcontractors.

The study objectives were:

1. Determine presence or absence of statistically significant toxicity effects in representative areas of water bodies in the Central Coast region;

2. Determine relative degree or severity of observed effects, and distinguish more severely impacted sediments from less severely impacted sediments;

3. Determine relationships between pollutants and measures of effects in these water bodies.

This study involved chemical analysis of sediments, and toxicity testing of sediments and sediment pore water. Other analyses added as required included benthic community analysis, water column toxicity tests, semipermeable membrane devices for measuring water-borne organic pollutants, fish tissue analysis, and field water quality analyses. Chemical analyses and bioassays were performed using aliquots of homogenized sediment samples collected at each station. Benthic community analysis was done on a subset of stations chosen for specific evaluation of the residual effects of a lead slag heap in Monterey Harbor. Water column toxicity, semipermiable membrane device (SPMD) tests and field water quality analyses were employed in a pilot watershed study in the Tembladero drainage.

Eighty seven samples from 53 stations were collected between August, 1992 and May, 1997. Areas sampled included Morro Bay, Elkhorn Slough and its tributaries, Monterey Harbor, and coastal river and stream estuaries from Carpinteria Marsh in the south to Scott Creek in the north. These areas are collectively termed "the Central Coast Region" in the following document.

Chemical pollution was identified using comparisons to established sediment quality guidelines. Two sets of guidelines were used: the Effects Range-Low (ERL)/Effects Range-Median (ERM) guidelines developed by the National Oceanic and Atmospheric Administration (NOAA) (Long and Morgan, 1990; Long *et al.*, 1995) and the Threshold Effects Level (TEL)/Probable Effects Level (PEL) guidelines used in Florida (McDonald, 1992; McDonald, 1994a,b). Total chlordane, dieldrin, and PAHs were most often found to exceed critical ERM or PEL values and were considered the major chemicals or chemical groups of concern in the Central Coast Region. Chromium and nickel also frequently exceeded ERM or PEL values but due to their likely geologic sources, were not considered primary chemicals of concern. DDT was also found commonly but in quantities for which confidence in the likelihood of biological effect is low.

Any station with exceedances of ERM or PEL values was considered to have elevated chemical content. Chemical summary quotients were used as indices for addressing the pollution of sediments with multiple chemicals and to compare relative levels to other stations within the program. The quotients incorporate degree of chemical pollution with number of chemicals found. This technique allows stations with many chemicals not in exceedance of guideline values to be considered alongside those with smaller numbers of chemical constituents which do exceed guideline values. Although this value may have several interpretive variables and does not necessarily imply biological significance, it is a useful comparative tool within the region and program. Stations with quotient values in the top 10% for the region were considered to have elevated chemistry. Twenty one stations had sufficiently complete chemistry datasets to calculate quotient values.

Toxicity was defined as a value significantly different from control values and less than the minimum significant difference (MSD). The MSD proved to be a useful tool to compare the typical variability of the toxicity test method to the difference between the sample and control effects. A positive toxic response was measured from 53 of the 83 samples taken in the region. Of the 53 toxic responses, 23 had concurrent chemical measurements in excess of established sediment quality guidelines (ERM or PEL).

Multiple regression analyses failed to reveal strong relationships between amphipod survival and chemical and physical factors. Since variances for this type of data are characteristically high, more replication is needed to see relationships among the many variables.

Special studies in the Monterey Harbor and Tembladero watershed were used to address specific water quality questions related to each area. The Monterey Lead study used a directed sampling approach to identify any remaining lead gradient in sediments near the site of removal of a lead slag heap. Measured lead levels did not exceed guideline values at any of the stations sampled, but were among the highest measured program-wide. Physical factors may confound the results, however. Low percent fines at all of the Monterey Harbor sites suggest that the area is dynamic and that smaller particles to which metals tend to adsorb may be suspended long enough to be transported away. While this process may benefit benthic invertebrates in the local area, the potential for bioaccumulation in filter feeders still exists. Benthic community analysis was run on the four Monterey Lead samples, but the results were inconclusive. Urchin larval development was inhibited at the closest site to the slag heap, but no toxicity tests were done at the other sites. PAHs were measured in excess of the PEL at the site closest to the slag heap also, so other sources of toxicity cannot be ruled out.

The Tembladero watershed was the focus of a pilot watershed study prompted by regular measurement of high levels of pesticides in sediment and bivalve tissue at Sandholdt Bridge in Moss Landing Harbor. The station is the mouth of the Tembladero slough which drains a largely agricultural watershed. The study tested sediment for pesticides, PAHs, and toxicity, water for toxicity and general water quality parameters (nitrate, phosphate, dissolved oxygen, pH), and

iv

used semipermiable membrane devices to test bioaccumulation potential. Stations were selected near confluences to characterize subdrainages.

All but one station in the watershed had pesticide levels exceeding ERM guideline values. The highest chemical values in sediment were found at the furthest upstream station, as well as the strongest toxic response. Since this station is located just downstream of the city of Salinas, but drains a fairly large agricultural area identification of sources will require further upstream sampling. Samples taken from the subdrainages of the Tembladero slough also showed high levels of pesticides and strong toxic response, indicating multiple inputs of pollutants to the system.

Stations were grouped together by their completeness of information and by chemical and toxicity test results. Specific criteria for grouping were: the incidence of repeat toxicity (defined as significant toxicity in any test on separate sampling dates), and elevated chemistry (defined as any sediment chemistry measurement above guideline values, above the 90th percentile program wide, having a chemical summary quotient in the 90th percentile in the region, or a chemical level judged high enough by best professional judgement to cause biological effect). Stations with no repeat samples were grouped according to the number and degree of chemical guideline exceedances and results of toxicity tests from the single visit.

Other areas of interest included those for which more information is needed to characterize either chemical pollutants or toxic response. Sediment from Santa Maria River Estuary was toxic to amphipods and had the highest DDT value measured in the region. Confirming data are unavailable. Boat harbors in the region (Santa Cruz Yacht Basin, Monterey Harbor) tended to show exceedances of various chemicals, especially PAHs. Santa Cruz Yacht Basin, however also showed high levels of some metals, PCBs, and chlordane.

BPTCP data from the Central Coast Region present many challenges in interpretation due not only ecological differences between sites, but to the programmatic constraints placed on sampling and analysis. Completion of the dataset for sites such as Santa Maria River Estuary, Salinas River Lagoon, Santa Barbara Harbor, and sites in Morro Bay could be of great benefit. Confirming data need to be obtained from many sites to determine temporal and spatial patterns. Many river and stream mouths along the Regions coastline were not sampled at all. Sampling cleaner sites could help establish benchmarks to aid in the determination of the degree of degradation of more impacted stations. Such confirmation efforts should include other types of biological measures such as bioaccumulation and/or benthic community analysis to aid in a weight of evidence determination of the effects of pollution.

Sites of concern are present in all types of habitats. Boat harbors in Santa Cruz, Moss Landing, Monterey, and Morro Bay all had pollutant and toxic effects measured. The Tembladero drainage study is a particularly effective illustration of the need to investigate the distribution of pollutants in watersheds in the region. Significant potential for water quality improvement exists from the application of more complete sampling, analytical and management efforts.

ACKNOWLEDGMENTS

This study was conducted through the efforts of the following institutions and individuals:

State Water Resources Control Board- Division of Water Quality Bay Protection and Toxic Cleanup Program

Craig Wilson Mike Reid Fred LaCaro Syed Ali Gita Kapahi

Regional Water Quality Control Board- Region 3

Karen Worcester

Michael Thomas

California Department of Fish and Game Oil Spill Prevention and Response Division

Mark Stephenson	Max Puckett	Gary Ichikawa
Kim Paulson	Jon Goetzl	Mark Pranger

San Jose State University- Moss Landing Marine Laboratories

Sample Collection, Data Analysis and Report Preparation

Russell Fairey	Cassandra Roberts	James Downing
Ross Clark	Stewart Lamerdin	Michele Jacobi
Brenda Konar	Eli Landrau	Eric Johnson

Total Organic Carbon and Grain Size Analyses

Pat IampietroMichelle WhiteSean McDermottBill ChevalierCraig Hunter

ACKNOWLEDGMENTS (continued)

Benthic Community Analysis

John Oliver Peter Slattery Jim Oakden **Christine Elder** Carrie Bretz Nisse Goldberg

University of California at Santa Cruz

Dept. of Chemistry and Biochemistry- Trace Organics Analyses						
Ronald Tjeerdema Jon Becker Matthew Stoetling						
John Newman	Debora Holstad	Katharine Semsar				
Thomas Shyka	Linda Hannigan	Laura Zirelli				
James Derbin	Gloria J. Blondina	Raina Scott				
Dana Longo	Else Gladish-Wilson					

Institute of Marine Sciences- Toxicity Testing

Brian Anderson Bryn Phillips John Hunt Matt Englund Witold Piekarski Michelle Hester Hilary McNulty Steve Clark Kelita Smith Patty Nicely Michelle White

Shirley Tudor Steve Osborn Lisa Weetman

Funding was provided by:

State Water Resources Control Board- Division of Water Quality Bay Protection and Toxic Cleanup Program

TABLE OF CONTENTS

.

CHEMICAL AND BIOLOGICAL MEASURES	i
AUTHORS	
EXECUTIVE SUMMARY	iii
ACKNOWLEDGMENTS	. vi
TABLE OF CONTENTS	viii
LIST OF TABLES	.ix
LIST OF APPENDICES	x
LIST OF ABBREVIATIONS	. xi
UNITS	xii
INTRODUCTION	1
BPTCP Program Description and Funding Sources	1
Regional and Project Goals and Objectives	2
General Description of Attributes of Region	2
Site Specific Description of Water Bodies and Stations Therein	3
METHODS	
Introduction	9
Station Selection	10
Sampling design	10
Sampling Methods	
Trace Metal Analysis of Sediments, Tissue, and Water	
Trace Organic Analysis of Sediments (PCBs, Pesticides, and PAHs)	20
Total Organic Carbon Analysis of Sediments	25
Grain Size Analysis of Sediments	
Toxicity Testing	27
Statistical Analyses	37
Chemical Specific Screening Values	37
Chemical Comparisons	
Quality Assurance/Quality Control	
RESULTS & DISCUSSION	41
Chemistry Results	
Toxicity Results	
Statistical Relationships	
SPECIAL STUDIES	
Monterey Lead Study	
Tembladero Drainage Pilot Watershed Study	
Station Grouping	
Discussion of Selected Stations and Recommendations	
Regional Considerations and Conclusions	76
Study Limitations	76

LIST OF FIGURES

Figure 1a-d. Central Coast (Region 3) Study Area	5
Figure 2. Number of samples exceeding guideline values*	.41
Figure 3a-c. Chlordane in sediments.	.45
Figure 4. Dieldrin in Sediments	
Figure 5. PAHs in Sediments.	.49
Figure 6a-c. Amphipod toxicity	
Figure 7. Pesticides in SPMD Extracts	

LIST OF TABLES

Ē

Table 1. Summary of Analyses	. 12
Table 2a. Dry Weight Trace Metal Method Detection Limits*	
Table 3. AVS/SEM Analytes and Method Detection Limits	.20
Table 4a Dry Weight Method Detection Limits of Chlorinated Pesticides	.21
Table 5. Unionized Ammonia and H2S effects Thresholds for BPTC Toxicity Test Protocols.	.36
Table 6. Ninetieth percentile MSD values used to define sample toxicity	.37
Table 7. Comparison of NOAA and the state of Florida sediment screening levels	.39
Table 8. Chemical Summary Quotient Values	. 51
Table 9. Multiple regression; Amphipod survival on chemical and physical variables	. 53
Table 10. Summary of Toxicity Results	. 54
Table 11. SEM/AVS	. 68
Table 12a. Sediment TIE for Echaustorius (Station 30007)	. 68
Table 13. Nitrate, Phosphate, and Field Water Quality Measurements	
Table 14. Station Groupings	

LIST OF APPENDICES

Appendix A Database Description

Appendix B Sampling Data

Appendix C Analytical Chemistry Data

Section I Trace Metal Analysis of Sediment

Section II Trace Metal Analysis of Pore water

Section III AVS/SEM

Section IV Pesticide Analysis of Sediment

Section V PCB and Aroclor Analysis of Sediment

Section VI PAH Analysis of Sediment

Section VII Sediment Chemistry Summations and Quotients

Section VIII Pesticide Analysis of Tissue

Section IX PCB and Aroclor Analysis of Tissue

Section X PAH Analysis of Tissue

Toxicity Data

Section XI Pesticides in SPMDs

Appendix D Grain Size and Total Organic Carbon

Appendix E

Section I Rhepoxynius abronius Solid Phase Survival

Section II Eohaustorius estuarius Solid Phase Survival

Section III Haliotis rufescens Larval Shell Development in Subsurface Water

Section IV Haliotis rufescens Larval Shell Development in Pore water

Section V Strongylocentrotus purpuratus Fertilization in Pore water

Section VI Strongylocentrotus purpuratus Development in Pore water

Section VII Strongylocentrotus purpuratus Development for Sediment/Water Interface

Section VIII Mytilus sp. Larval development in Subsurface Water

Section IX Mytilus sp. Larval development in Pore water

Section X Neanthes arenaceodentata Solid Phase Survival and Growth Weight Change

Section XI Ceriodaphnia dubia Subsurface Water Survival

Section XII Hyalella azteca solid Phase Survival

Section XIII Holmesimysis costata Subsurface Water Survival

Appendix F Benthic Community Analysis Data

LIST OF ABBREVIATIONS

.

AA	Atomic Absorption
ASTM	American Society for Testing Materials
AVS	Acid Volatile Sulfide
BPTCP	Bay Protection and Toxic Cleanup Program
CDF	Cumulative Distribution Frequencies
CDFG	California Department of Fish and Game
CH	Chlorinated Hydrocarbon
COC	Chain of Custody
COR	Chain of Records
EDTA	Ethylenediaminetetraacetic Acid
EMAP	Environmental Monitoring and Assessment Program
ERL	Effects Range Low
ERM	Effects Range Median
ERMQ	Effects Range Median Summary Quotient
EqP	Equilibrium Partitioning Coefficient
FAAS	Flame Atomic Absorption Spectroscopy
GC/ECD	Gas Chromatograph Electron Capture Detection
GFAAS	Graphite Furnace Atomic Absorption Spectroscopy
HCl	Hydrochloric Acid
HDPE	High-density Polyethylene
HMW PAH	High Molecular Weight Polynuclear Aromatic Hydrocarbons
HNO3	Nitric Acid
HPLC/SEC	High Performance Liquid Chromatography Size Exclusion
H ₂ S	Hydrogen Sulfide
IDORG	Identification and Organizational Number
KCL	Potassium Chloride
LC50	Lethal Concentration (to 50 percent of test organisms)
LMW PAH	Low Molecular Weight Polynuclear Aromatic Hydrocarbons
LOEC	Lowest Observable Effects Concentration
MDL	Method Detection Limit
MDS	Multi-Dimensional Scaling
MLML	Moss Landing Marine Laboratories
MPSL	Marine Pollution Studies Laboratory
MSD	Minimum Significant Difference
NH3	Ammonia
NOAA	National Oceanic and Atmospheric Administration
NOEC	No Observed Effect Concentration
NS&T	National Status and Trends Program
PAH	Polynuclear Aromatic Hydrocarbons
PBO	Piperonyl Butoxide
PCB	Polychlorinated Biphenyl
PEL	Probable Effects Level
PELQ	Probable Effects Level Summary Quotient
PPE	Porous Polyethylene
	• •

xi

LIST OF ABBREVIATIONS (continued)

Polyvinyl Chloride
Quality Assurance
Quality Assurance Project Plan
Quality Control
Reference
Regional Water Quality Control Board
Simultaneously Extracted Metals
Scientific Planning and Review Committee
Solid Phase Extraction
Sediment Quality Criteria
Sodium Thiosulfate
Sediment Water Interface
State Water Resources Control Board
Temperature
Tributyltin
Threshold Effects Level
Tefzel Teflon [®]
Toxicity Identification Evaluation
Total Organic Carbon
Trace Organics Facility
University of California Santa Cruz
U.S. Environmental Protection Agency
Whole Core Squeezing

UNITS

liter = 1 l milliliter = 1 ml microliter = 1 µl gram = 1 g milligram = 1 mg microgram = 1 µg nanogram = 1 ng kilogram = 1 kg 1 part per thousand (ppt) = 1 mg/g 1 part per million (ppm) = 1 mg/kg, 1 µg/g 1 part per billion (ppb) = 1 µg/kg, 1 ng/g

INTRODUCTION

BPTCP Program Description and Funding Sources

The California Water Code, Division 7, Chapter 5.6, Section 13390 mandates the State Water Resources Control Board (SWRCB) and the Regional Water Quality Control Boards (RWQCB) to provide the maximum protection of existing and future beneficial uses of bay and estuarine waters and to plan for remedial actions at those identified toxic hot spots where the beneficial uses are being threatened by toxic pollutants. The BPTCP has four major goals: (1) provide protection of present and future beneficial uses of the bays and estuarine waters of California; (2) identify and characterize toxic hot spots; (3) plan for toxic hot spot cleanup or other remedial or mitigation actions; (4) develop prevention and control strategies for toxic pollutants that will prevent creation of new toxic hot spots or the perpetuation of existing ones within the bays and estuaries of the State.

Sediment characterization approaches currently used by the Bay Protection and Toxic Cleanup Program (BPTCP) range from chemical or toxicity assessment only, to synoptic designs which attempt to generally correlate the presence of pollutants with toxicity or benthic community degradation. Studies were designed, managed, and coordinated by the SWRCB's Bays and Estuaries Unit and the California Department of Fish and Game's (CDFG) Marine Pollution Studies Laboratory. Funding was provided by the SWRCB.

Investigations for the Central Coast Region involved toxicity testing and chemical analysis of sediments and sediment pore water. Toxicity tests were run on all samples with few exceptions. Chemical analysis was reserved for a subset of stations, usually based on results of toxicity tests. Analyses of benthic community structure were also done on a subset of stations. A pilot watershed study was also conducted to test the utility of a watershed approach to addressing downstream pollution problems. This study employed synoptic chemistry and toxicity tests of the sediment along with water toxicity and comparative chemistry using semipermeable membrane devices (SPMDs).

Field and laboratory work was accomplished under interagency agreement with, and under the direction of, the CDFG. Sample collections were performed by staff of the San Jose State University Foundation at Moss Landing Marine Laboratories, Moss Landing, CA (MLML). Trace metal analyses were performed by CDFG personnel at the trace metal facility at Moss Landing Marine Laboratories. Synthetic organic pesticides, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs) were analyzed at the University of California Santa Cruz (UCSC) trace organics analytical facility at Long Marine Laboratory in Santa Cruz, California. MLML staff also performed total organic carbon (TOC) and grain size analyses, as well as benthic community analyses. Toxicity testing was conducted by UCSC staff at the CDFG Granite Canyon toxicity testing laboratory.

1

Regional and project goals and objectives

The Goals and Objectives of the study were:

- 1. Determine presence or absence of statistically significant toxicity effects in representative areas of water bodies in the Central Coast region;
- 2. Determine relative degree or severity of observed effects, and distinguish more severely impacted sediments from less severely impacted sediments;
- 3. Determine relationships between pollutants and measures of effects in these water bodies.

General description of attributes of region

The Central Coast Region includes 378 miles of coastline. It encompasses all of Santa Cruz, San Benito, Monterey, San Luis Obispo, and Santa Barbara Counties as well as the southern third of Santa Clara County, and small portions of San Mateo, Kern, and Ventura Counties. The region has urban areas such as San Luis Obispo, Morro Bay, the Monterey Peninsula and the Santa Barbara coastal plain; prime agricultural lands in the Salinas, Santa Maria, and Lompoc Valleys; and many coastal mountain ranges. The diverse topography within the long coastline gives rise to equally diverse marine habitats. These habitats are all influenced by human activities in inland, nearshore, and marine areas.

Due to the long and varied history of human activity in the Central Coast and its surrounding waters, there is a need to assess any environmentally detrimental effects associated with those activities to insure continued beneficial uses. The BPTCP was designed to investigate these effects by evaluating the biological and chemical state of California bay and estuarine sediments, including those in the Central Coast region.

Sampling areas vary widely in many respects. A conspicuous marine floral and faunal break occurs at Point Conception, providing the most noteworthy physical and biological differences between northern and southern water bodies. Further differences are evident in the types of water bodies investigated. Stations are included in sloughs, boat harbors, bays, and estuaries of every exposure regime. Physical factors such as tidal exchange, exposure to surf, and runoff vary greatly between, and to a significant but lesser degree, within these water bodies.

Climatic and population differences are distinct between areas as well. Population centers exist on the Santa Barbara coastal plain, in the San Luis Obispo and Morro Bay areas, and all around the Monterey Bay. Northern areas receive a greater amount of rainfall and runoff than do southern areas. The interaction of rainfall and runoff with urban, industrial and agricultural land uses creates a complex set of possible impacts on the bay and estuarine environments within the region. Possible marine impacts include those related to boat traffic and maintenance, oil production, agriculture, waste and storm water, and industry. Although these differences make comparison between sites difficult, it is still possible to make recommendations about specific sites based on individual analytical results. Although few bays or estuaries in the region can be regarded as truly pristine, many areas are thought to be minimally impacted by human activities. Sites such as these were omitted from investigations in order to better direct resources toward evaluation of those areas more likely to be of concern. The focus of investigation was therefore on areas with the greatest population, industry or other potential sources of impact. A list of the selected water bodies with descriptions of the uses of each follows.

Site specific description of water bodies and stations therein

Station locations for the samples taken in the Central Coast region are shown in figures 1a-d. Sites are included in coastal lagoons, estuaries, boat harbors and bays. Nearly every type of protected and semiprotected water body is represented in the region. Study areas included Carpinteria Marsh, Santa Barbara Harbor, Goleta Slough, Cañada de la Gaviota, Santa Ynez and Santa Maria River Estuaries, San Luis Harbor, Morro Bay, Monterey Harbor, Elkhorn Slough, Moro Cojo Slough, Pajaro River Estuary, Soquel Lagoon, Santa Cruz Yacht Harbor, and Scott Creek. As a pilot watershed study, sites in the Tembladero drainage were investigated using amended and expanded BPTCP protocols.

Carpinteria Marsh stations were within the 120 acre Carpinteria Salt Marsh Reserve, managed by the University of California at Santa Barbara (UCSB). Although the marsh is protected as a research reserve, water quality may be affected by agricultural and suburban uses of the surrounding watershed. Agricultural uses include avocado orchards and commercial greenhouses. Possible sources of petroleum pollution include nearby natural oil seeps and off shore oil production from Point Conception to Ventura. The marsh is tidally influenced, except when a sand bar forms at the mouth. The bar is excavated with heavy equipment to allow year round tidal exchange. The tidal flow influences both Santa Monica and Franklin Creeks, the main inputs to the marsh.

Santa Barbara harbor is a small boat harbor, protected from exposure by a sea wall. The harbor is home port to many pleasure craft and a small fleet of commercial and fishing boats. Larger boats and boats without slips are seasonally moored outside the harbor to the southeast. Potential pollutants in any harbor of this type include antifouling paints, metals, petroleum products and solvents. Previous studies have identified copper and TBT in sediments and water at this location (Rasmussen 1995a,b).

Goleta Slough is a tidal wetland similar in many respects to Carpinteria Slough. It is bordered by the city of Goleta and UCSB. The Santa Barbara Airport, a sanitary treatment plant, and a power generation station are all located on filled areas of the marsh. Goleta Slough is an ecological reserve, supporting study and research activities by UCSB students and researchers. It includes large areas of pickleweed (*Salicornia virginica*) marsh. The south central region of the marsh is tidally influenced, and the mouth of the slough is opened periodically to allow tidal flow when the summer berm at the beach becomes high enough to restrict water movement.

Cañada de la Gaviota is a small canyon formed by Gaviota Creek. The creek creates a small lagoon behind the beach berm. The flow from the creek seasonally breaks through the berm and flows to the ocean, flushing the lagoon with fresh water and allowing sea water in at high tide.

Although the lagoon at the mouth of the creek is within Gaviota State Park, the upland area is largely agricultural and ranch land with some oil production in the hills near the creek.

At the Santa Ynez River mouth is an estuary with seasonal flow to the ocean. The river flows through part of Vandenberg Air Force Base and the town of Lompoc on its way to the ocean. Agriculture and cattle ranching are the primary activities in the sparsely populated areas surrounding the watershed.

Santa Maria River Estuary flows adjacent to the Guadalupe Oil Field near the town of Guadalupe The oil field has been the site of cleanup efforts by Unocal to remove diluent from the soil. The diluent, used to dilute the oil to a viscosity appropriate for pumping, has leaked from underground pipelines, and has occasionally entered the waters of the estuary. In addition to these potential sources, an intensive agriculture industry has existed for many years in the watershed of the river.

San Luis Harbor is located at the west side of San Luis Obispo Bay. Potential pollution in the area comes from aging petroleum storage tanks and pipelines above the town of Avila Beach. Leakage from these tanks and lines has created an underground plume of various petroleum products which has been shown to reach at least as far south as the ocean. Small commercial and pleasure boat moorings are immediately to the west.

Morro Bay has a long history as a fishing and commercial port. The southern end of the bay is a large salt marsh with extensive tidal mudflats. Morro Bay has potential impacts from maritime activities, runoff from rivers and streams, and storm water runoff from local population centers. In addition, PG&E operates a large electrical generation plant in the Bay.

Monterey Harbor has a long history as a fishing port and those activities continue today. Railroads historically carried supplies and products to and from the port. A lead slag heap from railroad activities was removed from the area in the late 1980s. The harbor has a number of storm drain outlets that drain into it from the city of Monterey. Other potential sources of pollution include those associated with boat maintenance and operation.

The areas around Moss Landing and Elkhorn Slough have been primarily agricultural for many years. The Salinas river flowed northward along the back of a dune system until 1946 when the Army Corps of Engineers opened the mouth of Elkhorn Slough and diverted the flow of the River to exit far south of its original breakout point. At that time, Elkhorn Slough became largely saline. Pesticides, including DDT, have been detected periodically in outplanted mussels at the Sandholdt Bridge location, the mouth of the old Salinas River channel (Rasmussen 1996). This tributary also drains sloughs from the watershed around the city of Salinas and surrounding croplands. The area around Elkhorn Slough has been used for agricultural concerns such as dairies and strawberry farms but contains other potential sources of pollution such as auto wrecking yards. Potential pollutant sources are past and present agriculture, urban runoff from the city of Salinas, and sources related to boat maintenance and operation. In addition, PG&E

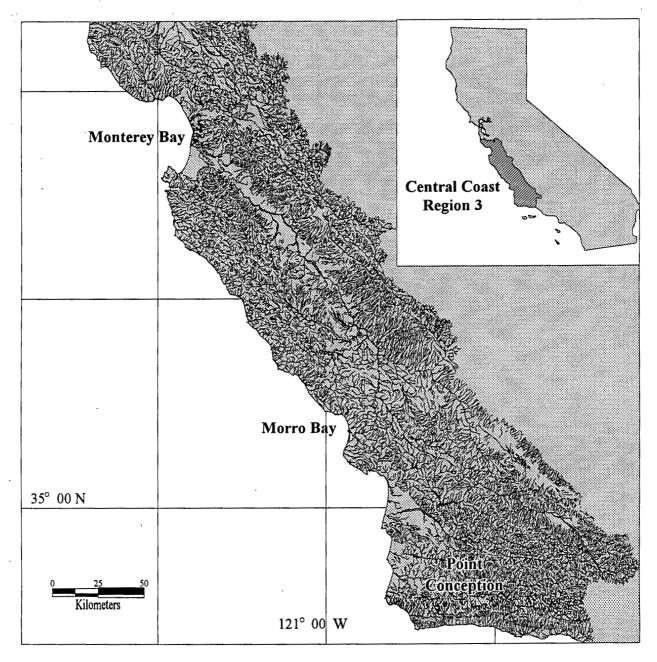


Figure 1a. Central Coast (Region 3) study area.

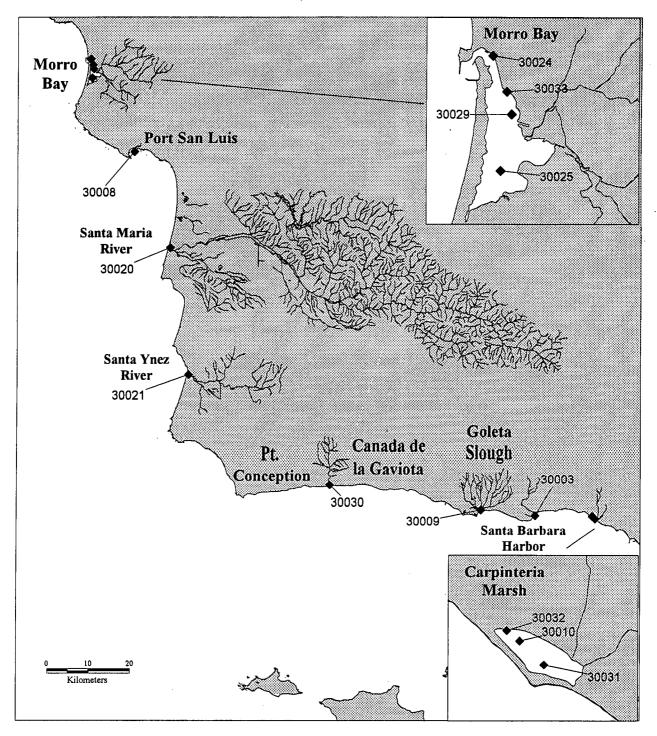


Figure 1b. Morro Bay and southern central coast sampling stations.

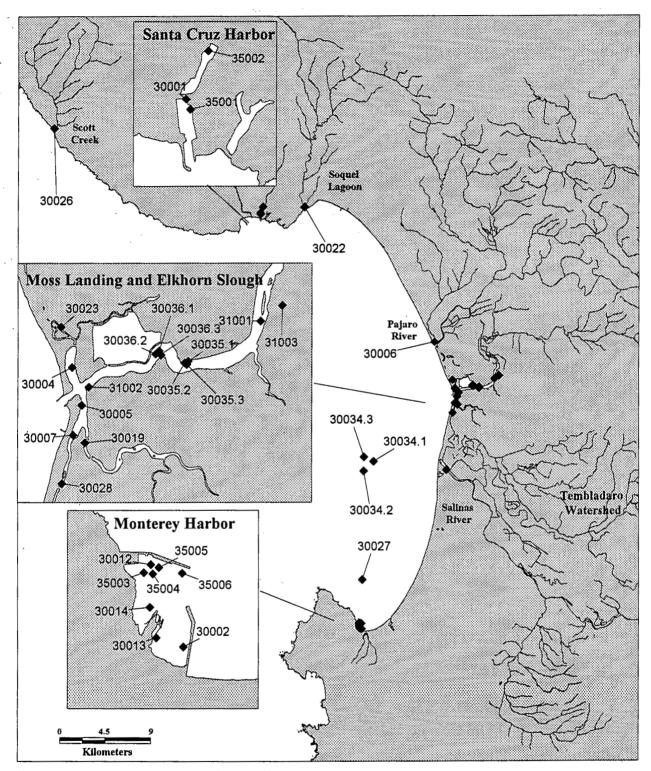


Figure 1c. Monterey Bay sampling stations.

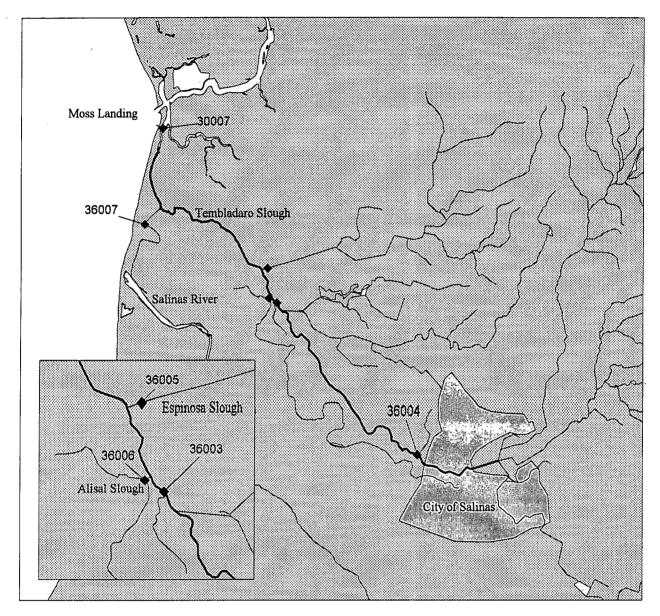


Figure 1d. Tembladaro watershed sampling stations.

operates a power plant adjacent to the harbor which is capable of using various types of fuels historically offloaded at offshore pumping stations.

The Pajaro River estuary is a seasonal lagoon that breaks through the beach berm seasonally and flows to the ocean. The river flows through the cities of Gilroy, Morgan Hill and Hollister on its way to coastal plains near the towns of Pajaro and Watsonville where heavy agriculture drains into the river. Potential sources of pollutants in the lagoon include local heavy agriculture, runoff from all of these urbanized areas and abandoned mines upstream.

Soquel lagoon is a small water body formed by the continuously flowing Soquel Creek. The creek flows through the towns of Capitola and Soquel and along a portion of The Forest of Nisene Marks State Park. A sewer outfall from the city of Soquel is located offshore of the creek mouth.

The Santa Cruz Yacht Harbor is a small boat harbor with a moderate number of commercial boats and pleasure craft. The chief potential inputs of pollutants are from operations related to these concerns. A small amount of urban runoff also enters the boat harbor during the rainy season.

North of the town of Davenport, Scott Creek creates a small lagoon at its mouth which seasonally breaks through to the ocean. The upstream area is sparsely populated with some cattle ranching, logging, and agriculture nearby.

METHODS

Introduction

The standard approach used to assess environmental impacts included sediment and interstitial water bioassays, sediment chemistry analyses and benthic community analyses. Other techniques were also used depending on the specific needs of the area under investigation. Programmatic funding limitations made it necessary to use subsets of these analyses to address potential problems in various areas. This meant that areas did not receive equal treatment with respect to the type or number of analyses performed.

Toxicity tests were generally used as a litmus test to determine whether a station warranted chemical analysis. Due to the high cost of chemical analysis, stations which produced no toxic result from standard toxicity tests usually did not receive it. This allowed a greater number of stations to be sampled with the given funding, but decreased the programs ability to determine variability in the relationship between toxicity and chemistry.

Sediment chemistry measurements were taken from 37 samples out of the total 87. Subsets of chemical analyses were done on these samples to economize, based on information already known about particular sites. The analyses ranged from a full suite of analyses including PAH, PCB, Pesticide, organometal, and trace metals, to as little as lead only, depending on the need for information at a particular station and economy.

Benthic community analysis was only done on a set of four stations in Monterey Harbor. Although the tool is considered indispensable in many regions, it was judged to have limited value in the Central Coast region due to highly variable salinity at the mostly estuarine sampling locations.

No specific modifications to the standard approach were used in Region 3 except for those necessary for special studies. These studies included the Monterey lead study and the Tembladero drainage study. The Monterey lead study was only focused on the analysis of lead contamination in and around the remediated site of a slag heap near Monterey Harbor. Because the Tembladero study made use of a watershed approach, deviations from the standard BPTCP protocols were necessary to achieve project-specific goals. Methods were added for salinity-specific applications and to accommodate analyses of water quality in freshwater environments. A summary of analyses by sample is given in Table 1.

Station Selection

Stations were selected based on results of previous studies that indicated potential anthropogenic contamination of sediments, water or tissue. Additional stations not suspected to have high levels of pollutants or significant toxicity were selected as potential reference stations for comparison purposes.

Sampling design

A directed point sampling design was required to address SWRCB's need to identify specific toxic hot spots. Stations were chosen based on previous results supplied by sources such as the State Mussel Watch Program (Rasmussen 1996). Some stations were selected for use as travel controls and reference stations for work in other regions. Since confirmation work in other regions often required replicate sampling, field replicates were also taken at the reference stations in the Central Coast Region. These reference stations were selected because they were presumed to be relatively free of pollutants and not likely to produce toxic responses in test organisms.

Areas of interest were identified and prioritized by regional and state water board staff for sampling. Station locations (latitude & longitude) were determined by agreement of the SWRCB, RWQCB, and CDFG personnel. A change in the station location during sediment collection was allowed only under the following conditions:

- 1. Lack of access to predetermined site,"
- 2. Inadequate or unusable sediment (i.e., rocks or gravel)
- 3. Unsafe conditions
- 4. Agreement of appropriate staff

This phase of work was intended to give a broad assessment of toxicity throughout the Central Coast area using various toxicity test species and endpoints. Samples were collected between August, 1992 and May, 1997. Chemical analyses were done on selected samples for which toxicity results prompted further analysis.

A total of 87 samples were collected from 53 station locations in the Central Coast Region (Figure 1a-d). Station locations sampled more than once were always resampled at the original location using navigational equipment, photographic references, and lineups. Bioassays, grain size and total organic carbon analyses were performed on all 87 samples. Chemical analysis was done according to the need for that particular station and funds available for analysis.

Sampling methods

Introduction

Specific techniques used for collecting and processing samples are described in this section. Because collection of sediments influences the results of all subsequent laboratory and data analyses, it was important that samples be collected in a consistent and conventionally acceptable manner. Field and laboratory technicians were trained to conduct a wide variety of activities using standardized protocols to ensure comparability in sample collection among crews and across geographic areas. Sampling protocols in the field followed the accepted procedures of EMAP (Weisberg *et al.* 1993), NS&T (NOAA 1991), and ASTM (1992), and included methods to avoid cross-contamination; methods to avoid contamination by the sampling activities, crew, and vessel; collection of representative samples of the target surficial sediments; careful temperature control, homogenization and subsampling; and chain of custody procedures.

Cleaning Procedures

All sampling equipment (i.e., containers, container liners, scoops, water collection bottles) was made from non-contaminating materials and was precleaned and packaged protectively prior to entering the field. Sample collection gear and samples were handled only by personnel wearing non-contaminating polyethylene gloves. All sample collection equipment (excluding the sediment grab) was cleaned by using the following sequential process: Two-day soak and wash in Micro[®] detergent, three tap-water rinses, three deionized water rinses, a three-day soak in 10% HCl, three ASTM Type II Milli-Q[®] water rinses, air dry, three petroleum ether rinses, and air dry.

All cleaning after the Micro[®] detergent step was performed in a positive pressure "clean" room to prevent airborne contaminants from contacting sample collection equipment. Air supplied to the clean room was filtered.

The sediment grab was cleaned prior to entering the field, and between sampling stations, by utilizing the following sequential steps: a vigorous Micro[®] detergent wash and scrub, a seawater rinse, a 10% HCl rinse, and a methanol rinse. The sediment grab was scrubbed with seawater between successive deployments at the same station to remove adhering sediments from contact surfaces possibly originating below the sampled layer.

Sample storage containers were cleaned in accordance with the type of analysis to be performed upon its contents. All containers were cleaned in a positive pressure "clean" room with filtered air to prevent airborne contaminants from contacting sample storage containers.

Table 1. Summary of Analyses

STANUM	IDORG	Tox Test	S	METAL	PEST	PCB	PAH	BENTH
36007.0	1768	EE,HC		sem/avs	. X	x	x	· · · · · · · · · · · · · · · · · · ·
36006.0	1767	CDSS,HA		sem/avs	x	×	х	
36005.0	1766	CDSS,HA		sem/avs	x	х	х	
36004.0	1765	CDSS,HA		sem/avs	x	x	x	
36003.0	1764	CDSS,HA		sem/avs	x	Χ.	х	
36002.0	1763	EE,HC		sem/avs	x	x	X	
30007.0	1762	EE,HC		sem/avs	x	x	X .	
30007.0	1597	EE,SPDI,MEP100			х	· x	x	
30002.0	1596	EE,SPDI			х	. X	x	
35006.0	1594	,		x (lead)				х
35005.0	1593			x (lead)				х
35004.0	1592			x (lead)				х
35003.0	1591	EE,SPDI		x (lead)	x	х	x	х
35002.0	1590	,			х	x	x	
35001.0	1589				х	X	x	
30001.0	1588	EE,SPDI			x	x	· X	
31003.0	1379	RA,NA						
31003.0	1378	RA,NA						
31003.0	1377	RA,NA						
31002.0	1376	RA,NA						
31002.0	1375	RA,NA						
31002.0	1374	RA,NA						
31001.0	1373	RA,NA						
31001.0	1372	RA,NA						
31001.0	1372	RA,NA						
30023.0	1370	RA,NA						
30023.0	1369	RA,NA						
30023.0	1368	RA,NA						
30007.0	1367	RA,NA						
30007.0	1366	RA,NA						
30007.0	1365	RA,NA						
30004.0	1364	RA,NA						
30004.0	1363	RA,NA						
30004.0	1362	RA,NA						
30032.0	1330	RA,NA					,	
30029.0	1329	RA,NA						
30008.0	1328	RA,NA						
31002.0	1327	RA,NA						
30019.0	1326	RA,NA	•					
30028.0	1325	RA,NA						
30013.0	1324	RA,NA						
30027.0	1323	RA,NA						
31002.0	675 524	RA,HRP100,SPPD100						
30033.0	534	RA,HRS100						
30032.0	533	RA, MES100						
30031.0	532	RA, MES100		x	х	x	x	
30030.0	531	EE,MES100,MEP100						
30029.0	530	RA,HRS		x	x	x	X	
30028.0	528	RA,NA,MEP		X	x	x	x	
30027.0	527	RA,NA,HRS100		x	x	х	x	
30026.0	526	EE						

12

· S	STANUM	IDORG	Tox Tests	METAL	PEST	PCB	PAH	BENTH
	30025.0	525	RA					-
	30024.0	524	RA,HRS	·· x	х	. X .	x	
	30023.0	523	RA,NA,HRS100	х	. X	x	X	
• .	30022.0	522	EE,MES100,MEP100					
	30021.0	521	EE,MES100,MEP100					
	30020.0	520	EE,MES100,MEP100	х	х	х	X	
· · ·	30019.0	519	RA,NA,HRS100,SPPD100,	х	'X '	x	х	
	30014.0	514	RA,NA,HRS100,MEP100	х	Χ.	х	х	
	30013.0	513	RA,NA,HRS100,SPPD100,	х	х	х	х	
	30012.0	512	RA,NA,HRS100,SPPD100,	х	х	х	х	
	30011.0	511	EE,MES100,MEP100					
	30010.0	510	RA,MES100					•
	30009.0	509	EE,MES100,MEP100					
	30008.0	508	RA					
	30007.0	507	RA,NA,HRS100,SPPD100	x	х	x	х	
	30006.0	506	RA,NA,HRS100,MES100,SPPD100	х	х	х	х	
	30005.0	505	RA,NA,HRS100,SPPD100	х	х	х	х	
	30004.0	504	RA,NA,HRS100,SPPD100	x	х	х	х	
	30003.0	503	RA,HRS100					
	30002.0	502	RA,NA,HRS100,SPPD100	X .	х	х	х	
	30001.0	501	RA,NA,HRS100,SPPD100	х	x	х	х	
	31003.0	451 ·	RA,SPPD100	х	х	. X	х	
	31002.0	352	RA,MES100					
	31002.0	351	RA,NA					
	31003.0	258	RA,SPPD100	х	х	x	x	
	31002.0	254	RA,NA	х	x	x	x	
	31001.0	251	RA	х	x	x	x	
	30036.3	135	RA,HRP					
	30036.2	134	RA,HRP					
	30036.1	133	RA,HRP					
	30035.3	132	RA,HRP					
	30035.2	131	RA,HRP					
	30035.1	130	RA,HRP					
	30034.3	102	RA,HRP					
	30034.2	101	RA,HRP					
	30034.1	100	RA,HRP		_			

Plastic containers (HDPE or TFE) for trace metal analysis media (sediment, archive sediment, pore water, and subsurface water) were cleaned by: a two-day $Micro^{\text{®}}$ detergent soak, three tap-, three Type II Milli-Q[®] water rinses, air dry, three petroleum ether rinses, and air dry. water rinses, three deionized water rinses, a three-day soak in 10% HCl or HNO₃, three Type II Milli-Q[®] water rinses, and air dry. Glass containers for total organic carbon, grain size or synthetic organic analysis media (sediment, archive sediment, pore water, and subsurface water) and additional teflon[®] sheeting cap-liners were cleaned by: a two-day Micro[®] detergent soak, three tap-water rinses, three deionized water rinses, a three-day soak in 10% HCl or HNO₃

Sediment Sample Collection

All sampling locations (latitude & longitude), whether altered in the field or predetermined, were verified using a Magellan NAV 5000 Global Positioning System, and recorded in the field logbook. The primary method of sediment collection was by use of a 0.1m² Young-modified Van Veen grab aboard a sampling vessel. Modifications include a non-contaminating Kynar coating which covered the grab's sample box and jaws. After the filled grab sampler was secured

on the boat rail, the sediment sample was inspected carefully. The following acceptability criteria were met prior to taking sediment samples. If a sample did not meet all the criteria, it was rejected and another sample was collected.

- 1. Grab sampler was not over-filled (i.e., the sediment surface was not pressed against the top of the grab).
- 2. Overlying water was present, indicating minimal leakage.
- 3. Overlying water was not excessively turbid, indicating minimal sample disturbance.
- 4. Sediment surface was relatively flat, indicating minimal sample disturbance.
- 5. Sediment sample was not washed out due to an obstruction in the sampler jaws.
- 6. Desired penetration depth was achieved (i.e., 10 cm).
- 7. Sample was muddy (>30% fines), not sandy or gravelly.
- 8. Sample did not include excessive shell, organic or man-made debris.

It was critical that sample contamination be avoided during sample collection. All sampling equipment (i.e., siphon hoses, scoops, containers) was made of non-contaminating material and was cleaned appropriately before use. Samples were not touched with un-gloved fingers. In addition, potential airborne contamination (e.g., from engine exhaust, cigarette smoke) was avoided. Before sub-samples from the grab sampler were taken, the overlying water was removed by slightly opening the sampler, being careful to minimize disturbance or loss of finegrained surficial sediment. Once overlying water was removed, the top 2 cm of surficial sediment was sub-sampled from the grab. Subsamples were taken using a precleaned flat bottom scoop. This device allowed a relatively large sub-sample to be taken from a consistent depth. When subsampling surficial sediments, unrepresentative material (e.g., large stones or vegetative material) was removed from the sample in the field. Small rocks and other small foreign material remained in the sample. Determination of overall sample quality was determined by the chief scientist in the field. Such removals were noted on the field data sheet. For the sediment sample, the top 2 cm was removed from the grab and placed in a pre-labeled polycarbonate container. Between grabs or cores, the sediment sample in the container was covered with a teflon sheet, and the container covered with a lid and kept cool. When a sufficient amount of sediment was collected, the sample was covered with a teflon sheet assuring no air bubbles. A second, larger teflon sheet was placed over the top of the container to ensure an air tight seal, and nitrogen was vented into the container to purge it of oxygen.

If water depth did not permit boat entrance to a site (e.g., <1 meter), divers sampled that site using sediment cores (diver cores). Cores consisted of a 10 cm diameter polycarbonate tube, 30 cm in length, including plastic end caps to aid in transport. Divers entered a study site from one end and sampled in one direction, so as to not disturb the sediment with feet or fins. Cores were taken to a depth of at least 15 cm. Sediment was extruded out of the top end of the core to the prescribed depth of 2-cm, removed with a polycarbonate spatula and deposited into a cleaned polycarbonate tub. Additional samples were taken with the same seawater rinsed core tube until the required total sample volume was attained. Diver core samples were treated the same as grab samples, with teflon sheets covering the sample and nitrogen purging. All sample acceptability criteria were met as with the grab sampler.

Benthic Sampling

Replicate benthic samples (n=3) were obtained at predetermined sites from separate deployments of the sampler. The coring device was 10 cm in diameter and 14 cm in height, enclosing a 0.0075 m^2 area. Corers were placed into sediment with minimum disruption of surface sediments, capturing essentially all surface-active fauna as well as species living deeper in the sediment. Corers were pushed about 12 cm into the sediment and retrieved by digging along one side, removing the corer and placing the intact sediment core into a PVC screening device. Sediment cores were sieved through a 0.5 mm screen and residues (e.g., organisms and remaining sediments) were rinsed into pre-labeled storage bags and preserved with a 10% formalin solution. After 3 to 4 days, samples were rinsed and transferred into 70% isopropyl alcohol and stored for future taxonomy and enumeration.

Fish Collection and Homogenization

Composites of five fish each were collected for tissue analysis. One composite of five white surfperch was collected at Sandholdt Bridge (30007). One composite each of topsmelt and shiner surfperch were collected at Pajaro River Estuary (30006).

Fish at the Pajaro River Estuary were collected for tissue analysis using 100 m beach seine with a mesh size of 0.5 in. The beach seine was stretched in a semicircle from the water's edge and then drawn to shore. Fish collected at the Sandholdt Bridge station were obtained from otter trawls approximately 200m in length at slow (2-3 kt) speeds. With either technique, all individuals of the target species were collected immediately by hand using clean polyethylene gloves. The fish were placed in a polyethylene bag for no more than one hour, until they could be prepared for transport to the lab. After measurement, the fish were wrapped individually in teflon sheets, placed in clean polyethylene bags, and frozen in the field on dry ice.

Before dissection, all fish were rinsed with MilliQ[®] water. Dissections and tissue sample preparations were done using non-contaminating techniques in a clean room environment. White surfperch (Sandholdt Bridge 30007) were filleted. Fillets of muscle tissue were removed in 5 to 10 g portions with teflon forceps. Equal weight fillets were taken from each fish of the sample to composite a total of 200 grams from five fish. Topsmelt and shiner surfperch (Pajaro River Estuary 30006) were homogenized whole (five each). All samples were polytroned to provide a homogeneous material for analysis. Sample splits were taken for each analysis after homogenization was completed.

Subsurface Water Collection

Subsurface water samples were collected in pre-cleaned polyethylene bottles. The bottles were rinsed three times with ambient water and drained. They were then submerged mouth down so that the entire bottle was submerged and allowed to fill. The bottles were then capped under water to avoid exposure to air and stored on ice.

For stations where a boat and grab were used to collect sediment, a bottle was loaded onto the grab in a polycarbonate container with an automatic cork puller and polyethylene cork installed in the top of the bottle. When the grab was tripped, the cork was pulled from the top of the bottle by the grab mechanism and the bottle was allowed to fill at depth.

Transport of Samples

Six-liter sample containers were packed (three to an ice chest) with enough ice to keep them cool for 48 hours. Each container was sealed in precleaned large plastic bags closed with a cable tie to prevent contact with other samples or ice or water. Ice chests were driven back to the laboratory by the sampling crew or flown by air freight within 24 hours of collection

Sediment Sample Processing/Distribution Methods

Samples remained in ice chests (on ice, in double-wrapped plastic bags) until the containers were brought back to the laboratory for homogenization. All sample identification information (station numbers, etc.) was recorded on Chain of Custody (COC) and Chain of Record (COR) forms prior to homogenizing and aliquoting. A single container was placed on plastic sheeting while also remaining in original plastic bags. The sample was stirred with a polycarbonate stirring rod until mud appeared homogeneous.

All prelabeled jars were filled using a clean teflon or polycarbonate scoop and stored in freezer/refrigerator (according to media/analysis) until analysis. The sediment sample was aliquoted into appropriate containers for trace metal analysis, organic analysis, porewater extraction, and bioassay testing. Samples were placed in boxes sorted by analysis type and leg number. Sample containers for sediment bioassays were placed in a refrigerator (4°C) while sample containers for sediment chemistry (metals, organics, TOC and grain size) were stored in a freezer (-20°C).

Procedures for the Extraction of Pore water

The BPTCP primarily used whole core squeezing to extract pore water. The whole core squeezing method, developed by Bender et al. (1987), utilizes low pressure mechanical force to squeeze pore water from interstitial spaces. The following squeezing technique was a modification of the original Bender design with some adaptations based on the work of Fairey (1992), Carr et al. (1989), and Long and Buchman (1989). The squeezer's major features consist of an aluminum support framework, 10 cm i.d. acrylic core tubes with sampling ports and a pressure regulated pneumatic ram with air supply valves. Acrylic subcore tubes were filled with approximately 1 liter of homogenized sediment and pressure was applied to the top piston by adjusting the air supply to the pneumatic ram. At no time during squeezing did air pressure exceed 200 psi. A porous prefilter (PPE or TFE) was inserted in the top piston and used to screen large (> 70 microns) sediment particles. Further filtration was accomplished with disposable TFE filters of 5 microns and 0.45 microns in-line with sample effluent. Sample effluent of the required volume was collected in TFE containers under refrigeration. Pore water was subsampled in the volumes and specific containers required for archiving, chemical or toxicological analysis. To avoid contamination, all sample containers, filters and squeezer surfaces in contact with the sample were plastics (acrylic, PVC, and TFE) and cleaned with previously discussed techniques.

After leg 30, centrifugation was used for the extraction of pore water. All procedures for the extraction of pore water by centrifugation were performed utilizing trace metal and trace organic "clean" techniques. Operations were performed in a positive pressure "clean" room with filtered air to prevent airborne contamination and poly gloves were worn by personnel handling samples and laboratory equipment. All sample containers or sampling equipment in contact with

sediment or pore water receives a scrub and 2 day soak in Micro[®] detergent, followed by triple fresh and deionized water rinses. Equipment is then immersed in 10% HCl for 3 days, triple rinsed in MILLI-Q[®] Type II water, air dried, and triple rinsed with petroleum ether. This cleaning process is suitable for trace analysis of metals and organics.

Samples were received and stored on ice until centrifugation can commence. Pre-cleaned Teflon scoops were used to transfer sediment from sample containers to centrifuge jars. High speed one-liter polycarbonate centrifuge jars were used for extraction of pore water. Opposing jars were balanced to within $\pm 0.1g$ and placed in centrifuge swinging buckets. Samples were spun at 2500 G for 30 minutes at 4°C in a Beckman J-6B refrigerated centrifuge.

Pore water is transferred from each centrifuge jar into final sample containers using pre-cleaned polyethylene siphons. While decanting, care is used to avoid floating debris, fauna, shell fragments or other solid material. After transfer into final sample containers, pore water is immediately refrigerated or frozen as protocols for the individual project dictate.

Date, start and finish time, G, temperature, and sample volume were recorded in the permanent lab notebook and maintained by the laboratory.

Chain of Records & Custody

Chain-of-records documents were maintained for each station. Each form was a record of all sub-samples taken from each sample. IDORG (a unique identification number for only that sample), station number and station name, leg number (sample collection trip batch number), and date collected were included on each sheet. A Chain-of-Custody form accompanied every sample so that each person releasing or receiving a subsample signed and dated the form.

Authorization/Instructions to Process Samples

Standardized forms entitled "Authorization/Instructions to Process Samples" accompanied the receipt of any samples by any participating laboratory. These forms were completed by CDFG personnel, or its authorized designee, and were signed and accepted by both the CDFG authorized staff and the staff accepting samples on behalf of the particular laboratory. The forms contain all pertinent information necessary for the laboratory to process the samples, such as the exact type and number of tests to run, number of laboratory replicates, dilutions, exact eligible cost, deliverable products (including hard and soft copy specifications and formats), filenames for soft copy files, expected date of submission of deliverable products to CDFG, and other information specific to the lab/analyses being performed.

Trace Metal Analysis of Sediments, Tissue, and Water

Summary of Methods

Trace Metals analyses were conducted at the CDFG Trace Metals Facility at Moss Landing, CA. Table 2 shows the trace metals analyzed and lists method detection limits for sediments, water and tissue. These methods were modifications of those described by Evans and Hanson (1993) as well as those developed by the CDFG (California Department of Fish and Game, 1990).

Sediment Digestion Procedures

One gram aliquot of sediment was placed in a pre-weighed Teflon vessel, and one ml concentrated 4:1 nitric:perchloric acid mixture was added. The vessel was capped and heated in a vented oven at 1300 C for four hours. Three ml Hydrofluoric acid were added to vessel, recapped and returned to oven overnight. Twenty ml of 2.5% boric acid were added to vessel and placed in oven for an additional 8 hours. Weights of vessel and solution were recorded, and solution transferred to 30 ml polyethylene bottles.

AA METHODS (Sediments and Tissues)

Samples were analyzed by furnace AA on a Perkin-Elmer Zeeman 3030 Atomic Absorption Spectrophotometer with an AS60 auto-sampler and HGA 500 graphite furnace. Samples, blanks, matrix modifiers, and standards were prepared using clean techniques inside a clean lab. MQ water and ultra-clean chemicals were used for all standard preparations. To ensure accurate results the samples were analyzed using the stabilized-temperature platform technique. Matrix modifiers were used when the components of the matrix interfere with adsorption. The matrix modifier was used for As and Pb. Calibration curves were run with three concentrations after every 10 samples. Continuing calibration check standards (CLC) were analyzed with each set of samples. The values for the elements used showed excellent results. Blanks and a standard reference material, MESS3 National Research Council Canada (sediment) and 1566a Oyster tissue NIST (tissue), were run with each set of samples.

Trace Metal Analysis of Tissues

Tissue samples were prepared for trace metal analysis by digesting with concentrated 4.1 nitric:perchloric acid in a Teflon[®] vessel. Tissue samples were first heated on hot plates for five hours. Caps were tightened and heated in a vented oven at 130°C for four hours. The liquid digestate was diluted with Type II Milli-Q[®] water to a final volume of 20.0 ml.

Tissue digestates were analyzed for trace metal analysis by graphite furnace atomic absorption spectrophotometry (GFAAS) on a Perkin-Elmer Model 3030 Zeeman or by flame atomic absorption spectrophotometry (FAAS) on a Perkin-Elmer Model 2280 for Ag, Al, As, Cu, Cd, Cr, Mn, Ni, Pb, Se, Sn, and Zn depending on concentration. Mercury was analyzed by cold vapor technique using the Perkin-Elmer Model 2280. Detection limits for trace metal analysis are shown in Table 2. Analytical methods follow the technique developed by the CDFG (California Department of Fish and Game, 1990).

Trace Metal Analysis of Water

Evaporation Methods

Two hundred fifty ml Teflon[®] beakers are removed from acid bath and rinsed thoroughly in Milli-Q[®] water (MQ). The beaker is then filled with MQ and placed on a hot plate in a laminar-flow, clean hood where it is heated on low for 20 to 30 minutes. MQ is then discarded and the beaker is rinsed with MQ again, dried on the hot plate and then cooled prior to weighing. The sample bottle is inverted to homogenize the sample. An aliquot is then weighed into the Teflon[®] beaker. This is generally 250 g unless there is a great deal of sediment evident in the sample bottle. A blank is also made, consisting of 10 ml MQ plus 1.25 ml Q-HNO₃. The beaker chosen for the blank is rotated among those available. Beakers are placed on a hot plate on low

temperature in a clean-air, laminar-flow hood. The blank is placed in the hood immediately adjacent to the hot plates. Samples are heated until dry. This generally takes 40-48 hours. Following evaporation, 1 ml of concentrated Q-HNO₃ is added to each beaker to redissolve the residue. Then 9 ml MQ are added to each beaker. This solution is rolled around the walls of the beaker to ensure dissolution of all salts. The weight is then recorded for the concentrated sample. The density for each sample is calculated following the weighing of small aliquots of sample. The weight of the concentrated sample is then converted into a volume. Concentrated samples are decanted into 30 ml low density polyethylene bottles for analysis. The Teflon[®] beakers are rinsed in MQ, scrubbed with 2N HNO₃, rinsed again in MQ, and then placed in a 6N HCl acid bath. Beakers are subsequently soaked in a Q-HNO₃ acid bath prior to reuse.

AA METHODS (WATER)

Samples were analyzed by flameless AA on a Perkin-Elmer Zeeman 5000 Atomic Absorption Spectrophotometer equipped with an HGA 500 graphite furnace. Due to high concentrations, a few samples were analyzed using flame AA on a Perkin-Elmer 603 AAS. Samples and standards were prepared in a laminar-flow clean bench inside the trace metal lab. To ensure accurate results the samples were analyzed using the stabilized-temperature platform technique. The characteristic mass for each element was computed to ensure the proper functioning of the Zeeman AA. Samples may be analyzed using a matrix modifier made up from ultra-clean chemicals. When no modifier is used, high-char temperatures allow interfering matrix components of the sample to be volatized prior to atomization. Single spike additions to samples also allow a check for recovery when standards are linear. Finally, the SLRS-3 river water standard reference material is evapoconcentrated and analyzed with each set of samples.

Analytes and Method Detection Limits

Analytes [†]	MDL,	MDL,	MDL,
1 1111 9 000	µg∕g dry	µg/g dry	μg/L
	Sediment	Tissue	Water
Silver	0.002	0.01	0.001
Aluminum	1	1	NA
Arsenic	0.1	0.25	0.1
Cadmium	0.002	0.01	0.002
Copper	0.003	0.1	0.04
Chromium	0.02	0.1	0.05
Iron	0.1	0.1	0.1
Mercury	0.03	0.03	NA
Manganese	0.05	0.05	NA
Nickel	0.1	0.1	0.1
Lead	0.03	0.1	0.01
Antimony	0.1	0.1	NA
Tin	0.02	0.02	NA
Selenium	0.1	0.1	NA
Zinc	0.05	0.05	0.02

Table 2a. Dry Weight Trace Metal Method Detection Limits*

19

n in the second seco	Analytes [†]	Database Abbreviation	MDL, ng/g dry	MDL, ng/g dry	MDL, ng/L
			Sediment	Tissue	Water
an sa	Tributyltin	TBT	13	20	1

Table 2b. Dry Weight Method Detection Limits for Tributyl Tin

* All tissue MDLs are reported in dry weight units. Wet weight MDL is calculated based on percent moisture of the individual sample.

AVS/SEM Methods

Samples were prepared for Acid Volatile Sulfide (AVS) extraction by weighing a 2 gram sediment sample in a pre-weighed teflon bomb. Samples were diluted with 100 ml of oxygenfree MilliQ[®] water and bubbled with nitrogen gas for 10 minutes. AVS in the sample was converted to hydrogen sulfide gas (H₂S) by acidification with 20 ml of 6 Molar hydrochloric acid at room temperature. The H₂S was then purged from the sample with nitrogen gas and trapped in 80 ml of 0.5 Molar sodium hydroxide. The amount of sulfide that has been trapped is then determined by colorimetric methods. The Simultaneously Extracted Metals (SEM) are selected metals liberated from the sediment during the acidification procedure. SEM analysis is conducted with 20 ml of centrifuged sample supernatant taken after AVS extraction. The H₂S released by acidifying the sample is quantified using a colorimetric method:

Hydrogen sulfide is trapped in 80 ml of 0.5M NaOH. Ten ml of this solution is added to a 100 ml volumetric flask containing 70 ml of sulfide-free 0.5M NaOH, 10 ml of MDR reagent and 10 ml of DI water. The sulfide reacts with the N-N-dimethyl-p-phenylenediamine in the MDR reagent to form methylene blue. Absorbances are determined with a Milton Roy Spectronic 301 Spectrophotometer and compared to a standardized curve. Analytes and method detection limits are given in Table 3.

Analytes [†]	µmol/g	µg/g
Cadmium	0.0001	0.01
Copper	0.02	1.0
Lead	0.001	0.1
Nickel	0.002	0.1
Zinc	0.001	0.05
Sulfide	0.5	

Table 3. AVS/SEM Analytes and Method Detection Limits

Trace Organic Analysis of Sediments (Pesticides, PCBs, and PAHs)

Summary of Methods

Analytical sets of 12 samples were scheduled such that extraction and analysis occurred within a 40 day window. The methods employed by the UCSC trace organics facility were modifications of those described by Sloan *et al.* (1993). Tables 4a-e show the pesticides, PCBs, and PAHs currently analyzed and list method detection limits for sediments on a dry weight basis.

Analytes and Method Detection Limits

Table 4a Dry Weight Method Detection Limits of Chlorinated Pesticides

Analytes	Database Abbreviation	MDL, ng/g	· MDL,	MDL,
	Abbreviation	dry	ng/g dry	ng/L
		Sediment	Tissue	Water
Fraction #1 Analytes †				
Aldrin	ALDRIN	0.5	1.0	2.0
alpha-Chlordene	ACDEN	0.5	1.0	1.0
gamma-Chlordene	GCDEN	0.5	1.0	1.0
o,p'-DDE	OPDDE	1.0	3.0	1.0
o,p'-DDT	OPDDT	1.0	4.0	2.0
Heptachlor	HEPTACHLOR	0.5	1.0	2.0
Hexachlorobenzene	HCB	0.2	1.0	1.0
Mirex	MIREX	0.5	1.0	1.0
Fraction #1 & #2 Analytes $^{\dagger, \ddagger}$				
p,p'-DDE	PPDDE	1.0	1.0 ·	0.5
p,p'-DDT	PPDDT	1.0	4.0	2.0
p,p'-DDMU	PPDDMU	2.0	5.0	5.0
trans-Nonachlor	TNONA	0.5	1.0	1.0
Fraction #2 Analytes ‡				
cis-Chlordane	CCHLOR	0.5	1.0	1.0
trans-Chlordane	TCHLOR	0.5	1.0	1.0
Chlorpyrifos	CLPYR	1.0	4.0	4.0
Dacthal	DACTH	0.2	2.0	2.0
o,p'-DDD	OPDDD	1.0	5.0	5.0
p,p'-DDD	PPDDD	0.4	3.0	3.0
p,p'-DDMS	PPDDMS	3.0	20	20
p,p'-Dichlorobenzophenone	DICLB	3.0	25	25
Methoxychlor	METHOXY	1.5	15	15
Dieldrin	DIELDRIN	0.5	1.0	1.0
Endosulfan I	ENDO_I	0.5	1.0	1.0
Endosulfan II	ENDO_II	1.0	3.0	3.0
Endosulfan sulfate	ESO4	2.0	5.0	5.0
Endrin	ENDRIN	2.0	6.0	6.0
Ethion	ETHION	2.0	NA	NA
alpha-HCH	HCHA	0.2 -	1.0	1.0
beta-HCH	HCHB	1.0	3.0	3.0
gamma-HCH	HCHG	0.2	0.8	1.0
delta-HCH	HCHD	0.5	2.0	2.0
Heptachlor Epoxide	HE	0.5	1.0	1.0
cis-Nonachlor	CNONA	0.5	1.0	1.0
Oxadiazon	OXAD	6	NA	NA
Oxychlordane	OCDAN	0.5	0.2	1.0

 † The quantitation surrogate is PCB 103.

[‡] The quantitation surrogate is d8-p,p'-DDD

Analytes [†]	Database	MDL,	MDL,	MDL,
Analyles	Abbreviation	ng/g dry	ng/g dry	ng/L
		Sediment	Tissue	Water
2,4'-dichlorobiphenyl	PCB8	0.5	1.0	1.0
2,2',5-trichlorobiphenyl	PCB18	0.5	1.0	1.0
2,4,4'-trichlorobiphenyl	PCB28	0.5	1.0	1.0
2,2',3,5'-tetrachlorobiphenyl	PCB44	0.5	1.0	1.0
2,2',5,5'-tetrachlorobiphenyl	PCB52	0.5	1.0	1.0
2,3',4,4'-tetrachlorobiphenyl	PCB66	0.5	1.0	1.0
2,2',3,4,5'-pentachlorobiphenyl	PCB87	0.5	1.0	1.0
2,2',4,5,5'-pentachlorobiphenyl	PCB101	0.5	1.0	1.0
2,3,3',4,4'-pentachlorobiphenyl	PCB105	0.5	. 1.0	1.0
2,3',4,4',5-pentachlorobiphenyl	PCB118	0.5	. 1.0	1.0
2,2',3,3',4,4'-hexachlorobiphenyl	PCB128	0.5	1.0	1.0
2,2',3,4,4',5'-hexachlorobiphenyl	PCB138	0.5	1.0	1.0
2,2',4,4',5,5'-hexachlorobiphenyl	PCB153	0.5	1.0	1.0
2,2',3,3',4,4',5-heptachlorobiphenyl	PCB170	0.5	1.0	1.0
2,2',3,4,4',5,5'-heptachlorobiphenyl	PCB180	0.5	1.0	1.0
2,2',3,4',5,5',6-heptachlorobiphenyl	PCB187	0.5	1.0	1.0
2,2',3,3',4,4',5,6-octachlorobiphenyl	PCB195	0.5	1.0	1.0
2,2',3,3',4,4',5,5',6-	PCB206	0.5	1.0	1.0
nonachlorobiphenyl				
2,2',3,3',4,4',5,5',6,6'-	PCB209	0.5	1.0	1.0
decachlorobiphenyl				

Table 4b Dry Weight Method Detection Limits of NIST PCB Congeners

[†] PCB 103 is the surrogate used for PCBs with 1 - 6 chlorines per molecule. PCB 207 is used for all others.

Table 4c. Dry Weight Method Detection Limits of Chlorinated Technical Grade Mixtures

Analyte	Database Abbreviation	MDL, ng/g dry Sediment	MDL, ng/g dry Tissue	MDL, ng/L Water
Toxaphene [‡]	TOXAPH	50	100	100
Polychlorinated Biphenyl Aroclor 1248	ARO1248	5	100	100
Polychlorinated Biphenyl Aroclor 1254	ARO1254	5	50	50
Polychlorinated Biphenyl Aroclor 1260	ARO1260	5	50	50
Polychlorinated Terphenyl Aroclor 5460 [†]	ARO5460	10	100	100

 † The quantitation surrogate is PCB 207.

[‡] The quantitation surrogate is d8-p,p'-DDD

-		-		
Analytes †	Database	MDL,	MDL,	MDL,
111419100	Abb re viation	ng/g dry	ng/g dry	ng/L
		Sediment	Tissue	Water
2,3-dichlorobiphenyl	PCB5	0.5	1.0	1.0
4,4'-dichlorobiphenyl	PCB15	0.5	1.0	1.0
2,3',6-trichlorobiphenyl	PCB27	0.5	1.0	1.0
2,4,5-trichlorobiphenyl	PCB29	0.5	1.0	1.0
2,4',4-trichlorobiphenyl	PCB31	0.5	1.0	1.0
2,2,'4,5'-tetrachlorobiphenyl	PCB49	0.5	1.0	1.0
2,3',4',5-tetrachlorobiphenyl	PCB70	0.5	1.0	1.0
2,4,4',5-tetrachlorobiphenyl	PCB74	0.5	1.0	1.0
2,2',3,5',6-pentachlorobiphenyl	PCB95	0.5	1.0	1.0
2,2',3',4,5-pentachlorobiphenyl	PCB97	0.5	1.0	1.0
2,2',4,4',5-pentachlorobiphenyl	PCB99	0.5	1.0	1.0
2,3,3',4',6-pentachlorobiphenyl	PCB110	0.5	1.0	1.0
2,2',3,3',4,6'-hexachlorobiphenyl	PCB132	0.5	1.0	1.0
2,2',3,4,4',5-hexachlorobiphenyl	PCB137	0.5	1.0	1.0
2,2',3,4',5',6-hexachlorobiphenyl	PCB149	0.5	1.0	1.0
2,2',3,5,5',6-hexachlorobiphenyl	PCB151	0.5	1.0	1.0
2,3,3',4,4',5-hexachlorobiphenyl	PCB156	0.5	1.0	1.0
2,3,3',4,4',5'-hexachlorobiphenyl	PCB157	0.5	1.0	1.0
2,3,3',4,4',6-hexachlorobiphenyl	PCB158	0.5	1.0	1.0
2,2',3,3',4,5,6'-heptachlorobiphenyl	PCB174	0.5	1.0	1.0
2,2',3,3',4',5,6-heptachlorobiphenyl	PCB177	0.5	1.0	1.0
2,2',3,4,4',5',6-heptachlorobiphenyl	PCB183	0.5	1.0	1.0
2,3,3',4,4',5,5'-heptachlorobiphenyl	PCB189	0.5	1.0	1.0
2,2',3,3',4,4',5,5'-octachlorobiphenyl	PCB194	0.5	1.0	1.0
2,2',3,3',4,5',6,6'-octachlorobiphenyl	PCB201	0.5	1.0	1.0
2,2',3,4,4',5,5',6-octachlorobiphenyl	PCB203	0.5	1.0	1.0

Table 4d. Additional PCB Congeners and Their Dry Weight Method Detection Limits

 † PCB 103 is the surrogate used for PCBs with 1 - 6 chlorines per molecule. PCB 207 is used for all others.

Analytes [†]	Database Abbreviation	MDL, ng/g dry	MDL, ng/g dry	MDL, ng/l
	Abbreviation	Sediment	Tissue	Water
Naphthalene	NPH	5	10	30
2-Methylnaphthalene	MNP2	5	10	30
1-Methylnaphthalene	MNP1	5	10	30
Biphenyl	BPH	5	10	30
2,6-Dimethylnaphthalene	DMN	5	10	- 30
Acenaphthylene	ACY	5	10	30
Acenaphthene	ACE	5	10	.30
2,3,5-Trimethylnaphthalene	TMN	5	10	30
Fluorene	FLU	5	10	30
Dibenzothiophene	DBT	5	10	30
Phenanthrene	PHN	5	10	30
Anthracene	ANT	. 5	10	30
1-Methylphenanthrene	MPH1	5	10	30
Fluoranthene	FLA	5	10	30
Pyrene	PYR	5	10	30
Benz[a]anthracene	BAA	5	10	30
Chrysene	CHR	5	10	30
Tryphenylene	TRY	5	10	30
Benzo[b]fluoranthene	BBF	5	10	30
Benzo[k]fluoranthene	BKF	5	10	30
Benzo[e]pyrene	BEP	5	10	· 30
Benzo[a]pyrene	BAP	5	10	30
Perylene	PER	5	10 ·	30
Indeno[1,2,3-cd]pyrene	IND	5	15	45
Dibenz[a,h]anthracene	DBA	5	15	45
Benzo[ghi]perylene	BGP	5	15	45
Coronene	COR	5	15	45

Table 4e. Dry Weight Detection Limits of Polyaromatic Hydrocarbons in Tissue.

t See individual QA reports for surrogate assignments.

Extraction and Analysis

Samples were removed from the freezer and allowed to thaw. A 10 gram sample of sediment was removed for chemical analysis and an independent 10 gram aliquot was removed for dry weight determinations. The dry weight sample was placed into a pre-weighed aluminum pan and dried at 110°C for 24 hours. The dried sample was reweighed to determine the sample's percent moisture. The analytical sample was extracted 3 times with methylene chloride in a 250-mL amber Boston round bottle on a modified rock tumbler. Prior to rolling, sodium sulfate, copper, and extraction surrogates were added to the bottle. Sodium sulfate dehydrates the sample allowing for efficient sediment extraction. Copper, which was activated with hydrochloric acid, complexes free sulfur in the sediment.

After combining the three extraction aliquots, the extract was divided into two portions, one for chlorinated hydrocarbon (CH) analysis and the other for polycyclic aromatic hydrocarbon (PAH) analysis.

The CH portion was eluted through a silica/alumina column, separating the analytes into two fractions. Fraction 1 (F1) was eluted with 1% methylene chloride in pentane and contains > 90% of p,p'-DDE and < 10% of p,p'-DDT. Fraction 2 (F2) analytes were eluted with 100% methylene chloride. The two fractions were exchanged into hexane and concentrated to 500 μ L using a combination of rotary evaporation, controlled boiling on tube heaters, and dry nitrogen blow downs.

F1 and F2 fractions were analyzed on Hewlett-Packard 5890 Series gas chromatographs utilizing capillary columns and electron capture detection (GC/ECD). A single 2 μ l splitless injection was directed onto two 60 m x 0.25 mm i.d. columns of different polarity (DB-17 & DB-5; J&W Scientific) using a glass Y-splitter to provide a two dimensional confirmation of each analyte. Analytes were quantified using internal standard methodologies. The extract's PAH portion was eluted through a silica/alumina column with methylene chloride. It then underwent additional cleanup using size-exclusion high performance liquid chromatography (HPLC/SEC). The collected PAH fraction was exchanged into hexane and concentrated to 250 μ L in the same manner as the CH fractions.

Trace Organic Analysis of Tissue

Tissue homogenates were analyzed for detection of PCBs, pesticides and PAHs after extraction with methylene chloride. The extract was divided into three portions: one quarter of the volume for lipid weight determination, one half for aromatic and chlorinated hydrocarbon (AH/CH) analysis and one quarter for validation of the single fraction analysis. The AH/CH fraction was analyzed by capillary gas chromatography for chlorinated hydrocarbons, utilizing an electron capture detector. The AH/CH fraction was also analyzed by gas chromatography mass spectrometry (GC/MS) for aromatic hydrocarbons.

Total Organic Carbon Analysis of Sediments

Summary of Methods

Samples were received in the frozen state and allowed to thaw at room temperature. Source samples were gently stirred and sub-samples were removed with a stainless steel spatula and placed in labeled 20 ml polyethylene scintillation vials. Approximately 5 grams equivalent dry weight of the wet sample was sub-sampled. Sub-samples were treated with two, 5 ml additions of 0.5 N, reagent grade HCl to remove inorganic carbon (CO₃), agitated, and centrifuged to a clear supernate. Some samples were retreated with HCl to remove residual inorganic carbon. The evolution of gas during HCl treatment indicates the direct presence of inorganic carbon (CO₃). After HCl treatment and decanting, samples were washed with approximately 15 ml of deionized-distilled water, agitated, centrifuged to a clear supernate, and decanted. Two sample washings were required to remove weight determination and analysis interferences.

Prepared samples were placed in a 60° C convection oven and allowed to come to complete dryness (approx. 48 hrs.). Visual inspection of the dried sample before homogenization was used to ensure complete removal of carbonate containing materials, (shell fragments). Two 61 mm (1/4") stainless steel solid balls were added to the dried sample, capped and agitated in a commercially available ball mill for three minutes to homogenize the dried sample.

A modification of the high temperature combustion method, utilizing a Weatstone bridge current differential was used in a commercially available instrument, (Control Equipment Co., 440 Elemental Analyzer) to determine carbon and nitrogen concentrations. The manufacturers suggested procedures were followed. The methods are comparable to the validation study of USEPA method MARPCPN I (1992). Two to three aliquots of 5-10 mg of dried prepared subsample were used to determine carbon and nitrogen weight percent values. Calibration of the instrument was with known standards using Acetanilide or L-Cystine. Detection limits are 0.2 μ g/mg, carbon and 0.01 μ g/mg nitrogen dry weight.

The above methods and protocols are modifications of several published papers, reference procedures and analytical experimentation experience (Franson, 1981; Froelich, 1980; Hedges and Stern, 1983; MARPCPN I, 1992).

Quality Control/Quality Assurance

Quality control was tested by the analysis of National Research Council of Canada Marine Sediment Reference Material, BCSS-1 at the beginning and end of each sample analysis set (20-30 individual machine analyses). All analyzed values were within suggested criteria of + 0.09%carbon (2.19% Average). Nitrogen was not reported on the standard data report, but was accepted at + 0.008% nitrogen (0.195% Average) from the USEPA study. Quality assurance was monitored by re-calibration of the instrument every twenty samples and by the analysis of a standard as an unknown and comparing known theoretical percentages with resultant analyzed percentages. Acceptable limits of standard unknowns were less than + 2%. Duplicate or triplicate sample analysis variance (standard deviation/mean) greater than 7% is not accepted. Samples were re-homogenized and re-analyzed until the variance between individual runs fell below the acceptable limit of 7.0%.

Grain Size Analysis of Sediments

Summary of Methods

The procedure used combined wet and dry sieve techniques to determine particle size of sediment samples. Methods follow those of Folk (1974).

Sample Splitting and Preparation

Samples were thawed and thoroughly homogenized by stirring with a spatula. Spatulas were rinsed of all adhering sediment between samples. Size of the subsample for analysis was determined by the sand/silt ratio of the sample. During splitting, the sand/silt ratio was estimated and an appropriate sample weight was calculated. Subsamples were placed in clean, preweighed beakers. Debris was removed and any adhering sediment was washed into the beaker.

Wet Sieve Analysis (separation of coarse and fine fraction)

Beakers were placed in a drying oven and sediments were dried at less than 55°C until completely dry (approximately three days). Beakers were removed from drying oven and allowed to equilibrate to room temperature for a least a half-hour. Each beaker and its contents were weighed to the nearest 0.01 g. This weight minus the empty beaker weight was the total sample weight. Sediments in beakers were disaggregated using 100 ml of a dispersant solution in water (such as 50 g Calgon/L water) and the sample was stirred until completely mixed and all

lumps disappeared. The amount and concentration of dispersant used was recorded on the data sheet for each sample. Sample beakers were placed in an ultrasonic cleaner for 15 minutes for disaggregation. Sediment dispersant slurry was poured into a 63 μ m (ASTM #230, 4 phi) stainless steel or brass sieve in a large glass funnel suspended over a 1L hydrometer cylinder by a ring stand. All fine sediments were washed through the sieve with water. Fine sediments were captured in a 1L hydrometer cylinder. Coarse sediments remaining in sieve were collected and returned to the original sample beaker for quantification.

Dry Sieve Analysis (coarse fraction)

The coarse fraction was placed into a preweighed beaker, dried at $55-65^{\circ}$ C, allowed to acclimate, and then weighed to 0.01 g. This weight, minus the empty beaker weight, was the coarse fraction weight. The coarse fraction was poured into the top sieve of a stack of ASTM sieves having the following sizes: No. 10 (2.0 mm), 18 (1.0 mm), 45 (0.354 mm), 60 (0.25 mm), 80 (0.177 mm), 120 (0.125 mm), and 170 (0.088 mm). The stack was placed on a mechanical shaker and shaken at medium intensity for 15 minutes. After shaking, each sieve was inverted onto a large piece of paper and tapped 5 times to free stuck particles. The sieve fractions were added cumulatively to a weighing dish, and the cumulative weight after each addition determined to 0.01g. The sample was returned to its original beaker, and saved until sample computations were completed and checked for errors.

Analytical Procedures

Fractional weights and percentages for various particle size fractions were calculated. If only wet sieve analysis was used, weight of fine fraction was computed by subtracting coarse fraction from total sample weight, and percent fine composition was calculated using fine fraction and total sample weights. If dry sieve was employed as well, fractional weights and percentages for the sieve were calculated using custom software on a Macintosh computer. Calibration factors were stored in the computer.

Toxicity Testing

Summary of Methods

All toxicity tests were conducted at the California Department of Fish and Game's Marine Pollution Studies Laboratory (MPSL) at Granite Canyon. Toxicity tests were conducted by personnel from the Institute of Marine Sciences, University of California, Santa Cruz.

Sediment Samples

Bedded sediment samples were transported to MPSL from the sample-processing laboratory at Moss Landing in ice chests at 4°C. Transport time was one hour. Samples were held at 4°C, and all tests were initiated within 14 days of sample collection, unless otherwise noted in the quality assurance appendix of each data report. All sediment samples were handled according to procedures described in ASTM (1992) and BPTCP Quality Assurance Project Plan (Stephenson *et al.* 1994). Samples were removed from refrigeration the day before the test, and loaded into test containers. Water quality was measured at the beginning and end of all tests. At these times, pH, temperature, salinity, and dissolved oxygen were measured in overlying water from all samples to verify that water quality criteria were within the limits defined for each test protocol. Total ammonia concentrations were also measured at these times. Samples of overlying and interstitial water for hydrogen sulfide measurement were taken at the beginning and end of each toxicity test. Due to the update of standards after the program was underway, only samples after leg 29 had interstitial water samples taken. Hydrogen sulfide samples were preserved with zinc acetate and stored in the dark until time of measurement.

Porewater Samples

Once at MPSL, frozen porewater samples were stored in the dark at -12°C until required for testing. Experiments performed by the U.S. National Biological Survey have shown no effects of freezing pore water upon the results of toxicity tests (Carr and Chapman, 1995). Unfrozen porewater samples were stored in the dark, at 4°C. Samples from legs 4-23 were frozen, samples from legs after 31 were not. Samples were equilibrated to test temperature (15°C) on the day of a test, and pH, temperature, salinity, and dissolved oxygen were measured in all samples to verify that water quality criteria were within the limits defined for the test protocol. Total ammonia and sulfide concentrations were also measured. Porewater samples with salinities outside specified ranges for each protocol were adjusted to within the acceptable range. Salinities were increased by the addition of hypersaline brine, 60 to 80‰, drawn from partially frozen seawater. Dilution water consisted of Granite Canyon seawater (32 to 34‰). Water quality parameters were measured at the beginning and end of each test.

Subsurface Water Samples

Abalone, mussel and urchin embryo-larval development tests were performed on water column samples collected with the modified Van Veen grab. Subsurface water samples were held in the dark at 4°C until testing. Toxicity tests were initiated within 14 days of the sample collection date. Water quality parameters, including ammonia and sulfide concentrations, were measured in one replicate test container from each sample in the overlying water as described above. Measurements were taken at the beginning and end of all tests.

Measurement of Ammonia and Hydrogen Sulfide

Total ammonia concentrations were measured using an Orion Model 95-12 Ammonia Electrode. The concentration of unionized ammonia was derived from the concentration of total ammonia using the following equation (from Whitfield 1974, 1978):

$$[NH_3] = [total ammonia] \times ((1 + antilog(pK_a^{\circ} - pH))^{-1}),$$

where pK_a° is the stoichiometric acidic hydrolysis constant for the test temperature and salinity. Values for pK_a° were experimentally derived by Khoo *et al.* (1977). The method detection limit for total ammonia was 0.1 mg/L.

Total sulfide concentrations were measured using an Orion Model 94-16 Silver/Sulfide Electrode, except samples tested after February, 1994, were measured on a spectrophotometer using a colorimetric method (Phillips *et al.* 1997). The concentration of hydrogen sulfide was derived from the concentration of total sulfide by using the following equation (ASCE 1989):

$$[H_2S] = [S^{2-}] \times (1 - ((1 + \operatorname{antilog}(pK_a^{\circ} - pH))^{-1})),$$

where temperature and salinity dependent pK_a° values were taken from Savenko (1977). The method detection limit for total sulfide was 0.1 mg/L for the electrode method, and 0.01 mg/L for the colorimetric method. Values and corresponding detection limits for unionized ammonia and hydrogen sulfide were an order of magnitude lower than those for total ammonia and total sulfide, respectively. Care was taken with all sulfide and ammonia samples to minimize volatilization by keeping water quality sample containers capped tightly until analysis.

Marine and Estuarine Amphipod Survival Tests

Solid-phase sediment sample toxicity was assessed using the 10-day amphipod survival toxicity test protocols outlined in USEPA 1994. All *Eohaustorius estuarius* and *Rhepoxynius abronius* were obtained from Northwestern Aquatic Sciences in Yaquina Bay, Oregon. Animals were separated into groups of approximately 100 and placed in polyethylene boxes containing Yaquina Bay collection site sediment, then shipped on ice via overnight courier. Upon arrival at Granite Canyon, the *Eohaustorius* were acclimated to 20‰ (T=15°C), and *Rhepoxynius* were acclimated to 28‰ (T=15°C). Once acclimated, the animals were held for an additional 48-hours prior to addition to the test containers. Upon arrival at Granite Canyon, the amphipods were acclimated slowly (<2‰ per day) to 28‰ seawater (T=20°C). Once acclimated, the animals were held for an additional 48 hours prior to inoculation into the test containers.

Test containers were one liter glass beakers or jars containing 2-cm of sediment and filled to the 700-ml line with control seawater adjusted to the appropriate salinity using spring water or distilled well water. Test sediments were not sieved for indigenous organisms prior to testing although at the conclusion of the test, the presence of any predators was noted and recorded on the data sheet. Test sediment and overlying water were allowed to equilibrate for 24 hours, after which 20 amphipods were placed in each beaker along with control seawater to fill test containers to the one-liter line. Test chambers were aerated gently and illuminated continuously at ambient laboratory light levels.

Five laboratory replicates of each sample were tested for ten days. A negative sediment control consisting of five lab replicates of Yaquina Bay home sediment for *Eohaustorius* and *Rhepoxynius* was included with each sediment test. After ten days, the sediments were sieved through a 0.5-mm Nitex screen to recover the test animals, and the number of survivors was recorded for each replicate

Positive control reference tests were conducted concurrently with each sediment test using cadmium chloride as a reference toxicant. For these tests, amphipod survival was recorded in three replicates of four cadmium concentrations after a 96-hour water-only exposure. A negative seawater control consisting of one micron-filtered Granite Canyon seawater, diluted to the appropriate salinity was compared to all cadmium concentrations. Amphipod survival for each replicate was calculated as:

(Number of surviving amphipods) X 100 (Initial number of amphipods)

Neanthes arenaceodentata Polychaete Survival and Growth Test

The Neanthes test followed procedures described in PSEP (1991). Emergent juvenile Neanthes arenaceodentata (2-3 weeks old) were obtained from Dr. Donald Reish of California State

University, Long Beach. Worms were shipped in seawater in plastic bags at ambient temperature via overnight courier. Upon arrival at MPSL, worms were allowed to acclimate gradually to 28‰ salinity (<2‰ per day, T=15°C). Once acclimated, the worms were maintained at least 48 hours, and no longer than 10 days, before the start of the test.

Test containers were one-liter glass beakers or jars containing 2-cm of sediment and filled to the 700-ml line with seawater adjusted to 28‰ using spring water or distilled well water. Test sediments were not sieved for indigenous organisms prior to testing, but the presence of any predators was noted and recorded on the data sheet at the conclusion of the test. Test sediment and overlying water were allowed to equilibrate for 24 hours, after which 5 worms were placed in each beaker along with 28‰ seawater to fill test containers to the one-liter line. Test chambers were aerated gently and illuminated continuously at ambient laboratory light levels. Worms were fed TetraMin® every 2 days, and overlying water was renewed every 3 days. Water quality parameters were measured at the time of renewals.

After 20 days, samples were sieved through a 0.5-mm Nitex screen, and the number of surviving worms recorded. Surviving worms from each replicate were wrapped in a piece of pre-weighed aluminum foil, and placed in a drying oven until reaching a constant weight. Each foil packet was then weighed to the nearest 0.1 mg. Worm survival and mean weight/worm for each replicate was calculated as follows:

Percent worm survival = (Number of surviving worms) X 100 (Initial number of worms)

Mean weight per worm = <u>(Total weight - foil weight)</u> X 100 (Number of surviving worms)

Strongylocentrotus purpuratus Sea Urchin Embryo-Larval Development Test

The sea urchin (*Strongylocentrotus purpuratus*) larval development test was conducted on marine porewater samples. Details of the test protocol are given in USEPA 1995a. A brief description of the method follows.

Sea urchins were collected from the Monterey County coast near Granite Canyon, and held at MPSL at ambient seawater temperature and salinity $(33\pm2\%)$ until testing. Adult sea urchins were held in complete darkness to preserve gonadal condition. On the day of a test, urchins were induced to spawn in air by injection with 0.5M KCl. Eggs and sperm collected from the urchins were mixed in seawater at a 500 to 1 sperm to egg ratio, and embryos were distributed to test containers within 1 hour of fertilization. Test containers were polyethylene-capped, seawater leached, 20-ml glass scintillation vials containing 10 milliliters of sample. Each test container was inoculated with approximately 250 embryos (25/ml). Samples were tested at full concentration or three dilutions: 100, 50 and 25% pore water, each having three or five replicates. Porewater samples were diluted with one micron-filtered Granite Canyon seawater. Laboratory controls were included with each set of samples tested. Controls include a dilution water control consisting of Granite Canyon seawater, and a brine control with all samples that require brine adjustment. Tests were conducted at ambient seawater salinity ($33\pm2\%$). A 96-hour positive control reference test was conducted concurrently with each porewater test using a dilution series of copper chloride as a reference toxicant.

After a 96-hour exposure, larvae were fixed in 5% buffered formalin. Approximately 100 larvae in each container were examined under an inverted light microscope at 100x to determine the proportion of normally developed larvae as described in USEPA 1995a. Visual clues used to identify embryos as normal included development of skeletal rods (spicules) that extend beyond half the length of the larvae and normal development of a three-part gut. Embryos demonstrating retarded development were considered abnormal. Percent normal development was calculated as: Number of normally developed larvae counted X 100

Number of normally developed larvae counted X Total number of larvae counted

Strongylocentrotus purpuratus Sea Urchin Embryo-Larval Development Test using the Sediment-Water Interface Exposure System

The purple sea urchin (*Strongylocentrotus purpuratus*) embryo/larval development test at the sediment-water interface was conducted on intact core marine sediment samples taken with minimal disturbance from the Van Veen grab sampler. Details of the test protocol are given in the MPSL Standard Operating Procedure, which follows the USEPA methods manual (1995a). A brief description of the method follows.

Sea urchins were collected from the Monterey County coast near Granite Canyon, and held at MPSL at ambient seawater temperature and salinity until testing. Adult sea urchins were held in complete darkness to preserve gonadal condition. On the day of the test, urchins were induced to spawn in air by injection with 0.5 mL of 0.5M KCl. Eggs and sperm collected from the urchins were mixed in seawater at a 500 to 1 sperm to egg ratio, and embryos were distributed to the test containers within one hour of fertilization. Sediment-water interface test containers consisted of a polycarbonate tube with a 25- μ m screened bottom placed so that the screen was within 1-cm of the surface of an intact sediment core (Anderson *et al.* 1996). Seawater at ambient salinity was poured into the core tube and allowed to equilibrate for 24 hours before the start of the test. After inserting the screen tube into the equilibrated cores, each tube was inoculated with approximately 250 embryos. The laboratory control consisted of Yaquina Bay amphipod home sediment from Northwestern Aquatic Sciences. Tests were conducted at ambient seawater salinity $\pm 2\%$. Ambient salinity at Granite Canyon is usually 32 to 34‰. A positive control reference test was conducted concurrently with the test using a dilution series of copper chloride as a reference toxicant.

After an exposure period of 96 hours, larvae were fixed in 5% buffered formalin. One hundred larvae in each container were examined under an inverted light microscope at 100x to determine the proportion of normally developed larvae as described in USEPA 1995a. Percent normal development was calculated as:

Number of normally developed larvae counted X 100 Total number of larvae counted

Strongylocentrotus purpuratus Sea Urchin Fertilization Test

The sea urchin (*Strongylocentrotus purpuratus*) fertilization test was conducted on porewater samples. Details of the test protocol are described in Dinnel *et al.* (1987). Sea urchins were from the same stock described for the sea urchin larval development test. On the day of a test, urchins were induced to spawn in air by injection with 0.5M KCl. Sperm were exposed in test

containers for sixty minutes before approximately 1000 eggs were added. After twenty minutes of fertilization, the test was fixed in a 5% buffered formalin solution. A constant sperm to egg ratio of 500 to 1 was used in all tests. This ratio maintained fertilization in the 70-90% range required by the test protocol. Fertilization was determined by the presence or absence of a fertilization membrane. Test containers were polyethylene-capped, seawater leached, 20-ml glass scintillation vials containing 5 milliliters of pore water. Porewater samples were diluted with one micron-filtered Granite Canyon seawater. Laboratory controls were included with each set of samples tested. Controls included a dilution water control consisting of Granite Canyon seawater, a brine control with all samples that require brine adjustment. Tests were conducted at ambient seawater salinity $(33\pm 2 \text{ ppt})$. A positive control reference test (1-hour sperm exposure) was conducted concurrently with each porewater test using a dilution series of copper chloride as a reference toxicant. All eggs in each container were examined under an inverted light microscope at 100x, and counted as either fertilized or unfertilized. Percent fertilization was calculated as:

Number of fertilized eggs X 100 Number of eggs observed

Mytilus spp. Embryo-Larval Development Test

The bay mussel (*Mytilus* spp.) embryo-larval development test was conducted on marine porewater and subsurface water samples. Details of the test protocol are given in USEPA 1995a. A brief description of the method follows.

Adult male and female mussels were induced to spawn separately using temperature shock by raising the ambient temperature by 10° C. Fertilized eggs were distributed to the test containers within four hours of fertilization. Test containers were polyethylene-capped, seawater leached, 20-ml glass scintillation vials containing 10 milliliters of sample. Each test container was inoculated with 150 to 300 embryos (15-30/mL) consistent among replicates and treatments within a test set. Samples tested at multiple concentrations were diluted with one micron-filtered Granite Canyon seawater. Laboratory controls were included with each set of samples tested. Controls include a dilution water control consisting of Granite Canyon seawater, a brine control with all samples that require brine adjustment. Tests were conducted at $28\pm2\%$. A 48-h positive control reference test was conducted concurrently with each test using a dilution series of cadmium chloride as a reference toxicant.

After a 48-h exposure period, developing larvae were fixed in 5% buffered formalin. All larvae in each container were examined using an inverted light microscope at 100x to determine the proportion of normal live prossidoconch larvae, as described in USEPA 1995a. Percent normal live larvae was calculated as:

Number of normal larvae X 100 Initial embryo density

Haliotis rufescens Abalone Embryo-Larval Development Test

The red abalone (*Haliotis rufescens*) embryo-larval development test was conducted on porewater and subsurface water samples. Details of the test protocol are given in USEPA 1995a. A brief description of the method follows.

Adult male and female abalone were induced to spawn separately using a dilute solution of hydrogen peroxide in seawater. Fertilized eggs were distributed to the test containers within one hour of fertilization. Test containers were polyethylene-capped, seawater leached, 20-ml glass scintillation vials containing 10 milliliters of sample. Each test container was inoculated with 100 embryos (10/mL). Samples tested at multiple concentrations were diluted with one micron-filtered Granite Canyon seawater. Laboratory controls were included with each set of samples tested. Controls include a dilution water control consisting of Granite Canyon seawater, and a brine control with all samples that require brine adjustment. Tests were conducted at ambient seawater salinity $(33\pm2\%)$. A 48-h positive control reference test was conducted concurrently with each porewater test using a dilution series of zinc sulfate as a reference toxicant.

After a 48-h exposure period, developing larvae were fixed in 5% buffered formalin. All larvae in each container were examined using an inverted light microscope at 100x to determine the proportion of veliger larvae with normal shells, as described in USEPA 1995a. Percent normal development was calculated as:

Number of normally developed larvae counted X 100 Total number of larvae counted

Holmesimysis costata Mysid Survival Test

Aquatic toxicity of marine subsurface water samples was assessed using the mysid (*Holmesimysis costata*) acute survival test. This 96-hour method was adapted from USEPA 1995a. A brief description of the method follows.

The mysid shrimp, *Holmesimysis costata*, commonly inhabits the surface canopy of the giant kelp *Macrocystis pyrifera*. Mysids were collected approximately 7 days prior to test initiation. Females carrying embryos in the eye-development stage were placed in brood compartments within holding tanks. Juvenile mysids released over a twenty-four hour period were isolated and transferred to a separate tank. Three to four day-old juveniles were randomly distributed to test containers containing 200-mL of sample. Each container received five mysids.

Test containers were checked daily and the number of living mysids was recorded. Immobile mysids not responding to stimulus were considered dead. Mysids were fed 20 freshly hatched *Artemia* nauplii per mysid twice daily. Test solutions were 50% renewed at 48 hours. The laboratory negative control consisted of Granite Canyon seawater filtered to one micron. A positive control reference test was conducted concurrently with the test using a dilution series of zinc sulfate as the reference toxicant.

Ceriodaphnia dubia Water Flea Acute Survival Test

Aquatic toxicity of freshwater samples was assessed using the Cladoceran water flea (*Ceriodaphnia dubia*) acute survival test. Details of the test protocol are given in the MPSL Standard Operating Procedure for *Ceriodaphnia dubia* which follows USEPA freshwater acute methods (USEPA 1993a).

Ceriodaphnia neonates (<24-h) were obtained from in house cultures or from Toxscan Laboratories (Watsonville, CA). Neonates were isolated from cultures or obtained from Toxscan on Day 0 of the test. All dilution water was prepared according to USEPA (1993a). Porewater test containers were 50-mL glass beakers containing 15-mL of test solution. Each test container was inoculated with 5 or 8 neonates depending on availability. The laboratory negative control consisted of USEPA dilution water. After an exposure period of 96 hours neonates were counted. A positive control reference test was conducted concurrently with the test using a dilution series of copper chloride as the reference toxicant.

Ceriodaphnia dubia Water Flea Acute Survival Test using Sediment-Water Interface Exposure System

The toxicity of solid-phase freshwater sediments was assessed using the water flea (*Ceriodaphnia dubia*) acute survival test at the sediment-water interface. Details of the test protocol are given in the MPSL Standard Operating Procedure for *Ceriodaphnia dubia* which follows USEPA freshwater acute methods (USEPA 1993a).

Ceriodaphnia neonates (<24 h) were obtained from in house cultures or from Toxscan Laboratories (Watsonville, CA). Neonates were isolated from cultures or obtained from Toxscan on Day 0 of the test. All dilution water was prepared according to USEPA (1993a). Sedimentwater interface test containers consisted of a polycarbonate tube with a 25- μ m screened bottom placed so that the screen was within 1-cm of the surface of an intact sediment core (Anderson *et al.* 1996). Dilution water was poured into the screen tube at the surface of each core and allowed to equilibrate for 24 hours before the start of the test. Each test container was inoculated with 5 or 8 neonates depending on availability. The laboratory negative control consisted of Yaquina Bay amphipod home sediment from Northwestern Aquatic Sciences. After an exposure period of 96 hours, screens were removed from the intact cores, and neonates were counted. A positive control reference test was conducted concurrently with the test using a dilution series of copper chloride as the reference toxicant.

Hyalella azteca Amphipod Survival Test for Freshwater Sediments

These amphipod tests followed ASTM (1993) procedures for *Hyalella azteca*. All *Hyalella* were obtained from Northwestern Aquatic Sciences (NWAS) in Yaquina Bay, Oregon. Animals were separated into groups of approximately 1000 and placed in polyethylene cubitainers containing NWAS laboratory water, then shipped via overnight courier. Upon arrival at Granite Canyon, the amphipods were acclimated to Granite Canyon well water (T=25°C). Once acclimated, the animals were held for an additional 48-h prior to addition to the test containers.

Test containers were one-liter glass jars containing 2-cm of sediment and filled to the 700-mL line with Granite Canyon well water. Test sediment and overlying water were allowed to equilibrate for 24 hours, then 20 amphipods were placed in each beaker along with well water to fill each test container to the one-liter line. Test chambers were gently aerated and continuously illuminated.

Five replicates of each sample were tested for 10 days. In addition, a negative sediment control consisting of 5 replicates of Yaquina Bay home sediment was included with each set of samples tested. Test containers were fed a slurry of crushed alfalfa pellets three times per week (ASTM 1993). After 10 days, samples were sieved through a 0.5-mm Nitex screen to recover the test animals, and the number of survivors was recorded for each replicate.

Positive control reference tests were conducted concurrently with each sediment test using cadmium chloride as a reference toxicant. In these tests, amphipod mortality was recorded in three replicates of four cadmium concentrations after a 96-hour water-only exposure. A dilution water control consisting of Granite Canyon well water was included in each test.

(Number of surviving amphipods) X 100

(Initial number of amphipods)

Test Acceptability and Evaluation

Quality Assurance/Quality Control (QA/QC) guidelines for the toxicity tests used in the BPTCP project are summarized in the BPTCP Quality Assurance Project Plan (Stephenson *et al.*, 1994). Test acceptability criteria from published protocols were evaluated for all tests. Quality assurance checklists were compiled that noted compliance for all tests with each of these criteria. Evaluation codes were assigned to each deviation from QA/QC guidelines, and can be summarized as follows:

-3: sample has minor exceedances of QA criteria that are unlikely to affect assessments.

-4: sample meets or exceeds control criteria requirements.

-5: data have exceedances, but are generally usable for most assessments and reporting purposes.

-6: sample has major exceedances of control criteria requirements and the data are not usable for most assessments and reporting purposes.

-9: not analyzed

It is recommended that if assessments are made that are especially sensitive or critical, the QA evaluations be consulted before using the data. Test data judged to be unacceptable were not reported, and samples from unacceptable tests were retested if necessary.

Ammonia and sulfides are potential confounding factors for toxcicity tests. These chemicals can be anthropogenic in origin but many natural sources exist as well. If threshold values are exceeded, inference on toxic effect as a result of pollutant content cannot be made. Table 5 lists the threshold ammonia and sulfide values for the test species used in the region.

Statistical Determination of Toxicity

Samples were defined as toxic if the following two criteria were met: 1) a separate-variance ttest determined there was a significant difference (p<0.05) in mean toxicity test organism response (e.g., percent survival) between the sample and the laboratory control and 2) mean organism response in the toxicity test was lower than a certain percentage of the control value, as determined using the 90th percentile Minimum Significant Difference (MSD).

Statistical significance in t-tests is determined by dividing the difference between sample and control by the variance among replicates. A "separate variance" t-test was used that adjusted the degrees of freedom to account for variance heterogeneity among samples. If the difference between sample and control is large relative to the variance among replicates, then the difference is determined to be significant. In many cases, however, low between-replicate variance will cause a comparison to be considered significant, even though the magnitude of the difference can

Species	Unionized	Limit Definition	Reference
	Ammonia (mg/L)	·	
Eohaustorius (EE)	0.8	Application Limit	USEPA 1994
Haliotis (HR)	0.05	NOEC	MPSL*
Mytilus (ME)	0.15	LOEC	Tang et al. 1997
Neanthes (NA)	1.25	LOEC	Dillon 1993
Rhepoxynius (RA)	0.4	Application Limit	USEPA 1994
Urchin Development (SPD)	0.07	NOEC	Bay et al. 1993
Urchin Fertilization (SPF)	>1.4	NOEC	Bay et al. 1993
Species	Hydrogen	Limit Definition	Reference
	Sulfide (mg/L)		
Eohaustorius (EE)	0.114	LOEC	Knezovich et al. 1996
Mytilus (ME)	0.0053	LOEC	Knezovich et al. 1996
Rhepoxynius (RA)	0.087	LOEC	Knezovich et al. 1996
Urchin Development (SPD)	0.0076	LOEC	Knezovich et al. 1996
Urchin Fertilization (SPF)	0.007-0.014	NOEC	Bay et al. 1993

 Table 5. Unionized Ammonia and H2S effects Thresholds for BPTC Toxicity Test

 Protocols

*Unpublished data

be small. The magnitude of difference that can be identified as significant is termed the Minimum Significant Difference (MSD) which is dependent on the selected alpha level, the level of between-replicate variation, and the number of replicates specific to the experiment. With the number of replicates and alpha level held constant, the MSD varies with the degree of between-replicate variation. The "detectable difference" inherent to the toxicity test protocol can be determined by identifying the magnitude of difference that can be detected by the protocol 90% of the time (Schimmel *et al.*, 1994; Thursby and Schlekat, 1993). This is equivalent to setting the level of statistical power at 0.90 for these comparisons. This is accomplished by determining the MSD for each t-test conducted, ranking them in ascending order, and identifying the 90th percentile MSD, the MSD that is larger than or equal to 90% of the MSD values generated.

Current BPTCP detectable difference (90th percentile MSD) values are listed in Table 6. Samples with toxicity test results lower than the values given, as a percentage of control response, would be considered toxic if the result was also significantly different from the control in the individual t-test.

Species	Name	MSD	% of Control	N	Reference
Cd	Cerio. surv.	20	80		Thursby et al 1997
Cd SWI	Cerio. SWI	20	80		Thursby et al. 1997
Ee	Eohaustorius	25	75 -	385	MPSL*
Ha	Hyalella	20	80		Thursby <i>et al</i> . 1997
Hr	Abalone (5 reps)	10	90	131	MPSL*
Hr	Abalone (3 reps)	36	64	336	MPSL*
Hr	Abalone (all reps)	32	68	467	MPSL*
Me	Mytilus	20	80	223	MPSL*
Na Sv	Neanthes surv.	36	64	335	MPSL*
Na Wt	Neanthes wt.	56	44	335	MPSL*
Ra	Rhepoxynius	23	77	720	MPSL*
Sp Dev	Urchin dev. (5 reps)	22	78	309	MPSL*
Sp Dev	Urchin dev. (3 reps)	45	55	630	MPSL*
Sp Dev	Urchin dev.(all)	40	60	939	MPSL*
Sp Fert	Urchin fert.	12	88	79	MPSL*
SP SWI	Urchin SWI	41	59	109	MPSL*

Table 6. Ninetieth percentile MSD values used to define sample toxicity

*Unpublished data

Statistical Analyses

Relationships between toxicity and chemistry were investigated in a two-step process. Pearson correlation coefficients were determined for chemical variables to screen for multicolinearity within each group of analytes (i.e., metals and organics) (Tabachnick and Fidell, 1996). Covarying analytes (bivariate pearson correlation >0.6) were removed. Multiple regression was then used to test the degree of dependence of amphipod toxicity on grain size, TOC, and chemical concentrations. All data were transformed to meet assumptions of parametric tests by using log(x+1) or arcsine transformations when appropriate (Zar, 1984).

Chemical Specific Screening Values

Investigations of sediment chemistry and assignment of pollutant levels thought to have biological effects are incomplete without consideration of bioavailability. Tools to directly test biological effect, however (TIE, bioaccumulation analyses, etc.) could not be applied broadly in the BPTCP due to the expense of these types of analyses. Such studies are often best reserved for directed investigations of cause and effect after a screening effort has identified potential pollution problems. In order to evaluate larger numbers of samples for their potential for biological impact, sediment chemical concentrations were compared to published guideline values that compare pollutant concentration to concurrent biological effect. There have been several recent studies associating pollutant concentrations with biological responses (Long and Morgan, 1990; MacDonald, 1992; Long *et al.* 1998). These studies provide guidance for evaluating the degree to which sediment chemical pollutants levels are responsible for effects observed in a toxicity test. Reported values are based on individual chemical pollutants in sediments. Therefore, their application may be confounded when dealing with biological effects which could be attributed to a synergistic effect of low levels of multiple chemicals, unrecognized chemicals, or physical parameters in the sediment which were not measured.

The National Status and Trends Program has used chemical and toxicological evidence from a number of modeling, field and laboratory studies to determine the ranges of chemical concentrations which are rarely, sometimes, or usually associated with toxicity (Long and Morgan, 1992). Evaluation of available data (Long *et al.*, 1995) has led to identification of three ranges in concentration for each chemical:

- 1) Minimal Effects Range: The range of concentrations over which toxic effects are rarely observed;
- 2) Possible Effects Range: The range of concentrations over which toxic effects are occasionally observed,
- 3) Probable-Effects Range: The range of concentrations over which toxic effects are frequently or always observed.

Two slightly different methods were used to determine these chemical ranges. One method developed by NOAA (Long and Morgan, 1990; Long *et al.*, 1995) used chemical data which were associated with a toxic biological effect. These data were used to determine the lower 10th percentile of ranked data where the chemical level was associated with an effect (Effects Range-Low, or ERL). Sediment samples in which all chemical concentrations were below the 25 ERL values were not expected to be toxic. The Effects Range-Median (ERM) reflects the 50th percentile of ranked data and represents the level above which effects are expected to occur. Effects are expected to occur occasionally when chemical concentrations fall between the ERL and ERM. The probability of toxicity was expected to increase with the number and degree of exceedances of the ERM values.

Another method identifies three ranges using chemical concentration data associated with both toxic biological effects and no observed effects (MacDonald, 1992; MacDonald, 1994a,b; MacDonald *et al.*, 1996). The ranges are identified as TEL (Threshold Effects Level) and the PEL (Probable Effects Level). TEL values were derived by taking the geometric mean of the 50th percentile of the "no effects" data and the 15th percentile of the "effects" data. The PEL values were derived by taking the geometric mean of the 85th percentile of the "no effects" data and the 50th percentile of the "effects" data. Although different percentiles were used for these two methods, they are in close agreement, usually within a factor of 2. Values reported for both methods are shown in Table 7. Neither of these methods is advocated over the use of the other in this report. Instead, both are used in the following analysis to create a weight of evidence which should help explain toxicity observed from some sediments.

As a cautionary note; the degree of confidence which MacDonald (1994) and Long *et al.* (1995) had in their respective guidelines varied considerably among the different chemicals. High confidence is expressed in the ERM and PEL values derived for copper, zinc, total PCBs and PAHs. Relatively low confidence is expressed for the values for nickel, chromium, and DDTs.

	State of Florida		NOAA	
SUBSTANCE	TEL	PEL	ERL	ERM
Organics (ng/g- dry weight)				
Total PCBs	21.550	188.79	22.70	180.
PAHs				
Acenaphthene	6,710	88.90	16.00	500.0
Acenaphthylene	5.870	127.89	44.00	640.0
Anthracene	46.850	245.00	85.30	1100.0
Fluorene	21.170	144.35	19.00	540.0
2-methylnaphthalene	20.210	201.28	70.00	670.0
Naphthalene	34.570	390.64	160.00	2100.0
Phenanthrene	86.680	543.53	240.00	1500.0
Total LMW-PAHs	311.700	1442.00	552.00	3160.0
Benz(a)anthracene	74.830	692.53	261.00	1600.0
Benzo(a)pyrene	88.810	763.22	430.00	1600.0
Chrysene	107.710	845.98	384.00	2800.0
Dibenz(a,h)anthracene	6.220	134.61	63.40	260.0
Fluoranthene	112.820	1493,54	600.00	5100.0
Pyrene	152.660	1397.60	665.00	2600.0
Total HMW-PAHs	655.340	6676.14	1700.00	9600.0
Total PAHs	1684.060	16770.54	4022.00	44792.0
Pesticides				
p,p'-DDE	2.070	374.17	2.20	27.0
p,p'-DDT	1.190	4.77		
Total DDT	3.890	51.70	1.58	46.3
Lindane	0.320	0.99		
Chlordane	2.260	4.79	2.00	6.0
Dieldrin	0.715	4.30		8.0
Endrin				45.0
Metals (mg/kg- dry weight)				
Arsenic	7.240	41.60	8.20	70.0
Antimony			2.00	25.0
Cadmium	0.676	4.21	1.20	9.6
Chromium	52.300	160.40	81.00	370.0
Copper	18,700	108.20	34.00	270.0
Lead	30.240	112.18	46.70	218.0
Mercury	0.130	0.70	0.15	0.1
Nickel	15.900	42.80	20.90	51.6
Silver	0.733	1.77	1.00	3.7
Zinc	124.000	271.00	150.00	410.0

Table 7. Comparison of sediment screening levels developed by NOAA and the state of Florida

(1) MacDonald, 1994 (2) Long et al., 1995 (3) Long and Morgan, 1990

DDT and its metabolites must be considered carefully due to this lack of confidence in guideline values. Other authors (Swartz *et al.*, 1994, Chapman 1996) have expressed more confidence in total DDT values normalized to organic carbon content in the sediments. It is suggested that when the OC normalized DDT value is high enough, there is sufficient free DDT (unbound to organic carbon) to be available to aquatic organisms. Swartz (1994) reports decreased abundance of amphipods for total DDT values of about 100 μ g DDT/g OC from field samples. This normalized value has been used to calculate the total DDT quotient value (TTLDDTQE) in this report. The quotient value is expressed as: (TTL_DDT/TOC)/100, where TTL_DDT is the sum of the six DDT metabolites, TOC is the total organic carbon content of the sample, and 100 reflects the DDT/OC value reported by Swartz to be associated with biological effect.

Chemical Comparisons

Comparisons of the data to effects-based numerical guidelines were made to assess how sediment pollution in the Central Coast Region compares to sediment pollution on a national scale. These comparisons were made using summary ERM-quotients (ERMQ) and PELquotients (PELQ). Summary quotients were calculated by dividing chemical concentrations for pollutants in Table 7 by their respective ERM or PEL value, summing, and then dividing by the total number of chemicals used in the summation. In samples where levels of measured chemicals were below the analytical method detection limit (MDL), a value of one-half the MDL was used for summation. This was a simple approach for addressing overall chemical pollution where there were multiple pollutants at a station, and was in addition to the standard chemical by chemical approach discussed earlier. This approach considered not only the presence of guideline exceedances, but the number and degree of multiple exceedances.

This technique is useful for characterizing sediments in heavily urbanized and industrialized areas where chemical constituents can be numerous. In less heavily populated areas or where adjacent watersheds have fewer types of uses such as in agricultural areas, pollutants tend to be less varied. In this case, the quotient values may have limited utility because they tend to exclude stations where only a few chemical constituents are high and most others are well below the ERM or PEL value. The quotient value is therefore a useful comparative tool, but does not necessarily infer direct biological relevance.

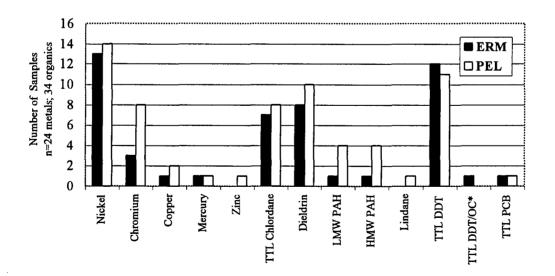
For the purposes of chemical comparison within the Central Coast Region, stations were singled out if they met any of the following criteria:

- 1. An ERMQ equal to or greater than the top 90th percentile for the Region.
- 2. Exceedance of ERM or PEL value.
- 3. An individual chemical level within the top 10% program wide for that chemical.
- 4. Any chemical concentration likely to cause biological effect by best professional judgement.

Quality Assurance/Quality Control

Summaries of quality assurance and quality control procedures are described under separate cover in the BPTCP Quality Assurance Project Plan (QAPP). This document describes procedures within the program which ensure data quality and integrity. Quality assurance procedures follow those of the NOAA Status & Trends (NS&T) program to ensure comparability with NOAA survey areas nationwide. In addition, individual laboratories prepare quality assurance evaluations of each discrete set of samples analyzed and authorized by task order. These documents were submitted to the CDFG for review, then forwarded to the SWRCB for further review.

RESULTS & DISCUSSION


Tabulated data for all chemical, benthic, and toxicological analyses are presented in the appendices. The summary data presented in the following results sections were used to demonstrate significant findings from the analysis of the full data set.

Chemistry Results

Chemical values in the region were wide ranging. Although chemical levels were seldom comparable to those in more heavily urbanized and industrialized areas, locally elevated levels of certain chemical groups were apparent. When chemical analysis was done, an attempt was made to focus analysis on those chemicals presumed by previous studies to be of concern in the area. The chemical dataset therefore is seldom comprehensive in that one or more classes of chemicals may have been omitted from analysis. Twenty one samples of 87 collected received metals analysis, 34 received pesticide, PAH and PCB analyses.

Primary Chemicals of Concern

Primary chemicals of concern are those chemicals for which elevated levels were seen in wide ranging areas of the region. Chemicals with less widespread distribution are discussed on a station by station basis. The chemicals most often exceeding guideline values were chlordane, dieldrin, PAHs, chromium, nickel, and DDT and its metabolites. A summary of ERM and PEL sediment quality guideline exceedances by chemical is given in figure 2.

Figure 2. Number of samples exceeding guideline values.

(Chemicals with no exceedances are not shown)

*DDT value normalized to 100 µg/kg organic carbon.

Chlordane

Chlordane is a multipurpose insecticide that has been used extensively in home and agricultural applications for the control of termites and other insects. Although use of this compound ended in the mid-70s, its persistence in sediments of the region is apparent. Total chlordane is the summation of major constituents of technical grade chlordane and its metabolites (Appendix C Section IV). Chlordane is still present in the soils and sediments of many areas. Presumably it is washed from soils during rain events and travels down stormdrains, streams, and rivers to be deposited in nearshore areas. In areas with little or only seasonal flushing by the ocean, chlordane and other pollutants can accumulate in the sediment. Areas prone to such deposition include bays, harbors, estuaries and coastal lagoons.

Total chlordane was found at levels exceeding the ERM in two locations in Santa Cruz Harbor (35001 & 35002), and on two separate sampling occasions at the Sandholdt Bridge station (30007). Four stations in the Tembladero watershed study also exceeded guideline values for chlordane including the Sandholdt Bridge station. The highest value in the region was measured at Santa Cruz Yacht Basin-A9 (35002) which exceeded the ERM of 6.0 ppb by over four times. Eight of the 34 stations analyzed for chlordane exceeded the PEL (4.79ppb) and seven exceeded the ERM. Distribution of chlordane in sediment samples throughout the region is shown in figure 3a-c.

Dieldrin

Dieldrin is also common in sediments in the region. Its use was banned in 1984 except for subsurface termite control and other limited uses, but it persists in soils and sediments from earlier applications. Six of the seven stations sampled in the Tembladero watershed study were within the top ten percent of stations sampled program-wide for this chemical. Sediment in the Santa Maria River Estuary (30020) also had a dieldrin concentration above the ERM value. Figure 4 shows the distribution of elevated dieldrin levels in sediment samples in the Central Coast region.

This pattern of distribution for dieldrin is consistent with its agricultural applications, but for some locations urban sources may exist as well. One of the highest values measured in the region was from the Upper Tembladero-Salinas City (36004) station, a drainage close to a large urban area. Since the Tembladero Slough flows through the city of Salinas on its way to this station, and the watershed above the city is largely agricultural, it is impossible to identify individual source types with the current information.

<u>PAHs</u>

Polycyclic (polynuclear) aromatic hydrocarbons (PAHs) are base/neutral organic compounds with a fused ring structure of two or more benzene rings. They are components of crude and refined petroleum products and are also products of incomplete combustion of organic materials. Exposure to PAHs may result in a wide range of carcinogenic, teratogenic and mutagenic effects to terrestrial and aquatic organisms (Eisler, 1987). Due to their similar modes of toxic action, individual PAHs are often grouped into low and high molecular weight compounds for concise reporting purposes. Individual PAHs used for the summations of low and high molecular weight PAHs in this report are given in Appendix C -Section X. Concentrations of high molecular weight PAHs'exceed the PEL (>6676.14 ng/g) or ERM (>9600 ng/g) at the Monterey boatyard 35003 (ERM), the Monterey Yacht Club 30002 (ERM), Upper Tembladero-Salinas City 36004 (PEL) and Santa Cruz Yacht Basin 30001 (ERM). A summary of the number of exceedances and their locations is shown in figure 5.

The distribution of PAHs in the region is consistent with their presence in petroleum products and as a combustion product. Harbors and populated urban areas are common places to find this type of chemical pollutant. In the Central Coast region, both Santa Cruz and Monterey Harbors exhibited various exceedances of guidelines for these chemicals. In Morro Bay, however, two stations (Morro Bay 30024, and Morro Bay Mid Bay 30029) did not exceed guideline values for PAHs. The remaining stations in Morro Bay (Fuel Dock 30033, and Morro Bay-South Bay 30025), and in Santa Barbara Harbor (30003) received no chemical analyses.

Other Chemicals

DDT and its metabolites were found in most sediments of the region. The historical widespread use of DDT is well known. The pesticide is present in soils and sediments of most areas as a result of this ubiquitous use. The presence of these chemicals in marine environments has long been known in areas such as Moss Landing Harbor, where sediment containing DDT is deposited by seasonal runoff (Rasmussen 1996). Sediment values measured at Santa Maria River Estuary (30020) and Upper Tembladero/Salinas City (96004) were among the highest five percent program-wide. Of the thirty four stations that received pesticide analysis, eleven exceeded the ERM and fourteen exceeded the PEL for total DDT or at least one of its metabolites.

Various authors have expressed low confidence in the ERM and PEL values for DDT. (Mac Donald 1994, Long *et al.* 1995). Values normalized to organic carbon content have produced more consistent relationships between toxicity and pollutant content. Chapman. (1996) Swartz *et al.* (1994) have expressed confidence in OC normalized thresholds of between 100 and 200 mg DDT/kg OC dry weight. Although many stations in the region exceeded previously established ERM or PEL values, only Santa Maria River Estuary (30020) exceeded the OC-normalized value adopted in this study, 100mg DDT/kg OC. The relevance of DDT cannot be dismissed, however, especially in light of studies in which DDT has been shown to be bioavailable (Stephenson et al. 1995,). Indeed, regression analysis results in this study suggest that given appropriate replication, clear relationships between DDT and toxicity might be revealed.

Nickel and chromium are found throughout the region, but their presence is often thought to be geologic in origin (NOAA 1994, Mearnes and Young, 1977, Cornwall 1966). The high likelihood of natural sources coupled with a low confidence in the ERM and PEL values for these chemicals (Long *et al.*, 1998) give them lower weight compared to other unquestionably anthropogenic chemicals. Thirteen of 21 samples analyzed for nickel and chromium in the Central Coast Region exceeded the PEL for one or both. This is the largest number of exceedances per number of analyses.

Copper, mercury, zinc, lindane and PCBs were also found at levels exceeding guideline values at several stations in the region but may be only a localized concern.

Copper is a broad spectrum biocide which may be associated with acute and chronic toxicity, reduction in growth, and a wide variety of sublethal effects. Copper was found locally in excess of the ERM and PEL at Santa Cruz Yacht Basin (30001) and greater than the PEL only at Monterey Yacht Club (30002). Considering the historical use of copper based anti-fouling paint, this distribution pattern is not surprising.

Zinc is commonly used in marine applications for corrosion control and is common in sediments in many boat harbors statewide. Zinc levels greater than the PEL were measured in sediment from Monterey Yacht Club (30002). No ERM exceedences were measured in the region.

Mercury, particularly methylmercury, is highly toxic to aquatic biota. Although there is variability in sensitivity of different organisms to the substance, bioaccumulation of mercury in aquatic species has significant implications with respect to human health. ERM and PEL exceedances of mercury were found at Santa Cruz Yacht Basin (30001).

PCBs are base/neutral compounds, formed by direct chlorination of biphenyl. There are 209 numerically designated individual compounds, called congeners (*i.e.*,, PCB #101), based on the possible chlorine substitution patterns. Mixtures of various PCB congeners have been manufactured in the U.S. since 1929 (Phillips, 1987) and are used commercially under the trade name Aroclor. Each PCB mixture has a number designation (*i.e.*,, Aroclor 1254) with the last two numbers indicating the percentage of chlorine in the mixture. PCB mixtures were used extensively in the U.S. prior to 1979 for industrial applications which required fluids with thermal stability, fire and oxidation resistance and solubility in organic compounds (Hodges, 1977). PCBs have proven to be extremely persistent in the environment and have demonstrated a variety of adverse carcinogenic and non-carcinogenic effects (USEPA, 1993c). These substances have a high potential to accumulate in the tissues of aquatic organisms and can represent significant hazards to consumers of aquatic species (Moore and Walker, 1991). Total PCB (the sum of 18 congeners, Appendix C - Section IX) was used as the comparative value and is the only value for which a PEL and ERM are presently available. PCB levels exceeded the ERM at Santa Cruz Yacht Basin (30001).

Many chemicals were analyzed for which no guideline values have been developed. These chemicals include various metals, tributyltin (TBT), and some pesticides. To compare the regional dataset with that of the entire state, those stations showing a chemical value in the ninetieth percentile program wide for these chemicals were considered to have elevated chemistry. None of these chemicals were found commonly throughout the region, however, so they will be discussed as they relate to individual stations.

Fish Tissue Chemistry

Screening values for pollutants in fish tissue were taken from USEPA guidance documents (USEPA 1995b). No fish tissue chemical concentrations were in exceedance of these guidance values. Among the chemicals that were found at detectable levels were: total DDT, chlordane, dieldrin, toxaphene, and total PCBs. Since fish were combined into a single composite sample for each species, there is no replication within species. Therefore data from these analyses are simply reported in appendix C, sections VIII-X

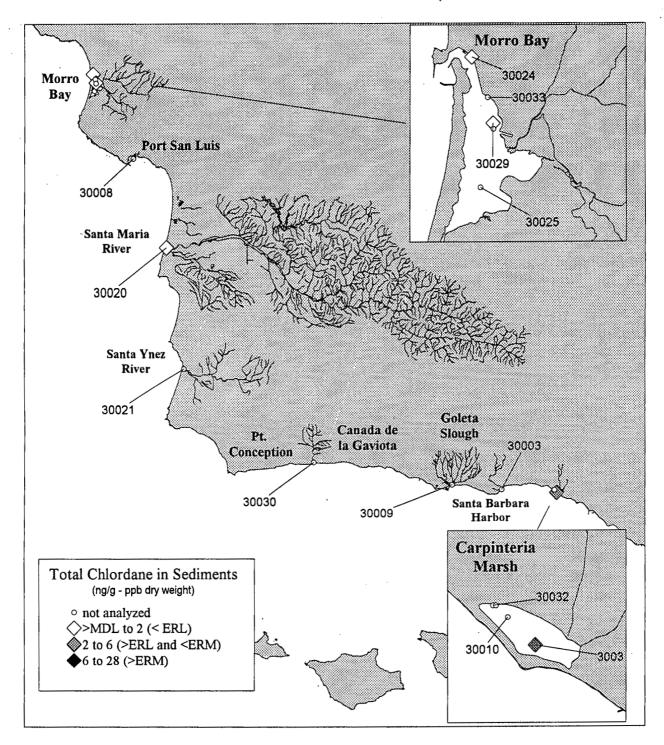


Figure 3a. Total chlordane in sediments.

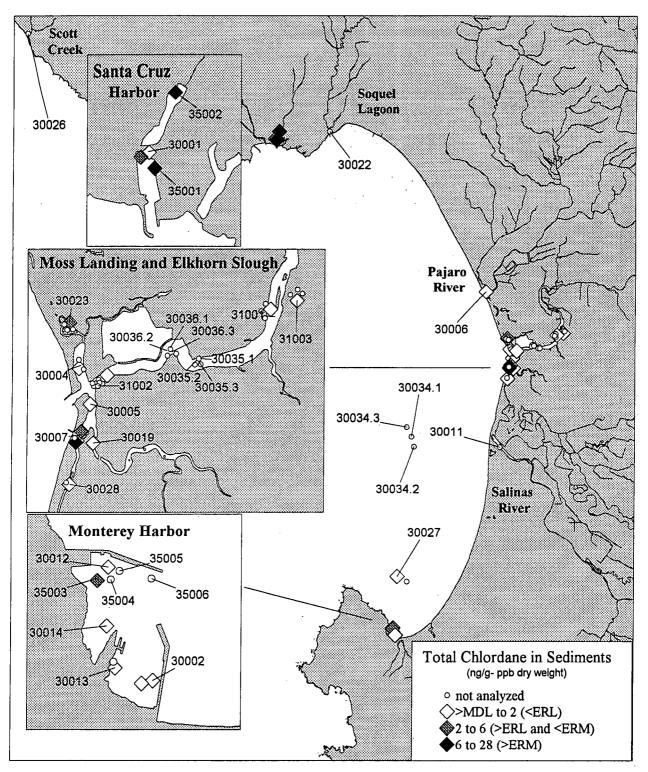


Figure 3b. Total chlordane in sediments.

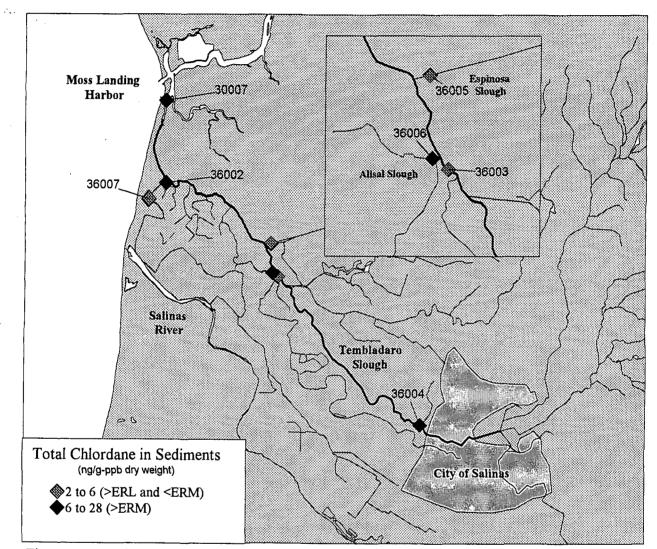
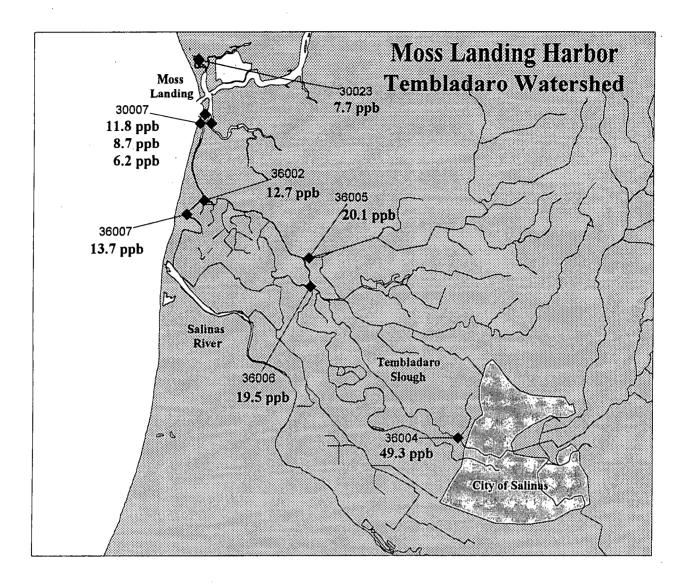



Figure 3c. Total chlordane in sediments.

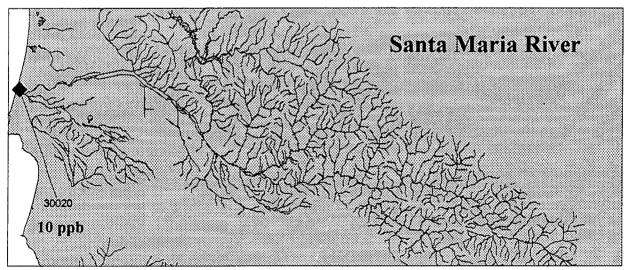


Figure 4. Dieldrin concentrations in sediments which exceed the PEL guideline value of 4.3 ppb.

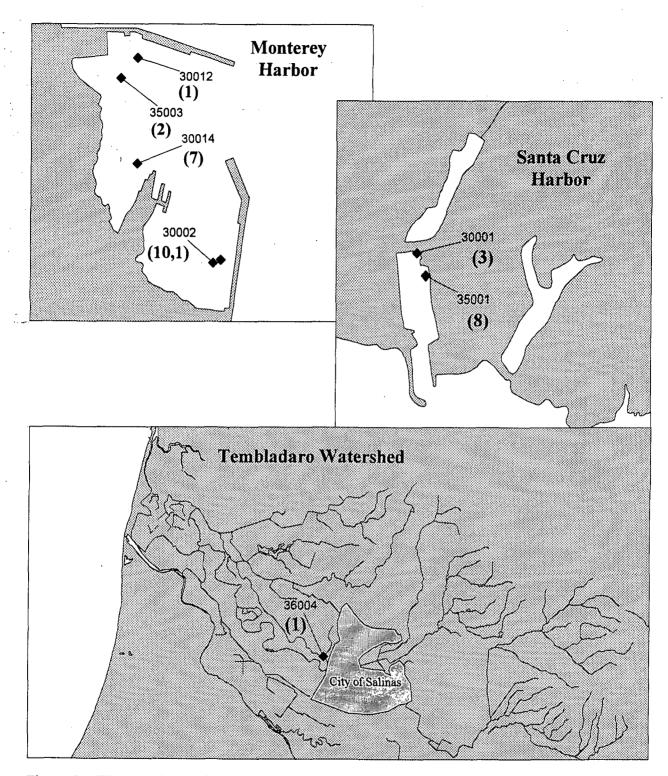


Figure 5. PEL exceedances for PAHs [() = number of exceedances at the station]. Refer to Table 14 for list of exceedances.

Chemical Summary Quotients

Long *et al.* (in press) examined the use of sediment quality guidelines and the probability of toxicity being associated with summary quotient ranges. This extensive national study developed four sediment categories to help prioritize areas of concern based on the probability of the association of toxicity with summary quotient and ERM/PEL guideline exceedances. Medium-high and highest priority stations had ERM quotients >0.51 or PEL quotients >1.51. The probability of associated amphipod toxicity in this range was 46%. Stations with ERM quotients <0.5 or PEL quotients <1.5 were assigned to lower categories because the probability was less than 30%.

It should be noted here that quotient values in the Central Coast region were calculated differently than in Long *et al.* As discussed previously, DDT values were normalized to organic carbon content and scaled to values reported by Swartz *et al.* (1994). Additonally, sums of high and low molecular weight PAHs were used in this study rather than individual PAH values used by Long *et al.* These differences will affect the quotient, sometimes producing a dramatically lower value than the technique Long *et al.* employed. Because so many high DDT values were encountered in samples in the Central Coast Region, use of the values for broader scale comparisons may be particularly inappropriate. Detailed descriptions of the methods used to calculate the ERMQ and PELQ are offered in Appendix C section VII.

Twenty-one samples had sufficiently complete chemical analyses from which to calculate ERM and PEL summary quotients. The mean quotient values for these stations were 0.179 (ERM) and 0.308 (PEL). The highest ERM and PEL quotient values were seen at Santa Cruz Yacht Basin (0.447 and 0.735 respectively), Monterey Yacht Club (0.421 and 0.720), and Santa Maria River Estuary (0.367 and 0.491). The ninetieth percentile ERMQ and PELQ for the Central Coast region were 0.402 and 0.662 respectively.

These values are lower than those calculated for many more urbanized areas such as San Diego Bay or Los Angeles Harbor (Fairey *et al.*, 1996, Anderson *et al.* 1997). By comparison, the program-wide 90th percentile ERMQ and PELQ were 1.11 and 1.52. It should be noted, however, that these numbers do not reflect a random distribution of sites. Sampling has been understandably focused on more populated areas such as San Diego bay and Los Angeles Harbor. In addition, sediment samples with many low level concentrations of pollutants tend to produce higher ERMQ values than stations with only a few high concentrations. Therefore, values listed above are not necessarily good benchmarks for all regions in the State.

Summary quotients proved useful in areas such as San Diego Bay where sediments often showed complex mixtures of chemicals (Fairey *et al.* 1996). In less heavily populated areas such as the Central Coast Region, however, pollutants tend to be fewer in number. In these areas, individual chemicals may be present at high concentrations, but the summary quotient value can still be relatively low if other measured chemicals are in low concentrations. The higher values reported in other areas of the state often reflect more complex mixtures of pollutants. The values are useful, however when comparing the overall degree of pollution within the Region. Summary quotients provide a means of comparison independent of pollutant type.

Table 8 lists the chemical summary quotients for the 21 stations in the Central Coast Region for which data were complete enough to calculate the values. Those stations with many guideline exceedances usually produce the highest summary quotient values, although some stations such as Santa Maria River Estuary produce relatively high values with only a few chemical guideline exceedances.

STANUM	STATION	ERMQ	PELQ
30001.0	Santa Cruz Yacht Basin	0.447	0.735
30002.0	Monterey Yacht Club	0.421	0.720
30020.0	Santa Maria River Estuary	0.367	0.491
30014.0	Monterey Stormdrain No. 3	0.281	0.454
30007.0	Sandholdt Bridge	0.240	0.385
30023.0	Bennett Sl./Estuary	0.209	0.355
30024.0	Morro Bay	0.208	0.448
30012.0	Monterey Boatyard	0.175	0.275
30029.0	Morro Bay-Mid Bay	0.165	0.365
30006.0	Pajaro River Estuary	.0.149	0.267
30004.0	M.L. Yacht Harbor	0.137	0.245
30019.0	Moro Cojo Slough	0.130	0.233
30028.0	Elkhorn Sl. Portrero Ref.	0.122	0.218
30031.0	Carpinteria Marsh-2	0.108	0.168
31001.0	Egret Landing- Ref	0.102	0.181
30013.0	Monterey Stormdrain No.2	0.099	0.170
30005.0	M.L. South Harbor	0.094	0.169
31002.0	Highway 1 Bridge- Ref	0.089	0.185
31003.0	Andrews Pond- Ref	0.088	0.166
31003.0	Andrew's Pond Ref.	0.087	0.147
30027.0	Monterey Bay Ref. South	0.046	0.084

Table 8. Chemical Summary Quotient Values

Toxicity Results

Amphipod survival (*Rhepoxynius abronius* or *Eohaustorius estuarius*) was significantly reduced in various areas throughout the region (Figures 6a-c). Of 82 samples on which toxicity tests were run, 52 produced at least one positive toxic result. Thirteen different toxicity test protocols were used in various combinations during the course of the study, each with unique sensitivities to pollutants and physical factors. A summary of toxicity results is given in Table 10.

Bedded sediment tests with amphipods were the most widely used in the region and provide the most comprehensive data set for comparisons of toxicity among stations. Other tests (urchin and abalone development, urchin fertilization, *Neanthes* weight gain and survival, sediment/water interface tests, etc) were employed as necessary. Abalone development was consistently inhibited in 100% and 50% porewater concentrations, even in samples from sites presumed to be clean (e.g., Monterey Bay Reference 30034). This suggests that the test may be sensitive to unmeasured factors.

Four samples had exceedances of cutoff values for ammonia. Two of these samples IDORG 507, from Sandholdt Bridge 30007 on 12/21/92 and 1374, from Highway One Bridge 31002 on 6/15/94 showed no toxic result. Sample IDORG 1597, from the Sandholdt Bridge 30007 on 5/9/96 had an ammonia value greater than the test threshold level for urchin development and showed a toxic result in both the urchin development SWI test and a bedded sediment *Eohaustorius* test for which no thresholds were exceeded. Sample IDORG 1368, field replicate number one from Bennet Slough 30023.1 on 6/16/94, exceeded the ammonia value for the *Rhepoxynius abronius* bedded sediment test and showed a toxic result. The two other field replicates at this site also produced toxic results but had ammonia values within acceptable ranges. There were no exceedances of hydrogen sulfide thresholds.

Exceedance of ammonia cutoff values should not disqualify toxicity results from consideration, however. These levels are designed to provide additional information on the confidence in results from individual samples and tests.

Urchin fertilization toxicity tests on pore water were not included in comparisons due to methodological discrepancies. When tests were performed on frozen samples and controls, controls failed, making comparison impossible. Because all pore water samples for fertilization tests were stored frozen in Teflon bottles, we have no assurance the data from any of these fertilization tests are truly indicative of sample toxicity. Any toxicity observed in the fertilization tests may have been wholly or partially due to storage effects. Changes in accepted methodology regarding extraction and storage were adopted but the urchin fertilization protocol was not used again in the region. For these reasons, there is little confidence expressed in results from this test. The data are reported in appendix E section V.

Controls for the storage effects of frozen pore water samples in Teflon bottles were included in later tests. These additional controls, which were not required by the original QAPP, indicated that toxicity may be associated with frozen sample storage in Teflon bottles. Because all pore water samples for fertilization tests were stored frozen in Teflon bottles, we have no assurance the data from any of these fertilization tests is truly indicative of sample toxicity. Any toxicity observed in the fertilization tests may be wholly or partially due to storage effects. For this reason, the urchin fertilization test was replaced with the sea urchin larval development test, unless those samples had already been tested with the development test which has been unaffected by storage artifacts, as indicated by response in frozen storage bottle controls. While sea urchin fertilization data are reported in appendix E section V, they were not used in any further data analysis for this report. The use of fertilization data, for determination of toxicity, was therefore not considered prudent considering the possibility of false positive results related to sample storage.

Except as discussed above, all samples were within acceptable ranges of control criteria for most assessment and reporting purposes. No major exceedances of control criteria requirements occurred.

Statistical relationships

Pearson correlation was used to screen for co-varying chemicals which were withdrawn from analysis. The remaining variables (all $\log (x+1)$ transformed) iron, cadmium, copper, total DDT,

total chlordane, and low molecular weight PAH, were used as independent variables along with grain size (arcsine transformed) and TOC (arcsine transformed) in a multiple regression. The results of the ANOVA for the multiple regression revealed no significant relationship between amphipod survival and the independent variables (p=0.105, Table 10). Total DDT was negatively correlated with amphipod survival (std. coefficient = -0.657), however the relationship was not significant (p=0.061). Normalizing total DDT to TOC did not improve this relationship. Tabachnick and Fidell, (1996) recommend an N of five per variable as a rule of thumb. The available dataset had only 21 stations available for the eight variables. Larger sample sizes might have produced significant relationships, especially in the case of DDT.

Because of large variances and relatively small sample sizes, regression analysis of chemical content versus toxic response showed no significant relationships. A region-wide evaluation of toxicity as a function of priority pollutant concentrations was therefore impossible with the current data set.

		Std	Std			
Effect	Coefficient	Error	Coefficient	Tolerance	t	_p (2 Tail)
CONSTANT	34.6	114.12	0.0	-	0.303	0.767
fines	-0.36	0.39	-0.383	0.199	-0.93	0.37
total organic carbon	-2.96	1.55	-0.434	0.652	-1.907	0.081
iron	6.00	12.17	0.189	0.231	0.493	0.631
cadmium	8.70	20.49	0.114	0.473	0.425	0.679
copper	2.11	7.70	0.123	0.168	0.274	0.789
total chlordane	3.29	11.11	0.065	0.693	0.296	0.772
total DDT	-8.73	4.22	-0.657	0.335	-2.067	0.061
LMW PAHs	0.98	5.33	0.084	0.163	0.184	0.857

 Table 9. Multiple regression; Amphipod survival on chemical and physical variables.

Dep. Var: Amphipod survival N:21 Multiple R: 0.771 Squared Multiple R: 0.595

Adjusted squared Multiple R: 0.324 Standard error of estimate: 14.086

a a aa 10 i			
Source Sum-of-Squares df	Mean-square	F-ratio	р
Regression 3493.69 8	436.7	2.201	0.105
Residual 2381.12 12	198.42		

naturia of Varianas

Although some relationships are negative as might be expected (e.g., total DDT std. coefficient = -0.657), the relationship is not significant. (p = 0.061). This value is nearly significant, however, suggesting that greater replication might reveal statistically significant relationships.

Table 10. Summary of Toxicity Results

Table I	5. Summary of Toxicity Rest		Amphipod	Neant	har	swi		ore water develo	ment		Subrur	face water te	ete
STANUM	STATION	IDORG		NASURV				IEP100 HRP10		HEP25		IRS100 CDS	
30034	Monterey Bay Reference	100	77	14100101	14101	01.01	STIDIO N	100 1110 10	0	67	MLSIOV I		
30034	Monterey Bay Reference	101	71					Ő	0	67			
30034	Monterey Bay Reference	102	71					0	0	65			
30027	MONTEREY BAY REF. SOUTH	527	97	96	8			0		05		97	
30027	MONTEREY BAY REF. SOUTH	1323	94	100	9							91	- 1
50027	MONTERET BAT REF. SOUTH	1 1525	74	. 100	,								
30035	Elkhorn Slough- Seal Point	130	78		- 1			i mere e se	81	89	~		
30035	Elkhorn Slough- Seal Point	130	75					5.7		17			
30035	Elkhorn Slough- Seal Point	131	74							and the second se			
30035	Elkhorn Slough- Seal Bend	132	82					. 0	81 95	87 97			
30036			67		i			29.					
	Elkhorn Slough- Seal Bend	134						44	96	98			
30036	Elkhorn Slough- Seal Bend	135	79	I				0.	98	98			
31002	HIGHWAY I BRIDGE REF	254	83	100									
1 1					20								
31002	HIGHWAY I BRIDGE REF	351	97	88	11								
31002	HIGHWAY I BRIDGE REF	352	77								76		I
31002	HIGHWAY I BRIDGE REF	675	90		-		26	66					
31002	HIGHWAY 1 BRIDGE REF	1327	90	100	9								
31002	HIGHWAY 1 BRIDGE REP1	1374	92 ¹	100	7								
31002	HIGHWAY 1 BRIDGE REP2	1375	87	100	8							•	
31002	HIGHWAY 1 BRIDGE REP3	1376	87	100	9								
31001	EGRET LANDING- REF	251	64										
31001	EGRET LANDING REPI	1371	78	100	8						1		
31001	EGRET LANDING REP2	1372	69	100	7								
31001	EGRET LANDING REP3	1373	53	96	8						l		
31003	ANDREWS POND- REF	258	.9				0,						
31003	ANDREW'S POND REF.	451	-48				90						
31003	ANDREWS POND REPI	1377	67	100	7								
31003	ANDREWS POND REP2	1378	56	100	8								
31003	ANDREWS POND REP3	1379	39	100	8	L							
	· · · · · · · · · · · · · · · · · · ·												
30028	ELKHORN SL. PORTRERO REF.	528	84	76	6			75					
30028	ELKHORN SL. PORTRERO REF.	1325	83	84	7								
		1					<u> </u>						
30004	M.L. YACHT HARBOR	504	56	96	9		90					98	
30004	M.L. YACHT HARBOR REPI	1362	84	100	9		1						
30004	M.L. YACHT HARBOR REP2	1363	83	100	10		1						
30004	M.L. YACHT HARBOR REP3	1364	90	100	9	I							
30005	M.L. SOUTH HARBOR	505	74	100	9	I	69					97	
	·		Trans to the second s										
30007	SANDHOLDT BRIDGE	507	62	96	7		. 16	_				97 ¹	
30007	SANDHOLDT BRIDGE REPI	1365	39	100	9								
30007	SANDHOLDT BRIDGE REP2	1366	72	100	8								
30007	SANDHOLDT BRIDGE REP3	1367	78	96	9								
30007	SANDHOLDT BRIDGE	1597	0			531					89		
30007	SANDHOLDT BRIDGE	1762	0				1						100
36002	TEMBLADERO MOUTH	1763											100
36003	CENTRAL TEMBLADERO	1764	90			1	l.					24	
36004	UPPER TEMBLADERO- SALINAS CIT	1765		ļ		1	1					4	
36005	ESPINOSA SLOUGH	1766	Ő			1					1	10	
36006	ALISAL SLOUGH	1767	92	1		1						94	
36007	OLD SALINAS RIVER CHANNEL	1768		1		1				•			, 100
	OLD SALINAS RIVER CHANNEL	1 1/00		.i		L	L				I		100

54

TANUM	67. mars	unce ?	Amphipod		nthes	SWI	anne	Pore water development	Subsurface water tests
	STATION					SPDI		MEP100 HRP100 HRP50 HRP2	
30019	MORO COJO SLOUGH	519	67	64	4		0.23		95
30019	MORO COJO SLOUGH	1326	77	88	5	_	L		L
30023	BENNETT SL/ESTUARY	523	53	96	6		· · · · · · · · · · · · · · · · · · ·		98
			56 ¹		7				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
30023	BENNETT SL./ESTUARY REPI	1368	59	88					
30023	BENNETT SL/ESTUARY REP2	1369	65	100	8 9				
30023	BENNETT SL/ESTUARY REP3	1370		92	9		L		L
30002	MONTEREY YACHT CLUB	502	76	88	10		2		2 3
30002	MONTEREY YACHT CLUB	1596	90		10	30	*		
30012	MONTEREY BOATYARD	512	62	84	9	200-C	2		97
30013	MONTEREY STORMDRAIN NO.2	513	97	92	10		ō		95
30014	MONTEREY STORMDRAIN NO. 3	514	74	96	8			84	97
30013	MONTEREY STORMDRAIN NO.2	1324	59	100	7			•••	
35003	MONTEREY BOATYARD-LEAD 1	1591	96			47			
55005				I		25.77.883	L		· · · · · · · · · · · · · · · · · · ·
30006	PAJARO RIVER ESTUARY	506	65	64	4.		0.21		87
30011	SALINAS RIVER LAGOON	511	89				L I	0	86
30001	SANTA CRUZ YACHT BASIN	501	73	100	6		95		97
30001	SANTA CRUZ FACHT BASIN SANTA CRUZ YACHT BASIN	1588	91	100	D	86	20		97
30001	SANTA CRUZ FACHT BASIN	1288				80			
30022	SOQUEL LAGOON	522	91	1			1		74
							*		
30026	SCOTT CREEK #26B	526	93					71	84
30008	SAN LUIS HARBOR TRANS	508	94						87
30008 30008	SAN LUIS HARBOR TRANS SAN LUIS HARBOR TRANS	508 1328	94 88	100	8			115. s	87
30008	SAN LUIS HARBOR TRANS	1328	88	100	8				
30008 30024	SAN LUIS HARBOR TRANS	1328 524	88	100	8		[87
30008 30024 30025	SAN LUIS HARBOR TRANS MORRO BAY MORRO BAY-SOUTH BAY	1328 524 525	88 77 69	100	8				87 85
30008 30024 30025 30029	SAN LUIS HARBOR TRANS MORRO BAY MORRO BAY-SOUTH BAY MORRO BAY-MID BAY	1328 524 525 530	88 77 69 93	100	8				87 85 77
30008 30024 30025 30029 30033	SAN LUIS HARBOR TRANS MORRO BAY MORRO BAY-SOUTH BAY MORRO BAY-MID BAY MORRO BAY-FUEL DOCK	1328 524 525 530 534	88 77 69 93 69						87 85
30008 30024 30025 30029	SAN LUIS HARBOR TRANS MORRO BAY MORRO BAY-SOUTH BAY MORRO BAY-MID BAY	1328 524 525 530	88 77 69 93	100	8				87 85 77
30008 30024 30025 30029 30033 30029	SAN LUIS HARBOR TRANS MORRO BAY MORRO BAY-SOUTH BAY MORRO BAY-MID BAY MORRO BAY-FUEL DOCK MORRO BAY-MID BAY	1328 524 525 530 534 1329	88 77 69 93 69 96						87 85 77 87
30008 30024 30025 30029 30033	SAN LUIS HARBOR TRANS MORRO BAY MORRO BAY-SOUTH BAY MORRO BAY-MID BAY MORRO BAY-FUEL DOCK	1328 524 525 530 534	88 77 69 93 69						87 85 77
30008 30024 30025 30029 30033 30029	SAN LUIS HARBOR TRANS MORRO BAY MORRO BAY-SOUTH BAY MORRO BAY-MID BAY MORRO BAY-FUEL DOCK MORRO BAY-MID BAY	1328 524 525 530 534 1329	88 77 69 93 69 96						87 85 77 87
30008 30024 30025 30029 30033 30029 30020 30020	SAN LUIS HARBOR TRANS MORRO BAY MORRO BAY-SOUTH BAY MORRO BAY-MID BAY MORRO BAY-MID BAY MORRO BAY-HUEL DOCK MORRO BAY-MID BAY SANTA MARIA RIVER ESTUARY SANTA YNEZ RIVER ESTUARY	1328 524 525 530 534 1329 520 521	88 77 69 93 69 96					100	87 85 77 87 99
30008 30024 30025 30029 30033 30029 30020	SAN LUIS HARBOR TRANS MORRO BAY-SOUTH BAY MORRO BAY-SOUTH BAY MORRO BAY-MID BAY MORRO BAY-FUEL DOCK MORRO BAY-FUEL DOCK MORRO BAY-MID BAY SANTA MARIA RIVER ESTUARY	1328 524 525 530 534 1329 520	88 77 69 93 69 96 96					[[1]] [[1]] [[1]]	87 85 77 87 99
30008 30024 30025 30029 30029 30029 30020 30020 30021	SAN LUIS HARBOR TRANS MORRO BAY MORRO BAY-SOUTH BAY MORRO BAY-MID BAY MORRO BAY-FUEL DOCK MORRO BAY-FUEL DOCK MORRO BAY-HID BAY SANTA MARIA RIVER ESTUARY SANTA MARIA RIVER ESTUARY CANADA DE LA GAVIOTA (26d)	1328 524 525 530 534 1329 520 521 531	88 77 69 93 69 96 92 94 98					100	87 85 77 87 99 100
30008 30024 30025 30029 30033 30029 30020 30020	SAN LUIS HARBOR TRANS MORRO BAY MORRO BAY-SOUTH BAY MORRO BAY-MID BAY MORRO BAY-MID BAY MORRO BAY-HUEL DOCK MORRO BAY-MID BAY SANTA MARIA RIVER ESTUARY SANTA YNEZ RIVER ESTUARY	1328 524 525 530 534 1329 520 521	88 77 69 93 69 96					100	87 85 77 87 99 100
30008 30024 30025 30029 30029 30029 30020 30020 30021	SAN LUIS HARBOR TRANS MORRO BAY MORRO BAY-SOUTH BAY MORRO BAY-MID BAY MORRO BAY-FUEL DOCK MORRO BAY-FUEL DOCK MORRO BAY-HID BAY SANTA MARIA RIVER ESTUARY SANTA MARIA RIVER ESTUARY CANADA DE LA GAVIOTA (26d)	1328 524 525 530 534 1329 520 521 531	88 77 69 93 69 96 92 94 98					100	87 85 77 87 99 100
30008 30024 30025 30029 30029 30020 30021 300030 300030 300003	SAN LUIS HARBOR TRANS MORRO BAY MORRO BAY-SOUTH BAY MORRO BAY-MID BAY MORRO BAY-FUEL DOCK MORRO BAY-FUEL DOCK MORRO BAY-FUEL DOCK MORRO BAY-HID BAY SANTA MARIA RIVER ESTUARY SANTA MARIA RIVER ESTUARY CANADA DE LA GAVIOTA (26d) SANTA BARBARA HARBOR GOLETA SL.	1328 524 525 530 534 1329 520 521 531 503 503	88 77 699 93 699 96 24 94 98 174 92					100 100	87 85 77 87 99 100 100 85 100
30008 30024 30025 30029 30029 30020 30020 30020 30020 300030 300030 300030 300030 300030 300030 300030 300003	SAN LUIS HARBOR TRANS MORRO BAY MORRO BAY-SOUTH BAY MORRO BAY-MID BAY MORRO BAY-FUEL DOCK MORRO BAY-FUEL DOCK MORRO BAY-FUEL DOCK MORRO BAY-HID BAY SANTA MARIA RIVER ESTUARY SANTA MARIA RIVER ESTUARY CANADA DE LA GAVIOTA (26d) SANTA BARBARA HARBOR GOLETA SL. CARPINTERIA MARSH-1	1328 524 525 530 534 1329 520 521 531 503 509 510	88 77 699 93 609 96 21 94 98 74 92 73					100 100	87 85 77 87 99 100 100 85 100 99
30008 30024 30025 30029 30029 30020 30021 300030 300030 300003	SAN LUIS HARBOR TRANS MORRO BAY MORRO BAY-SOUTH BAY MORRO BAY-MID BAY MORRO BAY-FUEL DOCK MORRO BAY-FUEL DOCK MORRO BAY-FUEL DOCK MORRO BAY-HID BAY SANTA MARIA RIVER ESTUARY SANTA MARIA RIVER ESTUARY CANADA DE LA GAVIOTA (26d) SANTA BARBARA HARBOR GOLETA SL.	1328 524 525 530 534 1329 520 521 531 503 503	88 77 699 93 699 96 24 94 98 174 92					100 100	87 85 77 87 99 100 100 85 100

Shaded entries indicate toxic result i.e. less than MSD and significantly different from controls

¹ Sample exceeded ammonia threshold value for the test.

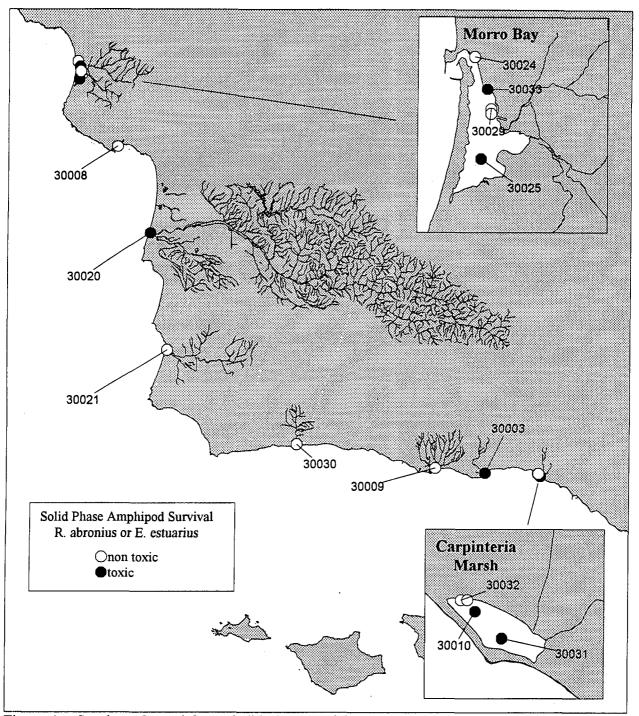


Figure 6a. Southern Central Coast Solid Phase Toxicity. Samples were toxic if significantly different from controls using a t-test and less than MSD based control value (see text for complete toxicity definition).

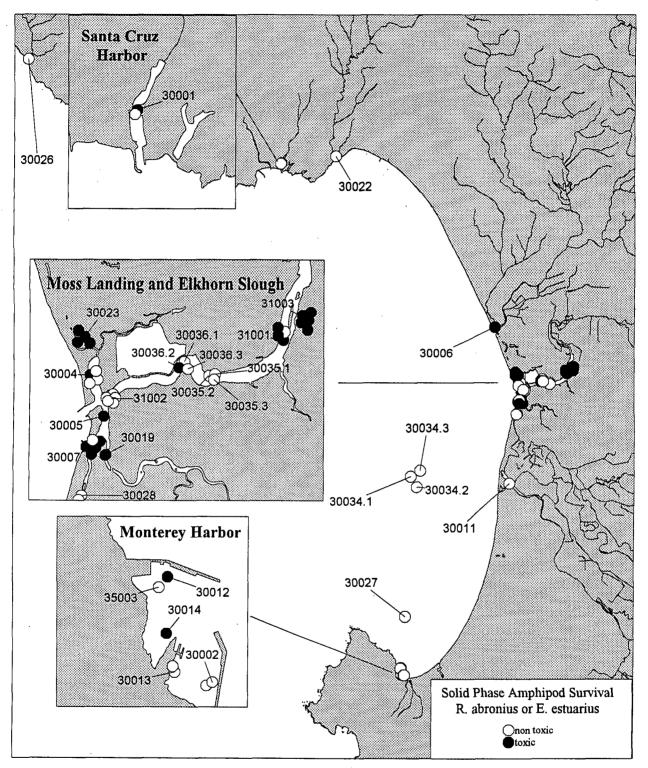


Figure 6b. Monterey Bay Solid Phase Amphipod Toxicity. Samples were toxic if significantly different from controls using a t-test and less than MSD based control value (see text for complete toxicity definition).

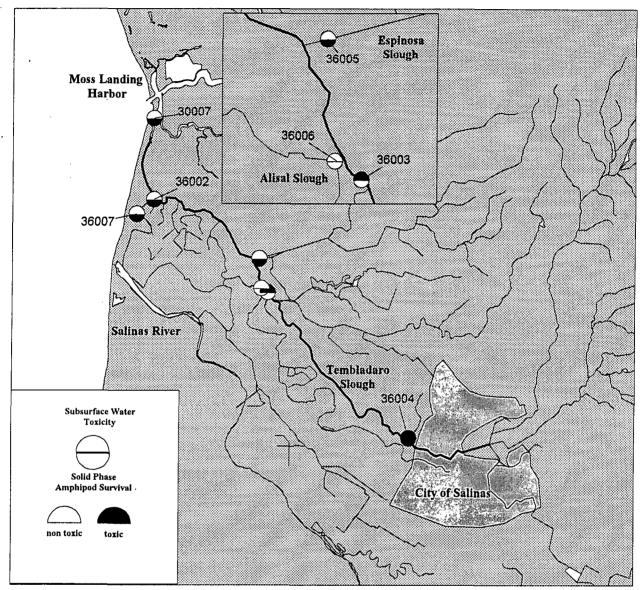


Figure 6c. Tembladaro Watershed Toxicity (see text for organisms used and toxicity definition).

SPECIAL STUDIES

Monterey Lead Study

Introduction

A large slag heap in Monterey Harbor, left from operations of the Southern Pacific Railroad in the area, was the presumed source of elevated lead levels found in shellfish in Monterey Harbor (Rasmussen 1996). The slag heap was removed in the late 1980s, but no comprehensive study of the residual effects on the sediments was done after cleanup. To assess the extent of any possible remaining contamination, a gradient study was designed using BPTCP collection and analysis protocols to identify elevated lead levels and associated bioeffects in the sediments near the slag heap and in other parts of the harbor.

Methods

Four stations were arranged with increasing distance at 0, 70, 120, and 280 meters from the historical location of the slag heap to represent a potential gradient of remaining lead contamination. Standard BPTCP protocols were used for the collection and chemical analysis of the sediments but lead was the only metal analyzed. At the closest station to the slag pile site, a full organic scan was performed on the sediments. A standard bedded sediment toxicity test (*E. abronius*) and a sediment/water interface test using sea urchin development were used to assess toxicity. Benthic community structure was also characterized at all four stations.

Results and Discussion

Lead levels showed a clear gradient outward from the site of the slag heap (90.1, 70.4, 32.6, 29.2 μ g/g with increasing distance). All the values measured were below the ERM and PEL guideline values, however. Toxicity and synoptic chemistry were only tested at the station with the highest lead concentration (35003). Amphipod survival was not inhibited in the bulk phase toxicity test for this station, but urchin development was inhibited in a sediment/water interface test. Other chemicals exceeded guideline values at this station, so it is impossible to attribute the toxicity results to lead alone. Guidelines exceeded at this station included PEL values for high and low molecular weight PAHs. No ERM values were exceeded.

Benthic community analysis revealed no clear patterns of degradation of benthos between the stations. Polychaetes were the most commonly found organism in the sediments of all four stations, followed by crustaceans. *Capitella capitata* is thought to be negative indicator species, commonly found in disturbed or polluted locations (Grassle and Grassle 1974, 1976, Oliver *et al.* 1977, Mc Call 1977, Pearson and Rosenberg 1978, Lenihan and Oliver 1995, Okey 1997). These polychaetes were found at all four stations along with positive indicator species commonly found in undisturbed areas such as *Tellina sp.* (Oliver *et al.* 1980), *Ampelisca sp.* (Mills 1967, Oliver *et al.* 1983, 1984, Oliver and Slattery 1985) and *Macoma sp.*, (Reid and Reid 1969, Oliver *et al.* 1977)

Lead was not present in surficial sediments at levels thought to be acutely toxic, but levels are higher in the Monterey Harbor area than in any other location measured in the Central Coast region. Sediments in this area relatively coarse-grained (17% fines). This often suggests that the area is dynamic and that fine grained sediments are frequently resuspended and transported away. Sediments of this type are far less frequently toxic in bedded sediment tests than finegrained depositional sediments. For this reason, other tests such as bivalve bioaccumulation may be more appropriate measures of biological effect related to lead and other pollutants at this site.

Tembladero Drainage Pilot Watershed Study

Introduction

Water and sediment quality of the Tembladero Slough are thought to be degraded by agricultural and urban runoff. The areas adjacent to the slough are some of the most heavily used agricultural lands in California. While pollutant levels in sediment near the Sandholdt Bridge station in Moss Landing Harbor have presented problems for dredge spoil disposal, no comprehensive data exist for pollutant levels in the watershed itself. Without a complete analysis of upstream sediments and water, a full understanding of the influence of this watershed on downstream areas is difficult. This study was designed to characterize the pollutant loading and toxicity of various sub-drainages of the watershed which may contribute to the pollution levels and toxicity effects seen in the lower watershed and Moss Landing Harbor.

Toxicity and bioaccumulation potential of the individual sub-drainages of this watershed were assessed using a combination of freshwater and marine sediment and water column toxicity tests as well as lipid filled semipermeable membrane devices (SPMD's). Additional intents of this study were to demonstrate the utility of a watershed approach to pollutant monitoring and to supply useful information to ongoing projects designed to prevent or minimize pollutant inputs to the system.

Methods

Unlike most systems under study in the BPTCP, the Tembladero drainage contains environments from fresh water to marine. Water column and sediment toxicity tests were selected so that comparisons could be made between environments of each type. Standard amphipod toxicity tests were run on bedded homogenized sediment samples using *Hyalella azteca* or *Eohaustorius estuarius*, depending on the salinity of the overlying water. Similarly, water column toxicity was tested using *Ceriodaphnia dubia* or *Holmsemysis costata*, depending on sample salinity. All toxicity tests were performed according to protocols described previously in this document. The suite of chemical analyses was chosen to focus on the organic compounds that were likely to be the major pollutants in the system, although AVS/SEM was also done on major metal pollutants.

Seven sampling stations were selected to characterize the Tembladero watershed (Figure 1d). These stations included areas with heavy agricultural and/or urban runoff, and downstream areas which integrate the inputs. The stations were located at major divisions of the watershed to characterize sub-drainages and facilitate identification of pollutant sources.

A watershed-wide water quality characterization including measurements of oxygen, conductivity, pH, temperature, turbidity (total suspended solids), hardness, and nitrates was used to classify inputs and potential degradation of the watershed. Since nitrate and pesticide levels often covary, this measurement helps screen areas of concern to direct further sampling. Turbidity was also measured to identify areas of erosion which may contribute to loads of pollutant laden sediments. Sediment samples were collected using standard BPTCP protocols to measure chemistry and toxicity of depositional sediments.

One large sediment sample (30-401) was collected at the Sandholdt Bridge station for TIE analysis. This analysis links chemistry measurement to toxic effect and better documents the impact of pollutants on the watershed and Bay. A large (5 l) water sample was taken from the Upper Tembladero-Salinas City (36004) station for water TIE. The use of a TIE analysis will help coordinate efforts between this study and the State Water Resources Control Board Marine Bio-Assay study by providing a test bed for TIE protocols and supplying useful causal information related to pollutant levels in the watershed.

In addition to standard collections of sediment and subsurface water, field water quality measurements were taken for dissolved oxygen, pH, and turbidity. Nitrate analysis was done on subsurface water samples. Lipid filled semipermeable membrane devices (SPMD's) were deployed at the same stations to measure organic pollutant loading in the water. A summary of analyses by station is included in Table 1. Field water quality measurements are given in Table 13.

Sediment samples were handled as per the BPTCP protocols and delivered to the BPTCP analysis facilities (Granite Canyon Toxicology Lab, and Long Marine Lab Trace Organics Lab). Based on results of previous Mussel Watch program data, trace metals are not thought to be as high a concern as pesticides and other organic substances in the watershed, and were not analyzed. Semipermeable membrane devices were submerged at sampling stations for one month and extracted by AST laboratories. Analysis of the extract was done at Long Marine Lab Trace Organics Lab.

TIE Methods

Porewater was extracted from sediment using a Beckman J6B refrigerated centrifuge as described in the methods section. Samples were extracted no more than 48 hours before the TIE procedures were begun. Subsurface water was handled in a similar fashion, except that no centrifugation was necessary.

Toxicity Identification Evaluations (TIEs) with *Eohaustorius* (Station 30007) Phase I TIEs are designed to characterize samples by isolating broad classes of compounds to determine their relationship to observed toxicity. Phase I TIE procedures include adjustment of sample pH, chelation of cationic compounds (e.g. many trace metals), neutralization of oxidants (such as chlorine), aeration to remove volatiles, inactivation of metabolically activated toxicants, solid-phase extraction (SPE) of non-polar organic compounds on C-18 columns, and subsequent elution of extracted compounds. Each sample fraction in which classes of compounds have been removed, inactivated, or isolated, is then tested for toxicity. All TIE procedures followed methods developed by USEPA (1996). Tests were done with *Eohaustorius estuarius* held in home sediment until applied to treatment solutions. Treatment solutions (sample fractions) were divided into 15 replicate 20-mL scintillation vials (15-mL of solution), with one amphipod placed in each vial. Each sample was tested at three dilutions. The sample underwent TIE treatment prior to being diluted with one micron-filtered Granite Canyon seawater (adjusted to the appropriate salinity) that had also undergone TIE treatment. Testing sample dilutions provides information on the degree of sample toxicity. TIE treatments are described as follows:

Baseline – Sample was tested with no treatment but dilution within the range where effects were seen in the initial toxicity test

EDTA Chelation - Addition of EDTA binds cationic trace metals, such as copper, cadmium, mercury, zinc, lead, nickel, and, to a lesser extent, silver and manganese, resulting in relatively non-toxic metal complexes (Hockett and Mount 1996). EDTA was added to the sample for a final concentration of 100-mg/L. The sample was allowed to interact with EDTA for three hours before the pH was adjusted with sodium hydroxide. The pH was checked prior to distributing sample into test containers.

Sodium Thiosulfate Addition - Addition of sodium thiosulfate (STS) reduces oxidants, such as chlorine, ozone, chlorine dioxide, mono- and di-chloroamines, bromine, iodide, manganous ions, and certain electrophylic organic chemicals (USEPA 1991). It also binds some trace metals, such as copper, cadmium, mercury, silver, and to a lesser extent, zinc, lead, and nickel (Hockett and Mount, 1996). STS was added to the sample for a final concentration of 100-mg/L. The sample was allowed to interact for one hour.

Aeration - Sample was aerated for one hour to remove volatile compounds.

Filtration - Sample was filtered through a 0.45- μ m glass fiber filter to remove toxicants associated with particulate material.

Solid Phase Extraction (SPE) - Solid-phase extraction through a C-18 SPE column was used to remove a range of non-polar organic compounds from sample solutions. SPE columns later were eluted with 100% methanol to allow toxicity testing of compounds retained on the column. The sample was pumped through silicone tubing that had been cleaned by running 25-mL of distilled water followed by 25-mL of methanol through each tubing apparatus (but not through the column). The column was prepared by pumping 30-mL of methanol through it, followed by 50mL of distilled water. Next, laboratory dilution water was pumped through the column; the first 20-mL was discarded, and the remaining volume was kept as the column control solution. Finally, 350-mL of sample was run through the column; the first 20-mL was discarded, and the remaining volume collected as SPE treated sample. The column was kept wet until all sample had been passed through. The column was then run dry and air-dried with a syringe. With the stopcock tightly shut, 2-mL of 100% methanol was added to the column. The stopcock then was opened, and air was pumped into the column at 2-mL/min until the column was dry. Eluate was collected in a small vial. The 2-mL aliquot of eluate then was delivered into 350-mL of laboratory dilution water. Assuming that all non-polar organic constants from the sample were retained on the column (no breakthrough), and assuming that all of these compounds were then completely removed from the column in the methanol eluate, the eluate treatment (2-mL in 350mL) would contain the same concentration of these constituents as did the original sample. An eluate control consisting of 2-mL of methanol added to 350-mL of laboratory dilution water was tested with each C-18 eluate treatment.

After passing the sample through the C18 column, EDTA was added to the sample to mitigate possible toxicity in the event that both metals and organics were responsible for observed toxicity.

Piperonyl Butoxide (PBO) Tests - A number of organophosphate pesticides (phosphorothioate compounds such as diazinon, chlorpyrifos, malathion, parathion, methyl parathion and fenthion) require metabolic activation by exposed organisms before they become toxic. These activation reactions consist of oxidative metabolism by the cytochrome P-450 group of enzymes (USEPA. 1993b). This activation can be blocked by compounds, such as piperonyl butoxide (PBO), thereby reducing or eliminating toxicity due to this class of compounds.

In this study, PBO was added to test samples to determine whether metabolically activated pesticides were responsible for observed toxicity. Two point five-mL of 50-mg/L PBO stock solution was added to 250-mL of each sample (resulting in a concentration of 0.5-mg/L PBO). PBO controls were made by adding 20-mL PBO to 180-mL of laboratory dilution water.

Graduated pH - Adjusting sample pH can affect the toxicity of hydrolizable, ionic, acidic, or basic compounds. Sample pH was adjusted and maintained at pH 7, 8 and 9 by the addition of hydrochloric acid and sodium hydroxide.

Toxicity Identification Evaluations (TIEs) with *Ceriodaphnia* (station 36004) EDTA, STS, PBO, aeration, and C18 column techniques for TIEs with *Ceriodaphnia* were identical to those with *Eohaustorius* except that five *Ceriodaphnia* neonates were placed in each sample vial and were tested at full strength and two dilutions. Filtration and pH adjustment steps were not done. Other TIE treatments are described as follows:

pH Adjustment - Adjusting sample pH can aid in the identification of hydrolizable, ionic, acidic, or basic compounds. Sample pH was adjusted to pH 3 by addition of HCl, then held at that pH for 6 hours before returning the sample to initial pH by addition of sodium hydroxide. An additional treatment adjusted the sample to pH 11 by addition of sodium hydroxide, then held at that pH for 6 hours before returning the sample to initial pH by addition of HCl. Toxicity tests were conducted after the treatment solutions had been restored to initial pH.

Cation Column - Solid-phase extraction through a Cation SPE column was used to remove divalent cations from sample solutions. The SPE columns were later eluted with hydrochloric acid to allow toxicity testing of compounds retained on the column. Sample was pumped through silicone tubing that had been cleaned by running pumping 10 ml 1 M HCl then 25 ml distilled water (but not through the column). The column was prepared by adjusting water flow to 2.5 ml/min. and passing 2 ml of MEOH through column followed by 6 ml distilled water. Make sure to leave a small amount of liquid in the column after each step. Next, laboratory dilution water was pumped through the column; the first 20-mL was discarded, and the remaining volume was kept as the column control solution. Finally, 350 ml of sample was run through the column, the first 20 ml was discarded, and the remaining volume collected as SPE treated sample. Column was kept wet until all sample had been passed through.

The column was then run dry and air-dried with a syringe. Six ml 1 M HCl was pumped through

column using a flow rate of 0.5 ml/min until the column was dry. Column eluate was collected in a small vial, and delivered into 350 ml of laboratory dilution water. Assuming that all divalent cation constituents from the sample were retained on the column (no breakthrough), and assuming that all of these compounds were then completely removed from the column in the acid eluate, the eluate treatment (6 ml in 350 ml) would contain the same concentration of these constituents as did the original sample.

Semipermeable Membrane Devices (SPMDs)

Two lipid-filled SPMDs were deployed at each location where sediment and water samples were taken for the Tembladero Watershed Study. The devices were handled with clean polyethylene gloves and attached to submerged steel rods immediately after opening their shipping container. Exposure to air was minimized so that no device was out of its shipping/storage container for more than 30 seconds. After one month of submergence, they were retrieved in a similar manner and replaced into their original shipping/storage containers for return to the manufacturer for extraction. Extraction of the lipid medium was done at Environmental Sampling Technologies in St. Joseph, MO. Extraction methods followed those of Huckins *et al.* (1990) and Lebo *et al.* (1992). Extracts were sent to the trace organics analysis facility at UCSC's Long Marine Lab for analysis.

Hydrology

Hydrologic data were collected using a Global Water Level Logger model WL14. The sensor was placed at the mouth of the Tembladero and allowed to collect data for the entire duration of the SPMD deployment. Sightings were taken with a surveyors transit along the lower length of the Tembladero slough from the mouth to the gaging station at the Pajaro Dunes Colony to determine flow rates in the watershed.

Dissolved Oxygen Measurement

Dissolved Oxygen was measured in the field using a modified Winkler's titration. A LaMotte[®] dissolved oxygen check kit was used to determine oxygen concentrations. All reagents were standard solutions purchased directly from the manufacturer and were newer than the printed expiration date.

Fixing the sample:

A 60 ml glass water sampling bottle was rinsed three times with sample water and then filled under water. All air was then purged from the bottle before capping. Eight drops of manganous sulfate solution and eight drops of potassium iodide azide were added to the sample water. The bottle was then re-capped and inverted several times to mix the solutions. After allowing the resultant precipitate to settle below the shoulder of the bottle, 1.0 g of sulfamic acid powder was added with a 1.0 g measuring spoon filled level full. The sample was capped again and gently shaken until the reagent and precipitate had dissolved. The resultant solution was yellow to orange-brown depending on oxygen content.

Titration:

The 20 ml glass titration tube was filled to the 20 ml line with fixed sample water and capped with the special titrating cap. The direct reading titrator was filled with sodium thiosulfate (0.25N) and inserted into the cap. While shaking gently, the titrator plunger is depressed until

enough sodium thiosulfate has been delivered to turn the solution to a faint yellow. At this point, eight drops of starch indicator solution was added to the solution, turning it blue. Titrating was continued until the blue color just disappeared. The point that the plunger reached on the direct reading titrator was then recorded. The scale has precision of ± -0.2 ppm.

Nitrate Analysis of Water

Frozen water samples were thawed in warm water, returned to a dark box and run within 2 hours of defrosting. Samples were run on an RFA-300 (Alpkem-automatic analyzer) configured for NO_3-NO_2 and PO_4 analysis.

 NO_3 - NO_2 method consists of a cadmium column reduction of NO_3 + to NO_2 + and a colorimetric measurement of the NO_2 +NED dye produced. PO₄ method consists of the colorimetric measurement of a PO₄+ -molybdate/hydrazine dye. Standards were made up from 24 hr dried (60°) reagent grade KNO₃ and KH₂PO₄, weighed to 1/1000th of a gram and diluted volumetrically. Standards were diluted to working ranges to bracked samples and be in range of method (high standard for NO_3 =45 μ M, PO₄=7.5 μ M). Initial comparison is run with old and new standards to check for accuracy.

Samples were run in batches of less than 20, bracketed with hi/low standards at the beginning and end of runs. Replicates were run at various times and sometimes various dilutions to check method, dilution accuracy, variability and sensitivity of the system. Replicates were run at least 15% of the time. Six Replicates of one sample were run to calculate standard variation. Spike recovery was run on one sample to test efficiency of the system. Spike recovery for NO₃-NO₂ was 98%. Recovery for PO₄ was 99%.

Results and Discussion

Toxicity

Sediments were toxic to amphipods throughout the watershed and subsurface water was toxic to *Ceriodaphnia sp.* in the upper reaches of the drainage (Figure 6c). Only Alisal Slough (36006) showed no toxic response from sediment or water. Salinas City (36004) was the only station to demonstrate both sediment and water toxicity. This pattern suggests that pollutants may be suspended in the water column upstream during high flow events, but settle out into the sediments or are diluted by tidal flushing downstream. Alternative explanations for this result are possible differences in sensitivity between test organisms used in fresh and salt water, and the possible differences in bioavailability of pollutants between fresh and salt water environments.

Phase I TIE Results & Discussion

Toxicity identification evaluations (TIE) were done at two stations for the Tembladero study. *Eohaustorius* ten day survival tests were done on marine pore water extracted from sediment collected at Sandholdt Bridge (30007). *Ceriodaphnia* 96 hour survival tests were done on subsurface fresh water collected from the Upper Tembladero - Salinas City (36004) station. Results from the TIE treatments are given in Tables 7a &b.

Sandholdt Bridge: Initial toxicity tests on dilutions of pore water from the station demonstrated a measurable dose response over the dilution range. TIE treatments were therefore run at control concentration (Granite Canyon water only), 10%, 32% and 75% porewater concentrations. The

baseline TIE test demonstrated similar results to initial tests, but control survival was slightly reduced. This is probably attributable to variability in the test. Ethylenediaminetetraacetic acid (EDTA) stock solution additions to the test concentrations did not mitigate baseline toxicity. This treatment indicates that toxicity in the sample is not likely due to metals. Sodium thiosulfate (STS) stock solution additions likewise did not mitigate toxicity and in fact increased toxicity for all concentrations. It is unclear why the STS treatment increased toxicity so it is also unclear whether targeted oxidants such as chlorine or bromine played a significant role. Aeration mitigated toxicity at the greatest porewater concentration possibly indicating that volatile toxicants (e.g., H₂S, volatile hydrocarbons) play a role as toxic agents. A filtration manipulation did not mitigate toxicity so it is unlikely that particles or particle bound toxicants are responsible for the observed toxicity. Graduated pH shift manipulations had little effect, indicating that toxicity was not caused by pH dependent toxicants (e.g., H₂S, NH₃). The C₁₈ column extraction manipulation, which is used to determine if toxic components include non-ionic organics, did not significantly mitigate toxicity, however addition of C₁₈ column eluate indicated the eluate was toxic. This implicates some type of non-ionic organics in the eluate. The fact that there was no reduction of toxicity when sample was originally passed through the C₁₈ column, leads to the suspicion there was breakthrough with the column, but a second column in- line gave no evidence that breakthrough of non-ionic organics was occurring. Toxicity tests of sequential aliquots of post-column pore water did not show increasing toxicity, which would be expected if column breakthrough was occurring. It is more likely that the C_{18} column retained only a portion of the multiple toxicants present in the sample. The C₁₈ column/EDTA manipulation, which is used to determine if toxicity is influenced by both non-ionic and cationic components, did significantly mitigate toxicity, so a non-polar organic/metal combined effect appears unlikely. To test for metabolically activated toxicants, such as organophosphates, piperonyl butoxide (PBO) is added to the sample. Toxicity was not mitigated by this manipulation, so it is unlikely this class of compounds caused toxicity.

In review, the only manipulation which mitigated toxicity was aeration, but H_2S concentrations in the sample are not above tolerance limits (Knezovich *et al.*, 1995) It seems likely that toxicity in the Sandholdt Bridge sample is caused by a combination of non-polar organics and some other type of volatile organic. Metal toxicity seems unlikely but cannot be discounted, because SEM/AVS values (Table 11) in this sample are elevated and mandate caution before ruling out at least some metal toxicity. Elevated levels of organochlorine pesticides in both water and sediment samples from the station likely contribute to observed toxicity.

Upper Tembladero- Salinas City: Initial toxicity tests on dilutions of surface water from the station demonstrated limited dose response over the dilution range. Only undiluted surface water reduced *Ceriodaphnia* survival. TIE treatments were therefore run at control concentration (USEPA), 50% concentration and 100% concentration. Baseline TIE test demonstrated similar results as initial tests, however, control concentrations were slightly reduced. This is probably attributable to variability in the test. EDTA stock solution additions to the test concentrations did not mitigate baseline toxicity. This treatment indicates that toxicity at the station likely is not due to metals. Sodium thiosulfate stock solution additions likewise did not mitigate toxicity indicating that volatile toxicants (e.g., H_2S , volatile hydrocarbons) were probably not the toxic agent. Graduated pH shift manipulations had little effect indicating that

toxicity was not caused by pH dependent toxicants (i.e., H_2S , NH₃, cationic and anionic toxicants, acidic, basic and hydrolizable compounds, and polar organic compounds). The C₁₈ solid-phase extraction column manipulation, which is used to determine if toxic components are non-ionic organics (e.g., organochlorine pesticides), did significantly mitigate toxicity, however addition of C₁₈ column eluate did not cause toxicity as expected. Likewise the cation exchange manipulation, which is used to determine if toxic components are cationic (e.g., divalent metals), did significantly mitigate toxicity, however addition of cation exchange column eluate did not cause toxicity as expected. The fact that both columns mitigated toxicity, but the column eluate did not cause toxicity indicates that the causative agent is probably associated with particles and columns physically filtered out the toxicant. A filtration manipulation was not performed so this suspicion could not be confirmed. It is therefore unclear at this stage whether a particle bound toxicant is responsible for the observed toxicity or whether the particles themselves physically interfere with *Ceriodaphnia* survival. Future investigations at this station should focus on particle effects and particle associated organic toxicants.

Sediment Chemistry

Highest levels of pesticides in sediment were found in the upper areas of the watershed (figure 3c, 4). The Salinas City station showed levels of dieldrin that exceeded the ERM value by six fold. Dieldrin, PPDDE and total chlordane were the major pollutants found in sediments in the drainage. Sediments at the Central Tembladero station (36003) showed no ERM exceedances, but grain sizes were uncharacteristically large, suggesting that the sediments there were not depositional.

The Upper Tembladero/Salinas City station (36004) had the highest values in the watershed for nearly all measured pesticides and PAHs. Dieldrin concentrations generally decreased in sediments toward the Sandholdt Bridge station which showed the lowest sediment values measured in the watershed except for the Central Tembladero station (36003). If the sediments at the Central Tembladero station are not depositional, however, the comparisons from the station may be invalid.

SEM-AVS values are sometimes predictive of toxicity when above one and often predictive above five (Berry *et al.*, 1996). The highest measured AVS-SEM value was at the Central Tembladero station (36003). The value of 9.05 is among the highest program-wide, but the high value from the site was driven by a very low AVS number and not a high metal (SEM) concentration. Other stations in the watershed showing values greater than one were: Sandholdt Bridge 30007 (3.7), and Alisal Slough 36006 (5.4). Even though Alisal Slough had a high SEM/AVS result, sediment from the station was not toxic in any test. Although the primary chemicals of concern in the Tembladero watershed are thought to be organics, metals cannot be discounted in light of the SEM/AVS measurements. Of the metals measured (Cd, Cu, Ni, Pb, and Zn) zinc and nickel were the most abundant (Table 11)

67

Table 11. SEM/AVS

Station Number	Station Name	AVS	SEM Sum	SEM/AVS
30007	Sandholdt Bridge	0.557	2.060	3.700
36002	Tembladero Mouth	. 2.310	1.960	0.851
36003	Central Tembladero	0.044	0.398	9.050
36004	Upper Tembladero-Salinas City	4.460	4.050	0.909
36005	Espinosa Slough	4.160	1.620	0.389
36006	Alisal Slough	0.342	1.850	5.420
36007	Old Salinas River Channel	10.500	1.670	0.159

Table 12a. S	ediment TIE	for Eohaustor	ius (Station	30007)			
]	Porewater Dil	ution				
	0%	6.25%	12.5%	25%	50%	100%	
Initial	0.93	0.73	0.67	0.33	0.13	0.20	

		Porewate	er Dilution	·	
Treatment	0%	10%	32%	75%	
Baseline	0.80	0.87	0.27	0.20	
EDTA	1.00	0.67	0.33	0.20	
STS	0.93	0.13	0.00	0.00	
Aeration	0.93	0.73	0.33	0.47	
Filter	0.73	0.13	0.00	0.00	
Column	0.73	0.33	0.13	0.07	
Eluate	0.60	0.73	0.27	0.00	
Column/EDTA	0.53	0.53	0.00	0.07	
PBO	0.80	0.07	0.00	0.00	
oH7	0.80	0.40	0.20	0.00	
oH8	0.93	0.53	0.13	0.07	
pH9	0.80	0.47	0.13	0.07	

		Sub	surface W	ater Dil	ution	
4	0%	6.25%	12.5%	25%	50%	100%
Initial Survival	1.00	1.00	1.00	1.00	1.00	0.0
	Su	bsurface V	Vater			
		Dilution	L			
Treatment	0%	50%	100%		•	
Baseline	0.80	0.96	0.0			
EDTA	0.20	0.92	0.0			
STS	0.96	0.92	0.0			
Aeration	0.96	0.96	0.0			
C18 Column	0.80	0.96	0.96			
Eluate	0.96	1.00	0.92			
pH 3 shift	1.00	0.84	0.04			
pH 11 shift	1.00	0.72	0.00			
PBO	0.0	0.24	0.12	•		
Cation Column	0.92	1.00	0.80			
Cation Eluate	1.00	0.96	0.96			

Table 12b. Water TIE for Ceriodaphnia (Station 36004)

Nitrate Analysis and Field Water Quality Measurements

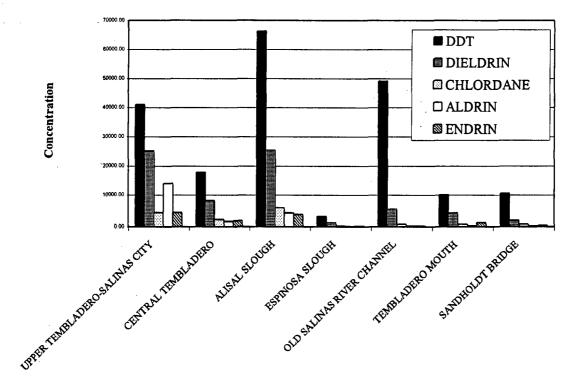
Nitrate concentrations and turbidity often covary with pollutant loads. Nitrates in particular have been shown to correlate well with pesticide runoff from agricultural fields. Table 13 summarizes the field water quality and nitrate measurements from the Tembladero drainage. Nitrates were highest at the Central Tembladero and Upper Tembladero stations. This corresponds to high pollutant levels at the Upper Tembladero station, but does not track well with levels at the Central Tembladero. Since sediments collected at the Central Tembladero station were likely not depositional, however, the station may not fit the correlative pattern well.

Table 13. Nitrate, Phosphate, and Field Water Quality Measuremer	Table 13.	. Nitrate, Phosp	hate, and Field	Water Quality	y Measurement
--	-----------	------------------	-----------------	---------------	---------------

Station Number	Station Name	Nitrate (µM)	PO ₄ (μM)	Turbidity (NTU)	O ₂ (mg/l)	рН
30007.0	Sandholdt Bridge	117.0	2.9	48	7.2	7.89
36007.0	Old Salinas River Channel	780.0	3.0	107	9.8	8.54
36002.0	Tembladero Mouth	84.5	8.3	83	11.0	8.44
36005.0	Espinosa Slough	203.0	12.7	96	10.0	8.90
36006.0	Alisal Slough	610.0	18.5	244	8.4	8.40
36003.0	Central Tembladero	1745.0	15.8	69	11.3	8.57
36004.0	Upper Tembladero-Salinas City	1250.0	27.6	21	12.5	8.51_

SPMD Chemistry

It should be noted that although an attempt was made to deploy the SPMDs in hydrologically similar areas, factors such as flow rate and fouling may have acted to introduce variability between stations. Additionally, some of the devices developed small perforations, making extensive cleanup of the extract necessary and further complicating analysis. The primary value of the results from the devices is therefore only to determine comparative presence or absence of measured pollutants. Comparison of large scale differences in concentration may be appropriate, but because pollutant concentrations in water could not be calculated, the measurements should not be used to infer any exceedance of water quality standards.


Highest levels of pesticides in SPMDs were measured in the Alisal Slough, the Salinas City station, and the Old Salinas River station (figure 7). In general, pesticide concentrations were higher in the upper areas of the watershed and in some tributaries than in the more seaward stations. DDT or its metabolites were detected in SPMD extracts from all stations. Highest values were measured at the Alisal Slough station (36006). This pattern is consistent with the assumption that pollutants are either settling out or being diluted farther down the watershed. These results also parallel toxicity results where the furthest upstream station showed toxicity in water and sediment and the furthest downstream produced toxic results from only sediment.

The high values of DDT and dieldrin measured at the Alisal Slough (36006) do not correspond to either sediment values or toxicity results. This may be due to the unique shape of the Alisal Slough at the sampling location. In comparison to most other stations, the Alisal Slough is much narrower at this location. This suggests that flow past the SPMDs might have been significantly faster than at other deployment locations, possibly affecting rates of uptake.

Conclusions

Clear patterns in the distribution of pollutants, primarily pesticides, were evident in the watershed. In general, pesticide concentrations in SPMD extracts decreased from upstream to downstream stations. The pattern for the most abundant pesticide, DDT, is less clear but follows the same general trend. Toxicity results were consistent with the pattern of sediment pollutants. Although SPMD chemistry cannot be compared quantitatively, the ordinal arrangement of stations is consistent with the idea that pollutants are still suspended in the water column farther up the watershed. This is also supported by the water column toxicity results where Ceriodaphnia survival was reduced at the Upper Tembladero station.

This study was successful in demonstrating the utility of a watershed approach to monitoring downstream impacts. However, further sampling would be needed in the Tembladero watershed both to confirm the results of the present study and to follow pollutant gradients up the watershed. Since the uppermost station (Upper Tembladero-Salinas City 36004) had the highest levels of pollutants and strongest toxic responses, it is likely that it is closer to pollutant sources than the downstream stations. In addition, techniques for deployment of the SPMDs will require modification to prevent damage to the devices in a flowing water environment. This may require

Figure 7. Pesticides in SPMD Extracts

the design of housings or protective supports that present minimal resistance to water flow such as those designed by Lebo *et al.* (1992).

The tributaries to the Tembladero should not be discounted however. Locally high levels of pollutants in adjacent drainages such as the Alisal Slough may be the result of mixing with the Tembladero or additional inputs along the subdrainages. It is likely that since the drainages flow through such similar agricultural areas, similar chemicals would be encountered in each. Clearly, sites with chronic pollution problems like the site at Sandholdt Bridge (30007) cannot be addressed in isolation. There may be many upstream contributors, and each must be addressed before water and sediment quality at downstream stations can be improved.

STATION GROUPING

For purposes of comparison between stations within the region, it is useful to group stations by the amount and type of information obtained from each. These groupings show the general results of all toxicity, chemistry, and benthic community analyses and are in addition to the program-wide categorization designed to aid identification of candidate toxic hot spots. Furthermore, this grouping does not presume a prioritization of stations, but is designed as an ordering of available information to assist Regional Water Quality Control Board staff in planning either further study or insertion of stations into a cleanup plan incorporating all available sources of information. A synopsis of the stations in each group is given in Table 14.

In previous BPTCP reports, the highest priority for further investigation was given to stations with repeat toxicity, elevated chemistry, and degraded benthic community structure (Fairey *et al.* 1996). In the Central Coast Region, benthic community analysis was only done at four stations for the Monterey lead study. This was too few stations to effectively create a benthic community index for the region. The data were evaluated for general trends in species composition and abundance, but no such trends could be identified. Therefore, grouping within the region excludes the benthic community component.

Stations were grouped by the amount and type of data available for each. Stations with repeat toxicity (positive toxicity result from sediment or water on two or more separate occasions) and at least one exceedance of an ERM or PEL value were placed in group 1. Five stations fell into this group, four of which had three field replicate toxicity tests on at least one visit.

The second group is comprised of those stations which had exceedances of ERM or PEL guideline values and toxicity from only one visit. This group contains the largest number of stations. These stations have a wide range of chemical exceedances and may be subdivided based on which chemicals show ERM or PEL exceedances. All stations in the Tembladero watershed study fall into this group except Alisal Slough (no toxicity) and Sandholdt Bridge (multiple toxicity).

The third group contains only one station (Santa Cruz Yacht Basin 30001). This station was visited twice but exhibited a toxic response only once. ERM and PEL exceedances were both measured at this station.

The fourth group is comprised of those stations with no toxicity from single visits but with exceedances of the ERM/PEL values. Three stations are included in this group, Morro Bay-Mid Bay (30029), Morro Bay (30024), and Alisal Slough (36006).

The fifth group contains eleven stations and is made up of those with positive toxic responses from single visits but which are missing chemical analysis. This group contains stations from all around the region and may present a large subsection for further study.

The sixth and final group is comprised of two stations, Santa Cruz Yacht Basin-A9 (35002) and Santa Cruz Yacht Basin-A3 (35001). These stations exhibited chemical values in excess of the ERM/PEL but had no toxicity analysis.

DISCUSSION OF SELECTED STATIONS AND RECOMMENDATIONS

Stations analyzed in the Central Coast Region vary greatly in their completeness of information . Nearly every group contains stations which could benefit from additional types or amounts of analysis. Furthermore, scrutiny should be applied to each station in accordance with the types of chemical exceedances found This discussion will focus on those stations of particular interest due to their degree and type of chemical or toxicity results.

Sandholdt Bridge and Tembladero Watershed

The Sandholdt Bridge station has a long history of various measures of pollution including tissue data from the California State Mussel Watch Program, showing exceedances of chlordane, DDT, dieldrin, and PCBs (Rasmussen *et al.*, 1995). The upstream environment shows similar types of pollution. The station sampled furthest upstream in the system (Upper Tembladero-Salinas City, 36004) had comparatively high levels of chlordane and dieldrin in sediments, two of the most commonly found pollutants in sediments at the Sandholdt Bridge site. Sediment from all stations in the watershed but the Central Tembladero station exceeded the ERM for dieldrin. Similarly, all stations but the Old Salinas River Channel and the Central Tembladero exceeded the PEL for total chlordane. Since use of these chemicals was widespread, sources may be located in many areas. Clearly, the SPMD information shows that these chemicals are present in the water at all stations.

Further investigations in the watershed should incorporate stations upstream of the Upper Tembladero-Salinas City station. Pesticides (dieldrin, chlordane and DDT) are the most common pollutants found in the watershed and at the Sandholdt Bridge station, so it is appropriate to focus analyses on these chemicals.

Monterey Yacht Club (30002)

Sediment quality guideline exceedances at the Monterey Yacht Club station include copper, zinc, and both high and low molecular weight PAHs. Copper and zinc are common metals found in sediments of small boat harbors due to their marine applications. PAHs are often found near fuel docks and maintenance yards. Since the Harbor is immediately adjacent to an urbanized area, other potential sources include but are not limited to stormdrain flow and street runoff. Confidence in ERM and PEL values for copper, zinc and PAHs is high. These pollutants were in exceedance of guideline values at this station. Toxicity was demonstrated twice at this station, but neither visit produced toxic results for amphipods.

Monterey Boatyard Lead-1 (35003)

This station showed significant toxicity to urchin larvae on its single visit. Sandy sediments such as those found in Monterey Harbor suggest a dynamic environment in which fine-grained sediment is regularly transported away. Significant toxicity and PEL exceedances in spite of this condition are noteworthy because toxicants are often associated with small particles. Mussel Watch bioaccumulation data from the area have shown elevated levels of lead for many years (Rasmussen 1995, 1996), even after the removal of the slag pile, suggesting that pollutants are still being suspended and made available to biofiltering organisms. Levels of PAHs in exceedance of PEL guidelines were also found at this station. This may be a characteristic of the entire harbor. Finer scale spatial sampling may be helpful in identifying sources or areas of higher concentration of these pollutants. Benthos at this station did not show evidence of degradation. Both positive and negative indicator species were present at this and all stations, and diversity was higher at this station than at the other sampling stations in the study.

Table 14. Station Grouping by Analysis Type and Result.

Station Number Station Name	Amphipod Tox Hits	Other Tox Hits	cceedances of Chemistry Screening ERM Exceedances	PEL Exceedances	ERM Quotient
30007.X SANDHOLDT BRIDGE	RA**, RA,EE,EE	SPPD100, SPDI	TTLCHL,DIELDR	TTLCHLDIELD	0.24
30002.0 MONTEREY YACHT CLUB	,	SPDI,HRS100,SPPDI		CuZnANT,BAA,BAP,CHR,DBA,FLA,PHN,PYR,LMWPAH,HMWPAH	0.421
30023.X BENNETT SLJESTUARY	RA, RA***	Sr Di, ilk Slov, Sr r Di	Ni		0.421
				Cr,Ni,DIELD	
31001.X EGRET LANDING-REF	RA,RA**	none	Ni	Ni,Cr	0.102
31003.X ANDREW'S POND REF.	RA,RA,RA***	SPPD100	Ni	Ni	0.088, 0.087
			e Visits and Exceedances of ERM/		
Station Number Station Name	Amphipod Tox Hits	Other Tox Hits	ERM Exceedances	PEL Exceedances	ERM Quotien
30020.0 SANTA MARIA RIVER ESTUARY	RA		Ni,TTLDDT*,DIELD	NI,TTLDDT*,DIELD	0.367
36004.0 UPPER TEMBLADERO-SALINAS CITY	HA	CDSS	TTLCHL,DIELD	TTLCHL,DIELD,LINDANE,PYR	na
35003.0 MONTEREY BOATYARD-LEAD 1		SPDI		BAP,PHN,PYR,LMWPAH,HMWPAH	na
30014.0 MONTEREY STORMDRAIN NO. 3		MEP100		ANT, BAP, FLA, PHN, PYR, LMWPAH, HMWPAH	0.281
36007.0 OLD SALINAS RIVER CHANNEL	EE		DIELD	DIELD	na
36002.0 TEMBLADERO MOUTH	EE		TTLCHL , DIELD	TTLCHL,DIELD	na
36005.0 ESPINOSA SLOUGH	HA		DIELD	TTLCHLDIELD	па
30006.0 PAJARO RIVER ESTUARY	RA		Cr,Ni	Cr.Ni	0.149
30019.0 MORO COJO SLOUGH	RA	MES100,NAWT	Ni	Ni	0.13
30005.0 M.L. SOUTH HARBOR	RA	SPPD100	Ni		
			191	Ni	0.094
30012.0 MONTEREY BOATYARD	RA	SPPD100		PHN	0.175
			ultiple Visits and Exceedances of El		
Station Number Station Name	Amphipod Tox Hits	Other Tox Hits	ERM Exceedances	PEL Exceedances	ERM Quotie
30001.0 SANTA CRUZ YACHT BASIN	RA ·		Cu,Hg,TTLPCB	Cu, Hg,TTLPCB,FLA,PHN,PYR	0.447
31002.0 HWY I BRIDGE REF.		HRP100,SPPD100	Ni	Ni, Cr	0.089
30004.0 M.L. YACHT HARBOR	RA		Ni	Ni	0.137
	Stations With Ma	Taxisity from Single of	Multiple Visits and Exceedances o	6 P.D. 1 / D.P.T	
Station Number Station Name	Amphipod Tox Hits		ERM Exceedances	PEL Exceedances	ERM Quotier
30029.0 MORRO BAY-MID BAY	0,0)	Cr,Ni	Cr.Ni	0.165
30024.0 MORRO BAY	-,-		0 Cr.Ni	Cr.Ni	0.208
36006.0 ALISAL SLOUGH	ő		0 TTLCHL,DIELD	TTLCHLDIELD	na
30028.0 ELKHORN SL. PORTRERO REF.	0,0		0 Ni	Ni	0.122
	Stations	With Single Toxicity fr	om Multiple Visits Missing Chemis	tru .	
Station Number Station Name	Amphipod Tox Hits		ERM Exceedances	PEL Exceedances	ERM Ouotie
30027.0 MONTEREY BAY REF. SOUTH	RA	Odia TOX TILB	N/A	N/A	0.046
SW27.0 MONTERET BAT REF. SOOTA	KA .		N/A	N/A	0.040
			gle Visits, Missing Chemical Analy		
Station Number Station Name	Amphipod Tox Hits	Other Tox Hits	ERM Exceedances	PEL Exceedances	ERM Quotie
30003.0 SANTA BARBARA HARBOR	RA		N/A	N/A	па
30033.0 MORRO BAY-FUEL DOCK	RA		N/A	N/A	па
30025.0 MORRO BAY-SOUTH BAY	RA		N/A	N/A	na
30011.0 SALINAS RIVER LAGOON	RA	SPPD100,NAWT	N/A	N/A	na
30009.0 GOLETA SL.	RA	MES100	N/A	N/A	па
30022.0 SOQUEL LAGOON		MEP100	N/A	N/A	ла
30026.0 SCOTT CREEK #26B		SPPD100	N/A	N/A	na
30036.X ELKHORN SLOUGH- SEAL BEND	RA*	HRP100***	N/A	N/A	na
30035.X ELKHORN SLOUGH-SEAL POINT		HRP100***,50*,25*	N/A	N/A	
30034.X MONTEREY BAY REFERENCE		HRP100 ,50 ,25	N/A	N/A N/A	na
					na
30008.0 SAN LUIS HARBOR TRANS		MES100	N/A	N/A	na
			Exceedances, Missing Toxicity		· · ·
Station Number Station Name	Amphipod Tox Hits		ERM Exceedances	PEL Exceedances	ERM Quotier
35002.0 SANTA CRUZ YACHT BASIN-A9	N/A	N/A	TTLCHL	TTLCHL	na
35001.0 SANTA CRUZ YACHT BASIN-A3	N/A	N/A	TTLCHL,ACE,PHN,LMWPAH	TTLCHL,ACE,BAA,FLA,FLU,PHN,PYR,LMWPAH,HMWPAH	na

.

٩

Note: Asterisks reflects the number of toxic results obtained from three replicates. Station numbers with "X" in the decimal place (i.e. 30036.X) denote stations with three field replicates. Entries separated by commas are from separate sampling events.

.

ı

~

Santa Cruz Yacht Harbor (30001)

Although toxicity in Santa Cruz Yacht Harbor was only demonstrated on one occasion, the presence of copper, mercury and PCBs is of concern. Nearby stations in the harbor have shown chemical pollution with chlordane and PAHs. Toxicity was not tested at these nearby stations (35001 and 35002), however. The relative magnitude of overall pollution is also of concern. Santa Cruz Yacht Harbor (30001) had the highest ERM and PEL quotient values measured in the region (0.447 and 0.735 respectively).

AVS/SEM results (Appendix C section III) showed that metals may be available to organisms in the sediments in Santa Cruz Yacht Harbor, but at comparatively low levels. Copper and zinc were found in relatively high concentrations at other stations in Santa Cruz Harbor, but AVS/SEM analysis was not done at these stations.

Of the 34 stations in the Central Coast Region for which PCB analysis was done, only Santa Cruz Yacht Basin exceeded the ERM and PEL

Santa Maria River Estuary (30020)

The Santa Maria River Estuary is of considerable interest because it drains a large agricultural watershed and is adjacent to the Guadalupe Oil Field, the site of large-scale cleanup efforts to remove compounds related to petroleum production from the soils. The region's highest DDT value and the only one in the region exceeding the OC normalized threshold was measured at this station. Nickel and dieldrin were also in exceedance of guideline values at this station. Pollutant concentrations were sufficiently high to produce the third highest ERMQ and PELQ in the region. Toxic response by *Eohaustorius* was strong, with a mean percent survival of only two percent. This station was only visited once, however, and no comparative data from sources such as the California Mussel watch are available.

Bennet Slough Estuary (30023)

This station demonstrated significant toxicity to amphipods on two visits, one of which tested three field replicates. Chemical exceedances at this station included nickel (ERM and PEL), chromium (PEL) and dieldrin (PEL). This station does not exhibit overall high chemistry (ERMQ 0.209), although, but has been toxic to amphipods on repeat visits. Careful application of TIE may be useful at stations such as this to pinpoint classes of toxic agents responsible for the observed toxic effects.

Additional Stations of Interest

Stations showing a significant toxic response but missing concurrent chemistry data include Santa Barbara Harbor (30003), Goleta Slough (30009), Morro Bay Fuel Dock (30033), Morro Bay South Bay (30025), and Salinas River Lagoon (30011). Further toxicity and concurrent chemical information from these stations would be meaningful. Some of these stations may require watershed approaches similar to that used in the Tembladero study to fully characterize pollutant sources and extents, especially those stations located at river mouths or near stream input.

REGIONAL CONSIDERATIONS AND CONCLUSIONS

The Central Coast Region is unique in that it contains a variety of environments that express a wide range of physical and chemical properties. Broad generalizations about such a diverse area are problematic and often inappropriate. Prioritization is often necessary in spite of these difficulties, however, and so must be done with great mindfulness of the individual environments under consideration. Many stations in the Central Coast Region demonstrated significant toxic response and concurrent chemistry values in excess of guidelines. These stations should be given highest priority when considering further investigations. Exclusion of those stations for which less information exists, however would be ill-advised. Many of the stations listed above have the potential to be important conduits through which pollution might enter the marine environment. The Salinas River, for example, drains one of the largest watersheds in the State and has significant potential to carry agricultural pollutants. This watershed has long been one of the most intensively farmed areas in the country, and as such, may be a significant non-point source of agricultural chemicals. This cannot be known, however, without adequate chemical and toxicological analyses both downstream and within the watershed.

Stations in the Central Coast Region that received chemical analysis showed lower pollutant content than more heavily populated and industrialized areas such as San Diego Bay and Los Angeles Harbor (Fairey *et al.*, 1996, Anderson *et al.* 1997). These results should not be discounted, however. The physical environment in the Central Coast Region is very different from that in other regions in that many stations are in highly dynamic outer coast river mouth locations or have significant water exchange with the open coast. This is demonstrated by the low percent fines in areas such as Monterey Harbor and Morro Bay. In all, 36 samples had lower than 50% fines. Notable exceptions to this trend were the Santa Maria River Estuary and Salinas River Lagoon.

As a result of the wide ranging needs for different types of data in the Central Coast region, the dataset for the region is less contiguous than in most other regions of the state. It is therefore prudent to incorporate data from other sources such as the State Mussel Watch program to augment sediment and water quality data obtained from the BPTCP. Because many stations were selected based on previous findings from other programs, the comparison for many locations should be straightforward. Caution should be used, however because temporal factors can produce results that may be difficult to interpret when data are not collected concurrently.

Since many areas in the Central Coast Region are hydrologically dynamic, conditions can be expected to vary greatly within them. It may therefore be appropriate to look to other measures of biological effects such as bioaccumulation to augment information gained from sediment analyses for a more comprehensive assessment of pollutants within the region. Effective employment of these techniques would use concurrent sampling methods so that all measures would be directly comparable on a temporal and spatial scale.

STUDY LIMITATIONS

Sampling in dynamic areas such as those in the Central Coast Region presents spatial and temporal problems not encountered in areas with more constant environmental factors. Many of

the sites in the Central Coast Region are located at or near the mouths of rivers or streams. These sites experience significant seasonal runoff and sediment transport. As a result of these processes, a particular sampling event becomes a snapshot of a much larger dynamic process. This snapshot may not be able to adequately characterize a site, especially if that site experiences appreciable seasonal change.

This study relied on initial toxicity results to provide information to prompt chemistry analysis. Budgetary constraints made it impossible to perform a full suite of chemical analyses on all samples and "best professional judgement" was used to determine the subset of stations on which analyses were to be run. Furthermore, stations that did receive chemical analysis did not always receive the full suite of analyses performed on samples in other parts of the State. This left smaller datasets on which to calculate ERM and PEL summary quotient values. The identification of trends within the region was therefore more difficult compared to other regions in the State.

Caution should be used when extrapolating the ecological meaning of data collected from studies such as this. Although measures of toxicity and chemical concentration are used extensively in this study and others like it, they can only be used as indicators of possible adverse effects to indigenous communities. In some environments, benthic community assessments can be used to demonstrate actual effects on resident biological communities, but these do not demonstrate causality. In combination with tools such as TIE however, these measures provide a strong weight of evidence for the conditions found at a particular sampling location. However, it is recommended that these lines of evidence be supported with an ecological risk assessment during subsequent investigations of stations of concern.

Except in the Tembladero Watershed and the Monterey lead studies, no attempt was made in this study to characterize areal extent of pollution in water bodies in the Central Coast Region. Although in some areas an estimate of areal extent may be obtained by measuring the size of the water body and location of replicate samples within it, this factor was not directly investigated.

LITERATURE CITED

American Society of Civil Engineers (ASCE). 1989. Manual 69. Manual of practice on sulfide in wastewater collection and treatment systems. Prepared by the Sulfide Task Group of the Water Pollution Management Committee of the Environmental Engineering Division of the ASCE. New York, NY.

American Society for Testing and Materials (ASTM). 1993. Annual Book of ASTM Standards. Vol. 11.04. American Society for Testing and Materials. Philadelphia, PA.

American Society for Testing and Materials (ASTM). 1992. Standard Guide for Collection, Storage, Characterization, and Manipulation of Sediments for Toxicological Testing. Guide No. E 1367-90. ASTM, Philadelphia, PA. Vol. 11.04, 1083-1106.

Anderson, B.S. *et al.* 1997. Chemistry, toxicity and benthic community conditions in sediments of selected southern California bays and estuaries. 97-WQ. Final Report. California State Water Resources Control Board. Sacramento, CA, USA.

Anderson, B.S., J.W. Hunt, M.M. Hester, and B.M. Phillips. 1996. Assessment of sediment toxicity at the sediment-water interface. *In* Techniques in Aquatic Toxicology, G.K. Ostrander (ed). Lewis Publishers: Ann Arbor, MI.

Bay, S., R. Burgess, and D. Nacci. 1993. Status and applications of echinoid (Phylum Echinodermata) toxicity test methods. In: W.G. Landis, J.S. Hughes, and M.A. Lewis, Eds., Environmental Toxicology and Risk Assessment, ASTM STP 1179. American Society for Testing and Materials, Philadelphia, PA. pp. 281-302.

Bender, M., W. Martin, J. Hess, F. Sayles, L. Ball, and C. Lambert. 1987. A Whole Core Squeezer for Interfacial Pore Water Sampling. Limnology and Oceanography 32 (6):1214-1255.

Berry, W.J., D.J. Hansen, J.D. Mahony, D.L. Robsib, D.M. DiToro, B.P. Shipley, B. Rogers, J.M. Corbin and W.S. Boothman. 1996. Predicting the toxicity of metal-spiked laboratory sediments using acid-volatile sulfide and interstitial water normalizations. Environmental Toxicology and Chemistry 15(12):2067-2079.

California Department of Fish and Game. 1990. Water Pollution Control Laboratory Standard Operating Procedure for Determination of Selenium in Biological Tissue, Sediment, and Water.

Carr, R.S., and D.C. Chapman. 1995. Comparison of Methods for Conducting Marine and Estuarine Sediment Porewater Toxicity Tests- Extraction, Storage, and Handling Techniques. Arch. Environ. Contam. Toxicol. 28:69-77.

Carr, R.S., J. Williams and C.T. Fragata. 1989. Development and Evaluation of a Novel Marine Sediment Pore Water Toxicity Test with the Polychaete *Dinophilus gyrociliatus*. Environmental Toxicology and Chemistry. 8:533-543.

Chapman, P.M. 1996. A test of sediment effects concentrations: DDT and PCB in the Southern California Bight. Environmental Toxicology and Chemistry 15(7):1197-1198.

Cornwall, H.R. 1966. Nickel deposits of North America. USGS Bulletin. 1223:62p.

Dillon, T.M., D.W. Moore, and A.B. Gibson. 1993. Development of a chronic sublethal bioassay for evaluating contaminated sediment with the marine polychaete worm Nereis (Neanthes) arenaceodentata. Environ. Toxicol. Chem. 12: 589-605.

Dinnel, P.A., J.M. Link, and Q.J. Stober. 1987. Improved methodology for a sea urchin sperm cell bioassay for marine waters. Arch. Environ. Contam. Toxicol. 16:23-32.

Eisler, R. 1987. Polycyclic aromatic hydrocarbon hazards to fish, wildlife, and invertebrates: A synoptic review. Pollutant Hazard Reviews Report Number 11. U.S. Department of the Interior.

Evans, D. and P. Hanson. 1993. Analytical methods for trace elements in sediments by atomic absorption spectrophotometry. In Sampling and Analytical Methods of the National Status and Trends Program National Benthic Surveillance and Mussel Watch Project 1984-1992, vol. 3. Lauenstein, G. and A. Cantillo (eds.). NOAA Tech. Mem. NOS ORCA 71. 53-81.

Fairey, R. 1992. Sampling and Analysis of Trace Metals in Sediment Interstitial Waters. American Geophysical Union. Fall Meeting, 042A-06.

Fairey, R., C. Bretz, S. Lamerdin, J. Hunt, B. Anderson, S. Tudor, C. Wilson, F. La Caro, M. Stephenson, M. Puckett, E. Long. 1996. Chemistry, ecotoxicology, and benthic community conditions in sediments of San Diego Bay region. Final Report. California State Water Resources Control Board. Sacramento, CA. 169pp.

Folk, R. 1974 Petrology of Sedimentary Rocks. Hemphill Publ. Co., Austin, TX. 182pp.

Franson, M.A. (ed), 1981. 505 Organic carbon (total) p. 471-475. *In* Standard Methods For the Examination of Water and Wastewater. 15th ed. Am. Public Health Asso.

Froelich, P.M. 1980. Analysis of organic carbon in marine sediments. Limnology and Oceanography. 25:564-572.

Grassle, J.F. and J.P. Grassle. 1974. Opportunistic life histories and genetic systems in marine benthic polychaetes. Journal of Marine Research 32(2): 253-283.

Grassle, J.P. and J.F. Grassle. 1976. Sibling species in the marine pollution indicator *Capitella* (Polychaeta). Science 192: 567-569.

Hedges, J.I. and Stern, J.H. 1983. Carbon and nitrogen determination of carbonate containing solids. Limnology and Oceanography. 29:658-663.

Hockett, J.R. and D.R. Mount. 1996. Use of metal chelating agents to differentiate among sources of acute aquatic toxicity. Environ. Toxicol. Chem. 15: 1687-1693.

Hodges, L. 1977. Environmental Pollution. Holt, Rinehart and Winston: New York, NY.

Huckins, J.N., M.W. Tubergen, J.A. Lebo, R.W. Gale and T.R. Schwartz. 1990. Polymeric film dialysis in organic solvent media for cleanup of organic contaminants. J. Assoc. Off. Anal. Chem. 73(2):290-293.

Khoo, K.H., C.H. Culberson, and R.G. Bates. 1977. Thermodynamics of dissociation of ammonium ion in seawater from 5° to 40°C. J. Solution Chem. 6:281-290.

Knezovich, J.P., D.J. Steichen, J.A. Jelinski, and S.L. Anderson. 1996. Sulfide tolerance of four marine species used to evaluate sediment and pore water toxicity. Bull. Environ. Contam. Toxicol. 57:450-457.

Lebo, J.A., J.L. Zajicek, J.N. Huckins, J.D. Petty and P.H. Peterman. 1992. Use of semipermiable membrane devices for in situ monitoring of polycyclic aromatic hydrocarbons in aquatic environments. Chemosphere 25(5):697-718.

Lenihan, H. S. and J.S. Oliver. 1995. Anthropogenic and natural disturbances to marine benthic communities in Antarctica. Ecological Applications 5(2): 311-326.

Long, E.R. M.F. Buchman. 1989. The potential for biological effects of sediment-sorbed contaminants tested in the National Status and Trends Program. NOAA Technical Memorandum NOS OMA 45.

Long, E.R., L.J. Field, D.D. MacDonald. 1998. Predicting toxicity in marine sediments with numerical sediment quality guidelines. Environmental Toxicology and Chemistry 17(4):714-727.

Long, E.R. and L.G. Morgan. 1992. National Status and Trends Approach. In: Sediment Classification Methods Compendium. EPA 823-R-92-006. Office of Water. United States Environmental Protection Agency. Washington, District of Columbia.

Long, E.R. and L.G. Morgan. 1990. The potential for biological effects of sediment-sorbed contaminants tested in the National Status and Trends Program. NOAA Technical Memorandum NOS OMA 62. National Oceanic and Atmospheric Administration, Seattle, WA. 86 pp.

Long, E.R., D.L. MacDonald, S.L. Smith and F.D. Calder. 1995. Incidence of Adverse Biological Effects Within Ranges of Chemical Concentration in Marine and Estuarine Sediments. Environmental Management. 19 (1): 81-97.

MacDonald, D.D. 1994a. Approach to the Assessment of Sediment Quality in Florida Coastal Waters. Volume 1- Development and Evaluation of Sediment Quality Assessment Guidelines. Prepared for the Florida Department of Environmental Regulation. MacDonald Environmental Services, Ltd. Ladysmith, British Columbia. 126 pp.

MacDonald, D.D. 1994b. Approach to the Assessment of Sediment Quality in Florida Coastal Waters. Volume 2- Application of the Sediment Quality Assessment Guidelines. Prepared for the Florida Department of Environmental Regulation. MacDonald Environmental Services, Ltd. Ladysmith, British Columbia. 52 pp.

MacDonald, D.D. 1992. Development of an integrated approach to the assessment of sediment quality in Florida. Prepared for the Florida Department of Environmental Regulation. MacDonald Environmental Services, Ltd. Ladysmith, British Columbia. 114 pp.

MacDonald, D.D., R.S. Carr, F.D. Calder, E.R. Long, and G. Ingersoll. 1996. Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology 5:253-278.

MARCPN I. 1992. The analysis of carbon and nitrogen from sediments and the particulate fraction of water from estuarine/coastal systems using elemental analysis. Method MARPCPN I. University of Maryland System for Environmental and Estuarine Studies, Chesapeake Biological Laboratory. Revision 1.1. Environmental Monitoring Systems Laboratory, Office of Research and Development, U.S. Environmental Protection Agency.

McCall, P.L. 1977. Community patterns and adaptive strategies of the infaunal benthos of Long Island Sound. Journal of Marine Research 35: 221-226.

Mearns, A.J. and D.R. Young. 1977. Chromium in the southern California marine environment. In Pollutant Effects on Marine Organisms, C.S. Giam (ed). Presented at Workshop on Pollutants Effects on Marine Organisms, Texas A&M Univ., TX (USA), 16 May 1976.

Mills, E. 1967. Biology of an ampelscid amphipod crustacean sibling species pair. J. Fish. Res. Bd. Canada. 24:305-355.

Moore, D.R.J. and S.L. Walker. 1991. Canadian water quality guidelines for polychlorinated biphenyls in coastal and estuarine waters. Scientific Series No. 186. Environment Canada. Ottawa, Canada. 61pp.

National Oceanic and Atmospheric Administration (NOAA). 1994. National Status and Trends Program for National Benthic Surveillance Project: Pacific Coast. Analyses of elements in sediments and tissue cycles I to V (1984-88). NOAA Technical Memorandum NMFS-NWFSC-16, Seattle, Washington.

National Oceanic and Atmospheric Administration (NOAA). 1991. National Status and Trends Program for Marine Environmental Quality Progress Report: Second summary of data on chemical contaminants in sediments from the National Status and Trends Program. NOAA Technical Memorandum NOS OMA 59, Rockville, MD.

Okey, T.A. 1997. Sediment flushing observations, earthquake slumping, and benthic community changes in Monterey Canyon head. Continental Shelf research 17: 877-897.

Oliver, J.S. and P.N. Slattery. 1985. Effects of crustacean predators on species composition and population structure of soft-bodied infauna from McMurdo Sound, Antarctica. Ophelia 24: 155-175.

Oliver, J.S., P.N. Slattery, L.W. Hulberg and J.W. Nybakken. 1980. Relationships between wave disturbance and zonation of benthic invertebrate communities along a subtidal high energy beach in Monterey Bay, California. Fishery Bulletin 78: 437-454.

Oliver, J.S., P.N. Slattery, L.W. Hulberg and J.W. Nybakken. 1977. Patterns of succession in benthic infaunal communities following dredging and dredged material disposal in Monterey Bay. Dredged Material Research Program, U.S. Army Engineers Waterways Experiment Station, Technical Report 0-77-27, Vickberg, Mississippi.

Oliver, J.S., P.N. Slattery, M.A. Silberstein and E.F. O'Connor. 1984. Gray whale feeding on dense ampleliscid amphipod communities near Bamfield, British Columbia. Canadian Journal of Zoology 62: 41-49.

Oliver, J.S., P.N. Slattery, M.A. Silberstein and E.F. O'Connor. 1983. A comparison of gray whale, *Eschrichtius robutus*, feeding in the Bering Sea and Baja California. Fishery Bulletin 81: 513-522.

Parkin, J.L. 1998. Ecology of breeding caspian terns (Sterna caspia) in Elkhorn Slough, California. Masters Thesis San Jose State University, Moss Landing Marine Laboratories.

Pearson, T.H. and R. Rosenberg. 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanographic and Marine Biology Annual Review 16: 229-311.

Phillips, D.J.H. 1987. Toxic contaminants in the San Francisco Bay-Delta and their possible effects. Aquatic Habitat Institute.

Phillips, B.M., B.S. Anderson, and J.W. Hunt. 1997. Measurement and distribution of interstitial and overlying water ammonia and hydrogen sulfide in sediment toxicity tests. Mar. Environ. Res. 44: 117-126.

PSEP. 1991. Interim final recommended guidelines for conducting laboratory bioassays on Puget Sound sediments. US Environmental Protection Agency, Region 10, Office of Puget Sound, Seattle, WA.

Rasmussen, D. 1996. State Mussel Watch Program Data Report 1993-1995. State Water Resources Control Board Water Quality Report 96-2 WQ 75pp.

Rasmussen, D. 1995a. State Mussel Watch Program Data Report 1987-1993. State Water Resources Control Board Water Quality Report 94-1 WQ 303pp.

Rasmussen, D. 1995b. Toxic Substances Monitoring Program Data Report 1992-93. State Water Resources Control Board Report 95-1 WQ.

Reid, G. and A. Reid. 1969. Feeding processes of members of the genus *Macoma* (Mollusca: Bivalvia). Can. J. Zool. 47: 649-657.

Savenko, V.S. 1977. Marine chemistry: the dissociation of hydrogen sulfide in seawater. Oceanology. 16:347-350.

Schimmel, S.C., B.D. Melzian, D.E. Campbell, C.J. Strobel, S.J. Benyi, J.S. Rosen, H.W. Buffum, and N.I. Rubinstein. 1994. Statistical Summary EMAP-Estuaries Virginian Province - 1991. EPA/620/R-94/005.

Sloan, C.A., N.G. Adams, R.W. Pearce, D.W. Brown, and S.L. Chan. 1993. Northwest Fisheries Science Center Organic Analytical Procedures. In Sampling and Analytical Methods of The National Status and Trends Program National Benthic Surveillance and Mussel Watch Projects 1984-1992 - Volume VI Comprehensive descriptions of the trace organic analytical methods. G.G. Lauenstein and A.Y. Cantillo (Eds). NOAA Technical Memorandum NOS ORCA 71, p 53-97.

Stephenson, M.D., M. Puckett, N. Morgan, and M. Reid. 1994. Bay Protection and Toxic Cleanup Program: Quality Assurance Project Plan. Bay Protection and Toxic Cleanup Program, State Water Resources Control Board, Sacramento, CA.

Stephenson, M.D., M. Martin, R.S. Tjeerdema. 1995. Long-Term Trends in DDT, Polychlorinated Biphgenyls, and Chlordane in California Mussels. Arch. Environ. Contam. Toxicol. 28, 443-450.

Swartz, R.C., F.A. Cole, J.O. Lamberson, S.P. Ferraro, D.W. Shults, W.A. Deben, H. Lee II, and R.J. Ozretich. 1994. Sediment toxicity, contamination and amphipod abundance at a DDT – and dieldrin – contaminated site in San Francisco Bay. Environmental Toxicology and Chemistry 13(6):949-962.

Tabachnick, B.G. and L.S. Fidell. 1996. <u>Using Multivariate Statistics</u> 3rd Edition. Harper Collins College Publishers: New York. 880pp.

Tang, A., J.G. Kalocai, S. Santos, B. Jamil, J. Stewart. 1997. Sensitivity of blue mussel and purple sea urchin larvae to ammonia. Poster, Society of Environmental Toxicology and Chemistry, 18th Annual Meeting, San Francisco.

Thursby, G.B. and C.E. Schletak. 1993. Statistical analysis of 10-day solid phase toxicity data for amphipods. Abstract. 14th Annual Meeting, Society of Environmental Toxicology and Chemistry.

Thursby, G.B., J. Heltshe, and K.J. Scott. 1997. Revised approach to toxicity test acceptability criteria using a statistical performance assessment. Environ. Toxicol. and chem. 16: 1322-1329.

U.S. Environmental Protection Agency. 1996. Marine Toxicity Identification Evaluation (TIE), Phase I Guidance Document. US EPA, ORD, EPA/600/R-95/054. Washington, D.C., U.S.A.

U.S. Environmental Protection Agency. 1995a. Short term methods for estimating the chronic toxicity of effluent and receiving waters to west coast marine and estuarine organisms. EPA/600/R-95/136. Office of Research and Development. Washington, D.C., U.S.A.

U.S. Environmental Protection Agency. 1995b. Guidance For Assessing Chemical Contaminant Data For Use In Fish Advisories. Volume 1. Fish Sampling and Analysis. Second Edition. EPA 823-R-95-007. Office of Water, Washington, D.C., U.S.A.

U.S. Environmental Protection Agency. 1994. Methods for assessing the toxicity of sediment-associated contaminants with estuarine and marine amphipods. EPA 600/R-94/025.

U.S. Environmental Protection Agency. 1993a. Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. C.I. Weber, ed. EPA/600/4-90/072F. Office of Research and Development, Washington, D.C., U.S.A.

U.S. Environmental Protection Agency. 1993b. Method for aquatic toxicity identification evaluations: Phase II toxicity identification procedures for samples exhibiting acute and chronic toxicity. EPA/600/R-92/080. Environmental Research Laboratory, Duluth, MN, U.S.A.

U.S. Environmental Protection Agency. 1993c. Workshop report on developmental neurotoxic effects associated with exposure to PCBs. September 14-15, 1992. Research Triangle Park, NC. Risk Assessment Forum. Washington, D.C., U.S.A.

U.S. Environmental Protection Agency. 1991. Methods for aquatic toxicity identification evaluation: Phase I toxicity characterization procedures. EPA/600/6-01/003, Office of Research and Development, Washington, D.C., U.S.A.

Weisberg, S.B., J.B. Frithsen, A.F. Holland, J.F. Scott, J.K. Summers, H.T. Wilson, R.M. Valente, D.G. Heimbuch, J. Gerritsen, S.C. Schimmel, and R.W. Latimer. 1993. EMAP-Estuaries Virginian Province Demonstration Project Report. EPA 600/R-92/100. U.S. Environmental Protection Agency, Environmental Research Laboratory, Narragansett, RI.

Whitfield, M. 1974. The hydrolysis of ammonium ions in sea water - a theoretical approach. J. Mar. Biol. Ass. U.K. 54:565-580

Whitfield, M. 1978. The hydrolysis of ammonium ions in sea water - experimental confirmation of predicted constants at one atmosphere pressure. J. Mar. Biol. Ass. U.K. 58:781-787.

Zar, J.H. 1984. <u>Biostatistical Analysis: Second Edition</u>. Prentice Hall: Englewood Cliffs, New Jersey.

APPENDIX A

١

Database Description

2

DATABASE DESCRIPTION

for the

Bay Protection and Toxic Cleanup Program

Prepared for:

California State Water Resources Control Board Bays and Estuaries Unit

and

California Department of Fish and Game Marine Pollution Studies Laboratories

by

Moss Landing Marine Laboratories

I. OVERVIEW OF THE BAY PROTECTION PROGRAM

The California State Water Resources Control Board (SWRCB) has contracted the California Department of Fish and Game (CDFG) to coordinate the scientific aspects of the Bay Protection and Toxic Cleanup Program (BPTCP), a SWRCB program mandated by the California Legislature. The BPTCP is a comprehensive, long-term effort to regulate toxic pollutants in California's enclosed bays and estuaries. The program consists of both short-term and long-term activities. The short-term activities include the identification and priority ranking of toxic hot spots, development and implementation of regional monitoring programs designed to identify toxic hot spots, development of narrative sediment quality objectives, development and implementation of cleanup plans, revision of waste discharge requirements as needed to alleviate impacts of toxic pollutants, and development of a comprehensive database containing information pertinent to describing and managing toxic hot spots. The long-term activities include development of numeric sediment quality objectives; development and implementation of strategies to prevent the formation of new toxic hot spots and to reduce the severity of effects from existing toxic hot spots; revision of water quality control plans, cleanup plans, and monitoring programs; and maintenance of the comprehensive database.

Actual field and laboratory work is performed under contract by the California Department of Fish and Game (CDFG). The CDFG subcontracts the toxicity testing to Dr. Ron Tjeerdema at the University of California at Santa Cruz (UCSC) and the laboratory testing is performed at the CDFG toxicity testing laboratory at Granite Canyon, south of Carmel. The CDFG contracts the majority of the sample collection activities to Dr. John Oliver of San Jose State University at the Moss Landing Marine Laboratories (MLML) in Moss Landing. Dr. Oliver also is subcontracted to perform the TOC and grain size analyses, as well as to perform the benthic community analyses. CDFG personnel perform the trace metals analyses at the trace metals facility at Moss Landing Marine Laboratories in Moss Landing. The synthetic organic pesticides, PAHs and PCBs are contracted by CDFG to Dr. Ron Tjeerdema at the UCSC trace organics facility at Long Marine Laboratory in Santa Cruz. MLML currently maintains the Bay Protection and Toxic Cleanup Database for the SWRCB. Described below is a description of that database system.

II. DESCRIPTION OF COMPUTER FILES

The sample collection/field information, chemical, and toxicity data are stored on hard copy, computer disks and on a 486DX PC at Moss Landing Marine Laboratories. Access is limited to Russell Fairey. Contact Russell Fairey at (408) 633-6035 for copies of data. The data are stored in a dBase 4 program and can be exported to a variety of formats. There are three backups of this database stored in two different laboratories. The data are entered into 1 of 5 files. 3CHEM1_56.DBF file contains a collection of chemical analyses data in sediments. 3TOX1_56.DBF file contains toxicity test data and associated water quality data. 3TISS1_56.DBF file contains a collection of chemical analyses in tissue matrix. 3WATR1_56.DBF file contains a collection of chemical analyses in water. 3BEN1_56.XLS file contains a summary of benthic community analyses. This file is stored in Excel 5.0. A hardcopy printout of the dBase database structure is attached, showing precise characteristics of each field.

The 3CHEM1_56.DBF file contains the following fields (the number at the start of each field is the field number):

- 1. STANUM. This numeric field is 7 characters wide with 1 decimal place and contains the CDFG station numbers that are used statewide. The format is YXXXX.Z where Y is the Regional Water Quality Control Board Region number and XXXX is the number that corresponds to a given location or site and Z is the number of the station within that site. An example is San Pablo Bay- Island #1, in San Francisco Bay, where the STANUM is 20007.0. The 2 indicates Region 2. The 0007 indicates it is Site 7 and the .0 is the replicate (if any) at the station within Site 7.
- 2. STATION. This character field is 30 characters wide and contains the exact name of the station.
- 3. IDORG. This numeric field is 8 characters wide and contains the unique i.d. organizational number for the sample. For each station collected on a unique date, an idorg sample number is assigned. This should be the field that links the collection, toxicity, chemical, and other databases.
- 4. DATE. This date field is 8 characters wide and is the date that each sample was collected in the field. It is listed as MM/DD/YY.
- 5. LEG. This numeric field is 6 characters wide with 1 decimal place, and is the leg number of the project in which the sample was collected.
- 6. LATITUDE. This character field is 12 characters wide and contains the latitude of the center of the station sampled. The format is a character field as follows: XX,YY,ZZ, where XX is in degrees, YY is in minutes, and ZZ is in seconds or hundreds.
- 7. LONGITUDE. This character field is 14 characters wide and contains the longitude of the center of the station sampled. The format is a character field as follows: XXX,YY,ZZ, where XXX is in degrees, YY is in minutes, and ZZ is in seconds or hundreds.
- 8. HUND_SECS. This character field is 3 characters wide and contains the designation "h" if the latitude and longitude are given in degrees, minutes, hundredths of a minute. If differential accuracy was achieved with the GPS at the station the designation is given as "h/d". The designation "s" is given when latitude and longitude are given in degrees, minutes, seconds.
- 9. GISLAT. This numeric field is 12 characters wide with 8 decimal places and contains the latitude of the station sampled in Geographical Information System format. The format is a numeric field as follows: XX.YYYYYYY, where XX is in degrees and YYYYYYYY is a decimal fraction of the preceding degree.
- 10. GISLONG. This numeric field is 14 characters wide with 8 decimal places and contains the longitude of the station sampled. The format is a character field as follows: XXXX.YYYYYYYY where XXXX is in degrees and YYYYYYYY is a decimal fraction of the preceding degree.
- 11. DEPTH. This character field is 4 characters wide and contains the depth at which the sediment sample was collected, in meters to the nearest one half meter.
- 12. METADATA. This is a text index directing the user to tables or files of ancillary data pertinent to the associated data file. Character field, width 12.

TRACE METALS IN SEDIMENT are presented in fields 13 through 32. All sediment trace metal results are reported on a dry weight basis in parts per million (ppm).

- A. When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed.
- B. When the value is less than the detection limit of the analytical test, the value is reported as "-8.0"
 = not detected.

Sediment trace metals are numeric fields of varying character width, and including the following elements, listed by field number, then field name as it appears in the database, then numeric character width and number of decimal places:

- 13. TMMOIST. 6.2
- 14. ALUMINUM. 9.2
- 15. ANTIMONY. 7.3
- 16. ARSENIC. 6.3
- 17. CADMIUM. 7.4
- 18. CHROMIUM. 8.3
- 19. COPPER. 7.2
- 20. IRON. 7.1
- 21. LEAD. 7.3
- 22. MANGANESE. 7.2
- 23. MERCURY. 7.4
- 24. NICKEL. 7.3
- 25. SILVER. 7.4
- 26. SELENIUM. 6.3
- 27. TIN. 8.4
- 28. ZINC. 9.4
- 29. ASBATCH. 5.1
- 30. SEBATCH. 5.1
- 31. TMBATCH. The Batch number that the sample was digested in, numeric field width of 5 with 2 decimal place.
- 32. TMDATAQC. Data qualifier codes are notations used by data reviewers to briefly describe, or qualify data and the systems producing data, numeric field width 3. Data qualifier codes are as follows:
 - A. When the sample meets or exceeds the control criteria requirements, the value is reported as "-4".
 - B. When the sample has minor exceedences of control criteria but is generally usable for most assessments and reporting purposes, the value is reported as "-5". For samples coded "-5" it is recommended that if assessments are made that are especially sensitive or critical, the QA evaluations should be consulted before using the data.
 - C. When the QA samples has major exceedences of control criteria requirements and the data are not usable for most assessments and reporting purposes, the value is reported as "-6".
 - D. When the sample has minor exceedences of control criteria and is unlikely to affect assessments, the value is reported as "-3".

TRACE METALS IN POREWATER are presented in fields 33 through 43. All porewater trace metal results are reported on a dry weight basis in parts per billion (ppb).

- A. When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed.
- B. When the value is less than the detection limit of the analytical test, the value is reported as
 - "-8.0" = not detected.

The porewater trace metals are numeric fields of varying character width, and including the following elements, listed by field number, then field name as it appears in the database, then numeric character width and number of decimal places:

- 33. PWAL. This field is porewater aluminum. 5.0
- 34. PWCD. This field is porewater cadmium. 5.3
- 35. PWCU. This field is porewater copper. 5.2
- 36. PWFE. This field is porewater iron. 6.0
- 37. PWPB. This field is porewater lead. 6.2
- 38. PWMN. This field is porewater manganese. 5.0
- 39. PWNI. This filed is porewater nickel. 5.2
- 40. PWAG. This field is porewater silver. 6.4
- 41. PWZN. This field is porewater zinc. 6.1
- 42. PWBATCH. The batch number the sample was extracted in, character field width 11.
- 43. PWDATAQC. Data qualifier codes are notations used by data reviewers to briefly describe, or qualify data and the systems producing data, numeric field width 3. Data qualifier codes are as follows:
 - A. When the sample meets or exceeds the control criteria requirements, the value is reported as "-4".
 - B. When the sample has minor exceedences of control criteria but is generally usable for most assessments and reporting purposes, the value is reported as "-5". For samples coded "-5" it is recommended that if assessments are made that are especially sensitive or critical, the QA evaluations should be consulted before using the data.
 - C. When the QA samples has major exceedences of control criteria requirements and the data are not usable for most assessments and reporting purposes, the value is reported as "-6".
 - D. When the sample has minor exceedences of control criteria and is unlikely to affect assessments, the value is reported as "-3".

AVS/SEM concentrations are presented in fields 44 through 53. All AVS/SEM results are reported on a dry weight basis in parts per million (ppm or ug/g). Acid volatile sulfides (AVS) and simultaneous extracted metals (SEM) are numeric fields of varying character width, and including the following elements, listed by field number, then field name as it appears in the database, then numeric character width and number of decimal places.

- 44. AVS. 7.2
- 45. SEM_CD. 7.4
- 46. SEM_CU. 7.2
- 47. SEM NI. 7.3
- 48. SEM_PB. 7.3

- 49. SEM_ZN. 9.4
- 50. SEM_SUM. 9.4
- 51. SEM AVS. 9.3
- 52. AVS_BATCH. The batch number the sample was extracted in, numeric field width 5.
- 53. AVSDATAQC. Data qualifier codes are notations used by data reviewers to briefly describe, or qualify data and the systems producing data, numeric field width 3. Data qualifier codes are as follows:
 - A. When the sample meets or exceeds the control criteria requirements, the value is reported as "-4".
 - B. When the sample has minor exceedences of control criteria but is generally usable for most assessments and reporting purposes, the value is reported as "-5". For samples coded "-5" it is recommended that if assessments are made that are especially sensitive or critical, the QA evaluations should be consulted before using the data.
 - C. When the QA samples has major exceedences of control criteria requirements and the data are not usable for most assessments and reporting purposes, the value is reported as "-6".
 - D. When the sample has minor exceedences of control criteria and is unlikely to affect assessments, the value is reported as "-3".

SYNTHETIC ORGANICS are presented in fields 54 through 173. All synthetic organic results are reported on a dry weight basis in parts per billion (ppb or ng/g).

- A. When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed.
- B. When the value is less than the detection limit of the analytical test, the value is reported as "-8.0" = not detected.

Synthetic organics are reported on a dry weight basis in parts per billion (ppb or ng/g) and are numeric fields of varying width, and include the following compounds, listed by field number, then field name as it appears in database (and followed by the compound name if not obvious), and then finally, the numeric character width and number of decimal places is given:

- 54. SOWEIGHT. This numeric field is 6 characters wide with 2 decimal places and contains the weight of the sample extracted for analysis.
- 55. SOMOIST. This numeric field is 6 characters wide with 2 decimal places and contains the percent moisture of the sample extracted.
- 56. ALDRIN. 9.3
- 57. CCHLOR. cis-Chlordane. 9.3
- 58. TCHLOR. trans-Chlordane. 9.3
- 59. ACDEN. alpha-Chlordene. 9.3
- 60. GCDEN. gamma-Chlordene. 9.3
- 61. CLPYR. Chlorpyrifos (Dursban). 8.2
- 62. DACTH. Dacthal. 9.3
- 63. OPDDD. 0,p'-DDD. 8.2
- 64. PPDDD. p,p'-DDD. 9.3
- 65. OPDDE. 0,p'-DDE. 8.2
- 66. PPDDE. p,p'-DDE. 8.2
- 67. PPDDMS. p,p'-DDMS. 8.2

- 68. PPDDMU. p,p'-DDMU. 8.2
- 69. OPDDT. o,p'-DDT. 8.2
- 70. PPDDT. p,p'-DDT. 8.2
- 71. DICLB. p,p'-Dichlorobenzophenone. 8.2
- 72. **DIELDRIN**. 9.3
- 73. ENDO_I. Endosulfan I. 9.3
- 74. ENDO II. Endosulfan II. 8.2
- 75. ESO4. Endosulfan sulfate. 8.2
- 76. ENDRIN. 8.2
- 77. ETHION. 8.2
- 78. HCHA. alpha HCH 9.3
- 79. HCHB. beta HCH 8.2
- 80. HCHG. gamma HCH (Lindane) 9.3
- 81. HCHD. delta HCH 9.3
- 82. HEPTACHLOR. 9.3
- 83. HE. Heptachlor Epoxide. 9.3
- 84. HCB. Hexachlorobenzene. 9.3
- 85. METHOXY. Methoxychlor. 8.2
- 86. MIREX. 9.3
- 87. CNONA. cis-Nonachlor. 9.3
- 88. TNONA. trans-Nonachlor. 9.3
- 89. OXAD. Oxadiazon. 8.2
- 90. OCDAN. Oxychlordane. 9.3
- 91. TOXAPH. Toxaphene. 7.2
- 92. PESBATCH. The batch number that the sample was extracted in, character field width 11.
- 93. TBT. Tributyltin. 8.4
- 94. TBTBATCH. The batch number that the sample was extracted in, numeric field width 5 and 1 decimal places.
- 95. PCB5. 9.3
- 96. PCB8. 9.3
- 97. PCB15. 9.3
- 98. PCB18. 9.3
- 99. PCB27. 9.3
- 100. PCB28. 9.3
- 101. PCB29. 9.3
- 102. PCB31. 9.3
- 103. PCB44. 9.3
- 104. PCB49. 9.3
- 105. PCB52. 9.3
- 106. PCB66. 9.3
- 107. PCB70. 9.3
- 108. PCB74. 9.3
- 109. PCB87. 9.3
- 110. PCB95. 9.3
- 111. PCB97. 9.3

	、
112.	PCB99. 9.3
113.	PCB101. 9.3
114.	PCB105. 9.3
_ 115.	PCB110. 9.3
116.	PCB118. 9.3
117.	PCB128. 9.3
118.	PCB132. 9.3
119.	PCB137. 9.3
120.	PCB138. 9.3
121.	PCB149. 9.3
122.	PCB151. 9.3
123.	PCB153. 9.3
124.	PCB156. 9.3
125.	PCB157. 9.3
	PCB158. 9.3
127.	PCB170. 9.3
128.	PCB174. 9.3
129.	PCB177. 9.3
130.	PCB180. 9.3
131.	PCB183 9.3
132.	PCB187. 9.3
133.	PCB189. 9.3
134.	PCB194. 9.3
- 135.	PCB195. 9.3
136.	PCB201. 9.3
137.	PCB203. 9.3
138.	PCB206. 9.3
139.	PCB209. 9.3
140.	ARO1248. 9.3
141.	ARO1254. 9.3
142.	ARO1260. 9.3
143.	ARO5460. 9.3
144.	PCBBATCH. The batch number that the sample was extracted in, character field width
	11.
145.	ACY. Acenaphthylene. 8.2
146.	ACE. Acenaphthene. 8.2
147.	ANT. Anthracene. 8.2
148.	BAA. Benz[a]anthracene. 8.2
149.	BAP. Benzo[a]pyrene. 8.2
150.	BBF. Benzo[b]fluoranthene. 8.2
151.	BKF. Benzo[k]fluoranthene. 8.2
152.	BGP. Benzo[ghi]perylene. 8.2
153.	BEP. Benzo[e]pyrene. 8.2
154.	BPH. Biphenyl. 8.2
155.	CHR. Chrysene. 8.2

- 156. COR. Coronene. 8.2
- 157. DBA. Dibenz[a,h]anthracene. 8.2
- 158. DBT. Dibenzothiophene. 8.2
- 159. DMN. 2,6-Dimethylnaphthalene. 8.2
- 160. FLA. Fluoranthene. 8.2
- 161. FLU. Fluorene. 8.2
- 162. IND. Indeno[1,2,3-cd]pyrene. 8.2
- 163. MNP1. 1-Methylnaphthalene. 8.2
- 164. MNP2. 2-Methylnaphthalene. 8.2
- 165. MPH1. 1-Methylphenanthrene. 8.2
- 166. NPH. Naphthalene. 8.2
- 167. PHN. Phenanthrene. 8.2
- 168. PER. Perylene. 8.2
- 169. PYR. Pyrene. 8.2
- 170. TMN. 2,3,5-Trimethylnaphthalene. 8.2
- 171. TRY. Triphenylene 8.2
- 172. PAHBATCH. The batch number that the sample was extracted in, character field width 11.
- 173. SODATAQA. Data qualifier codes are notations used by data reviewers to briefly describe, or qualify data and the systems producing data, numeric field width 3. Data qualifier codes are as follows:
 - A. When the sample meets or exceeds the control criteria requirements, the value is reported as "-4".
 - B. When the sample has minor exceedences of control criteria but is generally usable for most assessments and reporting purposes, the value is reported as "-5". For samples coded "-5" it is recommended that if assessments are made that are especially sensitive or critical, the QA evaluations should be consulted before using the data.
 - C. When QA samples have major exceedences of control criteria requirements and the data are not usable for most assessments and reporting purposes, the value is reported as "-6".
 - D. When the sample has minor exceedences of control criteria and is unlikely to affect assessments, the value is reported as "-3".

SEDIMENT PARTICULATE SIZE ANALYSES DATA are presented in fields 174-182. The grain size results are reported as follows:

- A. When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed.
- B. When the value is less than the detection limit of the analytical test, the value is reported as "-8.0" = not detected.
- 174. FINES. Sediment grain size for each station, reported as percent fines. Numeric field, width 5 with 2 decimal places.
- 175. FINEBATCH. The batch number that the sample was analyzed in, character field, width 6.
- 176. FINEDATAQC. Data qualifier codes are notations used by data reviewers to briefly describe, or qualify data and the systems producing data, numeric field, width 3. Data qualifier codes are as follows:

- A. When the sample meets or exceeds the control criteria requirements, the value is reported as "-4".
- B. When the sample has minor exceedences of control criteria but is generally usable for most assessments and reporting purposes, the value is reported as "-5". For samples coded "-5" it is recommended that if assessments are made that are especially sensitive or critical, QA evaluations should be consulted before using the data.
- C. When QA samples have major exceedences of control criteria requirements and the data are not usable for most assessments and reporting purposes, the value is reported as "-6".
- D. When the sample has minor exceedences of control criteria and is unlikely to affect assessments, the value is reported as "-3".
- 177. COARSESAND. Sediment grain size greater than 0.500 mm (phi = 1.0) for each station, reported as a fractional percentage of the total sample wet weight. Numeric field, width 5 with 2 decimal places.
- 178. FINESAND. Sediment grain size less than 0.500 mm and greater than 0.063 mm (phi > 1.0 and phi \leq 4.0) for each station, reported as a fractional percentage of the total sample wet weight. Numeric field, width 5 with 2 decimal places.
- 179. COARSESILT. Sediment grain size less than 0.063 and greater than 0.031 mm (phi > 4.0 and phi \leq 5.0) for each station, reported as a fractional percentage of the total sample wet weight. Numeric field, width 5 with 2 decimal places.
- 180. FINESILT. Sediment grain size less than 0.031 and greater than 0.004 mm (phi >5.0 and phi ≤ 8.0) for each station, reported as a fractional percentage of the total sample wet weight. Numeric field, width 5 with 2 decimal places.
- 181. CLAY. Sediment grain size less than 0.004 mm (phi > 8.0) for each station, reported as a fractional percentage of the total sample wet weight. Numeric field, width 5 with 2 decimal places.
- 182. EXPANDEDQC. Data qualifier codes are notations used by data reviewers to briefly describe, or qualify data and the systems producing data, numeric field, width 3. Data qualifier codes are as follows:
 - A. When the sample meets or exceeds the control criteria requirements, the value is reported as "-4".
 - B. When the sample has minor exceedences of control criteria but is generally usable for most assessments and reporting purposes, the value is reported as "-5". For samples coded "-5" it is recommended that if assessments are made that are especially sensitive or critical, QA evaluations should be consulted before using the data.
 - C. When QA samples have major exceedences of control criteria requirements and the data are not usable for most assessments and reporting purposes, the value is reported as "-6".
 - D. When the sample has minor exceedences of control criteria and is unlikely to affect assessments, the value is reported as "-3".

SEDIMENT TOTAL ORGANIC CARBON (TOC) ANALYSES DATA. Field 183-186 presents the levels of total organic carbon detected in the sediment samples at each station. All TOC results are reported as percent of dry weight.

183. TOC. Total Organic Carbon (TOC) levels (percent of dry weight) in sediment, for each station. Numeric field, width 6 and 2 decimal places.

- A. When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed.
- B. When the value is less than the detection limit of the analytical test, the value is reported as "-8.0" = not detected.
- 184. TOCBATCH. The batch number that the sample was analyzed in, numeric field width 4.
- 185. TOCDATAQC. Data qualifier codes are notations used by data reviewers to briefly describe, or qualify data and the systems producing data, numeric field width 3. Data qualifier codes are as follows:
 - A. When the sample meets or exceeds the control criteria requirements, the value is reported as "-4".
 - B. When the sample has minor exceedences of control criteria but is generally usable for most assessments and reporting purposes, the value is reported as "-5". For samples coded "-5" it is recommended that if assessments are made that are especially sensitive or critical, the QA evaluations should be consulted before using the data.
 - C. When QA samples have major exceedences of control criteria requirements and the data are not usable for most assessments and reporting purposes, the value is reported as "-6".
 - D. When the sample has minor exceedences of control criteria and is unlikely to affect assessments, the value is reported as "-3".

The 3TOX1_56.DBF file is the toxicity data file which contains the following fields (the number at the start of each field is the field number):

- 1. STANUM. This numeric field is 7 characters wide with 1 decimal place and contains the CDFG station numbers that are used statewide. The format is YXXXX.Z where Y is the Regional Water Quality Control Board Region number and XXXX is the number that corresponds to a given location or site and Z is the number of the station within that site. An example is Southwest Slip in Los Angeles Harbor where the STANUM is 40001.1. The 4 indicates Region 4. The 0001 indicates that it is Site #1 and the .1 is the replicate station within Site #1. A site with a .0 designation indicates this is the only station at the site.
- 2. STATION. This character field is 30 characters wide and contains the exact name of the station.
- 3. IDORG. This numeric field is 8 characters wide and contains the unique i.d. organizational number for the sample. For each station collected on a unique date, an idorg sample number is assigned. This should be the field that links the collection, toxicity, chemical, and other databases.
- 4. DATE. This date field is 8 characters wide and is the date that each sample was collected in the field. It is listed as MM/DD/YY.
- 5. LEG. This numeric field is 6 characters wide and is the leg number of the project in which the sample was collected.
- 6. TYPE. This character field is 7 characters wide and describes whether the sample was a field sample, replicate or control.
- 7. METADATA. This is an index directing the user to tables or files of ancillary data pertinent to associated test. Character field, width 12.

- 8. CTRL. This character field is 5 characters wide and indicates the type of control sample used for the test.
- 9. LATITUDE. This character field is 12 characters wide and contains the latitude of the center of the station sampled. The format is a character field as follows: XX,YY,ZZ, where XX is in degrees, YY is in minutes, and ZZ is in seconds or hundreds.
- LONGITUDE. This character field is 14 characters wide and contains the longitude of the center of the station sampled. The format is a character field as follows: XXX,YY,ZZ, where XXX is in degrees, YY is in minutes, and ZZ is in seconds or hundreds.
- 11. HUND_SECS. This character is 3 character wide and contains the designation "h" if the latitude and longitude are given in degrees, minutes, hundredths of a minute. The designation "h/d" is given if differential accuracy is achieved with the GPS unit. The designation "s" is given when latitude and longitude are given in degrees, minutes, seconds.
- 12. GISLAT. This numeric field is 12 characters wide with 8 decimal places and contains the latitude of the station sampled in Geographical Information System format. The format is a numeric field as follows: XX.YYYYYYY, where XX is in degrees and YYYYYYY is a decimal fraction of the preceding degree.
- GISLONG. This numeric field is 14 characters wide with 8 decimal places and contains the longitude of the station sampled. The format is a character field as follows: XXXX.YYYYYYYY where XXXX is in degrees and YYYYYYYY is a decimal fraction of the preceding degree.

AMPHIPOD SURVIVAL TOXICITY TEST DATA. The following are descriptions of the field headings for the amphipod *Rhepoxynius abronius* (RA) toxicity test using homogenized sediment samples; presented in fields 14 through 25.

- 14. RA_MN. Station mean percent survival. Numeric field width 6, with 2 decimal places.
- 15. RA_SD. Station standard deviation of percent survival. Numeric field, width 6 with 2 decimal places.
- 16. RA_SG. Station statistical significance, representing the significance of the statistical test between the home sediment and the sample. A single * represents significance at the .05 level, and double ** represents significance at the .01 level. ns = not statistically significant. A "-9" indicates no statistics were run. Character field, width 5.
- 17. RA_TOX. Sample is considered toxic and denoted with a "T" if: 1) Sample mean is significantly different from control mean when compared using a t-test (b = 0.05). 2) If sample mean as a percent of the control mean is less than 77% of the control (MSD as a percent of the control). "NT" signifies non-toxic. Character field, width 3.
- 18. RA_OTNH3. Total ammonia concentration (ppm in water) in overlying water (water above bedded sediment) for each station analyzed using amphipod toxicity tests. When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8.0" = not detected. Numeric field, width 7 and 3 decimal places.
- 19. RA_OUNH3. Unionized ammonia concentration (ppm in water) in overlying water (water above bedded sediment) for each station analyzed using amphipod toxicity tests.

When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8.0" = not detected. Numeric field, width 7 and 3 decimal places.

- RA_OH2S. Hydrogen sulfide concentration (ppm in water) in overlying water (water above bedded sediment) for each station analyzed using amphipod toxicity tests. When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8.0" = not detected. Numeric field, width 7 and 4 decimal places.
- 21. RA_ITNH3. Total ammonia concentration (ppm in water) in interstitial water (water within bedded sediment) for each station analyzed using amphipod toxicity tests. When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8.0" = not detected. Numeric field, width 7 and 3 decimal places.
- 22. RA_IUNH3. Unionized ammonia concentration (ppm in water) interstitial water (water within bedded sediment) for each station analyzed using amphipod toxicity tests. When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8.0" = not detected. Numeric field, width 7 and 3 decimal places.
- 23. RA_IH2S. Hydrogen sulfide concentration (ppm in water) in interstitial water (water within bedded sediment) for each station analyzed using amphipod toxicity tests. When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8.0" = not detected. Numeric field, width 7 and 4 decimal places.
- 24. RA_BATCH. The batch number that the sample were run in, character width 10.
- 25. RAQC. Data qualifier codes are notations used by data reviewers to briefly describe, or qualify data and the systems producing data, numeric width 4. Data qualifier codes are as follows:
 - A. When the sample meets or exceeds the control criteria requirements, the value is reported as "-4".
 - B. When the sample has minor exceedences of control criteria but is generally usable for most assessments and reporting purposes, the value is reported as "-5". For samples coded "-5" it is recommended that if assessments are made that are especially sensitive or critical, the QA evaluations should be consulted before using the data.
 - C. When the QA sample has major exceedences of control criteria requirements and the data are not usable for most assessments and reporting purposes, the value is reported as "-6".
 - D. When the sample has minor exceedences of control criteria and is unlikely to affect assessments, the value is reported as "-3".
- AMPHIPOD SURVIVAL TOXICITY TEST DATA. The following are descriptions of the field headings for the amphipod *Eohaustorius estuarius* (EE) toxicity test using homogenized sediment samples; presented in fields 26 through 37.
- 26. EE_MN. Station mean percent survival. Numeric field, width 6 and 2 decimal places.
- 27. EE_SD. Station standard deviation of percent survival. Numeric field, width 6 and 2 decimal places.

- EE SG. Station statistical significance, representing the significance of the statistical test between the home sediment and the sample. A single * represents significance at the .05 level, and double ****** represents significance at the .01 level. ns = not statistically significant. Character field, width 5.
- EE TOX. Sample is considered toxic and denoted with a "T" if. 1) Sample mean is 29. significantly different from control mean when compared using a t-test (b = 0.05). 2) If sample mean as a percent of the control mean is less than 75% of the control (MSD as a percent of the control). "NT" signifies non-toxic. Character field, width 3.
- 30 EE BATCH. The batch number that the sample were run in, character width 10.
- 31. EEQC. Data qualifier codes are notations used by data reviewers to briefly describe, or qualify data and the systems producing data, numeric width 4. Data qualifier codes are as follows:
 - ·A. When the sample meets or exceeds the control criteria requirements, the value is reported as "-4".
 - When the sample has minor exceedences of control criteria but is generally usable for most **B**. assessments and reporting purposes, the value is reported as "-5". For samples coded "-5" it is recommended that if assessments are made that are especially sensitive or critical, the OA evaluations should be consulted before using the data.
 - С. When the QA sample has major exceedences of control criteria requirements and the data are not usable for most assessments and reporting purposes, the value is reported as "-6".
 - When the sample has minor exceedences of control criteria and is unlikely to affect D. assessments, the value is reported as "-3".
- EE OTNH3. Total ammonia concentration (ppm in water) in overlying water (water 32. above bedded sediment) for each station analyzed using amphipod toxicity tests. When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8.0" = not detected. Numeric field, width 7 and 3 decimal places.
- 33. EE OUNH3. Unionized ammonia concentration (ppm in water) in overlying water (water above bedded sediment) for each station analyzed using amphipod toxicity tests. When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8.0" = not detected. Numeric field, width 7 and 3 decimal places.
- 34. EE OH2S. Hydrogen sulfide concentration (ppm in water) in overlying water (water above bedded sediment) for each station analyzed using amphipod toxicity tests. When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8.0" = not detected. Numeric field, width 7 and 4 decimal places.
- 35. EE ITNH3. Total ammonia concentration (ppm in water) in interstitial water (water within bedded sediment) for each station analyzed using amphipod toxicity tests. When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "- $8.0^{"}$ = not detected. Numeric field, width 7 and 3 decimal places.
- 36. EE IUNH3. Unionized ammonia concentration (ppm in water) interstitial water (water within bedded sediment) for each station analyzed using amphipod toxicity tests. When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed. When

the value is less than the detection limit of the analytical test, the value is reported as "-8.0'' =not detected. Numeric field, width 7 and 3 decimal places.

37. EE IH2S. Hydrogen sulfide concentration (ppm in water) in interstitial water (water within bedded sediment) for each station analyzed using amphipod toxicity tests. When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "- $8.0^{"}$ = not detected. Numeric field, width 7 and 4 decimal places.

ABALONE LARVAL SHELL DEVELOPMENT TOXICITY TEST DATA. The following are descriptions of the field headings for the abalone larval (Haliotis rufescens) shell development toxicity tests, presented in fields 38 through 46. Results are given for undiluted subsurface water (100%).

- HRS100 MN. Station mean percent normal development in 100% subsurface water. 38. Numeric field, width 6 and 2 decimal places.
- HRS100 SD. Station standard deviation of percent normal development in 100% 39. subsurface water. Numeric field, width 6 and 2 decimal places.
- HRS100 SG. Station statistical significance, representing the significance of the 40. statistical test between the home sediment and the sample. A single * represents significance at the .05 level, and double ** represents significance at the .01 level. ns = not statistically significant. Character field, width 5.
- HRS100 TOX. Sample is considered toxic and denoted with a "T" if: 1) Sample mean is 41. significantly different from control mean when compared using a t-test (b=0.05). 2) If sample mean as a percent of the control mean is less than 80% of the control. "NT" signifies non-toxic. Character field, width 3.
- HRS OUNH3. Unionized ammonia concentration (ppm in water) in overlying water for 42. each station analyzed in abalone toxicity tests. When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8.0" = not detected. Numeric field, width 7 and 3 decimal places.
- 43. HRS OTNH3. Total ammonia concentration (ppm in water) in overlying water for each station analyzed in abalone toxicity tests. When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8.0" = not detected. Numeric field, width 7 and 3 decimal places.
- 44. HRS OH2S. Hydrogen sulfide concentration (ppm in water) in overlying water for each station analyzed in abalone toxicity tests. When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8.0" = not detected. Numeric field, width 7 and 4 decimal places.
- 45. HRS BATCH. The batch number that the sample were run in, character field width 10.
- 46. HRSQC. Data qualifier codes are notations used by data reviewers to briefly describe, or qualify data and the systems producing data, numeric field width 4. Data qualifier codes are as follows:
 - Α When the sample meets or exceeds the control criteria requirements, the value is reported as "-4".

- B. When the sample has minor exceedences of control criteria but is generally usable for most assessments and reporting purposes, the value is reported as "-5". For samples coded "-5" it is recommended that if assessments are made that are especially sensitive or critical, the QA evaluations should be consulted before using the data.
- C. When the QA samples has major exceedences of control criteria requirements and the data are not usable for most assessments and reporting purposes, the value is reported as "-6".
- D. When the sample has minor exceedences of control criteria and is unlikely to affect assessments, the value is reported as "-3".

ABALONE LARVAL SHELL DEVELOPMENT TOXICITY TEST DATA. The following are descriptions of the field headings for the abalone larval (*Haliotis rufescens*) shell development toxicity tests, presented in fields 47 through 63. Results are given for undiluted porewater (100%) and diluted porewater (50% and 25% dilutions).

- 47. HRP100_MN. Station mean percent normal development in 100% porewater. Numeric field, width 6 and 2 decimal places.
- 48. HRP100_SD. Station standard deviation of percent normal development in 100% porewater. Numeric field, width 6 and 2 decimal places.
- 49. HRP100_SG. Station statistical significance, representing the significance of the statistical test between the home sediment and the sample. A single * represents significance at the .05 level, and double ** represents significance at the .01 level. ns = not statistically significant. Character field, width 5.
- 50. HRP100_TOX. Sample is considered toxic and denoted with a "T" if: 1) Sample mean is significantly different from control mean when compared using a t-test (b= 0.05). 2) If sample mean as a percent of the control mean is less than 80% of the control. "NT" signifies non-toxic. Character field, width 3.
- 51. HRP50_MN. Station mean percent normal development in 50% porewater. Numeric field, width 6 and 2 decimal places.
- 52. HRP50_SD. Station standard deviation of percent normal development in 50% porewater. Numeric field, width 6 and 2 decimal places.
- 53. HRP50_SG. Station statistical significance, representing the significance of the statistical test between the home sediment and the sample. A single * represents significance at the .05 level, and double ** represents significance at the .01 level. ns = not statistically significant. Character field, width 5.
- 54. HRP50_TOX. Sample is considered toxic and denoted with a "T" if: 1) Sample mean is significantly different from control mean when compared using a t-test (b= 0.05). 2) If sample mean as a percent of the control mean is less than 80% of the control. "NT" signifies non-toxic. Character field, width 3.
- 55. HRP25_MN. Station mean percent normal development in 25% porewater. Numeric field, width 6 and 2 decimal places.
- 56. HRP25_SD. Station standard deviation of percent normal development in 25% porewater. Numeric field, width 6 and 2 decimal places.
- 57. HRP25_SG. Station statistical significance, representing the significance of the statistical test between the home sediment and the sample. A single * represents significance at the

.05 level, and double ** represents significance at the .01 level. ns = not statistically significant. Character field, width 5.

- 58. HRP25_TOX. Sample is considered toxic and denoted with a "T" if: 1) Sample mean is significantly different from control mean when compared using a t-test (b= 0.05). 2) If sample mean as a percent of the control mean is less than 80% of the control. "NT" signifies non-toxic. Character field, width 3.
- 59. HRP_IUNH3. Unionized ammonia concentration (ppm) in porewater for each station analyzed in abalone toxicity tests. When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8.0" = not detected. Numeric field, width 7 and 3 decimal places.
- 60. HRP_ITNH3 Total ammonia concentration (ppm) in porewater for each station analyzed in abalone toxicity tests. When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8.0" = not detected. Numeric field, width 7 and 3 decimal places.
- 61. HRP_IH2S. Hydrogen sulfide concentration (ppm) in porewater for each station analyzed in abalone toxicity tests. When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8.0" = not detected. Numeric field, width 7 and 4 decimal places.
- 62. HRPBATCH. The batch number that the sample were run in, character field width 10.
- 63. HRPQC. Data qualifier codes are notations used by data reviewers to briefly describe, or qualify data and the systems producing data, numeric field width 4. Data qualifier codes are as follows:
 - A. When the sample meets or exceeds the control criteria requirements, the value is reported as "-4".
 - B. When the sample has minor exceedences of control criteria but is generally usable for most assessments and reporting purposes, the value is reported as "-5". For samples coded "-5" it is recommended that if assessments are made that are especially sensitive or critical, the QA evaluations should be consulted before using the data.
 - C. When the QA samples has major exceedences of control criteria requirements and the data are not usable for most assessments and reporting purposes, the value is reported as "-6".
 - D. When the sample has minor exceedences of control criteria and is unlikely to affect assessments, the value is reported as "-3".

The following are descriptions of the field headings for the sea urchin (*Strongylocentrotus purpuratus*) fertilization toxicity tests (SPPF) using sediment pore (interstitial) water samples; presented in fields 64 through 72. Results are given for undiluted porewater (100% porewater) and diluted porewater (50% and 25% porewater).

- 64. SPPF100_MN. Station mean percent fertilization in 100% porewater. Numeric field, width 6 and 2 decimal places.
- 65. SPPF100_SD. Station standard deviation of percent fertilization in 100% pore- water. Numeric field, width 6 and 2 decimal places.

- 66. SPPF100_SG. Station statistical significance, representing the significance of the statistical test between the home sediment and the sample. A single * represents significance at the .05 level, and double ** represents significance at the .01 level. ns = not statistically significant. A "-9" indicates that no statistics were run. Character field, width 5.
- 67. SPPF100TOX. Sample is considered toxic and denoted with a "T" if: 1) Sample mean is significantly different from control mean when compared using a t-test (=0.05). 2) If sample mean as a percent of the control mean is less than 80% of the control. "NT" signifies non-toxic. Character field, width 3.
- 68. SPPF_ITNH3. Total ammonia concentration (ppm) in porewater for each station analyzed using urchin toxicity tests. When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8.0" = not detected. Numeric field, width 7 and 3 decimal places.
- 69. SPPF_IUNH3. Unionized ammonia concentration (ppm) in porewater for each station analyzed using urchin toxicity tests. When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8.0" = not detected. Numeric field, width 7 and 3 decimal places.
- 70. SPPF_IH2S. Hydrogen sulfide concentration (ppm) in porewater for each station analyzed using urchin toxicity tests. When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8.0"= not detected. Numeric field, width 7 and 4 decimal places.
- 71. SPPF_BATCH. The batch number that the samples were analyzed in, character width 10.
- 72. SPPFQC. Data qualifier codes are notations used by data reviewers to briefly describe, or qualify data and the systems producing data, numeric field width 4. Data qualifier codes are as follows:
 - A. When the sample meets or exceeds the control criteria requirements, the value is reported as "-4".
 - B. When the sample has minor exceedences of control criteria but is generally usable for most assessments and reporting purposes, the value is reported as "-5". For samples coded "-5" it is recommended that if assessments are made that are especially sensitive or critical, the QA evaluations should be consulted before using the data.
 - C. When the QA sample has major exceedences of control criteria requirements and the data are not usable for most assessments and reporting purposes, the value is reported as "-6".
 - D. When the sample has minor exceedences of control criteria and is unlikely to affect assessments, the value is reported as "-3".

The following are descriptions of the field headings for the sea urchin (*Strongylocentrotus purpuratus*) development toxicity tests (SPPD) using sediment pore (interstitial) water samples; presented in fields 73 through 81. Results are given for undiluted interstitial water (100% porewater) and diluted (50% and 25% porewater).

- 73. SPPD100_MN. Station mean percent normal development in 100% porewater. Numeric field, width 6 and 2 decimal places.
- 74. SPPD100_SD. Station standard deviation of percent normal development in 100% porewater. Numeric field, width 6 and 2 decimal places.
- 75. SPPD100_SG. Station statistical significance, representing the significance of the statistical test between the home sediment and the sample. A single * represents significance at the .05 level, and double ** represents significance at the .01 level. ns = not statistically significant. Character field, width 5.
- 76. SPPD100TOX. Sample is considered toxic and denoted with a "T" if: 1) Sample mean if significantly different from control mean when compared using a t-test ($\beta = 0.05$). 2) If sample mean as a percent of the control mean is less than 68% of the control (MSD as a percent of the control). "NT" signifies non-toxic. Character field, width 3.
- 77. SPPD_BATCH. The batch number that the samples were analyzed in, character width 10.
- 78. SPPDQC. Data qualifier codes are notations used by data reviewers to briefly describe, or qualify data and the systems producing data, numeric field width 4. Data qualifier codes are as follows:
 - A. When the sample meets or exceeds the control criteria requirements, the value is reported as "-4".
 - B. When the sample has minor exceedences of control criteria but is generally usable for most assessments and reporting purposes, the value is reported as "-5". For samples coded "-5" it is recommended that if assessments are made that are especially sensitive or critical, the QA evaluations should be consulted before using the data.
 - C. When the QA sample has major exceedences of control criteria requirements and the data are not usable for most assessments and reporting purposes, the value is reported as "-6".
 - D. When the sample has minor exceedences of control criteria and is unlikely to affect assessments, the value is reported as "-3".
- 79. SPPD_ITNH3. Total ammonia concentration (ppm) in porewater for each station analyzed using urchin toxicity tests. When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8.0" = not detected. Numeric field, width 7 and 3 decimal places.
- 80. SPPD_IUNH3. Unionized ammonia concentration (ppm) in porewater for each station analyzed using urchin toxicity tests. When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8.0" = not detected. Numeric field, width 7 and 3 decimal places.
- 81. SPPD_IH2S. Hydrogen sulfide concentration (ppm) in porewater for each station analyzed using urchin toxicity tests. When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed. When the value is less than the detection limit of the

analytical test, the value is reported as "-8.0"= not detected. Numeric field, width 7 and 4 decimal places.

The following are descriptions of the field headings for the sea urchin (*Strongylocentrotus purpuratus*) development toxicity tests (SPDI), using the sediment/water interface exposure to intact sediment cores; presented in fields 82 through 90.

82.

SPDI_MN. Station mean percent normal development in the sediment/water interface exposure. Numeric field, width 6 and 2 decimal places.

- 83. SPDI_SD. Station standard deviation of percent normal development in the sediment/water interface exposure. Numeric field, width 6 and 2 decimal places.
- 84. SPDI_SG. Station statistical significance, representing the significance of the statistical test between the home sediment and the sample. A single * represents significance at the .05 level, and double ** represents significance at the .01 level. ns = not statistically significant. Character field, width 5.
- 85. SPDI_TOX. Sample is considered toxic and denoted with a "T" if: 1) Sample mean is significantly different from control mean when compared using a t-test (b= 0.05). 2) If sample mean as a percent of the control mean is less than 59% of the control (MSD as a percent of the control). "NT" signifies non-toxic. Character field, width 3.
- 86. SPDI_BATCH. The batch number that the samples were analyzed in, character field width 10.
- 87. SPDIQC. Data qualifier codes are notations used by data reviewers to briefly describe, or qualify data and the systems producing data, numeric field width 4. Data qualifier codes are as follows:
 - A. When the sample meets or exceeds the control criteria requirements, the value is reported as "-4".
 - B. When the sample has minor exceedences of control criteria but is generally usable for most assessments and reporting purposes, the value is reported as "-5". For samples coded "-5" it is recommended that if assessments are made that are especially sensitive or critical, the QA evaluations should be consulted before using the data.
 - C. When the QA sample has major exceedences of control criteria requirements and the data are not usable for most assessments and reporting purposes, the value is reported as "-6".
 - D. When the sample has minor exceedences of control criteria and is unlikely to affect assessments, the value is reported as "-3".
- 88. SPDI_OTNH3. Total ammonia concentration (ppm in water) in overlying water samples (water above bedded sediment used for urchin toxicity tests). When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8.0" = not detected. Numeric field, width 7 and 3 decimal places.
- 89. SPDI_OUNH3. Unionized ammonia concentration (ppm in water) in overlying water samples (water above bedded sediment) for each station analyzed using urchin toxicity tests. When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8.0" = not detected. Numeric field, width 7 and 3 decimal places.

90. SPDI_OH2S. Hydrogen sulfide concentration (ppm in water) in overlying water (water above bedded sediment) for each station analyzed using urchin toxicity tests. When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8.0" = not detected. Numeric field, width 7 and 4 decimal places.

The following are descriptions of the field headings for the mussel larval (*Mytilus* spp.) shell development toxicity tests, (MES) using subsurface water samples; presented in fields 91 through 99. Results are given for undiluted subsurface water (100% subsurface water).

- 91. MES100_MN. Station mean percent normal development in 100% subsurface water. Numeric field, width 6 and 2 decimal places.
- 92. MES100_SD. Station standard deviation of percent normal development in 100% subsurface water. Numeric field, width 6 and 2 decimal places.
- 93. MES100_SG. Station statistical significance, representing the significance of the statistical test between the home sediment and the sample. A single * represents significance at the .05 level, and double ** represents significance at the .01 level. ns = not statistically significant. Character field, width 5.
- 94. MES100_TOX. Sample is considered toxic and denoted with a "T" if: 1) Sample mean is significantly different from control mean when compared using a t-test (p= 0.05). 2) If sample mean as a percent of the control mean is less than 80% of the control. "NT" signifies non-toxic. Character field, width 3.
- 95. MES_OUNH3. Unionized ammonia concentration (ppm in water) in overlying water samples (water above bedded sediment) used for mussel toxicity tests. When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8.0" = not detected. Numeric field, width 7 and 3 decimal places.
- 96. MES_OTNH3. Total ammonia concentration (ppm in water) in overlying water samples (water above bedded sediment) used for mussel toxicity tests. When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8.0" = not detected. Numeric field, width 7 and 3 decimal places.
- 97. MES_OH2S. Hydrogen sulfide concentration (ppm in water) in subsurface water samples (water above bedded sediment) used for mussel toxicity tests. When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8.0"= not detected. Numeric field, width 7 and 4 decimal places.
- 98. MES_BATCH. The batch number that the samples were analyzed in, character field width 10.
- 99. MESQC. Data qualifier codes are notations used by data reviewers to briefly describe, or qualify data and the systems producing data, numeric width 4. Data qualifier codes are as follows:
 - A. When the sample meets or exceeds the control criteria requirements, the value is reported as "-4".

- B. When the sample has minor exceedences of control criteria but is generally usable for most assessments and reporting purposes, the value is reported as "-5". For samples coded "-5" it is recommended that if assessments are made that are especially sensitive or critical, the QA evaluations should be consulted before using the data.
- C. When the QA sample has major exceedences of control criteria requirements and the data are not usable for most assessments and reporting purposes, the value is reported as "-6".
- D. When the sample has minor exceedences of control criteria and is unlikely to affect assessments, the value is reported as "-3"

The following are descriptions of the field headings for the mussel larval (*Mytilus* spp.) shell development toxicity tests, (MEP) using pore (interstitial) water samples; presented in fields 100 through 108. Results are given for undiluted interstitial water (100% porewater).

- 100. MEP100_MN. Station mean percent normal development in 100% porewater. When the value is reported as "-7", it indicates that the test was run, but brine controls failed and test results were not interpretable. Numeric field, width 6 and 2 decimal places.
- 101. MEP100_SD. Station standard deviation of percent normal development in 100% porewater. When the value is reported as "-7", it indicates that the test was run, but brine controls failed and test results were not interpretable. Numeric field, width 6 and 2 decimal places.
- 102. MEP100_SG. Station statistical significance, representing the significance of the statistical test between the home sediment and the sample. A single * represents significance at the .05 level, and double ** represents significance at the .01 level. ns = not statistically significant. Character field, width 5.
- 103. MEP100_TOX. Sample is considered toxic and denoted with a "T" if: 1) Sample mean is significantly different from control mean when compared using a t-test (b= 0.05). 2) If sample mean as a percent of the control mean is less than 80% of the control. "NT" signifies non-toxic. Character field, width 3
- 104. MEP_ITNH3. Total ammonia concentration (ppm in water) in interstitial water samples (water within bedded sediment) used for mussel toxicity tests. When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8.0" = not detected. Numeric field, width 7 and 3 decimal places.
- 105. MEP_IUNH3. Unionized ammonia concentration (ppm in water) in interstitial water samples (water within bedded sediment) used for mussel toxicity tests. When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8.0" = not detected. Numeric field, width 7 and 3 decimal places.
- 106. MEP_IH2S. Hydrogen sulfide concentration (ppm in water) in interstitial water samples (water within bedded sediment) used for mussel toxicity tests. When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8.0"= not detected. Numeric field, width 7 and 4 decimal places.
- 107. MEP_BATCH. The batch number that the samples were analyzed in, character field width 10.

- 108. MEPQC. Data qualifier codes are notations used by data reviewers to briefly describe, or qualify data and the systems producing data, numeric width 4. Data qualifier codes are as follows:
 - A. When the sample meets or exceeds the control criteria requirements, the value is reported as "-4".
 - B. When the sample has minor exceedences of control criteria but is generally usable for most assessments and reporting purposes, the value is reported as "-5". For samples coded "-5" it is recommended that if assessments are made that are especially sensitive or critical, the QA evaluations should be consulted before using the data.

1

- C. When the QA sample has major exceedences of control criteria requirements and the data are not usable for most assessments and reporting purposes, the value is reported as "-6".
- D. When the sample has minor exceedences of control criteria and is unlikely to affect assessments, the value is reported as "-3".

POLYCHAETE SURVIVAL TOXICITY TEST DATA. The following are descriptions of the field headings for the polychaete worm *Neanthes arenaceodentata* (NA), survival tests presented in fields 109 through 112.

- 109. NASURV_MN. Station mean percent survival of 5 replicates. Numeric field, width 6 with 2 decimal places.
- 110. NASURV_SD. Station standard deviation of percent survival. Numeric field, width 6 with 2 decimal places.
- 111. NASURV_SG. Station statistical significance, representing the significance of the statistical test between the home sediment and the sample. A single * represents significance at the .05 level, and double ** represents significance at the .01 level. ns = not statistically significant. Character field, width 5.
- 112. NASURV_TOX. Sample is considered toxic and denoted with a "T" if: 1) Sample mean is significantly different from control mean when compared using a t-test ($\beta = 0.05$). 2) If sample mean as a percent of the control mean is less than 64% of the control (MSD as a percent of the control). "NT" signifies non-toxic. Character field, width 3.

POLYCHAETE WEIGHT CHANGE TOXICITY TEST DATA. The following are descriptions of the field headings for the polychaete worm *Neanthes arenaceodentata* (NAWT) weight change toxicity test using homogenized sediment samples; presented in fields 113 through 125.

- 113. NAWT MN. Station mean weight (gm). Numeric field, width 6 and 2 decimal places.
- 114. NAWT_SD. Station standard deviation of weight (gm). Numeric field, width 6 and 2 decimal places.
- 115. NAWT_SG. Station statistical significance, representing the significance of the statistical test between the home sediment and the sample. A single * represents significance at the .05 level, and double ** represents significance at the .01 level. ns = not statistically significant. Character field, width 5.
- 116. NAWT_TOX. Sample is considered toxic and denoted with a "T" if: 1) Sample mean is significantly different from control mean when compared using a t-test

117. 0.05). 2) If sample mean as a percent of the control mean is less than 44% of the control (MSD as a percent of the control). "NT" signifies non-toxic. Character field, width 3.

NA OTNH3. Total ammonia concentration (ppm in water) in overlying water (water

- above bedded sediment) for each station analyzed using polychaete toxicity tests. When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8.0" = not detected. Numeric field, width 7 and 3 decimal places.
- NA OUNH3. Unionized ammonia concentration (ppm in water) in overlying water 119. (water above bedded sediment) for each station analyzed using polychaete toxicity tests. When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8.0" = not detected. Numeric field, width 7 and 3 decimal places.
- 120. NA_OH2S. Hydrogen sulfide concentration (ppm in water) in overlying water (water above bedded sediment) for each station analyzed using polychaete toxicity tests. When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "- $8.0^{"}$ = not detected. Numeric field, width 7 and 4 decimal places.
- 121. NA ITNH3. Total ammonia concentration (ppm in water) in interstitial water (water within bedded sediment) for each station analyzed using polychaete toxicity tests. When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "- $8.0^{"}$ = not detected. Numeric field, width 7 and 3 decimal places.
- 122. NA IUNH3. Unionized ammonia concentration (ppm in water) in interstitial water (water within bedded sediment) for each station analyzed using polychaete toxicity tests. When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8.0" = not detected. Numeric field, width 7 and 3 decimal places.
- NA_IH2S. Hydrogen sulfide concentration (ppm in water) in interstitial water (water 123. within bedded sediment) for each station analyzed using polychaete toxicity tests. When the value is missing or not analyzed, the value is reported as "-9.0" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "- $8.0^{"}$ = not detected. Numeric field, width 7 and 4 decimal places.
- NA BATCH. The batch number that the samples were analyzed in, character field width 124. 10.
- 125. NAQC. Data qualifier codes are notations used by data reviewers to briefly describe, or qualify data and the systems producing data, numeric field width 4. Data qualifier codes are as follows:
 - When the sample meets or exceeds the control criteria requirements, the value is reported Α. as "-4".
 - Β. When the sample has minor exceedences of control criteria but is generally usable for most assessments and reporting purposes, the value is reported as "-5". For samples coded "-5" it is recommended that if assessments are made that are especially sensitive or critical, the QA evaluations should be consulted before using the data.
 - C. When the QA sample has major exceedences of control criteria requirements and the data are not usable for most assessments and reporting purposes, the value is reported as "-6".

D. When the sample has minor exceedences of control criteria and is unlikely to affect assessments, the value is reported as "-3".

The following are descriptions of the field headings for the water flea *Ceriodaphnia dubia* survival tests for subsurface water (CDSS); presented in fields 126 through 137.

- 126. CDSS_MN. Station mean percent *Ceriodaphnia* survival in 100% subsurface water. Numeric field, width 6.
- 127. CDSS_SD. Station standard deviation of percent survival in 100% subsurface water. Numeric field, width 6.
- 128. CDSS_SG. Sample is considered toxic if: 1) Sample mean is significantly different from control mean when compared using a t-test (= 0.05). 2) If sample mean as a percent of the control mean is less than 80% of the control. Character field, width 5.
- 129. CDSS_TOX. Sample is considered toxic and denoted with a "T" if: 1) Sample mean is significantly different from control mean when compared using a t-test (b= 0.05). 2) If sample mean as a percent of the control mean is less than 80% of the control (MSD as a percent of the control). "NT" signifies non-toxic. Character field, width 3.
- 130. CDSS_BATCH. The batch number that the samples were analyzed in, character width 10.
- 131. CDSSQC. Data qualifier codes are notations used by data reviewers to briefly describe, or qualify data and the systems producing data, numeric field width 4. Data qualifier codes are as follows:
 - A. When the sample meets or exceeds the control criteria requirements, the value is reported as "-4".
 - B. When the sample has minor exceedences of control criteria but is generally usable for most assessments and reporting purposes, the value is reported as "-5". For samples coded "-5" it is recommended that if assessments are made that are especially sensitive or critical, the QA evaluations should be consulted before using the data.
 - C. When the QA sample has major exceedences of control criteria requirements and the data are not usable for most assessments and reporting purposes, the value is reported as "-6".
- D. When the sample has minor exceedences of control criteria and is unlikely to affect assessments, the value is reported as "-3".
- 132. CDSS_OTNH3. Total ammonia concentration (ppm in water) in subsurface water samples. When the value is missing or not analyzed, the value is reported as "-9" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8 " = not detected. Numeric field, width 7 and 3 decimal places.
- 133. CDSS_OUNH3. Unionized ammonia concentration (ppm in water) in subsurface water samples. When the value is missing or not analyzed, the value is reported as "-9" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8" = not detected. Numeric field, width 7 and 3 decimal places.
- 134. CDSS_OH2S. Hydrogen sulfide concentration (ppm in water) in subsurface water samples. When the value is missing or not analyzed, the value is reported as "-9" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8" = not detected. Numeric field, width 7 and 4 decimal places.

- 135. CDSS_OHDLO. The lower measurement of Hardness in subsurface water samples. When the value is missing or not analyzed, the value is reported as "-9" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8" = not detected. Numeric field, width 7.
- 136. CDSS_OHDHI. The upper measurement of Hardness in subsurface water samples. When the value is missing or not analyzed, the value is reported as "-9" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8" = not detected. Numeric field, width 7.
- 137. CDSS_OCYHI. The upper measurement of Conductivity in subsurface water samples. When the value is missing or not analyzed, the value is reported as "-9" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8" = not detected. Numeric field, width 7.

The following are descriptions of the field headings for the amphipod (*Hyalella azteca*) survival tests with sediment (HA); presented in fields 138 through 151.

- 138. HA MN. Station mean percent Hyalella survival in sediment. Numeric field, width 6.
- 139. HA_SD. Station standard deviation of percent survival in sediment. Numeric field, width 6.
- 140. HA_SG. Sample is considered toxic if: 1) Sample mean is significantly different from control mean when compared using a t-test ($\beta = 0.05$). 2) If sample mean as a percent of the control mean is less than 80% of the control. Character field, width 5.
- 141. HA_TOX. Sample is considered toxic and denoted with a "T" if: 1) Sample mean is significantly different from control mean when compared using a t-test ($\beta = 0.05$). 2) If sample mean as a percent of the control mean is less than 80% of the control. "NT" signifies non-toxic. Character field, width 3.
- 142. HA_BATCH. The batch number that the samples were analyzed in, character width 10.
- 143. HAQC. Data qualifier codes are notations used by data reviewers to briefly describe, or qualify data and the systems producing data, numeric field width 4. Data qualifier codes are as follows:
 - A. When the sample meets or exceeds the control criteria requirements, the value is reported as "-4".
 - B. When the sample has minor exceedances of control criteria but is generally usable for most assessments and reporting purposes, the value is reported as "-5". For samples coded "-5" it is recommended that if assessments are made that are especially sensitive or critical, the QA evaluations should be consulted before using the data.
 - C. When the QA sample has major exceedances of control criteria requirements and the data are not usable for most assessments and reporting purposes, the value is reported as "-6".
- D. When the sample has minor exceedances of control criteria and is unlikely to affect assessments, the value is reported as "-3".
- 144. HA_OTNH3. Total ammonia concentration (ppm in water) in overlying water samples (water above bedded sediment). When the value is missing or not analyzed, the value is reported as "-9" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8 " = not detected. Numeric field, width 7 and 3 decimal places.

- 145. HA_OUNH3. Unionized ammonia concentration (ppm in water) in overlying water samples (water above bedded sediment). When the value is missing or not analyzed, the value is reported as "-9" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8" = not detected. Numeric field, width 7 and 3 decimal places.
- 146. HA_ITNH3. Total ammonia concentration (ppm in water) in overlying water samples (water above bedded sediment). When the value is missing or not analyzed, the value is reported as "-9" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8 " = not detected. Numeric field, width 7 and 3 decimal places.
- 147. HA_IUNH3. Unionized ammonia concentration (ppm in water) in overlying water samples (water above bedded sediment). When the value is missing or not analyzed, the value is reported as "-9" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8" = not detected. Numeric field, width 7 and 3 decimal places.
- 148. HA_IH2S. Hydrogen sulfide concentration (ppm in water) in overlying water samples (water above bedded sediment). When the value is missing or not analyzed, the value is reported as "-9" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8" = not detected. Numeric field, width 7 and 4 decimal places.
- 149. HA_OHDLO. The lower measurement of Hardness in overlying water samples (water above bedded sediment). When the value is missing or not analyzed, the value is reported as "-9" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8" = not detected. Numeric field, width 7.
- 150. HA_OHDHI. The upper measurement of Hardness in overlying water samples (water above bedded sediment). When the value is missing or not analyzed, the value is reported as "-9" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8" = not detected. Numeric field, width 7.
- 151. HA_OCYHI. The upper measurement of Conductivity in overlying water samples (water above bedded sediment). When the value is missing or not analyzed, the value is reported as "-9" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8" = not detected. Numeric field, width 7.

The following are descriptions of the field headings for the amphipod (*Holmesimysis costata*) survival tests with subsurface water (HC); presented in fields 152 through 158.

- 152. HC_MN. Station mean percent survival in 100% subsurface water. Numeric field, width 6.
- 153. HC_SD. Station standard deviation of percent survival in 100% subsurface water. Numeric field, width 6.
- 154. HC_SG. Sample is considered toxic if: 1) Sample mean is significantly different from control mean when compared using a t-test ($\beta = 0.05$). 2) If sample mean as a percent of the control mean is less than 80% of the control. Character field, width 5.
- 155. HC_TOX. Sample is considered toxic and denoted with a "T" if: 1) Sample mean is significantly different from control mean when compared using a t-test ($\beta = 0.05$). 2) If

sample mean as a percent of the control mean is less than 80% of the control. "NT" signifies non-toxic. Character field, width 3.

- 156. HC_BATCH. The batch number that the samples were analyzed in, character width 10.
- 157. HCQC. Data qualifier codes are notations used by data reviewers to briefly describe, or qualify data and the systems producing data, numeric field width 4. Data qualifier codes are as follows:
 - A. When the sample meets or exceeds the control criteria requirements, the value is reported as "-4".
 - B. When the sample has minor exceedances of control criteria but is generally usable for most assessments and reporting purposes, the value is reported as "-5". For samples coded "-5" it is recommended that if assessments are made that are especially sensitive or critical, the QA evaluations should be consulted before using the data.
 - C. When the QA sample has major exceedances of control criteria requirements and the data are not usable for most assessments and reporting purposes, the value is reported as "-6".
 - D. When the sample has minor exceedances of control criteria and is unlikely to affect assessments, the value is reported as "-3".
- 158. HC_OTNH3. Total ammonia concentration (ppm in water) in subsurface water samples. When the value is missing or not analyzed, the value is reported as "-9" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8 " = not detected. Numeric field, width 7 and 3 decimal places.
- 159. HC_OUNH3. Unionized ammonia concentration (ppm in water) in subsurface water samples. When the value is missing or not analyzed, the value is reported as "-9" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8" = not detected. Numeric field, width 7 and 3 decimal places.
- 160. HC_OH2S. Hydrogen sulfide concentration (ppm in water) in subsurface water samples. When the value is missing or not analyzed, the value is reported as "-9" = not analyzed. When the value is less than the detection limit of the analytical test, the value is reported as "-8" = not detected. Numeric field, width 7 and 4 decimal places.

The 3TISS1_56.DBF file contains the same fields as CHEM1_56.DBF file with the exception of the Trace Metal fields, and the addition of the following fields (the number at the start of each field is the field number):

- 1. TISS_TYPE. This character field is 25 characters wide and describes what type of tissue was analyzed.
- 2. NO_IN_COMP. The number of fish in each composite making up each sample. Numeric field, width 5.

The 3WATR1_56.DBF file contains the same fields as CHEM1_56.DBF file with the exception of the units which are presented in picograms per gram, or parts per trillion.

The 3BEN1_56.XLS file contains the following fields (the number at the start of each field is the field number):

- 1. STANUM. This field contains the CDFG station numbers that are used statewide. The format is YXXXX.Z where Y is the Regional Water Quality Control Board Region number and XXXX is the number that corresponds to a given location or site and Z is the number of the station within that site. An example is San Pablo Bay- Island #1, in San Francisco Bay, where the STANUM is 20007.0. The 2 indicates Region 2. The 0007 indicates it is Site 7 and the .0 is the replicate (if any) at the station within Site 7.
- 2. STATION. This field contains the exact name of the station.
- 3. IDORG. This field contains the unique i.d. organizational number for the sample. For each station collected on a unique date, an idorg sample number is assigned. This should be the field that links the collection, toxicity, chemical, and other databases.
- 4. DATE. This field is the date that each sample was collected in the field. It is listed as MM/DD/YY.
- 5. LEG. This field is the leg number of the project in which the sample was collected.
- 6. SPECIES. This field contains the different organisms found at a station, genus is given, and species if available.
- 7. TOTAL INDIVIDUALS. This field contains the total number of individuals found at a station.
- 8. TOTAL SPECIES. This field contains the total number of species found at a station.
- 9. TOTAL CRUST. INDIV. This field contains the total number of individuals in the Subphylum Crustacea found at a station.
- 10. TOTAL CRUST. SP. This field contains the total number of species in the Subphylum Crustacea found at a station.
 - A. GAMMARID INDIV. This field contains the number of individuals in the Suborder Gammaridea found at a station.
 - B. GAMMARID SP. This field contains the number of species in the Suborder Gammaridea found at a station.
 - C. OTHER CRUSTACEAN INDIV. This field contains the number of individuals, other than in the Suborder Gammaridea, in the Subphylum Crustacea, found at a station.
 - D. OTHER CRUSTACEAN SP. This field contains the number of species, other than in the Suborder Gammaridea, in the Subphylum Crustacea, found at a station.
- 15. TOTAL ECHINODERM INDIV. This field contains the number of individuals in the Phylum Echinodermata found at a station.
- 16. TOTAL ECHINODERM SP. This field contains the number of species in the Phylum Echinodermata found at a station.
- 17. TOTAL MOLLUSC INDIV. This field contains the number of individuals in the Phylum Mollusca found at a station.
- 18. TOTAL MOLLUSC SP. This field contains the number of species in the Phylum Mollusca found at a station.
- 19. TOTAL POLYCHAETE INDIV. This field contains the number of individuals in the Class Polychaeta found at a station.
- 20. TOTAL POLYCHAETE SP. This field contains the number of species in the Class Polychaeta found at a station.
- 21. TAXA. This field contains the different taxa found at a station.

- 22. # OF SPECIES. This field contains number of species found at a station.
- 23. NUMBER PER CORE. Number of individuals/species found in a numbered replicate core.
- 24. SUMMARY STATISTICS. This field contains a summary of statistical analyses. This field refers to fields 6-23.
 - A. MEAN. Mean value of individuals/species in all cores analyzed.
 - B. MEDIAN. Median of individuals/species in all cores analyzed.
 - C. MIN. Minimum number of individuals/species found in any core.
 - D. MAX. Maximum number of individuals/species found in any core.
 - E. ST. DEV. Standard deviation of the above mean value.
 - F. S.E. Standard error of the above mean value.
 - G. 95%CL. 95% Confidence limit.
 - H. SUM. This field contains the sum of individuals/species found in all cores analyzed.

APPENDIX B

٠

٠

.

Sampling Data

•

.

1001242 IONTEREY BAY REF 101 85/922 1.0 36,44,33N 121,52,35W s 36,7527800 121,87638900 30034.3 MONTEREY BAY REF 102 85/92 1.0 36,48,40N 121,52,35W s 36,75027800 121,87638900 3003.1 ELKHORN SLOUCH, SEAL POINT 131 9/492 30 36,48,40N 121,45,43W s 36,81388900 121,76134800 30053.5 ELKHORN SLOUCH, SEAL BEND 133 9/1/92 40 36,48,55N 121,46,04W s 36,81557600 121,7675800 300363.6 ELKHORN SLOUCH, SEAL BEND 133 9/1/92 40 36,48,55N 121,46,07W s 36,81527800 121,7675000 30010.2 HIGHWAY 1 BRIDGE REF 251 10/9/92 50 36,49,17N 121,42,20W s 36,81527800 121,7675000 31002.0 HIGHWAY 1 BRIDGE REF 251 11/0792 50 36,49,17N 121,422W s 36,8218900 121,7754000 31002.0 HNUY 1 BRIDGE REF 5	STANUM	STATION	IDORG	DATE	LEG	LATITUDE	LONGITUDE	HUND_SECS	GISLAT	GISLONG
90034.3 MONTEREY BAY REF 102 8/972 1.0 36.4501N 121,52,33W 5 3675027800 121,87638900 30013.1 ELKHORN SLOUGH, SEAL POINT 130 9/4/92 3.0 36,48,50N 121,45,40W s 36,81361100 121,76134900 30035.2 ELKHORN SLOUGH, SEAL POINT 132 9/4/92 3.0 36,48,49N 121,45,41W s 36,8135300 121,76134900 30036.4 ELKHORN SLOUGH, SEAL END 133 9/1/92 4.0 36,48,55N 121,46,07W s 36,8155500 121,7675000 3001.6 ECKHORN SLOUGH, SEAL BEND 134 9/1/92 4.0 36,48,55N 121,46,07W s 36,81527800 121,7675000 31001.0 EGRET LANDING (REP) 251 10/992 5.0 36,49,27N 121,44,20W s 36,8216700 121,7394400 31002.0 HWY J BRIDGE REF 254 11/2792 8.0 36,48,27N 121,44,22W s 36,80916700 121,7394400 31001.0 SANTA CRUZ Y ACHT BASIN	30034.1	MONTEREY BAY REF	100	8/5/92	1.0	36,44,56N	121,52,37W	S	36.74888900	121.87694400
2005.1 ELKHORNSLOUGH, SEAL POINT 130 9/492 3.0 36.48.50N 121.45.40W \$\$ 36.81361100 121.7611400 3003.2 ELKHORN SLOUGH, SEAL POINT 132 9/492 3.0 36.48.40N 121.45.40W \$\$ 36.8133100 121.7613800 3003.3 ELKHORN SLOUGH, SEAL END 133 9/1/92 4.0 36.48.48N 121.46.04W \$\$ 36.8133300 121.7613800 3003.6 ELKHORN SLOUCH, SEAL EEND 133 9/1/92 4.0 36.48.55N 121.46.07W \$\$ 36.81527800 121.7631000 31001.0 EGRET LANDING (REF) 251 10.992 5.0 36.49.17N 121.44.20W \$\$ 36.8916700 121.7838900 31002.0 HIGHWAY I BINDGE REF 254 10/23/92 6.0 36.48.33N 121.47.22W \$\$ 36.8916700 121.7838900 31002.0 HWY I BINDGE REF 254 10/23/92 8.0 36.49.27N 121.44.22W \$\$ 36.80416700 121.7394400 30001.0 SANTA CRUZ YACIT BASIN	30034.2	MONTEREY BAY REF	101	8/5/92	1.0	36,44,43N	121,52,46W	s	36.74527800	121.87944400
30035.2 ELKHORN SLOUGH, SEAL POINT 131 9/4/92 3.0 36,48,49N 121,45,44W # 36,8133100 121,7619400 3003.3 ELKHORN SLOUGH, SEAL POINT 132 9/4/92 3.0 36,48,45N 121,45,44W # 36,8133300 121,7613400 3003.61 ELKHORN SLOUGH, SEAL BEND 134 9/11/92 4.0 36,48,55N 121,46,04W # 36,81327800 121,7651400 3003.62 ELKHORN SLOUGH, SEAL BEND 134 9/11/92 4.0 36,48,55N 121,46,04W # 36,81327800 121,7651400 3003.62 ELKHORN SLOUGH, SEAL BEND 134 9/11/92 4.0 36,48,55N 121,46,03W # 36,81327800 121,7344400 31001.0 EGRET LANDING (REF) 251 10/9/92 5.0 36,49,17N 121,41,24W # 36,82138900 121,7344400 31002.0 HWY, I RRIDGE REF 351 11/27/92 8.0 36,49,27N 121,41,22W # 36,82138900 121,73344400 30001.0 SANTA CRUZ	30034.3	MONTEREY BAY REF	102	8/5/92	1.0	36,45,01N	121,52,35W	s	36.75027800	121.87638900
30035.3 ELKHORN SLOUGH, SEAL POINT 132 9/4/92 3.0 3/6,48,48N 121,45,41W s 3/6,8133300 121,76138900 30036.1 ELKHORN SLOUGH, SEAL BEND 133 9/11/92 4.0 3/6,48,55N 121,46,04W s 3/6,8135560 121,7677800 30036.3 ELKHORN SLOUGH, SEAL BEND 135 9/11/92 4.0 3/6,48,55N 121,46,07W s 3/6,8137800 121,7658100 31001.0 EGRET LANDING (REF) 251 10/9/92 5.0 3/6,49,17N 121,44,40W s 3/6,8137800 121,7734800 31002.0 HIGHWAY I BRIDGE REF 254 10/2,392 6.0 3/6,48,33N 121,47,02W s 3/6,80,91700 121,7394400 31002.0 HIGHWAY I BRIDGE REF. 251 11/2/92 8.0 3/6,48,33N 121,47,02W s 3/6,80,91700 121,7334400 30002.0 MONTEREY FOND REF. 251 11/2/92 8.0 3/6,48,33N 121,47,02W s 3/6,8071300 121,73744400 3/6,9171300 121,7374400	30035.1	ELKHORN SLOUGH, SEAL POINT	130	9/4/92	3.0	36,48,50N	121,45,40W	S	36.81388900	121.76111100
30036.1 ELKHORN SLOUGH, SEAL BEND 133 9/11/92 4.0 36,48,55N 121,46,04W s 36,81555600 121,76777800 30036.2 ELKHORN SLOUGH, SEAL BEND 134 9/11/92 4.0 36,48,55N 121,46,07W s 36,8157800 121,7677800 30036.1 ELKHORN SLOUGH, SEAL BEND 135 9/11/92 4.0 36,48,55N 121,46,07W s 36,8157800 121,7675000 31001.0 EGRET LANDING (REF) 251 10/9/92 5.0 36,49,17N 121,47,02W s 36,82146700 121,73848900 31003.0 ANDREWS POND REF. 258 11/8/92 7.0 36,49,27N 121,44,22W s 36,8016700 121,73944400 31003.0 ANDREWS POND REF. 451 127,92 80 36,49,27N 121,44,22W s 36,80916700 121,73944400 30001.0 SANTA CRUZ YACHT CLUB 502 127,192 10.0 36,48,40N 121,47,16W s 36,8016700 121,73944400 30005.0 ML. SOUTH HARBOR	30035.2	ELKHORN SLOUGH, SEAL POINT	131	9/4/92	3.0	36,48,49N	121,45,43W	S	36.81361100	121.76194400
30036.2 ELKHORN SLOUGH, SEAL BEND 134 9/11/92 4.0 36,48,55N 121,46,07W s 36,81527800 121,76861100 30036.3 ELKHORN SLOUGH, SEAL BEND 135 9/11/92 4.0 36,48,55N 121,46,03W s 36,81527800 121,7675000 3100.0 ELKHORN SLOUGH, SEAL BEND 135 9/11/92 4.0 36,48,55N 121,44,03W s 36,81527800 121,7675000 31002.0 HIGHWAY 1 BRIDGE REF 254 10/23/92 6.0 36,49,27N 121,47,02W s 36,8916700 121,7384400 31002.0 HWY 1 BRIDGE REF 351 11/2/92 8.0 36,42,27N 121,44,22W s 36,82416700 121,73944400 30002.0 MONTEREY YACHT BASIN 501 122,192 10.0 36,5,24N 121,47,02W s 36,82416700 121,73944400 30002.0 MONTEREY YACHT CLUB 502 122,192 10.0 36,5,24N 121,47,02W s 36,62033300 121,77394400 30002.0 MONTEREY SOND REF.	30035.3	ELKHORN SLOUGH, SEAL POINT	132	9/4/92	3.0	36,48,48N	121,45,41W	s	36.81333300	121.76138900
30036.3 ELKHORN SLOUGH, SEAL BEND 135 9/11/92 4.0 36,48,55N 121,46,03W s 36,81527800 121,7673000 31001.0 EGRET LANDINO (REF) 251 10/992 5.0 36,44,33N 121,474,40W s 36,82138900 121,73444400 31002.0 HWY. I BRIDGE REF. 258 11/8/92 7.0 36,48,33N 121,47,02W s 36,8916700 121,73844400 31002.0 HWY. I BRIDGE REF. 351 11/2/92 8.0 36,48,33N 121,47,02W s 36,8916700 121,73844400 31003.0 ANDREWS POND REF. 451 12/19/92 10.0 36,54,927N 121,44,22W s 36,8916700 121,78348900 30002.0 MONTEREY YACHT BASIN 501 12/2/192 10.0 36,54,12N 121,47,02W s 36,8016700 121,89900000 30004.0 ML YACHT HARBOR 504 12/192 10.0 36,48,21N 121,47,16W s 36,8013300 121,7875000 300005.0 ML YACHT HARBOR	30036.1	ELKHORN SLOUGH, SEAL BEND	133	9/11/92	4.0	36,48,56N	121,46,04W	S	36.81555600	121.76777800
31001.0 EGRET LANDING (REF) 251 10/9/92 5.0 36,49,17N 121,44,40W s 36.82138900 121.7444400 31002.0 HIGHWAY I BRIDGE REF 254 10/23/92 6.0 36,48,33N 121,47,02W s 36.82416700 121.7388800 31002.0 HWY.I BRIDGE REF 258 11/8/92 7.0 36,49,27N 121,44,22W s 36.82416700 121.73944400 31001.0 ANDREWS POND REF. 451 12/892 9.0 36,49,27N 121,44,22W s 36.82416700 121.73944400 30001.0 SANTA CRUZ YACHT BASIN 501 12/2/92 10.0 36,54,12N 121,47,22W s 36.682416700 121.73944400 30002.0 MONTEREY YACHT CLUB 502 12/2/92 10.0 36,45,12N 121,47,16W s 36.8127800 121.07917700 30005.0 ML YACHT HARBOR 505 12/21/92 10.0 36,45,1N 121,47,16W s 36.80278300 121.7855600 30006.0 PAJARO RIVER ESTUARY 506 12/21/92 10.0 36,45,1N 121,47,16W s 36.8	30036.2	ELKHORN SLOUGH, SEAL BEND	134	9/11/92	4.0	36,48,55N	121,46,07W	S	36.81527800	121.76861100
31002.0 HIGHWAY I BRIDGE REF 254 10/23/92 6.0 36,48,33N 121,47,02W s 36.80916700 121.78388900 31003.0 ANDREWS POND REF. 258 11/8/92 7.0 36,49,27N 121,44,22W s 36.82416700 121.73944400 31003.0 ANDREWS POND REF. 351 11/27/92 8.0 36,49,27N 121,44,22W s 36.82416700 121.73944400 30001.0 SANTA CRUZ Y ACHT BASIN 501 12/21/92 10.0 36,58,04N 122,00,08W s 36.6031700 122.02033800 30002.0 MONTEREY YACHT CLUB 502 12/21/92 10.0 36,58,04N 122,00,08W s 36.66031700 121.78575000 30005.0 ML YACHT HARBOR 505 12/21/92 10.0 36,48,21N 121,47,16W s 36.85416700 121.78575000 30005.0 ML SOUTH HARBOR 505 12/21/92 10.0 36,48,21N 121,47,16W s 36.85416700 121.7855000 30007.0 SANDHOLT BRIDGE 507 12/21/92 10.0 36,48,21N 121,47,49W s 36	30036.3	ELKHORN SLOUGH, SEAL BEND	135	9/11/92	4.0	36,48,55N	121,46,03W	S	36.81527800	121.76750000
31003.0 ANDREWS POND REF. 258 11/8/92 7.0 36,49,27N 121,44,22W s 36,82416700 121,73944400 31002.0 HWY, 1 BRIDGE REF. 351 11/27/92 8.0 36,48,33N 121,47,02W s 36,80916700 121,73944400 31003.0 ANDREWS POND REF. 451 12/892 9.0 36,48,33N 121,47,02W s 36,80916700 121,73944400 30001.0 SANTA CRUZ YACHT BASIN 501 12/21/92 10.0 36,54,27N 121,44,22W s 36,60333300 122,00233800 30002.0 MONTEREY YACHT CLUB 502 12/21/92 10.0 36,48,46N 121,47,16W s 36,6033300 121,78757800 121,78757800 121,7855600 30005.0 ML SOUTH HARBOR 505 12/21/92 10.0 36,48,21N 121,47,16W s 36,8027800 121,7855000 30001.0 MONTEREY STOLARY 506 12/21/92 10.0 36,48,21N 121,47,49W s 36,6086100 121,7855000 30012.0 MONTEREY BOATYARD 512 12/21/92 10.0 36,36,31N	31001.0	EGRET LANDING (REF)	251	10/9/92	5.0	36,49,17N	121,44,40W	S	36.82138900	121.74444400
31002.0 HWY. 1 BRIDGE REF. 351 11/27/92 8.0 36,48,33N 121,47,02W s 36,8916700 121.78388900 31003.0 ANDREW'S POND REF. 451 12/8/92 9.0 36,49,27N 121,44,22W s 36,8711300 122.00233800 30001.0 MONTEREY YACHT CLUB 502 12/21/92 10.0 36,56,12N 121,47,08W s 36,60333300 121.8900000 30004.0 ML, SQTH HARBOR 504 12/21/92 10.0 36,48,46N 121,47,08W s 36,803300 121.78555000 30006.0 PAJARO RIVER ESTUARY 506 12/21/92 10.0 36,42,1N 121,47,08W s 36,8027800 121.78555000 30007.0 SANNHOLT BRIDGE 507 12/21/92 10.0 36,43,01N 121,47,49W s 36,8027800 121.78557000 30012.0 MONTEREY BOATYARD 512 12/21/92 10.0 36,43,01N 121,47,49W s 36,6086100 121.89277800 30014.0 MONTEREY STORMDRAIN NO.2 513 12/21/92 10.0 36,6,31N 121,53,34W s 36,6	31002.0	HIGHWAY 1 BRIDGE REF	254	10/23/92	6.0	36,48,33N	121,47,02W	S	36.80916700	121.78388900
31003.0 ANDREW'S POND REF. 451 12/892 9.0 36,49,27N 121,44,22W s 36.82416700 121.73944400 30001.0 SANTA CRUZ YACHT BASIN 501 12/21/92 10.0 36,58,04N 122,00,08W s 36.96771300 122.02033800 30002.0 MONTEREY YACHT CLUB 502 12/21/92 10.0 36,36,12N 121,53,24W s 36.8033300 121.78777800 30005.0 ML. XOUTH HARBOR 504 12/21/92 10.0 36,48,21N 121,47,08W s 36.8027800 121.78777800 30005.0 ML.SOUTH HARBOR 506 12/21/92 10.0 36,48,21N 121,47,08W s 36.8027800 121.78755000 30001.0 SANDHOLT BRIDGE 507 12/21/92 10.0 36,48,01N 121,47,49W s 36.6027800 121.7875000 30012.0 MONTEREY STORMARIN NO.2 511 12/21/92 10.0 36,36,41N 121,33,34W s 36.6038800 121.89277800 30012.0 MONTEREY STORMARIN NO.3 514 12/21/92 10.0 36,36,21N 121,53,34W s	31003.0	ANDREWS POND REF.	258	11/8/92	7.0	36,49,27N	121,44,22W	S	36.82416700	121.73944400
30001.0 SANTA CRUZ YACHT BASIN 501 12/21/92 10.0 36,58,04N 122,00,08W s 36.96771300 122.00233800 30002.0 MONTEREY YACHT CLUB 502 12/21/92 10.0 36,36,12N 121,35,24W s 36.60333300 121.8900000 30004.0 ML. YACHT HARBOR 505 12/21/92 10.0 36,48,61N 121,47,16W s 36.80583300 121.7877800 121.78777800 30005.0 ML. SOUTH HARBOR 505 12/21/92 10.0 36,48,21N 121,47,15W s 36.80583300 121.855500 30007.0 SANDHOLT BRIDGE 507 12/21/92 10.0 36,48,01N 121,47,15W s 36.80027800 121.7875000 30011.0 SALINAS RIVER LAGOON 511 12/21/92 10.0 36,48,01N 121,47,15W s 36.60861100 121.89277800 30013.0 MONTEREY BOATYARD 512 12/21/92 10.0 36,36,14N 121,53,34W s 36.6038300 121.89277800 30012.0 MONTEREY STORMDRAIN NO.2 513 12/21/92 10.0 36,36,21N 121,53,34	31002.0	HWY. 1 BRIDGE REF.	351	11/27/92	8.0	36,48,33N	121,47,02W	S	36.80916700	121.78388900
30002.0 MONTEREY YACHT CLUB 502 1/21/9/2 10.0 36,36,12N 121,53,24W s 36,60333300 121,8900000 30004.0 ML. YACHT HARBOR 504 12/21/92 10.0 36,48,4N 121,47,16W s 36,81277800 121,78777800 30005.0 ML.SOUTH HARBOR 505 12/21/92 10.0 36,48,21N 121,47,08W s 36,80583300 121,78775800 30006.0 PAJARO RIVER ESTUARY 506 12/21/92 10.0 36,48,21N 121,47,9W s 36,80027800 121,7875000 30007.0 SANDHOLT BRIDGE 507 12/21/92 10.0 36,48,21N 121,47,49W s 36,60027800 121,7875000 30011.0 SALLAS RIVER LAGOON 511 12/21/92 10.0 36,36,11N 121,47,49W s 36,60088300 121,89277800 30013.0 MONTEREY STORMDRAIN NO.2 513 12/21/92 10.0 36,36,11N 121,53,34W s 36,60583300 121,89222200 30012.0 MONC COLOG LOUGH	31003.0	ANDREW'S POND REF.	451	12/8/92	9.0	36,49,27N	121,44,22W	S	36.82416700	121.73944400
30004.0 M.L. YACHT HARBOR 504 12/21/92 10.0 36,48,46N 12/1,47,16W s 36,81277800 12/1,78777800 30005.0 M.L. SOUTH HARBOR 505 12/21/92 10.0 36,48,21N 121,47,06W s 36,80583300 121,78555600 30006.0 PAJARO RIVER ESTUARY 506 12/21/92 10.0 36,48,21N 121,47,08W s 36,85416700 121.81000000 30007.0 SANDHOLT BRIDGE 507 12/21/92 10.0 36,44,29N 121,47,15W s 36,60861100 121.8277800 30012.0 MONTEREY BOATYARD 512 12/21/92 10.0 36,36,31N 121,53,34W s 36,60861100 121.89277800 30013.0 MONTEREY STORMDRAIN NO.2 513 12/21/92 10.0 36,47,56N 121,47,05W s 36,6088900 121.89277800 30013.0 MONTEREY STORMDRAIN NO.3 514 12/21/92 10.0 36,47,56N 121,47,05W s 36,60388900 121.89277800 30022.0 SQUEL LAGOON <td>30001.0</td> <td>SANTA CRUZ YACHT BASIN</td> <td>501</td> <td>12/21/92</td> <td>10.0</td> <td>36,58,04N</td> <td>122,00,08W</td> <td>S</td> <td>36.96771300</td> <td>122.00233800</td>	30001.0	SANTA CRUZ YACHT BASIN	501	12/21/92	10.0	36,58,04N	122,00,08W	S	36.96771300	122.00233800
30005.0 ML SOUTH HARBOR 505 12/21/92 10.0 36,48,21N 121,47,08W s 36.80583300 121.78555600 30006.0 PAJARO RIVER ESTUARY 506 12/21/92 10.0 36,51,15N 121,47,08W s 36.8057800 121.7855600 3001.0 SALINAS RIVER LAGOON 511 12/21/92 10.0 36,48,01N 121,47,15W s 36.80027800 121.78750000 30012.0 MONTEREY BOATYARD 512 12/21/92 10.0 36,36,11N 121,35,34W s 36.60861100 121.892277800 30013.0 MONTEREY STORMDRAIN NO.2 513 12/21/92 10.0 36,36,14N 121,35,34W s 36.60861100 121.89277800 30013.0 MONTEREY STORMDRAIN NO.3 514 12/21/92 10.0 36,36,21N 121,35,34W s 36.60583300 121.89277800 30012.0 SOUUEL LAGOON 522 12/21/92 10.0 36,47,56N 121,47,05W s 36.79287600 121.79333300 30026.0 SCOTT CREEK #26B <td>30002.0</td> <td>MONTEREY YACHT CLUB</td> <td>502</td> <td>12/21/92</td> <td>10.0</td> <td>36,36,12N</td> <td>121,53,24W</td> <td>S</td> <td>36.60333300</td> <td>121.89000000</td>	30002.0	MONTEREY YACHT CLUB	502	12/21/92	10.0	36,36,12N	121,53,24W	S	36.60333300	121.89000000
30006.0 PAJARO RIVER ESTUARY 506 12/21/92 10.0 36,51,15N 121,48,36W s 36.85416700 121.8100000 30007.0 SANDHOLT BRIDGE 507 12/21/92 10.0 36,48,01N 121,47,15W s 36.8027800 121.78750000 30011.0 SALINAS RIVER LAGOON 511 12/21/92 10.0 36,44,29N 121,47,49W s 36.601861100 121.89277800 30012.0 MONTEREY STORMDRAIN NO.2 513 12/21/92 10.0 36,36,31N 121,53,34W s 36.6038800 121.89227800 30014.0 MONTEREY STORMDRAIN NO.2 513 12/21/92 10.0 36,36,21N 121,53,34W s 36.60583300 121.89227800 30019.0 MORO COJO SLOUGH 519 12/22/92 10.0 36,64,21N 121,47,05W s 36.79877800 121.78481700 30022.0 SOQUEL LAGOON 522 12/21/92 10.0 36,47,56N 121,47,05W s 36.82026600 121.79037800 30023.0 BENNETT GL/ESTUJARY 523 12/21/92 10.0 36,47,29N 121,47,25W s <td>30004.0</td> <td>M.L. YACHT HARBOR</td> <td>504</td> <td>12/21/92</td> <td>10.0</td> <td>36,48,46N</td> <td>121,47,16W</td> <td>S</td> <td>36.81277800</td> <td>121.78777800</td>	30004.0	M.L. YACHT HARBOR	504	12/21/92	10.0	36,48,46N	121,47,16W	S	36.81277800	121.78777800
30007.0SANDHOLT BRIDGE50712/21/9210.036,48,01N121,47,15Ws36.80027800121.7875000030011.0SALINAS RIVER LAGOON51112/21/9210.036,44,29N121,47,49Ws36.74125200121.7968960030012.0MONTEREY BOATYARD51212/21/9210.036,36,11N121,53,34Ws36.60861100121.8927780030013.0MONTEREY STORMDRAIN NO.251312/21/9210.036,36,14N121,53,32Ws36.60858300121.8927780030014.0MONTEREY STORMDRAIN NO.351412/21/9210.036,42,1N121,53,34Ws36.6058300121.8927780030012.0MORO COJO SLOUGH51912/22/9210.036,47,56N121,47,05Ws36.79887600121.7848170030022.0SOQUEL LAGOON52212/21/9210.036,49,13N121,47,25Ws36.82029600121.7903780030023.0BENNETT SL/ESTUARY52312/22/9210.036,47,29N121,47,25Ws36.64611100121.8891670030024.0SCOTT CREEK #26B52612/18/9210.036,47,29N121,47,24Ws36.64611100121.7903780030025.0SCOTT CREEK #26B52612/18/9210.036,47,29N121,47,24Ws36.64611100121.8891670030026.0SCOTT CREEK #26B52612/18/9210.036,47,29N121,47,24Ws36.64611100121.7903380030027.0MONTEREO REF. <td>30005.0</td> <td>M.L. SOUTH HARBOR</td> <td>505</td> <td>12/21/92</td> <td>10.0</td> <td>36,48,21N</td> <td>121,47,08W [·]</td> <td>· s</td> <td>36.80583300</td> <td>121.78555600</td>	30005.0	M.L. SOUTH HARBOR	505	12/21/92	10.0	36,48,21N	121,47,08W [·]	· s	36.80583300	121.78555600
30011.0 SALINAS RIVER LAGOON 511 12/21/92 10.0 36,44,29N 121,47,49W s 36.74125200 121.79689600 30012.0 MONTEREY BOATYARD 512 12/21/92 10.0 36,36,31N 121,53,34W s 36.60861100 121.89277800 30013.0 MONTEREY STORMDRAIN NO.2 513 12/21/92 10.0 36,36,21N 121,53,34W s 36.6088900 121.89277800 30014.0 MONTEREY STORMDRAIN NO.3 514 12/21/92 10.0 36,36,21N 121,53,34W s 36.60583300 121.89277800 30019.0 MORO COJO SLOUGH 519 12/22/92 10.0 36,45,22N 121,47,05W s 36.679287600 121.78481700 30022.0 SOQUEL LAGOON 522 12/21/92 10.0 36,45,22N 121,47,25W s 36.697277800 121.79037800 30023.0 BENNETT SL/ESTUARY 523 12/21/92 10.0 36,38,46N 121,47,25W s 36.64611100 121.89227200 30027.0 MONTEREY BAY REF. SOUTH 527 12/18/92 10.0 36,34,423N 121,47,25W <	30006.0	PAJARO RIVER ESTUARY	506	12/21/92	10.0	36,51,15N	121,48,36W	S	36.85416700	121.81000000
30012.0 MONTEREY BOATYARD 512 12/21/92 10.0 36,36,31N 121,53,34W s 36,60861100 121.89277800 30013.0 MONTEREY STORMDRAIN NO.2 513 12/21/92 10.0 36,36,14N 121,53,32W s 36,60861100 121.89277800 30014.0 MONTEREY STORMDRAIN NO.3 514 12/21/92 10.0 36,36,21N 121,53,34W s 36,60583300 121.89277800 30019.0 MORO COJO SLOUGH 519 12/22/92 10.0 36,47,56N 121,47,05W s 36,679887600 121.78481700 30022.0 SOQUEL LAGOON 522 12/21/92 10.0 36,58,22N 121,57,12W s 36,679887600 121.79333300 30023.0 BENNET SL/ESTUARY 523 12/22/92 10.0 36,49,13N 121,47,25W s 36,64611100 121.89377800 122.224244400 30026.0 SCOTT CREEK #26B 526 12/18/92 10.0 36,34,64N 121,53,21W s 36,64611100 121.88916700 3002800 121.79005300 30022.0 ELKHORN SL PORTRERO REF. 528 12/18/92	30007.0	SANDHOLT BRIDGE	507	12/21/92	10.0	36,48,01N	121,47,15W	S	36.80027800	121.78750000
30013.0MONTEREY STORMDRAIN NO.251312/21/9210.036,36,14N121,53,32Ws36.60388900121.8922220030014.0MONTEREY STORMDRAIN NO.351412/21/9210.036,36,21N121,53,34Ws36.60583300121.8927780030019.0MORO COJO SLOUGH51912/22/9210.036,47,56N121,47,05Ws36.79887600121.7848170030022.0SOQUEL LAGOON52212/21/9210.036,58,22N121,57,12Ws36.97277800121.9533330030023.0BENNETT SL/ESTUARY52312/22/9210.036,49,13N121,47,25Ws36.82029600121.7903780030026.0SCOTT CREEK #26B52612/18/9210.037,02,29N122,13,46Ws37.04138900122.2294440030027.0MONTEREY BAY REF. SOUTH52712/21/9210.036,47,29N121,47,24Ws36.64611100121.8891670030028.0ELKHORN SL. PORTRERO REF.52812/18/9210.036,47,29N121,47,24Ws36.80916700121.790053003003.0SANTA BABBARA HARBOR5032/10/9313.034,24,23N119,41,30Ws34.40638900119.691667003008.0SAN LUIS HARBOR TRANS5082/99313.034,24,23N119,44,57Ws34.40638300119.6916670030010.0CARPINTERIA MARSH-15102/10/9313.034,24,12N119,32,24Ws34.4033300119.540000030010.0	30011.0	SALINAS RIVER LAGOON	511	12/21/92	10.0	36,44,29N	121,47,49W	S	36.74125200	121.79689600
30014.0MONTEREY STORMDRAIN NO.351412/21/9210.036,36,21N121,53,34Ws36,60583300121.8927780030019.0MORO COJO SLOUGH51912/22/9210.036,47,56N121,47,05Ws36,79887600121.7848170030022.0SOQUEL LAGOON52212/21/9210.036,58,22N121,57,12Ws36,697277800121.9533330030023.0BENNETT SL/ESTUARY52312/22/9210.036,49,13N121,47,25Ws36.82029600121.7903780030026.0SCOTT CREEK #26B52612/18/9210.037,02,29N122,13,46Ws37.04138900122.2294440030027.0MONTEREY BAY REF. SOUTH52712/21/9210.036,47,29N121,47,24Ws36.64611100121.8891670030028.0ELKHORN SL. PORTRERO REF.52812/18/9210.036,47,29N121,47,02Ws36.69016700121.790053003003.0SANTA BARBARA HARBOR5032/10/9313.034,24,23N119,41,30Ws34.40638900119.6670030008.0SAN LUIS HARBOR TRANS5082/9/9313.034,24,23N119,49,57Ws34.41777800119.832500003001.0CARPINTERIA MARSH-15102/10/9313.034,24,12N119,32,24Ws34.40333300119.540000003002.0SANTA MARIA RIVER ESTUARY5202/9/9313.034,24,12N119,32,54Ws34.40333300119.540000003001.0CA	30012.0	MONTEREY BOATYARD	512	12/21/92	10.0	36,36,31N	121,53,34W	S	36.60861100	121.89277800
30019.0 MORO COJO SLOUGH 519 12/2/2/92 10.0 36,47,56N 121,47,05W s 36.79887600 121.78481700 30022.0 SOQUEL LAGOON 522 12/2/1/92 10.0 36,58,22N 121,57,12W s 36.97277800 121.95333300 30023.0 BENNETT SL/ESTUARY 523 12/2/1/92 10.0 36,49,13N 121,47,25W s 36.82029600 121.79037800 30026.0 SCOTT CREEK #26B 526 12/18/92 10.0 37,02,29N 122,13,46W s 37.04138900 122.22944400 30027.0 MONTEREY BAY REF. SOUTH 527 12/21/92 10.0 36,47,29N 121,47,24W s 36.64611100 121.88916700 30028.0 ELKHORN SL. PORTRERO REF. 528 12/18/92 10.0 36,47,29N 121,47,24W s 36.79144500 121.79005300 31002.0 HWY 1 BRIDGE REF. 675 1/14/93 11.0 36,48,33N 121,47,02W s 36.80916700 121.78388900 30008.0 SAN LUIS HARBOR TRANS 508 2/9/93 13.0 34,24,23N 119,41,30W s <td>30013.0</td> <td>MONTEREY STORMDRAIN NO.2</td> <td>513</td> <td>12/21/92</td> <td>10.0</td> <td>36,36,14N</td> <td>121,53,32W</td> <td>S</td> <td>36.60388900</td> <td>121.89222200</td>	30013.0	MONTEREY STORMDRAIN NO.2	513	12/21/92	10.0	36,36,14N	121,53,32W	S	36.60388900	121.89222200
30022.0SOQUEL LAGOON52212/21/9210.036,58,22N121,57,12Ws36.97277800121.9533330030023.0BENNETT SL/ESTUARY52312/22/9210.036,49,13N121,47,25Ws36.82029600121.7903780030026.0SCOTT CREEK #26B52612/18/9210.037,02,29N122,13,46Ws37.04138900122.2294440030027.0MONTEREY BAY REF. SOUTH52712/21/9210.036,38,46N121,53,21Ws36.64611100121.8891670030028.0ELKHORN SL. PORTRERO REF.52812/18/9210.036,47,29N121,47,24Ws36.80916700121.7900530031002.0HWY 1 BRIDGE REF.6751/14/9311.036,48,33N121,47,02Ws36.80916700121.7838890030003.0SANTA BARBARA HARBOR5032/10/9313.034,24,23N119,41,30Ws34.40638900119.6916670030008.0SAN LUIS HARBOR TRANS5082/9/9313.035,10,16N120,44,28Ws35.17099700120.7411680030009.0GOLETA SL.5092/10/9313.034,25,04N119,49,57Ws34.40333300119.83250000030020.0SANTA MARIA RIVER ESTUARY5202/9/9313.034,24,12N119,32,24Ws34.40333300119.5400000030021.0SANTA MARIA RIVER ESTUARY5212/11/9313.034,41,38N120,35,53Ws34.69388900120.5980560030021.0SANT	30014.0	MONTEREY STORMDRAIN NO. 3	514	12/21/92	10.0	36,36,21N	121,53,34W	S	36.60583300	121.89277800
30023.0BENNETT SL/ESTUARY52312/22/9210.036,49,13N121,47,25Ws36.82029600121.7903780030026.0SCOTT CREEK #26B52612/18/9210.037,02,29N122,13,46Ws37.04138900122.2294440030027.0MONTEREY BAY REF. SOUTH52712/21/9210.036,38,46N121,53,21Ws36.64611100121.8891670030028.0ELKHORN SL. PORTRERO REF.52812/18/9210.036,47,29N121,47,24Ws36.679144500121.7900530031002.0HWY 1 BRIDGE REF.6751/14/9311.036,48,33N121,47,02Ws36.80916700121.7838890030003.0SANTA BARBARA HARBOR5032/10/9313.034,24,23N119,41,30Ws34.40638900119.6916670030008.0SAN LUIS HARBOR TRANS5082/9/9313.035,10,16N120,44,28Ws35.17099700120.7411680030010.0CARPINTERIA MARSH-15102/10/9313.034,24,12N119,32,24Ws34.4033300119.5400000030020.0SANTA MARIA RIVER ESTUARY5202/9/9313.034,58,00N120,38,48Ws34.96666700120.6466670030021.0SANTA YNEZ RIVER ESTUARY5212/11/9313.034,41,38N120,35,53Ws34.69388900120.59805600	30019.0	MORO COJO SLOUGH	519	12/22/92	10.0	36,47,56N	121,47,05W	S	36.79887600	121.78481700
30026.0SCOTT CREEK #26B52612/18/9210.037,02,29N122,13,46Ws37,04138900122.2294440030027.0MONTEREY BAY REF. SOUTH52712/21/9210.036,38,46N121,53,21Ws36.64611100121.8891670030028.0ELKHORN SL. PORTRERO REF.52812/18/9210.036,47,29N121,47,24Ws36.679144500121.7900530031002.0HWY 1 BRIDGE REF.6751/14/9311.036,48,33N121,47,02Ws36.80916700121.7838890030003.0SANTA BARBARA HARBOR5032/10/9313.034,24,23N119,41,30Ws34.40638900119.6916670030008.0SAN LUIS HARBOR TRANS5082/9/9313.035,10,16N120,44,28Ws35.17099700120.7411680030009.0GOLETA SL.5092/10/9313.034,25,04N119,49,57Ws34.40333300119.5400000030010.0CARPINTERIA MARSH-15102/10/9313.034,24,12N119,32,24Ws34.40333300119.5400000030020.0SANTA MARIA RIVER ESTUARY5202/9/9313.034,58,00N120,38,48Ws34.96666700120.6466670030021.0SANTA YNEZ RIVER ESTUARY5212/11/9313.034,41,38N120,35,53Ws34.69388900120.59805600	30022.0	SOQUEL LAGOON	522	12/21/92	10.0	36,58,22N	121,57,12W	S	36.97277800	121.95333300
30027.0MONTEREY BAY REF. SOUTH52712/21/9210.036,38,46N121,53,21Ws36.64611100121.8891670030028.0ELKHORN SL. PORTRERO REF.52812/18/9210.036,47,29N121,47,24Ws36.79144500121.790530031002.0HWY 1 BRIDGE REF.6751/14/9311.036,48,33N121,47,02Ws36.80916700121.7838890030003.0SANTA BARBARA HARBOR5032/10/9313.034,24,23N119,41,30Ws34.40638900119.6916670030008.0SAN LUIS HARBOR TRANS5082/9/9313.035,10,16N120,44,28Ws35.17099700120.7411680030009.0GOLETA SL.5092/10/9313.034,25,04N119,49,57Ws34.40333300119.5400000030010.0CARPINTERIA MARSH-15102/10/9313.034,24,12N119,32,24Ws34.40333300119.5400000030020.0SANTA MARIA RIVER ESTUARY5202/9/9313.034,58,00N120,38,48Ws34.96666700120.6466670030021.0SANTA YNEZ RIVER ESTUARY5212/11/9313.034,41,38N120,35,53Ws34.69388900120.59805600	30023.0	BENNETT SL./ESTUARY	523	12/22/92	10.0	36,49,13N	121,47,25W	S	36.82029600	121.79037800
30028.0ELKHORN SL. PORTRERO REF.52812/18/9210.036,47,29N121,47,24Ws36.79144500121.7900530031002.0HWY 1 BRIDGE REF.6751/14/9311.036,48,33N121,47,02Ws36.80916700121.7838890030003.0SANTA BARBARA HARBOR5032/10/9313.034,24,23N119,41,30Ws34.40638900119.6916670030008.0SAN LUIS HARBOR TRANS5082/9/9313.035,10,16N120,44,28Ws35.17099700120.7411680030009.0GOLETA SL.5092/10/9313.034,25,04N119,49,57Ws34.41777800119.8325000030010.0CARPINTERIA MARSH-15102/10/9313.034,24,12N119,32,24Ws34.40333300119.5400000030020.0SANTA MARIA RIVER ESTUARY5202/9/9313.034,58,00N120,38,48Ws34.96666700120.6466670030021.0SANTA YNEZ RIVER ESTUARY5212/11/9313.034,41,38N120,35,53Ws34.69388900120.59805600	30026.0	SCOTT CREEK #26B	526	12/18/92	10.0	37,02,29N	122,13,46W	S	37.04138900	122.22944400
31002.0HWY 1 BRIDGE REF.6751/14/9311.036,48,33N121,47,02Ws36,80916700121.7838890030003.0SANTA BARBARA HARBOR5032/10/9313.034,24,23N119,41,30Ws34.40638900119.6916670030008.0SAN LUIS HARBOR TRANS5082/9/9313.035,10,16N120,44,28Ws35.17099700120.7411680030009.0GOLETA SL.5092/10/9313.034,25,04N119,49,57Ws34.41777800119.8325000030010.0CARPINTERIA MARSH-15102/10/9313.034,24,12N119,32,24Ws34.40333300119.5400000030020.0SANTA MARIA RIVER ESTUARY5202/9/9313.034,58,00N120,38,48Ws34.96666700120.6466670030021.0SANTA YNEZ RIVER ESTUARY5212/11/9313.034,41,38N120,35,53Ws34.69388900120.59805600	30027.0	MONTEREY BAY REF. SOUTH	527	12/21/92	10.0	36,38,46N	121,53,21W	s	36.64611100	121.88916700
30003.0SANTA BARBARA HARBOR5032/10/9313.034,24,23N119,41,30Ws34.40638900119.6916670030008.0SAN LUIS HARBOR TRANS5082/9/9313.035,10,16N120,44,28Ws35.17099700120.7411680030009.0GOLETA SL.5092/10/9313.034,25,04N119,49,57Ws34.41777800119.8325000030010.0CARPINTERIA MARSH-15102/10/9313.034,24,12N119,32,24Ws34.40333300119.5400000030020.0SANTA MARIA RIVER ESTUARY5202/9/9313.034,58,00N120,38,48Ws34.96666700120.6466670030021.0SANTA YNEZ RIVER ESTUARY5212/11/9313.034,41,38N120,35,53Ws34.69388900120.59805600	30028.0	ELKHORN SL. PORTRERO REF.	528	12/18/92	10.0	36,47,29N	121,47,24W	S	36.79144500	121.79005300
30008.0SAN LUIS HARBOR TRANS5082/9/9313.035,10,16N120,44,28Ws35.17099700120.7411680030009.0GOLETA SL.5092/10/9313.034,25,04N119,49,57Ws34.41777800119.8325000030010.0CARPINTERIA MARSH-15102/10/9313.034,24,12N119,32,24Ws34.40333300119.5400000030020.0SANTA MARIA RIVER ESTUARY5202/9/9313.034,58,00N120,38,48Ws34.96666700120.6466670030021.0SANTA YNEZ RIVER ESTUARY5212/11/9313.034,41,38N120,35,53Ws34.69388900120.59805600	31002.0	HWY 1 BRIDGE REF.	675	1/14/93	11.0	36,48,33N	121,47,02W	S	36.80916700	121.78388900
30009.0GOLETA SL.5092/10/9313.034,25,04N119,49,57Ws34.41777800119.8325000030010.0CARPINTERIA MARSH-15102/10/9313.034,24,12N119,32,24Ws34.40333300119.5400000030020.0SANTA MARIA RIVER ESTUARY5202/9/9313.034,58,00N120,38,48Ws34.96666700120.6466670030021.0SANTA YNEZ RIVER ESTUARY5212/11/9313.034,41,38N120,35,53Ws34.69388900120.59805600	30003.0	SANTA BARBARA HARBOR	503	2/10/93	13.0	34,24,23N	119,41,30W	S	34.40638900	119.69166700
30010.0CARPINTERIA MARSH-15102/10/9313.034,24,12N119,32,24Ws34.40333300119.5400000030020.0SANTA MARIA RIVER ESTUARY5202/9/9313.034,58,00N120,38,48Ws34.96666700120.6466670030021.0SANTA YNEZ RIVER ESTUARY5212/11/9313.034,41,38N120,35,53Ws34.69388900120.59805600	30008.0	SAN LUIS HARBOR TRANS	508	2/9/93	13.0	35,10,16N	120,44,28W	s	35.17099700	120.74116800
30020.0SANTA MARIA RIVER ESTUARY5202/9/9313.034,58,00N120,38,48Ws34.96666700120.6466670030021.0SANTA YNEZ RIVER ESTUARY5212/11/9313.034,41,38N120,35,53Ws34.69388900120.59805600		GOLETA SL.	509	2/10/93	13.0		119,49,57W	8	34.41777800	119.83250000
30021.0 SANTA YNEZ RIVER ESTUARY 521 2/11/93 13.0 34,41,38N 120,35,53W s 34.69388900 120.59805600	30010.0	CARPINTERIA MARSH-1	510	2/10/93	13.0	34,24,12N	119,32,24W	s	34.40333300	119.54000000
30021.0 SANTA YNEZ RIVER ESTUARY 521 2/11/93 13.0 34,41,38N 120,35,53W s 34.69388900 120.59805600	30020.0	SANTA MARIA RIVER ESTUARY	520	2/9/93	13.0	34,58,00N	120,38,48W	Ś	34.96666700	120.64666700
30024.0 MORRO BAY 524 2/9/93 13.0 35.22.09N 120.51.19W s 35.36920400 120.85540000	30021.0	SANTA YNEZ RIVER ESTUARY	521	2/11/93	13.0		120,35,53W	s	34.69388900	120.59805600
	30024.0	MORRO BAY	524	2/9/93	13.0	35,22,09N	120,51,19W	s	35.36920400	120.85540000

Page 1 of 6

BPTCP SAMPLING DATES, LOCATION	DEDTTIC \ OAT DEDTC \ \	
BELL'ESAMPLINIVIALES LIB'ALBIN	DEPTH (m) SALINILY (not)	AND SCHMALNEETEVITIDE
DI ICI DAMI LING DAILO, LOCATION,	DELTITUT, SALUTITI TUDU.	AND SEDIMENT TEATURE

1

		,	,		<i>,,</i>	(11 //		_	
	STATION	IDORG	DATE	LEG	LATITUDE	LONGITUDE	HUND_SECS	GISLAT	GISLONG
30025.0	MORRO BAY-SOUTH BAY	525	2/9/93	13.0	35,19,45N	120,51,07W	S	35.32916700	120.85194400
30029.0	MORRO BAY-MID BAY	530	2/9/93	13.0	35,20,56N	120,50,50W	S	35.34888900	120.84722200
30030.0	CANADA DE LA GAVIOTA (26d)	531	2/11/93	13.0	34,28,20N	120,13,38W	S	34.47222200	120.22722200
30031.0	CARPINTERIA MARSH-2	532	2/10/93	13.0	34,23,58N	119,32,07W	S	34.39944400	119.53527800
30032.0	CARPINETRIA MARSH-3	533	2/10/93	13.0	34,24,18N	119,32,33W	S	34.40500000	119.54250000
30033.0	MORRO BAY-FUEL DOCK	534	2/9/93	13.0	35,21,24N	120,50,57W	S	35.35678000	120.84926000
31002.0	HIGHWAY 1 BRIDGE REF	352	2/23/93	14.0	36,48,33N	121,47,02W	S	36.80916700	121.78388900
30027.0	MONTEREY BAY REF. SOUTH	1323	5/16/94	32.0	36,38,77N	121,53,36W	h	36.64616700	121.88933300
30013.0	MONTEREY STORMDRAIN NO.2	1324	5/16/94	32.0	36,36,25N	121,53,54W	h	36.60416700	121.89233300
30028.0	ELKHORN SL. PORTRERO REF.	1325	5/17/94	32.0	36,47,29N	121,47,25W	s	36.79128300	121.79015500
30019.0	MORO COJO SLOUGH	1326	5/17/94	32.0	36,47,56N	121,47,06W	s	36.79881500	121.78492500
31002.0	HIGHWAY 1 BRIDGE REF	1327	5/17/94	32.0	36,48,33N	121,47,02W	s	36.80916700	121.78388900
30008.0	SAN LUIS HARBOR TRANS	1328	5/20/94	32.0	35,10,26N	120,44,46W	h	35.17099700	120.74102200
30029.0	MORRO BAY-MID BAY	1329	5/20/94	32.0	35,20,83N	120,50,83W	h	35.34716700	120.84716700
30032.0	CARPINETRIA MARSH-3	1330	5/20/94	32.0	34,24,30N	119,32,52W	h	34.40500000	119.54200000
30004.0	M.L. YACHT HARBOR REP1	1362	6/15/94	33.0	36,48,75N	121,47,26W	h	36.81250000	121.78766700
30004.0	M.L. YACHT HARBOR REP2	1363	6/15/94	33.0	36,48,76N	121,47,25W	h	36.81266700	121.78750000
30004.0	M.L. YACHT HARBOR REP3	1364	6/15/94	33.0	36,48,74N	121,47,25W	h	36.81233300	121.78750000
30007.0	SANDHOLT BRIDGE REPI	1365	6/15/94	33.0	36,48,02N	121,47,25W	h	36.80033300	121.78750000
30007.0	SANDHOLT BRIDGE REP2	1366	6/15/94	33.0	36,48,01N	121,47,24W	h	36.80016700	121.78733300
30007.0	SANDHOLT BRIDGE REP3	1367	6/15/94	33.0	36,48,01N	121,47,25W	h	36.80016700	121.78750000
30023.0	BENNETT SL/ESTUARY REPI	1368	6/16/94	33.0	36,49,19N	121,47,40W	h	36.81983300	121.79000000
30023.0	BENNETT SL/ESTUARY REP2	1369	6/16/94	33.0	36,49,20N	121,47,41W	h	36.82000000	121.79016700
30023.0	BENNETT SL./ESTUARY REP3	1370	6/16/94	33.0	36,49,21N	121,47,41W	h	36.82016700	121.79016700
31001.0	EGRET LANDING REP1	1371	6/15/94	33.0	36,49,33N	121,44,77W	h	36.82216700	121.74616700
31001.0	EGRET LANDING REP2	1372	6/15/94	33.0	36,49,30N	121,44,77W	h	36.82166700	121.74616700
31001.0	EGRET LANDING REP3	1373	6/15/94	33.0	36,49,36N	121,44,77W	h	36.82266700	121.74616700
31002.0	HIGHWAY 1 BRIDGE REP1	1374	6/15/94	33.0	36,48,58N	121,47,05W	h	36.80966700	121.78416700
31002.0	HIGHWAY 1 BRIDGE REP2	1375	6/15/94	33.0	36,48,54N	121,47,02W	h	36.80900000	121.78366700
31002.0	HIGHWAY 1 BRIDGE REP3	1376	6/15/94	33.0	36,48,56N	121,47,05W	h	36.80933300	121.78416700
31003.0	ANDREWS POND REPI	1377	6/16/94	33.0	36,49,48N	121,44,43W	h	36.82466700	121.74050000
31003.0	ANDREWS POND REP2	1378	6/16/94	33.0	36,49,47N	121,44,43W	h	36.82450000	121.74050000
31003.0	ANDREWS POND REP3	1379	6/16/94	33.0	36,49,46N	121,44,42W	h	36.82433300	121.74033300
30001.0	SANTA CRUZ YACHT BASIN	1588	5/9/96	43.0	36,58,067N	122,00,145W	h/d	36.96778300	122.00241700
35001.0	SANTA CRUZ YACHT BASIN-A3	1589	5/9/96	43.0	36,57,998N	122,00,108W	h/d	36.96663300	122.00180000
35002.0	SANTA CRUZ YACHT BASIN-A9	1590	5/9/96	43.0	36,58,364N	121,59,968W	h/d	36.97273300	121.99946700
35003.0	MONTEREY BOATYARD-LEAD 1	1591	5/9/96	43.0	36,36,485N	121,53,599W	h/d	36.60808300	121.89331700
35004.0	MONTEREY BOATYARD-LEAD 2	1592	5/9/96	43.0	36,36,481N	121,53,556W	h/d	36.60801700	121.89260000
					, , -	, , ,			

ĸ

1

٠

BPTCP SAMPLING DATES, LOCATION, DEPTH (m). SALINITY (ppt.). AND SEDIMENT TEXTURE

STANUM	STATION	IDORG	DATE	LEG	LATITUDE	LONGITUDE	HUND_SECS	GISLAT	GISLONG
35005.0	MONTEREY BOATYARD-LEAD 3	1593	5/9/96	43.0	36,36,506N	121,53,527W	h/d	36.60843300	121.89211700
35006.0	MONTEREY BOATYARD-LEAD 4	1594	5/9/96	43.0	36,36,486N	121,53,413W	h/d	36.60810000	121.89021700
30002.0	MONTEREY YACHT CLUB	1596	5/9/96	43.0	36,36,195N	121,53,415W	h/d	36.60325000	121.89025000
30007.0	SANDHOLDT BRIDGE	1597	5/9/96	43.0	36,48,014N	121,47,259W	h	36.80023300	121.78765000
30007.0	SANDHOLDT BRIDGE	1762	5/8/97	52.0	36,48,014N	121,47,259W	h/d	36.80023333	121.78765000
36002.0	TEMBLADERO MOUTH	1763	5/8/97	52.0	36,46,317N	121,47,258W	h/d	36.77195000	121.78763333
36003.0	CENTRAL TEMBLADERO	1764	5/8/97	52.0	36,44,402N	121,44,338W	h/d	36.74003333	121.73896667
36004.0	UPPER TEMBLADERO-SALINAS CITY	1765	5/8/97	52.0	36,41,308N	121,40,560W	h/d	36.68846667	121.67600000
36005.0	ESPINOSA SLOUGH	1766	5/8/97	52.0	36,45,099N	121,44,501W	h/d	36.75165000	121.74168333
36006.0	ALISAL SLOUGH	1767	5/8/97	52.0	36,44,498N	121,44,458W	h/d	36.74163333	121.74096667
36007.0	OLD SALINAS RIVER CHANNEL	1768	5/8/97	52.0	36,46,017N	121,47,715W	h/d	36.76695000	121.79525000

	STATION	IDORG	DATE	LEG	DEPTH	TEMP_C	SALINITY	SED_TEXTUR
30034.1	MONTEREY BAY REF	100	8/5/92	1.0	82.0	13.6	32	GREEN MUD
30034.2	MONTEREY BAY REF	101	8/5/92	1.0	80.0	13.6	32	GREEN MUD, FINE
30034.3	MONTEREY BAY REF	102	8/5/92	1.0	82.0	13.6	32	GREEN MUD, FINE & SILTY
30035.1	ELKHORN SLOUGH, SEAL POINT	130	9/4/92	3.0	1.0	0.0	-9	-9
30035.2	ELKHORN SLOUGH, SEAL POINT	131	9/4/92	3.0	1.0	0.0	-9	-9
30035.3	ELKHORN SLOUGH, SEAL POINT	132	9/4/92	3.0	1.0	0.0	-9	-9
30036.1	ELKHORN SLOUGH, SEAL BEND	133	9/11/92	4.0	1.0	-9	-9	-9
30036.2	ELKHORN SLOUGH, SEAL BEND	134	9/11/92	4.0	1.0	-9	-9	-9
30036.3	ELKHORN SLOUGH, SEAL BEND	135	9/11/92	4.0	1.0	-9	-9	-9
31001.0	EGRET LANDING (REF)	251	10/9/92	5.0	1.0	13.0	32	FINE MUD AND CLAY
31002.0	HIGHWAY I BRIDGE REF	254	10/23/92	6.0	1.0	-9	-9	-9
31003.0	ANDREWS POND REF.	258	11/8/92	7.0	1.0	12.0	32	FINE MUD
31002.0	HWY. 1 BRIDGE REF.	351	11/27/92	8.0	1.0	13.0	32	CLAY-MUD
31003.0	ANDREW'S POND REF.	451	12/8/92	9.0	1.0	-9	-9	HARD PACK, THICK CLAY
30001.0	SANTA CRUZ YACHT BASIN	501	12/21/92	10.0	4.0	12.3	31	FINE, SOME SAND
30002.0	MONTEREY YACHT CLUB	502	12/21/92	10.0	5.0	12.3	32	GRITTY, FINE MUD
30004.0	M.L. YACHT HARBOR	504	12/21/92	10.0	2.0	11.5	30	CALM
30005.0	M.L. SOUTH HARBOR	505	12/21/92	10.0	4.0	11.2	12	FINE MUD
30006.0	PAJARO RIVER ESTUARY	506	12/21/92	10.0	0.5	12.5	12	GRITTY
30007.0	SANDHOLT BRIDGE	507	12/21/92	10.0	4.0	12.2	11	FINE MUD
30011.0	SALINAS RIVER LAGOON	511	12/21/92	10.0	0.5	8.5	14	GOOEY,GRITTY
30012.0	MONTEREY BOATYARD	512	12/21/92	10.0	8.0	12.7	33	SANDY MUD
30013.0	MONTEREY STORMDRAIN NO.2	513	12/21/92	10.0	3.0	12.1	32	SANDY MUD
30014.0	MONTEREY STORMDRAIN NO. 3	514	12/21/92	10.0	5.0	12.6	32	VERY SANDY
30019.0	MORO COJO SLOUGH	519	12/22/92	10.0	1.0	12.6	26	FINE MUD
30022.0	SOQUEL LAGOON	522	12/21/92	10.0	0.5	8.5	5	SANDY
30023.0	BENNETT SL./ESTUARY	523	12/22/92	10.0	1.5	11.9	35	SANDY MUD
30026.0	SCOTT CREEK #26B	526	12/18/92	10.0	1.5	7.5	0	SANDY MUD
30027.0	MONTEREY BAY REF. SOUTH	527	12/21/92	10.0	70.0	12.7	31	SANDY MUD
30028.0	ELKHORN SL. PORTRERO REF.	528	12/18/92	10.0	1.0	9.0	1	SANDY MUD
31002.0	HWY 1 BRIDGE REF.	675	1/14/93	11.0	1.0	15.0	33	-9
30003.0	SANTA BARBARA HARBOR	503	2/10/93	13.0	4.0	14.9	31	FINE BROWN MUD
30008.0	SAN LUIS HARBOR TRANS	508	2/9/93	13.0	6.5	14.3	32	SANDY
30009.0	GOLETA SL.	509	2/10/93	13.0	3.5	15.0	5	CLAY AND MUD
30010.0	CARPINTERIA MARSH-1	510	2/10/93	13.0	0.5	11.8	26	SOFT FINE MUD
30020.0	SANTA MARIA RIVER ESTUARY	520	2/9/93	13.0	0.5	15.5	0	LAYER OF FINE MUD ON SAND
30021.0	SANTA YNEZ RIVER ESTUARY	521	2/11/93	13.0	0.5	13.6	0	SANDY MUD
30024.0	MORRO BAY	524	2/9/93	13.0	6.5	14.3	32	SANDY

Page 4 of 6

4

. .

.

.

STANUM	STATION	IDORG	DATE	LEG	DEPTH	TEMP_C	SALINITY	SED_TEXTUR
30025.0	MORRO BAY-SOUTH BAY	525	2/9/93	13.0	1.0	13.5	20	SOFT BROWN MUD
30029.0	MORRO BAY-MID BAY	530	2/9/93	13.0	1.5	13.9	31	BROWN SANDY MUD
30030.0	CANADA DE LA GAVIOTA (26d)	531	2/11/93	13.0	0.5	11.6	1	LIGHT SILTY MUD OVER SAND
30031.0	CARPINTERIA MARSH-2	532	2/10/93	13.0	0.5	12.5	18	FINE MUD
30032.0	CARPINETRIA MARSH-3	533	2/10/93	13.0	0.5	15.6	20	CLAY-LIKE, SANDY DRY MUD
30033.0	MORRO BAY-FUEL DOCK	534	2/9/93	13.0	3.5	13.9	30	BROWN SANDY MUD
31002.0	HIGHWAY 1 BRIDGE REF	352	2/23/93	14.0	1.5	11.0	11.5	SANDY MUD
	MONTEREY BAY REF. SOUTH	1323	5/16/94	32.0	65	12.0	35	SANDY
30013.0	MONTEREY STORMDRAIN NO.2	1324	5/16/94	32.0	5	13.9	36	SANDY
30028.0	ELKHORN SL. PORTRERO REF.	1325	5/17/94	32.0	0.5	14.1	16	FINE MUD
30019.0	MORO COJO SLOUGH	1326	5/17/94	32.0	0.5	14.6	34	FINE MUD
31002.0	HIGHWAY 1 BRIDGE REF	1327	5/17/94	32.0	0.5	15.0	35	SANDY
30008.0	SAN LUIS HARBOR TRANS	1328	5/20/94	32.0	6	11.3	34	SANDY
30029.0	MORRO BAY-MID BAY	1329	5/20/94	32.0	6	15.1	35	SANDY
30032.0	CARPINETRIA MARSH-3	1330	5/20/94	32.0	1	21.9	20	SOFT, CLAY
30004.0	M.L. YACHT HARBOR REPI	1362	6/15/94	33.0	3	14.8	35	FINE MUD
30004.0	M.L. YACHT HARBOR REP2	1363	6/15/94	33.0	2	14.8	35	FINE MUD
30004.0	M.L. YACHT HARBOR REP3	1364	6/15/94	33.0	2	15.0	35	FINE MUD
30007.0	SANDHOLT BRIDGE REP1	1365	6/15/94	33.0	3	14.3	30	CREAMY
30007.0	SANDHOLT BRIDGE REP2	1366	6/15/94	33.0	2	14.8	29	CREAMY, DARKER
30007.0	SANDHOLT BRIDGE REP3	1367	6/15/94	33.0	3	14.1	33	CREAMY
30023.0	BENNETT SL./ESTUARY REPI	1368	6/16/94	33.0	0.1	17.0	36	MUD
30023.0	BENNETT SL./ESTUARY REP2	1369	6/16/94	33.0	0.1	17.0	36	MUD
30023.0	BENNETT SL./ESTUARY REP3	1370	6/16/94	33.0	0.1	17.0	36	MUD
31001.0	EGRET LANDING REP1	1371	6/15/94	33.0	2	16.6	36	FINE MUD WITH ROCKS
31001.0	EGRET LANDING REP2	1372	6/15/94	33.0	1	15.8	37	SOFT MUD
31001.0	EGRET LANDING REP3	1373	6/15/94	33.0	1	14.8	36	SOFT MUD, CLAYISH
31002.0	HIGHWAY 1 BRIDGE REP1	1374	6/15/94	33.0	2	12.6	35	SANDY MUD
31002.0	HIGHWAY 1 BRIDGE REP2	1375	6/15/94	33.0	1	12.8	35	SANDY MUD
31002.0	HIGHWAY 1 BRIDGE REP3	1376	6/15/94	33.0	1	Ì3.4	36	SANDY MUD
31003.0	ANDREWS POND REP1	1377	6/16/94	33.0	0.2	21.0	40	FINE MUD
31003.0	ANDREWS POND REP2	1378	6/16/94	33.0	0.2	21.0	40	FINE MUD
31003.0	ANDREWS POND REP3	1379	6/16/94	33.0	0.2	21.0	40	FINE MUD
30001.0	SANTA CRUZ YACHT BASIN	1588	5/9/96	43.0	3	15.0	34	GRITTY SOFT MUD
35001.0	SANTA CRUZ YACHT BASIN-A3	1589	5/9/96	43.0	2	15.0	33	CREAMY
35002.0	SANTA CRUZ YACHT BASIN-A9	1590	5/9/96	43.0	3	15.0	32	CREAMY, SILTY
35003.0	MONTEREY BOATYARD-LEAD 1	1591	5/9/96	43.0	3	15.0	35	SANDY, GRITTY
35004.0	MONTEREY BOATYARD-LEAD 2	1592	5/9/96	43.0	7	15.0	35	FINE, SANDY

Page 5 of 6

STANUM	STATION	IDORG	DATE	LEG	DEPTH	TEMP_C	SALINITY	SED_TEXTUR
35005.0	MONTEREY BOATYARD-LEAD 3	1593	5/9/96	43.0	10	14.0	35	SANDY MUD
35006.0	MONTEREY BOATYARD-LEAD 4	1594	5/9/96	43.0	12	15.0	35	FINE, SANDY
30002.0	MONTEREY YACHT CLUB	1596	5/9/96	43.0	4	15.0	33	SANDY W/ DEPOSITIONAL LAY
30007.0	SANDHOLDT BRIDGE	1597	5/9/96	43.0	3	22.0	17	SMOOTH, CREAMY
30007.0	SANDHOLDT BRIDGE	1762	5/8/97	52.0	3	-9	-9	SMOOTH FINE
36002.0	TEMBLADERO MOUTH	1763	5/8/97	52.0	1	23.0	11.0	CREAMY
36003.0	CENTRAL TEMBLADERO	1764	5/8/97	52.0	1	22.0	0.6	GRITTY
36004.0	UPPER TEMBLADERO-SALINAS CITY	1765	5/8/97	52.0	0.5	19.0	0.5	FINE ON CLUMPY
36005.0	ESPINOSA SLOUGH	1766	5/8/97	52.0	0.25	23.0	1.9	CREAMY ON GRITTY
36006.0	ALISAL SLOUGH	1767	5/8/97	52.0	0.25	26.0	1.9	CREAMY, BUBBLES IN MUD
36007.0	OLD SALINAS RIVER CHANNEL	1768	5/8/97	52.0	1	23.0	19	SMOOTH, FLUFFY

Page 6 of 6

APPENDIX C

Analytical Chemistry Data

SECTION I

Trace Metal Analysis of Sediments

TRACE METAL ANAL	YSIS OF SEDIMENTS	(dry weight-ppm-ug/g)
------------------	-------------------	-----------------------

.

¢

•

٩.

.

· .

.

								• .	2		
STANUM	STATION	IDORG	DATE	LEG	METADATA	TMMOIST	ALUMINUM	ANTIMONY	ARSENIC	CADMIUM	CHROMIUM
30034.1	MONTEREY BAY REFERENCE	100	8/5/92	1.0	-9	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
30034.2	MONTEREY BAY REFERENCE	101	8/5/92	1.0	-9	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
30034.3	MONTEREY BAY REFERENCE	102	8/5/92	1.0	-9	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
30035.1	ELKHORN SLOUGH-SEAL POINT	130	9/4/92	3.0	-9	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
30035.2	ELKHORN SLOUGH-SEAL POINT	131	9/4/92	3.0	-9	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
30035.3	ELKHORN SLOUGH-SEAL POINT	132	9/4/92	3.0	-9	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
30036.1	ELKHORN SLOUGH-SEAL BEND	133	9/11/92	4.0	-9	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
30036.2	ELKHORN SLOUGH-SEAL BEND	134	9/11/92	4.0	-9	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
30036.3	ELKHORN SLOUGH-SEAL BEND	135	9/11/92	4.0	-9	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
31001.0	EGRET LANDING- REF	251	10/9/92	5.0	QA5_23.TXT	-9.00	33000.00	0.500	9.900	0.5700	170.000
31002.0	HIGHWAY 1 BRIDGE- REF	254	10/23/92	6.0	QA5_23.TXT	-9.00	65000.00	0.100	6.400	0.2600	270.000
31003.0	ANDREWS POND- REF	258	11/8/92	7.0	QA5_23.TXT	-9.00	19000.00	0.160	12.000	0.3200	120.000
31002.0	HWY. 1 BRIDGE- REF	351	11/27/92	8.0	QA5_23.TXT	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
31003.0	ANDREW'S POND REF.	451	12/8/92	9.0	QA5_23.TXT	-9.00	13000.00	0.440	4.800	0.2600	94.000
30001.0	SANTA CRUZ YACHT BASIN	501	12/21/92	10.0	QA5_23.TXT	-9.00	61000.00	0.590	10.000	0.4100	120.000
30002.0	MONTEREY YACHT CLUB	502	12/21/92	10.0	QA5_23.TXT	-9.00	66000.00	0.700	12.000	1.6400	81.000
30004.0	M.L. YACHT HARBOR	504	12/21/92	10.0	QA5_23.TXT	-9.00	52000.00	0.700	7.700	0.6400	210.000
30005.0	M.L. SOUTH HARBOR	505	12/21/92	10.0	QA5_23.TXT	-9.00	56000.00	0.300	7.400	0.4200	160.000
30006.0	PAJARO RIVER ESTUARY	506	12/21/92	10.0	QA5_23.TXT	-9.00	35000.00	1.100	6.400	0.0600	440.000
30007.0	SANDHOLDT BRIDGE	507	12/21/92	10.0	QA5_23.TXT	-9.00	67000.00	1.400	10.000	0.7400	170.000
30011.0	SALINAS RIVER LAGOON	511	12/21/92	10.0	QA5_23.TXT	-9.00	-9.00	-9.000	-9 .000	-9.0000	-9.000
30012.0	MONTEREY BOATYARD	512	12/21/92	10.0	QA5_23.TXT	· -9.00	46000.00	0.680	4.500	0.7300	28.000
30013.0	MONTEREY STORMDRAIN NO.2	513	12/21/92	10.0	QA5_23.TXT	-9.00	62000.00	0.070	3.700	0.2400	38.000
30014.0	MONTEREY STORMDRAIN NO. 3	514	12/21/92	10.0	QA5_23.TXT	-9.00	66000.00	0.770	6.800	0.8500	45.000
30019.0	MORO COJO SLOUGH	519	12/22/92	10.0	QA5_23.TXT	-9.00	19000.00	0.480	7.800	0.8800	160.000
30022.0	SOQUEL LAGOON	522	12/21/92	10.0	QA5_23.TXT	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
30023.0	BENNETT SL./ESTUARY	523	12/22/92	10.0	QA5_23.TXT	-9.00	49000.00	0.930	20.000	0.2300	210.000
30026.0	SCOTT CREEK #26B	526	12/18/92	10.0	QA5_23.TXT	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
30027.0	MONTEREY BAY REF. SOUTH	527	12/21/92	10.0	QA5_23.TXT	-9.00	74000.00	0.160	4.000	0.4500	54.000
30028.0	ELKHORN SL. PORTRERO REF.	528	12/18/92	10.0	QA5_23.TXT	-9.00	54000.00	0.420	6.400	0.3100	150.000
31002.0	HWY 1 BRIDGE REF.	675	1/14/93	11.0	QA5_23.TXT	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
30003.0	SANTA BARBARA HARBOR	503	2/10/93	13.0	QA5_23.TXT	-9.00	-9.00	-9.000	-9.000	-9.0000 .	-9.000
30008.0	SAN LUIS HARBOR TRANS	508	2/9/93	13.0	QA5_23.TXT	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
					—						

STANUM	STATION	IDORG	DATE	LEG	METADATA	TMMOIST	ALUMINUM	ANTIMONY	ARSENIC	CADMIUM	CHROMIUM
30009.0	GOLETA SL.	509	2/10/93	13.0	QA5_23.TXT	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
30010.0	CARPINTERIA MARSH-1	510	2/10/93	13.0	QA5_23.TXT	-9.00	-9.00	-9.000	. -9.000	-9.0000	-9.000
30020.0	SANTA MARIA RIVER ESTUARY	520	2/9/93	13.0	QA5_23.TXT	-9.00	53000.00	1.320	5.700	1.0300	100.000
30021.0	SANTA YNEZ RIVER ESTUARY	521	2/11/93	13.0	QA5_23.TXT	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
30024.0	MORRO BAY	524	2/9/93	13.0	QA5_23.TXT	-9.00	52000.00	0.330	5.100	0.1700	860.000
30025.0	MORRO BAY-SOUTH BAY	525	2/9/93	13.0	QA5_23.TXT	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
30029.0	MORRO BAY-MID BAY	530	2/9/93	13.0	QA5_23.TXT	-9.00	47000.00	0.230	5.500	0.2200	730.000
30030.0	CANADA DE LA GAVIOTA (26d)	531	2/11/93	13.0	QA5_23.TXT	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
30031.0	CARPINTERIA MARSH-2	532	2/10/93	13.0	QA5_23.TXT	-9.00	40000.00	0.610	5.900	0.2100	110.000
30032.0	CARPINETRIA MARSH-3	533	2/10/93	13.0	QA5_23.TXT	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
30033.0	MORRO BAY-FUEL DOCK	534	2/9/93	13.0	QA5_23.TXT	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
31002.0	HIGHWAY 1 BRIDGE REF	352	2/23/93	14.0	QA5_23.TXT	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
30027.0	MONTEREY BAY REF. SOUTH	1323	5/16/94	32.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
30013.0	MONTEREY STORMDRAIN NO.2	1324	5/16/94	32.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
30028.0	ELKHORN SL. PORTRERO REF.	1325	5/17/94	32.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.000Ö	-9.000
30019.0	MORO COJO SLOUGH	1326	5/17/94	32.0	chmmeta2.txt	-9.00	-9.00	-9.000	- 9.000	-9.0000	-9.000
31002.0	HIGHWAY 1 BRIDGE REF	1327	5/17/94	32.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
30008.0	SAN LUIS HARBOR TRANS	1328	5/20/94	32.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
30029.0	MORRO BAY-MID BAY	1329	5/20/94	32.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
30032.0	CARPINETRIA MARSH-3	1330	5/20/94	32.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
30004.0	M.L. YACHT HARBOR REP1	1362	6/15/94	33.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
30004.0	M.L. YACHT HARBOR REP2	1363	6/15/94	33.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
30004.0	M.L. YACHT HARBOR REP3	1364	6/15/94	33.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
30007.0	SANDHOLDT BRIDGE REP1	1365	6/15/94	33.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
30007.0	SANDHOLDT BRIDGE REP2	1366	6/15/94	33.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
30007.0	SANDHOLDT BRIDGE REP3	1367	6/15/94	33.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
30023.0	BENNETT SL./ESTUARY REPI	1368	6/16/94	33.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
30023.0	BENNETT SL./ESTUARY REP2	1369	6/16/94	33.0	chmmeta2.txt	-9.00	9.00	-9.000	-9.000	-9.0000	-9.000
30023.0	BENNETT SL./ESTUARY REP3	1370	6/16/94	33.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
31001.0	EGRET LANDING REPI	1371	6/15/94	33.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
31001.0	EGRET LANDING REP2	1372	6/15/94	33.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
31001.0	EGRET LANDING REP3	1373	6/15/94	33.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
31002.0	HIGHWAY 1 BRIDGE REP1	1374	6/15/94	33.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000

Page 2 of 9

1

t

									•		and the second
STANUM	STATION	IDORG	DATE	LEG	METADATA	TMMOIST	ALUMINUM	ANTIMONY	ARSENIC	CADMIUM	CHROMIUM
31002.0	HIGHWAY 1 BRIDGE REP2	1375	6/15/94	33.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
31002.0	HIGHWAY 1 BRIDGE REP3	1376	6/15/94	33.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
31003.0	ANDREWS POND REPI	1377	6/16/94	33.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
31003.0	ANDREWS POND REP2	1378	6/16/94	33.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
31003.0	ANDREWS POND REP3	1379	6/16/94	33.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
30001.0	SANTA CRUZ YACHT BASIN	1588	5/9/96	43.0	CHEM3846.TXT	40.50	-9.00	-9.000	-9.000	-9.0000	-9.000
35001.0	SANTA CRUZ YACHT BASIN-A3	1589	5/9/96	43.0	CHEM3846.TXT	57.70	-9.00	-9.000	-9.000	-9.000o	-9.000
35002.0	SANTA CRUZ YACHT BASIN-A9	1590	5/9/96	43.0	CHEM3846.TXT	62.80	-9.00	-9.000	-9.000	-9.0000	-9.000
35003.0	MONTEREY BOATYARD-LEAD 1	1591	5/9/96	43.0	CHEM3846.TXT	38.80	-9.00	-9.000	-9.000	-9.0000	-9.000
35004.0	MONTEREY BOATYARD-LEAD 2	1592	5/9/96	43.0	CHEM3846.TXT	48.50	-9.00	-9.000	-9.000	-9.0000	-9.000
35005.0	MONTEREY BOATYARD-LEAD 3	1593	5/9/96	43.0	CHEM3846.TXT	35.60	-9.00	-9.000	-9.000	-9.0000	-9.000
35006.0	MONTEREY BOATYARD-LEAD 4	1594	5/9/96	43.0	CHEM3846.TXT	31.30	-9.00	-9.000	-9.000	-9.0000	-9.000
30002.0	MONTEREY YACHT CLUB	1596	5/9/96	43.0	CHEM3846.TXT	-9.00	-9.00	-9.000	-9 .000	-9.0000	-9.000
30007.0	SANDHOLDT BRIDGE	1597	5/9/96	43.0	CHEM3846.TXT	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
30007.0	SANDHOLDT BRIDGE	1762	5/8/97	52.0	CHM47_56.TXT	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
36002.0	TEMBLADERO MOUTH	1763	5/8/97	52.0	CHM47_56.TXT	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
36003.0	CENTRAL TEMBLADERO	1764	5/8/97	52.0	CHM47_56.TXT	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
36004.0	UPPER TEMBLADERO-SALINAS CITY	1765	5/8/97	52.0	CHM47_56.TXT	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
36005.0	ESPINOSA SLOUGH	1766	5/8/97	52.0	CHM47_56.TXT	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
36006.0	ALISAL SLOUGH	1767	5/8/97	52.0	CHM47_56.TXT	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000
36007.0	OLD SALINAS RIVER CHANNEL	1768	5/8/97	52.0	CHM47_56.TXT	-9.00	-9.00	-9.000	-9.000	-9.0000	-9.000

STANUM	STATION	IDORG	DATE_	LEG	COPPER	IRON	LEAD	MANGANESE	MERCURY	NICKEL	SILVER	SELENIUM	TIN
30034.1	MONTEREY BAY REFERENCE	100	8/5/92	1.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
30034.2	MONTEREY BAY REFERENCE	101	8/5/92	1.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
30034.3	MONTEREY BAY REFERENCE	102	8/5/92	1.0	-9 .00	-9.0	-9.000	-9.00	-9.0000	-9 .000	-9.0000	-9.000	-9.0000
30035.1	ELKHORN SLOUGH-SEAL POINT	130	9/4/92	3.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
30035.2	ELKHORN SLOUGH-SEAL POINT	131	9/4/92	3.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
30035.3	ELKHORN SLOUGH-SEAL POINT	132	9/4/92	3.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9 .000	-9.0000	-9.000	-9.0000
30036.1	ELKHORN SLOUGH-SEAL BEND	133	9/11/92	4.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
30036.2	ELKHORN SLOUGH-SEAL BEND	134	9/11/92	4.0	-9 .00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
30036.3	ELKHORN SLOUGH-SEAL BEND	135	9/11/92	4.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
31001.0	EGRET LANDING- REF	251	10/9/92	5.0	29.00	36000.0	11.300	250.00	0.0880	100.000	0.1200	0.700	1.4000
31002.0	HIGHWAY 1 BRIDGE- REF	254	10/23/92	6.0	11.00	24000.0	11.600	280.00	0.0360	52.000	0.0600	-8.000	2.4400
31003.0	ANDREWS POND- REF	258	11/8/92	7.0	24.00	45000.0	16.000	240.00	0.0430	54.000	0.0800	0.240	1.8000
31002.0	HWY. 1 BRIDGE- REF	351	11/27/92	8.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
31003.0	ANDREW'S POND REF.	451	12/8/92	· 9.0	20.00	26000.0	13.200	180.00	0.0530	46.000	0.0400	-8.000	2.5000
30001.0	SANTA CRUZ YACHT BASIN	501	12/21/92	10.0	410.00	23000.0	52.100	170.00	0.7470	36.000	0.1000	0.260	5.8400
30002.0	MONTEREY YACHT CLUB	502	12/21/92	10.0	250.00	18000.0	83.600	140.00	0.6810	30.000	0.2900	0.610	11.6000
30004.0	M.L. YACHT HARBOR	504	12/21/92	10.0	35.00	44000.0	20.000	320.00	0.0570	88.000	0.1600	-8.000	2.6000
30005.0	M.L. SOUTH HARBOR	505	12/21/92	10.0	22.00	29000.0	13.000	260.00	0.0630	96.000	0.0800	0.220	1.3300
30006.0	PAJARO RIVER ESTUARY	506	12/21/92	10.0	15.00	38000.0	10.200	520.00	0.0390	75.000	0.0600	-8.000	Ì.6000
30007.0	SANDHOLDT BRIDGE	507	12/21/92	10.0	58.00	56000.0	26.600	360.00	0.1000	100.000	0.2000	-8.000	4.8000
30011.0	SALINAS RIVER LAGOON	511	12/21/92	10.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
30012.0	MONTEREY BOATYARD	512	12/21/92	10.0	53.00	10000.0	47.200	130.00	0.3000	10.000	0.1900	-8.000	18.0000
30013.0	MONTEREY STORMDRAIN NO.2	513	12/21/92	10.0	40.00	7000.0	36.000	71.00	0.2520	17.000	0.0800	-8.000	4.7900
30014.0	MONTEREY STORMDRAIN NO. 3	514	12/21/92	10.0	84.00	13000.0	77.900	120.00	0.5640	19.000	0.1700	0.280	17.2000
30019.0	MORO COJO SLOUGH	519	12/22/92	10.0	43.00	38000.0	25.600	320.00	0.0960	86.000	0.1300	-8.000	3.8000
30022.0	SOQUEL LAGOON	522	12/21/92	10.0	-9.00	-9.0	-9 .000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
30023.0	BENNETT SL./ESTUARY	523	12/22/92	10.0	26.00	39000.0	14.000	740.00	0.0530	74.000	0.1000	-8.000	2.1000
30026.0	SCOTT CREEK #26B	526	12/18/92	10.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
30027.0	MONTEREY BAY REF. SOUTH	527	12/21/92	10.0	4.00	16000.0	14.300	140.00	0.0330	21.000	0.0300	-8.000	1.4900
30028.0	ELKHORN SL. PORTRERO REF.	528	12/18/92	10.0	18.00	39000.0	16.000	400.00	0.0460	55.000	0.0600	0.250	1.6000
31002.0	HWY 1 BRIDGE REF.	675	1/14/93	11.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
30003.0	SANTA BARBARA HARBOR	503	2/10/93	13.0	-9 .00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
30008.0	SAN LUIS HARBOR TRANS	508	2/9/93	13.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000

.

.

.

Page 4 of 9

.

٠

STANUM	STATION	IDORG	DATE	LEG	COPPER	IRON	LEAD	MANGANESE	MERCURY	NICKEL	SILVER	SELENIUM	TIN
30009.0	GOLETA SL.	509	2/10/93	13.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
30010.0	CARPINTERIA MARSH-1	510	2/10/93	13.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
30020.0	SANTA MARIA RIVER ESTUARY	520	2/9/93	13.0	31.00	35000.0	14.300	460.00	0.0470	69.000	0.1600	0.290	2.4000
30021.0	SANTA YNEZ RIVER ESTUARY	521	2/11/93	13.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
30024.0	MORRO BAY	524	2/9/93	13.0	16.00	20000.0	7.800	230.00	0.1530	93.000	0.0400	-8.000	1.3300
30025.0	MORRO BAY-SOUTH BAY	525	2/9/93	13.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
30029.0	MORRO BAY-MID BAY	530	2/9/93	13.0	10.00	17000.0	4.600	210.00	0.0700	93.000	0.0500	-8.000	1.0600
30030.0	CANADA DE LA GAVIOTA (26d)	531	2/11/93	13.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9 .0000	-9.000	-9.0000
30031.0	CARPINTERIA MARSH-2	532	2/10/93	13.0	18.00	19000.0	13.700	200.00	0.0370	37.000	0.0800	-8.000	1.9000
30032.0	CARPINETRIA MARSH-3	533	2/10/93	13.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9 .0000	-9.000	-9.0000
30033.0	MORRO BAY-FUEL DOCK	534	2/9/93	13.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
31002.0	HIGHWAY 1 BRIDGE REF	352	2/23/93	14.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
30027.0	MONTEREY BAY REF. SOUTH	1323	5/16/94	32.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
30013.0	MONTEREY STORMDRAIN NO.2	1324	5/16/94	32.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
30028.0	ELKHORN SL. PORTRERO REF.	1325	5/17/94	32.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
30019.0	MORO COJO SLOUGH	1326	5/17/94	32.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
31002.0	HIGHWAY 1 BRIDGE REF	1327	5/17/94	32.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
30008.0	SAN LUIS HARBOR TRANS	1328	5/20/94	32.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
30029.0	MORRO BAY-MID BAY	1329	5/20/94	32.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
30032.0	CARPINETRIA MARSH-3	1330	5/20/94	32.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
30004.0	M.L. YACHT HARBOR REP1	1362	6/15/94	33.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
30004.0	M.L. YACHT HARBOR REP2	1363	6/15/94	33.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
30004.0	M.L. YACHT HARBOR REP3	1364	6/15/94	33.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
30007.0	SANDHOLDT BRIDGE REP1	1365	6/15/94	33.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
30007.0	SANDHOLDT BRIDGE REP2	1366	6/15/94	33.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
30007.0	SANDHOLDT BRIDGE REP3	1367	6/15/94	33.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
30023.0	BENNETT SL./ESTUARY REPI	1368	6/16/94	33.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9 .0000	-9.000	-9.0000
30023.0	BENNETT SL./ESTUARY REP2	1369	6/16/94	33.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
30023.0	BENNETT SL/ESTUARY REP3	1370	6/16/94	33.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
31001.0	EGRET LANDING REPI	1371	6/15/94	33.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
31001.0	EGRET LANDING REP2	1372	6/15/94	33.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
31001.0	EGRET LANDING REP3	1373	6/15/94	33.0	-9.00	-9.0	-9 .000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
31002.0	HIGHWAY 1 BRIDGE REP1	1374	6/15/94	33.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000

STANUM	STATION	IDORG	DATE_	LEG	COPPER	IRON	LEAD	MANGANESE	MERCURY	NICKEL	SILVER	SELENIUM	TIN
31002.0	HIGHWAY 1 BRIDGE REP2	1375	6/15/94	33.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
31002.0	HIGHWAY 1 BRIDGE REP3	1376	6/15/94	33.0	-9.00	-9.0	-9 .000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
31003.0	ANDREWS POND REP1	1377	6/16/94	33.0	-9.00	-9.0	-9 .000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
31003.0	ANDREWS POND REP2	1378	6/16/94	33.0	-9.00	-9.0	-9 .000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
31003.0	ANDREWS POND REP3	1379	6/16/94	33.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
30001.0	SANTA CRUZ YACHT BASIN	1588	5/9/96	43.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
35001.0	SANTA CRUZ YACHT BASIN-A3	1589	5/9/96	43.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
35002.0	SANTA CRUZ YACHT BASIN-A9	1590	5/9/96	43.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
35003.0	MONTEREY BOATYARD-LEAD 1	1591	5/9/96	43.0	-9.00	-9.0	90.100	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
35004.0	MONTEREY BOATYARD-LEAD 2	1592	5/9/96	43.0	-9.00	-9.0	70.400	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
35005.0	MONTEREY BOATYARD-LEAD 3	1593	5/9/96	43.0	-9.00	-9 .0	32.600	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
35006.0	MONTEREY BOATYARD-LEAD 4	1594	5/9/96	43.0	-9.00	-9.0	29.200	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
30002.0	MONTEREY YACHT CLUB	1596	5/9/96	43.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
30007.0	SANDHOLDT BRIDGE	1597	5/9/96	43.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
30007.0	SANDHOLDT BRIDGE	1762	5/8/97	52.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
36002.0	TEMBLADERO MOUTH	1763	5/8/97	52.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
36003.0	CENTRAL TEMBLADERO	1764	5/8/97	52.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
36004.0	UPPER TEMBLADERO-SALINAS CITY	1765	5/8/97	52.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
36005.0	ESPINOSA SLOUGH	1766	5/8/97	52.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
36006.0	ALISAL SLOUGH	1767	5/8/97	52.0	-9.00	-9.0	-9 .000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000
36007.0	OLD SALINAS RIVER CHANNEL	1768	5/8/97	52.0	-9.00	-9.0	-9.000	-9.00	-9.0000	-9.000	-9.0000	-9.000	-9.0000

STANUM	STATION	IDORG	DATE	LEG	ZINC	ASBATCH	SEBATCH	ТМВАТСН	TMDATAQC
30034.1	MONTEREY BAY REFERENCE	100	8/5/92	1.0	-9.0000	-9.00	-9.00	-9.00	-9
30034.2	MONTEREY BAY REFERENCE	101	8/5/92	1.0	-9.0000	-9.00	-9.00	-9.00	-9
30034.3	MONTEREY BAY REFERENCE	102	8/5/92	1.0	-9.0000	-9.00	-9.00	-9.00	-9
30035.1	ELKHORN SLOUGH-SEAL POINT	130	9/4/92	3.0	-9.0000	-9.00	-9.00	-9.00	-9
30035.2	ELKHORN SLOUGH-SEAL POINT	131	9/4/92	3.0	-9.0000	-9.00	-9.00	-9.00	-9
30035.3	ELKHORN SLOUGH-SEAL POINT	132	9/4/92	3.0	-9.0000	-9.00	-9.00	-9.00	-9
30036.1	ELKHORN SLOUGH-SEAL BEND	133	9/11/92	4.0	-9.0000	-9.00	-9.00	-9.00	-9
30036.2	ELKHORN SLOUGH-SEAL BEND	134	9/11/92	4.0	-9.0000	-9.00	-9.00	-9.00	-9
30036.3	ELKHORN SLOUGH-SEAL BEND	135	9/11/92	4.0	-9.0000	-9.00	-9.00	-9.00	-9
31001.0	EGRET LANDING- REF	251	10/9/92	5.0	95.0000	5.50	5.50	5.10	-4
31002.0	HIGHWAY 1 BRIDGE- REF	254	10/23/92	6.0	53.0000	5.50	5.50	5.10	-4
31003.0	ANDREWS POND- REF	258	11/8/92	7.0	150.0000	2.20	2.20	2.10	-4
31002.0	HWY. 1 BRIDGE-REF	351	11/27/92	8.0	-9.0000	-9.00	-9.00	-9.00	9
31003.0	ANDREW'S POND REF.	451	12/8/92	9.0	55.0000	2.20	2.20	. 2.10	-4
30001.0	SANTA CRUZ YACHT BASIN	501	12/21/92	10.0	180.0000	3.10	3.10	3.10	-4
30002.0	MONTEREY YACHT CLUB	502	12/21/92	10.0	330.0000	3.20	3.20	3.10	-4
30004.0	M.L. YACHT HARBOR	504	12/21/92	10.0	100.0000	2.10	2.10	2.10	-4
30005.0	M.L. SOUTH HARBOR	505 .	12/21/92	10.0	78.0000	3.20	3.20	3.10	-4
30006.0	PAJARO RIVER ESTUARY	506	12/21/92	10.0	66.0000	1.20	1.20	2.10	-4
30007.0	SANDHOLDT BRIDGE	507	12/21/92	10.0	190.0000	2.10	2.10	2.10	-4
30011.0	SALINAS RIVER LAGOON	511	12/21/92	10.0	-9.0000	-9.00	-9.00	-9.00	-9
30012.0	MONTEREY BOATYARD	512	12/21/92	10.0	83.0000	2.10	2.10	2.10	-4
30013.0	MONTEREY STORMDRAIN NO.2	513	12/21/92	10.0	71.0000	3.20	3.20	3.10	-4
30014.0	MONTEREY STORMDRAIN NO. 3	514	12/21/92	10.0	150.0000	3.10	3.10	3.10	-4
30019.0	MORO COJO SLOUGH	519	12/22/92	10.0	180.0000	2.10	2.10	2.10	-4
30022.0	SOQUEL LAGOON	522	12/21/92	10.0	-9.0000	-9.00	-9.00	-9.00	-9
30023.0	BENNETT SL./ESTUARY	523	12/22/92	10.0	93.0000	2.10	2.10	2.10	-4
30026.0	SCOTT CREEK #26B	526	12/18/92	10.0	-9.0000	-9.00	-9.00	-9.00	· -9
30027.0	MONTEREY BAY REF. SOUTH	527	12/21/92	10.0	40.0000	3.20	3.20	3.10	-4
30028.0	ELKHORN SL. PORTRERO REF.	528	12/18/92	10.0	97.0000	3.10	3.10	3.10	-4
31002.0	HWY 1 BRIDGE REF.	675	1/14/93	11.0	-9.0000	-9.00	-9.00	-9.00	-9
30003.0	SANTA BARBARA HARBOR	503	2/10/93	13.0	-9.0000	-9.00	-9.00	-9.00	-9
30008.0	SAN LUIS HARBOR TRANS	508	2/9/93	13.0	-9.0000	-9.00	-9.00	-9.00	-9

Page 7 of 9

30009:0 GOLETA SL. 509 2/10/93 13.0 -9.000 -9.00	STANUM	STATION	IDORG	DATE	LEG	ZINC	ASBATCH	SEBATCH	TMBATCH	TMDATAQC
3002.0SANTA MARIA RIVER ESTUARY5202/9/9313.094.0002.102.102.104.130021.0SANTA YNEZ RIVER ESTUARY5212/11/9313.0-9.000-9.00<	30009.0	GOLETA SL.	509	2/10/93	13.0	-9.0000	-9.00	-9.00	-9.00	-9
30021.0 SANTA YNEZ RIVER ESTUARY 521 2/11/93 13.0 -9.000 -9.00 <td< td=""><td>30010.0</td><td>CARPINTERIA MARSH-1</td><td>510</td><td>2/10/93</td><td>13.0</td><td>-9.0000</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9</td></td<>	30010.0	CARPINTERIA MARSH-1	510	2/10/93	13.0	-9.0000	-9.00	-9.00	-9.00	-9
30024.0 MORRO BAY 524 2/9/93 13.0 50.0000 5.50 5.50 5.10 4 30025.0 MORRO BAY-SOUTH BAY 525 2/9/93 13.0 -9.000 -9.00 <td>30020.0</td> <td>SANTA MARIA RIVER ESTUARY</td> <td>520</td> <td>2/9/93</td> <td>13.0</td> <td>94.0000</td> <td>2.10</td> <td>2.10</td> <td>2.10</td> <td>-4</td>	30020.0	SANTA MARIA RIVER ESTUARY	520	2/9/93	13.0	94.0000	2.10	2.10	2.10	-4
30025.0 MORRO BAY-SOUTH BAY 525 2/9/93 13.0 -9.000 -9.00	30021.0	SANTA YNEZ RIVER ESTUARY	521	2/11/93	13.0	-9.0000	-9.00	-9.00	-9.00	-9
30029.0MORRO BAY-MID BAY5302/9/9313.036.00005.505.505.10.43003.0CANADA DE LA GAVIOTA (26d)5312/11/9313.0-9.000-9.	30024.0	MORRO BAY	524	2/9/93	13.0	50.0000	5.50	5.50	5.10	-4
30030.0CANADA DE LA GAVIOTA (26d)5312/11/9313.09.00009.00 <th< td=""><td>30025.0</td><td>MORRO BAY-SOUTH BAY</td><td>525</td><td>2/9/93</td><td>13.0</td><td>-9.0000</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9</td></th<>	30025.0	MORRO BAY-SOUTH BAY	525	2/9/93	13.0	-9.0000	-9.00	-9.00	-9.00	-9
30031.0 CARPINTERIA MARSH-2 532 2/10/93 13.0 57.0000 2.10 2.10 2.10 -4 30032.0 CARPINETRIA MARSH-3 533 2/10/93 13.0 -9.000 -9.00 -9.00 -9.00 -9 30033.0 MORO BAY-FUEL DOCK 534 2/9/93 13.0 -9.000 -9.00 -9.00 -9.00 -9 31002.0 HIGHWAY 1 BRIDGE REF 352 2/23/93 14.0 -9.000 -9.00	30029.0	MORRO BAY-MID BAY	530	2/9/93	13.0	36.0000	5.50	5.50	5.10	-4
30032.0CARPINETRIA MARSH-35332/10/9313.0-9.000-9.00 <t< td=""><td>30030.0</td><td>CANADA DE LA GAVIOTA (26d)</td><td>531</td><td>2/11/93</td><td>13.0</td><td>-9.0000</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9</td></t<>	30030.0	CANADA DE LA GAVIOTA (26d)	531	2/11/93	13.0	-9.0000	-9.00	-9.00	-9.00	-9
30033.0MORRO BAY-FUEL DOCK5342/9/9313.0-9.000-9.00 <th< td=""><td>30031.0</td><td>CARPINTERIA MARSH-2</td><td>532</td><td>2/10/93</td><td>13.0</td><td>57.0000</td><td>2.10</td><td>2.10</td><td>2.10</td><td>-4</td></th<>	30031.0	CARPINTERIA MARSH-2	532	2/10/93	13.0	57.0000	2.10	2.10	2.10	-4
31002.0HIGHWAY 1 BRIDGE REF3522/23/9314.0-9.000-9.00<	30032.0	CARPINETRIA MARSH-3	533	2/10/93	13.0	-9.0000	-9.00	-9.00	-9.00	-9
30027.0MONTEREY BAY REF. SOUTH13235/16/9432.0-9.0000-9.00<	30033.0	MORRO BAY-FUEL DOCK	534	2/9/93	13.0	-9.0000	-9.00	-9.00	-9.00	-9
30013.0MONTEREY STORMDRAIN NO.213245/16/9432.0-9.0000-9.00	31002.0	HIGHWAY 1 BRIDGE REF	352	2/23/93	14.0	-9.0000	-9.00	-9.00	-9.00	-9
30028.0ELKHORN SL. PORTRERO REF.13255/17/9432.0-9.000-9.00	30027.0	MONTEREY BAY REF. SOUTH	1323	5/16/94	32.0	-9.0000	-9.00	-9.00	-9.00	-9
30019.0MORO COJO SLOUGH1326.5/17/9432.0-9.000-9.00 <th< td=""><td>30013.0</td><td>MONTEREY STORMDRAIN NO.2</td><td>1324</td><td>5/16/94</td><td>32.0</td><td>-9.0000</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9</td></th<>	30013.0	MONTEREY STORMDRAIN NO.2	1324	5/16/94	32.0	-9.0000	-9.00	-9.00	-9.00	-9
31002.0HIGHWAY 1 BRIDGE REF13275/17/9432.0-9.000-9.00	30028.0	ELKHORN SL. PORTRERO REF.	1325	5/17/94	32.0	-9.0000	-9.00	-9.00	-9.00	-9
30008.0 SAN LUIS HARBOR TRANS 1328 5/20/94 32.0 -9.000 -9.00 -	30019.0	MORO COJO SLOUGH	1326.	5/17/94	32.0	-9.0000	-9.00	-9.00	-9.00	-9
30029.0 MORRO BAY-MID BAY 1329 5/20/94 32.0 -9.000 -9.00	31002.0	HIGHWAY 1 BRIDGE REF	1327	5/17/94	32.0	-9.0000	-9.00	-9.00	-9.00	-9
30032.0 CARPINETRIA MARSH-3 1330 5/20/94 32.0 -9.000 -9.	30008.0	SAN LUIS HARBOR TRANS	1328	5/20/94	32.0	-9.0000	-9.00	-9.00	-9.00	-9
30004.0 M.L. YACHT HARBOR REP1 1362 6/15/94 33.0 -9.000 -9.00	30029.0	MORRO BAY-MID BAY	1329	5/20/94	32.0	-9.0000	-9.00	-9.00	-9.00	-9
30004.0 M.L. YACHT HARBOR REP2 1363 6/15/94 33.0 -9.000 -9.00	30032.0	CARPINETRIA MARSH-3	1330	5/20/94	32.0	-9.0000	-9.00	-9.00	' - 9.00	-9
30004.0 M.L. YACHT HARBOR REP3 1364 6/15/94 33.0 -9.000 -9.00	30004.0	M.L. YACHT HARBOR REP1	1362	6/15/94	33.0	-9.0000	-9.00	-9.00	-9 .00	-9
30007.0 SANDHOLDT BRIDGE REP1 1365 6/15/94 33.0 -9.000 -9.00 -9.00 -9.00 -9 30007.0 SANDHOLDT BRIDGE REP2 1366 6/15/94 33.0 -9.000 -9.00 -9.00 -9.00 -9 30007.0 SANDHOLDT BRIDGE REP2 1366 6/15/94 33.0 -9.000 -9.00	30004.0	M.L. YACHT HARBOR REP2	1363	6/15/94	33.0	-9.0000	-9.00	-9.00	-9.00	-9
30007.0 SANDHOLDT BRIDGE REP2 1366 6/15/94 33.0 -9.0000 -9.00	30004.0	M.L. YACHT HARBOR REP3	1364	6/15/94	33.0	-9.0000	-9.00	-9.00	-9.00	-9
30007.0 SANDHOLDT BRIDGE REP3 1367 6/15/94 33.0 -9.0000 -9.00 -9	30007.0	SANDHOLDT BRIDGE REPI	1365	6/15/94	33.0	-9.0000	-9.00	-9.00	-9.00	-9
	30007.0	SANDHOLDT BRIDGE REP2	1366	6/15/94	33.0	-9.0000	-9.00	-9.00	-9.00	-9
	30007.0	SANDHOLDT BRIDGE REP3	1367	6/15/94	33.0	-9.0000	-9.00	-9.00	-9.00	-9
30023.0 BENNETT SL/ESTUARY REP1 1368 6/16/94 33.0 -9.000 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00	30023.0	BENNETT SL./ESTUARY REPI	1368	6/16/94	33.0	-9.0000	-9.00	-9.00	-9.00	-9
30023.0 BENNETT SL./ESTUARY REP2 1369 6/16/94 33.0 -9.0000 -9.00 -9.00 -9.00 -9.00 -9.00	30023.0	BENNETT SL./ESTUARY REP2	1369	6/16/94	33.0	-9.0000	-9.00	-9.00	-9.00	-9
30023.0 BENNETT SL./ESTUARY REP3 1370 6/16/94 33.0 -9.0000 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00	30023.0	BENNETT SL./ESTUARY REP3	1370	6/16/94	33.0	-9.0000	-9.00	-9.00	-9.00	
31001.0 EGRET LANDING REP1 1371 6/15/94 33.0 -9.0000 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00	31001.0	EGRET LANDING REP1	1371	6/15/94	33.0	-9.0000	-9.00	-9.00	-9.00	-9
31001.0 EGRET LANDING REP2 1372 6/15/94 33.0 -9.0000 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00	31001.0	EGRET LANDING REP2	1372	6/15/94	33.0	-9.0000	-9.00	-9.00	-9 .00	-9
31001.0 EGRET LANDING REP3 1373 6/15/94 33.0 -9.0000 -9.00 -9.00 -9.00 -9.00 -9.00	31001.0	EGRET LANDING REP3	1373	6/15/94	33.0	-9.0000	-9.00	-9.00	-9.00	-9
31002.0 HIGHWAY 1 BRIDGE REP1 1374 6/15/94 33.0 -9.0000 -9.00 -9	31002.0	HIGHWAY 1 BRIDGE REPI	1374	6/15/94	33.0	-9.0000	-9.00	-9.00	-9.00	-9

TRACE METAL ANALYSIS OF SEDIMENTS (dry weight-ppm-ug/g)

Page 8 of 9

STANUM	STATION	IDORG	DATE	LEG	ZINC	ASBATCH	SEBATCH	TMBATCH	TMDATAQC
31002.0	HIGHWAY 1 BRIDGE REP2	1375	6/15/94	33.0	-9.0000	-9.00	-9.00	-9.00	-9
31002.0	HIGHWAY 1 BRIDGE REP3	1376	6/15/94	33.0	-9.0000	-9.00	-9.00	-9.00	-9
31003.0	ANDREWS POND REP1	1377	6/16/94	33.0	-9.0000	-9.00	-9.00	-9.00	-9
31003.0	ANDREWS POND REP2	1378	6/16/94	33.0	-9.0000	-9.00	-9.00	-9.00	-9
31003.0	ANDREWS POND REP3	1379	6/16/94	33.0	-9.0000	-9.00	-9.00	-9.00	-9
30001.0	SANTA CRUZ YACHT BASIN	1588	5/9/96	43.0	-9.0000	-9.00	-9.00	17.30	-4
35001.0	SANTA CRUZ YACHT BASIN-A3	1589	5/9/96	43.0	-9.0000	-9.00	-9.00	İ7.30	· -4
35002.0	SANTA CRUZ YACHT BASIN-A9	1590	5/9/96	43.0	-9.0000	-9.00	-9.00	17.30	-4
35003.0	MONTEREY BOATYARD-LEAD I	1591	5/9/96	43.0	-9.0000	-9.00	-9.00	17.30	-4
35004.0	MONTEREY BOATYARD-LEAD 2	1592	5/9/96	43.0	-9 .0000	-9.00	-9.00	17.30	-4
35005.0	MONTEREY BOATYARD-LEAD 3	1593	5/9/96	43.0	-9.0000	-9.00	-9.00	17.30	-4
35006.0	MONTEREY BOATYARD-LEAD 4	1594	5/9/96	43.0	-9.0000	-9.00	-9.00	17.30	-4
30002.0	MONTEREY YACHT CLUB	1596	5/9/96	43.0	-9.0000	-9.00	-9.00	-9.00	-9
30007.0	SANDHOLDT BRIDGE	1597	5/9/96	43.0	-9.0000	-9.00	-9.00	-9.00	-9
30007.0	SANDHOLDT BRIDGE	1762	5/8/97	52.0	-9.0000	-9.00	-9.00	-9.00	-9
36002.0	TEMBLADERO MOUTH	1763	5/8/97	52.0	-9.0000	-9.00	-9.00	-9.00	-9
36003.0	CENTRAL TEMBLADERO	1764	5/8/97	52.0	-9.0000	-9.00	-9.00	-9.00	-9
36004.0	UPPER TEMBLADERO-SALINAS CITY	1765	5/8/97	52.0	-9.0000	-9.00	-9.00	-9.00	-9
36005.0	ESPINOSA SLOUGH	1766	5/8/97	52.0	-9.0000	-9.00	-9.00	-9.00	-9
36006.0	ALISAL SLOUGH	1767	5/8/97	52.0	-9.0000	-9.00	-9.00	-9.00	-9
36007.0	OLD SALINAS RIVER CHANNEL	1768	5/8/97	52.0	-9.0000	-9.00	-9.00	-9.00	-9

TRACE METAL ANALYSIS OF SEDIMENTS (dry weight-ppm-ug/g)

Page 9 of 9

SECTION II

Trace Metal Analysis of Pore Water

.

*

 \sim

STANUM	STATION	IDORG	DATE	LEG	PWAL	PWCD	PWCU	PWFE	PWPB	PWMN	PWNI	PWAG	PWZN	PWDATAQC
30034.1	MONTEREY BAY REFERENCE	100	8/5/92	1.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30034.2	MONTEREY BAY REFERENCE	101	8/5/92	1.0		-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30034.3	MONTEREY BAY REFERENCE	102	8/5/92	1.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30035.1	ELKHORN SLOUGH-SEAL POINT	130	9/4/92	3.0	140	0.079	1.30	1300	0.28	330	2.00	-8.0000	8.9	-4 `
30035.2	ELKHORN SLOUGH-SEAL POINT	131	9/4/92	3.0	1300	0.180	1.10	8000	0.59	270	7.20	-8.0000	32.0	-4
30035.3	ELKHORN SLOUGH-SEAL POINT	132	9/4/92	3.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30036.1	ELKHORN SLOUGH-SEAL BEND	- 133	9/11/92	4.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30036.2	ELKHORN SLOUGH-SEAL BEND	134	9/11/92	4.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30036.3	ELKHORN SLOUGH-SEAL BEND	135	9/11/92	4.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
31001.0	EGRET LANDING- REF	251	10/9/92	5.0	· -9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
31002.0	HIGHWAY 1 BRIDGE- REF	254	10/23/92	6.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
31003.0	ANDREWS POND- REF	258	11/8/92	7.0	-9	-9.000	-9.00	-9	-9.00	-9	-9 .00	-9.0000	-9.0	-9
31002.0	HWY. 1 BRIDGE- REF	351	11/27/92	8.0	· -9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
31003.0	ANDREW'S POND REF.	451	12/8/92	9.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30001.0	SANTA CRUZ YACHT BASIN	501	12/21/92	10.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30002.0	MONTEREY YACHT CLUB	502	12/21/92	10.0	-9	-9.000	-9.00	-9	-9.00	-9	-9 .00	-9.0000	-9.0	-9
30004.0	M.L. YACHT HARBOR	504	12/21/92	10.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30005.0	M.L. SOUTH HARBOR	505	12/21/92	10.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30006.0	PAJARO RIVER ESTUARY	506	12/21/92	10.0	-9	-9.000	-9.00	-9	~9.00	-9	-9.00	-9.0000	-9.0	-9
30007.0	SANDHOLDT BRIDGE	507	12/21/92	10.0	-9	-9.000	-9 .00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30011.0	SALINAS RIVER LAGOON	511	12/21/92	10.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30012.0	MONTEREY BOATY ARD	512	12/21/92	10.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30013.0	MONTEREY STORMDRAIN NO.2	513	12/21/92	10.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30014.0	MONTEREY STORMDRAIN NO. 3	514	12/21/92	10.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30019.0	MORO COJO SLOUGH	519	12/22/92	10.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30022.0	SOQUEL LAGOON	522	12/21/92	10.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30023.0	BENNETT SL/ESTUARY	523	12/22/92	10.0	-9	-9.000	-9 .00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30026.0	SCOTT CREEK #26B	526	12/18/92	10.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30027.0	MONTEREY BAY REF. SOUTH	527	12/21/92	10.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30028.0	ELKHORN SL. PORTRERO REF.	528	12/18/92	10.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
31002.0	HWY I BRIDGE REF.	675	1/14/93	11.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30003.0	SANTA BARBARA HARBOR	503	2/10/93	13.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30008.0	SAN LUIS HARBOR TRANS	508	2/9/93	13.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9

TRACE METAL ANALYSIS OF PORE WATER (dry weight-ppm-ug/g)

.

Page 1 of 3

TRACE METAL ANALYSIS OF PORE WATER (dry weight-ppm-ug/g)

STANUM	STATION	IDORG	DATE	LEG	PWAL	PWCD	PWCU	PWFE	PWPB	PWMN	ÞWNI	PWAG	PWZN	PWDATAQC
30009.0	GOLETA SL.	509	2/10/93	13.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30010.0	CARPINTERIA MARSH-1	510	2/10/93	13.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30020.0	SANTA MARIA RIVER ESTUARY	520	2/9/93	13.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30021.0	SANTA YNEZ RIVER ESTUARY	521	2/11/93	13.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30024.0	MORRO BAY	524	2/9/93	13.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30025.0	MORRO BAY-SOUTH BAY	525	2/9/93	13.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30029.0	MORRO BAY-MID BAY	530	2/9/93	13.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30030.0	CANADA DE LA GAVIOTA (26d)	531	2/11/93	13.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30031.0	CARPINTERIA MARSH-2	532	2/10/93	13.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9 .0000	-9.0	-9
30032.0	CARPINETRIA MARSH-3	533	2/10/93	13.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30033.0	MORRO BAY-FUEL DOCK	534	2/9/93	13.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
31002.0	HIGHWAY 1 BRIDGE REF	352	2/23/93	14.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30027.0	MONTEREY BAY REF. SOUTH	1323	5/16/94	32.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30013.0	MONTEREY STORMDRAIN NO.2	1324	5/16/94	32.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.000 0	-9.0	-9
30028.0	ELKHORN SL. PORTRERO REF.	1325	5/17/94	32.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30019.0	MORO COJO SLOUGH	1326	5/17/94	32.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
31002.0	HIGHWAY I BRIDGE REF	1327	5/17/94	32.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30008.0	SAN LUIS HARBOR TRANS	1328	5/20/94	32.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30029.0	MORRO BAY-MID BAY	1329	5/20/94	32.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30032.0	CARPINETRIA MARSH-3	1330	5/20/94	32.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30004.0	M.L. YACHT HARBOR REPI	1362	6/15/94	33.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	•9.0000	-9.0	-9
30004.0	M.L. YACHT HARBOR REP2	1363	6/15/94	33.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30004.0	M.L. YACHT HARBOR REP3	1364	6/15/94	33.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30007.0	SANDHOLDT BRIDGE REPI	1365	6/15/94	33.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30007.0	SANDHOLDT BRIDGE REP2	1366	6/15/94	33.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30007.0	SANDHOLDT BRIDGE REP3	1367	6/15/94	33.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30023.0	BENNETT SL./ESTUARY REP1	1368	6/16/94	33.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30023.0	BENNETT SL./ESTUARY REP2	1369	6/16/94	33.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30023.0	BENNETT SL./ESTUARY REP3	1370	6/16/94	33.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
31001.0	EGRET LANDING REPI	1371	6/15/94	33.0	-9	-9.000	- 9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
31001.0	EGRET LANDING REP2	1372	6/15/94	33.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
31001.0	EGRET LANDING REP3	1373	6/15/94	33.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
31002.0	HIGHWAY 1 BRIDGE REP1	1374	6/15/94	33.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9

STANUM	STATION	IDORG	DATE	LEG	PWAL	PWCD	PWCU	PWFE	PWPB	PWMN	PWNI	PWAG	PWZN	PWDATAQC
31002.0	HIGHWAY 1 BRIDGE REP2	1375	6/15/94	33.0	9۔	-9.000	-9.00	-9	-9.00	-9	-9.00	-9,0000	-9.0	-9
31002.0	HIGHWAY 1 BRIDGE REP3	1376	6/15/94	33.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
31003.0	ANDREWS POND REPI	1377	6/16/94	33.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
31003.0	ANDREWS POND REP2	1378	6/16/94	33.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	. -9
31003.0	ANDREWS POND REP3	1379	6/16/94	33.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30001.0	SANTA CRUZ YACHT BASIN	1588	5/9/96	43.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
35001.0	SANTA CRUZ YACHT BASIN-A3	1589	5/9/96	43.0	9۔	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
35002.0	SANTA CRUZ YACHT BASIN-A9	1590	5/9/96	43.0	9۔	-9 .000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
35003.0	MONTEREY BOATYARD-LEAD 1	1591	5/9/96	43.0	-9	-9.000	-9 .00	-9	-9.00	-9	-9.00	-9 .0000	-9.0	-9
35004.0	MONTEREY BOAT YARD-LEAD 2	1592	5/9/96	43.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
35005.0	MONTEREY BOAT YARD-LEAD 3	1593	5/9/96	43.0	-9	-9.000	-9.00	-9	-9.00	-9	-9 .00	-9.0000	-9.0	-9
35006.0	MONTEREY BOAT YARD-LEAD 4	1594	5/9/96	43.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30002.0	MONTEREY YACHT CLUB	1596	5/9/96	43.0	-9	-9.000	-9.00	-9 ·	-9.00	-9	-9.00	-9.0000	-9.0	-9
30007.0	SANDHOLDT BRIDGE	1597	5/9/96	43.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
30007.0	SANDHOLDT BRIDGE	1762	5/8/97	52.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
36002.0	TEMBLADERO MOUTH	1763	5/8/97	52.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
36003.0	CENTRAL TEMBLADERO	1764	5/8/97	52.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
36004.0	UPPER TEMBLADERO-SALINAS CITY	1765	5/8/97	52.0	9-	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
36005.0	ESPINOSA SLOUGH	1766	5/8/97	52.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
36006.0	ALISAL SLOUGH	1767	5/8/97	52.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9
. 36007.0	OLD SALINAS RIVER CHANNEL	1768	5/8/97	52.0	-9	-9.000	-9.00	-9	-9.00	-9	-9.00	-9.0000	-9.0	-9

TRACE METAL ANALYSIS OF PORE WATER (dry weight-ppm-ug/g)

SECTION III

AVS/SEM

STANUM	STATION	IDORG	DATE	LEG	AVS	SEM_CD	SEM_CU	SEM_NI	SEM_PB	SEM_ZN	SEM_SUM	SEM_AVS	AVS_BATCH	AVSDATAQC
30034.1	MONTEREY BAY REFERENCE	100	8/5/92	1.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30034.2	MONTEREY BAY REFERENCE	101	8/5/92	1.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30034.3	MONTEREY BAY REFERENCE	102	8/5/92	1.0	-9.0000	-9.00000	-9 .0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30035.1	ELKHORN SLOUGH-SEAL POINT	130	9/4/92	3.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30035.2	ELKHORN SLOUGH-SEAL POINT	131	9/4/92	3.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30035.3	ELKHORN SLOUGH-SEAL POINT	· 132	9/4/92	3.0	-9.0000	-9.00000	-9.0000	-9 .0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30036.1	ELKHORN SLOUGH-SEAL BEND	133	9/11/92	4.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30036.2	ELKHORN SLOUGH-SEAL BEND	134	9/11/92	4.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30036.3	ELKHORN SLOUGH-SEAL BEND	135	9/11/92	4.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
31001.0	EGRET LANDING- REF	251	10/9/92	5.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
31002.0	HIGHWAY 1 BRIDGE- REF	254	10/23/92	6.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
31003.0	ANDREWS POND- REF	258	11/8/92	7.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
31002.0	HWY. 1 BRIDGE- REF	351	11/27/92	8.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
31003.0	ANDREW'S POND REF.	451	12/8/92	9.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30001.0	SANTA CRUZ YACHT BASIN	501	12/21/92	10.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30002.0	MONTEREY YACHT CLUB	502	12/21/92	10.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30004.0	M.L. YACHT HARBOR	504	12/21/92	10.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30005.0	M.L. SOUTH HARBOR	505	12/21/92	10.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30006.0	PAJARO RIVER ESTUARY	506	12/21/92	10.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	· -9
30007.0	SANDHOLDT BRIDGE	507	12/21/92	10.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	· -9
30011.0	SALINAS RIVER LAGOON	511	12/21/92	10.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30012.0	MONTEREY BOATYARD	512	12/21/92	10.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30013.0.	MONTEREY STORMDRAIN NO.2	513	12/21/92	10.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30014.0	MONTEREY STORMDRAIN NO. 3	514	12/21/92	10.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30019.0	MORO COJO SLOUGH	519	12/22/92	10.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30022.0	SOQUEL LAGOON	522	12/21/92	10.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30023.0	BENNETT SL./ESTUARY	523	12/22/92	10.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30026.0	SCOTT CREEK #26B	526	12/18/92	10.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30027.0	MONTEREY BAY REF. SOUTH	527	12/21/92	10.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30028.0	ELKHORN SL. PORTRERO REF.	528	12/18/92	10.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
31002.0	HWY 1 BRIDGE REF.	675	1/14/93	11.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30003.0	SANTA BARBARA HARBOR	503	2/10/93	13.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30008.0	SAN LUIS HARBOR TRANS	508	2/9/93	13.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9

AVS/SEM ANALYSIS (dry weight-umol/g)

Page 1 of 3

STANUM	STATION	IDORG	DATE	LEG	AVS	SEM_CD	SEM_CU	SEM_NI	SEM_PB	SEM_ZN	SEM_SUM	SEM_AVS	AVS_BATCH	AVSDATAQC
30009.0	GOLETA SL.	509	2/10/93	13.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30010.0	CARPINTERIA MARSH-1	510	2/10/93	13.0	-9.0000	-9.00000	-9 .0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30020.0	SANTA MARIA RIVER ESTUARY	520	2/9/93	13.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30021.0	SANTA YNEZ RIVER ESTUARY	521	2/11/93	13.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30024.0	MORRO BAY	524	2/9/93	13.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30025.0	MORRO BAY-SOUTH BAY	525	2/9/93	13.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30029.0	MORRO BAY-MID BAY	530	2/9/93	13.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30030.0	CANADA DE LA GAVIOTA (26d)	531	2/11/93	13.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30031.0	CARPINTERIA MARSH-2	532	2/10/93	13.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30032.0	CARPINETRIA MARSH-3	533	2/10/93	13.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.000 0	-9.00	-9
30033.0	MORRO BAY-FUEL DOCK	534	2/9/93	13.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
31002.0	HIGHWAY 1 BRIDGE REF	352	2/23/93	14.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.000 0	-9.00	-9
30027.0	MONTEREY BAY REF. SOUTH	1323	5/16/94	32.0	-9.0000	-9.00000	-9.0000	-9.0000	-9 .0000	-9.0000	-9.0000	-9 .0000	-9.00	-9
30013.0	MONTEREY STORMDRAIN NO.2	1324	5/16/94	32.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30028.0	ELKHORN SL. PORTRERO REF.	1325	5/17/94	32.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30019.0	MORO COJO SLOUGH	1326	5/17/94	32.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
31002.0	HIGHWAY 1 BRIDGE REF	1327	5/17/94	32.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30008.0	SAN LUIS HARBOR TRANS	1328	5/20/94	32.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00 00	-9.0000	-9.00	-9
30029.0	MORRO BAY-MID BAY	1329	5/20/94	32.0	-9.0 00 0	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30032.0	CARPINETRIA MARSH-3	1330	5/20/94	32.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30004.0	M.L. YACHT HARBOR REPI	1362	6/15/94	33.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30004.0	M.L. YACHT HARBOR REP2	1363	6/15/94	33.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30004.0	M.L. YACHT HARBOR REP3	1364	6/15/94	33.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30007.0	SANDHOLDT BRIDGE REPI	1365	6/15/94	33.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30007.0	SANDHOLDT BRIDGE REP2	1366	6/15/94	33.0	-9.0000	-9.00000	-9 .0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30007.0	SANDHOLDT BRIDGE REP3	1367	6/15/94	33.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30023.0	BENNETT SL./ESTUARY REPI	1368	6/16/94	33.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30023.0	BENNETT SL./ESTUARY REP2	1369	6/16/94	33.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30023.0	BENNETT SL./ESTUARY REP3	1370	6/16/94	33.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
31001.0	EGRET LANDING REPI	1371	6/15/94	33.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
31001.0	EGRET LANDING REP2	1372	6/15/94	33.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
31001.0	EGRET LANDING REP3	1373	6/15/94	33.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
31002.0	HIGHWAY 1 BRIDGE REP1	1374	6/15/94	33.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9

AVS/SEM ANALYSIS (dry weight-umol/g)

-

t

.

Page 2 of 3

ς.

:

.

.

.

•

STANUM	STATION	IDORG	DATE	LEG	AVS	SEM_CD	SEM_CU	SEM_NI	SEM_PB	SEM_ZN	SEM_SUM	SEM_AVS	AVS_BATCH	AVSDATAQC
31002.0	HIGHWAY 1 BRIDGE REP2	1375	6/15/94	33.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
31002.0	HIGHWAY I BRIDGE REP3	1376	6/15/94	33.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
31003.0	ANDREWS POND REPI	1377	6/16/94	33.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
31003.0	ANDREWS POND REP2	1378	6/16/94	33.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
31003.0	ANDREWS POND REP3	1379	6/16/94	33.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0 000	-9.00	-9
30001.0	SANTA CRUZ YACHT BASIN	1588	5/9/96	43.0	1.6000	0.00450	1.6400	0.0870	0.1120	1.4300	3.2700	2.0450	17.00	-3
35001.0	SANTA CRUZ YACHT BASIN-A3	1589	5/9/96	43.0	18.0900	0.00690	2.0300	1.1280	0.1190	2.3900	5.6700	0.3130	17.00	-3
35002.0	SANTA CRUZ YACHT BASIN-A9	1590	5/9/96	43.0	1.7600	0.00590	2.1700	0.1860	0.1530	2.8800	5.3900	3.0630	17.00	-3
35003.0	MONTEREY BOATYARD-LEAD 1	1591	5/9/96	43.0	2.2100	0.00140	1.0800	0.0520	0.4740	1.9600	3.5600	1.6130	17.00	-3
35004.0	MONTEREY BOATYARD-LEAD 2	1592	5/9/96	43.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9 .0000	-9.00	· -9
35005.0	MONTEREY BOATYARD-LEAD 3	1593	5/9/96	43.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
35006.0	MONTEREY BOATYARD-LEAD 4	1594	5/9/96	43.0	-9.0000	-9.00000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.0000	-9.00	-9
30002.0	MONTEREY YACHT CLUB	1596	5/9/96	43.0	10.1500	0.00530	1.1700	0.0400	0.1530	2.0800	3.4500	0.3400	17.00	-3
30007.0	SANDHOLDT BRIDGE	1597	5/9/96	43.0	6.3100	0.00950	0.6600	0.3290	0.0820	2.0500	3.1300	0.4960	17.00	-3
30007.0	SANDHOLDT BRIDGE	1762	5/8/97	52.0	0.5570	0.00648	0.4370	0.3280	0.0806	1.2100	2.0600	3.7000	24.70	-4
36002.0	TEMBLADERO MOUTH	1763	5/8/97	52.0	2.3100	0.01110	0.3080	0.3810	0.0825	1.1800	1.9600	0.8510	24.70	-4
36003.0	CENTRAL TEMBLADERO	1764	5/8/97	52.0	0.0440	0.00272	0.0407	0.1070	0.0383	0.2100	0.3980	9.0500	24.70	-4
36004.0	UPPER TEMBLADERO-SALINAS CITY	1765	5/8/97	52.0	4.4600	0.01010	0.4300	0.2310	0.1680	3.2100	4.0500	0.9090	24.80	-4
36005.0	ESPINOSA SLOUGH	1766	5/8/97	52.0	4.1600	0.00845	0.3100	0.4360	0.0573	0.8050	1.6200	0.3890	24.80	-4
36006.0	ALISAL SLOUGH	1767	5/8/97	52.0	0.3420	0.04150	0.2820	0.5490	0.0450	0.9360	1.8500	5.4200	24.80	-4
36007.0	OLD SALINAS RIVER CHANNEL	1768	5/8/97	52.0	10.5000	0.01560	0.3940	0.6040	0.0787	0.5770	1.6700	0.1590	24.90	-4

AVS/SEM ANALYSIS (dry weight-umol/g)

SECTION IV

Pesticide Analysis of Sediments

					·						· · · .	
	STATION	IDORG	DATE	LEG	METADATA	SOWEIGHT	SOMOIST	ALDRIN	CCHLOR	TCHLOR	ACDEN	GCDEN
30034.1	MONTEREY BAY REFERENCE	100	8/5/92	1.0	-9	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9.000
30034.2	MONTEREY BAY REFERENCE	101	8/5/92	1.0	-9	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9.000
30034.3	MONTEREY BAY REFERENCE	102	8/5/92	1.0	-9	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9.000
30035.1	ELKHORN SLOUGH-SEAL POINT	130	9/4/92	3.0	-9	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9.000
30035.2	ELKHORN SLOUGH-SEAL POINT	131	9/4/92	3.0	-9	-9.00	-9.00	-9.000	-9 .000	-9.000	-9.000	-9.000
30035.3	ELKHORN SLOUGH-SEAL POINT	132	9/4/92	3.0	-9	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9.000
30036.1	ELKHORN SLOUGH-SEAL BEND	133	9/11/92	4.0	-9	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9.000
30036.2	ELKHORN SLOUGH-SEAL BEND	134	9/11/92	4.0	-9	-9.00	-9.00	-9.000	-9.000	-9.000	-9 .000	-9.000
30036.3	ELKHORN SLOUGH-SEAL BEND	135	9/11/92	4.0	-9	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9.000
31001.0	EGRET LANDING- REF	251	10/9/92	5.0	QA5_23.TXT	-9.00	-9.00	-8.000	-8.000	-9.000	-8.000	-9.000
31002.0	HIGHWAY 1 BRIDGE- REF	254	10/23/92	6.0	QA5_23.TXT	-9.00	-9.00	-8.000	-8.000	-9.000	-8.000	-9.000
31003.0	ANDREWS POND- REF	258	11/8/92	7.0	QA5_23.TXT	-9.00	-9.00	-8.000	-8.000	-9.000	-8.000	-9.000
31002.0	HWY. 1 BRIDGE- REF	351	11/27/92	8.0	QA5_23.TXT	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9.000
31003.0	ANDREW'S POND REF.	451	12/8/92	9.0	QA5_23.TXT	-9.00	-9.00	-8.000	-8.000	-9.000	-8.000	-9.000
30001.0	SANTA CRUZ YACHT BASIN	501	12/21/92	10.0	QA5_23.TXT	-9.00	-9.00	-8.000	0.600	-9.000	-8.000	-9.000
30002.0	MONTEREY YACHT CLUB	502	12/21/92	10.0	QA5_23.TXT	-9.00	-9.00	-8.000	-8.000	-9.000	-8.000	-9.000
30004.0	M.L. YACHT HARBOR	504	12/21/92	10.0	QA5_23.TXT	-9.00	-9.00	-8.000	-8.000	-9.000	-8.000	-9.000
30005.0	M.L. SOUTH HARBOR	505	12/21/92	10.0	QA5_23.TXŤ	-9.00	-9.00	-8.000	-8.000	-9.000	-8.000	-9.000
30006.0	PAJARO RIVER ESTUARY	506	12/21/92	10.0	QA5_23.TXT	-9.00	-9.00	-8.000	-8.000	-9.000	-8.000	-9.000
30007.0	SANDHOLDT BRIDGE	507	12/21/92	10.0	QA5_23.TXT	-9.00	-9.00	-8.000	0.900	-9.000	-8.000	-9.000
30011.0	SALINAS RIVER LAGOON	511	12/21/92	10.0	QA5_23.TXT	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9.000
30012.0	MONTEREY BOATYARD	512	12/21/92	10.0	QA5_23.TXT	9.00	-9.00	-8.000	0.800	-9.000	-8.000	-9.000
30013.0	MONTEREY STORMDRAIN NO.2	513	12/21/92	10.0	QA5_23.TXT	-9.00	-9.00	-8.000	-8.000	-9.000	-8.000	-9 .000
30014.0	MONTEREY STORMDRAIN NO. 3	514	12/21/92	10.0	QA5_23.TXT	-9.00	-9.00	-8.000	0,700	-9.000	-8.000	-9.000
30019.0	MORO COJO SLOUGH	519	12/22/92	10.0	QA5_23.TXT	-9.00	-9.00	-8.000	-8.000	-9.000	-8.000	-9.000
30022.0	SOQUEL LAGOON	522	12/21/92	10.0	QA5_23.TXT	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9.000
30023.0	BENNETT SL./ESTUARY	523	12/22/92	10.0	QA5_23.TXT	-9.00	-9.00	-8.000	1.400	-9.00 0	-8.000	-9.000
30026.0	SCOTT CREEK #26B	526	12/18/92	10.0	QA5_23.TXT	-9 :00	-9.00	-9.000	-9.000	-9.000	-9.000	-9.000
30027.0	MONTEREY BAY REF. SOUTH	527	12/21/92	10.0	QA5_23.TXT	-9.00	-9.00	-8.000	-8.000	-9.000	-8.000	-9.000
30028.0	ELKHORN SL. PORTRERO REF.	528	12/18/92	10.0	QA5_23.TXT	-9 .00	-9.00	-8.000	-8.000	-9.000	-8.000	-9.000
31002.0	HWY 1 BRIDGE REF.	675	1/14/93	11.0	QA5_23.TXT	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9.000
30003.0	SANTA BARBARA HARBOR	503	2/10/93	13.0	QA5_23.TXT	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9.000
30008.0	SAN LUIS HARBOR TRANS	508	2/9/93	13.0	QA5_23.TXT	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9.000

Page 1 of 15

STANUM	STATION	IDORG	DATE	LEG	METADATA	SOWEIGHT	SOMOIST	ALDRIN	CCHLOR	TCHLOR	ACDEN	GCDEN
30009.0	GOLETA SL.	509	2/10/93	13.0	QA5_23.TXT	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9.000
30010.0	CARPINTERIA MARSH-1	510	2/10/93	13.0	QA5_23.TXT	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9.000
30020.0	SANTA MARIA RIVER ESTUARY	520	2/9/93	13.0	QA5_23.TXT	-9.00	-9.00	-8,000	-8.000	-9.000	-8.000	-9.000
30021.0	SANTA YNEZ RIVER ESTUARY	521	2/11/93	13.0	QA5_23.TXT	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9.000
30024.0	MORRO BAY	524	2/9/93	13.0	QA5_23.TXT	-9.00	-9.00	-8.000	-8.000	-9.000	-8.000	-9.000
30025.0	MORRO BAY-SOUTH BAY	525	2/9/93	13.0	QA5_23.TXT	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9.000
30029.0	MORRO BAY-MID BAY	530	2/9/93	13.0	QA5_23.TXT	-9.00	-9.00	-8.000	-8.000	-9.000	-8.000	-9.000
30030.0	CANADA DE LA GAVIOTA (26d)	531	2/11/93	13.0	QA5_23.TXT	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9.000
30031.0	CARPINTERIA MARSH-2	532	2/10/93	13.0	QA5_23.TXT	-9.00	-9.00	-8.000	1.500	-9.000	-8.000	-9.000
30032.0	CARPINETRIA MARSH-3	533	2/10/93	13.0	QA5_23.TXT	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9.000
30033.0	MORRO BAY-FUEL DOCK	534	2/9/93	13.0	QA5_23.TXT	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9.000
31002.0	HIGHWAY 1 BRIDGE REF	352	2/23/93	14.0	QA5_23.TXT	-9.00	-9.00	-9.000	-9 .000	-9.000	-9.000	-9.000
30027.0	MONTEREY BAY REF. SOUTH	1323	5/16/94	32.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9.000
30013.0	MONTEREY STORMDRAIN NO.2	1324	5/16/94	32.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9.000
30028.0	ELKHORN SL. PORTRERO REF.	1325	5/17/94	32.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9.000
30019.0	MORO COJO SLOUGH	1326	5/17/94	32.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9.000
31002.0	HIGHWAY 1 BRIDGE REF	1327	5/17/94	32.0	chmmeta2.txt	-9.00	-9.00	-9 .000	-9.000	-9.000	-9.000	-9 .000
30008.0	SAN LUIS HARBOR TRANS	1328	5/20/94	32.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9.000
30029.0	MORRO BAY-MID BAY	1329	5/20/94	32.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9.000
30032.0	CARPINETRIA MARSH-3	1330	5/20/94	32.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9.000
30004.0	M.L. YACHT HARBOR REP1	1362	6/15/94	33.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9.000
30004.0	M.L. YACHT HARBOR REP2	1363	6/15/94	33.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9.000
30004.0	M.L. YACHT HARBOR REP3	1364	6/15/94	33.0	chmmeta2.txt	-9.00	-9.00	-9 .000	-9.000	-9.000	-9.000	-9.000
30007.0	SANDHOLDT BRIDGE REPI	1365	6/15/94	33.0	chmmeta2.txt	-9.00	-9.00	-9,000	-9.000	-9.000	-9.000	-9.000
30007.0	SANDHOLDT BRIDGE REP2	1366	6/15/94	33.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9 .000
30007.0	SANDHOLDT BRIDGE REP3	1367	6/15/94	33.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9.000
30023.0	BENNETT SL./ESTUARY REPI	1368	6/16/94	33.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9 .000
30023.0	BENNETT SL./ESTUARY REP2	1369	6/16/94	33.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9 .000	-9.000	-9.000	-9.000
30023.0	BENNETT SL./ESTUARY REP3	1370	6/16/94	33.0	chmmeta2.txt	-9.00	-9.00	-9 .000	-9.000	-9.000	-9.000	-9.000
31001.0	EGRET LANDING REPI	1371	6/15/94	33.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9.000
31001.0	EGRET LANDING REP2	1372	6/15/94	33.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9.000
31001.0	EGRET LANDING REP3	1373	6/15/94	33.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9 .000
31002.0	HIGHWAY 1 BRIDGE REP1	1374	6/15/94	33.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9.000

Page 2 of 15

.....

1

STANUM	STATION	IDORG	DATE	LEG_	METADATA	SOWEIGHT	SOMOIST	ALDRIN	CCHLOR	TCHLOR	ACDEN	GCDEN
31002.0	HIGHWAY 1 BRIDGE REP2	1375	6/15/94	33.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9.000
31002.0	HIGHWAY I BRIDGE REP3	1376	6/15/94	33.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9.000
31003.0	ANDREWS POND REP1	1377	6/16/94	33.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9.000
31003.0	ANDREWS POND REP2	1378	6/16/94	33.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9.000
31003.0	ANDREWS POND REP3	1379	6/16/94	33.0	chmmeta2.txt	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9.000
30001.0	SANTA CRUZ YACHT BASIN	1588	5/9/96	43.0	CHEM3846.TXT	11.19	42.87	-8.000	0.840	1.170	-8.000	-8.000
35001.0	SANTA CRUZ YACHT BASIN-A3	1589	5/9/96	43.0	CHEM3846.TXT	10.61	56.49	-8.000	3.200	3.390	0.600	-8.000
35002.0	SANTA CRUZ YACHT BASIN-A9	1590	5/9/96	43.0	CHEM3846.TXT	9.99	62.81	-8.000	8.240	7.730	1.170	0.910
35003.0	MONTEREY BOATYARD-LEAD 1	1591	5/9/96	43.0	CHEM3846.TXT	10.71	35.46	-8.000	0.940	1.700	-8.000	-8.000
35004.0	MONTEREY BOATY ARD-LEAD 2	1592	5/9/96	43.0	CHEM3846.TXT	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9.000
35005.0	MONTEREY BOATYARD-LEAD 3	1593	5/9/96	43.0	CHEM3846.TXT	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9.000
35006.0	MONTEREY BOATYARD-LEAD 4	1594	5/9/96	43.0	CHEM3846.TXT	-9.00	-9.00	-9.000	-9.000	-9.000	-9.000	-9.000
30002.0	MONTEREY YACHT CLUB	1596	5/9/96	43.0	CHEM3846.TXT	10.88	34.38	-8.000	-8.000	0.750	-8.000	-8.000
30007.0	SANDHOLDT BRIDGE	1597	5/9/96	43.0	CHEM3846.TXT	10.01	62.36	-8.000	2.550	3.020	-8.000	-8.000
30007.0	SANDHOLDT BRIDGE	1762	5/8/97	52.0	CHM47_56.TXT	20.68	55.56	0.366	2.340	3.300	0.165	-9.000
36002.0	TEMBLADERO MOUTH	1763	5/8/97	52.0	CHM47_56.TXT	20.53	53.43	0.517	2.230	2.700	0.128	-9.000
36003.0	CENTRAL TEMBLADERO	1764	5/8/97	52.0	CHM47_56.TXT	20.36	27.59	0.232	0.676	0.945	-8.000	-9.000
36004.0	UPPER TEMBLADERO-SALINAS CITY	1765	5/8/97	52.0	CHM47_56.TXT	19.18	49.28	1.440	7.150	7.720	1.130	-9.000
36005.0	ESPINOSA SLOUGH	1766	5/8/97	52.0	CHM47_56.TXT	19.42	44.65	1.810	1.770	2.010	-8.000	-9.000
36006.0	ALISAL SLOUGH	1767	5/8/97	52.0	CHM47_56.TXT	19.73	56.77	1.310	3.600	2.980	-8.000	· -9.000
36007.0	OLD SALINAS RIVER CHANNEL	1768	5/8/97	52.0	CHM47_56.TXT	19.86	60.53	0.667	0.721	0.965	0.129	-9.000

			``	, ,		0,,,								
STANUM	STATION	IDORG	DATE	LEG	CLPYR	DACTH	OPDDD	PPDDD	OPDDE	PPDDE	PPDDMS	PPDDMU	OPDDT	PPDDT
30034.1	MONTEREY BAY REFERENCE	100	8/5/92	1.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30034.2	MONTEREY BAY REFERENCE	101	8/5/92	1.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30034.3	MONTEREY BAY REFERENCE	102	8/5/92	1.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30035.1	ELKHORN SLOUGH-SEAL POINT	130	9/4/92	3.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30035.2	ELKHORN SLOUGH-SEAL POINT	131	9/4/92	3.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30035,3	ELKHORN SLOUGH-SEAL POINT	132	9/4/92	3.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30036.1	ELKHORN SLOUGH-SEAL BEND	133	9/11/92	4.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30036.2	ELKHORN SLOUGH-SEAL BEND	134	9/11/92	4.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9 .00
30036.3	ELKHORN SLOUGH-SEAL BEND	135	9/11/92	4.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
31001.0	EGRET LANDING- REF	251	10/9/92	5.0	-9.00	-9.000	-8.00	1.700	-8.00	2.70	-9.00	-9.00	-8.00	1.30
31002.0	HIGHWAY 1 BRIDGE- REF	254	10/23/92	6.0	-9.00	-9.000	-8.00	0.600	-8.00	1.70	-9.00	-9.00	-8.00	-8.00
31003.0	ANDREWS POND- REF	258	11/8/92	7.0	-9.00	-9.000	-8.00	1.000	-8.00	4.10	-9.00	-9.00	-8.00	-8.00
31002.0	HWY. 1 BRIDGE- REF	351	11/27/92	8.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
31003.0	ANDREW'S POND REF.	451	12/8/92	9.0	-9.00	-9.000	-8.00	1.100	-8.00	2.50	-9.00	-9.00	-8.00	-8.00
30001.0	SANTA CRUZ YACHT BASIN	501	12/21/92	10.0	-9.00	-9.000	12.00	41.500	-8.00	6.40	-9.00	-9.00	2.20	8.00
30002.0	MONTEREY YACHT CLUB	502	12/21/92	10.0	-9.00	-9.000	3.70	8.100	-8.00	10.30	-9.00	-9.00	1.20	1.10
30004.0	M.L. YACHT HARBOR	504	12/21/92	10.0	-9.00	-9.000	2.00	5.400	-8.00	15.30	-9.00	-9.00	-8.00	2.10
30005.0	M.L. SOUTH HARBOR	505	12/21/92	10.0	-9.00	-9.000	-8.00	4.000	-8.00	5.60	-9.00	-9.00	-8.00	1.30
30006.0	PAJARO RIVER ESTUARY	506	12/21/92	10.0	-9.00	-9.000	-8.00	2.000	-8.00	5.80	-9.00	-9.00	-8.00	1.20
30007.0	SANDHOLDT BRIDGE	507	12/21/92	10.0	-9.00	-9.000	10.90	31.100	2.20	102.00	-9.00	-9.00	3.10	16.50
30011.0	SALINAS RIVER LAGOON	511	12/21/92	10.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30012.0	MONTEREY BOATYARD	512	12/21/92	10.0	-9.00	-9.000	1.20	5.400	-8.00	7.40	-9.00	-9.00	-8.00	1.80
30013.0	MONTEREY STORMDRAIN NO.2	513	12/21/92	10.0	-9.00	-9.000	1.30	2.500	-8.00	2.50	-9.00	-9.00	-8.00	-8.00
30014.0	MONTEREY STORMDRAIN NO. 3	514	12/21/92	10.0	-9.00	-9.000	2.50	8.500	-8.00	9.80	-9.00	-9.00	2.20	20.00
30019.0	MORO COJO SLOUGH	519	12/22/92	10.0	-9.00	-9.000	1.60	3.900	-8.00	10.30	-9.00	-9.00	-8.00	5.90
30022.0	SOQUEL LAGOON	522	12/21/92	10.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9 .00	-9.00	-9.00	-9.00
30023.0	BENNETT SL./ESTUARY	523	12/22/92	10.0	-9.00	-9.000	2.60	5.700	-8.00	32.70	-9.00	-9.00	-8.00	5.50
30026.0	SCOTT CREEK #26B	526	12/18/92	10.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30027.0	MONTEREY BAY REF. SOUTH	527	12/21/92	10.0	-9.00	-9.000	-8.00	-8.000	-8.00	-8.00	-9.00	-9.00	-8.00	-8.00
30028.0	ELKHORN SL. PORTRERO REF.	528	12/18/92	10.0	-9.00	-9.000	4.40	13.300	-8.00	30.50	-9.00	-9.00	2.70	9.00
31002.0	HWY 1 BRIDGE REF.	675	1/14/93	11.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30003.0	SANTA BARBARA HARBOR	503	2/10/93	13.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30008.0	SAN LUIS HARBOR TRANS	508	2/9/93	13.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00

Page 4 of 15

٩

ı.

PESTICIDE ANALYSIS OF SEDIMENTS (dry weight-ppb-ng/g); TBT ANALYSIS OF SEDIMENTS	S (dry weight-ppm-ug/g)

STANUM	STATION	IDORG	DATE	LEG	CLPYR	DACTH	OPDDD	PPDDD	OPDDE	PPDDE	PPDDMS	PPDDMU	OPDDT	PPDDT
30009.0	GOLETA SL.	509	2/10/93	13.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30010.0	CARPINTERIA MARSH-1	510	2/10/93	13.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30020.0	SANTA MARIA RIVER ESTUARY	520	2/9/93	13.0	-9.00	-9.000	19.00	60.100	5.40	222.00	-9.00	-9.00	61.00	312.00
30021.0	SANTA YNEZ RIVER ESTUARY	521	2/11/93	13.0	-9.00	-9.000	-9.00	-9.000	-9 .00	-9.00	-9.00	-9.00	-9.00	-9.00
30024.0	MORRO BAY	524	2/9/93	13.0	-9.00	-9.000	-8.00	0.600	-8.00	3.20	-9.00	-9.00	-8.00	-8.00
30025.0	MORRO BAY-SOUTH BAY	525	2/9/93	13.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30029.0	MORRO BAY-MID BAY	530	2/9/93	13.0	-9.00	-9.000	-8.00	-8.000	-8.00	1. 70	-9.00	-9.00	-8.00	-8.00
30030.0	CANADA DE LA GAVIOTA (26d)	531	2/11/93	13.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30031.0	CARPINTERIA MARSH-2	532	2/10/93	13.0	-9.00	-9.000	1.10	2.400	-8.00	6.90	-9.00	-9.00	-8.00	2.60
30032.0	CARPINETRIA MARSH-3	533	2/10/93	13.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30033.0	MORRO BAY-FUEL DOCK	534	2/9/93	13.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
31002.0	HIGHWAY 1 BRIDGE REF	352	2/23/93	14.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30027.0	MONTEREY BAY REF. SOUTH	1323	5/16/94	32.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30013.0	MONTEREY STORMDRAIN NO.2	1324	5/16/94	32.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	- 9.00
30028.0	ELKHORN SL. PORTRERO REF.	1325	5/17/94	32.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	- 9.00
30019.0	MORO COJO SLOUGH	1326	5/17/94	32.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
31002.0	HIGHWAY 1 BRIDGE REF	1327	5/17/94	32.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30008.0	SAN LUIS HARBOR TRANS	1328	5/20/94	32.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30029.0	MORRO BAY-MID BAY	1329	5/20/94	32:0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30032.0	CARPINETRIA MARSH-3	1330	5/20/94	32.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30004.0	M.L. YACHT HARBOR REP1	1362	6/15/94	33.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30004.0	M.L. YACHT HARBOR REP2	1363	6/15/94	33.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30004.0	M.L. YACHT HARBOR REP3	1364	6/15/94	33.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30007.0	SANDHOLDT BRIDGE REP1	1365	6/15/94	33.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30007.0	SANDHOLDT BRIDGE REP2	1366	6/15/94	33.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30007.0	SANDHOLDT BRIDGE REP3	1367	6/15/94	33.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30023.0	BENNETT SL./ESTUARY REP1	1368	6/16/94	33.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30023.0	BENNETT SL./ESTUARY REP2	1369	6/16/94	33.0	-9.00	-9 .000	-9.00	-9.000	-9.00	-9 .00	-9.00	-9.00	-9.00	-9.00
30023.0	BENNETT SL./ESTUARY REP3	1370	6/16/94	33.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
31001.0	EGRET LANDING REP1	1371	6/15/94	33.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
31001.0	EGRET LANDING REP2	1372	6/15/94	33.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
31001.0	EGRET LANDING REP3	1373	6/15/94	33.0	-9.00	-9.000	-9.00	-9.000	-9 .00	-9.00	-9.00	-9.00	-9.00	-9.00
31002.0	HIGHWAY 1 BRIDGE REP1	1374	6/15/94	33.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00

STANUM	STATION	IDORG	DATE	LEG	CLPYR	DACTH	OPDDD	PPDDD	OPDDE	PPDDE	PPDDMS	PPDDMU	OPDDT	PPDDT
31002.0	HIGHWAY 1 BRIDGE REP2	1375	6/15/94	33.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
31002.0	HIGHWAY 1 BRIDGE REP3	1376	6/15/94	33.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
31003.0	ANDREWS POND REP1	1377	6/16/94	33.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
31003.0	ANDREWS POND REP2	1378	6/16/94	33.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
31003.0	ANDREWS POND REP3	1379	6/16/94	33.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30001.0	SANTA CRUZ YACHT BASIN	1588	5/9/96	43.0	-8.00	-8.000	1.53	2.980	-8.00	2.92	-8.00	-8.00	-8.00	1.00
35001.0	SANTA CRUZ YACHT BASIN-A3	1589	5/9/96	43.0	-8.00	-8.000	2.11	4.760	-8.00	7.33	-8.00	2.30	-8.00	3.02
35002.0	SANTA CRUZ YACHT BASIN-A9	1590	5/9/96	43.0	2.24	0.510	-8.00	3.700	-8.00	5.59	-8.00	4.09	1.08	5.80
35003.0	MONTEREY BOATYARD-LEAD 1	1591	5/9/96	43.0	-8.00	-8.000	3.83	8.650	-8.00	7.33	-8.00	2.50	-8.00	2.22
35004.0	MONTEREY BOATYARD-LEAD 2	1592	5/9/96	43.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
35005.0	MONTEREY BOATYARD-LEAD 3	1593	5/9/96	43.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9 .00
35006.0	MONTEREY BOATYARD-LEAD 4	1594	5/9/96	43.0	-9.00	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30002.0	MONTEREY YACHT CLUB	1596	5/9/96	43.0	-8.00	-8.000	3.29	3.090	-8.00	4.43	-8.00	-8.00	-8.00	2.52
30007.0	SANDHOLDT BRIDGE	1597	5/9/96	43.0	6.31	6.070	13.70	49.700	3.20	137.00	-8.00	4.19	7.00	27.80
30007.0	SANDHOLDT BRIDGE	1762	5/8/97	52.0	3.29	2.860	7.12	24.300	2.86	64.60	-9.00	4.76	3.74	40.40
36002.0	TEMBLADERO MOUTH	1763	5/8/97	52.0	5.95	3.350	11.90	35.200	3.15	68.50	-9.00	11.40	2.76	38.40
36003.0	CENTRAL TEMBLADERO	1764	5/8/97	52.0	1.68	3.710	3.40	8.820	0.83	13.70	-9.00	1.63	1.21	10.70
36004.0	UPPER TEMBLADERO-SALINAS CITY	1765	5/8/97	52.0	17.70	25.200	32.80	90.900	8.34	292.00	-9.00	20.90	25.60	201.00
36005.0	, ESPINOSA SLOUGH	1766	5/8/97	52.0	2.70	1.940	12.60	29.700	3.96	83.00	-9.00	7.16	5.12	24.30
36006.0	ALISAL SLOUGH	1767	5/8/97	52.0	16.40	7.510	14.80	46.500	3.27	79.30	-9.00	12.90	13.70	36.20
36007.0	OLD SALINAS RIVER CHANNEL	1768	5/8/97	52.0	0.95	1.710	20.30	80.400	5.73	188.00	-9.00	Ì7.00	7.34	80.40

I

4

PESTICIDE ANALYSIS OF SEDIMENTS (dry weight-ppb-ng/g); TBT ANALYSIS OF SEDIMENTS		
P = P =	dry woight nnr	n_11a/a \
I ED HOUDE ANAL I DID OF DEDINIEN ID THEY WEIENPOOREZE. ID I ANAL I DID OF DEDINIEN ID I	UIV WCIEIII-DDI	11-02/21
	·	

.

1

,

											/			
STANUM	STATION	IDORG	DATE	LEG	DICLB	DIELDRIN	ENDO_I	ENDO_II	ESO4	ENDRIN	ETHION	HCHA	нснв	HCHG
30034.1	MONTEREY BAY REFERENCE	100	8/5/92	1.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
30034.2	MONTEREY BAY REFERENCE	101	8/5/92	1.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
30034.3	MONTEREY BAY REFERENCE	102	8/5/92	1.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
30035.1	ELKHORN SLOUGH-SEAL POINT	130	9/4/92	3.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
30035.2	ELKHORN SLOUGH-SEAL POINT	131	9/4/92	3.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
30035.3	ELKHORN SLOUGH-SEAL POINT	132	9/4/92	3.0	-9.00	-9.000	-9 .000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
30036.1	ELKHORN SLOUGH-SEAL BEND	133	9/11/92	4.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
30036.2	ELKHORN SLOUGH-SEAL BEND	134	9/11/92	4.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
30036.3	ELKHORN SLOUGH-SEAL BEND	135	9/11/92	4.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
31001.0	EGRET LANDING- REF	251	10/9/92	5.0	-9.00	-8.000	-8.000	-8.00	-8.00	-8.00	-9.00	-9.000	-9.00	-8.000
31002.0	HIGHWAY 1 BRIDGE- REF	254	10/23/92	6.0	-9.00	-8.000	-8.000	-8.00	-8.00	-8.00	-9.00	-9.000	-9.00	-8.000
31003.0	ANDREWS POND- REF	258	11/8/92	7.0	-9.00	-8.000	-8.000	-8.00	-8.00	-8.00	-9.00	-9.000	-9.00	-8.000
31002.0	HWY. 1 BRIDGE- REF	351	11/27/92	8.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
31003.0	ANDREW'S POND REF.	451	12/8/92	9.0	-9.00	1.000	-8.000	-8.00	-8.00	-8.00	-9.00	-9.000	-9 .00	-8.000
30001.0	SANTA CRUZ YACHT BASIN	501	12/21/92	10.0	-9.00	-8.000	-8.000	-8.00	-8.00	-8.00	-9.00	-9.000	-9.00	-8.000
30002.0	MONTEREY YACHT CLUB	502	12/21/92	10.0	-9.00	-8.000	-8.000	-8.00	-8.00	-8.00	-9.00	-9.000	-9.00	-8.000
30004.0	M.L. YACHT HARBOR	504	12/21/92	10.0	-9.00	2.000	-8.000	-8.00	-8.00	-8.00	-9.00	-9.000	-9.00	-8.000
30005.0	M.L. SOUTH HARBOR	505	12/21/92	10.0	-9.00	-8.000	-8.000	-8.00	-8.00	-8.00	-9.00	-9.000	-9.00	-8.000
30006.0	PAJARO RIVER ESTUARY	506	12/21/92	10.0	-9.00	0.800	-8.000	-8.00	-8.00	-8.00	-9.0 0	-9.000	-9.00	-8.000
30007.0	SANDHOLDT BRIDGE	507	12/21/92	10.0	-9.00	6.200	0.900	4.50	7.90	-8.00	-9.00	-9.000	-9.00	-8.000
30011.0	SALINAS RIVER LAGOON	511	12/21/92	10.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
30012.0	MONTEREY BOATYARD	512	12/21/92	10.0	-9.00	-8.000	-8.000	-8.00	-8.00	-8.00	-9.00	-9.000	-9.00	-8.000
30013.0	MONTEREY STORMDRAIN NO.2	513	12/21/92	10.0	-9.00	-8.000	-8.000	-8.00	-8.00	-8.00	-9.00	-9.000	-9.00	-8.000
30014.0	MONTEREY STORMDRAIN NO. 3	514	12/21/92	10.0	-9.00	-8.000	-8.000	-8.00	-8.00	-8.00	-9.00	-9.000	-9.00	-8.000
30019.0	MORO COJO SLOUGH	519	12/22/92	10.0	-9.00	1.100	-8.000	-8.00	-8.00	-8.00	-9.00	-9.000	-9.00	-8.000
30022.0	SOQUEL LAGOON	522	12/21/92	10.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
30023.0	BENNETT SL./ESTUARY	523	12/22/92	10.0	-9.00	7.700	-8.000	-8.00	-8.00	-8.00	-9.00	-9.000	-9.00	-8.000
30026.0	SCOTT CREEK #26B	526	12/18/92	10.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
30027.0	MONTEREY BAY REF. SOUTH	527	12/21/92	10.0	-9.00	-8.000	-8.000	-8.00	-8.00	-8.00	-9.00	-9.000	-9.00	-8.000
30028.0	ELKHORN SL. PORTRERO REF.	528 -	12/18/92	10.0	-9.00	3.800	-8.000	1.10	2.80	-8.00	-9.00	-9.000	-9.00	-8.000
31002.0	HWY 1 BRIDGE REF.	675	1/14/93	11.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	- 9.00	-9.000	-9.00	-9.000
30003.0	SANTA BARBARA HARBOR	503	2/10/93	13.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
30008.0	SAN LUIS HARBOR TRANS	508	2/9/93	13.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000

STANUM	STATION	IDORG	DATE	LEG	DICLB	DIELDRIN	ENDO_I	ENDO_II	ESO4	ENDRIN	ETHION	нсна	нснв	HCHG
30009.0	GOLETA SL.	509	2/10/93	13.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
30010.0	CARPINTERIA MARSH-1	510	2/10/93	13.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
30020.0	SANTA MARIA RIVER ESTUARY	520	2/9/93	13.0	-9.00	10.000	-8.000	7.60	16.30	16.40	-9.00	-9.000	-9.00	0.300
30021.0	SANTA YNEZ RIVER ESTUARY	521	2/11/93	13.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
30024.0	MORRO BAY	524	2/9/93	13.0	-9.00	-8.000	-8.000	-8.00	-8.00	-8.00	-9.00	-9.000	-9.00	-8.000
30025.0	MORRO BAY-SOUTH BAY	525	2/9/93	13.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
30029.0	MORRO BAY-MID BAY	530	2/9/93	13.0	-9.00	-8.000	-8.000	-8.00	-8.00	-8.00	-9.00	-9.000	-9.00	-8.000
30030.0	CANADA DE LA GAVIOTA (26d)	531	2/11/93	13.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
30031.0	CARPINTERIA MARSH-2	532	2/10/93	13.0	-9.00	0.600	-8.000	-8.00	-8.00	-8.00	-9.00	-9.000	-9.00	-8.000
30032.0	CARPINETRIA MARSH-3	533	2/10/93	13.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
30033.0	MORRO BAY-FUEL DOCK	534	2/9/93	13.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
31002.0	HIGHWAY 1 BRIDGE REF	352	2/23/93	14.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
30027.0	MONTEREY BAY REF. SOUTH	1323	5/16/94	32.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
30013.0	MONTEREY STORMDRAIN NO.2	1324	5/16/94	32.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
30028.0	ELKHORN SL. PORTRERO REF.	1325	5/17/94	32.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
- 30019.0	MORO COJO SLOUGH	1326	5/17/94	32.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
31002.0	HIGHWAY I BRIDGE REF	1327	5/17/94	32.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9 .00	-9.000	-9.00	-9.000
30008.0	SAN LUIS HARBOR TRANS	1328	5/20/94	32.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
30029.0	MORRO BAY-MID BAY	1329	5/20/94	32.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
30032.0	CARPINETRIA MARSH-3	1330	5/20/94	32.0	-9 .00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
30004.0	M.L. YACHT HARBOR REPI	1362	6/15/94	33.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
30004.0	M.L. YACHT HARBOR REP2	1363	6/15/94	33.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
30004.0	M.L. YACHT HARBOR REP3	1364	6/15/94	33.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
30007.0	SANDHOLDT BRIDGE REPI	1365	6/15/94	33.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
30007.0	SANDHOLDT BRIDGE REP2	1366	6/15/94	33.0	-9.00	-9.000	-9 .000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
30007.0	SANDHOLDT BRIDGE REP3	1367	6/15/94	33.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
30023.0	BENNETT SL./ESTUARY REPI	1368	6/16/94	33.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
30023.0	BENNETT SL./ESTUARY REP2	1369	6/16/94	33.0	-9.00	-9 .000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
30023.0	BENNETT SL./ESTUARY REP3	1370	6/16/94	33.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
31001.0	EGRET LANDING REPI	1371	6/15/94	33.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
31001.0	EGRET LANDING REP2	1372	6/15/94	33.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
31001.0	EGRET LANDING REP3	1373	6/15/94	33.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
31002.0	HIGHWAY 1 BRIDGE REP1	1374	6/15/94	33.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000

Page 8 of 15

:

4

STANUM	STATION	IDORG	DATE	LEG	DICLB	DIELDRIN	ENDO I	ENDO II	ESO4	ENDRIN	ETHION	нсна	нснв	HCHG
31002.0	HIGHWAY 1 BRIDGE REP2	1375	6/15/94	33.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
31002.0	HIGHWAY I BRIDGE REP3	1376	6/15/94	33.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
													•	
31003.0	ANDREWS POND REP1	1377	6/16/94	33.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
31003.0	ANDREWS POND REP2	1378	6/16/94	33.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
31003.0	ANDREWS POND REP3	1379	6/16/94	33.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
30001.0	SANTA CRUZ YACHT BASIN	1588	5/9/96	43.0	-8.00	-8.000	-8.000	-8.00	-8.00	-8.00	-9.00	-8.000	-8.00	-8.000
35001.0	SANTA CRUZ YACHT BASIN-A3	1589	5/9/96	43.0	-8.00	0.870	-8.000	-8.00	-8.00	-8.00	-9.00	-8.000	-8.00	-8.000
35002.0	SANTA CRUZ YACHT BASIN-A9	1590	5/9/96	43.0	-8.00	2.220	-8.000	-8.00	-8.00	-8.00	-9.00	-8.000	-8.00	-8.000
35003.0	MONTEREY BOATYARD-LEAD 1	1591	5/9/96	43.0	-8.00	-8.000	-8.000	-8.00	-8.00	-8.00	-9.00	-8.000	-8.00	-8.000
35004.0	MONTEREY BOATYARD-LEAD 2	1592	5/9/96	43.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
35005.0	MONTEREY BOATYARD-LEAD 3	1593	5/9/96	43.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
35006.0	MONTEREY BOATYARD-LEAD 4	1594	5/9/96	43.0	-9.00	-9.000	-9.000	-9.00	-9.00	-9.00	-9.00	-9.000	-9.00	-9.000
30002.0	MONTEREY YACHT CLUB	1596	5/9/96	43.0	-8.00	-8.000	-8.000	-8.00	-8.00	-8.00	-9.00	-8.000	-8.00	-8.000
30007.0	SANDHOLDT BRIDGE	1597	5/9/96	43.0	8.04	11.800	0.780	3.15	6.38	2.00	-9.00	-8.000	-8.00	-8.000
30007.0	SANDHOLDT BRIDGE	1762	5/8/97	52.0	9.40	8.730	0.800	2.71	4.93	2.10	3.83	-8.000	-8.00	-8.000
36002.0	TEMBLADERO MOUTH	1763	5/8/97	52.0	13.90	12.700	1.010	4.07	8.79	3.43	-8.00	-8.000	0.11	-8.000
36003.0	CENTRAL TEMBLADERO	1764	5/8/97	52.0	2.76	4.130	0.150	0.60	1.83	0.78	1.44	-8.000	-8.00	-8.000
36004.0	UPPER TEMBLADERO-SALINAS CITY	1765	5/8/97	52.0	16.30	49.300	4.230	5.51	7.32	10.10	-8.00	-8.000	-8.00	1.570
36005.0	ESPINOSA SLOUGH	1766	5/8/97	52.0	26.30	20.100	1.370	5.62	10.60	3.29	-8.00	-8.000	-8.00	0.850
36006.0	ALISAL SLOUGH	1767	5/8/97	52.0	11.90	19.500	1.470	3.00	5.01	5.19	-8.00	-8.000	-8.00	0.649
36007.0	OLD SALINAS RIVER CHANNEL	1768	5/8/97	52.0	30.60	13.700	1.460	8.44	21.60	4.25	-8.00	-8.000	-8.00	0.214

STANUM	STATION	IDORG	DATE	LEG	HCHD	HEPTACHLOR	HE	HCB	METHOXY	MIREX	CNONA	TNONA	OXAD
30034.1	MONTEREY BAY REFERENCE	100	8/5/92	1.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9.000	-9.000	-9.00
30034.2	MONTEREY BAY REFERENCE	101	8/5/92	1.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9.000	-9.000	-9.00
30034.3	MONTEREY BAY REFERENCE	102	8/5/92	1.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9.000	-9.000	-9.00
30035.1	ELKHORN SLOUGH-SEAL POINT	130	9/4/92	3.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9.000	-9.000	-9.00
30035.2	ELKHORN SLOUGH-SEAL POINT	131	9/4/92	3.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9.000	-9.000	-9.00
30035.3	ELKHORN SLOUGH-SEAL POINT	132	9/4/92 _.	3.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9.000	-9.000	-9.00
30036.1	ELKHORN SLOUGH-SEAL BEND	133	9/11/92	4.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9.000	-9.000	-9.00
30036.2	ELKHORN SLOUGH-SEAL BEND	134	9/11/92	4.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9.000	-9.000	-9.00
30036.3	ELKHORN SLOUGH-SEAL BEND	135	9/11/92	4.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9.000	-9.000	-9.00
31001.0	EGRET LANDING- REF	251	10/9/92	5.0	-9.000	-8.000	-8.000	-8.000	-8.00	-8.000	-9.000	-8.000	-9.00
31002.0	HIGHWAY I BRIDGE- REF	254	10/23/92	6.0	-9.000	-8.000	-8.000	30.300	-8.00	-8.000	-9.000	-8.000	-9.00
31003.0	ANDREWS POND- REF	258	11/8/92	7.0	-9.000	-8.000	-8.000	-8.000	-8.00	-8.000	-9.000	-8.000	-9.00
31002.0	HWY. 1 BRIDGE- REF	351	11/27/92	8.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9.000	-9.000	-9.00
31003.0	ANDREW'S POND REF.	451	12/8/92	9.0	-9.000	-8.000	-8.000	-8.000	-8.00	-8.000	-9.000	-8.000	-9.00
30001.0	SANTA CRUZ YACHT BASIN	501	12/21/92	10.0	-9.000	1.400	-8.000	-8.000	-8.00	-8.000	-9.000	0.700	-9.00
30002.0	MONTEREY YACHT CLUB	502	12/21/92	10.0	-9.000	-8.000	-8.000	-8.000	2.90	-8.000	-9.000	1.200	-9.00
30004.0	M.L. YACHT HARBOR	504	12/21/92	10.0	-9.000	-8.000	-8.000	-8.000	-8.00	-8.000	-9.000	-8.000	-9.00
30005.0	M.L. SOUTH HARBOR	505	12/21/92	10.0	-9.000	-8.000	-8.000	-8.000	-8.00	-8.000	-9.000	-8.000	-9.00
30006.0	PAJARO RIVER ESTUARY	506	12/21/92	10.0	-9.000	-8.000	-8.000	-8.000	-8.00	-8.000	-9.000	-8.000	-9.00
30007.0	SANDHOLDT BRIDGE	507	12/21/92	10.0	-9.000	-8.000	-8.000	0.300	1.60	-8.000	-9.000	1.300	-9.00
30011.0	SALINAS RIVER LAGOON	511	12/21/92	10.0	-9.000	-9.000	-9.000	-9.000	-9 .00	-9.000	-9.000	-9.000	-9.00
30012.0	MONTEREY BOATYARD	512	12/21/92	10.0	-9.000	-8.000	-8.000	-8.000	-8.00	-8.000	-9.000	0.600	-9.00
30013.0	MONTEREY STORMDRAIN NO.2	513	12/21/92	10.0	-9.000	-8.000	-8.000	-8.000	-8.00	-8.000	-9.000	-8.000	-9.00
30014.0	MONTEREY STORMDRAIN NO. 3	514	12/21/92	10.0	-9.000	-8.000	-8.000	-8.000	-8.00	-8.000	-9.000	0.700	-9.00
30019.0	MORO COJO SLOUGH	519	12/22/92	10.0	-9.000	-8.000	-8.000	-8.000	~8.00	-8.000	-9.000	-8.000	-9.00
30022.0	SOQUEL LAGOON	522	12/21/92	10.0	-9.000	-9.000	-9 .000	-9.000	-9.00	-9.000	-9.000	-9.000	-9.00
30023.0	BENNETT SL/ESTUARY	523	12/22/92	10.0	-9.000	-8.000	0.500	-8.000	-8.00	-8.000	-9.000	1.400	-9.00
30026.0	SCOTT CREEK #26B	526	12/18/92	10.0	-9.000	-9.000	-9 .000	-9.000	-9.00	-9.000	-9.000	-9.000	-9.00
30027.0	MONTEREY BAY REF. SOUTH	527	12/21/92	10.0	-9.000	-8.000	-8.000	-8.000	-8.00	-8.000	-9.000	-8.000	-9.00
30028.0	ELKHORN SL. PORTRERO REF.	528	12/18/92	10.0	-9.000	-8.000	-8.000	-8.000	-8.00	-8.000	-9.000	-8.000	-9.00
31002.0	HWY 1 BRIDGE REF.	675	1/14/93	11.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9 .000	-9.000	-9.00
30003.0	SANTA BARBARA HARBOR	503	2/10/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9.000	-9 .000	-9.00
30008.0	SAN LUIS HARBOR TRANS	508	2/9/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9.000	-9.000	-9.00

Page 10 of 15

1

•

1

				-									
STANUM	STATION	IDORG	DATE	_LEG	HCHD	HEPTACHLOR	HE	HCB	METHOXY	MIREX	CNONA	TNONA	OXAD
30009.0	GOLETA SL.	509	2/10/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9.000	-9.000	-9.00
30010.0	CARPINTERIA MARSH-1	510	2/10/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9.000	-9.000	-9.00
30020.0	SANTA MARIA RIVER ESTUARY	520	2/9/93	13.0	-9.000	-8.000	-8.000	1.200	3.30	-8.000	-9.000	0.700	-9.00
30021.0	SANTA YNEZ RIVER ESTUARY	521	2/11/93	13.0	-9.000	-9.000	-9.000	-9.000	9.00	-9.000	-9.000	-9.000	-9.00
30024.0	MORRO BAY	524	2/9/93	13.0	-9.000	-8.000	-8.000	-8.000	-8.00	-8.000	-9.000	-8.000	-9.00
30025.0	MORRO BAY-SOUTH BAY	525	2/9/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9.000	-9.000	-9.00
30029.0	MORRO BAY-MID BAY	530	2/9/93	13.0	-9.000	-8.000	-8.000	-8.000	-8.00	-8.000	-9.000	-8.000	-9.00
30030.0	CANADA DE LA GAVIOTA (26d)	531	2/11/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9.000	-9.000	-9.00
30031.0	CARPINTERIA MARSH-2	532	2/10/93	13.0	-9.000	-8.000	-8.000	-8.000	-8.00	-8.000	-9.000	1.700	-9.00
30032.0	CARPINETRIA MARSH-3	533	2/10/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9.000	-9.000	-9.00
30033.0	MORRO BAY-FUEL DOCK	534	2/9/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9.000	-9.000	-9 .00
31002.0	HIGHWAY 1 BRIDGE REF	352	2/23/93	14.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9.000	-9.000	-9.00
30027.0	MONTEREY BAY REF. SOUTH	1323	5/16/94	32.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9.000	-9.000	-9.00
30013.0	MONTEREY STORMDRAIN NO.2	1324	5/16/94	32.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9.000	-9.000	-9.00
30028.0	ELKHORN SL. PORTRERO REF.	1325	5/17/94	32.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9.000	-9.000	-9.00
30019.0	MORO COJO SLOUGH	1326	5/17/94	32.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9.000	-9.000	-9.00
31002.0	HIGHWAY 1 BRIDGE REF	1327	5/17/94	32.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9.000	-9.000	-9.00
30008.0	SAN LUIS HARBOR TRANS	1328	5/20/94	32.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9.000	-9.000	-9.00
30029.0	MORRO BAY-MID BAY	1329	5/20/94	32.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9.000	-9.000	-9.00
30032.0	CARPINETRIA MARSH-3	1330	5/20/94	32.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9.000	-9.000	-9.00
30004.0	M.L. YACHT HARBOR REPI	1362	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9.000	-9.000	-9.00
30004.0	M.L. YACHT HARBOR REP2	1363	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9.000	-9.000	-9.00
30004.0	M.L. YACHT HARBOR REP3	1364	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9.000	-9.000	-9.00
30007.0	SANDHOLDT BRIDGE REPI	1365	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9.000	-9.000	-9.00
30007.0	SANDHOLDT BRIDGE REP2	1366	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9.000	-9:000	-9.00
30007.0	SANDHOLDT BRIDGE REP3	1367	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9.000	-9.000	-9.00
30023.0	BENNETT SL./ESTUARY REPI	1368	6/16/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9.000	-9.000	-9.00
30023.0	BENNETT SL./ESTUARY REP2	1369	6/16/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9 .000	-9.000	-9.000	-9.00
30023.0	BENNETT SL./ESTUARY REP3	1370	6/16/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9 .000	-9.000	-9.000	-9.00
31001.0	EGRET LANDING REPI	1371	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9.000	-9.000	-9.00
31001.0	EGRET LANDING REP2	1372	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9.000	-9.000	-9.00
31001.0	EGRET LANDING REP3	1373	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9.000	-9.000	-9.00
31002.0	HIGHWAY 1 BRIDGE REP1	1374	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9.000	-9.000	9.00

Page 11 of 15

STANUM	STATION	IDORG	DATE	LEG	HCHD	HEPTACHLOR	HE	НСВ	METHOXY	MIREX	CNONA	TNONA	OXAD
31002.0	HIGHWAY 1 BRIDGE REP2	1375	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9.000	-9.000	-9.00
31002.0	HIGHWAY 1 BRIDGE REP3	1376	6/15/94	33.0	-9.000	-9.000	-9.000	-9.00 0	-9.00	-9.000	-9.000	-9.000	-9.00
31003.0	ANDREWS POND REPI	1377	6/16/94	33.0	-9.000	-9.000	-9.000	-9.0 00	-9.00	-9.000	-9.000	-9.000	-9.00
31003.0	ANDREWS POND REP2	1378	6/16/94	33.0	-9.000	-9.000	-9.000	- 9.0 00	-9.00	-9.000	-9.000	-9.000	-9.00
31003.0	ANDREWS POND REP3	1379	6/16/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9.000	-9.000	-9.00
30001.0	SANTA CRUZ YACHT BASIN	1588	5/9/96	43.0	-8.000	-8.000	-8.000	-8.000	-8.00	-8.000	-8.000	0.720	0.79
35001.0	SANTA CRUZ YACHT BASIN-A3	1589	5/9/96	43.0	-8.000	-8.000	-8.000	0.380	-8.00	-8.000	1.180	2.580	-8.00
35002.0	SANTA CRUZ YACHT BASIN-A9	1590	5/9/96	43.0	-8.000	-8.000	0.520	-8.000	-8.00	-8.000	2.870	7.680	-8.00
35003.0	MONTEREY BOATYARD-LEAD I	1591	5/9/96	43.0	-8.000	-8.000	-8.000	-8.000	-8.00	-8.000	-8.000	0.970	-8.00
35004.0	MONTEREY BOATYARD-LEAD 2	1592	5/9/96	43.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9.000	-9.000	-9.00
35005.0	MONTEREY BOATY ARD-LEAD 3	1593	5/9/96	43.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9.000	-9.000	-9.00
35006.0	MONTEREY BOATY ARD-LEAD 4	1594	5/9/96	43.0	-9.000	-9.000	-9.000	-9.000	-9.00	-9.000	-9.000	-9.000	-9.00
30002.0	MONTEREY YACHT CLUB	1596	5/9/96	43.0	-8.000	-8.000	-8.000	-8.000	-8.00	-8.000	-8.000	-8.000	-8.00
30007.0	SANDHOLDT BRIDGE	1597	5/9/96	43.0	-8.000	-8.000	-8.000	0.650	-8.00	-8.000	1.050	2.210	1.31
30007.0	SANDHOLDT BRIDGE	1762	5/8/97	52.0	-8.000	1.170	-8.000	3.920	-8.00	-8.000	-8.000	1.880	0.81
36002.0	TEMBLADERO MOUTH	1763	5/8/97	52.0	-8.000	1.270	-8.000	1.860	-8.00	0.257	-8.000	1.590	-8.00
36003.0	CENTRAL TEMBLADERO	1764	5/8/97	52.0	-8.000	-8.000	-8.000	0.441	-8.00	-8.000	-8.000	0.487	-8.00
36004.0	UPPER TEMBLADERO-SALINAS CITY	1765	5/8/97	52.0	-8.000	-8.000	0.587	Ź.540	-8.00	-8.000	-8.000	5.010	-8.00
36005.0	ESPINOSA SLOUGH	1766	5/8/97	52.0	-8.000	-8.000	-8.000	3.810	-8.00	-8.000	-8.000	0.897	-8.00
36006.0	ALISAL SLOUGH	1767	5/8/97	52.0	-8.000	-8.000	-8.000	1.940	-8.00	0.364	-8.000	1.620	-8.00
36007.0	OLD SALINAS RIVER CHANNEL	1768	5/8/97	52.0	-8.000	-8.000	-8.000	8.770	-8.00	-8.000	-8.000	0.277	-8.00

STANUM	STATION	IDORG	DATE	LEG	OCDAN	тохарн	PESBATCH	TBT T	BTBATCH_
30034.1	MONTEREY BAY REFERENCE	100	8/5/92	1.0	-9.000	-9.00	-9.00	-9.0000	-9.0
30034.2	MONTEREY BAY REFERENCE	101	8/5/92	1.0	-9.000	-9.00	-9.00	-9.0000	-9.0
30034.3	MONTEREY BAY REFERENCE	102	8/5/92	1.0	-9.000	-9.00	-9.00	-9.0000	-9.0
30035.1	ELKHORN SLOUGH-SEAL POINT	130	9/4/92	3.0	-9.000	-9.00	-9.00	-9.0000	-9.0
30035.2	ELKHORN SLOUGH-SEAL POINT	131	9/4/92	3.0	-9.000	-9.00	-9.00	-9.0000	-9.0
30035.3	ELKHORN SLOUGH-SEAL POINT	132	9/4/92	3.0	-9.000	-9.00	-9.00	-9.0000	-9.0
30036.1	ELKHORN SLOUGH-SEAL BEND	133	9/11/92	4.0	-9.000	-9.00	-9.00	-9.0000	-9.0
30036.2	ELKHORN SLOUGH-SEAL BEND	134	9/11/92	4.0	-9.000	-9.00	-9.00	-9.0000	-9.0
30036.3	ELKHORN SLOUGH-SEAL BEND	135	9/11/92	4.0	-9.000	-9.00	-9.00	-9.0000	-9.0
31001.0	EGRET LANDING- REF	251	10/9/92	5.0	-9.000	-8.00	-9.00	-8.0000	5.1
31002.0	HIGHWAY 1 BRIDGE- REF	254	10/23/92	6.0	-9.000	-8.00	-9.00	-8.0000	5.1
31003.0	ANDREWS POND- REF	258	11/8/92	7.0	-9.000	-8.00	-9.00	0.0000	2.1
31002.0	HWY. 1 BRIDGE- REF	351	11/27/92	8.0	-9.000	-9.00	-9.00	-9.0000	-9.0
31003.0	ANDREW'S POND REF.	451	12/8/92	9.0	-9.000	-8.00	-9.00	-8.0000	2.2
30001.0	SANTA CRUZ YACHT BASIN	501	12/21/92	10.0	-9.000	-8.00	-9.00	3.7600	3.2
30002.0	MONTEREY YACHT CLUB	502	12/21/92	10.0	-9.000	-8.00	-9.00	0.4200	3.2
30004.0	M.L. YACHT HARBOR	504	12/21/92	10.0	-9.000	-8.00	-9.00	0.1100	2.1
30005.0	M.L. SOUTH HARBOR	505	12/21/92	10.0	-9.000	-8.00	-9.00	0.0300	3.2
30006.0	PAJARO RIVER ESTUARY	506	12/21/92	10.0	-9.000	-8.00	-9.00	0.4800	2.1
30007.0	SANDHOLDT BRIDGE	507	12/21/92	10.0	-9.000	-8.00	-9.00	0.0300	. 2.1
30011.0	SALINAS RIVER LAGOON	511	12/21/92	10.0	-9.000	-9.00	-9.00	-9.0000	-9.0
30012.0	MONTEREY BOATYARD	512	12/21/92	İ0.0	-9.000	-8.00	-9.00	0.1900	2.1
30013.0	MONTEREY STORMDRAIN NO.2	513	12/21/92	Ì0.0	-9.000	-8.00	-9.00	-8.0000	3.2
30014.0	MONTEREY STORMDRAIN NO. 3	514	12/21/92	10.0	-9.000	-8.00	-9.00	0.0600	3.2
30019.0	MORO COJO SLOUGH	519	12/22/92	10.0	-9.000	-8.00	-9.00	0.1100	2.1
30022.0	SOQUEL LAGOON	522	12/21/92	10.0	-9.000	-9.00	-9.00	-9.0000	-9.0
30023.0	BENNETT SL./ESTUARY	523	12/22/92	10.0	-9.000	-8.00	-9.00	0.0200	2.1
30026.0	SCOTT CREEK #26B	526	12/18/92	10.0	-9.000	-9.00	-9.00	-9.0000	-9.0
30027.0	MONTEREY BAY REF. SOUTH	527	12/21/92	10.0	-9.000	-8.00	-9.00	-8.0000	3.2
30028.0	ELKHORN SL. PORTRERO REF.	528	12/18/92	10.0	-9.000	-8.00	-9.00	-8.0000	3.2
31002.0	HWY 1 BRIDGE REF.	675	1/14/93	11.0	-9.000	-9.00	-9.00	-9.0000	-9.0
30003.0	SANTA BARBARA HARBOR	503	2/10/93	13.0	-9.000	-9 .00	-9.00	-9.0000	-9.0
30008.0	SAN LUIS HARBOR TRANS	508	2/9/93	13.0	-9.000	-9.00	-9.00	-9.0000	-9.0

۱.

Page 13 of 15

							. :		
STANUM	STATION	IDORG	DATE	LEG	OCDAN	тохарн	PESBATCH	TBT	TBTBATCH
30009.0	GOLETA SL.	509	2/10/93	13.0	-9.000	-9.00	-9.00	-9.0000	-9.0
30010.0	CARPINTERIA MARSH-1	510	2/10/93	13.0	-9.000	-9.00	-9.00	-9.0000	-9.0
30020.0	SANTA MARIA RIVER ESTUARY	520	2/9/93	13.0	-9.000	766.00	-9.00	0.0300	2.1
30021.0	SANTA YNEZ RIVER ESTUARY	521	2/11/93	13.0	-9.000	-9.00	-9.00	-9.0000	-9.0
30024.0	MORRO BAY	524	2/9/93	13.0	-9.000	-8.00	-9.00	0.0300	5.1
30025.0	MORRO BAY-SOUTH BAY	525	2/9/93	13.0	-9.000	-9.00	-9.00	-9.0000	-9.0
30029.0	MORRO BAY-MID BAY	530	2/9/93	13.0	-9.000	-8.00	-9.00	-8.0000	5.1
30030.0	CANADA DE LA GAVIOTA (26d)	531	2/11/93	13.0	-9.000	-9.00	-9.00	-9.0000	-9.0
30031.0	CARPINTERIA MARSH-2	532	2/10/93	13.0	-9.000	-8.00	-9.00	-8.0000	2.1
30032.0	CARPINETRIA MARSH-3	533	2/10/93	13.0	-9.000	-9.00	-9.00	-9.0000	-9.0
30033.0	MORRO BAY-FUEL DOCK	534	2/9/93	13.0	-9.000	-9.00	-9.00	-9.0000	-9.0
31002.0	HIGHWAY 1 BRIDGE REF	352	2/23/93	14.0	-9.000	-9.00	-9.00	-9.0000	-9.0
30027.0	MONTEREY BAY REF. SOUTH	1323	5/16/94	32.0	-9.000	-9.00	-9.00	-9.0000	-9.0
30013.0	MONTEREY STORMDRAIN NO.2	1324	5/16/94	32.0	-9.000	-9.00	-9.00	-9.0000	-9.0
30028.0	ELKHORN SL. PORTRERO REF.	1325	5/17/94	32.0	-9.000	-9.00	-9.00	-9.0000	-9.0
30019.0	MORO COJO SLOUGH	1326	5/17/94	32.0	-9.000	-9.00	-9.00	-9.0000	-9.0
31002.0	HIGHWAY 1 BRIDGE REF	1327	5/17/94	32.0	-9.000	-9.00	-9.00	-9.0000	-9.0
30008.0	SAN LUIS HARBOR TRANS	1328	5/20/94	32.0	-9.000	-9.00	-9.00	-9.0000	-9.0
30029.0	MORRO BAY-MID BAY	1329	5/20/94	32.0	-9.000	-9.00	-9.00	-9.0000	-9.0
30032.0	CARPINETRIA MARSH-3	1330	5/20/94	32.0	-9.000	-9.00	-9.00	-9.0000	-9.0
30004.0	M.L. YACHT HARBOR REPI	1362	6/15/94	33.0	-9.000	-9.00	-9.00	-9.0000	-9.0
30004.0	M.L. YACHT HARBOR REP2	1363	6/15/94	33.0	-9.000	-9.00	-9.00	-9.0000	-9.0
30004.0	M.L. YACHT HARBOR REP3	1364	6/15/94	33.0	-9.000	-9.00	-9.00	-9.0000	-9.0
30007.0	SANDHOLDT BRIDGE REPI	1365	6/15/94	33.0	-9 .000	-9.00	-9.00	-9.0000	-9.0
30007.0	SANDHOLDT BRIDGE REP2	1366	6/15/94	33.0	-9.000	-9.00	-9.00	-9.0000	-9.0
30007.0	SANDHOLDT BRIDGE REP3	1367	6/15/94	33.0	-9.000	-9.00	-9.00	-9.0000	-9.0
30023.0	BENNETT SL./ESTUARY REPI	1368	6/16/94	33.0	-9.000	-9.00	-9.00	-9.0000	-9.0
30023.0	BENNETT SL./ESTUARY REP2	1369	6/16/94	33.0	-9.000	-9.00	-9.00	-9.0000	-9.0
30023.0	BENNETT SL./ESTUARY REP3	1370	6/16/94	33.0	-9.000	-9.00	-9.00	-9.0000	· -9.0
31001.0	EGRET LANDING REPI	1371	6/15/94	33.0	-9.000	-9.00	-9.00	-9.0000	-9.0
31001.0	EGRET LANDING REP2	1372	6/15/94	33.0	-9.000	-9.00	-9.00	-9.0000	-9.0
31001.0	EGRET LANDING REP3	1373	6/15/94	33.0	-9.000	-9.00	-9.00	-9.0000	9.0
31002.0	HIGHWAY 1 BRIDGE REPI	1374	6/15/94	33.0	-9.000	-9.00	-9.00	-9.0000	-9.0

Page 14 of 15

STANUM	STATION	IDORG	DATE	LEG	OCDAN	ТОХАРН	PESBATCH	TBT 1	BTBATCH
31002.0	HIGHWAY 1 BRIDGE REP2	1375	6/15/94	33.0	-9.000	-9.00	-9.00	-9.0000	-9.0
31002.0	HIGHWAY 1 BRIDGE REP3	1376	6/15/94	33.0	-9.000	-9.00	-9.00	-9.0000	-9.0
31003.0	ANDREWS POND REPI	1377	6/16/94	33.0	-9.000	-9.00	-9.00	-9.0000	-9.0
31003.0	ANDREWS POND REP2	1378	6/16/94	33.0	-9.000	-9.00	-9.00	-9.0000	-9.0
31003.0	ANDREWS POND REP3	1379	6/16/94	33.0	-9.000	-9.00	-9.00	-9.0000	-9.0
30001.0	SANTA CRUZ YACHT BASIN	1588	5/9/96	43.0	-8.000	-8.00	75.S.05	0.4500	17.3
35001.0	SANTA CRUZ YACHT BASIN-A3	1589	5/9/96	43.0	-8.000	-8.00	85.S.01	0.2200	17.3
35002.0	SANTA CRUZ YACHT BASIN-A9	1590	5/9/96	43.0	0.590	-8.00	85.S.01	0.0500	17.3
35003.0	MONTEREY BOATYARD-LEAD 1	1591	5/9/96	43.0	-8.000	-8.00	75.8.05	-9.0000	-9.0
35004.0	MONTEREY BOATYARD-LEAD 2	1592	5/9/96	43.0	-9.000	-9.00	-9.00	-9.0000	-9.0
35005.0	MONTEREY BOATYARD-LEAD 3	1593	5/9/96	43.0	-9.000	-9.00	-9.00	-9.0000	-9.0
35006.0	MONTEREY BOATYARD-LEAD 4	1594	5/9/96	43.0	-9.000	-9.00	-9.00	-9.0000	-9.0
30002.0	MONTEREY YACHT CLUB	1596	5/9/96	43.0	-8.000	-8.00	75.S.05	-9.0000	-9.0
30007.0	SANDHOLDT BRIDGE	1597	5/9/96	43.0	-8.000	-8.00	75.8.05	-9.0000	-9.0
30007.0	SANDHOLDT BRIDGE	1762	5/8/97	52.0	-8.000	-8.00	97-319	-9.0000	-9.0
36002.0	TEMBLADERO MOUTH	1763	5/8/97	52.0	-8.000	-8.00	97-319	-9.0000	-9.0
36003.0	CENTRAL TEMBLADERO	1764	5/8/97	52.0	-8.000	-8.00	97-319	-9.0000	-9.0
36004.0	UPPER TEMBLADERO-SALINAS CITY	1765	5/8/97	52.0	-8.000	-8.00	97-319	-9.0000	-9.0
36005.0	ESPINOSA SLOUGH	1766	5/8/97	52.0	-8.000	-8.00	97-319	-9.0000	-9.0
36006.0	ALISAL SLOUGH	1767	5/8/97	52.0	-8.000	-8.00	97-319	-9.0000	-9.0
36007.0	OLD SALINAS RIVER CHANNEL	1768	5/8/97	52.0	-8.000	-8.00	97-319	-9.0000	-9.0

Page 15 of 15

SECTION V

PCB and Aroclor Analysis of Sediments

1

STANUM	STATION	IDORG	DATE	LEG	PCB5	PCB8	PCB15	PCB18	PCB27	PCB28	PCB29	PCB31	PCB44	PCB49	PCB52	
30034.1	MONTEREY BAY REFERENCE	100	8/5/92	1.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	
30034.2	MONTEREY BAY REFERENCE	101	8/5/92	1.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	
30034.3	MONTEREY BAY REFERENCE	102	8/5/92	1.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	
30035.1	ELKHORN SLOUGH-SEAL POINT	130	9/4/92	3.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	
30035.2	ELKHORN SLOUGH-SEAL POINT	131	9/4/92	3.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	
30035.3	ELKHORN SLOUGH-SEAL POINT	132	9/4/92	3.0	-9.000	-9.000	-9.000	-9 .000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	
30036.1	ELKHORN SLOUGH-SEAL BEND	133	9/11/92	4.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	
30036.2	ELKHORN SLOUGH-SEAL BEND	134	9/11/92	4.0	-9.000	-9 .000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	
30036.3	ELKHORN SLOUGH-SEAL BEND	135	9/11/92	4.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	
31001.0	EGRET LANDING- REF	251	10/9/92	5.0	-9.000	-8.000	-9.000	-8.000	-9.000	-8.000	-9.000	-9.000	-8.000	-9.000	-8.000	
31002.0	HIGHWAY 1 BRIDGE- REF .	254	10/23/92	6.0	-9.000	-8.000	-9.000	-8.000	-9.000	-8.000	-9.000	-9.000	-8.000	-9.000	-8.000	
31003.0	ANDREWS POND- REF	258	11/8/92	7.0	-9.000	-8.000	-9.000	-8.000	-9.000	-8.000	-9.000	-9.000	-8.000	-9.000	-8.000	
31002.0	HWY. 1 BRIDGE- REF	351	11/27/92	8.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	
31003.0	ANDREW'S POND REF.	451	12/8/92	9.0	-9.000	-8.000	-9.000	-8.000	-9.000	-8.000	-9.000	-9.000	-8.000	-9.000	-8.000	
30001.0	SANTA CRUZ YACHT BASIN	501	12/21/92	10.0	-9.000	-8.000	-9.000	4.300	-9.000	7.800	-9.000	-9.000	20.600	-9.000	28.100	
30002.0	MONTEREY YACHT CLUB	502	12/21/92	10.0	-9.000	-8.000	-9.000	0.700	-9.000	0.500	-9.000	-9.000	0.700	-9.000	1.700	
30004.0	M.L. YACHT HARBOR	504	12/21/92	10.0	-9.000	-8.000	-9.000	-8.000	-9.000	-8.000	-9.000	-9.000	-8.000	-9.000	-8.000	
30005.0	M.L. SOUTH HARBOR	505	12/21/92	10.0	-9.000	-8.000	-9.000	-8.000	-9.000	-8.000	-9.000	-9.000	0.600	-9.000	1.300	
30006.0	PAJARO RIVER ESTUARY	506	12/21/92	10.0	-9.000	-8.000	-9.000	-8.000	-9.000	-8.000	-9.000	-9.000	-8.000	-9.000	-8.000	
30007.0	SANDHOLDT BRIDGE	507	12/21/92	10.0	-9.000	-8.000	-9.000	-8.000	-9.000	-8.000	-9 .000	-9.000	-8.000	-9.000	-8.000	
30011.0	SALINAS RIVER LAGOON	511	12/21/92	10.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	
30012.0	MONTEREY BOATYARD	512	12/21/92	10.0	-9.000	-8.000	-9.000	-8.000	-9.000	-8.000	-9.000	-9.000	-8.000	-9.000	0.800	
30013.0	MONTEREY STORMDRAIN NO.2	513	12/21/92	10.0	-9.000	-8.000	-9.000	-8.000	-9.000	-8.000	-9.000	-9.000	-8.000	-9.000	-8.000	
30014.0	MONTEREY STORMDRAIN NO. 3	514	12/21/92	10.0	-9.000	-8.000	-9.000	0.600	-9.000	0.700	-9.000	-9.000	0.900	-9.000	1.600	
30019.0	MORO COJO SLOUGH	519	12/22/92	10.0	-9.000	-8.000	-9.000	-8.000	-9.000	-8.000	-9.000	-9.000	-8.000	-9.000	-8.000	
30022.0	SOQUEL LAGOON	522	12/21/92	10.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	
30023.0	BENNETT SL./ESTUARY	523	12/22/92	10.0	-9.000	-8.000	-9.000	-8.000	-9.000	-8.000	-9.000	-9.000	-8.000	-9.000	-8.000	
30026.0	SCOTT CREEK #26B	526	12/18/92	10.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	
30027.0	MONTEREY BAY REF. SOUTH	527	12/21/92	10.0	-9.000	-8.000	-9.000	-8.000	-9.000	-8.000	-9.000	-9.000	-8.000	-9.000	-8.000	
30028.0	ELKHORN SL. PORTRERO REF.	528	12/18/92	10.0	-9.000	-8.000	-9.000	-8.000	-9.000	-8.000	-9.000	-9.000	-8.000	-9.000	-8.000	
31002.0	HWY 1 BRIDGE REF.	675	1/14/93	11.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	
30003.0	SANTA BARBARA HARBOR	503	2/10/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	
30008.0	SAN LUIS HARBOR TRANS	508	2/9/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	
													•			

Page 1 of 15

STANUM	STATION	IDORG	DATE	LEG	PCB5	PCB8	PCB15	PCB18	PCB27	PCB28	PCB29	PCB31	PCB44	PCB49	PCB52
30009.0	GOLETA SL.	509	2/10/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30010.0	CARPINTERIA MARSH-1	510	2/10/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30020.0	SANTA MARIA RIVER ESTUARY	520	2/9/93	13.0	-9.000	-8.000	-9.000	-8.000	-9.000	-8.000	-9.000	-9.000	-8.000	-9.000	-8.000
30021.0	SANTA YNEZ RIVER ESTUARY	521	2/11/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30024.0	MORRO BAY	524	2/9/93	13.0	-9.000	-8.000	-9.000	-8.000	-9.000	-8.000	-9.000	-9.000	-8.000	-9.000	-8.000
30025.0	MORRO BAY-SOUTH BAY	525	2/9/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30029.0	MORRO BAY-MID BAY	530	2/9/93	13.0	-9.000	-8.000	-9.000	-8.000	-9.000	-8.000	-9.000	-9.000	-8.000	-9.000	-8.000
30030.0	CANADA DE LA GAVIOTA (26d)	531	2/11/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30031.0	CARPINTERIA MARSH-2	532	2/10/93	13.0	-9.000	-8.000	-9.000	-8.000	-9.000	-8.000	-9.000	-9.000	-8.000	-9.000	-8.000
30032.0	CARPINETRIA MARSH-3	533	2/10/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30033.0	MORRO BAY-FUEL DOCK	534	2/9/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
31002.0	HIGHWAY 1 BRIDGE REF	352	2/23/93	14.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30027.0	MONTEREY BAY REF. SOUTH	1323	5/16/94	32.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30013.0	MONTEREY STORMDRAIN NO.2	1324	5/16/94	32.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30028.0	ELKHORN SL. PORTRERO REF.	1325	5/17/94	32.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30019.0	MORO COJO SLOUGH	1326	5/17/94	32.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
31002.0	HIGHWAY 1 BRIDGE REF	1327	5/17/94	32.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30008.0	SAN LUIS HARBOR TRANS	1328	5/20/94	32.0	-9.000	-9.000	-9 .000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30029.0	MORRO BAY-MID BAY	1329	5/20/94	32.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30032.0	CARPINETRIA MARSH-3	1330	5/20/94	32.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30004.0	M.L. YACHT HARBOR REPI	1362	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30004.0	M.L. YACHT HARBOR REP2	1363	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30004.0	M.L. YACHT HARBOR REP3 .	1364	6/15/94	33.0	-9 .000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30007.0	SANDHOLDT BRIDGE REPI	1365	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30007.0	SANDHOLDT BRIDGE REP2	1366	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9 .000	-9.000	-9.000	-9.000	-9.000	-9.000
30007.0	SANDHOLDT BRIDGE REP3	1367	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9 .000	-9.000	-9.000	-9.000	-9.000
30023.0	BENNETT SL./ESTUARY REPI	1368	6/16/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30023.0	BENNETT SL./ESTUARY REP2	1369	6/16/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30023.0	BENNETT SL./ESTUARY REP3	1370	6/16/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
31001.0	EGRET LANDING REP1	1371	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9 .000	-9.000	-9 .000	-9.000	-9.000	-9.000
31001.0	EGRET LANDING REP2	1372	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
31001.0	EGRET LANDING REP3	1373	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
31002.0	HIGHWAY 1 BRIDGE REP1	1374	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000

Page 2 of 15

ST A NITIM	STATION	IDORG	DATE	LEG	PCB5	PCB8	PCB15	PCB18	PCB27	PCB28	ກດຫຼາດ	DOD11	DCD 44	DCD 40	DCDES
											PCB29	PCB31	PCB44	PCB49	PCB52
31002.0	HIGHWAY I BRIDGE REP2	1375	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
31002.0	HIGHWAY 1 BRIDGE REP3	1376	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
31003.0	ANDREWS POND REP1	1377	6/16/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
31003.0	ANDREWS POND REP2	1378	6/16/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
31003.0	ANDREWS POND REP3	1379	6/16/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30001.0	SANTA CRUZ YACHT BASIN	1588	5/9/96	43.0	-8.000	-8.000	-9.000	-8.000	-8.000	0.680	-8.000	0.950	1.850	1.280	2.580
35001.0	SANTA CRUZ YACHT BASIN-A3	1589	5/9/96	43.0	-8.000	-8.000	-9.000	-8.000	-8.000	0.780	-8.000	1.010	1.320	1.020	2.230
35002.0	SANTA CRUZ YACHT BASIN-A9	1590	5/9/96	43.0	-8.000	-8.000	-9.000	-8.000	-8.000	-8.000	-8.000	0.870	-8.000	-8.000	-8.000
35003.0	MONTEREY BOATYARD-LEAD I	1591	5/9/96	43.0	-8.000	-8.000	-9.000	-8.000	-8.000	0.550	-8.000	0.900	0.920	-8.000	2.040
35004.0	MONTEREY BOATYARD-LEAD 2	1592	5/9/96	43.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
35005.0	MONTEREY BOATYARD-LEAD 3	1593	5/9/96	43.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
35006.0	MONTEREY BOATYARD-LEAD 4	1594	5/9/96	43.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9 .000	-9.000	-9.000	-9.000	-9.000
30002.0	MONTEREY YACHT CLUB	1596	5/9/96	43.0	-8.000	0.930	-9.000	-8.000	-8.000	-8.000	-8.000	0.520	-8.000	-8.000	1.010
30007.0	SANDHOLDT BRIDGE	1597	5/9/96	43.0	-8.000	-8.000	-9.000	-8,000	-8.000	-8.000	-8.000	-8.000	-8.000	-8.000	-8.000
30007.0	SANDHOLDT BRIDGE	1762	5/8/97	52.0	-8.000	46.700	-8.000	-8.000	-8.000	-8.000	-8.000	1.200	-8.000	-8.000	-8.000
36002.0	TEMBLADERO MOUTH	1763	5/8/97	52.0	4.660	4.190	-8.000	-8.000	0.146	-8.000	-8.000	0.654	0.255	0.255	-8.000
36003.0	CENTRAL TEMBLADERO	1764	5/8/97	52.0	0.571	0.853	-8.000	-8.000	-8.000	-8.000	-8.000	-8.000	0.146	0.140	0.378
36004.0	UPPER TEMBLADERO-SALINAS CITY	1765	5/8/97	52.0	1.230	1.070	-8.000	-8.000	-8.000	-8.000	-8.000	1.020	· 1.120	-8.000	1.330
36005.0	ESPINOSA SLOUGH	1766	5/8/97	52.0	1.030	0.930	-8.000	-8.000	-8.000	-8.000	-8.000	0.389	-8.000	-8.000	-8.000
36006.0	ALISAL SLOUGH	1767	5/8/97	52.0	-8.000	-8.000	-8.000	-8.000	-8.000	-8.000	-8.000	-8.000	-8.000	-8.000	0.840
36007.0	OLD SALINAS RIVER CHANNEL	1768	5/8/97	52.0	1.930	0.711	-8.000	-8.000	-8.000	-8.000	-8.000	-8.000	0.213	-8.000	1.150

STANUM	STATION	IDORG	DATE	LEG	PCB66	PCB70	PCB74	PCB87	PCB95	PCB97	PCB99	PCB101	PCB105	PCB110
30034.1	MONTEREY BAY REFERENCE	100	8/5/92	1.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30034.2	MONTEREY BAY REFERENCE	101	8/5/92	1.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30034.3	MONTEREY BAY REFERENCE	102	8/5/92	1.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30035.1	ELKHORN SLOUGH-SEAL POINT	130	9/4/92	3.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30035.2	ELKHORN SLOUGH-SEAL POINT	131	9/4/92	3.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9 .000	-9.000	-9.000
30035.3	ELKHORN SLOUGH-SEAL POINT	132	9/4/92	3.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30036.1	ELKHORN SLOUGH-SEAL BEND	133	9/11/92	4.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30036.2	ELKHORN SLOUGH-SEAL BEND	134	9/11/92	4.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30036.3	ELKHORN SLOUGH-SEAL BEND	135	9/11/92	4.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
31001.0	EGRET LANDING- REF	251	10/9/92	5.0	-8.000	-9.000	-9.000	-8.000	-9.000	-9.000	-9.000	-8.000	-8.000	-9.000
31002.0	HIGHWAY 1 BRIDGE- REF	254	10/23/92	6.0	-8.000	-9.000	-9.000	-8.000	-9.000	-9.000	-9.000	0.900	-8.000	-9.000
31003.0	ANDREWS POND- REF	258	11/8/92	7.0	-8.000	-9.000	-9.000	-8.000	-9.000	-9.000	-9.000	-8.000	-8.000	-9.000
31002.0	HWY. 1 BRIDGE- REF	351	11/27/92	8.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
31003.0	ANDREW'S POND REF.	451	12/8/92	9.0	-8.000	-9.000	-9.000	-8.000	-9.000	-9.000	-9.000	-8.000	-8.000	-9.000
30001.0	SANTA CRUZ YACHT BASIN	501	12/21/92	10.0	29.400	-9.000	-9.000	10.100	-9.000	-9.000	-9.000	19.800	-8.000	-9.000
30002.0	MONTEREY YACHT CLUB	502	12/21/92	10.0	1.600	-9.000	-9.000	1.300	-9.000	-9.000	-9.000	4.100	-8.000	-9.000
30004.0	M.L. YACHT HARBOR	504	12/21/92	10.0	-8.000	-9.000	-9.000	-8.000	-9.000	-9.000	-9.000	-8.000	-8.000	-9.000
30005.0	M.L. SOUTH HARBOR	505	12/21/92	10.0	-8.000	- 9.000	-9.000	1.100	-9.000	-9.000	-9.000	2.600	0.900	-9.000
30006.0	PAJARO RIVER ESTUARY	506	12/21/92	10.0	-8.000	-9.000	-9.000	-8.000	-9.000	-9.000	-9.000	-8.000	-8.000	-9.000
30007.0	SANDHOLDT BRIDGE	507	12/21/92	10.0	-8.000	-9.000	-9.000	-8.000	-9.000	-9.000	-9.000	1.000	-8.000	-9.000
30011.0	SALINAS RIVER LAGOON	511	12/21/92	10.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30012.0	MONTEREY BOATYARD	512	12/21/92	10.0	0.800	-9.000	-9.000	0.500	-9.000	-9.000	-9.000	1.600	0.600	-9.000
30013.0	MONTEREY STORMDRAIN NO.2	513	12/21/92	10.0	-8.000	-9.000	-9.000	-8.000	-9.000	-9.000	-9.000	0.600	-8.000	-9.000
30014.0	MONTEREY STORMDRAIN NO. 3	514	12/21/92	10.0	1.700	-9.000	-9.000	1.300	-9.000	-9.000	-9.000	2.700	-8.000	-9.000
30019.0	MORO COJO SLOUGH	519	12/22/92	10.0	-8.000	-9.000	-9.000	-8.000	-9.000	-9.000	-9.000	-8.000	-8.000	-9.000
30022.0	SOQUEL LAGOON	522	12/21/92	10.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30023.0	BENNETT SL./ESTUARY	523	12/22/92	10.0	-8.000	-9.000	-9.000	-8.000	-9.000	-9.000	-9.000	-8.000	-8.000	-9.000
30026.0	SCOTT CREEK #26B	526	12/18/92	10.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30027.0	MONTEREY BAY REF. SOUTH	527	12/21/92	10.0	-8.000	-9.000	-9.000	-8.000	-9.000	-9.000	-9.000	-8.000	-8.000	-9.000
30028.0	ELKHORN SL. PORTRERO REF.	528	12/18/92	10.0	-8.000	-9.000	-9.000	-8.000	-9.000	-9.000	-9.000	-8.000	-8.000	-9.000
31002.0	HWY I BRIDGE REF.	675	1/14/93	11.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	- 9.000	-9.000	-9.000
30003.0	SANTA BARBARA HARBOR	503	2/10/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30008.0	SAN LUIS HARBOR TRANS	508	2/9/93	13.0	-9.000	-9.000	-9.000	-9.000	-9 .000	-9.000	-9.000	-9.000	-9.000	-9.000

Page 4 of 15

STANUM	STATION	IDORG	DATE	LEG	PCB66	PCB70	PCB74	PCB87	PCB95	PCB97	PCB99	PCB101	PCB105	PCB110
30009.0	GOLETA SL.	509	2/10/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9 .000	-9.000	-9.000
30010.0	CARPINTERIA MARSH-1	510	2/10/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30020.0	SANTA MARIA RIVER ESTUARY	520	2/9/93	13.0	-8.000	-9.000	-9.000	-8.000	-9.000	-9.000	-9.000	-8.000	-8.000	-9.000
30021.0	SANTA YNEZ RIVER ESTUARY .	521	2/11/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30024.0	MORRO BAY	524	2/9/93	13.0	-8.000	-9.000	-9 .000	-8.000	-9.000	-9.000	-9.000	-8.000	-8.000	-9.000
30025.0	MORRO BAY-SOUTH BAY	525	2/9/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30029.0	MORRO BAY-MID BAY	. 530	2/9/93	13.0	-8.000	-9.000	-9.000	-8.000	-9.000	-9.000	-9.000	-8.000	-8.000	-9.000
30030.0	CANADA DE LA GAVIOTA (26d)	531	2/11/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30031.0	CARPINTERIA MARSH-2	532	2/10/93	13.0	-8.000	-9.000	-9.000	-8.000	-9.000	-9.000	-9.000	-8.000	-8.000	-9.000
30032.0	CARPINETRIA MARSH-3	533	2/10/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9 .000	-9.000	-9.000
30033.0	MORRO BAY-FUEL DOCK	534	2/9/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
31002.0	HIGHWAY 1 BRIDGE REF	352	2/23/93	14.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30027.0	MONTEREY BAY REF. SOUTH	1323	5/16/94	32.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30013.0	MONTEREY STORMDRAIN NO.2	1324	5/16/94	32.0	-9.000	-9.000	-9 .000	-9.000	-9.000	-9.000	-9.000	-9 .000	-9.000	-9.000
30028.0	ELKHORN SL. PORTRERO REF.	1325	5/17/94	32.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30019.0	MORO COJO SLOUGH	1326	5/17/94	32.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9 .000	-9.000	-9.000
31002.0	HIGHWAY 1 BRIDGE REF	1327	5/17/94	32.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9 .000	-9.000	-9.000
30008.0	SAN LUIS HARBOR TRANS	1328	5/20/94	32.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30029.0	MORRO BAY-MID BAY	1329	5/20/94	32.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30032.0	CARPINETRIA MARSH-3	1330	5/20/94	32.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30004.0	M.L. YACHT HARBOR REPI	1362	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30004.0	M.L. YACHT HARBOR REP2	1363	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30004.0	M.L. YACHT HARBOR REP3	1364	6/15/94	33.0	-9.000	-9.000	-9 .000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30007.0	SANDHOLDT BRIDGE REP1	1365	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30007.0	SANDHOLDT BRIDGE REP2	1366	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9 .000	-9.000	-9.000	-9.000
30007.0	SANDHOLDT BRIDGE REP3	1367	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30023.0	BENNETT SL./ESTUARY REPI	1368	6/16/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30023.0	BENNETT SL./ESTUARY REP2	1369	6/16/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30023.0	BENNETT SL./ESTUARY REP3	1370	6/16/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
31001.0	EGRET LANDING REP1	1371	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
31001.0	EGRET LANDING REP2	1372	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
31001.0	EGRET LANDING REP3	1373	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9 .000	-9.000	-9.000
31002.0	HIGHWAY 1 BRIDGE REPI	1374	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000

											;		•			
ST	<u>CANÙM</u>	STATION	IDORG	DATE	LEG	PCB66	PCB70	PCB74	PCB87	PCB95	PCB97	PCB99	PCB101	PCB105	PCB110	
3	1002.0	HIGHWAY 1 BRIDGE REP2	1375	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	
3	1002.0	HIGHWAY 1 BRIDGE REP3	1376	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	
3	1003.0	ANDREWS POND REPI	1377	6/16/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	
3	1003.0	ANDREWS POND REP2	1378	6/16/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	
3	1003.0	ANDREWS POND REP3	1379	6/16/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	
3	0001.0	SANTA CRUZ YACHT BASIN	1588	5/9/96	43.0	2.850	2.480	1.090	1.100	2.750	1.160	1.290	2.680	1.040	3.750	
3	5001.0	SANTA CRUZ YACHT BASIN-A3	1589	5/9/96	43.0	2.370	2.430	0.910	1.250	3.020	1.330	1.300	2.690	1.360	3.630	
3	5002.0	SANTA CRUZ YACHT BASIN-A9	1590	5/9/96	43.0	-8.000	-8.000	-8.000	-8.000	0.590	-8.000	-8.000	-8.000	-8.000	1.150	
3	5003.0	MONTEREY BOATYARD-LEAD I	1591	5/9/96	43.0	1.470	1.500	0.510	0.990	2.760	1.000	1.060	2.780	0.960	3.210	
3	5004.0	MONTEREY BOATYARD-LEAD 2	1592	5/9/96	43.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	
3	5005.0	MONTEREY BOATYARD-LEAD 3	1593	5/9/96	43.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	
3	5006.0	MONTEREY BOATYARD-LEAD 4	1594	5/9/96	43.0	-9.000	-9.000	-9 .000	-9 .000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	
3	0002.0	MONTEREY YACHT CLUB	1596	5/9/96	43.0	0.740	0.530	-8.000	-8.000	1.250	-8.000	0.710	1.540	0.540	1.510	
3	0007.0	SANDHOLDT BRIDGE	1597	5/9/96	43.0	-8.000	-8.000	-8.000	0.580	0.770	-8.000	-8.000	0.870	-8.000	1.360	
3	0007.0	SANDHOLDT BRIDGE	1762	5/8/97	52.0	-8.000	-8.000	-8.000	-9.000	0.615	-8.000	1.390	1.450	0.763	1.150	
3	6002.0	TEMBLADERO MOUTH	1763	5/8/97	52.0	-8.000	-8.000	-8.000	-9.000	1.100	1.920	0.788	2.270	0.849	1.770	
3	6003.0	CENTRAL TEMBLADERO	1764	5/8/97	52.0	-8.000	-8.000	-8.000	-9.000	0.396	-8.000	0.261	0.863	0.308	0.734	
3	6004.0	UPPER TEMBLADERO-SALINAS CITY	1765	5/8/97	52.0	-8.000	-8.000	-8.000	-9.000	-8.000	-8.000	0.660	6.600	2.610	3.670	
3	86005.0	ESPINOSA SLOUGH	1766	5/8/97	52.0	-8.000	-8.000	-8.000	-9.000	3.710	-8.000	0.562	1.480	-8.000	1.030	
3	6006.0	ALISAL SLOUGH	1767	5/8/97	52.0	-8.000	-8.000	-8.000	-9.000	-8.000	-8.000	-8.000	5.740	2.420	2.120	
3	86007.0	OLD SALINAS RIVER CHANNEL	1768	5/8/97	52.0	-8.000	-8.000	-8.000	-9.000	0.800	-8.000	1.040	2.630	1.040	2.460	

1

													44	
STANUM	STATION	IDORG	DATE	LEG	PCB118	PCB128	PCB132	PCB137	PCB138	PCB149	PCB151	PCB153	PCB156	PCB157
30034.1	MONTEREY BAY REFERENCE	100	8/5/92	1.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30034.2	MONTEREY BAY REFERENCE	101	8/5/92	1.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30034.3	MONTEREY BAY REFERENCE	102	8/5/92	1.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30035.1	ELKHORN SLOUGH-SEAL POINT	130	9/4/92	3.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30035.2	ELKHORN SLOUGH-SEAL POINT	131	9/4/92	3.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30035.3	ELKHORN SLOUGH-SEAL POINT	132	9/4/92	3.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30036.1	ELKHORN SLOUGH-SEAL BEND	133	9/11/92	4.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30036. 2	ELKHORN SLOUGH-SEAL BEND	134	9/11/92	4.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30036.3	ELKHORN SLOUGH-SEAL BEND	135	9/11/92	4.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
31001. 0	EGRET LANDING- REF	251	10/9/92	5.0	-8.000	-8.000	-9.000	-9.000	-8.000	-9.000	-9.000	-8.000	-9.000	-9.000
31002.0	HIGHWAY 1 BRIDGE- REF	254	10/23/92	6.0	0.900	-8.000	-9.000	-9.000	0.900	-9.000	-9.000	0.500	-9.000	-9.000
31003. 0	ANDREWS POND- REF	258	11/8/92	7.0	-8.000	-8.000	-9.000	-9.000	-8.000	-9.000	-9.000	-8.000	-9.000	-9.000
31002.0	HWY. 1 BRIDGE- REF	351	11/27/92	.8.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
31003.0	ANDREW'S POND REF.	451	12/8/92	9.0	-8.000	-8.000	-9.000	-9.000	-8.000	-9.000	-9.000	-8.000	-9.000	-9.000
30001. O	SANTA CRUZ YACHT BASIN	501	12/21/92	10.0	19.800	2.700	-9.000	-9.000	14.000	-9.000	-9.000	9.900	-9.000	-9.000
30002.0	MONTEREY YACHT CLUB	-502	12/21/92	10.0	5.100	-8.000	-9.000	-9.000	8.400	-9.000	-9.000	7.200	-9.000	-9.000
30004. O	M.L. YACHT HARBOR	504	12/21/92	10.0	-8.000	-8.000	-9.000	-9.000	0.700	-9.000	-9.000	-8.000	-9.000	-9.000
30005. O	M.L. SOUTH HARBOR	505	12/21/92	10.0	2.100	0.700	-9.000	-9.000	3.100	-9.000	-9.000	1.800	-9.000	-9.000
30006.0	PAJARO RIVER ESTUARY	506	12/21/92	10.0	-8.000	-8.000	-9.000	-9.000	-8.000	-9.000	-9.000	-8.000	-9.000	-9.000
30007.0	SANDHOLDT BRIDGE	507	12/21/92	10.0	1.100	0.600	-9.000	-9.000	3.000	-9.000	-9.000	2.000	-9.000	-9.000
30011. O	SALINAS RIVER LAGOON	511	12/21/92	10.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	9.000	-9.000	-9.000
30012.0	MONTEREY BOATYARD	512	12/21/92	10.0	2.000	0.500	-9.000	-9.000	2.700	-9.000	-9.000	2.200	-9.000	-9.000
30013.0	MONTEREY STORMDRAIN NO.2	513	12/21/92	10.0	0.900	-8.000	-9.000	-9.000	1.800	-9.000	-9.000	1.200	-9.000	-9.000
30014.0	MONTEREY STORMDRAIN NO. 3	514	12/21/92	10.0	3.200	0.900	-9.000	-9.000	4.700	-9.000	-9.000	3.800	-9.000	-9.000
30019. 0	MORO COJO SLOUGH	519	12/22/92	10.0	-8.000	-8.000	-9.000	-9.000	0.700	-9.000	-9.000	-8.000	-9 .000	-9.000
30022.0	SOQUEL LAGOON	522	12/21/92	10.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30023.0	BENNETT SL./ESTUARY	523	12/22/92	10.0	-8.000	-8.000	-9.000	-9.000	-8.000	-9.000	-9.000	-8.000	-9.000	-9.000
30026.0	SCOTT CREEK #26B	526	12/18/92	10.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30027.0	MONTEREY BAY REF. SOUTH	527	12/21/92	10.0	-8.000	-8.000	-9.000	-9.000	-8.000	-9.000	-9.000	-8.000	-9.000	-9.000
30028.0	ELKHORN SL. PORTRERO REF.	528	12/18/92	10.0	-8.000	-8.000	· -9 .000	-9.000	0.900	-9.000	-9.000	0.500	-9.000	-9.000
31002.0	HWY 1 BRIDGE REF.	675	1/14/93	11.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30003.0	SANTA BARBARA HARBOR	503	2/10/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9 .000	-9.000
30008.0	SAN LUIS HARBOR TRANS	508	2/9/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000

Page 7 of 15

PCB CONGENER AND AROCLOR ANALYSIS OF SEDIMENTS (dry weight-ppb-ng/g)	;)
--	----

STANUM	STATION	IDORG	DATE	LEG	PCB118	PCB128	PCB132	PCB137	PCB138	PCB149	PCB151	PCB153	PCB156	PCB157
30009.0	GOLETA SL.	509	2/10/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30010.0	CARPINTERIA MARSH-1	510	2/10/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30020.0	SANTA MARIA RIVER ESTUARY	520	2/9/93	13.0	-8,000	-8.000	-9.000	-9.000	-8.000	-9.000	-9.000	-8.000	-9.000	-9.000
30021.0	SANTA YNEZ RIVER ESTUARY	521	2/11/93	13.0	-9.000	-9.000	· -9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30024.0	MORRO BAY	52,4	2/9/93	13.0	-8.000	-8.000	-9.000	-9.000	-8.000	-9.000	-9.000	-8.000	-9.000	-9.000
30025.0	MORRO BAY-SOUTH BAY	525	2/9/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30029.0	MORRO BAY-MID BAY	530	2/9/93	13.0	-8.000	-8.000	-9.000	-9.000	-8.000	-9.000	-9.000	-8.000	-9.000	-9.000
30030.0	CANADA DE LA GAVIOTA (26d)	531	2/11/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30031.0	CARPINTERIA MARSH-2	532	2/10/93	13.0	-8.000	-8.000	-9.000	-9.000	-8.000	-9.000	-9.000	-8.000	-9.000	-9.000
30032.0	CARPINETRIA MARSH-3	533	2/10/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30033.0	MORRO BAY-FUEL DOCK	534	2/9/93	13.0	-9.000	-9.000	-9 .000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
31002.0	HIGHWAY 1 BRIDGE REF	352	2/23/93	14.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30027.0	MONTEREY BAY REF. SOUTH	1323	5/16/94	32.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30013.0	MONTEREY STORMDRAIN NO.2	1324	5/16/94	32.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30028.0	ELKHORN SL. PORTRERO REF.	1325	5/17/94	32.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30019.0	MORO COJO SLOUGH	1326	5/17/94	32.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
31002.0	HIGHWAY 1 BRIDGE REF	1327	5/17/94	32.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30008.0	SAN LUIS HARBOR TRANS	1328	5/20/94	32.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30029.0	MORRO BAY-MID BAY	1329	5/20/94	32.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30032.0	CARPINETRIA MARSH-3	1330	5/20/94	32.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30004.0	M.L. YACHT HARBOR REPI	1362	6/15/94	33.0	-9 .000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30004.0	M.L. YACHT HARBOR REP2	1363	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30004.0	M.L. YACHT HARBOR REP3	1364	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30007.0	SANDHOLDT BRIDGE REPI	1365	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30007.0	SANDHOLDT BRIDGE REP2	1366	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30007.0	SANDHOLDT BRIDGE REP3	1367	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30023.0	BENNETT SL./ESTUARY REPI	1368	6/16/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30023.0	BENNETT SL./ESTUARY REP2	1369	6/16/94	33.0	-9,000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30023.0	BENNETT SL./ESTUARY REP3	1370	6/16/94	33.0	-9.000	-9.000	-9.000	-9.000	· -9.000	-9.000	-9.000	-9.000	-9.000	-9.000
31001.0	EGRET LANDING REPI	1371	6/15/94	33.0	-9.000	-9.000	-9.000	· -9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
31001.0	EGRET LANDING REP2	1372	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
31001.0	EGRET LANDING REP3	1373	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
31002.0	HIGHWAY 1 BRIDGE REP1	1374	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
	·								· ·					

Page 8 of 15

STANUM	STATION	IDORG	DATE	LEG	PCB118	PCB128	PCB132	PCB137	PCB138	PCB149	PCB151	PCB153	PCB156	PCB157
31002.0	HIGHWAY 1 BRIDGE REP2	1375	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
31002.0	HIGHWAY 1 BRIDGE REP3	1376	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
31003.0	ANDREWS POND REP1	1377	6/16/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
31003.0	ANDREWS POND REP2	1378	6/16/94	33.0	-9.000	-9.000	-9.000	-9 .000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
31003.0	ANDREWS POND REP3	1379	6/16/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30001.0	SANTA CRUZ YACHT BASIN	1588	5/9/96	43.0	2.540	-8.000	0.740	-8.000	2.470	1.110	-8.000	1.470	-8.000	-8.000
35001.0	SANTA CRUZ YACHT BASIN-A3	1589	5/9/96	43.0	2.920	-8.000	0.810	-8.000	3.540	1.590	-8.000	2.280	-8.000	-8.000
35002.0	SANTA CRUZ YACHT BASIN-A9	1590	5/9/96	43.0	-8.000	-8.000	-8.000	-8.000	1.070	0.560	-8.000	-8.000	-8.000	-8.000
35003.0	MONTEREY BOATYARD-LEAD 1	1591	5/9/96	43.0	2.870	0.600	0.920	-8.000	3.360	1.850	-8.000	2.670	-8.000	-8.000
35004.0	MONTEREY BOATYARD-LEAD 2	1592	5/9/96	43.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
35005.0	MONTEREY BOATYARD-LEAD 3	1593	5/9/96	43.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
35006.0	MONTEREY BOATYARD-LEAD 4	1594	5/9/96	43.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30002.0	MONTEREY YACHT CLUB	1596	5/9/96	43.0	1.860	-8.000	-8.000	-8.000	2.570	0.790	-8.000	2.270	-8.000	-8.000
30007.0	SANDHOLDT BRIDGE	1597	5/9/96	43.0	0.850	-8.000	0.560	-8.000	2.270	1.030	-8.000	1.430	-8.000	-8.000
30007.0	SANDHOLDT BRIDGE	1762	5/8/97	52.0	1.020	1.300	1.140	-8.000	2.930	1.540	-8.000	1.130	-8.000	-8.000
360 02.0	TEMBLADERO MOUTH	1763	5/8/97	52.0	1.130	1.880	0.491	-8.000	3.660	1.950	0.957	1.410	-8.000	-8.000
36003.0	CENTRAL TEMBLADERO	1764	5/8/97	52.0	0.456	0.479	0.292	-8.000	1.260	0.588	-8.000	0.424	-8.000	-8.000
36004.0	UPPER TEMBLADERO-SALINAS CITY	1765	5/8/97	52.0	1.690	-8.000	2.740	-8.000	11.100	5.540	-8.000	2.090	-8.000	-8.000
36005.0	ESPINOSA SLOUGH	1766	5/8/97	52.0	0.475	-8.000	0.377	-8.000	2.080	1.130	-8.000	0.295	-8.000	-8.000
36006.0	ALISAL SLOUGH	1767	5/8/97	52.0	1.100	-8.000	1.580	-8.000	6.150	3.6 2 0	-8.000	1.770	-8.000	-8.000
36007.0	OLD SALINAS RIVER CHANNEL	1768	5/8/97	52.0	1.850	1.040	2.160	-8.000	3.850	1.910	-8.000	2.290	-8.000	-8.000

STANIM	STATION	IDORG	DATE	LEG	PCB158	PCB170	PCB174	PCB177	PCB180	PCB183	PCB187	PCB189	PCB194	PCB195
30034.1	MONTEREY BAY REFERENCE	100	8/5/92	1.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30034.2	MONTEREY BAY REFERENCE	100	8/5/92	1.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30034.2	MONTEREY BAY REFERENCE	101	8/5/92	1.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30035.1	ELKHORN SLOUGH-SEAL POINT	130	9/4/92	3.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30035.2	ELKHORN SLOUGH-SEAL POINT	130	9/4/92	3.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30035.3	ELKHORN SLOUGH-SEAL POINT	131	9/4/92	3.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30036.1	ELKHORN SLOUGH-SEAL BEND	132	9/11/92	4.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30036.2	ELKHORN SLOUGH-SEAL BEND	133	9/11/92	4.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30036.3	ELKHORN SLOUGH-SEAL BEND	135	9/11/92	4.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
31001.0	EGRET LANDING- REF	251	10/9/92	5.0	-9.000	-8.000	-9.000	-9.000	-8.000	-9.000	-8.000	-9.000	-9.000	-8.000
31002.0	HIGHWAY I BRIDGE- REF	254	10/23/92	6.0	-9.000	-8.000	-9.000	-9.000	-8.000	-9.000	-8.000	-9.000	-9.000	-8.000
31003.0	ANDREWS POND- REF	258	11/8/92	7.0	-9.000	-8.000	-9.000	-9.000	-8.000	-9.000	-8.000	-9.000	-9.000	-8.000
31002.0	HWY. 1 BRIDGE- REF	351	11/27/92	8.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
31003.0	ANDREW'S POND REF.	451	12/8/92	9.0	-9.000	-8.000	-9.000	-9.000	-8.000	-9.000	-8.000	-9.000	-9.000	-8.000
30001.0	SANTA CRUZ YACHT BASIN	501	12/21/92	10.0	-9.000	2.200	-9.000	-9.000	4.400	-9.000	2.700	-9.000	-9.000	-8.000
30002.0	MONTEREY YACHT CLUB	502	12/21/92	10.0	-9.000	2.800	-9.000	-9.000	7.900	-9.000	4.200	-9.000	-9.000	0.900
30004.0	M.L. YACHT HARBOR	504	12/21/92	10.0	-9.000	-8.000	-9.000	-9.000	-8.000	-9.000	-8.000	-9.000	-9.000	-8.000
30005.0	M.L. SOUTH HARBOR	505	12/21/92	10.0	-9.000	-8.000	-9.000	-9.000	-8.000	-9.000	-8.000	-9.000	-9.000	-8.000
30006.0	PAJARO RIVER ESTUARY	506	12/21/92	10.0	-9.000	-8.000	-9.000	-9.000	-8.000	-9.000	-8.000	-9.000	-9.000	-8.000
30007.0	SANDHOLDT BRIDGE	507	12/21/92	10.0	-9.000	0.700	-9.000	-9.000	1.400	-9.000	0.600	-9.000	-9.000	-8.000
30011.0	SALINAS RIVER LAGOON	511	12/21/92	10.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30012.0	MONTEREY BOATYARD	512	12/21/92	10.0	-9.000	-8.000	-9.000	-9.000	1.000	-9.000	0.700	-9.000	-9.000	-8.000
30013.0	MONTEREY STORMDRAIN NO.2	513	12/21/92	10.0	9.000	-8.000	-9.000	-9.000	0.900	-9.000	-8.000	-9.000	-9.000	-8.000
30014.0	MONTEREY STORMDRAIN NO. 3	514	12/21/92	10.0	-9.000	1.000	-9.000	-9.000	2.000	-9.000	1.300	-9.000	-9.000	-8.000
30019.0	MORO COJO SLOUGH	519	12/22/92	10.0	-9.000	-8.000	-9.000	-9.000	-8.000	-9.000	-8.000	-9.000	-9.000	-8.000
30022.0	SOQUEL LAGOON	522	12/21/92	10.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30023.0	BENNETT SL./ESTUARY	523	12/22/92	10.0	-9.000	-8.000	-9.000	-9.000	-8.000	-9.000	-8.000	-9.000	-9.000	-8.000
30026.0	SCOTT CREEK #26B	526	12/18/92	10.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30027.0	MONTEREY BAY REF. SOUTH	527	12/21/92	10.0	-9.000	-8.000	-9.000	-9.000	-8.000	-9.000	-8.000	-9.000	-9.000	-8.000
30028.0	ELKHORN SL. PORTRERO REF.	528	12/18/92	10.0	-9.000	-8.000	-9.000	-9.000	-8.000	-9.000	-8.000	-9.000	-9.000	-8.000
31002.0	HWY 1 BRIDGE REF.	675	1/14/93	11.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30003.0	SANTA BARBARA HARBOR	503	2/10/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30008.0	SAN LUIS HARBOR TRANS	508	2/9/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9 .000	-9.000

Page 10 of 15

	STANUM	STATION	IDORG	DATE	LEG	PCB158	PCB170	PCB174	PCB177	PCB180	PCB183	PCB187	PCB189	PCB194	PCB195
-	30009.0	GOLETA SL.	509	2/10/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
	30010.0	CARPINTERIA MARSH-1	510	2/10/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
	30020.0	SANTA MARIA RIVER ESTUARY	520	2/9/93	13.0	-9.000	-8.000	-9.000	-9.000	-8.000	-9.000	-8.000	-9.000	-9.000	-8.000
	30021.0	SANTA YNEZ RIVER ESTUARY	521	2/11/93	13.0	-9.000	-9.000	- -9 .000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
	30024.0	MORRO BAY	524	2/9/93	13.0	-9.000	-8.000	-9.000	-9.000	-8.000	-9.000	-8.000	-9.000	-9.000	-8.000
	30025.0	MORRO BAY-SOUTH BAY	525	2/9/93	13.0	-9.000	-9 .000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
	30029.0	MORRO BAY-MID BAY	530	2/9/93	13.0	-9.000	-8.000	-9.000	-9.000	-8.000	-9.000	-8.000	-9.000	-9.000	-8.000
	30030.0	CANADA DE LA GAVIOTA (26d)	531	2/11/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
	30031.0	CARPINTERIA MARSH-2	532	2/10/93	13.0	-9.000	-8.000	-9.000	-9.000	-8.000	-9.000	-8.000	-9.000	-9.000	-8.000
	30032.0	CARPINETRIA MARSH-3	533	2/10/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
	30033.0	MORRO BAY-FUEL DOCK	534	2/9/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
	31002.0	HIGHWAY 1 BRIDGE REF	352	2/23/93	14.0	-9.000	-9.000	-9 .000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
	30027.0	MONTEREY BAY REF. SOUTH	1323	5/16/94	32.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
	30013.0	MONTEREY STORMDRAIN NO.2	1324	5/16/94	32.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
	30028.0	ELKHORN SL. PORTRERO REF.	1325	5/17/94	32.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
	30019.0	MORO COJO SLOUGH	1326	5/17/94	32.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
	31002.0	HIGHWAY 1 BRIDGE REF	1327	5/17/94	32.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
	30008.0	SAN LUIS HARBOR TRANS	1328	5/20/94	32.0	-9.000	- 9.000	-9.000	-9.000	-9.000 .	-9.000	-9.000	-9.000	-9.000	-9.000
	300 2 9.0	MORRO BAY-MID BAY	1329	5/20/94	32.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
	30032.0	CARPINETRIA MARSH-3	1330	5/20/94	32.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
	30004.0	M.L. YACHT HARBOR REPI	1362	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
	30004.0	M.L. YACHT HARBOR REP2	1363	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
	30004.0	M.L. YACHT HARBOR REP3	1364	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
	30007.0	SANDHOLDT BRIDGE REP1	1365	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
	30007.0	SANDHOLDT BRIDGE REP2	1366	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
	30007.0	SANDHOLDT BRIDGE REP3	1367	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
	30023.0	BENNETT SL./ESTUARY REPI	1368	6/16/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
	30023.0	BENNETT SL./ESTUARY REP2	1369	6/16/94	33.0	-9.000	- 9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
	30023.0	BENNETT SL./ESTUARY REP3	1370	6/16/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
	31001.0	EGRET LANDING REP1	1371	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
	31001.0	EGRET LANDING REP2	1372	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
	31001.0	EGRET LANDING REP3	1373	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
	31002.0	HIGHWAY I BRIDGE REPI	1374	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000

STANUM	STATION	IDORG	DATE	LEG	PCB158	PCB170	PCB174	PCB177	PCB180	PCB183	PCB187	PCB189	PCB194	PCB195
31002.0	HIGHWAY 1 BRIDGE REP2	1375	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
31002.0	HIGHWAY 1 BRIDGE REP3	1376	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
31003.0	ANDREWS POND REP1	1377	6/16/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
31003.0	ANDREWS POND REP2	1378	6/16/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
31003.0	ANDREWS POND REP3	1379	6/16/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30001.0	SANTA CRUZ YACHT BASIN	1588	5/9/96	43.0	-8.000	-8.000	-8.000	-8.000	0.590	-8.000	-8.000	-8.000	-8.000	-8.000
35001.0	SANTA CRUZ YACHT BASIN-A3	1589	5/9/96	43.0	-8.000	-8.000	-8.000	-8.000	1.230	-8.000	0.550	-8.000	-8.000	-8.000
35002.0	SANTA CRUZ YACHT BASIN-A9	1590	5/9/96	43.0	-8.000	-8.000	-8.000	-8.000	0.750	-8.000	-8.000	-8.000	-8.000	-8.000
35003.0	MONTEREY BOATYARD-LEAD 1	1591	5/9/96	43.0	-8.000	0.570	-8.000	-8.000	1.450	-8.000	0.850	-8.000	-8.000	-8.000
35004.0	MONTEREY BOATYARD-LEAD 2	1592	5/9/96	43.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
35005.0	MONTEREY BOATY ARD-LEAD 3	1593	5/9/96	43.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
35006.0	MONTEREY BOATY ARD-LEAD 4	1594	5/9/96	43.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000
30002.0	MONTEREY YACHT CLUB	1596	5/9/96	43.0	-8.000	0.500	-8.000	-8.000	1.400	-8.000	0.710	-8.000	-8.000	-8.000
30007.0	SANDHOLDT BRIDGE	1597	5/9/96	43.0	-8.000	0.530	-8.000	-8.000	1.200	-8.000	0.510	-8.000	-8.000	-8.000
30007.0	SANDHOLDT BRIDGE	1762	5/8/97	52.0	0.207	0.574	0.445	0.209	0.886	0.588	0.285	-8.000	0.445	-8.000
36002.0	TEMBLADERO MOUTH	1763	5/8/97	52.0	-8.000	0.723	0.553	0.287	1.210	1.150	0.625	0.251	0.444	0.185
36003.0	CENTRAL TEMBLADERO	1764	5/8/97	52.0	-8.000	-8.000	-8.000	-8.000	0.327	0.308	0.114	-8.000	0.109	-8.000
36004.0	UPPER TEMBLADERO-SALINAS CITY	1765	5/8/97	52.0	0.482	1.320	1.150	-8.000	2.280	-8.000	-8.000	-8.000	0.877	-8.000
36005.0	ESPINOSA SLOUGH	1766	5/8/97	52.0	-8.000	0.274	-8.000	-8.000	0.617	-8.000	-8.000	-8.000	0.544	-8.000
36006.0	ALISAL SLOUGH	1767	5/8/97	52.0	-8.000	0.393	-8.000	-8.000	0.809	-8.000	-8.000	-8.000	0.139	-8.000
36007.0	OLD SALINAS RIVER CHANNEL	1768	5/8/97	52.0	0.437	1.310	0.733	0.323	2.140	0.678	0.706	-8.000	0.411	0.311

Page 12 of 15

٠

1

.

٦

1

PCB CONGENER AND AROCLOR ANALYSIS OF SEDIMENTS (d	ry weight-ppb-ng/g)
---	---------------------

STANUM	STATION	IDORG	DATE	LEG	PCB201	PCB203	PCB206	PCB209	ARO1248	ARO1254	ÅRO1260	ARO5460	РСВВАТСН
30034.1	MONTEREY BAY REFERENCE	100	8/5/92	1.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.00
30034.2	MONTEREY BAY REFERENCE	101	8/5/92	1.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.00
30034.3	MONTEREY BAY REFERENCE	102	8/5/92	1.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.00
30035.1	ELKHORN SLOUGH-SEAL POINT	130	9/4/92	3.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.00
30035.2	ELKHORN SLOUGH-SEAL POINT	131	9/4/92	3.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.00
30035.3	ELKHORN SLOUGH-SEAL POINT	132	9/4/92	3.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.00
30036.1	ELKHORN SLOUGH-SEAL BEND	133	9/11/92	4.0	-9.000	-9 .000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.00
30036.2	ELKHORN SLOUGH-SEAL BEND	134	9/11/92	4.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.00
30036.3	ELKHORN SLOUGH-SEAL BEND	135	9/11/92	4.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.00
31001.0	EGRET LANDING- REF	251	10/9/92	5.0	-9.000	-9 .000	-8.000	-8.000	-9.000	-9.000	-9.000	-9.000	73.50
31002.0	HIGHWAY 1 BRIDGE- REF	254	10/23/92	6.0	-9.000	-9.000	-8.000	-8.000	-9.000	-9.000	-9.000	-9.000	73.90
31003.0	ANDREWS POND- REF	258	11/8/92	7.0	-9.000	-9.000	-8.000	-8.000	-9.000	-9.000	-9.000	-9.000	72.70
31002.0	HWY. 1 BRIDGE- REF	351	11/27/92	8.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.00
31003.0	ANDREW'S POND REF.	451	12/8/92	9.0	-9.000	-9.000	-8.000	-8.000	-9.000	· -9.000	-9.000	-9.000	72.90
30001.0	SANTA CRUZ YACHT BASIN	501	12/21/92	10.0	-9.000	-9.000	-8.000	0.500	-9.000	-9.000	-9.0 00	-9.000	73.30
30002.0	MONTEREY YACHT CLUB	502	12/21/92	10.0	-9.000	-9.000	3.100	1.400	-9.000	-9.000	-9 .000	-9.000	73.40
30004.0	M.L. YACHT HARBOR	504	12/21/92	10.0	-9.000	-9.000	-8.000	-8.000	-9.000	-9.000	-9.0 00	-9.000	72.80
30005.0	M.L. SOUTH HARBOR	505	12/21/92	10.0	-9.000	-9.000	-8.000	-8.000	- 9.000	-9.000	-9.000	-9.000	73.40
30006.0	PAJARO RIVER ESTUARY	506	12/21/92	10.0	-9.000	-9.000	-8.000	-8.000	-9.000	-9.000	-9,000	-9.000	72.80
30007.0	SANDHOLDT BRIDGE	507	12/21/92	10.0	-9.000	-9.000	-8.000	-8.000	-9.000	-9.000	-9.000	-9.000	72.90
30011.0	SALINAS RIVER LAGOON	511	12/21/92	10.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.00
30012.0	MONTEREY BOATYARD	512	12/21/92	10.0	-9.000	-9.000	0.800	1.000	-9.000	-9.000	-9.000	-9.000	72.90
30013.0	MONTEREY STORMDRAIN NO.2	513	12/21/92	10.0	-9.000	-9.000	-8.000	-8.000	-9 .000	-9.000	-9,000	-9.000	73.40
30014.0	MONTEREY STORMDRAIN NO. 3	514	12/21/92	10.0	-9.000	-9.000	0.600	0.800	-9.000	-9.000	-9.000	-9.000	73.30
30019.0	MORO COJO SLOUGH	519	12/22/92	10.0	-9.000	-9.000	-8.000	-8.000	-9.000	-9 .000	-9.000	-9.000	72.90
30022.0	SOQUEL LAGOON	522	12/21/92	10.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.00
30023.0	BENNETT SL./ESTUARY	523	12/22/92	10.0	-9.000	-9.000	-8.000	-8.000	-9.000	-9.000	-9.000	-9.000	72.90
30026.0	SCOTT CREEK #26B	526	12/18/92	10.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.00
30027.0	MONTEREY BAY REF. SOUTH	527	12/21/92	10.0	-9.000	-9.000	-8.000	-8.000	-9.000	-9.000	-9 .000	-9.000	73.30
30028.0	ELKHORN SL. PORTRERO REF.	528	12/18/92	10.0	-9.000	-9.000	-8.000	-8.000	-9.000	-9.000	-9.000	-9.000	73.30
31002.0	HWY I BRIDGE REF.	675	1/14/93	11.0	-9.000	-9.000	-9.000	-9.000	-9 .000	-9 .000	-9.0 00	-9.000	-9.00
30003.0	SANTA BARBARA HARBOR	503	2/10/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.00
30008.0	SAN LUIS HARBOR TRANS	508	2/9/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.00
										•			

Page 13 of 15

STANUM	STATION	IDORG	DATE	LEG	PCB201	PCB203	PCB206	PCB209	ARO1248	ARO1254	ARO1260	ARO5460	PCBBATCH
30009.0	GOLETA SL.	509	2/10/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.00
30010.0	CARPINTERIA MARSH-1	510	2/10/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.00
30020.0	SANTA MARIA RIVER ESTUARY	520	2/9/93	13.0	-9.000	-9.000	-8.000	-8.000	-9.000	-9.000	-9.000	-9.000	72.90
30021.0	SANTA YNEZ RIVER ESTUARY	521	2/11/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.00
30024.0	MORRO BAY	524	2/9/93	13.0	-9.000	-9.000	-8.000	-8.000	-9.000	-9.000	-9.000	-9.000	73.90
30025.0	MORRO BAY-SOUTH BAY	525	2/9/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.00
30029.0	MORRO BAY-MID BAY	530	2/9/93	13.0	- 9.000	-9 .000	-8.000	-8.000	-9.000	-9.000	-9.000	-9.000	73.90
30030.0	CANADA DE LA GAVIOTA (26d)	531	2/11/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9 .000	-9.000	-9.00
30031.0	CARPINTERIA MARSH-2	532	2/10/93	13.0	-9.000	-9.000	-8.000	-8.000	-9.000	-9.000	-9.000	-9.000	72.90
30032.0	CARPINETRIA MARSH-3	533	2/10/93	13.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.00
30033.0	MORRO BAY-FUEL DOCK	534	2/9/93	13.0	-9.000	-9.000	-9.000	-9.000	-9 .000	-9 .000	-9.000	-9.000	-9.00
31002.0	HIGHWAY 1 BRIDGE REF	352	2/23/93	14.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.00
30027.0	MONTEREY BAY REF. SOUTH	1323	5/16/94	32.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9 .000	-9.000	-9.000	-9.00
30013.0	MONTEREY STORMDRAIN NO.2	1324	5/16/94	32.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.00
30028.0	ELKHORN SL. PORTRERO REF.	1325	5/17/94	32.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.00
30019.0	MORO COJO SLOUGH	1326	5/17/94	32.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.00
31002.0	HIGHWAY 1 BRIDGE REF	1327	5/17/94	32.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	- 9.00
30008.0	SAN LUIS HARBOR TRANS	1328	5/20/94	32.0	-9.000	-9.000	-9 .000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.00
30029.0	MORRO BAY-MID BAY	1329	5/20/94	32.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.00
30032.0	CARPINETRIA MARSH-3	1330	5/20/94	32.0	-9 .000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.00
30004.0	M.L. YACHT HARBOR REPI	1362	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.00
30004.0	M.L. YACHT HARBOR REP2	1363	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.00
30004.0	M.L. YACHT HARBOR REP3	1364	6/15/94	33.0	-9.000	-9.000	-9.000	- 9.000	-9.000	-9.000	-9.000	-9.000	-9.00
30007.0	SANDHOLDT BRIDGE REPI	1365	6/15/94	33.0	-9.000	-9 .000	-9.000	-9.000	-9.000	-9 .000	-9.000	-9.000	-9.00
30007.0	SANDHOLDT BRIDGE REP2	1366	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.00
30007.0	SANDHOLDT BRIDGE REP3	1367	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.00
30023.0	BENNETT SL./ESTUARY REPI	1368	6/16/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.00
30023.0	BENNETT SL./ESTUARY REP2	1369	6/16/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.00
30023.0	BENNETT SL./ESTUARY REP3	1370	6/16/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.00
31001.0	EGRET LANDING REP1	1371	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9 .000	-9.00
31001.0	EGRET LANDING REP2	1372	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9 .000	-9.000	-9.000	-9.00
31001.0	EGRET LANDING REP3	1373	6/15/94	33.0	-9.000	-9.000	-9.000	-9 .000	-9.000	-9 .000	-9 .000	-9.000	-9.00
31002.0	HIGHWAY 1 BRIDGE REP1	1374	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.00

Page 14 of 15

I CD CONOLINIX AND ANOCLON ANAL I DID OF DEDIMENTID (MY WCRIN-PRO-19/2)	PCB CONGENER AND AROCLOR ANALY	YSIS OF SEDIMENTS (dry weight-ppb-ng/g)
---	--------------------------------	---

e

1

STANUM	STATION	IDORG	DATE	LEG	PCB201	PCB203	PCB206	PCB209	ARO1248	AR01254	ARO1260	ARO5460	PCBBATCH
31002.0	HIGHWAY 1 BRIDGE REP2	1375	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.00
31002.0	HIGHWAY 1 BRIDGE REP3	1376	6/15/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.00
31003.0	ANDREWS POND REPI	1377	6/16/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.00
31003.0	ANDREWS POND REP2	1378	6/16/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9 .000	-9.000	-9.00
31003.0	ANDREWS POND REP3	1379	6/16/94	33.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.00
30001.0	SANTA CRUZ YACHT BASIN	1588	5/9/96	43.0	-8.000	-8.000	-8.000	-8.000	23.000	36.000	6.100	-8.000	75.8.05
35001.0	SANTA CRUZ YACHT BASIN-A3	1589	5/9/96	43.0	-8.000	-8.000	-8.000	-8.000	24.000	42.000	16.000	13.900	85.8.01
35002.0	SANTA CRUZ YACHT BASIN-A9	1590	5/9/96	43.0	-8.000	-8.000	-8.000	-8.000	24.000	7.800	11.000	15.000	85.8.01
35003.0	MONTEREY BOATYARD-LEAD 1	1591	5/9/96	43.0	-8.000	-8.000	-8.000	-8.000	21.000	37.000	İ 5.00 0	88.800	75.S.05
35004.0	MONTEREY BOATY ARD-LEAD 2	1592	5/9/96	43.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9.0 00	-9.000	-9.00
35005.0	MONTEREY BOATY ARD-LEAD 3	1593	5/9/96	43.0	-9.000	-9.000	-9.000	-9.000	-9.000	-9.000	-9 .000	-9.000	-9.00
35006.0	MONTEREY BOATYARD-LEAD 4	1594	5/9/96	43.0	-9.000	-9.000	-9.000	-9,000	-9.000	-9.000	-9.0 00	-9.000	-9.00
30002.0	MONTEREY YACHT CLUB	1596	5/9/96	43.0	-8.000	-8.000	-8.000	1.330	14.000	25.000	13.000	89.000	75.8.05
30007.0	SANDHOLDT BRIDGE	1597	5/9/96	43.0	-8.000	-8.000	-8.000	-8.000	-8.000	29.000	10.000	10.600	75.S.05
30007.0	SANDHOLDT BRIDGE	1762	5/8/97	52.0	0.299	0.583	0.103	0.063	-8.000	24.600	-8.0 00	-9.000	97-319
36002.0	TEMBLADERO MOUTH	1763	5/8/97	52.0	0.288	0.332	0.140	0.091	-8.000	31.400	-8.000	-9.000	97-319
36003.0	CENTRAL TEMBLADERO	1764	5/8/97	52.0	-8.000	-8.000	-8.000	-8.000	-8.000	11.200	-8.000	-9.000	97-319
36004.0	UPPER TEMBLADERO-SALINAS CITY	1765	5/8/97	52.0	0.622	0.828	0.220	0.196	-8.000	85.400	-8.000	-9.000	97-319
36005.0	ESPINOSA SLOUGH	1766	5/8/97	52.0	-8.000	-8.000	-8.000	-8.000	-8.000	28.000	-8.000	-9.000	97-319
36006.0	ALISAL SLOUGH	1767	5/8/97	52.0	-8.000	-8.000	-8.000	-8.000	-8.000	52.600	-8.000	-9.000	97-319
36007.0	OLD SALINAS RIVER CHANNEL	1768	5/8/97	52.0	0.429	0.657	0.122	0.079	-8.000	39.000	-8.000	-9.000	97-319

SECTION VI

PAH Analysis of Sediments

STANUM	STATION	IDORG	DATE	LEG	ACY	ACE	ANT	BAA	BAP	BBF	BKF	BGP	BEP	BPH	CHR
30034.1	MONTEREY BAY REFERENCE	100	8/5/92	1.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30034.2	MONTEREY BAY REFERENCE	101	8/5/92	1.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30034.3	MONTEREY BAY REFERENCE	102	8/5/92	1.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30035.1	ELKHORN SLOUGH-SEAL POINT	130	9/4/92	3.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30035.2	ELKHORN SLOUGH-SEAL POINT	131	9/4/92	3.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30035.3	ELKHORN SLOUGH-SEAL POINT	132	9/4/92	3.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30036.1	ELKHORN SLOUGH-SEAL BEND	133	9/11/92	4.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30036.2	ELKHORN SLOUGH-SEAL BEND	134	9/11/92	4.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30036.3	ELKHORN SLOUGH-SEAL BEND	135	9/11/92	4.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
31001.0	EGRET LANDING- REF	251	10/9/92	5.0	-9.00	-8.00	-8.00	5.50	6.40	-9.00	-9.00	-9.00	7.70	-8.00	8.30
31002.0	HIGHWAY 1 BRIDGE- REF	254	10/23/92	6.0	-9.00	-8.00	-8.00	9.90	10.10	-9.00	-9.00	-9.00	13.30	-8.00	i1.30
31003.0	ANDREWS POND- REF	258	11/8/92	7.0	-9.00	-8.00	-8.00	7.40	7.80	-9.00	-9.00	-9.00	11.30	-8.00	12.20
31002.0	HWY. 1 BRIDGE- REF	351	11/27/92	8.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
31003.0	ANDREW'S POND REF.	451	12/8/92	9.0	-9.00	7.40	5.90	257.00	481.00	-9.00	-9.00	-9.00	352.00	-8.00	304.00
30001.0	SANTA CRUZ YACHT BASIN	501	12/21/92	10.0	-9.00	77.10	97.10	357.00	324.00	-9.00	-9.00	-9.00	305.00	8.80	489.00
30002.0	MONTEREY YACHT CLUB	502	12/21/92	10.0	-9.00	32.30	633.00	1080.00	1290.00	-9.00	-9.00	-9.00	926.00	13.30	1600.00
30004.0	M.L. YACHT HARBOR	504	12/21/92	10.0	-9.00	9.80	38.90	63.20	46.20	-9.00	-9.00	-9.00	49.90	-8.00	127.00
30005.0	M.L. SOUTH HARBOR	505	12/21/92	10.0	-9.00	-8.00	5.70	17.70	14.30	-9.00	-9.00	-9.00	16.70	-8.00	22.30
30006.0	PAJARO RIVER ESTUARY	506	12/21/92	10.0	-9.00	-8.00	86.80	-8.00	-8.00	-9.00	-9.00	-9.00	-8.00	-8.00	-8.00
30007.0	SANDHOLDT BRIDGE	507	12/21/92	10.0	-9.00	12.80	46.00	67.60	59.20	-9.00	-9.00	-9.00	77.60	5.90	113.00
30011.0	SALINAS RIVER LAGOON	- 511	12/21/92	10.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30012.0	MONTEREY BOATYARD	512	12/21/92	10.0	-9.00	40.50	104.00	392.00	455.00	-9.00	-9.00	-9.00	344.00	-8.00	419.00
30013.0	MONTEREY STORMDRAIN NO.2	513	12/21/92	10.0	-9.00	-8.00	62.40	114.00	109.00	-9.00	-9.00	-9.00	104.00	-8.00	186.00
30014.0	MONTEREY STORMDRAIN NO. 3	514	12/21/92	10.0	-9.00	32.40	256.00	610.00	783.00	-9.00	-9.00	-9.00	534.00	11.50	638.00
30019.0	MORO COJO SLOUGH	519	12/22/92	10.0	-9.00	-8.00	-8.00	9.10	12.90	-9.00	-9.00	-9.00	18.70	-8.00	15.40
30022.0	SOQUEL LAGOON	522	12/21/92	10.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30023.0	BENNETT SL./ESTUARY	523	12/22/92	10.0	-9.00	-8.00	-8.00	6.40	-8.00	-9.00	-9.00	-9.00	10.30	-8.00	11.40
30026.0	SCOTT CREEK #26B	526	12/18/92	10.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30027.0	MONTEREY BAY REF. SOUTH	527	12/21/92	10.0	-9.00	-8.00	-8.00	-8.00	-8.00	-9.00	-9.00	-9.00	-8.00	-8.00	-8.00
30028.0	ELKHORN SL. PORTRERO REF.	528	12/18/92	10.0	-9.00	-8.00	-8.00	11.40	115.00	-9.00	-9.00	-9.00	78.10	-8.00	12.40
31002.0	HWY I BRIDGE REF.	-675	1/14/93	11.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9 .00	-9.00	-9.00	-9.00
30003.0	SANTA BARBARA HARBOR	503	2/10/93	13.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30008.0	SAN LUIS HARBOR TRANS	508	2/9/93	13.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00

Page 1 of 9

STANUM	STATION	IDORG	DATE	LEG	ACY	ACE	ANT	BAA	BAP	BBF	BKF	BGP	BEP	BPH	CHR
30009.0	GOLETA SL.	509	2/10/93	13.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30010.0	CARPINTERIA MARSH-1	510	2/10/93	13.0	-9.00	-9 .00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30020.0	SANTA MARIA RIVER ESTUARY	. 520	2/9/93	13.0	-9.00	-8.00	-8.00	12.10	9.70	-9.00	-9.00	-9.00	25.10	-8.00	26.20
30021.0	SANTA YNEZ RIVER ESTUARY	521	2/11/93	13.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30024.0	MORRO BAY	524	2/9/93	13.0	-9.00	7.10	7.00	64.60	40.50	-9.00	-9.00	-9.00	52.50	-8.00	124.00
30025.0	MORRO BAY-SOUTH BAY	525	2/9/93	13.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30029.0	MORRO BAY-MID BAY	530	2/9/93	13.0	-9.00	-8.00	-8.00	7.40	9.10	-9.00	-9.00	-9.00	9.80	-8.00	7.20
30030.0	CANADA DE LA GAVIOTA (26d)	531	2/11/93	13.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30031.0	CARPINTERIA MARSH-2	532	2/10/93	13.0	-9.00	-8.00	-8.00	15.90	20.50	-9.00	-9.00	-9.00	39.40	-8.00	35.90
30032.0	CARPINETRIA MARSH-3	533	2/10/93	13.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30033.0	MORRO BAY-FUEL DOCK	534	2/9/93	13.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.0 0	-9.00
31002.0	HIGHWAY 1 BRIDGE REF	352	2/23/93	14.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30027.0	MONTEREY BAY REF. SOUTH	1323	5/16/94	32.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30013.0	MONTEREY STORMDRAIN NO.2	1324	5/16/94	32.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30028.0	ELKHORN SL. PORTRERO REF.	1325	5/17/94	32.0	-9.00	-9.00	-9 .00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30019.0	MORO COJO SLOUGH	1326	5/17/94	32.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
31002.0	HIGHWAY 1 BRIDGE REF	1327	5/17/94	32.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30008.0	SAN LUIS HARBOR TRANS	1328	5/20/94	32.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30029.0	MORRO BAY-MID BAY	1329	5/20/94	32.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30032.0	CARPINETRIA MARSH-3	1330	5/20/94	32.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30004.0	M.L. YACHT HARBOR REPI	1362	6/15/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30004.0	M.L. YACHT HARBOR REP2	1363	6/15/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30004.0	M.L. YACHT HARBOR REP3	1364	6/15/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30007.0	SANDHOLDT BRIDGE REPI	1365	6/15/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30007.0	SANDHOLDT BRIDGE REP2	1366	6/15/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9 .00	-9.00	-9.00	-9.00
30007.0	SANDHOLDT BRIDGE REP3	1367	6/15/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9 .00	-9.00	-9.00
30023.0	BENNETT SL./ESTUARY REPI	1368	6/16/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30023.0	BENNETT SL./ESTUARY REP2	1369	6/16/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30023.0	BENNETT SL./ESTUARY REP3	1370	6/16/94	33.0	-9.00	-9.00	-9.00	-9 .00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
31001.0	EGRET LANDING REPI	1371	6/15/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
31001.0	EGRET LANDING REP2	1372	6/15/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
31001.0	EGRET LANDING REP3	1373	6/15/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
31002.0	HIGHWAY 1 BRIDGE REP1	1374	6/15/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00

Page 2 of 9

18

ı.

2

ι

														,	
STANUM	STATION	IDORG	DATE	LEG	ACY	ACE	ANT	BAA	BAP	BBF	BKF	BGP	BEP	BPH	CHR
31002.0	HIGHWAY I BRIDGE REP2	1375	6/15/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
31002.0	HIGHWAY 1 BRIDGE REP3	1376	6/15/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
31003.0	ANDREWS POND REPI	1377	6/16/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
31003.0	ANDREWS POND REP2	1378	6/16/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
31003.0	ANDREWS POND REP3	1379	6/16/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30001.0	SANTA CRUZ YACHT BASIN	1588	5/9/96	43.0	-8.00	13.70	22.50	79.50	104.00	174.00	58.20	66.70	83.20	5.79	129.00
35001.0	SANTA CRUZ YACHT BASIN-A3	1589	5/9/96	43.0	31.40	548.00	185.00	706.00	334.00	737.00	309.00	195.00	325.00	61.90	795.00
35002.0	SANTA CRUZ YACHT BASIN-A9	1590	5/9/96	43.0	-8.00	5.69	-8.00	42.30	51.40	126.00	48.30	87.20	70.70	-8.00	81.50
35003.0	MONTEREY BOATYARD-LEAD 1	1591	5/9/96	43.0	77.90	36.30	172.00	666.00	849.00	1030.00	289.00	507.00	523.00	15.00	585.00
35004.0	MONTEREY BOATYARD-LEAD 2	1592	5/9/96	43.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
35005.0	MONTEREY BOATY ARD-LEAD 3	1593	5/9/96	43.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
35006.0	MONTEREY BOATYARD-LEAD 4	1594	5/9/96	43.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9 .00	-9.00	-9.00	-9.00	-9.00
30002.0	MONTEREY YACHT CLUB	1596	5/9/96	43.0	45.60	24.80	207.00	395.00	543.00	847.00	285.00	272.00	406.00	5.28	603.00
30007.0	SANDHOLDT BRIDGE	1597	5/9/96	43.0	-8.00	11.60	17.10	41.80	66.20	82.70	26.50	73.90	50.30	5.39	45.60
30007.0	SANDHOLDT BRIDGE	1762	5/8/97	52.0	2.09	10.30	8.40	47.00	21.10	88.10	26.30	81.20	59.50	4.18	96.50
36002.0	TEMBLADERO MOUTH	1763	5/8/97	52.0	1.49	2.81	3.70	19.90	23.10	55.90	15.60	60.30	43.10	3.00	32.20
36003.0	CENTRAL TEMBLADERO	1764	5/8/97	52.0	0.62	1.15	1.76	9.16	18.40	24.00	6.08	27.80	18.30	0.55	12.10
36004.0	UPPER TEMBLADERO-SALINAS CITY	1765	5/8/97	52.0	21.10	29.90	45.00	268.00	467.00	640.00	172.00	717.00	492.00	17.40	355.00
36005.0	ESPINOSA SLOUGH	1766	5/8/97	52.0	0.83	1.50	2.35	4.26	3.73	9.74	2.38	i3.50	9.77	4.59	10.80
36006.0	ALISAL SLOUGH	1767	5/8/97	52.0	-8.00	-8.00	0.53	1.34	1.21	2.83	0.42	2.74	2.44	2.51	3.45
36007.0	OLD SALINAS RIVER CHANNEL	1768	5/8/97	52.0	-8.00	-8.00	-8.00	2.93	2.51	6.26	1.54	6.87	5.25	3.67	8.13

ä

1

STANUM	STATION	IDORG	DATE	LEG	COR	DBA	DBT	DMN	FLA	FLU	IND	MNP1	MNP2	MPH1	NPH	PHN
30034.1	MONTEREY BAY REFERENCE	100	8/5/92	1.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9 .00	-9.00	-9.00	-9.00
30034.2	MONTEREY BAY REFERENCE	101	8/5/92	1.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30034.3	MONTEREY BAY REFERENCE	102	8/5/92	1.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30035.1	ELKHORN SLOUGH-SEAL POINT	130	9/4/92	3.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30035.2	ELKHORN SLOUGH-SEAL POINT	131	9/4/92	3.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9 .00	-9.00	-9.00	-9.00	-9.00	-9.00
30035.3	ELKHORN SLOUGH-SEAL POINT	132	9/4/92	3.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9 .00
30036.1	ELKHORN SLOUGH-SEAL BEND	133	9/11/92	4.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30036.2	ELKHORN SLOUGH-SEAL BEND	134	9/11/92	4.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30036.3	ELKHORN SLOUGH-SEAL BEND	135	9/11/92	4.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
31001.0	EGRET LANDING- REF	251	10/9/92	5.0	-9.00	-8.00	-9.00	-8.00	14.30	-8.00	-9 .00	6.50	6.50	-8.00	-9.00	10.80
31002.0	HIGHWAY 1 BRIDGE- REF	254	10/23/92	6.0	-9.00	-8.00	-9.00	-8.00	22.60	-8.00	-9.00	-8.00	-8.00	-8.00	-9.00	20.50
31003.0	ANDREWS POND- REF	258	11/8/92	7.0	-9.00	-8.00	-9.00	-8.00	21.70	-8.00	-9.00	5.40	7.30	-8.00	-9.00	20.20
31002.0	HWY. 1 BRIDGE- REF	351	11/27/92	8.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9 .00	-9.00	-9.00	-9.00	-9.00	-9.00
31003.0	ANDREW'S POND REF.	451	12/8/92	9.0	-9.00	110.00	-9.00	-8.00	196.00	-8.00	-9 .00	-8.00	7.10	5.50	-9.00	26.80
30001.0	SANTA CRUZ YACHT BASIN	501	12/21/92	10.0	-9.00	64.70	•9.00	6.30	1770.00	64.50	-9 .00	16.80	20.30	66.10	-9.00	883.00
30002.0	MONTEREY YACHT CLUB	502	12/21/92	10.0	-9.00	187.00	-9.00	14.40	2620.00	136.00	-9 .00	20.70	38.90	226.00	-9.00	1080.00
30004.0	M.L. YACHT HARBOR	504	12/21/92	10.0	-9.00	8.30	-9.00	Ő0.8-	206.00	12.20	-9 .00	5.50	9.20	10.80	-9.00	77.50
30005.0	M.L. SOUTH HARBOR	505	12/21/92	10.0	-9.00	-8.00	-9.00	-8.00	65.80	-8.00	-9.00	-8.00	6.00	-8.00	-9.00	28.00
30006.0	PAJARO RIVER ESTUARY	506	12/21/92	10.0	-9.00	-8.00	-9.00	-8.00	-8.00	-8.00	-9.00	-8.00	-8.00	-8.00	-9.00	-8.00
30007.0	SANDHOLDT BRIDGE	507	12/21/92	10.0	-9.00	13.60	-9.00	5.00	306.00	19.70	-9.00	7.50	11.70	12.70	-9.00	92.60
30011.0	SALINAS RIVER LAGOON	511	12/21/92	10.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9 .00	-9.00	-9.00	-9.00
30012.0	MONTEREY BOATYARD	512	12/21/92	10.0	-9.00	84.70	-9.00	8.80	1020.00	49.50	-9 .00	13.60	18.30	107.00	-9.00	587.00
30013.0	MONTEREY STORMDRAIN NO.2	513	12/21/92	10.0	-9.00	15.50	-9.00	-8.00	516.00	14.60	-9 .00	-8.00	-8.00	29.80	-9.00	151.00
30014.0	MONTEREY STORMDRAIN NO. 3	514	12/21/92	10.0	-9.00	130.00	-9.00	12.90	2000.00	107.00	-9 .00	26.80	37.30	249.00	-9.00	1240.00
30019.0	MORO COJO SLOUGH	519	12/22/92	10.0	-9.00	6.80	-9.00	-8.00	40.20	-8.00	-9.00	5.40	8.10	-8.00	-9.00	16.60
30022.0	SOQUEL LAGOON -	522	12/21/92	10.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9 .00	-9.00	-9.00	-9.00	-9.00	-9.00
30023.0	BENNETT SL./ESTUARY	523	12/22/92	10.0	-9.00	-8.00	-9.00	-8.00	6.80	-8.00	-9 .00	-8.00	-8.00	-8.00	-9.00	-8.00
30026.0	SCOTT CREEK #26B	526	12/18/92	10.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9 .00	-9.00	-9.00	-9 .00	-9.00	-9.00	-9.00
30027.0	MONTEREY BAY REF. SOUTH	527	12/21/92	10.0	-9.00	-8.00	-9.00	-8.00	7.00	-8.00	-9.00	-8.00	-8.00	-8.00	-9.00	7.10
30028.0	ELKHORN SL. PORTRERO REF.	528	12/18/92	10.0	-9.00	24.00	-9.00	-8.00	41.40	-8.00	-9 .00	-8.00	6.70	-8.00	-9.00	16.90
31002.0	HWY 1 BRIDGE REF.	675	1/14/93	11.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9 .00	-9 .00	-9.00	-9 .00	-9.00	-9.00	-9.00
30003.0	SANTA BARBARA HARBOR	503	2/10/93	13.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9 .00	-9.00	-9.00	-9.00	-9.00	-9.00
30008.0	SAN LUIS HARBOR TRANS	508	2/9/93	13.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9 .00	-9.00	-9.00	-9.00	-9.00	-9.00

Page 4 of 9

3

	·								0.07					• •	•	
STANUM	STATION	IDORG	DATE	LEG	COR	DBA	DBT	DMN	FLA	FLU	IND	MNP1	MNP2	MPH1	NPH	PHN
30009.0	GOLETA SL.	509	2/10/93	13.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30010.0	CARPINTERIA MARSH-1	510	2/10/93	13.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9 .00	-9.00	-9.00	-9.00
30020.0	SANTA MARIA RIVER ESTUARY	520	2/9/93	13.0	-9.00	21.80	-9.00	-8.00	10.20	-8.00	-9.00	-8.00	-8.00	-8.00	-9.00	10.40
30021.0	SANTA YNEZ RIVER ESTUARY	521	2/11/93	13.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30024.0	MORRO BAY	524	2/9/93	13.0	-9.00	13.80	-9.00	-8.00	343.00	8.40	-9.00	-8.00	5.30	10.10	-9.00	83.10
30025.0	MORRO BAY-SOUTH BAY	525	2/9/93	13.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30029.0	MORRO BAY-MID BAY	• 530	2/9/93	13.0	-9.00	-8.00	-9.00	-8.00	8.70	-8.00	-9.00	-8.00	-8.00	-8.00	-9.00	5.80
30030.0	CANADA DE LA GAVIOTA (26d)	531	2/11/93	13.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30031.0	CARPINTERIA MARSH-2	532	2/10/93	13.0	-9.00	-8.00	-9.00	-8.00	52.00	-8.00	-9.00	-8.00	-8.00	-8.00	-9.00	27.10
30032.0	CARPINETRIA MARSH-3	533	2/10/93	13.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30033.0	MORRO BAY-FUEL DOCK	534	2/9/93	13.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
31002.0	HIGHWAY 1 BRIDGE REF	352	2/23/93	14.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30027.0	MONTEREY BAY REF. SOUTH	1323	5/16/94	32.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30013.0	MONTEREY STORMDRAIN NO.2	1324	5/16/94	32.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9 .00	-9.00	-9.00	-9.00	-9.00
30028.0	ELKHORN SL. PORTRERO REF.	1325	5/17/94	32.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9 .00	-9.00	-9.00	-9.00
30019.0	MORO COJO SLOUGH	1326	5/17/94	32.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
31002.0	HIGHWAY 1 BRIDGE REF	1327	5/17/94	32.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9 .00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30008.0	SAN LUIS HARBOR TRANS	1328	5/20/94	32.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30029.0	MORRO BAY-MID BAY	1329	5/20/94	32.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9 .00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30032.0	CARPINETRIA MARSH-3	1330	5/20/94	32.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30004.0	M.L. YACHT HARBOR REP1	1362	6/15/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30004.0	M.L. YACHT HARBOR REP2	1363	6/15/94	33.0	-9.00	-9.00	-9 .00	-9.00	-9.00	-9 .00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30004.0	M.L. YACHT HARBOR REP3	1364	6/15/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30007.0	SANDHOLDT BRIDGE REPI	1365	6/15/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9 .00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30007.0	SANDHOLDT BRIDGE REP2	1366	6/15/94	33.0	-9.00	-9.00	-9 .00	-9.00	-9.00	-9 .00	-9.00	-9.00	-9.00	-9.00	-9 .00	-9.00
30007.0	SANDHOLDT BRIDGE REP3	1367	6/15/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9 .00	-9.00	-9 .00	-9.00	-9.00	-9.00
30023.0	BENNETT SL./ESTUARY REPI	1368	6/16/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30023.0	BENNETT SL/ESTUARY REP2	1369	6/16/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30023.0	BENNETT SL./ESTUARY REP3	1370	6/16/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9 .00	-9 .00	-9 .00	-9.00	-9.00	-9.00
31001.0	EGRET LANDING REP1	1371	6/15/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
31001.0	EGRET LANDING REP2	1372	6/15/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
31001.0	EGRET LANDING REP3	1373	6/15/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
31002.0	HIGHWAY 1 BRIDGE REP1	1374	6/15/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9 .00	-9.00	-9 .00	-9.00	-9.00	-9.00

>

1

5

1

Page 5 of 9

Sindex Infer Infer <t< th=""><th>STANUM</th><th>STATION</th><th>IDORG</th><th>DATE</th><th>LEG</th><th>COR</th><th>DBA</th><th>DBT</th><th>DMN</th><th>FLA</th><th>FLU</th><th>IND</th><th>MNP1</th><th>MNP2</th><th>MPH1</th><th>NPH</th><th>PHN</th></t<>	STANUM	STATION	IDORG	DATE	LEG	COR	DBA	DBT	DMN	FLA	FLU	IND	MNP1	MNP2	MPH1	NPH	PHN
31003.0 ANDREWS POND REP1 137 61/6/4 33.0 -9.00 <td>31002.0</td> <td>HIGHWAY I BRIDGE REP2</td> <td>1375</td> <td>6/15/94</td> <td>33.0</td> <td>-9.00</td>	31002.0	HIGHWAY I BRIDGE REP2	1375	6/15/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
31003.0 ANDREWS POND REP2 1378 6/16/94 33.0 9.00	31002.0	HIGHWAY 1 BRIDGE REP3	1376	6/15/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
31003.0 ANDREWS POND REP3 1379 6/16/94 33.0 -9.00<	31003.0	ANDREWS POND REPI	1377	6/16/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30001.0 SANTA CRUZ YACHT BASIN 1588 5/9/96 43.0 28.60 18.40 610 -8.00 77.00 299.00 37.00 20.50 187.00 88.70 71.30 50.80 187.00 10.00 1	31003.0	ANDREWS POND REP2	1378	6/16/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
35001.0 SANTA CRUZ YACHT BASIN-A3 1589 5/9/96 43.0 72.00 64.70 139.00 27.60 299.00 375.00 187.0 187.0 89.70 71.30 50.80 187.0 35001.0 SANTA CRUZ YACHT BASIN-A9 1590 5/9/96 43.0 32.00 64.70 139.00 27.60 299.00 375.00 187.00 89.70 71.30 50.80 187.00 35002.0 SANTA CRUZ YACHT BASIN-A9 1590 5/9/96 43.0 165.00 134.00 50.90 21.40 1490.00 112.00 583.00 47.40 49.50 137.00 75.40 1060. 35004.0 MONTEREY BOATYARD-LEAD 2 1592 5/9/96 43.0 -9.00	31003.0	ANDREWS POND REP3	1379	6/16/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9 .00	-9.00	-9.00	-9.00	-9.00
35010 SANTA CRUZ YACHT BASIN-A9 1590 5/9/96 43.0 32.90 9.38 -8.00 155.00 -75.40 5.03 -8.00 6.06 7.09 61. 35002.0 SANTA CRUZ YACHT BASIN-A9 1590 5/9/96 43.0 165.00 134.00 50.90 -160 112.00 583.00 47.40 49.50 137.00 75.40 1060 35002.0 MONTEREY BOATYARD-LEAD 1 1591 5/9/96 43.0 -9.00 </td <td>30001.0</td> <td>SANTA CRUZ YACHT BASIN</td> <td>1588</td> <td>5/9/96</td> <td>43.0</td> <td>28.60</td> <td>18.40</td> <td>6.10</td> <td>-8.00</td> <td>278.00</td> <td>9.28</td> <td>85.80</td> <td>5.25</td> <td>7.22</td> <td>11.00</td> <td>21.60</td> <td>86.30</td>	30001.0	SANTA CRUZ YACHT BASIN	1588	5/9/96	43.0	28.60	18.40	6.10	-8.00	278.00	9.28	85.80	5.25	7.22	11.00	21.60	86.30
3500.1.0 MONTEREY BOATYARD-LEAD 1 1591 5/9/6 43.0 165.00 134.00 50.90 21.40 1490.00 112.00 583.00 47.40 49.50 137.00 75.40 1060 35003.0 MONTEREY BOATYARD-LEAD 1 1591 5/9/96 43.0 -9.00 <	35001.0	SANTA CRUZ YACHT BASIN-A3	1589	5/9/96	43.0	72.00	64.70	139.00	27.60	2990.00	375.00	205.00	187.00	89.70	71.30	50.80	1870.00
35004.0 MONTEREY BOATYARD-LEAD 2 1592 5/9/96 43.0 -9.00	35002.0	SANTA CRUZ YACHT BASIN-A9	1590	5/9/96	43.0	32.90	9.38	-8.00	-8.00	155.00	-8.00	75.40	5.03	-8.00	6.06	7.09	61.30
35004.0 MONTEREY BOATYARD-LEAD 3 1593 5/9/96 43.0 -9.00	35003.0	MONTEREY BOATYARD-LEAD 1	1591	5/9/96	43.0	165.00	134.00	50.90	21.40	1490.00	112.00	583.00	47.40	49.50	137.00	75.40	1060.00
35006.0 MONTEREY BOATYARD-LEAD 4 1594 5/9/96 43.0 -9.00 10.00 333.00 <td< td=""><td>35004.0</td><td>MONTEREY BOATYARD-LEAD 2</td><td>1592</td><td>5/9/96</td><td>43.0</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td></td<>	35004.0	MONTEREY BOATYARD-LEAD 2	1592	5/9/96	43.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30002.0 MONTEREY YACHT CLUB 1596 5/9/96 43.0 85.10 80.70 31.90 5.08 1080.00 65.00 333.00 10.50 13.80 92.50 18.30 689. 30002.0 MONTEREY YACHT CLUB 1596 5/9/96 43.0 39.00 5.83 6.41 5.05 158.00 11.20 71.70 7.13 11.70 11.90 11.00 106. 30007.0 SANDHOLDT BRIDGE 1762 5/8/97 52.0 20.70 7.34 6.87 7.78 201.00 9.79 68.00 7.36 13.60 8.01 13.70 87. 36002.0 TEMBLADERO MOUTH 1763 5/8/97 52.0 18.20 4.50 2.77 6.22 94.70 2.70 47.70 5.95 10.60 5.09 11.00 38. 36003.0 CENTRAL TEMBLADERO 1764 5/8/97 52.0 9.77 1.84 1.20 0.73 36.60 0.79 22.70 11.50 16.10 1.19 7.82 11. 36005.0 ESPINOSA SLOUGH 1765 5/8/97 <t< td=""><td>35005.0</td><td>MONTEREY BOATYARD-LEAD 3</td><td>1593</td><td>5/9/96</td><td>43.0</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td><td>-9.00</td></t<>	35005.0	MONTEREY BOATYARD-LEAD 3	1593	5/9/96	43.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9 .00	-9.00	-9.00	-9.00	-9.00
30007.0 SANDHOLDT BRIDGE 1597 5/9/96 43.0 39.00 5.83 6.41 5.05 158.00 11.20 71.70 7.13 11.70 11.90 11.00 106. 30007.0 SANDHOLDT BRIDGE 1762 5/8/97 52.0 20.70 7.34 6.87 7.78 201.00 9.79 68.00 7.36 13.60 8.01 13.70 87. 36002.0 TEMBLADERO MOUTH 1763 5/8/97 52.0 18.20 4.50 2.77 6.22 94.70 2.70 47.70 5.95 10.60 5.09 11.00 38. 36003.0 CENTRAL TEMBLADERO 1764 5/8/97 52.0 9.77 1.84 1.20 0.73 36.60 0.79 22.70 11.50 16.10 1.19 7.82 11. 36004.0 UPPER TEMBLADERO-SALINAS CITY 1765 5/8/97 52.0 178.00 46.30 18.20 7.72 1180.00 9.57 586.00 5.93 15.00 16.60 77.70 159. 36005.0 ESPINOSA SLOUGH 1766 5/8/97	35006.0	MONTEREY BOATYARD-LEAD 4	1594	5/9/96	43.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
30007.0 SANDHOLDT BRIDGE 1762 5/8/97 52.0 20.70 7.34 6.87 7.78 201.00 9.79 68.00 7.36 13.60 8.01 13.70 87. 36002.0 TEMBLADERO MOUTH 1763 5/8/97 52.0 18.20 4.50 2.77 6.22 94.70 2.70 47.70 5.95 10.60 5.09 11.00 38. 36003.0 CENTRAL TEMBLADERO 1764 5/8/97 52.0 9.77 1.84 1.20 0.73 36.60 0.79 22.70 11.50 16.10 1.19 7.82 11. 36004.0 UPPER TEMBLADERO-SALINAS CITY 1765 5/8/97 52.0 178.00 46.30 18.20 7.72 1180.00 9.57 586.00 5.93 15.00 16.60 77.70 159. 36005.0 ESPINOSA SLOUGH 1766 5/8/97 52.0 13.00 1.53 2.58 8.55 21.80 5.17 5.29 9.11 18.70 5.25 14.90 25. 36006.0 ALISAL SLOUGH 1767 5/8/97	30002.0	MONTEREY YACHT CLUB	1596	5/9/96	43.0	85.10	80.70	31.90	5.08	1080.00	65.00	333.00	10.50	13.80	92.50	18.30	689.00
36000.0 TEMBLADERO MOUTH 1763 5/8/97 52.0 18.20 4.50 2.77 6.22 94.70 2.70 47.70 5.95 10.60 5.09 11.00 38. 36003.0 CENTRAL TEMBLADERO 1764 5/8/97 52.0 9.77 1.84 1.20 0.73 36.60 0.79 22.70 11.50 16.10 1.19 7.82 11. 36004.0 UPPER TEMBLADERO 1765 5/8/97 52.0 178.00 46.30 18.20 7.72 1180.00 9.57 586.00 5.93 15.00 16.60 77.70 159. 36005.0 ESPINOSA SLOUGH 1766 5/8/97 52.0 13.00 1.53 2.58 8.55 21.80 5.17 5.29 9.11 18.70 5.25 14.90 25. 36006.0 ALISAL SLOUGH 1767 5/8/97 52.0 1.04 -8.00 1.00 3.13 4.39 1.28 1.86 4.26 9.27 2.84 7.01 9.	30007.0	SANDHOLDT BRIDGE	1597	5/9/96	43.0	39.00	5.83	6.41	5.05	158.00	11.20	71.70	7.13	11.70	11.90	11.00	106.00
36003.0 CENTRAL TEMBLADERO 1764 5/8/97 52.0 9.77 1.84 1.20 0.73 36.60 0.79 22.70 11.50 16.10 1.19 7.82 11. 36004.0 UPPER TEMBLADERO-SALINAS CITY 1765 5/8/97 52.0 178.00 46.30 18.20 7.72 1180.00 9.57 586.00 5.93 15.00 16.60 77.70 159. 36005.0 ESPINOSA SLOUGH 1766 5/8/97 52.0 13.00 1.53 2.58 8.55 21.80 5.17 5.29 9.11 18.70 5.25 14.90 25. 36006.0 ALISAL SLOUGH 1767 5/8/97 52.0 1.04 -8.00 1.00 3.13 4.39 1.28 1.86 4.26 9.27 2.84 7.01 9.	30007.0	SANDHOLDT BRIDGE	1762	5/8/97	52.0	20.70	7.34	6.87	7.78	201.00	9.79	68.00	7.36	13.60	8.01	13.70	87.90
36005.0 UPPER TEMBLADERO-SALINAS CITY 1765 5/8/97 52.0 178.00 46.30 18.20 7.72 1180.00 9.57 586.00 5.93 15.00 16.60 77.70 159. 36005.0 ESPINOSA SLOUGH 1766 5/8/97 52.0 13.00 1.53 2.58 8.55 21.80 5.17 5.29 9.11 18.70 5.25 14.90 25. 36006.0 ALISAL SLOUGH 1767 5/8/97 52.0 1.04 -8.00 1.00 3.13 4.39 1.28 1.86 4.26 9.27 2.84 7.01 9.	36002.0	TEMBLADERO MOUTH	1763	5/8/97	52.0	18.20	4.50	2.77	6.22	94.70	2.70	47.70	5.95	10.60	5.09	11.00	38.30
36005.0 ESPINOSA SLOUGH 1766 5/8/97 52.0 13.00 1.53 2.58 8.55 21.80 5.17 5.29 9.11 18.70 5.25 14.90 25. 36006.0 ALISAL SLOUGH 1767 5/8/97 52.0 1.04 -8.00 1.00 3.13 4.39 1.28 1.86 4.26 9.27 2.84 7.01 9.	36003.0	CENTRAL TEMBLADERO	1764	5/8/97	52.0	9.77	1.84	1.20	0.73	36.60	0.79	22.70	11.50	16.10	1.19	7.82	11.60
36006.0 ALISAL SLOUGH 1767 5/8/97 52.0 1.04 -8.00 1.00 3.13 4.39 1.28 1.86 4.26 9.27 2.84 7.01 9.	36004.0	UPPER TEMBLADERO-SALINAS CITY	1765	5/8/97	52.0	178.00	46.30	18.20	7.72	1180.00	9.57	586.00	5.93	15.00	16.60	77.70	159.00
	36005.0	ESPINOSA SLOUGH	1766	5/8/97	52.0	13.00	1.53	2.58	8.55	21.80	5.17	5.29	9.11	18.70	5.25	14.90	25.80
	36006.0	ALISAL SLOUGH	1767	5/8/97	52.0	1.04	-8.00	1.00	3.13	4.39	1.28	1.86	4.26	9.27	2.84	7.01	9.78
36007.0 OLD SALINAS RIVER CHANNEL 1768 5/8/97 52.0 2.12 0.72 1.63 9.99 10.20 2.10 4.37 11.70 21.60 5.22 9.98 21.	36007.0	OLD SALINAS RIVER CHANNEL	1768	5/8/97	52.0	2.12	0.72	1.63	9.99	10.20	2.10	4.37	11.70	21.60	5.22	9.98	21.70

r

STANUM	STATION	IDORG	DATE	LEG	PER	PYR	TMN	TRY	PAHBATCH	SODATAQA
30034.1	MONTEREY BAY REFERENCE	100	8/5/92	1.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
30034.2	MONTEREY BAY REFERENCE	101	8/5/92	1.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
30034.3	MONTEREY BAY REFERENCE	102	8/5/92	1.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
30035.1	ELKHORN SLOUGH-SEAL POINT	130	9/4/92	3.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
30035.2	ELKHORN SLOUGH-SEAL POINT	131	9/4/92	3.0	-9.00	-9.00	-9.00	-9,00	-9.00	-9
30035.3	ELKHORN SLOUGH-SEAL POINT	132	9/4/92	3.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
30036.1	ELKHORN SLOUGH-SEAL BEND	133	9/11/92	4.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
30036.2	ELKHORN SLOUGH-SEAL BEND	134	9/11/92	4.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
30036.3	ELKHORN SLOUGH-SEAL BEND	135	9/11/92	4.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
31001.0	EGRET LANDING- REF	251	10/9/92	5.0	23.50	15.50	-9.00	-9.00	73.50	-4
31002.0	HIGHWAY I BRIDGE- REF	254	10/23/92	6.0	7.60	22.70	-9.00	-9.00	73.90	-4
31003.0	ANDREWS POND- REF	258	11/8/92	7.0	11.00	15.90	-9.00	-9.00	72.70	-4
31002.0	HWY. 1 BRIDGE- REF	351	11/27/92	8.0	9.00	-9.00	-9.00	-9.00	-9.00	-9
31003.0	ANDREW'S POND REF.	451	12/8/92	9.0	118.00	223.00	-9.00	-9.00	72.90	-4
30001.0	SANTA CRUZ YACHT BASIN	501	12/21/92	10.0	105.00	1490.00	-9.00	-9.00	73.30	-4
30002.0	MONTEREY YACHT CLUB	502	12/21/92	10.0	287.00	3100.00	-9.00	-9.00	73.40	-4
30004.0	M.L. YACHT HARBOR	504	12/21/92	10.0	23.00	193.00	-9.00	-9.00	72.80	-4
30005.0	M.L. SOUTH HARBOR	505	12/21/92	10.0	16.20	61.80	-9.00	-9.00	73.40	-4
30006.0	PAJARO RIVER ESTUARY	- 506	12/21/92	10.0	-8.00	-8.00	-9.00	-9.00	72.80	-4
30007.0	SANDHOLDT BRIDGE	507	12/21/92	10.0	24.80	236.00	-9.00	-9.00	72.90	-4
30011.0	SALINAS RIVER LAGOON	511	12/21/92	10.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
30012.0	MONTEREY BOATYARD	512	12/21/92	10.0	88.80	1210.00	-9.00	-9.00	72.90	4
30013.0	MONTEREY STORMDRAIN NO.2	513	12/21/92	10.0	20.50	414.00	-9.00	-9.00	73.40	-4 -
30014.0	MONTEREY STORMDRAIN NO. 3	514	12/21/92	10.0	163.00	2330.00	-9.00	-9.00	73.30	-4
30019.0	MORO COJO SLOUGH	519	12/22/92	10.0	27.60	36.70	-9.00	-9.00	72.90	-4
30022.0	SOQUEL LAGOON	522	12/21/92	10.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
30023.0	BENNETT SL/ESTUARY	523	12/22/92	10.0	-8.00	7.20	-9.00	-9.00	72.90	-4
30026.0	SCOTT CREEK #26B	526	12/18/92	10.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
30027.0	MONTEREY BAY REF. SOUTH	527	12/21/92	10.0	-8.00	9.80	-9.00	-9.00	73.30	-4
30028.0	ELKHORN SL. PORTRERO REF.	528	12/18/92	10.0	8.70	41.30	-9.00	-9.0Ô	73.30	-4
31002.0	HWY 1 BRIDGE REF.	675	1/14/93	11.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
30003.0	SANTA BARBARA HARBOR	503	2/10/93	13.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
30008.0	SAN LUIS HARBOR TRANS	508	2/9/93	13.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9

.

Page 7 of 9

ر يک

STANUM	STATION	IDORG	DATE	LEG	PER	PYR	TMN	TRY	РАНВАТСН	SODATAQA
30009.0	GOLETA SL.	509	2/10/93	13.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
30010.0	CARPINTERIA MARSH-1	510	2/10/93	13.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
30020.0	SANTA MARIA RIVER ESTUARY	520	2/9/93	13.0	5.80	8.50	-9.00	-9.00	72.90	-4
30021.0	SANTA YNEZ RIVER ESTUARY	521	2/11/93	13.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
30024.0	MORRO BAY	524	2/9/93	13.0	18.50	272.00	-9.00	-9.00	73.90	-4
30025.0	MORRO BAY-SOUTH BAY	525	2/9/93	13.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
30029.0	MORRO BAY-MID BAY	530	2/9/93	13.0	8.10	7.70	-9.00	-9.00	73.90	-4
30030.0	CANADA DE LA GAVIOTA (26d)	531	2/11/93	13.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
30031.0	CARPINTERIA MARSH-2	532	2/10/93	13.0	20.20	52.00	-9.00	-9.00	72.90	-4
30032.0	CARPINETRIA MARSH-3	533	2/10/93	13.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
30033.0	MORRO BAY-FUEL DOCK	534	2/9/93	13.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
31002.0	HIGHWAY 1 BRIDGE REF	352	2/23/93	14.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
30027.0	MONTEREY BAY REF. SOUTH	1323	5/16/9 4	32.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
30013.0	MONTEREY STORMDRAIN NO.2	1324	5/16/94	32.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
30028.0	ELKHORN SL. PORTRERO REF.	1325	5/17/94	32.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
30019.0	MORO COJO SLOUGH	1326	5/17/94	32.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
31002.0	HIGHWAY 1 BRIDGE REF	1327	5/17/94	32.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
30008.0	SAN LUIS HARBOR TRANS	1328	5/20/94	32.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
30029.0	MORRO BAY-MID BAY	1329	5/20/94	32.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
30032.0	CARPINETRIA MARSH-3	1330	5/20/94	32.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
30004.0	M.L. YACHT HARBOR REPI	1362	6/15/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
30004.0	M.L. YACHT HARBOR REP2	1363	6/15/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
30004.0	M.L. YACHT HARBOR REP3	1364	6/15/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
30007.0	SANDHOLDT BRIDGE REP1	1365	6/15/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
30007.0	SANDHOLDT BRIDGE REP2	1366	6/15/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
30007.0	SANDHOLDT BRIDGE REP3	1367	6/15/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
30023.0	BENNETT SL./ESTUARY REPI	1368	6/16/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
30023.0	BENNETT SL./ESTUARY REP2	1369	6/16/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	· - 9
30023.0	BENNETT SL./ESTUARY REP3	1370	6/16/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
31001.0	EGRET LANDING REPI	1371	6/15/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
31001.0	EGRET LANDING REP2	1372	6/15/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
31001.0	EGRET LANDING REP3	1373	6/15/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
31002.0	HIGHWAY 1 BRIDGE REP1	1374	6/15/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9

Page 8 of 9

,

1

3

,

STANUM	STATION	IDORG	DATE	LEG	PER	PYR	TMN	TRY	РАНВАТСН	SODATAQA
31002.0	HIGHWAY I BRIDGE REP2	1375	6/15/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
31002.0	HIGHWAY 1 BRIDGE REP3	1376	6/15/9 à	33.0	-9.00	-9.00	-9.00	-9.00	· -9.00	-9
31003.0	ANDREWS POND REP1	1377	6/16/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
31003.0	ANDREWS POND REP2	1378	6/16/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
31003.0	ANDREWS POND REP3	1379	6/16/94	33.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
30001.0	SANTA CRUZ YACHT BASIN	1588	5/9/96	43.0	54.30	270.00	-8.00	30.20	75.S.05	-5
35001.0	SANTA CRUZ YACHT BASIN-A3	1589	5/9/96	43.0	144.00	2050.00	10.50	250.00	85.S.01	-5
35002.0	SANTA CRUZ YACHT BASIN-A9	1590	5/9/96	43.0	24.10	141.00	-8.00	23.80	85.S.01	-5
35003.0	MONTEREY BOATYARD-LEAD 1	1591	5/9/96	43.0	157.00	1600.00	25.60	157.00	75.S.05	-5
35004.0	MONTEREY BOATYARD-LEAD 2	1592	5/9/96	43.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
35005.0	MONTEREY BOATYARD-LEAD 3	1593	5/9/96	43.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
35006.0	MONTEREY BOATYARD-LEAD 4	1594	5/9/96	43.0	-9.00	-9.00	-9.00	-9.00	-9.00	-9
30002.0	MONTEREY YACHT CLUB	1596	5/9/96	43.0	105.00	1030.00	7.70	108.00	75.S.05	-5
30007.0	SANDHOLDT BRIDGE	1597	5/9/96	43.0	16.80	135.00	-8.00	-8.00	75.S.05	-5
30007.0	SANDHOLDT BRIDGE	1762	5/8/97	52.0	14.80	193.00	5.35	-9.00	97-319	-5
36002.0	TEMBLADERO MOUTH	1763	5/8/97	52.0	18.00	113.00	3.38	-9.00	97-319	-5
36003.0	CENTRAL TEMBLADERO	1764	5/8/97	52.0	7.77	45.60	0.55	-9.00	97-319	-5
36004.0	UPPER TEMBLADERO-SALINAS CITY	1765	5/8/97	52.0	173.00	1570.00	6.76	-9.00	97-319	-5
36005.0	ESPINOSA SLOUGH	1766	5/8/97	52.0	10.50	21.20	3.97	-9.00	97-319	-5
36006.0	ALISAL SLOUGH	1767	5/8/97	52.0	5.32	4.85	2.42	-9.00	97-319	-5
36007.0	OLD SALINAS RIVER CHANNEL	1768	5/8/97	52.0	10.30	11.60	3.94	-9.00	97-319	-5

SECTION VII

,

.

.

Sediment Chemistry Summations and Quotients

,

.

CHEMICAL SUMMATIONS AND QUOTIENTS

In the following section, chemical summations (total chlordane, total DDT, total PCBs, LMW PAHs, HMW PAHs, total PAHs) and quotients (ERM and PEL) are presented. For purposes of these summations, samples which were found to have chemical concentrations less than the method detection limit (-8 in Appendix C) were adjusted to a value of one-half of the method detection limits given in the methods description. The summations were calculated as follows:

Total chlordane

 $(TTL_CHLR) = \sum$ ([cis-Chlordane] [trans-Chlordane] [cis-Nonachlor] [trans-Nonachlor] [Oxychlordane])

Total DDT

 $(TTL_DDT) = \Sigma$ ([o',p' DDD] [p',p' DDD] [o',p' DDE] [p',p' DDE] [o',p' DDT] [p',p' DDT])

Total PCB

 $(TTL_PCB) = \Sigma$ ([PCB8] [PCB18] [PCB28] [PCB44] [PCB52] [PCB66] [PCB101] [PCB105] [PCB118] [PCB128] [PCB138] [PCB153] [PCB170] [PCB180] [PCB187] [PCB195] [PCB206] [PCB209])

Low Molecular Weight PAHs

 $(LMW_PAH) = \sum ([ACE] [ACY] [ANT] [BPH] [DMN] [FLU]$ [MNP1] [MNP2] [MPH1] [NPH] [PHN] [TMN])

High Molecular Weight PAHs

 $(HMW_PAH) = \sum ([BAA] [BAP] [BBF] [BKF] [BGP] [BEP] [CHR] [DBA] [FLA] [IND] [PER] [PYR])$

<u>Total PAHs</u>

 $(TTL_PAH) = \Sigma ([LMW_PAH] [HMW_PAH])$

ERM Quotients and PEL Quotients were calculated using summations of the individual chemicals for which ERMs and PELs have been derived. Chemical concentrations are divided by their respective ERM or PEL values to obtain a specific individual chemical quotient (Example 1). TTLDDTQE (P) is expressed as: (TTL_DDT/TOC)/100, where TTL_DDT is the sum of the six DDT metabolites, TOC is the total organic carbon content of the sample, and 100 reflects the 100 μ g/g DDT/TOC value reported by Swarzt to be associated with biological effect. A value greater than one indicates the chemical concentration in that sample exceeded its respective guideline value. A value of five would indicate the chemical was five times higher than the respective guideline value in that sample.

Example 1 - sample IDORG #199 Copper concentration = 170 mg/gPEL for copper = 108.2CopperQ = (170 mg/g) / (108.2 mg/g) = 1.57 Summations and averaging of the individual chemical quotients were calculated to give summary ERM Quotients (ERMQ) and PEL Quotients (PELQ). Each quotient summation is divided by the number of analytes used in the summation to yield an average summary quotient.

Summary ERM Quotient

ERMQ = ((ANTIMONYQ + ARSENICQ + CADMIUMQ + CHROMIUMQ + COPPERQ + LEADQ + MERCURYQ + SILVERQ + ZINCQ + TTL_DDTQ + TTL_CHLRQ + DIELDRINQ + ENDRINQ + TTL_PCBQ + LMW_PAHQ + HMW_PAHQ) / 16)

Summary PEL Quotient

PELQ = ((ARSENICQ + CADMIUMQ + CHROMIUMQ + COPPERQ + LEADQ + MERCURYQ + SILVERQ + ZINCQ + TTL_DDTQ + TTL_CHLRQ + DIELDRINQ + LINDANEQ + TTL_PCBQ + LMW_PAHQ + HMW_PAHQ) / 15)

SEDIMENT CHEMISTRY SUMMATIONS AND QUOTIENTS

STANUM	STATION	IDORG	DATE	LEG	TTL CHLR TT	L DDT	TTL PCB	LMW PAH	HMW PAH	TTL PAH	ERMO	PELO	ERMEXCDS	PELEXCOS
	MONTEREY BAY REFERENCE	100	8/5/92	1.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.000	-9.000	-9	-9
	MONTEREY BAY REFERENCE	101	8/5/92	1.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.000	-9.000	-9	-9
30034.3	MONTEREY BAY REFERENCE	102	8/5/92	1.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.000	-9.000	-9	-9
30035.1	ELKHORN SLOUGH-SEAL POINT	130	9/4/92	3.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.000	-9.000	-9	-9
30035.2	ELKHORN SLOUGH-SEAL POINT	131	9/4/92	3.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.000	-9.000	-9	-9
30035.3	ELKHORN SLOUGH-SEAL POINT	132	9/4/92	3.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.000	-9.000	-9	-9
30036.1	ELKHORN SLOUGH-SEAL BEND	133	9/11/92	4.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9 .000	-9.000	-9	-9
30036.2	ELKHORN SLOUGH-SEAL BEND	134	9/11/92	4.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.000	-9.000	-9	-9
30036.3	ELKHORN SLOUGH-SEAL BEND	135	9/11/92	4.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9 .000	-9.000	-9	-9
31001.0	EGRET LANDING- REF	251	10/9/92	5.0	0.500	7.20	9.000	38.80	86.20	125.00	0.102	0.181	1	2
31002.0	HIGHWAY 1 BRIDGE- REF	254	10/23/92	6.0 [°]	0.500	4.30	13.400	40.50	102.50	143.00	0.089	0.185	1	2
31003.0	ANDREWS POND- REF	258	11/8/92	7.0	0.500	7.10	9.000	47.90	92.30	140.20	0.088	0.166	Í	1
31002.0	HWY. 1 BRIDGE- REF	351	11/27/92	8.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.000	-9.000	-9	-9
31003.0	ANDREW'S POND REF.	451	12/8/92	9.0	0.500	5.60	9.000	62.70	2041.00	2103.70	0.087	0.147	0	i
30001.0	SANTA CRUZ YACHT BASIN	501	12/21/92	10.0	1.300	70.60	334.400	1240.00	4904.70	6144.70	0.447	0.735	3	.7
30002.0	MONTEREY YACHT CLUB	502	12/21/92	10.0	1.450	24.90	102.100	2194.60	11090.00	13284.60	0.421	0.720	2	12
30004.0	M.L. YACHT HARBOR	504	12/21/92	10.0	· 0.500	25.80	9.900	168.90	716.60	885.50	0.137	0.245	1	2
30005.0	M.L. SOUTH HARBOR	505	12/21/92	10.0	0.500	12.40	31.200	54.70	219.80	274.50	0.094	0.169	1	1
30006.0	PAJARO RIVER ESTUARY	506	12/21/92	10.0	0.500	10.50	9.000	106.80	22.50	129.30	0.149	0.267	2	2
30007.0	SANDHOLDT BRIDGE	507	12/21/92	10.0	2.200	165.80	25.800	213.90	897.80	1111.70	0.240	0.385	2	4
30011.0	SALINAS RIVER LAGOON	511	12/21/92	10.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.000	-9 .000	-9	-9
30012.0	MONTEREY BOATYARD	512	12/21/92	10.0	1.400	16.80	32.400	931.20	4013.50	4944.70	0.175	0.275	0	1
30013.0	MONTEREY STORMDRAIN NO.2	513	12/21/92	10.0	0.500	7.80	17.300	270.30	1479.00	1749.30	0.099	0.170	0	0
30014.0	MONTEREY STORMDRAIN NO. 3	514	12/21/92	10.0	1.400	43.50	54.500	1972.90	7188.00	9160.90	0.281	0.454	0	8
30019.0	MORO COJO SLOUGH	519	12/22/92	10.0	0.500	22.70	9.900	45.10	167.40	212.50	0.130	0.233	1	2
30022.0	SOQUEL LAGOON	522	12/21/92	10.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9 .000	-9.000	-9	-9
30023.0	BENNETT SL./ESTUARY	523	12/22/92	10.0	2.800	47.50	9.000	22.50	52.10	74.60	0.209	0.355	2	4
30026.0	SCOTT CREEK #26B	526	12/18/92	10.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.000	-9.000	-9	-9
30027.0	MONTEREY BAY REF. SOUTH	527	12/21/92	10.0	0.500	2.70	9.000	27.10	34.30	61.40	0.046	0.084	. 0	0
30028.0	ELKHORN SL. PORTRERO REF.	528	12/18/92	10.0	0.500	60.40	10.800	41.10	332.30	373.40	0.122	0.218	2	2
31002.0	HWY 1 BRIDGE REF.	675	1/14/93	11.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.000	-9.000	-9	-9
30003.0	SANTA BARBARA HARBOR	503	2/10/93	13.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00			-9	-9
30008.0	SAN LUIS HARBOR TRANS	508	2/9/93	13.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00			-9	-9
30009.0	GOLETA SL.	509	2/10/93	13.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.000	-9.000	-9	-9
30010.0	CARPINTERIA MARSH-1	510	2/10/93	13.0	-9.000	-9.00			-9.00	-9.00			-9	-9
30020.0	SANTA MARIA RIVER ESTUARY	520	2/9/93	13.0	0.950	679.50			119.40	149.80		0.491	4	4
30021.0	SANTA YNEZ RIVER ESTUARY	521	2/11/93	13.0	-9.000	-9.00			-9.00	-9.00	-9.000	-9.000	-9	-9
30024.0	MORRO BAY	524	2/9/93	13.0	0.500	5.80	9.000	128.50	928.90	1057.40	0.208	0.448	2	2

SEDIMENT CHEMISTRY SUMMATIONS AND QUOTIENTS

STANUM	STATION	IDORG_	DATE	LEG	TTL_CHLR TT	L_DDT	TTL_PCB	LMW_PAH	HMW_PAH	TTL_PAH	ERMQ	PELQ	ERMEXCDS	PELEXCDS
30025.0	MORRO BAY-SOUTH BAY	525	2/9/93	13.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.000	-9.000	-9	-9
30029.0	MORRO BAY-MID BAY	530	2/9/93	13.0	0.500	3.90	9.000	25.80	63.00	88.80	0.165	0.365	2	2
30030.0	CANADA DE LA GAVIOTA (26d)	531	2/11/93	13.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.000	-9.000	-9	-9
30031.0	CARPINTERIA MARSH-2	532	2/10/93	13.0	3.200	14.00	9.000	47.10	240.90	288.00	0.108	0.168	0 [°]	0
30032.0	CARPINETRIA MARSH-3	533	2/10/93	13.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.000	-9.000	-9	-9
30033.0	MORRO BAY-FUEL DOCK	534	2/9/93	13.0	-9.000	-9.00	-9.000	-9.00	· -9.00	-9.00	-9.000	-9.000	-9	-9
31002.0	HIGHWAY 1 BRIDGE REF	352	2/23/93	14.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.000	-9.000	-9	-9
30027.0	MONTEREY BAY REF. SOUTH	1323	5/16/94	32.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.000	-9.000	-9	-9
30013.0	MONTEREY STORMDRAIN NO.2	1324	5/16/94	32.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.000	-9.000	-9	-9
30028.0	ELKHORN SL. PORTRERO REF.	1325	5/17/94	32.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.000	-9.000	-9	-9
30019.0	MORO COJO SLOUGH	1326	5/17/94	32.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.000	-9.000	-9	-9
31002.0	HIGHWAY 1 BRIDGE REF	1327	5/17/94	32.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.000	-9.000	-9	-9
30008.0	SAN LUIS HARBOR TRANS	1328	5/20/94	32.0	-9.000	- 9.00	-9.000	-9.00	-9.00	-9.00	-9.000	-9.000	-9	-9
30029.0	MORRO BAY-MID BAY	1329	5/20/94	32.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.000	-9.000	-9	0
30032.0	CARPINETRIA MARSH-3	1330	5/20/94	32.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.000	-9.000	-9	-9
30004.0	M.L. YACHT HARBOR REPI	1362	6/15/94	33.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9 .00	-9.000	-9.000	-9	-9
30004.0	M.L. YACHT HARBOR REP2	1363	6/15/94	33.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9 .00	-9.000	-9.000	-9	-9
30004.0	M.L. YACHT HARBOR REP3	1364	6/15/94	33.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.000	-9.000	-9	-9
30007.0	SANDHOLDT BRIDGE REP1	1365	6/15/94	33.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.000	-9.000	-9	-9
30007.0	SANDHOLDT BRIDGE REP2	1366	6/15/94	33.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.000	-9.000	-9	-9
30007.0	SANDHOLDT BRIDGE REP3	1367	6/15/94	33.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.000	-9.000	-9	-9
30023.0	BENNETT SL./ESTUARY REP1	1368	6/16/94	33.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.000	-9.000	-9	-9
30023.0	BENNETT SL./ESTUARY REP2	1369	6/16/94	33.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.000	-9.000	-9	-9
30023.0	BENNETT SL./ESTUARY REP3	1370	6/16/94	33.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.000	-9.000	-9	-9
31001.0	EGRET LANDING REPI	1371	6/15/94	33.0	-9.000	-9 .00	-9.000	-9.00	-9.00	-9.00	-9.000	-9.000	-9	-9
31001.0	EGRET LANDING REP2	1372	6/15/94	33.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9 .000	-9.000	-9	-9
31001.0	EGRET LANDING REP3	1373	6/15/94	33.0	-9.000	-9.00	-9.000	-9.00	-9 .00	-9.00	-9.000	-9.000	-9	-9
31002.0	HIGHWAY I BRIDGE REPI	1374	6/15/94	33.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.000	-9.000	-9	-9
31002.0	HIGHWAY 1 BRIDGE REP2	1375	6/15/94	33.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.000	-9.000	-9	-9
31002.0	HIGHWAY 1 BRIDGE REP3	1376	6/15/94	33.0	-9.000	-9.00	-9.000	-9.00	-9 .00	-9.00	-9.000	-9.000	-9	-9
31003.0	ANDREWS POND REP1	1377	6/16/ 94	33.0	-9.000	-9.00	-9.000	9.00	-9 .00	-9.00	-9.000	-9.000	-9	-9
31003.0	ANDREWS POND REP2	1378	6/16/94	33.0	-9.000	-9.00	-9.000	-9.00	-9.00	· -9.00	-9.000	-9.000	-9	-9
31003.0	ANDREWS POND REP3	1379	6/16/94	33.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.000	-9.000	<u></u>	-9
30001.0	SANTA CRUZ YACHT BASIN	1588	5/9/96	43.0	3.230	9.43	41.500	190.14	1401.10	1591.24	-9.000	-9.000	0	0
35001.0	SANTA CRUZ YACHT BASIN-A3	1589	5/9/96	43.0	10.600	18.22	46.040	3508.20	8854.70	12362.90	-9.000	-9.000	4	9
35002.0	SANTA CRUZ YACHT BASIN-A9	1590	5/9/96	43.0	27.110	17.17	11.640	102.67	912.28	1014.95	-9.000	-9.000	1	2
35003.0	MONTEREY BOATYARD-LEAD 1	1591	5/9/96	43.0	4.110	23.03	44.680	1829.50	8413.00	10242.50	-9.000	-9.000	0	5
35004.0	MONTEREY BOATYARD-LEAD 2	1592	5/9/96	43.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.000	-9.000	-9	-9

Page 2 of 3

.

۲

1

•

.

SEDIMENT CHEMISTRY SUMMATIONS AND QUOTIENTS

STANUM	STATION	IDORG	DATE	LEG	TTL_CHLR T	TL_DDT	TTL_PCB	LMW_PAH	HMW_PAH	TTL_PAH	ERMQ	PELQ	ERMEXCDS	PELEXCDS
35005.0	MONTEREY BOATYARD-LEAD 3	1593	5/9/96	43.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.000	-9.000	-9	-9
35006.0	MONTEREY BOATYARD-LEAD 4	1594	5/9/96	43.0	-9.000	-9.00	-9.000	-9.00	-9.00	-9.00	-9.000	-9.000	-9	-9
30002.0	MONTEREY YACHT CLUB	1596	5/9/96	43.0	1.750	14.33	33.800	1184.56	5979.70	7164.26	-9.000	-9.000	0	1
30007.0	SANDHOLDT BRIDGE	1597	5/9/96	43.0	9.080	238.40	20.820	203.07	774.33	977.40	-9.000	-9.000	3	3
30007.0	SANDHOLDT BRIDGE	1762	5/8/97	52.0	8.020	143.02	117.408	178.46	903.84	1082.30	-9.000	-9.000	、3	3
36002.0	TEMBLADERO MOUTH	1763	5/8/97	52.0	7.020	159.91	39.236	94.24	528.00	622.24	-9.000	-9.000	3	3
36003.0	CENTRAL TEMBLADERO	1764	5/8/97	52.0	2.608	38.66	14.716	54.36	230.35	284.71	-9.000	-9.000	ò	1
36004.0	UPPER TEMBLADERO-SALINAS CIT	1765	5/8/97	52.0	20.380	650.64	66.252	411.68	6666.30	7077.98	-9.000	-9.000	3	5
36005.0	ESPINOSA SLOUGH	1766	5/8/97	52.0	5.177	158.68	17.802	100.72	114.50	215.22	-9.000	-9.000	2	3
36006.0	ALISAL SLOUGH	1767	5/8/97	52.0	8.700	193.77	43.444	48.03	38.11	86.14	-9.000	-9.000	3	3
36007.0	OLD SALINAS RIVER CHANNEL	1768	5/8/97	52.0	2.463	382.17	40.384	97.40	70.68	168.08	-9.000	-9.000	2	2

SECTION VIII

Pesticide Analysis of Tissue

STANUM	STATION	IDORG	DATE	LEG	TISS_TYPE	NO_IN_COMP	SOWEIGHT	SOMOIST	SOLIPID	ALDRIN	CCHLOR
30007.0	SANDHOLDT BRIDGE	280.0	10/1/92	-9.0	FISH- WHITE SURFPERCH	15	2.56	80.14	0.82	-8.000	0.072
30006.0	WATSONVILLE SLOUGH-PAJARO	281.0	10/1/92	-9.0	FISH- TOPSMELT	15	2.55	74.40	1.80	-8.000	0.344
30006.0	WATSONVILLE SLOUGH-PAJARO	282.0	10/1/92	-9.0	FISH- SHINER SURFPERCH	. 15	2.55	74.90	2.48	-8.000	0.585

STANUM STATION	IDOI	RG	TISS_TYPE	TCHLOR	ACDEN	GCDEN	TTL_CHLR	CLPYR	DACTH	OPDDD	PPDDD	OPDDE
30007.0 SANDHOLI	DT BRIDGE 280.	.0	FISH- WHITE SURFPERCH	-8.000	-8.000	-8.000	0.544	-8.00	-8.000	0.20	2.480	-8.00
30006.0 WATSONV	LLE SLOUGH-PAJARO 281.	.0	FISH- TOPSMELT	0.228	-8.000	-8.000	1.428	-8.00	0.078	0.74	7.590	0.32
30006.0 WATSONV	LLE SLOUGH-PAJARO 282.	.0	FISH- SHINER SURFPERCH	0.444	-8.000	-8.000	2.311	-8.00	0.444	2.55	11.000	0.49

STANUM	STATION	IDORG	TISS_TYPE	PPDDE	PPDDMS	PPDDMU	OPDDT	PPDDT	TTL_DDT	DICLB	DIELDRIN	ENDO_I
30007.0	SANDHOLDT BRIDGE	280.0	FISH- WHITE SURFPERCH	28.40	-8.00	0.31	0.09	4.55	36.02	-8.00	-8.000	-8.000
30006.0	WATSONVILLE SLOUGH-PAJARO	281.0	FISH- TOPSMELT	34.70	-8.00	2.28	-8.00	1.71	45.46	-8.00	4.230	-8.000
30006.0	WATSONVILLE SLOUGH-PAJARO	282.0	FISH- SHINER SURFPERCH	60.40	-8.00	2.85	0.62	3.74	78.80	-8.00	5.290	-8.000

0

Page 3 of 5

STANUM	STATION	IDORG	TISS_TYPE	ENDO_II	ESO4	ENDRIN	HCHA	HCHB	HCHG	HCHD	HEPTACHLOR	HE
30007.0	SANDHOLDT BRIDGE	280.0	FISH- WHITE SURFPERCH	-8.00	-8.00	-8.00	-8.000	-8.00	-8.000	-8.000	-8.000	-8.000
30006.0	WATSONVILLE SLOUGH-PAJARO	281.0	FISH- TOPSMELT	-8.00	1.29	-8.00	-8.000	-8.00	-8.000	-8.000	-8.000	-8.000
30006.0	WATSONVILLE SLOUGH-PAJARO	282.0	FISH- SHINER SURFPERCH	-8.00	0.73	0.29	-8.000	-8.00	-8.000	-8.000	-8.000	0.098

STANUM	STATION	IDORG	TISS_TYPE	HCB	METHOXY	MIREX	CNONA	TNONA	OXAD	OCDAN	ТОХАРН	PESBATCH
30007.0	SANDHOLDT BRIDGE	280.0	FISH- WHITE SURFPERCH	-8.000	-8,00	-8.000	0.078	0.195	-9.00	0.099	-8.00	73.70
30006.0	WATSONVILLE SLOUGH-PAJARO	281.0	FISH- TOPSMELT	-8.000	-8.00	-8.000	0.181	0.522	-9.00	0.153	19.50	73.70
30006.0	WATSONVILLE SLOUGH-PAJARO	282.0	FISH- SHINER SURFPERCH	-8.000	-8.00	-8.000	0.296	0.779	-9.00	0.207	25.50	73.70

SECTION IX

•ŝ

PCB and Aroclor Analysis of Tissue

.

.

PCB CONGENER AND AROCLOR ANALYS	OF TIGGLIE (most maight anh ag/a)
FUD CONGENER AND AROCLOR ANAL IS	IS OF TISSUE (wet weight-ppo-ng/g)

STANUM	STATION	IDORG	DATE	LEG	TISS_TYPE	NO_IN_COMP	PCB5	PCB8	PCB15	PCB18	PCB27	PCB28
30007.0	SANDHOLDT BRIDGE	280.0	10/1/92	-9.0	FISH- WHITE SURFPERCH	15	-9.000	-8.000	-9.000	-8.000	-9.000	-8.000
30006.0	WATSONVILLE SLOUGH-PAJARO	281.0	10/1/92	-9.0	FISH- TOPSMELT	15	-9.000	-8.000	-9.000	-8.000	-9.000	-8.000
30006.0	WATSONVILLE SLOUGH-PAJARO	282.0	10/1/92	-9.0	FISH- SHINER SURFPERCH	15	-9.000	-8.000	-9.000	-8.000	-9.000	-8.000

STANUM	STATION	IDORG	TISS_TYPE	PCB29	PCB31	PCB44	PCB49	PCB52	PCB66	PCB70	PCB74	PCB87	PCB95
30007.0	SANDHOLDT BRIDGE	280.0	FISH- WHITE SURFPERCH	-9.000	-9.000	-8.000	-9.000	-8.000	-8.000	-9.000	-9.000	-8.000	-9.000
30006.0	WATSONVILLE SLOUGH-PAJARO	281.0	FISH- TOPSMELT	-9.000	-9.000	-8.000	-9.000	-8.000	-8.000	-9.000	-9.000	-8.000	-9.000
30006.0	WATSONVILLE SLOUGH-PAJARO	282.0	FISH- SHINER SURFPERCH	-9.000	-9.000	-8.000	-9.000	-8.000	-8.000	-9.000	-9.000	-8.000	-9.000

PCB CONGENER	AND AROCLOR	ANALYSIS OF	TISSUE (wet weight-ppb-ng/g)

.

STANUM	STATION	IDORG	TISS_TYPE	PCB97	PCB99	PCB101	PCB105	PCB110	PCB118	PCB128	PCB132	PCB137
30007.0	SANDHOLDT BRIDGE	280.0	FISH- WHITE SURFPERCH	-9.000	-9.000	0.215	0.051	-9.000	0.398	-8.000	-9.000	-9.000
30006.0	WATSONVILLE SLOUGH-PAJARO	281.0	FISH- TOPSMELT	-9.000	-9.000	-8.000	-8.000	-9.000	-8.000	-8.000	-9.000	-9.000
30006.0	WATSONVILLE SLOUGH-PAJARO	282.0	FISH- SHINER SURFPERCH	-9.000	-9.000	-8.000	-8.000	-9.000	-8.000	-8.000	-9.000	-9.000

Page 3 of 6

STANUM STATION	IDORG	TISS_TYPE	PCB138	PCB149	PCB151	PCB153	PCB156	PCB157	PCB158	PCB170	PCB174
30007.0 SANDHOLDT BRIDGE	280.0	FISH- WHITE SURFPERCH	0.613	-9.000	-9.000	0.607	-9.000	-9.000	-9,000	0.069	-9.000
30006.0 WATSONVILLE SLOUGH-PAJARO	281.0	FISH- TOPSMELT	0.065	-9.000	-9.000	-8.000	-9.000	-9 .000	-9.000	-8.000	-9.000
30006.0 WATSONVILLE SLOUGH-PAJARO	282.0	FISH- SHINER SURFPERCH	0.137	-9.000	-9.000	0.110	-9.000	-9.000	-9.000	-8.000	-9.000

STANUM	STATION	IDORG	TISS_TYPE	PCB177	PCB180	PCB183	PCB187	PCB189	PCB194	PCB195	PCB201	PCB203
30007.0	SANDHOLDT BRIDGE	280.0	FISH- WHITE SURFPERCH	-9.000	0.252	-9.000	0.114	-9.000	-9.000	-8.000	-9.000	-9.000
30006.0	WATSONVILLE SLOUGH-PAJARO	281.0	FISH- TOPSMELT	-9.000	-8.000	-9.000	-8.000	-9.000	-9.000	-8.000	-9.000	-9.000
30006.0	WATSONVILLE SLOUGH-PAJARO	282.0	FISH- SHINER SURFPERCH	-9.000	0.077	-9.000	-8.000	-9.000	-9.000	-8.000	-9.000	-9.000

STANUM	STATION	IDORG	TISS_TYPE	PCB206	PCB209	CBBATC	ARO5460	ARO1248	AR01254	ARO1260	TTL_PCB
30007.0	SANDHOLDT BRIDGE	280.0	FISH- WHITE SURFPERCH	-8.000	-8.000	73.70	-9.000	-9.000	-9.000	-9.000	6.638
30006.0	WATSONVILLE SLOUGH-PAJARO	281.0	FISH- TOPSMELT	-8.000	-8.000	73.70	-9.000	-9.000	-9.000	-9.000	3.530
30006.0	WATSONVILLE SLOUGH-PAJARO	282.0	FISH- SHINER SURFPERCH	-8.000	-8.000	73.70	-9.000	-9.000	-9.000	-9.000	3.648

Page 6 of 6

SECTION X

PAH Analysis of Tissue

PAH ANALYSIS OF TISSUE (wet weight-ppb-ng/g)

STANUM	STATION	IDORG	DATE	LEG	TISS_TYPE	NO_IN_COMP	ACY	ACE	ANT	BAA	BAP	BBF	BKF	BGP	BEP
30007.0	SANDHOLDT BRIDGE	280.0	10/1/92	-9.0	FISH- WHITE SURFPERCH	15	-8.00	-8.00	-8.00	-8.00	-8.00	-8.00	-8.00	-8.00	-8.00
30006.0	WATSONVILLE SLOUGH-PAJARO	281.0	10/1/92	-9.0	FISH- TOPSMELT	15	-8.00	-8.00	-8.00	-8.00	-8.00	-8.00	-8.00	-8.00	-8.00
30006.0	WATSONVILLE SLOUGH-PAJARO	282.0	10/1/92	-9.0	FISH- SHINER SURFPERCH	15	-8.00	-8.00	-8.00	-8.00	-8.00	-8.00	-8.00	-8.00	-8.00

Page 1 of 3

PAH ANALYSIS OF TISSUE (wet weight-ppb-ng/g)

STANUM	STATION	IDORG	NO_IN_COMP	BPH	CHR	COR	DBA	DBT	DMN	FLA	FLU	IND	MNP1	MNP2	MPH1	NPH	PHN	PER
30007.0	SANDHOLDT BRIDGE	280.0	15	-8.00	-8.00	-9.00	-8.00	-9.00	-8.00	-8.00	-8.00	-8.00	-8.00	-8.00	-8.00	-8.00	-8.00	-8.00
30006.0	WATSONVILLE SLOUGH-PAJARO	281.0	15	-8.00	-8.00	-9.00	-8.00	-9.00	-8.00	-8.00	-8.00	-8.00	-8.00	-8.00	-8.00	-8.00	-8.00	-8.00
30006.0	WATSONVILLE SLOUGH-PAJARO	282.0	15	-8.00	-8.00	-9 .00	-8.00	-9.00	-8.00	-8.00	-8.00	-8.00	-8.00	-8.00	-8.00	-8.00	-8.00	-8.00

)

PAH ANALYSIS OF TISSUE (wet weight-ppb-ng/g)

STANUM	STATION	IDORG	NO_IN_COMP	<u> </u>	ŤMN	TRY	PAHBATCH	SODATAQA
30007.0	SANDHOLDT BRIDGE	280.0	15	-8.00	-8.00	-9.00	73.70	-5
30006.0	WATSONVILLE SLOUGH-PAJARO	281.0	15	-8.00	-8.00	-9.00	73.70	-5
30006.0	WATSONVILLE SLOUGH-PAJARO	282.0	15	-8.00	-8.00	-9.00	73.70	-5

Page 3 of 3

SECTION XI

*

Organic Analysis of Subsurface Water

~

ORGANIC ANALYSIS OF SUBSURFACE WATER (ng/L - ppt)

STANUM 30007.0	STATION SANDHOLDT BRIDGE (Water Sample)	IDORG 1597	DATE 5/9/96	LEG Å3						,	
		SOWEIGHT	0.90		PCB174	-8	ENDRIN	-8		NPH	-8
		SOMOIST	100.00		PCB177	-8	HCHA	-8		PHN	-8
		PCBBATCH	75.W.04		PCB180	-8	HCHB	-8		PER	-8
		SODATAQA	-5		PCB183	-8	HCHG	-8	• :	PYR	-8
		PCB5	-8		PCB187	-8	HCHD	-8		TMN	-8
		PCB8	-8		PCB189	-8	HEPTACHLOR	-8		TRY	-8
		PCB15	-9		PCB194	-8	HE	-8	. •		
		PCB18	-8		PCB195	-8	HCB	-8		,	
		PCB27	-8		PCB201	-8	METHOXY	-8			
		PCB28	-8		•PCB203	-8	MIREX	-8	· .		
		PCB29	-8		PCB206	-8	CNONA	· -8		÷	
		PCB31	-8		PCB209	-8	TNONA	-8			
		PCB44	-8		ARO1248	-8	OXAD	-8			
		PCB49	-8		ARO1254	-8	OCDAN	-8			
		PCB52	-8		ARO1260	-8	TOXAPH	-8			
		PCB66	-8		ARO5460	-8	PAHBATCH	75.W.04			
		PCB70	-8		PESBATCH	75.W.04	ACY	-8			
	•	PCB74	-8		ALDRIN	-8	ACE	-8			
		PCB87	-8		CCHLOR	-8	ANT	-8			
		PCB95	-8		TCHLOR	-8	BAA	-8			
		PCB97	-8		ACDEN	-8	BAP	-8			
		PCB99	-8		GCDEN	-8	BBF	-8			
		PCB101	-8		CLPYR	-8	BKF	-8			
		PCB105	-8		DACTH	21.100	BGP	-8			
		PCB110	-8		OPDDD	-8	BEP	-8			
		PCB118	-8		PPDDD	-8	BPH	-8			
		PCB128	-8		OPDDE	-8	CHR	-8			
		PCB132	-8		PPDDE	7.95	COR	-8			
		PCB137	· -8		PPDDMS	-8	DBA	-8			
		PCB138	-8		PPDDMU	-8	DBT	-8			
	·	PCB149	-8		OPDDT	-8	DMN	-8			
		PCB151	-8		PPDDT	2.42	FLA	-8			
		PCB153	-8		DICLB	-8	FLU	-8			
		PCB156	-8		DIELDRIN	1.890	IND	-8			
		PCB157	-8		ENDO_I	-8	MNP1	-8			
		PCB158	-8		ENDO_I	-8	MNP2	-8			
		PCB170	-8		ESO4	-8	MPH1	-8			

APPENDIX D

Grain Size and Total Organic Carbon

STANUM	STATION	IDORG	DATE	LEG	FINES	FINEBATCH	FINEDATAQC	COARSESAND	FINESAND	COARSESILT	FINESILT
30034.1	MONTEREY BAY REF	100	8/5/92	1.0	93.00	1	-9	-9.00	-9.00	-9.00	-9.00
30034.2	MONTEREY BAY REF	101	8/5/92	1.0	91.00	1	-9	-9.00	-9.00	-9.00	-9.00
30034.3	MONTEREY BAY REF	102	8/5/92	1.0	90.00	1	-9	-9.00	-9.00	-9.00	-9.00
30035.1	ELKHORN SLOUGH-SEAL POINT	130	9/4/92	3.0	88.00	3	-9	-9.00	-9 .00	-9.00	-9.00
30035.2	ELKHORN SLOUGH-SEAL POINT	131	9/4/92	3.0	81.00	3	-9	-9.00	-9.00	-9.00	-9.00
30035.3	ELKHORN SLOUGH-SEAL POINT	132	9/4/92	3.0	83.00	3	-9	-9.00	-9.00	-9.00	-9.00
30036.1	ELKHORN SLOUGH-SEAL POINT	133	9/11/92	4.0	91.00	4	-9	-9.00	-9.00	-9.00	-9.00
30036.2	ELKHORN SLOUGH-SEAL POINT	134	9/11/92	4.0	90.00	4	-9	-9.00	-9 .00	-9.00	-9.00
30036.3	ELKHORN SLOUGH-SEAL POINT	135	9/11/92	4.0	87.00	4	-9	-9.00	-9.00	-9.00	-9.00
31001.0	EGRET LANDING- REF	251	10/9/92	5.0	94.00	5 -	-4	-9.00	-9.00	-9.00	-9.00
31002.0	HIGHWAY I BRIDGE- REF	254	10/23/92	6.0	24.00	6	-3	-9.00	-9.00	-9.00	-9.00
31003.0	ANDREWS POND- REF	258	11/8/92	7.0	86.00	7	-3 .	-9.00	-9.00	-9.00	-9.00
31002.0	HWY. 1 BRIDGE- REF	351	11/27/92	8.0	56.00	8	-3	-9.00	-9.00	-9.00	-9.00
31003.0	ANDREW'S POND REF.	451	12/8/92	9.0	56.00	9	-3	-9.00	-9.00	-9.00	-9.00
30001.0	SANTA CRUZ Y ACHT BASIN	501	12/21/92	10.0	53.00	10	-3	-9.00	-9.00	-9.00	-9.00
30002.0	MONTEREY YACHT CLUB	502	12/21/92	10.0	32.00	i 0 ·	-3	-9.00	-9.00	-9.00	-9.00
30004.0	M.L. YACHT HARBOR	504	12/21/92	10.0	76.00	10	-3	-9.00	-9.00	-9.00	-9.00
30005.0	M.L. SOUTH HARBOR	505	12/21/92	10.0	45.00	10	-3	-9.00	-9.00	-9.00	-9.00
30006.0	PAJARO RIVER ESTUARY	506	12/21/92	10.0	45.00	10	-3	-9.00	-9.00	-9.00	-9.00
30007.0	SANDHOLDT BRIDGE	507	12/21/92	10.0	97.00	10	-3	-9.00	-9.00	-9.00	-9.00
30011.0	SALINAS RIVER LAGOON	511	12/21/92	10.0	59.00	10 .	-3	-9.00	-9.00	9.00	-9.00
30012.0	MONTEREY BOATYARD	512	12/21/92	10.0	19.00	10	-3	-9.00	-9.00	-9.00	-9.00
30013.0	MONTEREY STORMDRAIN NO.2	513	12/21/92	10.0	12.00	10	-3	-9.00	-9.00	-9.00	-9.00
30014.0	MONTEREY STORMDRAIN NO. 3	514	12/21/92	10.0	19.00	10	-3	-9.00	-9.00	-9.00	-9.00
30019.0	MORO COJO SLOUGH	519	12/22/92	10.0	88.00	10	-3	-9.00	-9.00	-9.00	-9.00
30022.0	SOQUEL LAGOON	522	12/21/92	10.0	31.00	10	-3	-9.00	-9.00	-9.00	-9.00
30023.0	BENNETT SL./ESTUARY	523	12/22/92	10.0	60.00	10	-3	-9.00	-9.00	-9.00	-9.00
30026.0	SCOTT CREEK #26B	526	12/18/92	10.0	43.00	10	-3	-9.00	-9.00	-9.00	-9.00
30027.0	MONTEREY BAY REF. SOUTH	527	12/21/92	10.0	27.00	10	-3	-9.00	-9.00	-9.00	-9.00
30028.0	ELKHORN SL. PORTRERO REF.	528	12/18/92	10.0	38.00	10	-3	-9.00	-9.00	-9.00	-9.00
31002.0	HWY 1 BRIDGE REF.	675	1/14/93	11.0	34.00	11	-3	-9.00	-9.00	-9.00	-9.00
30003.0	SANTA BARBARA HARBOR	503	2/10/93	13.0	69.00	13	-3	-9.00	-9.00	-9.00	-9.00
30008.0	SAN LUIS HARBOR TRANS	508	2/9/93	13.0	15.00	13	-3	-9.00	-9.00	-9.00	-9.00

STANUM	STATION	IDORG	DATE	LEG	FINES	FINEBATCH	FINEDATAQC	COARSESAND	FINESAND	COARSESILT	FINESILT
30009.0	GOLETA SL.	509	2/10/93	13.0	83.00	13	-3	-9.00	-9.00	-9.00	-9.00
30010.0	CARPINTERIA MARSH-1	510	2/10/93	13.0	62.00	13	-3	-9.00	-9.00	-9.00	-9.00
30020.0	SANTA MARIA RIVER ESTUARY	520	2/9/93	13.0	82.00	13	-3	-9.00	-9.00	-9.00	-9.00
30021.0	SANTA YNEZ RIVER ESTUARY	521	2/11/93	13.0	38.00	13	-3	-9.00	-9.00	-9.00	-9.00
30024.0	MORRO BAY	524	2/9/93	13.0	24.00	13	-3	-9.00	-9.00	-9.00	-9.00
30025.0	MORRO BAY-SOUTH BAY	525	2/9/93	13.0	47.00	13	-3	-9.00	-9.00	-9.00	-9.00
30029.0	MORRO BAY-MID BAY	530	2/9/93	13.0	23.00	13	-3	-9.00	-9.00	-9.00	-9.00
30030.0	CANADA DE LA GAVIOTA (26d)	531	2/11/93	13.0	91.00	13	-3	-9.00	-9.00	-9.00	-9.00
30031.0	CARPINTERIA MARSH-2	532	2/10/93	13.0	42.00	13	-3	-9.00	-9.00	-9.00	-9.00
30032.0	CARPINETRIA MARSH-3	533	2/10/93	13.0	46.00	13	-3	-9.00	-9.00	-9.00	-9.00
30033.0	MORRO BAY-FUEL DOCK	534	2/9/93	13.0	49.00	13	-3	-9.00	-9.00	-9.00	-9.00
31002.0	HIGHWAY I BRIDGE REF	352	2/23/93	14.0	12.00	14	-3	-9.00	-9.00	-9.00	-9 .00
30027.0	MONTEREY BAY REF. SOUTH	1323	5/16/94	32.0	11.47	32	-4	-9.00	-9.00	-9.00	-9.00
30013.0	MONTEREY STORMDRAIN NO.2	1324	5/16/94	32.0	4.07	32	-4	-9.00	-9.00	-9.00	-9.00
30028.0	ELKHORN SL. PORTRERO REF.	1325	5/17/94	32.0	88.36	32	-4	-9.00	-9.00	-9.00	-9.00
30019.0	MORO COJO SLOUGH	1326	5/17/94	32.0	86.44	32	-4	-9.00	-9.00	-9.00	-9.00
31002.0	HIGHWAY 1 BRIDGE REF	1327	5/17/94	32.0	21.78	32	-4	-9.00	-9.00	-9.00	-9.00
30008.0	SAN LUIS HARBOR TRANS	1328	5/20/94	32.0	12.51	32	-4	-9.00	-9.00	-9.00	-9.00
30029.0	MORRO BAY-MID BAY	1329	5/20/94	32.0	2.95	32	-4	-9.00	-9.00	-9.00	-9.00
30032.0	CARPINETRIA MARSH-3	1330	5/20/94	32.0	57.28	32	-4	-9.00	-9.00	-9.00	-9.00
30004.0	M.L. YACHT HARBOR REPI	1362	6/15/94	33.0	75.87	33	-4	-9.00	-9.00	-9.00	-9.00
30004.0	M.L. YACHT HARBOR REP2	1363	6/15/94	33.0	76.13	33	-4	-9.00	-9.00	-9.00	-9.00
30004.0	M.L. YACHT HARBOR REP3	1364	6/15/94	33.0	69.83	33	-4	-9.00	-9.00	-9.00	-9.00
30007.0	SANDHOLT BRIDGE REP1	1365	6/15/94	33.0	98.19	33	-4	-9.00	-9.00	-9.00	-9.00
30007.0	SANDHOLT BRIDGE REP2	1366	6/15/94	33.0	92.55	33	-4	-9.00	-9.00	-9.00	-9.00
30007.0	SANDHOLT BRIDGE REP3	1367	6/15/94	33.0	97.67	33	-4	-9.00	-9.00	-9.00	-9.00
30023.0	BENNETT SL./ESTUARY REPI	1368	6/16/94	33.0	96.65	33	-4	-9.00	-9.00	-9.00	-9.00
30023.0	BENNETT SL./ESTUARY REP2	1369	6/16/94	33.0	95.93	33	-4	-9.00	-9 .00	-9.00	-9.00
30023.0	BENNETT SL./ESTUARY REP3	1370	6/16/94	33.0	97.49	33	-4	-9.00	-9.00	-9.00	-9.00
31001.0	EGRET LANDING REPI	1371	6/15/94	33.0	83.27	33	-4	-9.00	-9.00	-9.00	-9.00
31001.0	EGRET LANDING REP2	1372	6/15/94	33.0	86.92	33	-4	-9.00	-9.00	-9.00	-9.00
- 31001.0	EGRET LANDING REP3	1373	6/15/94	33.0	81.37	33	-4	-9.00	-9.00	-9.00	-9.00
31002.0	HIGHWAY 1 BRIDGE REP1	1374	6/15/94	33.0	23.40	33	-4	-9.00	-9.00	-9.00	-9.00

Page 2 of 6

٩

٢

.

1

STANUM	STATION	IDORG	DATE	LEG	FINES	FINEBATCH	FINEDATAQC	COARSESAND	FINESAND	COARSESILT	FINESILT
31002.0	HIGHWAY 1 BRIDGE REP2	1375	6/15/94	33.0	19.61	33	-4	-9.00	-9.00	-9.00	-9.00
31002.0	HIGHWAY 1 BRIDGE REP3	1376	6/15/94	33.0	15.24	33	-4	-9.00	-9.00	-9.00	-9.00
31003.0	ANDREWS POND REPI	1377	6/16/94	33.0	52.72	33	-4	-9.00	-9.00	-9.00	-9.00
31003.0	ANDREWS POND REP2	1378	6/16/94	33.0	51.53	33	-4	-9.00	-9.00	-9.00	-9.00
31003.0	ANDREWS POND REP3	1379	6/16/94	33.0	69.03	33	-4	-9.00	-9.00	-9.00	-9.00
30001.0	SANTA CRUZ YACHT BASIN	1588	5/9/96	43.0	36.81	43 ·	-4	-9.00	-9.00	-9.00	-9.00
35001.0	SANTA CRUZ YACHT BASIN-A3	1589	5/9/96	43.0	86.36	43	-4	-9.00	-9.00	-9.00	-9.00
35002.0	SANTA CRUZ YACHT BASIN-A9	1590	5/9/96	43.0	97.52	43	-4	-9.00	-9.00	-9.00	-9.00
35003.0	MONTEREY BOATYARD-LEAD 1	1591	5/9/96	43.0	17.08	43	-4	-9.00	-9.00	-9.00	-9.00
35004.0	MONTEREY BOATYARD-LEAD 2	1592	5/9/96	43.0	34.07	43	-4	-9.00	-9.00	-9.00	-9.00
35005.0	MONTEREY BOATY ARD-LEAD 3	1593	5/9/96	43.0	18.09	43	-4	-9.00	-9.00	-9.00	-9.00
35006.0	MONTEREY BOATYARD-LEAD 4	1594	5/9/96	43.0	13.93	43	-4	-9.00	-9.00	-9.00	-9.00
30002.0	MONTEREY YACHT CLUB	1596	5/9/96	43.0	18.74	43	-4	-9.00	-9.00	-9.00	-9.00
30007.0	SANDHOLDT BRIDGE	1597	5/9/96	43.0	98.95	43	-4	-9.00	-9.00	-9.00	-9.00
30007.0	SANDHOLDT BRIDGE	1762	5/8/97	52.0	93.01	B97232	-4	0.72	6.27	4.63	50.27
36002.0	TEMBLADERO MOUTH	1763	5/8/97	52.0	92.01	B97232	-4	0.00	7.99	7.93	55.69
36003.0	CENTRAL TEMBLADERO	1764	5/8/97	52.0	18.77	B97232	-4	2.76	78.47	3.51	10.16
36004.0	UPPER TEMBLADERO-SALINAS CITY	1765	5/8/97	52.0	89.53	B97232	-4	2.98	.7.50	2.71	69.16
36005.0	ESPINOSA SLOUGH	1766	5/8/97	52.0	89.47	B97232	-4	3.89	6.64	4.89	48.21
36006.0	ALISAL SLOUGH	1767	5/8/97	52.0	83.06	B97232	-4	1.16	15.78	8.02	65.72
36007.0	OLD SALINAS RIVER CHANNEL	1768	5/8/97	52.0	100.00	B97232	-4	0.00	0.00	5.44	34.31

STANUM	STATION	IDORG	DATE	LEG	CLAY	EXPANDEDQC	TOC	TOCBATCH	TOCDATAQC
30034.1	MONTEREY BAY REF	100	8/5/92	1.0	-9.00	-9	0.60	1	-9
30034.2	MONTEREY BAY REF	101	8/5/92	1.0	-9.00	-9	0.70	1	-9
30034.3	MONTEREY BAY REF	102	8/5/92	1.0	-9.00	-9	0.50	1	-9
30035.1	ELKHORN SLOUGH-SEAL POINT	130	9/4/92	3.0	-9.00	-9	1.70	3	-9
30035.2	ELKHORN SLOUGH-SEAL POINT	131	9/4/92	3.0	-9.00	-9	0.70	3	-9
30035.3	ELKHORN SLOUGH-SEAL POINT	132	9/4/92	3.0	-9.00	-9	0.50	3	-9
30036.1	ELKHORN SLOUGH-SEAL POINT	133	9/11/92	4.0	-9.00	-9	0.50	4	-9
30036.2	ELKHORN SLOUGH-SEAL POINT	134	9/11/92	4.0	-9.00	-9	0.60	4	-9
30036.3	ELKHORN SLOUGH-SEAL POINT	135	9/11/92	4.0	-9.00	-9	0.80	4	-9
31001.0	EGRET LANDING- REF	251	10/9/92	5.0	-9.00	-9	0.65	5	-4
31002.0	HIGHWAY 1 BRIDGE- REF	254	10/23/92	6.0	-9.00	-9	0.37	6	-3
31003.0	ANDREWS POND- REF	258	11/8/92	7.0	-9.00	-9	6.00	7	-3
31002.0	HWY. 1 BRIDGE- REF	351	11/27/92	8.0	-9.00	-9	0.77	8	-3
31003.0	ANDREW'S POND REF.	451	12/8/92	9.0	-9.00	-9	1.90	9	-3
30001.0	SANTA CRUZ YACHT BASIN	501	12/21/92	10.0	-9.00	-9	0.77	10	-3
30002.0	MONTEREY YACHT CLUB	502	12/21/92	10.0	-9.00	-9	1.50	10	-3
30004.0	M.L. YACHT HARBOR	504	12/21/92	10.0	-9.00	-9	0.68	10	-3
30005.0	M.L. SOUTH HARBOR	505	12/21/92	10.0	-9.00	-9	0.54	10	-3
30006.0	PAJARO RIVER ESTUARY	506	12/21/92	10.0	-9.00	9	0.44	10	-3
30007.0	SANDHOLDT BRIDGE	507	12/21/92	10.0	-9.00	-9	1.10	10	-3
30011.0	SALINAS RIVER LAGOON	511	12/21/92	10.0	-9.00	-9	0.33	10	-3
30012.0	MONTEREY BOATYARD	512	12/21/92	10.0	-9.00	-9	0.44	10	-3
30013.0	MONTEREY STORMDRAIN NO.2	513	12/21/92	10.0	-9.00	-9	0.18	ìo	-3
30014.0	MONTEREY STORMDRAIN NO. 3	514	12/21/92	10.0	-9.00	-9	0.89	10	-3
30019.0	MORO COJO SLOUGH	519	12/22/92	10.0	-9.00	-9	0.83	10	-3
30022.0	SOQUEL LAGOON	522	12/21/92	10.0	-9.00	-9	0.71	10	-3
30023.0	BENNETT SL./ESTUARY	523	12/22/92	10.0	-9.00	-9	0.55	10	-3
30026.0	SCOTT CREEK #26B	526	12/18/92	10.0	-9.00	-9	1.60	10	-3
30027.0	MONTEREY BAY REF. SOUTH	527	12/21/92	10.0	-9.00	-9	1.70	10	-3
30028.0	ELKHORN SL. PORTRERO REF.	528	12/18/92	10.0	-9.00	-9	0.56	10	-3
31002.0	HWY 1 BRIDGE REF.	675	1/14/93	11.0	-9.00	-9	0.26	11	-3
30003.0	SANTA BARBARA HARBOR	503	2/10/93	13.0	-9.00	-9	1.40	13	-3
30008.0	SAN LUIS HARBOR TRANS	508	2/9/93	13.0	-9.00	-9	0.25	13	-3

Page 4 of 6

t

1

.

300090 COLETA SL. 509 2/10/93 13.0 -9.00 -9 0.84 13 -3 30010.0 CARPINTERIA MARSH-1 510 2/10/93 13.0 -9.00 -9 1.70 13 -3 300210 SANTA MARIA RIVER ESTUARY 520 2/9/93 13.0 -9.00 -9 0.34 13 -3 300210 SANTA YINEZ RIVER ESTUARY 521 2/11/93 13.0 -9.00 -9 0.34 13 -3 300250 MORRO BAY-SOUTH BAY 525 2/9/93 13.0 -9.00 -9 0.86 13 -3 30030.0 CARPAD EL GAVICTA (26d) 531 2/11/93 13.0 -9.00 -9 0.68 13 -3 300310 CARPINTERIA MARSH-2 532 2/10/93 13.0 -9.00 -9 1.00 13 -3 300320 CARPINTERIA MARSH-3 533 2/10/93 13.0 -9.00 -9 1.00 13 -3	STANUM	STATION	IDORG	DATE	LEG	CLAY	EXPANDEDQC	тос	тосватсн	TOCDATAQC
30020.0 SANTA MARIA RIVER ESTUARY 520 29/93 13.0 -9.00 -9 0.27 13 -3 30021.0 SANTA YNEZ RIVER ESTUARY 521 211/93 13.0 -9.00 -9 0.34 13 -3 30024.0 MORRO BAY 524 29/93 13.0 -9.00 -9 0.35 13 -3 30025.0 MORRO BAY-MID BAY 530 29/93 13.0 -9.00 -9 0.63 13 -3 30030.0 CANDAD DE LA GAVIOTA (264) 531 2/1/93 13.0 -9.00 -9 0.68 13 -3 30031.0 CARPINTERIA MARSH-2 532 2/1/93 13.0 -9.00 -9 0.68 13 -3 30032.0 CARPINTERIA MARSH-3 533 2/1/93 13.0 -9.00 -9 0.68 13 -3 30032.0 CARPINTERIA MARSH-3 532 2/2/3/3 14.0 -0 -9 0.38 14 -3 30027.0 MONTEREY BAY REF. SOUTH 1325 5/1/7/4 32.0 -9.00 -9 </td <td>30009.0</td> <td>GOLETA SL.</td> <td>509</td> <td>2/10/93</td> <td>13.0</td> <td>-9.00</td> <td>-9</td> <td>0.84</td> <td>13</td> <td>-3</td>	30009.0	GOLETA SL.	509	2/10/93	13.0	-9.00	-9	0.84	13	-3
30021.0 SANTA YNEZ RIVER ESTUARY 521 2/11/93 13.0 -9.00 -9 0.34 13 -3 30024.0 MORRO BAY 524 2/9/93 13.0 -9.00 -9 0.39 13 -3 30025.0 MORRO BAY-SOUTH BAY 525 2/9/93 13.0 -9.00 -9 0.66 13 -3 30030.0 CANADA DE LA GAVIOTA (260) 531 2/11/93 13.0 -9.00 -9 0.63 13 -3 30031.0 CARPINTERIA MARSH-2 532 2/10/93 13.0 -9.00 -9 0.68 13 -3 30032.0 CARPINTERIA MARSH-3 533 2/10/93 13.0 -9.00 -9 0.68 13 -3 30032.0 CARPINTERIA MARSH-3 533 2/10/93 13.0 -9.00 -9 0.38 14 -3 30027.0 MORRO BAY-FUEL DOCK 534 2/9/93 14.0 -9.00 -9 0.38 14 -3 30027.0 MORTRO BAY-BAY REF, SOUTH 1325 5/16/94 32.0 -9.00	30010.0	CARPINTERIA MARSH-1	510	2/10/93	13.0	-9.00	-9	i.70	13	-3
30024.0 MORRO BAY 524 2/9/93 13.0 -9.00 -9 0.39 13 -3 30025.0 MORRO BAY-SOUTH BAY 525 2/9/93 13.0 -9.00 -9 0.86 13 -3 30020.0 CANADA DE LA GAVICITA (26d) 531 2/11/93 13.0 -9.00 -9 0.63 13 -3 30031.0 CARPINTERIA MARSH-2 532 2/10/93 13.0 -9.00 -9 0.68 13 -3 30032.0 CARPINTERIA MARSH-3 533 2/10/93 13.0 -9.00 -9 1.10 13 -3 30032.0 CARPINETRIA MARSH-3 533 2/10/93 13.0 -9.00 -9 0.38 14 -3 30032.0 MORRO BAY-FUEL DOCK 534 2/2/9/93 13.0 -9.00 -9 0.38 14 -3 30012.0 MORRO BAY-STORMDRAIN NO.2 1324 5/16/94 32.0 -9.00 -9 0.34 32 -4 30012.0 MONTEREY STORMDRAIN NO.2 1325 5/17/94 32.0 -9.00	30020.0	SANTA MARIA RIVER ESTUARY	520	2/9/93	13.0	-9.00	-9	0.27	13	-3
30025.0 MORRO BAY-SOUTH BAY 525 29/93 13.0 -9.00 -9 0.86 13 -3 30029.0 MORRO BAY-MID BAY 530 29/93 13.0 -9.00 -9 0.63 13 -3 30030.0 CANADA DE LA GAVIOTA (26d) 531 2/1/93 13.0 -9.00 -9 0.63 13 -3 30031.0 CARPINTERIA MARSH-2 532 2/10/93 13.0 -9.00 -9 1.10 13 -3 30032.0 CARPINTERIA MARSH-3 533 2/10/93 13.0 -9.00 -9 1.10 13 -3 30032.0 MORRO BAY-FUEL DOCK 534 2/9/93 14.0 -9.00 -9 0.38 14 -3 30027.0 MONTEREV BAY REF. SOUTH 1325 5/16/94 32.0 -9.00 -9 0.34 32 -4 30012.0 MORO COLO SLOUGH 1326 5/17/94 32.0 -9.00 -9 0.43 32 -4 30020.0 HIGHWAY 1 BRIDGE REF 1327 5/17/94 32.0 -9.00 <t< td=""><td>30021.0</td><td>SANTA YNEZ RIVER ESTUARY</td><td>521</td><td>2/11/93</td><td>13.0</td><td>-9.00</td><td>-9</td><td>0.34</td><td>13</td><td>-3</td></t<>	30021.0	SANTA YNEZ RIVER ESTUARY	521	2/11/93	13.0	-9.00	-9	0.34	13	-3
30022.0 MORRO BAY-MID BAY 530 2/9/93 13.0 -9.00 -9 0.35 13 -3 30030.0 CANADA DE LA GAVIOTA (264) 531 2/1/93 13.0 -9.00 -9 0.63 13 -3 30031.0 CARPINETRIA MARSH-2 532 2/10/93 13.0 -9.00 -9 0.68 13 -3 30032.0 CARPINETRIA MARSH-3 533 2/10/93 13.0 -9.00 -9 1.10 13 -3 30032.0 MORRO BAY-FUEL DOCK 534 2/9/93 13.0 -9.00 -9 0.38 14 -3 30022.0 MONTEREY BAY ERS. SOUTH 1322 5/16/94 32.0 -9.00 -9 0.34 32 -4 30013.0 MONTEREY STORMDRAIN NO.2 1324 5/16/94 32.0 -9.00 -9 2.61 32 -4 30023.0 MORO COJO SLOUGH 1326 5/17/94 32.0 -9.00 -9 0.43 32 -4 30020.0 MORO CAJO SLOUGH 1325 5/17/94 32.0 -9.00	30024.0	MORRO BAY	524	2/9/93	13.0	-9.00	-9	0.39	13	-3
3003.0. CANADA DE LA GAVIOTA (26d) 531 2/11/93 13.0 9.00 -9 0.63 13 -3 30031.0. CARPINTERIA MARSH-2 532 2/10/93 13.0 9.00 -9 0.68 13 -3 30032.0. CARPINETRIA MARSH-3 533 2/10/93 13.0 9.00 -9 1.10 13 -3 30032.0. CARPINETRIA MARSH-3 533 2/10/93 13.0 9.00 -9 1.10 13 -3 30032.0. MORRO BAY-FUEL DOCK 534 2/9/93 14.0 9.00 -9 0.38 14 -3 30027.0. MONTEREY BAY REF. SOUTH 1324 5/16/94 32.0 9.00 -9 0.34 32 -4 30019.0. MORO COJO SLOUGH 1326 5/17/94 32.0 9.00 -9 0.66 32 -4 30020.0. HIGHWAY I BRIDGE REF 1327 5/17/94 32.0 9.00 -9 0.66 32 -4 30020.0. MORRO BAY-MID BAY 1328 5/20/94 32.0 9.00	30025.0	MORRO BAY-SOUTH BAY	525	2/9/93	13.0	-9.00	-9	0.86	13	-3
30031.0 CARPINTERIA MARSH-2 532 2/10/93 13.0 9.00 -9 0.68 13 -3 30032.0 CARPINETRIA MARSH-3 533 2/10/93 13.0 9.00 -9 1.10 13 -3 30033.0 MORRO BAY-FUEL DOCK 534 2/9/93 13.0 9.00 -9 1.00 13 -3 31002.0 HIGHWAY 1 BRIDGE REF 152 2/23/93 14.0 9.00 -9 0.38 14 -3 30027.0 MONTEREY STORMDRAIN NO.2 1324 5/16/94 32.0 -9.00 -9 0.34 32 -4 30013.0 MONTEREY STORMDRAIN NO.2 1324 5/16/94 32.0 -9.00 -9 0.34 32 -4 30012.0 HIGHWAY 1 BRIDGE REF 1325 5/17/94 32.0 -9.00 -9 0.43 32 -4 3002.0 SAN LUIS HARBOR TRANS 1328 5/20/94 32.0 -9.00 -9 0.66 32 -4 3002.0 CARPINETRIA MARSH-3 1330 5/20/94 32.0 -9.00	30029.0	MORRO BAY-MID BAY	530	2/9/93	13.0	-9.00	-9	0.35	13	-3
30032.0 CARPINETRIA MARSH-3 533 2/10/93 13.0 9.00 -9 1.10 13 -3 30033.0 MORRO BAY-FUEL DOCK 534 2/9/93 13.0 9.00 -9 1.00 13 -3 31002.0 HIGHWAY 1 BRIDGE REF 352 2/23/93 14.0 9.00 -9 0.38 14 -3 30027.0 MONTEREY BAY REF. SOUTH 1323 5/16/94 32.0 -9.00 -9 0.34 32 -4 30013.0 MONTEREY STORMDRAIN NO.2 1324 5/16/94 32.0 -9.00 -9 0.34 32 -4 3002.0 ELKHORN SL. PORTRERO REF. 1325 5/17/94 32.0 -9.00 -9 0.61 32 -4 3002.0 MORC OJO SLOUCH 1326 5/17/94 32.0 -9.00 -9 0.66 32 -4 3002.0 SAN LUIS HARBOR TRANS 1328 5/20/94 32.0 -9.00 -9 0.10 32 -4 3002.0 MORRO BAY-MID BAY 1329 5/20/94 32.0 -9.00	30030.0	CANADA DE LA GAVIOTA (26d)	531	2/11/93	13.0	-9.00	-9	0.63	13	-3
30033.0 MORRO BAY-FUEL DOCK 534 2/9/93 13.0 9.00 -9 1.00 13 -3 31002.0 HIGHWAY 1 BRIDGE REF 352 2/23/93 14.0 -9.00 -9 0.38 14 -3 30027.0 MONTEREY BAY REF. SOUTH 1323 5/16/94 32.0 -9.00 -9 0.34 32 -4 30013.0 MONTEREY STORMDRAIN NO.2 1324 5/16/94 32.0 -9.00 -9 0.34 32 -4 30019.0 MORO COJO SLOUGH 1326 5/17/94 32.0 -9.00 -9 0.43 32 -4 30019.0 MORO COJO SLOUGH 1326 5/17/94 32.0 -9.00 -9 0.43 32 -4 30020.0 HIGHWAY 1 BRIDGE REF 1327 5/17/94 32.0 -9.00 -9 0.43 32 -4 30020.0 MORO BAY-MID BAY 1329 5/20/94 32.0 -9.00 -9 0.10 32 -4 30020.0 CARPINETRIA MARSH-3 1330 5/20/94 33.0 -9.00	30031.0	CARPINTERIA MARSH-2	532	2/10/93	13.0	-9.00	-9	0.68	13	-3
31002.0 HIGHWAY I BRIDGE REF 352 2/23/3 14.0 9.00 -9 0.38 14 -3 30027.0 MONTEREY BAY REF. SOUTH 1323 5/16/94 32.0 -9.00 -9 0.38 32 -4 30013.0 MONTEREY STORMDRAIN NO.2 1324 5/16/94 32.0 -9.00 -9 0.34 32 -4 30028.0 ELKHORN SL. PORTRERO REF. 1325 5/17/94 32.0 -9.00 -9 0.43 32 -4 30019.0 MORO COJO SLOUGH 1326 5/17/94 32.0 -9.00 -9 0.43 32 -4 30020.0 HIGHWAY I BRIDGE REF 1327 5/17/94 32.0 -9.00 -9 0.66 32 -4 30020.0 MORRO BAY-MID BAY 1329 5/20/94 32.0 -9.00 -9 0.10 32 -4 30032.0 CARPINETRIA MARSH-3 1330 5/20/94 32.0 -9.00 -9 1.36 33 -4 30040.0 ML. YACHT HARBOR REP1 1362 6/15/94 33.0 -9.	30032.0	CARPINETRIA MARSH-3	533	2/10/93	13.0	-9.00	-9	1.10	13	-3
30027.0 MONTEREY BAY REF. SOUTH 1323 5/16/94 32.0 9.00 -9 0.28 32 -4 30013.0 MONTEREY STORMDRAIN NO.2 1324 5/16/94 32.0 -9.00 -9 0.34 32 -4 30013.0 MONTEREY STORMDRAIN NO.2 1324 5/16/94 32.0 -9.00 -9 0.34 32 -4 30018.0 ELKHORN SL. PORTRERO REF. 1325 5/17/94 32.0 -9.00 -9 2.61 32 -4 30008.0 SAN LUIS HARBOR TRANS 1328 5/20/94 32.0 -9.00 -9 0.66 32 -4 30008.0 SAN LUIS HARBOR TRANS 1328 5/20/94 32.0 -9.00 -9 0.66 32 -4 30029.0 MORRO BAY-MID BAY 1329 5/20/94 32.0 -9.00 -9 0.10 32 -4 30032.0 CARPINETRIA MARSH-3 1330 5/20/94 32.0 -9.00 -9 1.36 33 -4 30040.0 ML. YACHT HARBOR REP1 1362 6/15/94 33.0	30033.0	MORRO BAY-FUEL DOCK	534	2/9/93	13.0	-9.00	-9	1.00	13	-3
30013.0 MONTEREY STORMDRAIN NO.2 1324 5/16/94 32.0 -9.00 -9 0.34 32 -4 30028.0 ELKHORN SL. PORTRERO REF. 1325 5/17/94 32.0 -9.00 -9 2.61 32 -4 30019.0 MORO COJO SLOUGH 1326 5/17/94 32.0 -9.00 -9 3.20 32 -4 31002.0 HIGHWAY I BRIDGE REF 1327 5/17/94 32.0 -9.00 -9 0.43 32 -4 30008.0 SAN LUIS HARBOR TRANS 1328 5/20/94 32.0 -9.00 -9 0.666 32 -4 30002.0 CARPINETRIA MARSH-3 1330 5/20/94 32.0 -9.00 -9 0.10 32 -4 30004.0 M.L. YACHT HARBOR REP1 1362 6/15/94 33.0 -9.00 -9 1.36 33 -4 30004.0 M.L. YACHT HARBOR REP2 1363 6/15/94 33.0 -9.00 -9 1.47 33 -4 30007.0 SANDHOLT BRIDGE REP3 1364 6/15/94 33.0	31002.0	HIGHWAY I BRIDGE REF	352	2/23/93	14.0	-9.00	-9	0.38	14	-3
30028.0 ELKHORN SL. PORTRERO REF. 1325 5/17/94 32.0 -9.00 -9 2.61 32 -4 30019.0 MORO COJO SLOUGH 1326 5/17/94 32.0 -9.00 -9 3.20 32 -4 31002.0 HIGHWAY 1 BRIDGE REF 1327 5/17/94 32.0 -9.00 -9 0.43 32 -4 3008.0 SAN LUIS HARBOR TRANS 1328 5/20/94 32.0 -9.00 -9 0.66 32 -4 30029.0 MORRO BAY-MID BAY 1329 5/20/94 32.0 -9.00 -9 0.10 32 -4 30032.0 CARPINETRIA MARSH-3 1330 5/20/94 32.0 -9.00 -9 1.36 33 -4 3004.0 ML. YACHT HARBOR REP1 1362 6/15/94 33.0 -9.00 -9 1.47 33 -4 30004.0 ML. YACHT HARBOR REP2 1366 6/15/94 33.0 -9.00 -9 1.47 33 -4 30007.0 SANDHOLT BRIDGE REP1 1365 6/15/94 33.0 -9.00 </td <td>30027.0</td> <td>MONTEREY BAY REF. SOUTH</td> <td>1323</td> <td>5/16/94</td> <td>32.0</td> <td>-9.00</td> <td>-9</td> <td>0.28</td> <td>32</td> <td>-4</td>	30027.0	MONTEREY BAY REF. SOUTH	1323	5/16/94	32.0	-9.00	-9	0.28	32	-4
30019.0 MORO COJO SLOUGH 1326 5/17/94 32.0 -9.00 -9 3.20 32 -4 31002.0 HIGHWAY 1 BRIDGE REF 1327 5/17/94 32.0 -9.00 -9 0.43 32 -4 3008.0 SAN LUIS HARBOR TRANS 1328 5/20/94 32.0 -9.00 -9 0.66 32 -4 3002.0 MORRO BAY-MID BAY 1329 5/20/94 32.0 -9.00 -9 0.10 32 -4 30032.0 CARPINETRIA MARSH-3 1330 5/20/94 32.0 -9.00 -9 1.36 33 -4 3004.0 M.L. YACHT HARBOR REP1 1362 6/15/94 33.0 -9.00 -9 1.47 33 -4 3004.0 M.L. YACHT HARBOR REP2 1363 6/15/94 33.0 -9.00 -9 1.47 33 -4 30004.0 M.L. YACHT HARBOR REP2 1366 6/15/94 33.0 -9.00 -9 1.47 33 -4 30007.0 SANDHOLT BRIDGE REP1 1365 6/15/94 33.0 -9.00	30013.0	MONTEREY STORMDRAIN NO.2	1324	5/16/94	32.0	-9.00	-9	0.34	32	-4
31002.0 HIGHWAY 1 BRIDGE REF 1327 5/17/94 32.0 -9.00 -9 0.43 32 -4 30008.0 SAN LUIS HARBOR TRANS 1328 5/20/94 32.0 -9.00 -9 0.66 32 -4 30029.0 MORRO BAY-MID BAY 1329 5/20/94 32.0 -9.00 -9 0.10 32 -4 30032.0 CARPINETRIA MARSH-3 1330 5/20/94 32.0 -9.00 -9 2.34 32 -4 3004.0 M.L. YACHT HARBOR REP1 1362 6/15/94 33.0 -9.00 -9 1.36 33 -4 3004.0 M.L. YACHT HARBOR REP2 1363 6/15/94 33.0 -9.00 -9 1.47 33 -4 3004.0 M.L. YACHT HARBOR REP3 1364 6/15/94 33.0 -9.00 -9 1.40 33 -4 30007.0 SANDHOLT BRIDGE REP1 1365 6/15/94 33.0 -9.00 -9 3.02 33 -4 30007.0 SANDHOLT BRIDGE REP3 1366 6/15/94 33.0 -9.00	30028.0	ELKHORN SL. PORTRERO REF.	1325	5/17/94	32.0	-9.00	-9	2.61	32	4
30008.0SAN LUIS HARBOR TRANS13285/20/9432.0-9.00-90.6632-430029.0MORRO BAY-MID BAY13295/20/9432.0-9.00-90.1032-430032.0CARPINETRIA MARSH-313305/20/9432.0-9.00-92.3432-430004.0M.L. YACHT HARBOR REP113626/15/9433.0-9.00-91.3633-430004.0M.L. YACHT HARBOR REP213636/15/9433.0-9.00-91.4733-430007.0SANDHOLT BRIDGE REP313646/15/9433.0-9.00-91.4033-430007.0SANDHOLT BRIDGE REP113656/15/9433.0-9.00-92.9433-430007.0SANDHOLT BRIDGE REP213666/15/9433.0-9.00-93.0233-430023.0BENNETT SL/ESTUARY REP113686/16/9433.0-9.00-93.6233-430023.0BENNETT SL/ESTUARY REP213696/16/9433.0-9.00-93.5233-430023.0BENNETT SL/ESTUARY REP313706/16/9433.0-9.00-93.5233-430023.0BENNETT SL/ESTUARY REP313706/16/9433.0-9.00-93.5233-431001.0EGRET LANDING REP113716/15/9433.0-9.00-91.9533-4 <td>30019.0</td> <td>MORO COJO SLOUGH</td> <td>1326</td> <td>5/17/94</td> <td>32.0</td> <td>-9.00</td> <td>-9</td> <td>3.20</td> <td>32</td> <td>-4</td>	30019.0	MORO COJO SLOUGH	1326	5/17/94	32.0	-9.00	-9	3.20	32	-4
30029.0 MORRO BAY-MID BAY 1329 5/20/94 32.0 -9.00 -9 0.10 32 -4 30032.0 CARPINETRIA MARSH-3 1330 5/20/94 32.0 -9.00 -9 2.34 32 -4 3004.0 M.L. YACHT HARBOR REP1 1362 6/15/94 33.0 -9.00 -9 1.36 33 -4 3004.0 M.L. YACHT HARBOR REP2 1363 6/15/94 33.0 -9.00 -9 1.47 33 -4 3004.0 M.L. YACHT HARBOR REP3 1364 6/15/94 33.0 -9.00 -9 1.40 33 -4 30007.0 SANDHOLT BRIDGE REP1 1365 6/15/94 33.0 -9.00 -9 2.94 33 -4 30007.0 SANDHOLT BRIDGE REP2 1366 6/15/94 33.0 -9.00 -9 3.02 33 -4 30023.0 BENNETT SL/ESTUARY REP1 1368 6/16/94 33.0 -9.00 -9 3.62 33 -4 30023.0 BENNETT SL/ESTUARY REP2 1369 6/16/94 33.0	31002.0	HIGHWAY 1 BRIDGE REF	1327	5/17/94	32.0	-9.00	-9	0.43	32	-4
30032.0CARPINETRIA MARSH-313305/20/9432.09.00-92.3432-430004.0M.L YACHT HARBOR REP113626/15/9433.09.00-91.3633-430004.0M.L YACHT HARBOR REP213636/15/9433.09.00-91.4733-430004.0M.L YACHT HARBOR REP213646/15/9433.0-9.00-91.4033-430004.0M.L YACHT HARBOR REP313646/15/9433.0-9.00-91.4033-430007.0SANDHOLT BRIDGE REP113656/15/9433.0-9.00-92.9433-430007.0SANDHOLT BRIDGE REP213666/15/9433.0-9.00-93.0233-430023.0BENNETT SL/ESTUARY REP113686/16/9433.0-9.00-93.6233-430023.0BENNETT SL/ESTUARY REP213696/16/9433.0-9.00-93.6233-430023.0BENNETT SL/ESTUARY REP313706/16/9433.0-9.00-93.5233-431001.0EGRET LANDING REP113716/15/9433.0-9.00-91.9533-431001.0EGRET LANDING REP313736/15/9433.0-9.00-91.9533-431001.0EGRET LANDING REP313736/15/9433.0-9.00-91.9533-4 <td< td=""><td>30008.0</td><td>SAN LUIS HARBOR TRANS</td><td>1328</td><td>5/20/94</td><td>32.0</td><td>-9.00</td><td>-9</td><td>0.66</td><td>32</td><td>-4</td></td<>	30008.0	SAN LUIS HARBOR TRANS	1328	5/20/94	32.0	-9.00	-9	0.66	32	-4
30004.0 M.L. YACHT HARBOR REP1 1362 6/15/94 33.0 -9.00 -9 1.36 33 -4 30004.0 M.L. YACHT HARBOR REP2 1363 6/15/94 33.0 -9.00 -9 1.47 33 -4 30004.0 M.L. YACHT HARBOR REP3 1364 6/15/94 33.0 -9.00 -9 1.40 33 -4 30007.0 SANDHOLT BRIDGE REP1 1365 6/15/94 33.0 -9.00 -9 2.94 33 -4 30007.0 SANDHOLT BRIDGE REP2 1366 6/15/94 33.0 -9.00 -9 3.02 33 -4 30007.0 SANDHOLT BRIDGE REP2 1366 6/15/94 33.0 -9.00 -9 3.02 33 -4 30007.0 SANDHOLT BRIDGE REP3 1367 6/15/94 33.0 -9.00 -9 3.05 33 -4 30023.0 BENNETT SL/ESTUARY REP1 1368 6/16/94 33.0 -9.00 -9 3.52 33 -4 30023.0 BENNETT SL/ESTUARY REP3 1370 6/16/94 33.0	30029.0	MORRO BAY-MID BAY	1329	5/20/94	32.0	-9.00	-9	0.10	32	-4
30004.0 M.L. YACHT HARBOR REP2 1363 6/15/94 33.0 -9.00 -9 1.47 33 -4 30004.0 M.L. YACHT HARBOR REP3 1364 6/15/94 33.0 -9.00 -9 1.40 33 -4 30007.0 SANDHOLT BRIDGE REP1 1365 6/15/94 33.0 -9.00 -9 2.94 33 -4 30007.0 SANDHOLT BRIDGE REP1 1366 6/15/94 33.0 -9.00 -9 3.02 33 -4 30007.0 SANDHOLT BRIDGE REP2 1366 6/15/94 33.0 -9.00 -9 3.02 33 -4 30007.0 SANDHOLT BRIDGE REP3 1367 6/15/94 33.0 -9.00 -9 3.05 33 -4 30023.0 BENNETT SL/ESTUARY REP1 1368 6/16/94 33.0 -9.00 -9 3.62 33 -4 30023.0 BENNETT SL/ESTUARY REP2 1369 6/16/94 33.0 -9.00 -9 3.52 33 -4 31001.0 EGRET LANDING REP1 1371 6/15/94 33.0 <	30032.0	CARPINETRIA MARSH-3	1330	5/20/94	32.0	-9.00	-9	2.34	. 32	-4
30004.0M.L. YACHT HARBOR REP313646/15/9433.0-9.00-91.4033-430007.0SANDHOLT BRIDGE REP113656/15/9433.0-9.00-92.9433-430007.0SANDHOLT BRIDGE REP213666/15/9433.0-9.00-93.0233-430007.0SANDHOLT BRIDGE REP213666/15/9433.0-9.00-93.0233-430023.0BENNETT SL/ESTUARY REP113686/16/9433.0-9.00-93.6233-430023.0BENNETT SL/ESTUARY REP213696/16/9433.0-9.00-93.7633-430023.0BENNETT SL/ESTUARY REP313706/16/9433.0-9.00-93.5233-431001.0EGRET LANDING REP113716/15/9433.0-9.00-92.9333-431001.0EGRET LANDING REP213726/15/9433.0-9.00-91.9533-431001.0EGRET LANDING REP313736/15/9433.0-9.00-91.2333-4	30004.0	M.L. YACHT HARBOR REP1	1362	6/15/94	33.0	-9.00	-9	1.36	33	-4
30007.0SANDHOLT BRIDGE REP113656/15/9433.0-9.00-92.9433-430007.0SANDHOLT BRIDGE REP213666/15/9433.0-9.00-93.0233-430007.0SANDHOLT BRIDGE REP313676/15/9433.0-9.00-93.0533-430023.0BENNETT SL/ESTUARY REP113686/16/9433.0-9.00-93.6233-430023.0BENNETT SL/ESTUARY REP213696/16/9433.0-9.00-93.7633-430023.0BENNETT SL/ESTUARY REP313706/16/9433.0-9.00-93.5233-431001.0EGRET LANDING REP113716/15/9433.0-9.00-92.9333-431001.0EGRET LANDING REP213726/15/9433.0-9.00-91.9533-431001.0EGRET LANDING REP313736/15/9433.0-9.00-91.2333-4	30004.0	M.L. YACHT HARBOR REP2	1363	6/15/94	33.0	-9.00	-9 .	1.47	33	-4
30007.0 SANDHOLT BRIDGE REP2 1366 6/15/94 33.0 -9.00 -9 3.02 33 -4 30007.0 SANDHOLT BRIDGE REP3 1367 6/15/94 33.0 -9.00 -9 3.05 33 -4 30023.0 BENNETT SL/ESTUARY REP1 1368 6/16/94 33.0 -9.00 -9 3.62 33 -4 30023.0 BENNETT SL/ESTUARY REP1 1369 6/16/94 33.0 -9.00 -9 3.62 33 -4 30023.0 BENNETT SL/ESTUARY REP2 1369 6/16/94 33.0 -9.00 -9 3.76 33 -4 30023.0 BENNETT SL/ESTUARY REP3 1370 6/16/94 33.0 -9.00 -9 3.52 33 -4 31001.0 EGRET LANDING REP1 1371 6/15/94 33.0 -9.00 -9 2.93 33 -4 31001.0 EGRET LANDING REP2 1372 6/15/94 33.0 -9.00 -9 1.95 33 -4 31001.0 EGRET LANDING REP3 1373 6/15/94 33.0 <td< td=""><td>30004.0</td><td>M.L. YACHT HARBOR REP3</td><td>1364</td><td>6/15/94</td><td>33.0</td><td>-9.00</td><td>-9</td><td>1.40</td><td>33</td><td>-4</td></td<>	30004.0	M.L. YACHT HARBOR REP3	1364	6/15/94	33.0	-9.00	-9	1.40	33	-4
30007.0 SANDHOLT BRIDGE REP3 1367 6/15/94 33.0 -9.00 -9 3.05 33 -4 30023.0 BENNETT SL/ESTUARY REP1 1368 6/16/94 33.0 -9.00 -9 3.62 33 -4 30023.0 BENNETT SL/ESTUARY REP1 1369 6/16/94 33.0 -9.00 -9 3.62 33 -4 30023.0 BENNETT SL/ESTUARY REP2 1369 6/16/94 33.0 -9.00 -9 3.76 33 -4 30023.0 BENNETT SL/ESTUARY REP3 1370 6/16/94 33.0 -9.00 -9 3.52 33 -4 31001.0 EGRET LANDING REP1 1371 6/15/94 33.0 -9.00 -9 2.93 33 -4 31001.0 EGRET LANDING REP2 1372 6/15/94 33.0 -9.00 -9 1.95 33 -4 31001.0 EGRET LANDING REP3 1373 6/15/94 33.0 -9.00 -9 1.23 33 -4	30007.0	SANDHOLT BRIDGE REP1	1365	6/15/94	33.0	-9.00	-9	2.94	33	-4
30023.0 BENNETT SL/ESTUARY REP1 1368 6/16/94 33.0 -9.00 -9 3.62 33 -4 30023.0 BENNETT SL/ESTUARY REP2 1369 6/16/94 33.0 -9.00 -9 3.76 33 -4 30023.0 BENNETT SL/ESTUARY REP2 1369 6/16/94 33.0 -9.00 -9 3.76 33 -4 30023.0 BENNETT SL/ESTUARY REP3 1370 6/16/94 33.0 -9.00 -9 3.52 33 -4 31001.0 EGRET LANDING REP1 1371 6/15/94 33.0 -9.00 -9 2.93 33 -4 31001.0 EGRET LANDING REP2 1372 6/15/94 33.0 -9.00 -9 1.95 33 -4 31001.0 EGRET LANDING REP3 1373 6/15/94 33.0 -9.00 -9 1.23 33 -4	30007.0	SANDHOLT BRIDGE REP2	1366	6/15/94	33.0	-9.00	-9	3.02	33	-4
30023.0 BENNETT SL/ESTUARY REP2 1369 6/16/94 33.0 -9.00 -9 3.76 33 -4 30023.0 BENNETT SL/ESTUARY REP3 1370 6/16/94 33.0 -9.00 -9 3.52 33 -4 31001.0 EGRET LANDING REP1 1371 6/15/94 33.0 -9.00 -9 2.93 33 -4 31001.0 EGRET LANDING REP2 1372 6/15/94 33.0 -9.00 -9 1.95 33 -4 31001.0 EGRET LANDING REP3 1373 6/15/94 33.0 -9.00 -9 1.95 33 -4	30007.0	SANDHOLT BRIDGE REP3	1367	6/15/94	33.0	-9.00	-9	3.05	33	-4
30023.0 BENNETT SL/ESTUARY REP3 1370 6/16/94 33.0 -9.00 -9 3.52 33 -4 31001.0 EGRET LANDING REP1 1371 6/15/94 33.0 -9.00 -9 2.93 33 -4 31001.0 EGRET LANDING REP2 1372 6/15/94 33.0 -9.00 -9 1.95 33 -4 31001.0 EGRET LANDING REP3 1373 6/15/94 33.0 -9.00 -9 1.95 33 -4	30023.0	BENNETT SL./ESTUARY REPI	1368	6/16/94	33.0	-9.00	-9	3.62	33	-4
31001.0 EGRET LANDING REP1 1371 6/15/94 33.0 -9.00 -9 2.93 33 -4 31001.0 EGRET LANDING REP2 1372 6/15/94 33.0 -9.00 -9 1.95 33 -4 31001.0 EGRET LANDING REP3 1373 6/15/94 33.0 -9.00 -9 1.95 33 -4	30023.0	BENNETT SL./ESTUARY REP2	1369	6/16/94	33.0	-9.00	-9	3.76	33	-4
31001.0 EGRET LANDING REP2 1372 6/15/94 33.0 -9.00 -9 1.95 33 -4 31001.0 EGRET LANDING REP3 1373 6/15/94 33.0 -9.00 -9 1.23 33 -4	30023.0	BENNETT SL./ESTUARY REP3	1370	6/16/94	33.0	-9.00	-9	3.52	33	-4
31001.0 EGRET LANDING REP3 1373 6/15/94 33.0 -9.00 -9 1.23 33 -4	31001.0	EGRET LANDING REPI	1371	6/15/94	33.0	-9.00	-9	2.93	33	-4
	31001.0	EGRET LANDING REP2	1372	6/15/94	33.0	-9.00	-9	1.95	33	-4
31002.0 HIGHWAY 1 BRIDGE REP1 1374 6/15/94 33.0 -9.00 -9 0.61 33 -4	31001.0	EGRET LANDING REP3	1373	6/15/94	33.0	-9.00	-9	1.23	33	-4
	31002.0	HIGHWAY 1 BRIDGE REP1	1374	6/15/94	33.O	-9.00	-9	0.61	33	-4

Page 5 of 6

STANUM	STATION	IDORG	DATE	LEG	CLAY	EXPANDEDQC	тос	тосватсн	TOCDATAQC
31002.0	HIGHWAY 1 BRIDGE REP2	1375	6/15/94	33.0	-9.00	-9	0.56	33	-4
31002.0	HIGHWAY 1 BRIDGE REP3	1376	6/15/94	33.0	-9.00	-9	0.30	33	-4
31003.0	ANDREWS POND REP1	1377	6/16/94	33.0	-9.00	-9	5.18	33	-4
31003.0	ANDREWS POND REP2	1378	6/16/94	33.0	-9.00	-9	3.72	33	-4
31003.0	ANDREWS POND REP3	1379	6/16/94	33.0	-9.00	-9	5.27	33	-4
30001.0	SANTA CRUZ YACHT BASIN	1588	5/9/96	43.0	-9.00	-9	1.41	43	-4
35001.0	SANTA CRUZ YACHT BASIN-A3	1589	5/9/96	43.0	-9.00	-9	3.15	43	-4
35002.0	SANTA CRUZ YACHT BASIN-A9	1590	5/9/96	43.0	-9.00	-9	4.10	43	-4
35003.0	MONTEREY BOATYARD-LEAD 1	1591	5/9/96	43.0	-9.00	-9	1.86	43	-4
35004.0	MONTEREY BOATYARD-LEAD 2	1592	5/9/96	43.0	-9.00	-9	2.55	43	-4
35005.0	MONTEREY BOATYARD-LEAD 3	1593	5/9/96	43.0	-9.00	-9	1.33	43	-4
35006.0	MONTEREY BOATYARD-LEAD 4	1594	5/9/96	43.0	-9.00	-9	1.11	43	-4
30002.0	MONTEREY YACHT CLUB	1596	5/9/96	43.0	-9.00	-9	1.42	43	-4
30007.0	SANDHOLDT BRIDGE	1597	5/9/96	43.0	-9.00	-9	2.82	43	-4
30007.0	SANDHOLDT BRIDGE	1762	5/8/97	52.0	38.11	-4	2.34	52	-4
36002.0	TEMBLADERO MOUTH	1763	5/8/97	52.0	28.38	-4	1.89	52	-4
36003.0	CENTRAL TEMBLADERO	1764	5/8/97	52.0	5.10	-4	0.43	52	-4
36004.0	UPPER TEMBLADERO-SALINAS CITY	1765	5/8/97	52.0	17.65	-4	2.69	52	-4
36005.0	ESPINOSA SLOUGH	1766	5/8/97	52.0	36.37	-4	2.94	52	-4
36006.0	ALISAL SLOUGH	1767	5/8/97	52.0	9.32	-4	3.25	52	
36007.0	OLD SALINAS RIVER CHANNEL	1768	5/8/97	52.0	60.24	-4	2.21	52	-4

e

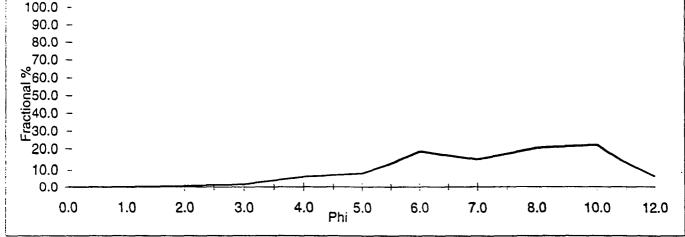
ı

,

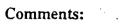
.

Project Sample I.D. Date	BPTC SANDHOLDT BR 05/08/97	LIDGE	Project # Lab Numbe	1762 er	97.23201
	size	e ranges			
	phi	mm	Fract. %	Cum. %	
Coarse Sand	1.0	0.500	0.72	0.72	
Medium/Fine Sand	4.0	0.063	6.27	6.99	
Coarse Silt	5.0	0.031	4.63	11.62	
Medium/Fine Silt	8.0	0.004	50.27	61.89	
Clay/Colloids	>8.0	<.004	38.11	100.00	
- ·					
excluded from anal	ysis				

% Debris	1.6
Debris Type	ORGANIC MATERIAL


			mm	Phi	Cum. %	Fract. %
			1.0000	0.0	0.0	0.0
			0.5000	1.0	0.7	0.7
Grain Size Statis	tics (Folk & Wa	ard)	0.2500	2.0	3.2	2.5
	mm	phi	0.1250	. 3.0	5.4	2.1
Mean	0.006	7.32	0.0625	4.0	7.0	1.6
Median	0.005	7.51	0.0313	5.0	11.6	4.6
Sorting	0.256	1.96	0.0156	6.0	22.7	11.0
Skewness		-0.27	0.0078	7.0	37.1	14.5
Kurtosis		1.24	0.0039	8.0	61.9	24.7
			0.0010	10.0	93.1	31.2
			0.0002	12.0	100.0	6.9

Comments:


.

Project Sample I.D. Date	BPTC TEMBLA 05/08/97	DERA N	10UTH		Project # Lab Numb	1763 er	97. 23202
		size	e ranges				
		phi	mm		Fract. %	Cum. %	
Coarse Sand		1.0	0.500		0.00	0.00	
Medium/Fine Sand		4.0	0.063		7.99	7.99	
Coarse Silt		5.0	0.031		7.93	15.93	
Medium/Fine Silt		8.0	0.004		55.69	71.62	
Clay/Colloids		>8.0	<.004		28.38	100.00	
	Debris 2. is Type Ol		C MATE	RIAL mm 1.0000 0.5000	0.0	Cum. % 0.0 0.0	Fract. % 0.0 0.0
Grain Size Statistics (Folk & Wa			0.2500		0.6	0.6
	mm	phi		0.1250		2.0	1.4
Mean	0.008	6.89		0.0625		8.0	6.0
Median	0.008	6.96		0.0313	5.0	15.9	7.9
Sorting	0.294	1.76		0.0156	6.0	35.1	19.2
Skewness		-0.05		0.0078	7.0	50.7	15.6
Kurtosis		0.90		0.0039	8.0	71.6 94.1	20.9 22.5
				0.0010	10.0 12.0	94.1 100.0	22.5 5.9
				0.0002	12.0	100.0	5.9
100.0 - 90.0 -	·	<u></u>	*****				

Comments:

Project Sample I.D. Date	BPTC CENTRAL 05/08/97	. TEMB	LADER		Project # Lab Numb	1764 er	97.23203	· ·
Coarse Sand Medium/Fine Sand Coarse Silt Medium/Fine Silt Clay/Colloids		size phi 1.0 4.0 5.0 8.0 >8.0	ranges mm 0.500 0.063 0.031 0.004 <.004		Fract. % 2.76 78.47 .3.51 10.16 5.10	Cum. % 2.76 81.23 84.74 94.90 100.00		
excluded from analy						,		
%	Debris 1.2 is Type OF	RGANIC	C MATE	RLAL mm 1.0000 0.5000 0.2500 0.1250 0.0625 0.0313 0.0156 0.0078 0.0039 0.0010 0.0002	Phi 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 10.0 12.0	Cum. % 0.0 2.8 33.3 74.3 81.2 84.7 87.9 90.6 94.9 97.2 100.0	Fract. % 0.0 2.8 30.5 41.0 6.9 3.5 3.1 2.8 4.3 2.3 2.8	
100.0 - 90.0 -	2.0	3.0	4.0		6.0	7.0 8.	0 10.0	12.0

Project Sample I.D. Date	BPTC UPPER TE 05/08/97	97.23204					
Coarse Sand Medium/Fine Sand Coarse Silt Medium/Fine Silt Clay/Colloids		size phi 1.0 4.0 5.0 8.0 >8.0	e ranges mm 0.500 0.063 0.031 0.004 <.004		Fract. % 2.98 7.50 2.71 69.16 17.65	Cum. % 2.98 10.47 13.18 82.35 100.00	
excluded from analy	vsis						
	Debris 3.7						
Debr	<i>is Type</i> OR	GANIC	C MATE	RIAL mm	Phi	Cum. %	Fract. %
				1.0000	0.0	0.0	0.0
				0.5000	1.0	3.0	3.0
Grain Size Statistics (0.2500	2.0	6.1	3.1
Maar	mm 0.009	phi		0.1250	3.0	7.8	1.7
Mean Median	0.009	6.81 7.19		0.0625 0.0313	4.0 5.0	10.5 13.2	2.7 2.7
Sorting	0.330	1.60		0.0156	6.0	27.3	14.1
Skewness	0.000	-0.59		0.0078	7.0	45.2	17.9
Kurtosis		1.42		0.0039	8.0	82.3	37.2
				0.0010	10.0	98.3	16.0
				0.0002	12.0	100.0	1.7
100.0 -	<u></u>				<u></u>		
90.0 -							
80.0 -							
70.0 -							
<u>≥</u> 60.0 –							
č50.0 –							
70.0 - %10.0							
上30.0 - 20.0							\mathbf{i}
0.0						<u>+</u>	

4.0 Phi 5.0

6.0

7.0

Comments:

0.0

1.0

2.0

3.0

Moss Landing Marine Laboratories

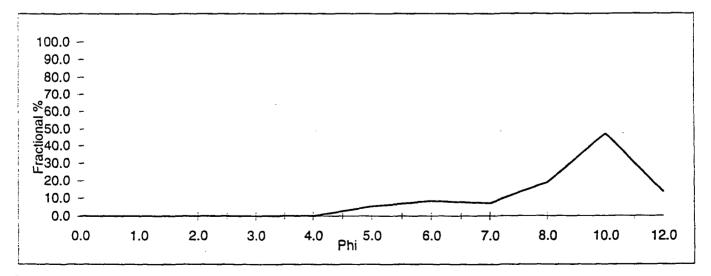
10.0

•

12.0

8.0

Project Sample I.D. Date	BPTC ESPINOSA 05/08/97	A SLOU	GH		Project # Lab Numb	1766 er	97.23205	
Coarse Sand Medium/Fine Sand Coarse Silt Medium/Fine Silt Clay/Colloids		size phi 1.0 4.0 5.0 8.0 >8.0	ranges mm 0.500 0.063 0.031 0.004 <.004		Fract. % 3.89 6.64 4.89 48.21 36.37	Cum. % 3.89 10.53 15.42 63.63 100.00		
	Debris 2.3		C MATERLA	L				
Grain Size Statistics (Mean Median Sorting Skewness Kurtosis			1.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	mm 0000 5000 2500 1250 0625 0313 0156 0078 0039 0010 0002	Phi 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 10.0 12.0	Cum. % 0.0 3.9 5.9 6.9 10.5 15.4 31.2 46.4 63.6 96.3 100.0	Fract. % 0.0 3.9 2.0 1.0 3.6 4.9 15.8 15.2 17.2 32.6 3.7	
100.0 - 90.0 - 80.0 - 70.0 - %60.0 - %60.0 - 00540.0 - 20.0 - 20.0 - 10.0 - 0.0								
0.0 1.0	2.0	3.0	4.0 Phi ⁵	5.0 	6.0	7.0 8.	.0 10.0	12.0


Comments:

Project Sample I.D. Date	BPTC ALISAL S 05/08/97	SLOUGH	ł		Project # Lab Numb	1767 er	97.23206	
Coarse Sand Medium/Fine Sand Coarse Silt Medium/Fine Silt Clay/Colloids		size phi 1.0 4.0 5.0 8.0 >8.0	e ranges mm 0.500 0.063 0.031 0.004 <.004		Fract. % 1.16 15.78 8.02 65.72 9.32	Cum. % 1.16 16.94 24.96 90.68 100.00		
excluded from anal %	y sis Debris 4.	1						
Debr	is Type O	RGANIO	C MATER	mm 1.0000	Phi 0.0	Cum. %	Fract. % 0.0	
Grain Size Statistics (Folk & Wa	ard)		0.5000 0.2500	1.0 2.0	1.2	1.2 2.6	
0	mm	phi		0.1250	3.0	9.7	5.9	
Mean	0.014	6.19		0.0625	4.0	16.9	7.2	
Median	0.009	6.87		0.0313	5.0	25.0	8.0	
Sorting	0.286	1.81		0.0156	6.0	38.0	13.0	
Skewness		-0.59		0.0078	, 7.0	54.5		
Kurtosis		0.95		0.0039	8.0	90.7	36.2	
				0.0010 0.0002	10.0 12.0	100.0 100.0	9.3 0.0	
100.0 -								
90.0 -								Ì
80.0 - 70.0 -								
≈e0 0 -								
e50.0 -								
÷40.0 -								
100.0 - 10050.0 - 10050.0 - 10050.0 - 10050.0 -								
20.0 -							\mathbf{i}	
10.0 -								
0.0	2.0	3.0	4.0 Pt	 , 5.0	6. 0	7.0 8.	0 10.0	12.0
			P1	ור 			<u></u>	

Comments:

Sample I.D. C	3PTC DLD SALINAS RIV 95/08/97	ER CHANNEI	Project # Lab Numb	1768 er	97.23207
	size ra	inges			
	phi	mm	Fract. %	Cum. %	
Coarse Sand	-	0.500	0.00	0.00	
Medium/Fine Sand	4.0 ().063	0.00	0.00	
Coarse Silt	5.0 (0.031	5.44	5.44	
Medium/Fine Silt	8.0 0	0.004	34.31	39.76	
Clay/Colloids	>8.0 <	<.004	60.24	100.00	
excluded from analysi % Do Debris	ebris 1.5	IATERIAL			
		mm	Phi	Cum. %	Fract. %

			mm	Phi	Cum. %	Fract. %
			1.0000	0.0	0.0	0.0
			0.5000	1.0	0.0	0.0
Grain Size Statis	tics (Folk & Wa	ard)	0.2500	2.0	0.0	0.0
	mm	phi	0.1250	3.0	0.0	0.0
Mean	0.004	8.14	0.0625	4.0	0.0	0.0
Median	0.003	8.40	0.0313	5.0	5.4	5.4
Sorting	0.360	1.47	0.0156	6.0	13.9	8.4
Skewness		-0.32	0.0078	7.0	21.0	7.1
Kurtosis		1.02	0.0039	8.0	39.8	18.8
			0.0010	10.0	86.6	46.9
			0.0002	12.0	100.0	13.4

Comments:

APPENDIX E

Toxicity Data

SECTION I

Rhepoxynius abronius Solid Phase Survival

7

								-		- ,		
STANUM	STATION	IDORG	DATE	LEG	METADATA	CTRL	RA_MN	RA_SD	RA_SG	RA_TOX	RA_OTNH3	RA_OUNH3
30034.1	MONTEREY BAY REFERENCE	100	8/5/92	1.0	-9	-9	77.00	13.00	*	NT	-9.000	-8.000
30034.2	MONTEREY BAY REFERENCE	101	8/5/92	1.0	-9	-9	71.00	20.00	*	NT	-9.000	0.005
30034.3	MONTEREY BAY REFERENCE	102	8/5/92	1.0	-9	-9	71.00	20.00	*	NT	-9.000	-8.000
30035.1	ELKHORN SLOUGH-SEAL POINT	130	9/4/92	3.0	-9	-9	78.00	2.70	*	NT	-9.000	0.034
30035.2	ELKHORN SLOUGH-SEAL POINT	131	9/4/92	3.0	-9	-9	75.00	9.40	*	NT	-9.000	0.033
30035.3	ELKHORN SLOUGH-SEAL POINT	132	9/4/92	3.0	-9	-9	74.00	10.20	*	NT	-9.000	0.026
30036.1	ELKHORN SLOUGH-SEAL BEND	133	9/11/92	4.0	-9	-9	82.00	7.60	*	NT	-9.000	-9.000
30036.2	ELKHORN SLOUGH-SEAL BEND	134	9/11/92	4.0	-9	-9	67.00	18.20	*	Т	-9.000	-9.000
30036.3	ELKHORN SLOUGH-SEAL BEND	135	9/11/92	4.0	-9	-9	79.00	9.60	*	NT	-9.000	-9.000
31001.0	EGRET LANDING- REF	-251	10/9/92	5.0	-9	-9	64.00	12.90	*	Т	-9.000	0.023
31002.0	HIGHWAY 1 BRIDGE- REF	254	10/23/92	6.0	-9	-9	83.00	11.00	ns	NT	-9.000	0.036
31003.0	ANDREWS POND- REF	258	11/8/92	7.0	-9	-9	9.00	4.20	*	Т	-9.000	0.017
31002.0	HWY. 1 BRIDGE- REF	351	11/27/92	8.0	-9	-9	97.00	4.50	ns	NT	-9.000	0.005
31003.0	ANDREW'S POND REF.	451	12/8/92	9.0	-9	-9	48.00	. 5.70	*	Т	-9.000	0.077
30001.0	SANTA CRUZ YACHT BASIN	501	12/21/92	10.0	-9	-9	73.00	13.50	*	Т	-9.000	0.016
30002.0	MONTEREY YACHT CLUB	502	12/21/92	10.0	-9	-9	76.00	16.40	*	NT	-9.000	0.088
30004.0	M.L. YACHT HARBOR	504	12/21/92	10.0	-9	-9	56.00	17.50	*	Т	-9.000	0.016
30005.0	M.L. SOUTH HARBOR	505	12/21/92	10.0	-9	-9	74.00	12.90	*	Т	-9.000	0.010
30006.0	PAJARO RIVER ESTUARY	506	12/21/92	10.0	-9	-9	65.00	14.10	*	Т	-9.000	0.013
30007.0	SANDHOLDT BRIDGE	507	12/21/92	10.0	-9	-9	62.00	12.50	*	Т	-9.000	0.010
30011.0	SALINAS RIVER LAGOON	511	12/21/92	10.0	-9	-9	-9.00	-9.00	-9	-9	-9.000	-9.000
30012.0	MONTEREY BOATYARD	512	12/21/92	10.0	-9	-9	62.00	11.50	÷	Т	-9.000	0.029
30013.0	MONTEREY STORMDRAIN NO.2	513	12/21/92	10.0	-9	-9	97.00	4.50	ns	NT	-9.000	0.046
30014.0	MONTEREY STORMDRAIN NO. 3	514	12/21/92	10.0	-9	-9	74.00	11:40	*	Т	-9.000	0.057
30019.0	MORO COJO SLOUGH	519	12/22/92	10.0	-9	-9	67.00	10.40	*	Т	-9.000	0.251
30022.0	SOQUEL LAGOON	522	12/21/92	10.0	-9	-9	-9.00	-9.00	-9	-9	-9.000	-9.000
30023.0	BENNETT SL./ESTUARY	523	12/22/92	10.0	-9	-9	53.00	5.70	*	T	-9.000	0.018
30026.0	SCOTT CREEK #26B	526	12/18/92	10.0	-9	-9	-9.00	-9.00	-9	-9	-9.000	-9.000
30027.0	MONTEREY BAY REF. SOUTH	527	12/21/92	10.0	-9	-9	97.00	2.70	ns	NT	-9.000	0.033
30028.0	ELKHORN SL. PORTRERO REF.	528	12/18/92	10.0	-9	-9	84.00	6.50	*	NŤ	-9.000	-9.000
31002.0	HWY 1 BRIDGE REF.	675	1/14/93	11.0	-9	-9	90.00	6.10	*	NŤ	-9.000	0.029
30003.0	SANTA BARBARA HARBOR	503	2/10/93	13.0	-9	-9	74.00	15.20	*	Т	-9.000	0.012
30008.0	SAN LUIS HARBOR TRANS	508	2/9/93	13.0	-9	-9	94.00	6.50	ns	NT	-9.000	0.033

Page 1 of 6

STANUM	STATION	IDORG	DATE	LEG	METADATA	CTRL	RA_MN	RA_SD	RA_SG	ŘA_TOX	RA_OTNH3	RA_OUNH3
30009.0	GOLETA SL.	509	2/10/93	13.0	-9	-9	-9.00	-9.00	-9	-9	-9.000	-9.000
30010.0	CARPINTERIA MARSH-1	510	2/10/93	13.0	-9	-9	73.00	9.10	*	Т	-9.000	0.219
30020.0	SANTA MARIA RIVER ESTUARY	520	2/9/93	13.0	-9	-9	-9 .00	-9.00	-9	-9	-9.000	-9.000
30021.0	SANTA YNEZ RIVER ESTUARY	521	2/11/93	13.0	-9	-9	-9.00	-9.00	-9	-9	-9.000	-9.000
30024.0	MORRO BAY	524	2/9/93	13.0	-9	-9	77.00	6.70	*	NT	-9.000	0.042
30025.0	MORRO BAY-SOUTH BAY	525	2/9/93	13.0	-9	-9	69.00	9.60	*	Т	-9.000	0.031
30029.0	MORRO BAY-MID BAY	530	2/9/93	13.0	-9	-9	93.00	6.70	ns	NT	-9.000	0.097
30030.0	CANADA DE LA GAVIOTA (26d)	531	2/11/93	13.0	-9	-9	-9.00	-9.00	-9	-9	-9.000	-9.000
30031.0	CARPINTERIA MARSH-2	532	2/10/93	13.0	-9	-9	64.00	6.50	*	Ť	-9.000	0.153
30032.0	CARPINETRIA MARSH-3	533	2/10/93	13.0	-9	-9	92.00	9.10	ns	NT	-9.000	0.056
30033.0	MORRO BAY-FUEL DOCK	534	2/9/93	13.0	-9	-9	69.00	10.80	*	Т	-9.000	0.046
31002.0	HIGHWAY 1 BRIDGE REF	352	2/23/93	14.0	-9	-9	77.00	13.00	+	NT	-9.000	-9.000
	CONTROL-CH2			32.0	toxmeta.wpd	-9	99.00	2.24	-9	-9	0.120	0.002
	CONTROL-CH3			32.0	toxmeta.wpd	-9	100.00	0.00	-9	-9	0.110	0.003
	CONTROL-CH1			32.0	toxmeta.wpd	-9	96.00	8.94	-9	-9	-8.000	-8.000
30027.0	MONTEREY BAY REF. SOUTH	1323	5/16/94	32.0	toxmeta.wpd	-9	94.00	6.52	ns	NT	3.200	0.129
30013.0	MONTEREY STORMDRAIN NO.2	1324	5/16/94	32.0	toxmeta.wpd	-9	59.00	49.80	ns	NT	4.500	0.198
30028.0	ELKHORN SL. PORTRERO REF.	1325	5/17/94	32.0	toxmeta.wpd	-9	83.00	9.75	*	NŤ	2.200	0.081
30019.0	MORO COJO SLOUGH	1326	5/17/94	32.0	toxmeta.wpd	-9	77.00	9.08	*	NT	2.100	0.134
31002.0	HIGHWAY 1 BRIDGE REF	1327	5/17/94	32.0	toxmeta.wpd	-9	90.00	9.35	ns	NT	2.100	0.101
30008.0	SAN LUIS HARBOR TRANS	1328	5/20/94	32.0	toxmeta.wpd	-9	88.00	5.70	ns	NŤ	6.700	0.336
30029.0	MORRO BAY-MID BAY	1329	5/20/94	32.0	toxmeta.wpd	-9	96.00	4.18	ns	NT	1.500	0.095
30032.0	CARPINETRIA MARSH-3	1330	5/20/94	32.0	toxmeta.wpd	-9	86.00	8.22	ns	NT	1.400	0.041
	CONTROL-CH1			33.0	toxmeta.wpd	-9	98.00	2.74	-9	-9	0.180	0.006
30004.0	M.L. YACHT HARBOR REPI	1362	6/15/94	33.0	toxmeta.wpd	-9	84.00	10.84	*	NT	3.730	0.123
30004.0	M.L. YACHT HARBOR REP2	1363	6/15/94	33.0	toxmeta.wpd	-9	83.00	7.58	*	NŢ	2.180	0.107
30004.0	M.L. YACHT HARBOR REP3	1364	6/15/94	33.0	toxmeta.wpd	-9	90.00	9.35	ns	NŤ	2.560	0.105
30007.0	SANDHOLDT BRIDGE REPI	1365	6/15/94	33.0	toxmeta.wpd	-9	39.00	24.34	*	Т	0.880	0.048
30007.0	SANDHOLDT BRIDGE REP2	1366	6/15/94	33.0	toxmeta.wpd	-9	72.00	7.58	*	Ť	5.700	0.215
30007.0	SANDHOLDT BRIDGE REP3	1367	6/15/94	33.0	toxmeta.wpd	-9	78.00	13.51	*	NT	2.010	0.065
30023.0	BENNETT SL./ESTUARY REP1	1368	6/16/94	33.0	toxmeta.wpd	-9	56.00	16.36	*	Т	11.000	0.414
30023.0	BENNETT SL./ESTUARY REP2	1369	6/16/94	33.0	toxmeta.wpd	-9	59.00	17.82	*	Т	6.630	0.204
30023.0	BENNETT SL./ESTUARY REP3	1370	6/16/94	33.0	toxmeta.wpd	-9	65.00	12.75	*	Т	7.720	0.254

.

Page 2 of 6

4

.

.

в,

STANUM	STATION	IDORG	DATE	LEG	METADÀTA	CTRL	RAMN	RA_SD	RA_SG	RA_TOX	RA_OTNH3	RA_OUNH3
31001.0	EGRET LANDING REPI	1371	6/15/94	33.0	toxmeta.wpd	-9	78.00	16.81	*	NŤ	1.900	0.063
31001.0	EGRET LANDING REP2	1372	6/15/94	33.0	toxmeta.wpd	-9	69.00	26.32	*	Т	2.540	0.112
31001.0	EGRET LANDING REP3	1373	6/15/94	33.0	toxmeta.wpd	-9	53.00	32.71	*	Т	3.120	0.146
31002.0	HIGHWAY 1 BRIDGE REPI	1374	6/15/94	33.0	toxmeta.wpd	-9	92.00	4.47	*	NT	8.190	0.488
31002.0	HIGHWAY 1 BRIDGE REP2	1375	6/15/94	33.0	toxmeta.wpd	-9	87.00	10.37	*	NT	6.640	0.298
31002.0	HIGHWAY 1 BRIDGE REP3	1376	6/15/94	33.0	toxmeta.wpd	-9	87.00	13.96	ns	NT	4.610	0.198
31003.0	ANDREWS POND REP1	1377	6/16/94	33.0	toxmeta.wpd	-9	67.00	13.51	*	Т	7.300	0.220
31003.0	ANDREWS POND REP2	1378	6/16/94	33.0	toxmeta.wpd	-9	56.00	18.17	*	Т	5.480	0.161
31003.0	ANDREWS POND REP3	1379	6/16/94	33.0	toxmeta.wpd	-9	39.00	32.48	*	T.	9.800	0.221
	CONTROL-CH1			43.0	toxmeta5	CH1	-9.00	-9.00	-9	-9	-9.000	-9.000
30001.0	SANTA CRUZ YACHT BASIN	1588	5/9/96	43.0	toxmeta5	CH1	-9.00	-9.00	-9	-9	-9.000	-9.000
35003.0	MONTEREY BOATY ARD-LEAD 1	1591	5/9/96	43.0	toxmeta5	CHI	-9.00	-9.00	-9	-9	-9.000	-9.000
30002.0	MONTEREY YACHT CLUB	1596	5/9/96	43.0	toxmeta5	CH1	-9.00	-9.00	-9	-9	-9.000	-9.000
30007.0	SANDHOLDT BRIDGE	1597	5/9/96	43.0	toxmeta5	CH1	-9.00	-9.00	-9	-9	-9.000	-9.000
	CONTROL-C2			52.0	toxdata7.wpd	ci	-9.00	-9.00	-9	-9	-9.000	-9.000
	CONTROL-CI			52.0	toxdata7.wpd	ci	-9.00	-9.00	-9	-9	-9.000	-9.000
30007.0	SANDHOLDT BRIDGE	1762	5/8/97	52.0	toxdata7.wpd	cì	-9.00	-9.00	-9	-9	-9.000	-9.000
36002.0	TEMBLADERO MOUTH	1763	5/8/97	52.0	toxdata7.wpd	Cl	-9.00	-9.00	-9	-9	-9.000	-9.000
36003.0	CENTRAL TEMBLADERO	1764	5/8/97	52.0	toxdata7.wpd	C1	-9.00	-9.00	-9	-9	-9.000	-9.000
36004.0	UPPER TEMBLADERO- SALINAS CITY	1765	5/8/97	52.0	toxdata7.wpd	C1	-9.00	-9.00	-9	-9	-9.000	-9.000
36005.0	ESPINOSA SLOUGH	1766	5/8/97	52.0	toxdata7.wpd	Ċ1	-9.00	-9.00	-9	-9	-9.000	-9.000
36006.0	ALISAL SLOUGH	1767	5/8/97 ·	52.0	toxdata7.wpd	C1	-9.00	-9.00	-9	-9	-9.000	-9.000
36007.0	OLD SALINAS RIVER CHANNEL	1768	5/8/97	52.0	toxdata7.wpd	C1	-9.00	-9.00	-9	-9	-9.000	-9.000

STANUM	STATION	IDORG	DATE	LEG	RA_OH2S	RA_ITNH3	RA_IUNH3	RA_IH2S	RA_BATCH	RAQC
30034.1	MONTEREY BAY REFERENCE	100	8/5/92	1.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
30034.2	MONTEREY BAY REFERENCE	101	8/5/92	1.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
30034.3	MONTEREY BAY REFERENCE	102	8/5/92	1.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
30035.1	ELKHORN SLOUGH-SEAL POINT	130	9/4/92	3.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
30035.2	ELKHORN SLOUGH-SEAL POINT	131	9/4/92	3.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
30035.3	ELKHORN SLOUGH-SEAL POINT	132	9/4/92	3.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
30036.1	ELKHORN SLOUGH-SEAL BEND	133	9/11/92	4.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
30036.2	ELKHORN SLOUGH-SEAL BEND	134	9/11/92	4.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
30036.3	ELKHORN SLOUGH-SEAL BEND	135	9/11/92	4.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
31001.0	EGRET LANDING- REF	251	10/9/92	5.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
31002.0	HIGHWAY 1 BRIDGE- REF	254	10/23/92	6.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
31003.0	ANDREWS POND- REF	258	11/8/92	7.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
31002.0	HWY. 1 BRIDGE- REF	351	11/27/92	8.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
31003.0	ANDREW'S POND REF.	451	12/8/92	9.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
30001.0	SANTA CRUZ YACHT BASIN	501	12/21/92	10.0 ·	-9.0000	-9.000	-9.000	-9.0000	-9	-9
30002.0	MONTEREY YACHT CLUB	502	12/21/92	10.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
30004.0	M.L. YACHT HARBOR	504	12/21/92	10.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
30005.0	M.L. SOUTH HARBOR	505	12/21/92	10.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
30006.0	PAJARO RIVER ESTUARY	506	12/21/92	10.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
30007.0	SANDHOLDT BRIDGE	507	12/21/92	10.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
30011.0	SALINAS RIVER LAGOON	511	12/21/92	10.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
30012.0	MONTEREY BOATYARD	512	12/21/92	10.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
30013.0	MONTEREY STORMDRAIN NO.2	513	12/21/92	10.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
30014.0	MONTEREY STORMDRAIN NO. 3	514	12/21/92	10.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
30019.0	MORO COJO SLOUGH	519	12/22/92	10.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
30022.0	SOQUEL LAGOON	522	12/21/92	10.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
30023.0	BENNETT SL./ESTUARY	523	12/22/92	10.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
30026.0	SCOTT CREEK #26B	526	12/18/92	10.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
30027.0	MONTEREY BAY REF. SOUTH	527	12/21/92	10.0	-9 .0000	-9.000	-9.000	-9.0000	-9	-9
30028.0	ELKHORN SL. PORTRERO REF.	528	12/18/92	10.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
31002.0	HWY 1 BRIDGE REF.	675	1/14/93	11.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
30003.0	SANTA BARBARA HARBOR	503	2/10/93	13.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
30008.0	SAN LUIS HARBOR TRANS	508	2/9/93	13.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9

Page 4 of 6

.

.

.

٠

									· ·	
STANUM	STATION	IDORG	DATE	LEG	RA_OH2S	RA_ITNH3	RA_IUNH3	RA_IH2S	RA_BATCH	RAQC
30009.0	GOLETA SL.	509	2/10/93	13.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
30010.0	CARPINTERIA MARSH-1	510	2/10/93	13.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
30020.0	SANTA MARIA RIVER ESTUARY	520	2/9/93	13.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
30021.0	SANTA YNEZ RIVER ESTUARY	521	2/11/93	13.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
30024.0	MORRO BAY	524	2/9/93	13.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
30025.0	MORRO BAY-SOUTH BAY	525	2/9/93	13.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
30029.0	MORRO BAY-MID BAY	530	2/9/93	13.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
30030.0	CANADA DE LA GAVIOTA (26d)	531	2/11/93	13.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
30031.0	CARPINTERIA MARSH-2	532	2/10/93	13.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
30032.0	CARPINETRIA MARSH-3	533	2/10/93	13.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
30033.0	MORRO BAY-FUEL DOCK	534	2/9/93	13.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
31002.0	HIGHWAY 1 BRIDGE REF	352	2/23/93	14.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
	CONTROL-CH2			32.0	0.0027	-8.000	-8.000	-8.0000	B032RASA01	-3
	CONTROL-CH3			32.0	0.0037	-8.000	-8.000	-8.0000	B032RASA01	-3
	CONTROL-CHI			32.0	0.0042	-8.000	-8.000	-8.0000	B032RASA01	-3
30027.0	MONTEREY BAY REF. SOUTH	1323	5/16/94	32.0	0.0043	8.400	0.120	0.0402	B032RASA01	-3
30013.0	MONTEREY STORMDRAIN NO.2	1324	5/16/94	32.0	0.0019	14.000	0.179	0.0136	B032RASA01	-3
30028.0	ELKHORN SL. PORTRERO REF.	1325	5/17/94	32.0	0.0027	7.700	0.039	0.0444	B032RASA01	-3
30019.0	MORO COJO SLOUGH	1326	5/17/94	32.0	0.0022	57.000	0.473	0.1193	B032RASA01	-3
31002.0	HIGHWAY 1 BRIDGE REF	1327	5/17/94	32.0	0.0026	9.400	0.048	0.0492	B032RASA01	-3
30008.0	SAN LUIS HARBOR TRANS	1328	5/20/94	32.0	0.0030	27.000	0.369	0.0450	B032RASA01	-3
30029.0	MORRO BAY-MID BAY	1329	5/20/94	32.0	0.0008	5.200	0.109	0.0163	B032RASA01	-3
30032.0	CARPINETRIA MARSH-3	1330	5/20/94	32.0	0.0048	7.700	0.049	0.0489	B032RASA01	-3
	CONTROL-CH1			33.0	-8.0000	-9.000	-9.000	-9.0000	B033RASA01	-3
30004.0	M.L. YACHT HARBOR REPI	1362	6/15/94	33.0	0.0045	8.500	0.048	0.0364	B033RASA01	-3
30004.0	M.L. YACHT HARBOR REP2	1363	6/15/94	33.0	0.0017	. 6.500	0.038	0.0302	B033RASA01	-3
30004.0	M.L. YACHT HARBOR REP3	1364	6/15/94	33.0	0.0034	16.000	0.065	0.1024	B033RASA01	-3
30007.0	SANDHOLDT BRIDGE REPI	1365	6/15/94	33.0	0.0008	4.100	0.029	0.0460	B033RASA01	-3
30007.0	SANDHOLDT BRIDGE REP2	1366	6/15/94	33.0	0.0019	4.700	0.031	0.0314	B033RASA01	-3
30007.0	SANDHOLDT BRIDGE REP3	1367	6/15/94	33.0	0.0052	3.700	0.020	0.0789	B033RASA01	-3
30023.0	BENNETT SL./ESTUARY REPI	1368	6/16/94	33.0	0.0034	13.000	0.086	0.1130	B033RASA01	-3
30023.0	BENNETT SL./ESTUARY REP2	1369	6/16/94	33.0	0.0083	15.000	0.091	0.0551	B033RASA0İ	-3
30023.0	BENNETT SL./ESTUARY REP3	1370	6/16/94	33.0	0.0029	16.000	0.133	0.6638	B033RASA01	-3

Page 5 of 6

STATION	IDORG	DATE	LEG	RA_OH2S	RA_ITNH3	RA_IUNH3	RA_IH2S	RA_BATCH	RAQC_
EGRET LANDING REPI	1371	6/15/94	33.0	0.0027	8.100	0.039	0.0461	B033RASA01	-3
EGRET LANDING REP2	1372	6/15/94	33.0	0.0017	6.100	0.032	0.0707	B033RASA01	-3
EGRET LANDING REP3	1373	6/15/94	33.0	0.0008	10.000	0.087	0.0441	B033RASA01	-3
HIGHWAY I BRIDGE REPI	1374	6/15/94	33.0	0.0021	17.000	0.190	0.0385	B033RASA01	-3
HIGHWAY 1 BRIDGE REP2	1375	6/15/94	33.0	0.0016	16.000	0.084	0.0763	B033RASA01	-3
HIGHWAY 1 BRIDGE REP3	1376	6/15/94	33.0	0.0012	12.000	0.047	0.0725	B033RASA01	-3
ANDREWS POND REP1	1377	6/16/94	33.0	0.0000	16.000	0.106	0.0534	B033RASA01	-3
ANDREWS POND REP2	1378	6/16/94	33.0	0.0051	11.000	0.067	0.0669	B033RASA01	-3
ANDREWS POND REP3	1379	6/16/94	33.0	0.0098	10.000	0.065	0.0695	B033RASA01	-3
CONTROL-CH1			43.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
SANTA CRUZ YACHT BASIN	1588	5/9/96	43.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
MONTEREY BOATYARD-LEAD 1	1591	5/9/96	43.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
MONTEREY YACHT CLUB	1596	5/9/96	43.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
SANDHOLDT BRIDGE	1597	5/9/96	43.0	- 9.0000	-9.000	-9.000	-9.0000	-9	-9
CONTROL-C2			52.0	-9 .0000	-9.000	-9.000	-9.0000	-9	-9
CONTROL-CI			52.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
SANDHOLDT BRIDGE	1762	5/8/97	52.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
TEMBLADERO MOUTH	1763	5/8/97	52.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
CENTRAL TEMBLADERO	1764	5/8/97	52.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
UPPER TEMBLADERO- SALINAS CITY	1765	5/8/97	52.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
ESPINOSA SLOUGH	1766	5/8/97	52.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
ALIS AL SLOUGH	1767	5/8/97	52.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
OLD SALINAS RIVER CHANNEL	1768	5/8/97	52.0	-9.0000	-9.000	-9.000	-9.0000	-9	-9
	EGRET LANDING REP1 EGRET LANDING REP2 EGRET LANDING REP2 EGRET LANDING REP3 HIGHWAY 1 BRIDGE REP1 HIGHWAY 1 BRIDGE REP2 HIGHWAY 1 BRIDGE REP3 ANDREWS POND REP1 ANDREWS POND REP1 ANDREWS POND REP2 ANDREWS POND REP3 CONTROL-CH1 SANTA CRUZ YACHT BASIN MONTEREY BOATYARD-LEAD 1 MONTEREY BOATYARD-LEAD 1 MONTEREY YACHT CLUB SANDHOLDT BRIDGE CONTROL-C2 CONTROL-C2 CONTROL-C1 SANDHOLDT BRIDGE TEMBLADERO MOUTH CENTRAL TEMBLADERO UPPER TEMBLADERO- SALINAS CITY ESPINOSA SLOUGH	EGRET LANDING REP11371EGRET LANDING REP21372EGRET LANDING REP31373HIGHWAY 1 BRIDGE REP11374HIGHWAY 1 BRIDGE REP21375HIGHWAY 1 BRIDGE REP31376ANDREWS POND REP11377ANDREWS POND REP21378ANDREWS POND REP31379CONTROL-CH1588MONTEREY BOATYARD-LEAD 11591MONTEREY YACHT CLUB1596SANDHOLDT BRIDGE1597CONTROL-C15ANDHOLDT BRIDGESANDHOLDT BRIDGE1762TEMBLADERO MOUTH1763CENTRAL TEMBLADERO1764UPPER TEMBLADERO- SALINAS CITY1765ESPINOSA SLOUGH1767	EGRET LANDING REP1 1371 6/15/94 EGRET LANDING REP2 1372 6/15/94 EGRET LANDING REP3 1373 6/15/94 EGRET LANDING REP3 1373 6/15/94 HIGHWAY 1 BRIDGE REP1 1374 6/15/94 HIGHWAY 1 BRIDGE REP2 1375 6/15/94 HIGHWAY 1 BRIDGE REP3 1376 6/15/94 ANDREWS POND REP1 1377 6/16/94 ANDREWS POND REP2 1378 6/16/94 ANDREWS POND REP2 1378 6/16/94 ANDREWS POND REP3 1379 6/16/94 CONTROL-CH1 5/9/96 5/9/96 MONTEREY BOATYARD-LEAD 1 1591 5/9/96 MONTEREY YACHT CLUB 1596 5/9/96 SANDHOLDT BRIDGE 1597 5/9/96 CONTROL-C1 5 5/8/97 SANDHOLDT BRIDGE 1762 5/8/97 TEMBLADERO MOUTH 1763 5/8/97 UPPER TEMBLADERO 1764 5/8/97 UPPER TEMBLADERO- SALINAS CITY 1765 5/8/97	EGRET LANDING REP1 1371 6/15/94 33.0 EGRET LANDING REP2 1372 6/15/94 33.0 EGRET LANDING REP3 1373 6/15/94 33.0 HIGHWAY 1 BRIDGE REP1 1374 6/15/94 33.0 HIGHWAY 1 BRIDGE REP2 1375 6/15/94 33.0 HIGHWAY 1 BRIDGE REP2 1376 6/15/94 33.0 HIGHWAY 1 BRIDGE REP3 1376 6/15/94 33.0 ANDREWS POND REP1 1377 6/16/94 33.0 ANDREWS POND REP2 1378 6/16/94 33.0 ANDREWS POND REP3 1379 6/16/94 33.0 CONTROL-CH1 43.0 43.0 SANTA CRUZ YACHT BASIN 1588 5/9/96 43.0 MONTEREY BOATYARD-LEAD 1 1591 5/9/96 43.0 SANDHOLDT BRIDGE 1597 5/9/96 43.0 CONTROL-C1 52.0 52.0 52.0 CONTROL-C2 52.0 52.0 52.0 CONTROL-C1 52.0 5/8/97 52.0 VIPPER TEMBLADERO MOUTH 1765 5/8/97 52.0	EGRET LANDING REP1 1371 6/15/94 33.0 0.0027 EGRET LANDING REP2 1372 6/15/94 33.0 0.0017 EGRET LANDING REP3 1373 6/15/94 33.0 0.0008 HIGHWAY 1 BRIDGE REP1 1374 6/15/94 33.0 0.0021 HIGHWAY 1 BRIDGE REP2 1375 6/15/94 33.0 0.0016 HIGHWAY 1 BRIDGE REP2 1376 6/15/94 33.0 0.0012 ANDREWS POND REP1 1377 6/16/94 33.0 0.0000 ANDREWS POND REP2 1378 6/16/94 33.0 0.0098 CONTROL-CH1 43.0 -9.0000 SANTA CRUZ YACHT BASIN 1588 5/9/96 43.0 -9.0000 MONTEREY BOATYARD-LEAD 1 1591 5/9/96 43.0 -9.0000 MONTEREY YACHT CLUB 1596 5/9/96 43.0 -9.0000 CONTROL-C2 52.0 -9.0000 -9.0000 CONTROL-C2 52.0 -9.0000 CONTROL-C1 52.0 -9.0000 CONTROL-C2 <td>EGRET LANDING REP1 1371 6/15/94 33.0 0.0027 8.100 EGRET LANDING REP2 1372 6/15/94 33.0 0.0017 6.100 EGRET LANDING REP3 1373 6/15/94 33.0 0.0008 10.000 HIGHWAY I BRIDGE REP1 1374 6/15/94 33.0 0.0017 6.100 HIGHWAY I BRIDGE REP2 1375 6/15/94 33.0 0.0016 16.000 HIGHWAY I BRIDGE REP2 1376 6/15/94 33.0 0.0012 12.000 ANDREWS POND REP1 1377 6/16/94 33.0 0.00051 11.000 ANDREWS POND REP2 1378 6/16/94 33.0 0.0098 10.000 CONTROL-CH1 43.0 -9.0000 -9.000 9.000 SANTA CRUZ YACHT BASIN 1588 5/9/96 43.0 -9.0000 -9.000 MONTEREY BOATYARD-LEAD 1 1591 5/9/96 43.0 -9.0000 -9.000 SANTA CRUZ YACHT BASIN 1588 5/9/96 43.0 -9.0000 -9.000</td> <td>EGRET LANDING REP1 1371 6/15/94 33.0 0.0027 8.100 0.039 EGRET LANDING REP2 1372 6/15/94 33.0 0.0017 6.100 0.032 EGRET LANDING REP3 1373 6/15/94 33.0 0.0008 10.000 0.087 HIGHWAY 1 BRIDGE REP1 1374 6/15/94 33.0 0.0016 16.000 0.084 HIGHWAY 1 BRIDGE REP2 1375 6/15/94 33.0 0.0012 12.000 0.047 ANDREWS POND REP1 1377 6/16/94 33.0 0.0001 16.000 0.166 ANDREWS POND REP1 1377 6/16/94 33.0 0.00051 11.000 0.067 ANDREWS POND REP2 1378 6/16/94 33.0 0.0098 10.000 0.065 CONTROL-CH1 43.0 -9.000 -9.000 -9.000 -9.000 9.000 MONTEREY BOATY ARD-LEAD 1 1591 5/9/96 43.0 -9.000 -9.000 -9.000 SANDHOLDT BRIDGE 1596 5/9/96</td> <td>EGRET LANDING REPI 1371 6/15/94 33.0 0.0027 8.100 0.032 0.0461 EGRET LANDING REP2 1372 6/15/94 33.0 0.0017 6.100 0.032 0.0707 EGRET LANDING REP3 1373 6/15/94 33.0 0.0008 10.000 0.087 0.0441 HIGHWAY 1 BRIDGE REP1 1374 6/15/94 33.0 0.0016 16.000 0.084 0.0763 HIGHWAY 1 BRIDGE REP2 1375 6/15/94 33.0 0.0012 12.000 0.047 0.0725 ANDREWS POND REP1 1377 6/16/94 33.0 0.0001 16.000 0.106 0.0534 ANDREWS POND REP2 1378 6/16/94 33.0 0.0051 11.000 0.067 0.0669 CONTROL-CH1 43.0 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.00</td> <td>EGRET LANDING REP1 1371 6/15/94 33.0 0.0027 8.100 0.039 0.0461 B033RASA01 EGRET LANDING REP2 1372 6/15/94 33.0 0.0017 6.100 0.032 0.0707 B033RASA01 EGRET LANDING REP3 1373 6/15/94 33.0 0.0008 10.000 0.087 0.0441 B033RASA01 HIGHWAY 1 BRIDGE REP1 1374 6/15/94 33.0 0.0012 17.000 0.190 0.0385 B033RASA01 HIGHWAY 1 BRIDGE REP1 1375 6/15/94 33.0 0.0012 12.000 0.047 0.0735 B033RASA01 ANDREWS POND REP1 1376 6/16/94 33.0 0.0001 16.000 0.166 0.0534 B033RASA01 ANDREWS POND REP1 1376 6/16/94 33.0 0.00151 11.000 0.067 0.0669 B033RASA01 ANDREWS POND REP2 1378 6/16/94 33.0 0.0098 10.000 0.065 0.0695 B033RASA01 CONTROL-CH1 5 <</td>	EGRET LANDING REP1 1371 6/15/94 33.0 0.0027 8.100 EGRET LANDING REP2 1372 6/15/94 33.0 0.0017 6.100 EGRET LANDING REP3 1373 6/15/94 33.0 0.0008 10.000 HIGHWAY I BRIDGE REP1 1374 6/15/94 33.0 0.0017 6.100 HIGHWAY I BRIDGE REP2 1375 6/15/94 33.0 0.0016 16.000 HIGHWAY I BRIDGE REP2 1376 6/15/94 33.0 0.0012 12.000 ANDREWS POND REP1 1377 6/16/94 33.0 0.00051 11.000 ANDREWS POND REP2 1378 6/16/94 33.0 0.0098 10.000 CONTROL-CH1 43.0 -9.0000 -9.000 9.000 SANTA CRUZ YACHT BASIN 1588 5/9/96 43.0 -9.0000 -9.000 MONTEREY BOATYARD-LEAD 1 1591 5/9/96 43.0 -9.0000 -9.000 SANTA CRUZ YACHT BASIN 1588 5/9/96 43.0 -9.0000 -9.000	EGRET LANDING REP1 1371 6/15/94 33.0 0.0027 8.100 0.039 EGRET LANDING REP2 1372 6/15/94 33.0 0.0017 6.100 0.032 EGRET LANDING REP3 1373 6/15/94 33.0 0.0008 10.000 0.087 HIGHWAY 1 BRIDGE REP1 1374 6/15/94 33.0 0.0016 16.000 0.084 HIGHWAY 1 BRIDGE REP2 1375 6/15/94 33.0 0.0012 12.000 0.047 ANDREWS POND REP1 1377 6/16/94 33.0 0.0001 16.000 0.166 ANDREWS POND REP1 1377 6/16/94 33.0 0.00051 11.000 0.067 ANDREWS POND REP2 1378 6/16/94 33.0 0.0098 10.000 0.065 CONTROL-CH1 43.0 -9.000 -9.000 -9.000 -9.000 9.000 MONTEREY BOATY ARD-LEAD 1 1591 5/9/96 43.0 -9.000 -9.000 -9.000 SANDHOLDT BRIDGE 1596 5/9/96	EGRET LANDING REPI 1371 6/15/94 33.0 0.0027 8.100 0.032 0.0461 EGRET LANDING REP2 1372 6/15/94 33.0 0.0017 6.100 0.032 0.0707 EGRET LANDING REP3 1373 6/15/94 33.0 0.0008 10.000 0.087 0.0441 HIGHWAY 1 BRIDGE REP1 1374 6/15/94 33.0 0.0016 16.000 0.084 0.0763 HIGHWAY 1 BRIDGE REP2 1375 6/15/94 33.0 0.0012 12.000 0.047 0.0725 ANDREWS POND REP1 1377 6/16/94 33.0 0.0001 16.000 0.106 0.0534 ANDREWS POND REP2 1378 6/16/94 33.0 0.0051 11.000 0.067 0.0669 CONTROL-CH1 43.0 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.00	EGRET LANDING REP1 1371 6/15/94 33.0 0.0027 8.100 0.039 0.0461 B033RASA01 EGRET LANDING REP2 1372 6/15/94 33.0 0.0017 6.100 0.032 0.0707 B033RASA01 EGRET LANDING REP3 1373 6/15/94 33.0 0.0008 10.000 0.087 0.0441 B033RASA01 HIGHWAY 1 BRIDGE REP1 1374 6/15/94 33.0 0.0012 17.000 0.190 0.0385 B033RASA01 HIGHWAY 1 BRIDGE REP1 1375 6/15/94 33.0 0.0012 12.000 0.047 0.0735 B033RASA01 ANDREWS POND REP1 1376 6/16/94 33.0 0.0001 16.000 0.166 0.0534 B033RASA01 ANDREWS POND REP1 1376 6/16/94 33.0 0.00151 11.000 0.067 0.0669 B033RASA01 ANDREWS POND REP2 1378 6/16/94 33.0 0.0098 10.000 0.065 0.0695 B033RASA01 CONTROL-CH1 5 <

٠

.

н н_е

SECTION II

Eohaustorius estuarius Solid Phase Survival

STANUM	STATION	IDORG	DATE	LEG	METADATA	CTRL	EE_MN	EE_SD	EE_SG	EE_TOX	EE_BATCH	EEQC
30011.0	SALINAS RIVER LAGOON	511	12/21/92	10.0	-9	-9	89.00	8.90	*	NT	9	-9
30022.0	SOQUEL LAGOON	522	12/21/92	10.0	-9	-9	91.00	8.20	*	NT	-9	-9
30026.0	SCOTT CREEK #26B	526	12/18/92	10.0	-9	-9	93.00	5.70	*	NT	-9	-9
30009.0	GOLETA SL.	509	2/10/93	13.0	-9	-9	92.00	5.70	*	NT	-9	-9
30020.0	SANTA MARIA RIVER ESTUARY	520	2/9/93	13.0	-9	-9	2.00	4.50	*	Т	-9	-9
30021.0	SANTA YNEZ RIVER ESTUARY	521	2/11/93	13.0	-9	-9	94.00	4.20	*	NT	-9	· -9
30030.0	CANADA DE LA GAVIOTA (26d)	531	2/11/93	13.0	-9	-9	98.00	2.70	ns	NT	-9	-9
	CONTROL-CH1			43.0	toxmeta5	CH1	94.00	7.00	-9	-9	143tee	-3
30001.0	SANTA CRUZ YACHT BASIN	1588	5/9/96	43.0	toxmeta5	CH1	91.00	10.00	ns	NT	143tee	-3
35003.0	MONTEREY BOATYARD-LEAD 1	1591	5/9/96	43.0	toxmeta5	CH1	96.00	7.00	ns	NT	143tee	-3
30002.0	MONTEREY YACHT CLUB	1596	5/9/96	43.0	toxmeta5	CHI	90.00	7.00	ns	NT	143tee	-3
30007.0	SANDHOLDT BRIDGE	1597	5/9/96	43.0	toxmeta5	CH1	0.00	0.00	*	Т	143tee	-3
	CONTROL-C1			52.0	toxdata7.wpd	Cl	99.00	2.00	-9	-9	152tee	-5
30007.0	SANDHOLDT BRIDGE	1762	5/8/97	52.0	toxdata7.wpd	Cl	0.00	0.00	*	Т	152tee	-5
36002.0	TEMBLADERO MOUTH	1763	5/8/97	52.0	toxdata7.wpd	Cl	1.00	2.00	*	Т	152tee	-5
36007.0	OLD SALINAS RIVER CHANNEL	1768	5/8/97	52.0	toxdata7.wpd	C1	0.00	0.00	*	Т	152tee	5

Eohaustorius estuarius PERCENT SURVIVAL SOLID PHASE TEST AND WATER QUALITY (mg/L)

1

STATION	IDORG	DATE	LEG	EE_OTNH3	EE_OUNH3	EE_OH2S	EE_ITNH3	EE_IUNH3	EE_IH2S
SALINAS RIVER LAGOON	511	12/21/92	10.0	-9.000	0.018	-9.0000	-9.000	-9.000	-9.0000
SOQUEL LAGOON	522	12/21/92	10.0	-9.000	0.167	-9.0000	-9.000	-9.000	-9.0000
SCOTT CREEK #26B	526	12/18/92	10.0	-9.000	0.031	-9.0000	-9.000	-9.000	-9.0000
GOLETA SL.	509	2/10/93	13.0	-9.000	0.193	-9.0000	-9.000	-9.000	-9.0000
SANTA MARIA RIVER ESTUARY	520	2/9/93	13.0	-9.000	0.029	-9.0000	-9.000	-9.000	-9.0000
SANTA YNEZ RIVER ESTUARY	521	2/11/93	13.0	-9.000	0.008	-9.0000	-9.000	-9.000	-9.0000
CANADA DE LA GAVIOTA (26d)	531	2/11/93	13.0	-9.000	0.007	-9.0000	-9.000	-9.000	-9.0000
CONTROL-CH1			43.0	0.260	0.010	-9.0000	-9.000	-9.000	-9.0000
SANTA CRUZ YACHT BASIN	1588	5/9/96	43.0	1.000	0.005	-9.0000	3.600	0.012	0.0005
MONTEREY BOATYARD-LEAD 1	1591	5/9/96	43.0	2.800	0.099	-9.0000	9.200	0.080	0.0015
MONTEREY YACHT CLUB	1596	5/9/96	43.0	3.400	0.125	-9.0000	9.300	0.077	0.0102
SANDHOLDT BRIDGE	1597	5/9/96	43.0	3.000	0.157	-9.0000	13.000	0.041	0.0123
CONTROL-CI			52.0	0.310	0.006	-9.0000	-9.000	-9.000	-9.0000
SANDHOLDT BRIDGE	1762	5/8/97	52.0	1.100	0.024	-9.0000	3.600	0.019	0.0450
TEMBLADERO MOUTH	1763	5/8/97	52.0	1.600	0.032	-9.0000	4.200	0.021	0.0509
OLD SALINAS RIVER CHANNEL	1768	5/8/97	52.0	1.900	0.030	-9.0000	9.200	0.046	0.1335
	SOQUEL LAGOON SCOTT CREEK #26B GOLETA SL. SANTA MARIA RIVER ESTUARY SANTA YNEZ RIVER ESTUARY CANADA DE LA GAVIOTA (26d) CONTROL-CH1 SANTA CRUZ YACHT BASIN MONTEREY BOATYARD-LEAD 1 MONTEREY BOATYARD-LEAD 1 MONTEREY YACHT CLUB SANDHOLDT BRIDGE CONTROL-C1 SANDHOLDT BRIDGE TEMBLADERO MOUTH	SALINAS RIVER LAGOON511SOQUEL LAGOON522SCOTT CREEK #26B526GOLETA SL.509SANTA MARIA RIVER ESTUARY520SANTA YNEZ RIVER ESTUARY521CANADA DE LA GAVIOTA (26d)531CONTROL-CH1531SANTA CRUZ YACHT BASIN1588MONTEREY BOATYARD-LEAD 11591MONTEREY YACHT CLUB1596SANDHOLDT BRIDGE1597CONTROL-C153SANDHOLDT BRIDGE1762TEMBLADERO MOUTH1763	SALINAS RIVER LAGOON 511 12/21/92 SOQUEL LAGOON 522 12/192 SCOTT CREEK #26B 526 12/18/92 GOLETA SL. 509 2/10/93 SANTA MARIA RIVER ESTUARY 520 2/9/93 SANTA YNEZ RIVER ESTUARY 521 2/11/93 CANADA DE LA GAVIOTA (26d) 531 2/11/93 CONTROL-CH1 509 5/9/96 MONTEREY BOATY ARD-LEAD 1 1591 5/9/96 MONTEREY BOATY ARD-LEAD 1 1596 5/9/96 SANDHOLDT BRIDGE 1597 5/9/96 CONTROL-C1 5 5/9/96 SANDHOLDT BRIDGE 1762 5/8/97 TEMBLADERO MOUTH 1763 5/8/97	SALINAS RIVER LAGOON 511 12/21/92 10.0 SOQUEL LAGOON 522 12/21/92 10.0 SCOTT CREEK #26B 526 12/18/92 10.0 GOLETA SL. 509 2/10/93 13.0 SANTA MARIA RIVER ESTUARY 520 2/9/93 13.0 SANTA YNEZ RIVER ESTUARY 521 2/11/93 13.0 CANADA DE LA GAVIOTA (26d) 531 2/11/93 13.0 CONTROL-CH1 43.0 SANTA CRUZ YACHT BASIN 1588 5/9/96 43.0 MONTEREY BOATYARD-LEAD 1 1591 5/9/96 43.0 MONTEREY YACHT CLUB 1596 5/9/96 43.0 SANDHOLDT BRIDGE 1597 5/9/96 43.0 CONTROL-C1 52.0 54/97 52.0 SANDHOLDT BRIDGE 1762 5/8/97 52.0 TEMBLADERO MOUTH 1763 5/8/97 52.0	SALINAS RIVER LAGOON 511 12/21/92 10.0 -9.000 SOQUEL LAGOON 522 12/21/92 10.0 -9.000 SCOTT CREEK #26B 526 12/18/92 10.0 -9.000 GOLETA SL. 509 2/10/93 13.0 -9.000 SANTA MARIA RIVER ESTUARY 520 2/9/93 13.0 -9.000 SANTA MARIA RIVER ESTUARY 521 2/11/93 13.0 -9.000 SANTA YNEZ RIVER ESTUARY 521 2/11/93 13.0 -9.000 CANADA DE LA GAVIOTA (26d) 531 2/11/93 13.0 -9.000 CONTROL-CH1 43.0 0.260 SANTA CRUZ YACHT BASIN 1588 5/9/96 43.0 1.000 MONTEREY BOATYARD-LEAD 1 1591 5/9/96 43.0 2.800 MONTEREY YACHT CLUB 1596 5/9/96 43.0 3.000 SANDHOLDT BRIDGE 1597 5/9/96 43.0 3.000 CONTROL-C1 52.0 0.310 3.10 SANDHOLDT BRIDGE 1762 5/8/97 52.0 1.100 TEMBLADERO MOUTH	SALINAS RIVER LAGOON 511 12/21/92 10.0 -9.000 0.018 SOQUEL LAGOON 522 12/21/92 10.0 -9.000 0.167 SCOTT CREEK #26B 526 12/18/92 10.0 -9.000 0.031 GOLETA SL. 509 2/10/93 13.0 -9.000 0.029 SANTA MARIA RIVER ESTUARY 520 2/9/93 13.0 -9.000 0.029 SANTA YNEZ RIVER ESTUARY 521 2/11/93 13.0 -9.000 0.008 CANADA DE LA GAVIOTA (26d) 531 2/11/93 13.0 -9.000 0.007 CONTROL-CH1 43.0 0.260 0.010 SANTA CRUZ YACHT BASIN 1588 5/9/96 43.0 1.000 0.005 MONTEREY BOATYARD-LEAD 1 1591 5/9/96 43.0 3.400 0.125 SANDHOLDT BRIDGE 1597 5/9/96 43.0 3.000 0.157 CONTROL-C1 52.0 0.310 0.006 SANDHOLDT BRIDGE 1762 5/8/97 52.0 1.100 0.024 TEMBLADERO MOUTH 1763 <t< td=""><td>SALINAS RIVER LAGOON 511 12/21/92 10.0 -9.000 0.018 -9.000 SOQUEL LAGOON 522 12/21/92 10.0 -9.000 0.167 -9.000 SCOTT CREEK #26B 526 12/18/92 10.0 -9.000 0.031 -9.000 GOLETA SL. 509 2/10/93 13.0 -9.000 0.029 -9.0000 SANTA MARIA RIVER ESTUARY 520 2/9/93 13.0 -9.000 0.029 -9.0000 SANTA YNEZ RIVER ESTUARY 521 2/11/93 13.0 -9.000 0.008 -9.0000 CANADA DE LA GAVIOTA (26d) 531 2/11/93 13.0 -9.000 0.007 -9.0000 SANT A CRUZ YACHT BASIN 1588 5/9/96 43.0 1.000 0.005 -9.0000 MONTEREY BOATYARD-LEAD 1 1591 5/9/96 43.0 3.400 0.125 -9.0000 SANDHOLDT BRIDGE 1597 5/9/96 43.0 3.000 0.157 -9.0000 SANDHOLDT BRIDGE 1762 5/8/97 52.0 1.100 0.024 -9.0000</td><td>SALINAS RIVER LAGOON 511 12/21/92 10.0 -9.000 0.018 -9.000 9.000 SOQUEL LAGOON 522 12/21/92 10.0 -9.000 0.167 -9.000 -9.000 SCOTT CREEK #26B 526 12/18/92 10.0 -9.000 0.031 -9.000 -9.000 GOLETA SL. 509 2/10/93 13.0 -9.000 0.029 -9.000 -9.000 SANTA MARIA RIVER ESTUARY 520 2/9/93 13.0 -9.000 0.029 -9.000 -9.000 SANTA YNEZ RIVER ESTUARY 521 2/11/93 13.0 -9.000 0.008 -9.000 -9.000 CANADA DE LA GAVIOTA (26d) 531 2/11/93 13.0 -9.000 0.007 -9.000 -9.000 CONTROL-CH1 43.0 0.260 0.010 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.0000 -9.000 -9.000</td><td>SALINAS RIVER LAGOON 511 12/21/92 10.0 -9.000 0.018 9.0000 -9.000 -9.000 9.000 -9.000 -9.000 9.000 -9.000 -9.000 9.000 -9.000 -9.000 9.000 -9.000 -9.000 9.000 -9.000 -9.000 9.000 -9.000 9.000 -9.000 9.000 -9.000 9.000 -9.000 9.000 -9.000 9.000 -9.000 9.000 -9.000 9.000 -9.000 9.000 -9.000 9.000 -9.000 9.000 9.000 -9.000 9.000</td></t<>	SALINAS RIVER LAGOON 511 12/21/92 10.0 -9.000 0.018 -9.000 SOQUEL LAGOON 522 12/21/92 10.0 -9.000 0.167 -9.000 SCOTT CREEK #26B 526 12/18/92 10.0 -9.000 0.031 -9.000 GOLETA SL. 509 2/10/93 13.0 -9.000 0.029 -9.0000 SANTA MARIA RIVER ESTUARY 520 2/9/93 13.0 -9.000 0.029 -9.0000 SANTA YNEZ RIVER ESTUARY 521 2/11/93 13.0 -9.000 0.008 -9.0000 CANADA DE LA GAVIOTA (26d) 531 2/11/93 13.0 -9.000 0.007 -9.0000 SANT A CRUZ YACHT BASIN 1588 5/9/96 43.0 1.000 0.005 -9.0000 MONTEREY BOATYARD-LEAD 1 1591 5/9/96 43.0 3.400 0.125 -9.0000 SANDHOLDT BRIDGE 1597 5/9/96 43.0 3.000 0.157 -9.0000 SANDHOLDT BRIDGE 1762 5/8/97 52.0 1.100 0.024 -9.0000	SALINAS RIVER LAGOON 511 12/21/92 10.0 -9.000 0.018 -9.000 9.000 SOQUEL LAGOON 522 12/21/92 10.0 -9.000 0.167 -9.000 -9.000 SCOTT CREEK #26B 526 12/18/92 10.0 -9.000 0.031 -9.000 -9.000 GOLETA SL. 509 2/10/93 13.0 -9.000 0.029 -9.000 -9.000 SANTA MARIA RIVER ESTUARY 520 2/9/93 13.0 -9.000 0.029 -9.000 -9.000 SANTA YNEZ RIVER ESTUARY 521 2/11/93 13.0 -9.000 0.008 -9.000 -9.000 CANADA DE LA GAVIOTA (26d) 531 2/11/93 13.0 -9.000 0.007 -9.000 -9.000 CONTROL-CH1 43.0 0.260 0.010 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.0000 -9.000 -9.000	SALINAS RIVER LAGOON 511 12/21/92 10.0 -9.000 0.018 9.0000 -9.000 -9.000 9.000 -9.000 -9.000 9.000 -9.000 -9.000 9.000 -9.000 -9.000 9.000 -9.000 -9.000 9.000 -9.000 -9.000 9.000 -9.000 9.000 -9.000 9.000 -9.000 9.000 -9.000 9.000 -9.000 9.000 -9.000 9.000 -9.000 9.000 -9.000 9.000 -9.000 9.000 -9.000 9.000 9.000 -9.000 9.000

Eohaustorius estuarius PERCENT SURVIVAL SOLID PHASE TEST AND WATER QUALITY (mg/L)

۱.

.

5

,

SECTION III

Haliotis rufescens Larval Shell Development in Subsurface Water

					•					
STANUM	STATION	IDORG	DATE	LEG	METADATA	CTRL	HRS100_MN	HRS100_SD	HRS100_SG	HRS100_TOX
30001.0	SANTA CRUZ YACHT BASIN	501	12/21/92	10.0	-9	-9	96.70	0.60	ns	NT
30002.0	MONTEREY YACHT CLUB	502	12/21/92	10.0	-9	-9	2.40	2.50	*	Т
30004.0	M.L. YACHT HARBOR	504	12/21/92	10.0	-9	-9	97.70	2.60	ns	NT
30005.0	M.L. SOUTH HARBOR	505	12/21/92	10.0	-9	-9	97.20	1.60	ns	NT
30007.0	SANDHOLDT BRIDGE	507	12/21/92	10.0	-9	-9	97.30	2.10	*	NT
30012.0	MONTEREY BOATY ARD	512	12/21/92	10.0	-9	-9	97.20	1.70	ns	NŤ
30013.0	MONTEREY STORMDRAIN NO.2	513	12/21/92	10.0	-9	-9	95.10	2.60	ns	NT
30014.0	MONTEREY STORMDRAIN NO. 3	514	12/21/92	10.0	-9	-9	96.80	2.40	ns	NŤ
30019.0	MORO COJO SLOUGH	519	12/22/92	10.0	-9	-9	94.70	1.20	*	NT
30023.0	BENNETT SL/ESTUARY	523	12/22/92	10.0	-9	-9	97.80	1.80	ns	NT
30027.0	MONTEREY BAY REF. SOUTH	527	12/21/92	10.0	-9	-9	97.30	2.60	ns	NT
30003.0	SANTA BARBARA HARBOR	503	2/10/93	13.0	-9	-9	84.60	4.90	ns	NT
30008.0	SAN LUIS HARBOR TRANS	508	2/9/93	13.0	-9	-9	87.30	3.70	ns	NT
30024.0	MORRO BAY	524	2/9/93	13.0	-9	-9	86.70	3.50	ns	NT
30025.0	MORRO BAY-SOUTH BAY	525	2/9/93	13.0	-9	-9	85.20	1.90	ns	NT
30029.0	MORRO BAY-MID BAY	530	2/9/93	13.0	-9	-9	77.10	8.60	ns	NŢ
30033.0	MORRO BAY-FUEL DOCK	534	2/9/93	13.0	-9	-9	86.80	3.30	ns	NŤ

Haliotis rufescens PERCENT NORMAL LARVAL SHELL DEVELOPMENT IN SUBSURFACE WATER, AND WATER QUALITY (mg/L)

STANUM	STATION	IDORG	DATE	LEG	HRS_OUNH3	HRS_OTNH3	HRS_OH2S	HRS_BATCH	HRSQC
30001.0	SANTA CRUZ YACHT BASIN	501	12/21/92	10.0	0.001	-9.000	-9.0000	-9	-9
30002.0	MONTEREY YACHT CLUB	502	12/21/92	10.0	0.002	-9.000	-9.0000	-9	-9
30004.0	M.L. YACHT HARBOR	504	12/21/92	10.0	0.002	-9.000	-9.0000	-9	-9
30005.0	M.L. SOUTH HARBOR	505	12/21/92	10.0	0.022	-9.000	-9.0000	-9	-9
30007.0	SANDHOLDT BRIDGE	507	12/21/92	10.0	0.054	-9.000	-9.0000	-9	-9
30012.0	MONTEREY BOATYARD	512	12/21/92	10.0	0.001	-9.000	-9.0000	-9	-9
30013.0	MONTEREY STORMDRAIN NO.2	513	12/21/92	10.0	0.006	-9.000	-9.0000	-9	-9
30014.0	MONTEREY STORMDRAIN NO. 3	514	12/21/92	10.0	-8.000	-9.000	-9.0000	-9	-9
30019.0	MORO COJO SLOUGH	519	12/22/92	10.0	0.004	-9.000	-9.0000	-9	-9
30023.0	BENNETT SL./ESTUARY	523	12/22/92	10.0	-8.000	-9.000	-9.0000	-9	-9
30027.0	MONTEREY BAY REF. SOUTH	527	12/21/92	10.0	-8.000	-9.000	-9.0000	-9	-9
30003.0	SANTA BARBARA HARBOR	503	2/10/93	13.0	0.004	-9.000	-9.0000	-9	-9
30008.0	SAN LUIS HARBOR TRANS	508	2/9/93	13.0	0.003	-9.000	-9.0000	-9	-9
30024.0	MORRO BAY	524	2/9/93	13.0	0.002	-9.000	-9.0000	-9	-9
30025.0	MORRO BAY-SOUTH BAY	525	2/9/93	13.0	0.003	-9.000	-9.0000	-9	-9
30029.0	MORRO BAY-MID BAY	530	2/9/93	13.0	-8.000	-9.000	-9.0000	-9	-9
30033.0	MORRO BAY-FUEL DOCK	534	2/9/93	13.0	-8.000	-9.000	-9.0000	-9	-9

Haliotis rufescens PERCENT NORMAL LARVAL SHELL DEVELOPMENT IN SUBSURFACE WATER, AND WATER QUALITY (mg/L)

4

à

٠

SECTION IV

Haliotis rufescens Larval Shell Development in Pore Water

											•
STANUM	STATION	IDORG	DATE	LEG	METADATA	CTRL	HRP100_MN	HRP100_SD	HRP100_SG	HRP100_TOX	HRP50_MN
30034.1	MONTEREY BAY REFERENCE	100	8/5/92	1.0	-9	-9	0.00	0.00	*	T	0.40
30034.2	MONTEREY BAY REFERENCE	101	8/5/92	1.0	-9	-9	0.00	0.00	*	Т	0.00
30034.3	MONTEREY BAY REFERENCE	102	8/5/92	1.0	-9	-9	0.00	0.00	*	Т	0.00
30035.1	ELKHORN SLOUGH-SEAL POINT	130	9/4/92	3.0	-9	-9	5.10	5.00	*	Т	80.90
30035.2	ELKHORN SLOUGH-SEAL POINT	131	9/4/92	3.0	-9	-9	0.00	0.00	*	Т	0.00
30035.3	ELKHORN SLOUGH-SEAL POINT	132	9/4/92	3.0	· -9	-9	0.00	0.00	*	Ť	80.90
30036.1	ELKHORN SLOUGH-SEAL BEND	133	9/11/92	4.0	-9 .	-9	28.70	27.60	*	Т	94.90
30036.2	ELKHORN SLOUGH-SEAL BEND	134	9/11/92	4.0	-9	-9	43.80	4.70	*	Т	95.80
30036.3	ELKHORN SLOUGH-SEAL BEND	135	9/11/92	4.0	-9	-9	0.00	0.00	*	Т	98.10
31002.0	HWY 1 BRIDGE REF.	675	1/14/93	11.0	-9	-9	66.30	16.90	*	Т	-9.00

Haliotis rufescens PERCENT NORMAL LARVAL SHELL DEVELOPMENT IN PORE WATER, AND WATER QUALITY (mg/L)

STANUM	STATION	IDORG	DATE	LEG	HRP50_SD	HRP50_SG	HRP50_TOX	HRP25_MN	HRP25_SD	HRP25_SG	HRP25_TOX
30034.1	MONTEREY BAY REFERENCE	100	8/5/92	1.0	0.70	*	т	66.80	25.60	ns	NT
30034.2	MONTEREY BAY REFERENCE	101	8/5/92	1.0	0.00	*	Т	66.80	36.70	ns	NT
30034.3	MONTEREY BAY REFERENCE	102	8/5/92	1.0	0.00	*	Т	65.00	25.70	ns	NT
30035.1	ELKHORN SLOUGH-SEAL POINT	130	9/4/92	3.0	1.50	*	NT	89.30	4.30	ns	NT
30035.2	ELKHORN SLOUGH-SEAL POINT	131	9/4/92	3.0	0.00	*	Т	17.10	5.80	* .	Т
30035.3	ELKHORN SLOUGH-SEAL POINT	132	9/4/92	3.0	5.80	*	NT	87.30	3.60	ns	NT
30036.1	ELKHORN SLOUGH-SEAL BEND	133	9/11/92	4.0	5.00	ns	NT	97.40	0.60	ns	NT
30036.2	ELKHORN SLOUGH-SEAL BEND	134	9/11/92	4.0	3.60	ns	NT	97.50	1.30	ns	· . NT
30036.3	ELKHORN SLOUGH-SEAL BEND	135	9/11/92	4.0	Í.20	*	NT	98.20	1.70	ns	NT
31002.0	HWY 1 BRIDGE REF.	675	1/14/93	11.0	-9.00	-9	-9	-9.00	-9.00	-9	-9

Haliotis rufescens PERCENT NORMAL LARVAL SHELL DEVELOPMENT IN PORE WATER, AND WATER QUALITY (mg/L)

STANUM	STATION	IDORG	DATE	LEG	HRP_IUNH3	HRP_ITNH3	HRP_IH2S	HRP_BATCH	HRPQC
30034.1	MONTEREY BAY REFERENCE	100	8/5/92	1.0	0.059	-9.000	-8.0000	-9	-9
30034.2	MONTEREY BAY REFERENCE	101	8/5/92	1.0	0.043	-9.000	-8.0000	-9	-9
30034.3	MONTEREY BAY REFERENCE	102	8/5/92	1.0	0.059	-9.000	-8.0000	-9	-9
30035.1	ELKHORN SLOUGH-SEAL POINT	130	9/4/92	3.0	0.020	-9.000	0.0062	-9	-9
30035.2	ELKHORN SLOUGH-SEAL POINT	131	9/4/92	3.0	0.007	-9.000	-8.0000	-9	-9
30035.3	ELKHORN SLOUGH-SEAL POINT	132	9/4/92	3.0	0.015	-9.000	-8.0000	-9	-9
30036.1	ELKHORN SLOUGH-SEAL BEND	133	9/11/92	4.0	-9.000	-9.000	-9.0000	-9	-9
30036.2	ELKHORN SLOUGH-SEAL BEND	134	9/11/92	4.0	-9.000	-9.000	-9.0000	-9	-9
30036.3	ELKHORN SLOUGH-SEAL BEND	135	9/11/92	4.0	-9.000	-9.000	-9.0000	-9	-9
31002.0	HWY 1 BRIDGE REF.	675	1/14/93	11.0	0.051	-9.000	-9.0000	-9	-9

Haliotis rufescens PERCENT NORMAL LARVAL SHELL DEVELOPMENT IN PORE WATER, AND WATER QUALITY (mg/L)

SECTION V

Strongylocentrotus purpuratus Fertilization in Pore Water

STANUM	STATION	IDORG	DATE	LEG	METADATA	CTRL	SPPF100_MN	SPPF100_SD	SPPF100_SG	SPPF100TOX
31002.0	HIGHWAY 1 BRIDGE- REF	254	10/23/92	6.0	-9	-9	0.20	0.30	*	-9
31003.0	ANDREWS POND- REF	258	11/8/92	7.0	-9	-9	98.40	1.20	ns	-9
31002.0	HWY. 1 BRIDGE- REF	351	11/27/92	8.0	-9	-9	100.00	0.00	ns	-9
31003.0	ANDREW'S POND REF.	451	12/8/92	9.0	-9	-9	98.10	1.90	ns	-9
30001.0	SANTA CRUZ YACHT BASIN	501	12/21/92	10.0	-9	-9	97.90	1.70	ns	-9
30002.0	MONTEREY YACHT CLUB	502	12/21/92	10.0	-9	-9	98.60	1.40	ns	-9
30004.0	M.L. YACHT HARBOR	504	12/21/92	10.0	-9	-9	99.20	0.80	ns	-9
30005.0	M.L. SOUTH HARBOR	505	12/21/92	10.0	-9	-9	99.20	1.10	ns	-9
30006.0	PAJARO RIVER ESTUARY	506	12/21/92	10.0	-9	-9	25.80	10.60	*	-9
30007.0	SANDHOLDT BRIDGE	507	12/21/92	10.0	-9	-9	97.30	1.80	ns	-9
30012.0	MONTEREY BOATYARD	512	12/21/92	10.0	-9	-9	96.30	1.70	ns	-9
30013.0	MONTEREY STORMDRAIN NO.2	513	12/21/92	10.0	-9	-9	0.00	0.00	* :	-9
30019.0	MORO COJO SLOUGH	519	12/22/92	10.0	-9	-9	96.80	0.50	ns	-9
31002.0	HWY 1 BRIDGE REF.	675	1/14/93	11.0	-9	-9	51.80	5.90	*	-9
30003.0	SANTA BARBARA HARBOR	503	2/10/93	13.0	-9	-9	15.20	4.40	*	-9
30008.0	SAN LUIS HARBOR TRANS	508	2/9/93	13.0	-9	-9	94.00	3.30	*	-9
30010.0	CARPINTERIA MARSH-1	510	2/10/93	13.0	-9	-9	98.20	0.80	*	-9
30024.0	MORRO BAY	524	2/9/93	13.0	-9	-9	0.00	0.00	*	-9
30025.0	MORRO BAY-SOUTH BAY	525	2/9/93	13.0	-9	-9	100.00	0.00	ns	-9
30029.0	MORRO BAY-MID BAY	530	2/9/93	13.0	<u>'9</u>	-9	0.20	0.40	*	-9
30031.0	CARPINTERIA MARSH-2	532	2/10/93	13.0	-9	-9	98.60	1.10	, *	-9
30032.0	CARPINETRIA MARSH-3	533	2/10/93	13.0	-9	-9	0.00	0.00	*	-9
30033.0	MORRO BAY-FUEL DOCK	534	2/9/93	13.0	-9	-9	1.00	2.20	.*	-9
31002.0	HIGHWAY 1 BRIDGE REF	352	2/23/93	14.0	-9	-9	99.10	0.90	ns	-9

Strongylocentrotus purpuratus PERCENT FERTILIZATION IN PORE WATER, AND WATER QUALITY (mg/L)

.

STANUM	STATION	IDORG	DATE	LEG	SPPF_ITNH3	SPPF_IUNH3	SPPF_IH2S	SPPF_BATCH	SPPFQC
31002.0	HIGHWAY I BRIDGE- REF	254	10/23/92	6.0	-9,000	0.066	-8.0000	-9	-9
31003.0	ANDREWS POND- REF	258	11/8/92	7.0	-9.000	0.275	-8.0000	-9	-9
31002.0	HWY. 1 BRIDGE- REF	351	11/27/92	8.0	-9.000	0.039	-8.0000	-9	-9
31003.0	ANDREW'S POND REF.	451	12/8/92	9.0	-9.000	0.102	-8.0000	-9	-9
30001.0	SANTA CRUZ YACHT BASIN	501	12/21/92	10.0	-9.000	0.020	-8.0000	-9	-9
30002.0	MONTEREY YACHT CLUB	502	12/21/92	10.0	-9,000	0.029	-8.0000	-9	-9
30004.0	M.L. YACHT HARBOR	504	12/21/92	10.0	-9.000	0.019	-8.0000	-9	-9
30005.0	M.L. SOUTH HARBOR	505	12/21/92	10.0	-9.000	0.012	-8.0000	-9	-9
30006.0	PAJARO RIVER ESTUARY	506	12/21/92	10.0	-9.000	0.016	-8.0000	-9	-9
30007.0	SANDHOLDT BRIDGE	507	12/21/92	10.0	-9.000	0.014	-8.0000	-9	-9
30012.0	MONTEREY BOATYARD	512	12/21/92	10.0	-9.000	0.019	-8.0000	-9	-9
30013.0	MONTEREY STORMDRAIN NO.2	513	12/21/92	10.0	-9.000	0.001	-8.0000	-9	-9
30019.0	MORO COJO SLOUGH	519	12/22/92	10.0	-9.000	0.039	-8.0000	-9	-9
31002.0	HWY I BRIDGE REF.	675	1/14/93	11.0	-9.000	0.026	-8.0000	-9	-9
30003.0	SANTA BARBARA HARBOR	503	2/10/93	13.0	-9.000	0.017	-8.0000	-9	-9
30008.0	SAN LUIS HARBOR TRANS	508	2/9/93	13.0	-9.000	0.022	-8.0000	-9	-9
30010.0	CARPINTERIA MARSH-1	510	2/10/93	13.0	-9.000	0.086	-8.0000	-9	-9
30024.0	MORRO BAY	524	2/9/93	13.0	-9.000	0.026	-8.0000	-9	-9
30025.0	MORRO BAY-SOUTH BAY	525	2/9/93	13.0	-9.000	0.027	-8.0000	-9	-9
30029.0	MORRO BAY-MID BAY	530	2/9/93	13.0	-9.000	0.020	-8.0000	-9	-9
30031.0	CARPINTERIA MARSH-2	532	2/10/93	13.0	-9.000	0.020	-8.0000	-9	-9
30032.0	CARPINETRIA MARSH-3	533	2/10/93	13.0	-9.000	0.020	-8.0000	-9	-9
30033.0	MORRO BAY-FUEL DOCK	534	2/9/93	13.0	-9.000	0.022	-8.0000	-9	-9
31002.0	HIGHWAY 1 BRIDGE REF	352	2/23/93	14.0	-9.000	-9.000	-9.0000	-9	-9

Strongylocentrotus purpuratus PERCENT FERTILIZATION IN PORE WATER, AND WATER QUALITY (mg/L)

. .

.

.

.

SECTION VI

• •

Strongylocentrotus purpuratus Development in Pore Water

										•		
STANUM	STATION	IDORG	DATE	LEG	METADATA	CTRL	SPPD100_MN	SPPD100_SD	SPPD100_SG	SPPD100TOX	SPPD_BATCH	SPPDQC
31003.0	ANDREWS POND- REF	258	11/8/92	7.0	-9	-9	0.00	0.00	*	T	-9	-9
31003.0	ANDREW'S POND REF.	451	12/8/92	9.0	-9	-9	90.40	4.50	* `	ŇT	-9	-9
30001.0	SANTA CRUZ YACHT BASIN	501	12/21/92	10.0	-9	-9	94.60	1.80	*	NT	-9	-9
30002.0	MONTEREY YACHT CLUB	502	12/21/92	10.0	-9	-9	2.10	2.20	÷	T	-9	-9
30004.0	M.L. YACHT HARBOR	504	12/21/92	10.0	-9	-9	89.50	6.10	*	NT	-9	-9
30005.0	M.L. SOUTH HARBOR	505	12/21/92	10.0	-9	-9	69.40	10.50	*	Т	-9	-9
30006.0	PAJARO RIVER ESTUARY	506	12/21/92	10.0	-9	-9	0.00	0.00	*	Т	-9	-9
30007.0	SANDHOLDT BRIDGE	507	12/21/92	10.0	-9	-9	15.90	14.70	*	- T	-9	-9
30012.0	MONTEREY BOATYARD	512	12/21/92	10.0	-9	-9	2.40	3.80	*	Т	-9	-9
30013.0	MONTEREY STORMDRAIN NO.2	513	12/21/92	10.0	-9	-9	0.00	0.00	*	Т	-9	-9
30019.0	MORO COJO SLOUGH	519	12/22/92	10.0	-9	-9	0.00	0.00	*	T.	-9	-9
31002.0	HWY 1 BRIDGE REF.	675	1/14/93	11.0	-9	-9	25.60	15.60	*	Т	-9	-9

Strongylocentrotus purpuratus PERCENT NORMAL DEVELOPMENT IN PORE WATER, AND WATER QUALITY (mg/L)

.

31003.0 ANDREWS POND- REF 258 11/8/92 7.0 -9 -9 0.00 -9.000 0.275	-8.0000 -8.0000
	-8.0000
31003.0 ANDREW'S POND REF. 451 12/8/92 9.0 -9 -9 90.40 -9.000 0.102	
30001.0 SANTA CRUZ YACHT BASIN 501 12/21/92 10.0 -9 -9 94.60 -9.000 0.020	-8.0000
30002.0 MONTEREY YACHT CLUB 502 12/21/92 10.0 -9 -9 2.10 -9.000 0.029	-8.0000
30004.0 M.L. YACHT HARBOR 504 12/21/92 10.0 -9 -9 89.50 -9.000 0.019	-8.0000
30005.0 M.L. SOUTH HARBOR 505 12/21/92 10.0 -9 -9 69.40 -9.000 0.012	-8.0000
30006.0 PAJARO RIVER ESTUARY 506 12/21/92 10.0 -9 -9 0.00 -9.000 0.016	-8.0000
30007.0 SANDHOLDT BRIDGE 507 12/21/92 10.0 -9 -9 15.90 -9.000 0.014	-8.0000
30012.0 MONTEREY BOATYARD 512 12/21/92 10.0 -9 -9 2.40 -9.000 0.019	-8.0000
30013.0 MONTEREY STORMDRAIN NO.2 513 12/21/92 10.0 -9 -9 0.00 -9.000 0.001	-8.0000
30019.0 MORO COJO SLOUGH 519 12/22/92 10.0 -9 -9 0.00 -9.000 0.039	-8.0000
31002.0 HWY 1 BRIDGE REF. 675 1/14/93 11.0 -9 -9 25.60 -9.000 0.026	-8.0000

J

Strongylocentrotus purpuratus PERCENT NORMAL DEVELOPMENT IN PORE WATER, AND WATER QUALITY (mg/L)

SECTION VII

Strongylocentrotus purpuratus Development in Sediment/Water Interface

Strongylocentrotus purpuratus PERCENT NORMAL DEVELOPMENT IN SEDIMENT/WATER INTERFACE, AND WATER QUALITY (mg/L)

STANUM	STATION	IDORG	DATE	LEG	METADATA	CTRL	SPDI_MN	.SPDI_SD	SPDI_SG	SPDI_TOX	SPDI_BATCH
30001.0	SANTA CRUZ YACHT BASIN	1588	5/9/96	43.0	toxmeta5	CH1	86.00	14.00	ns	NT	143tswi
3 5003.0	MONTEREY BOATYARD-LEAD 1	1591	5/9/96	43.0	toxmeta5	CHI	47.00	37.00	*	Т	143tswi
30002.0	MONTEREY YACHT CLUB	1596	5/9/96	43.0	toxmeta5	CH1	30.00	19.00	*	Т	143tswi
30007.0	SANDHOLDT BRIDGE	1597	5/9/96	43.0	toxmeta5	CHI	53.00	33.00	*	Т	143tswi
	CONTROL			43.0	toxmeta5	CHI	99.00	1.00	-9	-9	143tswi

STANUM	STATION	IDORG	DATE	LEG	SPDI_OTNH3	SPDI_OUNH3	SPDI_OH2S
30001.0	SANTA CRUZ Y ACHT BASIN	1588	5/9/96	43.0	0.730	0.011	-8.0000
35003.0	MONTEREY BOATYARD-LEAD 1	1591	5/9/96	43.0	0.920	0.013	-8.0000
30002.0	MONTEREY YACHT CLUB	1596	5/9/96	43.0	1.900	0.019	-8.0000
30007.0	SANDHOLDT BRIDGE	1597	5/9/96	43.0	4.800	0.050	-8.0000
	CONTROL			43.0	0.260	0.004	-9.0000

Strongylocentrotus purpuratus PERCENT NORMAL DEVELOPMENT IN SEDIMENT/WATER INTERFACE, AND WATER QUALITY (mg/L)

SECTION VIII

Mytilus spp. Larval Development in Subsurface Water

					,			Semanah an	Series most	
TATION	IDORG	DATE	LEG	METADATA	CTRL	MES100_MN	MES100_SD	MES100_SG	MES100_TOX	MES_OUNH3
JARO RIVER ESTUARY	506	12/21/92	10.0	-9	-9	86.70	12.50	ns	NT	0.005
ALINAS RIVER LAGOON	511	12/21/92	10.0	-9_	-9	86.10	10.60	ns	NT	0.008
DQUEL LAGOON	522	12/21/92	10.0	-9	-9	73.80	11.20	ns	NT	0.011
COTT CREEK #26B	526	12/18/92	10.0	-9	-9	83.60	12.80	ns	NT	-8.000
OLETA SL.	509	2/10/93	13.0	-9	-9	100.00	0.00	ns	NT	-8.000
ARPINTERIA MARSH-1	510	2/10/93	13.0	-9	-9	99.30	1.50	ns	NT	0.004
ANTA MARIA RIVER ESTUARY	520	2/9/93	13.0	-9	-9	98.70	3.00	ns	NT	-8.000
ANTA YNEZ RIVER ESTUARY	521	2/11/93	13.0	-9	-9	100.00	0.00	ns	NT	-8.000
ANADA DE LA GAVIOTA (26d)	531	2/11/93	13.0	-9	-9	100.00	0.00	ns	NT	-8.000
ARPINTERIA MARSH-2	532	2/10/93	13.0	-9	-9	100.00	0.00	ns	NT	0.008
ARPINETRIA MARSH-3	533	2/10/93	- 13.0	-9	-9	100.00	0.00	ns	NT	0.009
IGHWAY 1 BRIDGE REF	352	2/23/93	14.0	-9	-9	75.70	5.40	ns	NT	-9.000
ONTROL-CHI	-		43.0	toxmeta5	СНІ	86.00	3.00	-9	-9	-8.000
ANDHOLDT BRIDGE	1597	5/9/96	43.0	-9	-9	89.00	6.00	'ns	NT	0.002
	JARO RIVER ESTUARY LINAS RIVER LAGOON QUEL LAGOON OTT CREEK #26B LETA SL. RPINTERIA MARSH-1 NTA MARIA RIVER ESTUARY NTA YNEZ RIVER ESTUARY NADA DE LA GAVIOTA (26d) RPINTERIA MARSH-2 RPINETRIA MARSH-3 GHWAY 1 BRIDGE REF NTROL-CH1	JARO RIVER ESTUARY506LINAS RIVER LAGOON511QUEL LAGOON522DTT CREEK #26B526LETA SL.509RPINTERIA MARSH-1510NTA MARIA RIVER ESTUARY520NTA YNEZ RIVER ESTUARY521NADA DE LA GAVIOTA (26d)531RPINTERIA MARSH-2532RPINTERIA MARSH-3533GHWAY 1 BRIDGE REF352NTROL-CH1506	JARO RIVER ESTUARY 506 12/21/92 LINAS RIVER LAGOON 511 12/21/92 QUEL LAGOON 522 12/21/92 OTT CREEK #26B 526 12/18/92 DITT CREEK #26B 509 2/10/93 RPINTERIA MARSH-1 510 2/10/93 NTA MARIA RIVER ESTUARY 520 2/9/93 NTA YNEZ RIVER ESTUARY 521 2/11/93 NADA DE LA GAVIOTA (26d) 531 2/11/93 RPINTERIA MARSH-2 532 2/10/93 RPINTERIA MARSH-3 533 2/10/93 RPINTERIA MARSH-3 533 2/10/93 RPINETRIA MARSH-3 533 2/10/93 RPINETRIA MARSH-3 533 2/10/93 GHWAY 1 BRIDGE REF 352 2/23/93 NTROL-CH1 2/23/93 2/23/93	JARO RIVER ESTUARY 506 12/21/92 10.0 LINAS RIVER LAGOON 511 12/21/92 10.0 QUEL LAGOON 522 12/21/92 10.0 OUEL LAGOON 522 12/21/92 10.0 OTT CREEK #26B 526 12/18/92 10.0 OLETA SL. 509 2/10/93 13.0 RPINTERIA MARSH-1 510 2/10/93 13.0 NTA MARIA RIVER ESTUARY 520 2/9/93 13.0 NTA YNEZ RIVER ESTUARY 521 2/11/93 13.0 NADA DE LA GAVIOTA (26d) 531 2/11/93 13.0 RPINTERIA MARSH-2 532 2/10/93 13.0 RPINTERIA MARSH-3 533 2/10/93 13.0 GHWAY 1 BRIDGE REF 352 2/23/93 14.0 NTROL-CH1 43.0 43.0	JARO RIVER ESTUARY 506 12/21/92 10.0 -9 LINAS RIVER LAGOON 511 12/21/92 10.0 -9 QUEL LAGOON 522 12/21/92 10.0 -9 OUEL LAGOON 522 12/21/92 10.0 -9 OUEL LAGOON 522 12/18/92 10.0 -9 OTT CREEK #26B 526 12/18/92 10.0 -9 NETA SL. 509 2/10/93 13.0 -9 RPINTERIA MARSH-1 510 2/10/93 13.0 -9 NTA MARIA RIVER ESTUARY 520 2/9/93 13.0 -9 NTA YNEZ RIVER ESTUARY 521 2/11/93 13.0 -9 NADA DE LA GAVIOTA (26d) 531 2/11/93 13.0 -9 RPINTERIA MARSH-2 532 2/10/93 13.0 -9 RPINETRIA MARSH-3 533 2/10/93 13.0 -9 GHWAY 1 BRIDGE REF 352 2/23/93 14.0 -9 NTROL-CH1 43.0 toxmeta5	JARO RIVER ESTUARY 506 12/21/92 10.0 -9 -9 LINAS RIVER LAGOON 511 12/21/92 10.0 -9 -9 QUEL LAGOON 522 12/21/92 10.0 -9 -9 OUEL LAGOON 522 12/21/92 10.0 -9 -9 OUEL LAGOON 522 12/21/92 10.0 -9 -9 OTT CREEK #26B 526 12/18/92 10.0 -9 -9 NETA SL. 509 2/10/93 13.0 -9 -9 RPINTERIA MARSH-1 510 2/10/93 13.0 -9 -9 NTA MARIA RIVER ESTUARY 520 2/9/93 13.0 -9 -9 NTA YNEZ RIVER ESTUARY 521 2/11/93 13.0 -9 -9 NADA DE LA GAVIOTA (26d) 531 2/11/93 13.0 -9 -9 RPINTERIA MARSH-2 532 2/10/93 13.0 -9 -9 RPINTERIA MARSH-3 533 2/10/93 13.0 -9 -9 GHWAY 1 BRIDGE REF 352 2/23/93	JARO RIVER ESTUARY 506 12/21/92 10.0 -9 -9 86.70 LINAS RIVER LAGOON 511 12/21/92 10.0 -9 -9 86.70 QUEL LAGOON 511 12/21/92 10.0 -9 -9 86.10 QUEL LAGOON 522 12/21/92 10.0 -9 -9 73.80 OTT CREEK #26B 526 12/18/92 10.0 -9 -9 83.60 LETA SL. 509 2/10/93 13.0 -9 -9 90.00 RPINTERIA MARSH-1 510 2/10/93 13.0 -9 -9 98.70 NTA MARIA RIVER ESTUARY 520 2/9/93 13.0 -9 -9 98.70 NTA YNEZ RIVER ESTUARY 521 2/11/93 13.0 -9 -9 100.00 RPINTERIA MARSH-2 532 2/10/93 13.0 -9 -9 100.00 RPINTERIA MARSH-3 533 2/10/93 13.0 -9 -9 100.00	JARO RIVER ESTUARY 506 12/21/92 10.0 -9 -9 86.70 12.50 LINAS RIVER LAGOON 511 12/21/92 10.0 -9 -9 86.10 10.60 QUEL LAGOON 522 12/21/92 10.0 -9 -9 86.10 10.60 QUEL LAGOON 522 12/21/92 10.0 -9 -9 73.80 11.20 OTT CREEK #26B 526 12/18/92 10.0 -9 -9 83.60 12.80 LETA SL. 509 2/10/93 13.0 -9 -9 99.30 1.50 NTA MARIA RIVER ESTUARY 520 2/9/93 13.0 -9 -9 98.70 3.00 NTA YNEZ RIVER ESTUARY 521 2/11/93 13.0 -9 -9 100.00 0.00 NADA DE LA GAVIOTA (26d) 531 2/11/93 13.0 -9 -9 100.00 0.00 RPINTERIA MARSH-2 532 2/10/93 13.0 -9 -9 100.00 <td>MARO RIVER ESTUARY 506 12/21/92 10.0 -9 -9 86.70 12.50 ns LINAS RIVER LAGOON 511 12/21/92 10.0 -9 -9 86.10 10.60 ns QUEL LAGOON 522 12/21/92 10.0 -9 -9 86.10 10.60 ns OTT CREEK #26B 526 12/18/92 10.0 -9 -9 83.60 12.80 ns LETA SL. 509 2/10/93 13.0 -9 -9 99.30 1.50 ns RPINTERIA MARSH-1 510 2/10/93 13.0 -9 -9 98.70 3.00 ns NTA MARIA RIVER ESTUARY 520 2/9/93 13.0 -9 -9 98.70 3.00 ns NADA DE LA GAVIOTA (26d) 531 2/11/93 13.0 -9 -9 100.00 0.00 ns RPINTERIA MARSH-2 532 2/10/93 13.0 -9 -9 100.00 0.00 ns <</td> <td>JARO RIVER ESTUARY 506 12/21/92 10.0 -9 -9 86.70 12.50 ns NT LINAS RIVER LAGOON 511 12/21/92 10.0 -9 -9 86.10 10.60 ns NT QUEL LAGOON 522 12/21/92 10.0 -9 -9 73.80 11.20 ns NT OUEL LAGOON 522 12/21/92 10.0 -9 -9 73.80 11.20 ns NT OTT CREEK #26B 526 12/18/92 10.0 -9 -9 83.60 12.80 ns NT LETA SL. 509 2/10/93 13.0 -9 -9 100.00 0.00 ns NT RPINTERIA MARSH-1 510 2/10/93 13.0 -9 -9 98.70 3.00 ns NT NTA MARIA RIVER ESTUARY 521 2/11/93 13.0 -9 -9 100.00 0.00 ns NT NADA DE LA GAVIOTA (26d) 531</td>	MARO RIVER ESTUARY 506 12/21/92 10.0 -9 -9 86.70 12.50 ns LINAS RIVER LAGOON 511 12/21/92 10.0 -9 -9 86.10 10.60 ns QUEL LAGOON 522 12/21/92 10.0 -9 -9 86.10 10.60 ns OTT CREEK #26B 526 12/18/92 10.0 -9 -9 83.60 12.80 ns LETA SL. 509 2/10/93 13.0 -9 -9 99.30 1.50 ns RPINTERIA MARSH-1 510 2/10/93 13.0 -9 -9 98.70 3.00 ns NTA MARIA RIVER ESTUARY 520 2/9/93 13.0 -9 -9 98.70 3.00 ns NADA DE LA GAVIOTA (26d) 531 2/11/93 13.0 -9 -9 100.00 0.00 ns RPINTERIA MARSH-2 532 2/10/93 13.0 -9 -9 100.00 0.00 ns <	JARO RIVER ESTUARY 506 12/21/92 10.0 -9 -9 86.70 12.50 ns NT LINAS RIVER LAGOON 511 12/21/92 10.0 -9 -9 86.10 10.60 ns NT QUEL LAGOON 522 12/21/92 10.0 -9 -9 73.80 11.20 ns NT OUEL LAGOON 522 12/21/92 10.0 -9 -9 73.80 11.20 ns NT OTT CREEK #26B 526 12/18/92 10.0 -9 -9 83.60 12.80 ns NT LETA SL. 509 2/10/93 13.0 -9 -9 100.00 0.00 ns NT RPINTERIA MARSH-1 510 2/10/93 13.0 -9 -9 98.70 3.00 ns NT NTA MARIA RIVER ESTUARY 521 2/11/93 13.0 -9 -9 100.00 0.00 ns NT NADA DE LA GAVIOTA (26d) 531

Mytilus spp. PERCENT NORMAL LARVAL SHELL DEVELOPMENT IN SUBSURFACE WATER, AND WATER QUALITY (mg/L)

STANUM	STATION	IDORG	DATE	LEG	MES_OTNH3	MES_OH2S	MES_BATCH	MESQC
30006.0	PAJARO RIVER ESTUARY	506	12/21/92	10.0	-9.000	-9.0000	-9	-9
30011.0	SALINAS RIVER LAGOON	511	12/21/92	10.0	-9.000	-9.0000	-9	-9
30022.0	SOQUEL LAGOON	522	12/21/92	10.0	-9.000	-9.0000	-9	-9
30026.0	SCOTT CREEK #26B	526	12/18/92	10.0	-9.000	-9.0000	-9 -	-9
30009.0	GOLETA SL.	509	2/10/93	13.0	-9.000	-9.0000	-9	-9
30010.0	CARPINTERIA MARSH-1	510	2/10/93	13.0	-9.000	-9.0000	-9	-9
30020.0	SANTA MARIA RIVER ESTUARY	520	2/9/93	13.0	-9.000	-9.0000	-9	-9
30021.0	SANTA YNEZ RIVER ESTUARY	521	2/11/93	13.0	-9.000	-9.0000	-9	-9
30030.0	CANADA DE LA GAVIOTA (26d)	531	2/11/93	13.0	-9.000	-9.0000	-9	-9
30031.0	CARPINTERIA MARSH-2	532	2/10/93	13.0	-9.000	-9.0000	-9	-9
30032.0	CARPINETRIA MARSH-3	533	2/10/93	13.0	-9.000	-9.0000	-9	-9
31002.0	HIGHWAY 1 BRIDGE REF	352	2/23/93	14.0	-9.000	-9.0000	-9	-9
	CONTROL-CH1			43.0	-8.000	-9.0000	143tme	-3
30007.0	SANDHOLDT BRIDGE	1597	5/9/96	43.0	0.150	-9.0000	143tme	-4

Mytilus spp. PERCENT NORMAL LARVAL SHELL DEVELOPMENT IN SUBSURFACE WATER, AND WATER QUALITY (mg/L)

SECTION IX

Mytilus spp. Larval Development in Pore Water

STANUM	STATION	IDORG	DATE	LEG	METADATA	CTRL	MEP100_MN	MEP100_SD	MEP100_SG	MEP100_TOX	MEP_ITNH3
30011.0	SALINAS RIVER LAGOON	511	12/21/92	10.0	-9	-9	0.00	0.00	*	Т	-9.000
30014.0	MONTEREY STORMDRAIN NO. 3	514	12/21/92	10.0	-9	-9	83.60	7.20	ńs	NT	-9.000
30022.0	SOQUEL LAGOON	522	12/21/92	10.0	-9	-9	0.00	0.00	*	Т	-9.000
30023.0	BENNETT SL./ESTUARY	523	12/22/92	10.0	-9	-9	-7.00	-7.00	-9	-9	-9.000
30026.0	SCOTT CREEK #26B	526	12/18/92	10.0	-9	-9	71.30	11.00	ns	NT	-9.000
30027.0	MONTEREY BAY REF. SOUTH	527	12/21/92	10.0	-9	-9	-7.00	-7.00	-9	-9	-9.000
30028.0	ELKHORN SL. PORTRERO REF.	528	12/18/92	10.0	-9	-9	74.90	15.70	ns	NT	-9.000
30009.0	GOLETA SL.	509	2/10/93	13.0	-9	-9	0.00	0.00	*	Т	-9.000
30020.0	SANTA MARIA RIVER ESTUARY	520	2/9/93	13.0	-9	-9	21.00	22.80	*	Т	-9.000
30021.0	SANTA YNEZ RIVER ESTUARY	521	2/11/93	13.0	-9	-9	100.00	0.00	ns	NT	-9.000
30030.0	CANADA DE LA GAVIOTA (26d)	531	2/11/93	13.0	-9	-9	100.00	0.00	ńs	NT	-9.000

Mytilus spp. PERCENT NORMAL LARVAL SHELL DEVELOPMENT IN PORE WATER, AND WATER QUALITY (mg/L)

STANUM	STATION	IDORG	DATE	LEG	MEP_IUNH3	MEP_IH2S	MEP_BATCH	MEPQC
30011.0	SALINAS RIVER LAGOON	511	12/21/92	10.0	0.006	-8.0000	-9	-9
30014.0	MONTEREY STORMDRAIN NO. 3	514	12/21/92	10.0	0.027	-8.0000	-9	-9
30022.0	SOQUEL LAGOON	522	12/21/92	10.0	0.135	-8.0000	-9	-9
30023.0	BENNETT SL./ESTUARY	523	12/22/92	10.0	0.011	-8.0000	-9	-9
30026.0	SCOTT CREEK #26B	526	12/18/92	10.0	0.040	-8.0000	. 9	-9
30027.0	MONTEREY BAY REF. SOUTH	527	12/21/92	10.0	0.007	-8.0000	-9	-9
30028.0	ELKHORN SL. PORTRERO REF.	528	12/18/92	10.0	0.019	-8.0000	-9	-9
30009.0	GOLETA SL.	509	2/10/93	13.0	0.055	-8.0000	-9	-9
30020.0	SANTA MARIA RIVER ESTUARY	520	2/9/93	13.0	0.099	-8.0000	-9	-9
30021.0	SANTA YNEZ RIVER ESTUARY	521	2/11/93	13.0	0.030	-8.0000	-9	-9
30030.0	CANADA DE LA GAVIOTA (26d)	531	2/11/93	13.0	-8.000	-8.0000	-9	-9

Mytilus spp. PERCENT NORMAL LARVAL SHELL DEVELOPMENT IN PORE WATER, AND WATER QUALITY (mg/L)

SECTION X

Neanthes arenaceodentata Solid Phase Survival and Growth Weight Change

`

STANUM	STATION	IDORG	DATE	LEG	METADATA	CTRL	NASURV_MN	NASURV_SD	NASURV_SG	NASURV_TOX	NAWT_MN
30034.1	MONTEREY BAY REFERENCE	100	8/5/92	1.0	-9	-9	-9.00	-9.00	-9	-9	-9.00
30034.2	MONTEREY BAY REFERENCE	101	8/5/92	1.0	-9	-9	-9.00	-9.00	-9	-9	-9.00
30034.3	MONTEREY BAY REFERENCE	102	8/5/92	1.0	-9	-9	-9.00	-9.00	· -9	-9	-9.00
30035.1	ELKHORN SLOUGH-SEAL POINT	130	9/4/92	3.0	-9	-9	-9.00	-9.00	-9	-9	-9.00
30035.2	ELKHORN SLOUGH-SEAL POINT	131	9/4/92	3.0	-9	-9	-9.00	-9.00	-9	-9	-9.00
30035.3	ELKHORN SLOUGH-SEAL POINT	132	9/4/92	3.0	-9	-9	-9.00	-9.00	-9	-9	-9.00
30036.1	ELKHORN SLOUGH-SEAL BEND	133	9/11/92	4.0	-9	-9	-9.00	-9.00	-9	-9	-9.00
30036.2	ELKHORN SLOUGH-SEAL BEND	134	9/11/92	4.0	-9	-9	-9.00	-9.00	-9	-9	-9.00
30036.3	ELKHORN SLOUGH-SEAL BEND	135	9/11/92	4.0	-9	-9	-9.00	-9.00	-9	-9	-9.00
31001.0	EGRET LANDING- REF	251	10/9/92	5.0	-9	-9	-9.00	-9.00	-9	-9	-9.00
31002.0	HIGHWAY 1 BRIDGE- REF	254	10/23/92	6.0	-9	-9	100.00	0.00	· ns	NT	19.80
31003.0	ANDREWS POND- REF	258	11/8/92	7.0	-9	-9	-9.00	-9.00	-9	-9	-9.00
31002.0	HWY. 1 BRIDGE- REF	351	11/27/92	8.0	-9	-9	88.00	18.00	ńs	NT	11.10
31003.0	ANDREW'S POND REF.	451	12/8/92	9.0	-9	-9	-9.00	-9.00	-9	-9	-9.00
30001.0	SANTA CRUZ YACHT BASIN	501	12/21/92	10.0	-9	-9	100.00	0.00	ns	NT	5.80
30002.0	MONTEREY YACHT CLUB	502	12/21/92	10.0	-9	-9	88.00	11.00	ns	NT	9.70
30004.0	M.L. YACHT HARBOR	504	12/21/92	10.0	-9	-9	96.00	8.90	ns	NT	9.30
30005.0	M.L. SOUTH HARBOR	505	12/21/92	10.0	-9	-9	100.00	0.00	ns	NT	9.10
30006.0	PAJARO RIVER ESTUARY	506	12/21/92	10.0	-9	-9	64.00	38.50	ns	NT	4.30
30007.0	SANDHOLDT BRIDGE	507	12/21/92	10.0	-9	-9	96.00	8.90	ns	NT	7.30
30011.0	SALINAS RIVER LAGOON	511	12/21/92	10.0	-9	-9	-9.00	-9.00	-9	-9	-9.00
30012.0	MONTEREY BOATYARD	512	12/21/92	10.0	-9	-9	84.00	26.10	ns	NT	9.00
30013.0	MONTEREY STORMDRAIN NO.2	513	12/21/92	10.0	-9	-9	92.00	17.90	ns	NT	10.00
30014.0	MONTEREY STORMDRAIN NO. 3	514	12/21/92	10.0	-9	-9	96.00	8.90	ns	NŢ	7.60
30019.0	MORO COJO SLOUGH	519	12/22/92	10.0	-9	-9	64.00	32.90	ns	NT	4.00
30022.0	SOQUEL LAGOON	522	12/21/92	10.0	-9	-9	-9.00	-9.00	-9	-9	-9.00
30023.0	BENNETT SL./ESTUARY	523	12/22/92	10.0	-9	-9	96.00	8.90	ns	NT	6.40
30026.0	SCOTT CREEK #26B	526	12/18/92	10.0	-9	-9	-9.00	-9.00	-9	-9	-9.00
30027.0	MONTEREY BAY REF. SOUTH	527	12/21/92	10.0	-9	-9	96.00	8.90	ns	NT	8.10
30028.0	ELKHORN SL. PORTRERO REF.	528	12/18/92	10.0	-9	-9	76.00	32.90	ns	NT	5.50
31002.0	HWY I BRIDGE REF.	675	1/14/93	11.0	-9	-9	-9.00	-9.00	-9	-9	-9.00
30003.0	SANTA BARBARA HARBOR	503	2/10/93	13.0	-9	-9	-9.00	-9.00	-9	-9	-9.00
30008.0	SAN LUIS HARBOR TRANS	508	2/9/93	13.0	-9	-9	-9.00	-9.00	-9	-9	-9.00

3000.0 COLETA SL. 599 2/1093 13.0 -9 -9 -9.00 -	STANUM	STATION	IDORG	DATE	LEG	METADATA	CTRL	NASURV_MN	NASURV_SD	NASURV_SG	NASURV_TOX	NAWT_MN
30020.0 SANTA MARIA RIVER ESTUARY 520 299 330 -9 -9 9,00 9,00 -9 9,00 30021.0 SANTA YBEZ RIVER ESTUARY 521 2/1/33 130 -9 9 9,00 9,00 9 9 9,00 30,00 9 9,00 30,00 9 9,00 30,00 9 9,00 30,00 9 9,00 30,00 9 9,00 30,00 9 9,00 30,00 9 9,00 30,00 9 9,00 30,00 9 9,00 30,00 9 9,00 30,00 9 9,00 30,00 9 9,00 30,00 9 9,00 30,00 9 9,00 30,00 9 9,00 30,00 9 9,00 30,00 9 9,00 30,00 9 9,00 30,00 30,00 30,00 30,00 30,00 30,00 30,00 30,00 30,00 30,00 30,00 30,00 30,00 30,00 <	30009.0	GOLETA SL.	509	2/10/93	13.0	-9	-9	-9.00	-9.00	-9	-9	-9.00
30021.0 SANTA YNEZ RIVER ESTUARY 521 2/11/91 13.0 -9 -9 9.00 -9.00 </td <td>30010.0</td> <td>CARPINTERIA MARSH-1</td> <td>510</td> <td>2/10/93</td> <td>13.0</td> <td>-9</td> <td>-9</td> <td>-9.00</td> <td>-9.00</td> <td>-9</td> <td>-9</td> <td>-9.00</td>	30010.0	CARPINTERIA MARSH-1	510	2/10/93	13.0	-9	-9	-9.00	-9.00	-9	-9	-9.00
30024.0 MORRO BAY 524 29/93 13.0 -9 9 9.00	30020.0	SANTA MARIA RIVER ESTUARY	520	2/9/93	13.0	-9	-9	-9.00	-9.00	-9	-9	-9.00
30025.0 MORRO BAY-SOUTH BAY 525 2/9 1.30 -9 -9 9.00 9.00 -9 9 9.00 300230 MORRO BAY-MID BAY 530 2/9/93 13.0 -9 -9 9.00 -9.00 -9 9.00 -9 9.00 -9 9.00 -9 9.00 -9 9.00 -9 9.00 -9 9.00 -9 9.00 -9 9.00 -9 9.00 -9 9.00 -9 9.00 -9 9 -9.00 -9.00 -9 9 -9.00 -9.00 -9 9 -9.00 -9.00 -9 -9 -9.00 -9.00 -9 -9 -9.00 -9.00 -9 -9 -9.00 -9.00 -9.00 -9.00 -9.00 -9 -9 -9.00 -9.00 -9.00 -9.00 -9.00 -9 -9.00 -9.00 -9.00 -9 -9.00 -9.00 -9 -9.00 -9.00 -9.00 -9.00 -9.00	30021.0	SANTA YNEZ RIVER ESTUARY	521	2/11/93	13.0	-9	-9	-9.00	-9.00	-9	-9	-9.00
30029. MORRO BAY-MID BAY 530 29/93 13.0 -9 -9 9.00 9.00 9.9 9.9 9.00 30030.0 CANADA DE LA GAVIOTA (26d) 531 2/1193 13.0 -9 9 9.00 9.90 9.9 9.90 9.90 9.9 9.00 3030.2 CARPINTERIA MARSH-3 533 2/1093 13.0 -9 9 9.00 9.90 9 9.90 300 9 9.900 3000 9 9.900 30000 30000 30000 30000 30000 30000 900 9 9.900 30000 30000 30000 30000 30000 30000 300000 300000 300000 300000 300000 300000 300000 300000 300000 300000 300000 300000 300000 300000 300000 300000 300000 3000000 3000000 3000000 3000000 3000000 3000000 3000000 3000000 3000000 3000000 3000000 300	30024.0	MORRO BAY	524	2/9/93	13.0	-9	-9	-9.00	-9.00	-9	-9	-9.00
3003.0 CANADA DE LA GAVIOTA (26d) 531 2/11/93 13.0 -9 -9 9.00 -9.00 -9.00 -9 9.00 30031.0 CARPINERIA MARSH-2 532 2/10/93 13.0 -9 -9 9.00 -9.00 -9 9 9.00 -9.00 -9 9.00 -9.00 -9 9 9.00 -9.00 -9 9.9.00 -9.00 -9 9 9.00 -9.00 -9 9 9.00 -9.00 -9 9 9.00 -9.00 -9 9 9.00 -9 9 9.00 -9 9 9.00 -9 9 9.00 -9 9 9.00 -9 9 9.00 -9 9 9.00 -9 9 9.00 -9 9 9.00 -9 9 9.00 9 9 9.00 9 9 9.00 9 9 9.00 9 </td <td>30025.0</td> <td>MORRO BAY-SOUTH BAY</td> <td>525</td> <td>2/9/93</td> <td>13.0</td> <td>-9</td> <td>-9</td> <td>-9.00</td> <td>-9.00</td> <td>-9</td> <td>-9</td> <td>-9.00</td>	30025.0	MORRO BAY-SOUTH BAY	525	2/9/93	13.0	-9	-9	-9.00	-9.00	-9	-9	-9.00
30031.0 CARPINTERIA MARSH-2 532 2/10/93 13.0 -9 9 9.00 9.00 9.9 9.90 9.90 30032.0 CARPINTERIA MARSH-3 533 2/10/93 13.0 -9 -9 9.00 9.00 -9 -9 9.00 9.00 -9 -9 9.00 -9 -9 9.00 -9 -9 9.00 -9 -9 9.00 -9 -9 9.00 -9 -9 9.00 -9 -9 9.00 -9 -9 9.00 -9 -9 9.00 -9 -9 9.00 -9 -9 9.00 -9 -9 9.00 -9 -9 9.00 -9 -9 9.00 -9 -9 9.00 -9 -9 9.00 -9 9.00 -9 9.00 -9 9.00 -9 9.00 -9 9.00 -9 9.00 -9 9.00 -9 9.00 -9 19.00 10.00 10.00 10.00	30029.0	MORRO BAY-MID BAY	530	2/9/93	13.0	-9	-9	-9.00	-9.00	-9	-9	-9.00
30032.0 CARPINETRIA MARSH-3 533 2/1073 13.0 -9 9 9.00 9.00 9 9 9.00 30033.0 MORRO BAY-FUEL DOCK 534 2/9/93 13.0 -9 -9 9.00 9.00 -9 -9 9.00 3003.0 MORRO BAY-FUEL DOCK 534 2/9/93 13.0 -9 -9 9.00 -9 -9 9.00 -9 9 9.00 -9 9 9.00 -9 9 9.00 -9 9 9.00 -9 9 9.00 -9 9 9.00 CONTROL-CH1 32.0 toxmeta.wpd -9 9.00 0.00 ns NT 9.10.90 0.00 ns NT 9.12 30013.0 MONTEREY BAY REF. SOUTH 1323 5/16/94 32.0 toxmeta.wpd -9 100.00 0.00 ns NT 6.68 30028.0 ELKHORN SL PORTRERO REF. 1325 5/1794 32.0 toxmeta.wpd -9 100.00 no0 ns <td>30030.0</td> <td>CANADA DE LA GAVIOTA (26d)</td> <td>531</td> <td>2/11/93</td> <td>13.0</td> <td>-9</td> <td>-9</td> <td>-9.00</td> <td>-9.00</td> <td>-9</td> <td>-9</td> <td>-9.00</td>	30030.0	CANADA DE LA GAVIOTA (26d)	531	2/11/93	13.0	-9	-9	-9.00	-9.00	-9	-9	-9.00
30033.0 MORRO BAY-FUEL DOCK 534 2/9/9 13.0 -9 -9 9.00 -9.00 -9 9 9.00 31002.0 HIGHWAY I BRIDGE REF 352 2/23/93 14.0 -9 -9 9.00 -9.00 -9 9 9.900 -9.900 -9.900	30031.0	CARPINTERIA MARSH-2	532	2/10/93	13.0	-9	-9	-9.00	-9.00	-9	-9	-9.00
31002.0HIGHWAY 1 BRIDGE REF3522/2.3/314.0-9-999.00-9999.00CONTROLCH232.0towneta.wpl99.009.00-999.0099.00CONTROLCH332.0towneta.wpl99.009.00-999.009.0030027.0MONTEREY BAY REF. SOUTH1325/16/932.0towneta.wpl9100.000.00nsNT6.6830028.0ELKHORN SL PORTRERO REF.1325/17/932.0towneta.wpl988.000.55nsNT6.7231002.0HIGHWAY 1 BRIDGE REF1325/17/932.0towneta.wpl9100.000.00nsNT6.7231002.0HIGHWAY 1 BRIDGE REF1325/17/932.0towneta.wpl9100.000.00nsNT5.2431002.0HIGHWAY 1 BRIDGE REF1325/17/932.0towneta.wpl9100.000.00nsNT8.343002.0KARDE DRAY-MID BAY13285/20/932.0towneta.wpl9100.000.00nsNT8.343002.0CARPINETRIA MARSH-313305/20/932.0towneta.wpl9100.000.00nsNT8.343003.0MARE DRAY-MID BAY13266/15/933.0towneta.wpl9100.000.00nsNT8.343004.0ML YACHT HARBOR REP1136	30032.0	CARPINETRIA MARSH-3	533	2/10/93	13.0	-9	-9	-9.00	-9.00	-9	-9	-9.00
CONTROLCH232.0ixmetawpi-99.9009.900-99.909.90CONTROLCH332.0ixmetawpi-99.9009.900-99.9009.900MONTEREY BAY REF, SOUTH13.25/16/93.20ixmetawpi-996.000.00nsNT9.900300270MONTEREY STORMDRAIN NO.213245/16/93.20ixmetawpi-9100.000.00nsNT6.68300280ELKHORN SL PORTRERO REF.13255/17/93.20ixmetawpi-984.0035.78nsNT6.68300280ILGHWAY I BRIDGE REF13275/17/93.20ixmetawpi-984.000.00nsNT5.24310080MARD COO SLOUGH13265/17/93.20ixmetawpi-9100.000.00nsNT5.24310080MARD TRANS13285/20/93.20ixmetawpi-9100.000.00nsNT8.3430020MORRO BAY-MID BAY13295/20/93.20ixmetawpi-9100.000.00nsNT8.34300302CARPINETRIA MARSH-313305/20/93.20ixmetawpi-9100.000.00nsNT8.34300302ML YACHT HARBOR REP11366/15/93.0ixmetawpi-9100.000.00nsNT8.34300404ML YACHT HARBOR REP313646/15/93.0ixmetawpi-9 <t< td=""><td>30033.0</td><td>MORRO BAY-FUEL DOCK</td><td>534</td><td>2/9/93</td><td>13.0</td><td>-9</td><td>-9</td><td>-9.00</td><td>-9.00</td><td>-9</td><td>-9</td><td>-9.00</td></t<>	30033.0	MORRO BAY-FUEL DOCK	534	2/9/93	13.0	-9	-9	-9.00	-9.00	-9	-9	-9.00
CONTROL-CH3 32.0 toxmeta.wpd -9 -9.00 -9.00 -9 -9 -9.00 0007.0 MONTEREY BAY REF. SOUTH 1323 $5/16^{9/4}$ 32.0 toxmeta.wpd -9 100.00 0.00 nsNT 9.12 3002.0 MONTEREY STORMDRAIN NO.2 1324 $5/16^{9/4}$ 32.0 toxmeta.wpd -9 100.00 0.00 nsNT 9.12 30013.0 MONTEREY STORMDRAIN NO.2 1324 $5/16^{9/4}$ 32.0 toxmeta.wpd -9 84.00 35.78 nsNT 6.68 3002.0 ELKHORN SL PORTRERO REF. 1325 $5/17^{9/4}$ 32.0 toxmeta.wpd -9 84.00 0.00 nsNT 6.68 30019.0 MOR COJO SLOUGH 1326 $5/17^{9/4}$ 32.0 toxmeta.wpd -9 100.00 0.00 nsNT 8.34 31002.0 HiGHWAY I BRIDGE REF 1327 $5/17^{9/4}$ 32.0 toxmeta.wpd -9 100.00 0.00 nsNT 8.34 3002.0 MOR CO BAY-MID BAY 1328 $5/20^{19/4}$ 32.0 toxmeta.wpd -9 100.00 0.00 nsNT 8.34 3002.0 CARPINETRIA MARSH-3 1328 $5/20^{19/4}$ 32.0 toxmeta.wpd -9 100.00 0.00 nsNT 8.34 3002.0 ML Y ACHT HARBOR REP1 1362 $6/15^{19/4}$ 33.0 toxmeta.wpd -9 100.00 0.00 nsNT 8.36 <	31002.0	HIGHWAY 1 BRIDGE REF	352	2/23/93	14.0	-9	-9	-9.00	-9.00	-9	-9	-9.00
CONTROL-CH1 32.0 toxmeta.wpd -9 96.00 9.00 -9 -9 9.00 30027.0 MONTEREY BAY REF. SOUTH 1323 $5/16/9$ 32.0 toxmeta.wpd -9 100.00 0.00 ns NT 9.12 30013.0 MONTEREY STORMDRAIN NO.2 1324 $5/16/9$ 32.0 toxmeta.wpd -9 100.00 0.00 ns NT 6.68 3002.0 ELKHORN SL. PORTRERO REF. 1325 $5/17/9$ 32.0 toxmeta.wpd -9 8.600 0.00 ns NT 6.68 3001.0 MORO COLO SLOUGH 1326 $5/17/9$ 32.0 toxmeta.wpd -9 100.00 0.00 ns NT 6.68 3002.0 HIGHWAY 1 BRIDGE REF 1327 $5/17/9$ 32.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.34 3002.0 IGRWAY 1 BRIDGE REF 1327 $5/17/9$ 32.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.34 3002.0 MORO BAY-MID BAY 1329 $5/20/9$ 32.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.34 3002.0 CARIPNETRIA MARSH-3 1330 $5/20/9$ 32.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.36 3003.0 ML YACHT HARBOR REP1 1362 $6/15/9$ 33.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.36 30004.0 ML YA		CONTROL-CH2			32.0	toxmeta.wpd	-9	-9.00	-9.00	-9	-9	-9.00
30027.0 MONTEREY BAY REF. SOUTH 1323 5/16/94 32.0 toxmeta.wpd -9 100.00 0.00 ns NT 9.12 30013.0 MONTEREY STORMDRAIN NO.2 1324 5/16/94 32.0 toxmeta.wpd -9 100.00 0.00 ns NT 6.68 3002.0 ELKHORN SL. PORTRERO REF. 1325 5/17/94 32.0 toxmeta.wpd -9 84.00 35.78 ns NT 6.63 30019.0 MORO COJO SLOUGH 1326 5/17/94 32.0 toxmeta.wpd -9 88.00 10.95 ns NT 6.73 31002.0 HIGHWAY 1 BRIDGE REF 1327 5/17/94 32.0 toxmeta.wpd -9 100.00 0.00 ns NT 9.05 30020.0 SAN LUIS HARBOR TRANS 1328 5/20/94 32.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.32 300302.0 CARPINETRIA MARSH-3 1328 5/20/94 32.0 toxmeta.wpd -9 100.00 0.00 ns NT 5.25 300302.0		CONTROL-CH3			32.0	toxmeta.wpd	-9	-9.00	-9.00	-9	-9	-9.00
30013.0 MONTEREY STORMDRAIN NO.2 1324 5/16/94 32.0 toxmeta.wpd -9 100.00 0.00 ns NT 6.68 30028.0 ELKHORN SL. PORTRERO REF. 1325 5/17/94 32.0 toxmeta.wpd -9 84.00 35.78 ns NT 6.73 30019.0 MORO COJO SLOUGH 1326 5/17/94 32.0 toxmeta.wpd -9 88.00 10.95 ns NT 6.73 31002.0 HIGHWAY I BRIDGE REF 1327 5/17/94 32.0 toxmeta.wpd -9 100.00 0.00 ns NT 5.24 31002.0 HIGHWAY I BRIDGE REF 1327 5/17/94 32.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.34 3002.0 MORO BAY-MID BAY 1329 5/20/94 32.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.34 3003.0 CARPINETRIA MARSH-3 1330 5/20/94 32.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.98 3003.0 CARPINE		CONTROL-CH1			32.0	toxmeta.wpd	-9	96.00	9.00	-9	-9	10.99
30028.0 ELKHORN SL. PORTRERO REF. 1325 5/17/94 32.0 toxmeta. wpd 9 84.00 35.78 ns NT 6.73 30019.0 MORO COJO SLOUGH 1326 5/17/94 32.0 toxmeta.wpd -9 88.00 10.95 ns NT 5.24 31002.0 HIGHWAY 1 BRIDGE REF 1327 5/17/94 32.0 toxmeta.wpd -9 100.00 0.00 ns NT 9.05 3008.0 SAN LUIS HARBOR TRANS 1328 5/20/94 32.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.34 30032.0 CARPINETRIA MARSH-3 1330 5/20/94 32.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.34 30032.0 CARPINETRIA MARSH-3 1330 5/20/94 32.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.34 30032.0 CARPINETRIA MARSH-3 1362 6/15/94 33.0 toxmeta.wpd -9	30027.0	MONTEREY BAY REF. SOUTH	1323	5/16/94	32.0	toxmeta.wpd	-9	100.00	0.00	ns	NT	9.12
30019.0 MORO COJO SLOUGH 1326 5/17/94 32.0 toxmeta.wpd -9 88.00 10.95 ns NT 5.24 31002.0 HIGHWAY 1 BRIDGE REF 1327 5/17/94 32.0 toxmeta.wpd -9 100.00 0.00 ns NT 9.05 30008.0 SAN LUIS HARBOR TRANS 1328 5/20/94 32.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.34 3002.0 MORRO BAY-MID BAY 1329 5/20/94 32.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.34 30032.0 CARPINETRIA MARSH-3 1330 5/20/94 32.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.34 30032.0 CARPINETRIA MARSH-3 1330 5/20/94 32.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.34 30032.0 CARPINETRIA MARSH-3 1362 6/15/94 33.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.98 30004.0 ML. YACHT HARB	30013.0	MONTEREY STORMDRAIN NO.2	1324	5/16/94	32.0	toxmeta.wpd	-9	100.00	0.00	ns	NT	6.68
31002.0 HIGHWAY 1 BRIDGE REF 1327 5/17/94 32.0 toxmeta.wpd -9 100.00 0.00 ns NT 9.05 30008.0 SAN LUIS HARBOR TRANS 1328 5/20/94 32.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.34 3002.0 MORRO BAY-MID BAY 1329 5/20/94 32.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.34 3003.0 CARPINETRIA MARSH-3 1330 5/20/94 32.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.34 3003.0 CARPINETRIA MARSH-3 1330 5/20/94 32.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.34 3003.0 CARPINETRIA MARSH-3 1362 6/15/94 33.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.98 30004.0 M.L. YACHT HARBOR REP1 1362 6/15/94 33.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.98 30004.0 M.L. YACHT	30028.0	ELKHORN SL. PORTRERO REF.	1325	5/17/94	32.0	toxmeta.wpd	-9	84.00	35.78	ns	NT	6.73
30008.0 SAN LUIS HARBOR TRANS 1328 5/20/94 32.0 toxmeta.wpd -9 100.00 ns NT 8.34 30029.0 MORRO BAY-MID BAY 1329 5/20/94 32.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.34 30032.0 CARPINETRIA MARSH-3 1330 5/20/94 32.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.34 30032.0 CARPINETRIA MARSH-3 1330 5/20/94 32.0 toxmeta.wpd -9 100.00 0.00 ns NT 5.25 CONTROL-CH1	30019.0	MORO COJO SLOUGH	1326	5/17/94	32.0	toxmeta.wpd	-9	88.00	10.95	ns	NT	5.24
30029.0MORRO BAY-MID BAY13295/20/9432.0toxmeta.wpd-9100.000.00nsNT8.3430032.0CARPINETRIA MARSH-313305/20/9432.0toxmeta.wpd-9100.000.00nsNT5.25CONTROL-CH133.05/20/9432.0toxmeta.wpd-9100.000.00nsNT8.9430004.0ML. YACHT HARBOR REP113626/15/9433.0toxmeta.wpd-9100.000.00nsNT8.9830004.0ML. YACHT HARBOR REP213636/15/9433.0toxmeta.wpd-9100.000.00nsNT8.9830004.0ML. YACHT HARBOR REP313646/15/9433.0toxmeta.wpd-9100.000.00nsNT8.9430007.0SANDHOLDT BRIDGE REP113656/15/9433.0toxmeta.wpd-9100.000.00nsNT8.4230007.0SANDHOLDT BRIDGE REP213666/15/9433.0toxmeta.wpd-9100.000.00nsNT8.4230007.0SANDHOLDT BRIDGE REP313676/15/9433.0toxmeta.wpd-9100.000.00nsNT8.4230007.0SANDHOLDT BRIDGE REP313666/15/9433.0toxmeta.wpd-9100.000.00nsNT8.6430023.0BENNETT SL/ESTUARY REP113686/16/9433.0toxmeta.wpd-988.0026.83ns<	31002.0	HIGHWAY 1 BRIDGE REF	1327	5/17/94	32.0	toxmeta.wpd	-9	100.00	0.00	ns	NT	9.05
30032.0 CARPINETRIA MARSH-3 1330 5/20/94 32.0 toxmeta.wpd -9 100.00 0.00 ns NT 5.25 CONTROL-CH1 33.0 toxmeta.wpd -9 100.00 0.00 ns NT 5.25 30004.0 M.L. YACHT HARBOR REP1 1362 6/15/94 33.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.98 30004.0 M.L. YACHT HARBOR REP1 1362 6/15/94 33.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.98 30004.0 M.L. YACHT HARBOR REP2 1363 6/15/94 33.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.98 30004.0 M.L. YACHT HARBOR REP3 1364 6/15/94 33.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.98 30007.0 SANDHOLDT BRIDGE REP1 1365 6/15/94 33.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.42 30007.0 SANDHOLDT BRIDGE REP3 1367 6/15/94	30008.0	SAN LUIS HARBOR TRANS	1328	5/20/94	32.0	toxmeta.wpd	-9	100.00	0.00	ns	NT	8.34
CONTROL-CH1 33.0 toxmeta.wpd -9 100.00 0.00 -9 -9 11.75 30004.0 M.L. YACHT HARBOR REP1 1362 6/15/94 33.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.98 30004.0 M.L. YACHT HARBOR REP2 1363 6/15/94 33.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.98 30004.0 M.L. YACHT HARBOR REP2 1363 6/15/94 33.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.98 30004.0 M.L. YACHT HARBOR REP3 1364 6/15/94 33.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.74 30007.0 SANDHOLDT BRIDGE REP1 1365 6/15/94 33.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.42 30007.0 SANDHOLDT BRIDGE REP3 1366 6/15/94 33.0 toxmeta.wpd -9 96.00 8.94 ns <td< td=""><td>30029.0</td><td>MORRO BAY-MID BAY</td><td>1329</td><td>5/20/94</td><td>32.0</td><td>toxmeta.wpd</td><td>-9</td><td>100.00</td><td>0.00</td><td>ns</td><td>NT</td><td>8.34</td></td<>	30029.0	MORRO BAY-MID BAY	1329	5/20/94	32.0	toxmeta.wpd	-9	100.00	0.00	ns	NT	8.34
30004.0 M.L. YACHT HARBOR REP1 1362 6/15/94 33.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.98 30004.0 M.L. YACHT HARBOR REP2 1363 6/15/94 33.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.98 30004.0 M.L. YACHT HARBOR REP2 1363 6/15/94 33.0 toxmeta.wpd -9 100.00 0.00 ns NT 9.89 30004.0 M.L. YACHT HARBOR REP3 1364 6/15/94 33.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.74 30007.0 SANDHOLDT BRIDGE REP1 1365 6/15/94 33.0 toxmeta.wpd -9 100.00 0.00 ns NT 9.12 30007.0 SANDHOLDT BRIDGE REP2 1366 6/15/94 33.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.42 30007.0 SANDHOLDT BRIDGE REP3 1367 6/15/94 33.0 toxmeta.wpd -9 96.00 8.94 ns NT 8.76 30023.0	30032.0	CARPINETRIA MARSH-3	1330	5/20/94	32.0	toxmeta.wpd	-9	100.00	0.00	'ns	NT	5.25
30004.0 M.L. YACHT HARBOR REP2 1363 6/15/94 33.0 toxmeta.wpd -9 100.00 0.00 ns NT 9.89 30004.0 M.L. YACHT HARBOR REP3 1364 6/15/94 33.0 toxmeta.wpd -9 100.00 0.00 ns NT 9.89 30004.0 M.L. YACHT HARBOR REP3 1364 6/15/94 33.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.74 30007.0 SANDHOLDT BRIDGE REP1 1365 6/15/94 33.0 toxmeta.wpd -9 100.00 0.00 ns NT 9.12 30007.0 SANDHOLDT BRIDGE REP2 1366 6/15/94 33.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.42 30007.0 SANDHOLDT BRIDGE REP3 1367 6/15/94 33.0 toxmeta.wpd -9 96.00 8.94 ns NT 8.76 30023.0 BENNETT SL/ESTUARY REP1 1368 6/16/94 33.0 toxmeta.wpd -9 88.00 26.83 ns NT 7.13 30023.0		CONTROL-CH1			33.0	toxmeta.wpd	-9	100.00	0.00	-9	-9	11.75
30004.0 M.L. YACHT HARBOR REP3 1364 6/15/94 33.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.74 30007.0 SANDHOLDT BRIDGE REP1 1365 6/15/94 33.0 toxmeta.wpd -9 100.00 0.00 ns NT 9.12 30007.0 SANDHOLDT BRIDGE REP2 1366 6/15/94 33.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.42 30007.0 SANDHOLDT BRIDGE REP2 1366 6/15/94 33.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.42 30007.0 SANDHOLDT BRIDGE REP3 1367 6/15/94 33.0 toxmeta.wpd -9 96.00 8.94 ns NT 8.76 30023.0 BENNETT SL/ESTUARY REP1 1368 6/16/94 33.0 toxmeta.wpd -9 88.00 26.83 ns NT 7.13 30023.0 BENNETT SL/ESTUARY REP2 1369 6/16/94 33.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.08 8.08 <td>30004.0</td> <td>M.L. YACHT HARBOR REPI</td> <td>1362</td> <td>6/15/94</td> <td>33.0</td> <td>toxmeta.wpd</td> <td>-9</td> <td>100.00</td> <td>0.00</td> <td>ns</td> <td>NT</td> <td>8.98</td>	30004.0	M.L. YACHT HARBOR REPI	1362	6/15/94	33.0	toxmeta.wpd	-9	100.00	0.00	ns	NT	8.98
30007.0 SANDHOLDT BRIDGE REP1 1365 6/15/94 33.0 toxmeta.wpd -9 100.00 0.00 ns NT 9.12 30007.0 SANDHOLDT BRIDGE REP2 1366 6/15/94 33.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.42 30007.0 SANDHOLDT BRIDGE REP3 1366 6/15/94 33.0 toxmeta.wpd -9 96.00 8.94 ns NT 8.76 30023.0 BENNETT SL/ESTUARY REP1 1368 6/16/94 33.0 toxmeta.wpd -9 88.00 26.83 ns NT 7.13 30023.0 BENNETT SL/ESTUARY REP2 1369 6/16/94 33.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.08	30004.0	M.L. YACHT HARBOR REP2	1363	6/15/94	33.0	toxmeta.wpd	-9	100.00	0.00	ns	NT	9.89
30007.0 SANDHOLDT BRIDGE REP2 1366 6/15/94 33.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.42 30007.0 SANDHOLDT BRIDGE REP3 1367 6/15/94 33.0 toxmeta.wpd -9 96.00 8.94 ns NT 8.76 30023.0 BENNETT SL/ESTUARY REP1 1368 6/16/94 33.0 toxmeta.wpd -9 88.00 26.83 ns NT 7.13 30023.0 BENNETT SL/ESTUARY REP2 1369 6/16/94 33.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.08	30004.0	M.L. YACHT HARBOR REP3	1364	6/15/94	33.0	toxmeta.wpd	-9	100.00	0.00	ns	NT	8.74
30007.0 SANDHOLDT BRIDGE REP3 1367 6/15/94 33.0 toxmeta.wpd -9 96.00 8.94 ns NT 8.76 30023.0 BENNETT SL/ESTUARY REP1 1368 6/16/94 33.0 toxmeta.wpd -9 88.00 26.83 ns NT 7.13 30023.0 BENNETT SL/ESTUARY REP2 1369 6/16/94 33.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.08	30007.0	SANDHOLDT BRIDGE REPI	1365	6/15/94	33.0	toxmeta.wpd	-9	100.00	0.00	ns	NT	9.12
30023.0 BENNETT SL/ESTUARY REP1 1368 6/16/94 33.0 toxmeta.wpd -9 88.00 26.83 ns NT 7.13 30023.0 BENNETT SL/ESTUARY REP2 1369 6/16/94 33.0 toxmeta.wpd -9 100.00 ns NT 7.13	30007.0	SANDHOLDT BRIDGE REP2	1366	6/15/94	33.0	toxmeta.wpd	-9	100.00	0.00	ns	NT	8.42
30023.0 BENNETT SL/ESTUARY REP2 1369 6/16/94 33.0 toxmeta.wpd -9 100.00 0.00 ns NT 8.08	30007.0	SANDHOLDT BRIDGE REP3	1367	6/15/94	33.0	toxmeta.wpd	-9	96.00	8.94	ns	NT	8.76
	30023.0	BENNETT SL/ESTUARY REPI	1368	6/16/94	33.0	toxmeta.wpd	-9	88.00	26.83	ns	NT	7.13
30023.0 BENNETT SL/ESTUARY REP3 1370 6/16/94 33.0 toxmeta.wpd -9 92.00 17.89 ns NT 8.60	30023.0	BENNETT SL./ESTUARY REP2	1369	6/16/94	33.0	toxmeta.wpd	-9	100.00	0.00	ns	NT	8.08
	30023.0	BENNETT SL./ESTUARY REP3	1370	6/16/94	33.0	toxmeta.wpd	-9	92.00	17.89	ns	NT	8.60

.

Neanthes arenaceodentata PERCENT SURVIVAL AND WEIGHT CHANGE FOR SOLID PHASE TEST, AND WATER QUALITY (mg/L)

Page 2 of 9

۰.

÷.

*

.

CID + 51717 6	an antoni	mana	DATE	LEC		CTED			NACIUNI, CO		
	STATION	IDORG	DATE	·			NASURV_MN	NASURV_SD	NASURV_SG	NASURV_TOX	NAWT_MN
31001.0	EGRET LANDING REPI	1371	6/15/94	33.0	toxmeta.wpd	-9	100.00	0.00	ns	NT	8.32
31001.0	EGRET LANDING REP2	1372	6/15/94	33.0	toxmeta.wpd	-9	100.00	0.00	ns	NT	6.96
31001.0	EGRET LANDING REP3	1373	6/15/94	33.0	toxmeta.wpd	-9	96.00	8.94	ns	NT	7.62
31002.0	HIGHWAY I BRIDGE REPI	1374	6/15/94	33.0	toxmeta.wpd	-9	100.00	0.00	ns	NT	7.31
31002.0	HIGHWAY 1 BRIDGE REP2	1375	6/15/94	33.0	toxmeta.wpd	-9	100.00	0.00	ns	NT	8.09
31002.0	HIGHWAY 1 BRIDGE REP3	1376	6/15/94	33.0	toxmeta.wpd	-9	100.00	0.00	ns	NT	9.27
31003.0	ANDREWS POND REP1	1377	6/16/94	33.0	toxmeta.wpd	-9	100.00	0.00	ns	NT	6.93
31003.0	ANDREWS POND REP2	1378	6/16/94	33.0	toxmeta.wpd	-9	100.00	0.00	ns	NT :	7.56
31003.0	ANDREWS POND REP3	1379	6/16/94	33.0	toxmeta.wpd	-9	100.00	0.00	ns	NT	8.14
	CONTROL-CH1			43.0	toxmeta5	CHI	-9.00	-9.00	-9	-9	-9.00
30001.0	SANTA CRUZ YACHT BASIN	1588	5/9/96	43.0	toxmeta5	CHI	-9.00	-9.00	-9	-9	-9.00
35003.0	MONTEREY BOATYARD-LEAD 1	1591	5/9/96	43.0	toxmeta5	CH1	-9.00	-9.00	-9	-9	-9.00
30002.0	MONTEREY YACHT CLUB	1596	5/9/96	43.0	toxmeta5	CHI	-9.00	-9.00	-9	-9	-9.00
30007.0	SANDHOLDT BRIDGE	1597	5/9/96	43.0	toxmeta5	CHI	-9.00	-9.00	-9	-9	-9.00
	CONTROL-C2			52.0	toxdata7.wpd	ÇI	-9.00	-9.00	-9	-9	-9.00
	CONTROL-CI			52.0	toxdata7.wpd	Cl	-9.00	-9.00	-9	-9	-9.00
30007.0	SANDHOLDT BRIDGE	1762	5/8/97	52.0	toxdata7.wpd	Cl	-9.00	-9.00	-9	-9	-9.00
36002.0	TEMBLADERO MOUTH	1763	5/8/97	52.0	toxdata7.wpd	ci	-9.00	-9.00	-9	-9	-9.00
36003.0	CENTRAL TEMBLADERO	1764	5/8/97	52.0	toxdata7.wpd	CI	-9.00	-9.00	-9	-9	-9.00
36004.0	UPPER TEMBLADERO- SALINAS CITY	1765	5/8/97	52.0	toxdata7.wpd	C1	-9.00	-9.00	-9	-9	-9.00
36005.0	ESPINOSA SLOUGH	1766	5/8/97	52.0	toxdata7.wpd	ci	-9.00	-9.00	-9	-9	-9.00
36006.0	ALISAL SLOUGH	1767	5/8/97	52.0	toxdata7.wpd	CI	-9.00	-9.00	-9	-9	-9.00
36007.0	OLD SALINAS RIVER CHANNEL	1768	5/8/97	52.0	toxdata7.wpd	Cl	-9.00	-9.00	-9	-9	-9.00

STANUM	STATION	IDORG	DATE	LEG	NAWT_SD	NAWT_SG	NAWT_TOX	NA_OTNH3	NA_OUNH3	NA_OH2S	NA_ITNH3
30034.1	MONTEREY BAY REFERENCE	100	8/5/92	1.0	-9.00	-9	-9	-9.000	-9.000	-9.0000	-9.000
30034.2	MONTEREY BAY REFERENCE	101	8/5/92	1.0	-9.00	-9	-9	-9.000	-9.000	-9.0000	-9.000
30034.3	MONTEREY BAY REFERENCE	102	8/5/92	1.0	-9.00	-9	-9	-9.000	-9.000	-9.0000	-9.000
30035.1	ELKHORN SLOUGH-SEAL POINT	130	9/4/92	3.0	-9.00	-9	-9	-9.000	-9.000	-9.0000	-9.000
30035.2	ELKHORN SLOUGH-SEAL POINT	131	9/4/92	3.0	-9.00	-9	-9	-9.000	-9.000	-9.0000	-9.000
30035.3	ELKHORN SLOUGH-SEAL POINT	132	9/4/92	3.0	-9.00	-9	-9	-9.000	-9.000	-9.0000	-9.000
30036.1	ELKHORN SLOUGH-SEAL BEND	133	9/11/92	4.0	-9.00	-9	-9	-9.000	-9.000	-9.0000	-9.000
30036.2	ELKHORN SLOUGH-SEAL BEND	134	9/11/92	4.0	-9.00	-9	-9	-9.000	-9.000	-9.0000	-9.000
30036.3	ELKHORN SLOUGH-SEAL BEND	135	9/11/92	4.0	-9.00	-9	-9	-9.000	-9.000	-9.0000	-9.000
31001.0	EGRET LANDING- REF	251	10/9/92	5.0	-9.00	-9	-9	-9.000	-9.000	-9.0000	-9.000
31002.0	HIGHWAY 1 BRIDGE- REF	254	10/23/92	6.0	7.50	ns	NT	-9.000	0.259	-9.0000	-9.000
31003.0	ANDREWS POND- REF	258	11/8/92	7.0	-9.00	-9	-9	-9.000	-9.000	-9.0000	-9.000
31002.0	HWY. I BRIDGE- REF	351	11/27/92	8.0	1.60	ns	NT	-9.000	0.091	-9.0000	-9.000
31003.0	ANDREW'S POND REF.	451	12/8/92	9.0	-9.00	-9	-9	-9.000	-9.000	-9.0000	-9.000
30001.0	SANTA CRUZ YACHT BASIN	501	12/21/92	10.0	2.00	÷	NT	-9.000	0.023	-9.0000	-9.000
30002.0	MONTEREY YACHT CLUB	502	12/21/92	10.0	3.60	ns	NT	-9.000	0.017	-9.0000	-9.000
30004.0	M.L. YACHT HARBOR	504	12/21/92	10.0	1.70	ns	NT	-9.000	0.018	-9.0000	-9.000
30005.0	M.L. SOUTH HARBOR	505	12/21/92	10.0	1.40	ns	NT	-9.000	0.009	-9.0000	-9.000
30006.0	PAJARO RIVER ESTUARY	506	12/21/92	10.0	0.90	*	Т	-9.000	0.024	-9.0000	-9.000
30007.0	SANDHOLDT BRIDGE	507	12/21/92	10.0	1.00	*	NT	-9.000	0.013	-9.0000	-9.000
30011.0	SALINAS RIVER LAGOON	511	12/21/92	10.0	-9.00	-9	-9	-9.000	0.018	-9.0000	-9.000
30012.0	MONTEREY BOATYARD	512	12/21/92	10.0	2.90	ns	NT	-9.000	-9.000	-9.0000	-9.000
30013.0	MONTEREY STORMDRAIN NO.2	513	12/21/92	10.0	2.90	ns	NT	-9.000	0.022	-9.0000	-9.000
30014.0	MONTEREY STORMDRAIN NO. 3	514	12/21/92	10.0	2.80	ns	NT	-9.000	0.028	-9.0000	-9.000
30019.0	MORO COJO SLOUGH	519	12/22/92	10.0	1.30	*	Т	-9.000	0.159	-9.0000	-9.000
30022.0	SOQUEL LAGOON	522	12/21/92	10.0	-9.00	-9	-9	-9.000	-9.000	-9.0000	-9.000
· 30023.0	BENNETT SL./ESTUARY	523	12/22/92	10.0	0.50	*	NT	-9.000	0.054	-9.0000	-9.000
30026.0	SCOTT CREEK #26B	526	12/18/92	10.0	-9.00	-9	-9	-9.000	-9.000	-9.0000	-9.000
30027.0	MONTEREY BAY REF. SOUTH	527	12/21/92	10.0	2.60	ns	NT	-9.000	0.033	-9.0000	-9.000
30028.0	ELKHORN SL. PORTRERO REF.	528	12/18/92	10.0	0.70	*	NT	-9.000	0.013	-9.0000	-9.000
31002.0	HWY 1 BRIDGE REF.	675	1/14/93	11.0	-9.00	-9	-9	-9.000	-9.000	-9.0000	-9.000
30003.0	SANTA BARBARA HARBOR	503	2/10/93	13.0	-9.00	-9	-9	-9.000	-9.000	-9.0000	-9.000
30008.0	SAN LUIS HARBOR TRANS	508	2/9/93	13.0	-9.00	-9	-9	-9.000	-9.000	-9.0000	-9.000

Page 4 of 9

٠

6

.

1

30000 COLETA SL. 599 2/1093 13.0 9.00 9 9 9.000	STANUM	STATION	IDORG	DATE	LEG	NAWT_SD	NAWT_SG	NAWT_TOX	NA_OTNH3	NA_OUNH3	NA_OH2S	NA_ITNH3
30020.0 SANTA MARIA RIVER ESTUARY 520 2993 13.0 -9.00 -9 -9 -9.000 -9.	30009.0	GOLETA SL.	509	2/10/93	13.0	-9.00	-9	-9	-9.000	-9.000	-9.0000	-9.000
30021.0 SANTA YNEZ RIVER ESTUARY 521 2/11/93 13.0 -9.00 -9 -9 -9.000 -	30010.0	CARPINTERIA MARSH-1	510	2/10/93	13.0	-9.00	-9	9	-9.000	-9.000	-9.0000	-9.000
30024.0 MORRO BAY 524 2993 13.0 9.00 9 9 9.000<	30020.0	SANTA MARIA RIVER ESTUARY	520	2/9/93	13.0	-9.00	-9	-9	-9.000	-9.000	-9.0000	-9.000
30025.0 MORRO BAY-SOUTH BAY 525 29/93 13.0 9.00 9 9 9.000	30021.0	SANTA YNEZ RIVER ESTUARY	521	2/11/93	13.0	-9.00	-9	-9	-9.000	-9.000	-9.0000	-9.000
30029.0 MORRO BAY-MID BAY 530 29/93 13.0 9.00 9 9.000	30024.0	MORRO BAY	524	2/9/93	13.0	-9.00	-9	-9	-9.000	-9.000	-9.0000	-9.000
30030.0 CANADA DE LA GAVIOTA (26d) 531 2/11/93 13.0 9.00 -9 -9 9.000 9.001	30025.0	MORRO BAY-SOUTH BAY	525	2/9/93	13.0	-9.00	-9	-9	-9.000	-9.000	-9.0000	-9.000
30031.0 CARPINTERIA MARSH-2 532 2/10/93 13.0 -9.00 -9 -9 9.000 -9.000	30029.0	MORRO BAY-MID BAY	530	2/9/93	13.0	-9.00	-9	-9	-9.000	-9.000	-9.0000	-9.000
30032.0 CARPINETRIA MARSH-3 53 2/10/93 13.0 9.00 -9 9 9.000 9.001	30030.0	CANADA DE LA GAVIOTA (26d)	531	2/11/93	13.0	-9.00	-9	-9	-9.000	-9.000	-9.0000	-9.000
30033.0 MORRO BAY-FUEL DOCK 534 2/9/3 13.0 9.00 -9 9 9.000	30031.0	CARPINTERIA MARSH-2	532	2/10/93	13.0	-9.00	-9	-9	-9.000	-9.000	-9.0000	-9.000
31002.0 HIGHWAY I BRIDGE REF 352 2/23/3 14.0 -9.00 -9 9 9.000 -9.000	30032.0	CARPINETRIA MARSH-3	533	2/10/93	13.0	-9.00	-9	-9	-9.000	-9.000	-9.0000	-9.000
CONTROL-CH2 32.0 9.00 -9 -9 9.000 -9.000	30033.0	MORRO BAY-FUEL DOCK	534	2/9/93	13.0	-9.00	-9	-9	-9.000	-9.000	-9.0000	-9.000
CONTROL-CH3 32.0 -9.00 -9 -9 -9.000	31002.0	HIGHWAY 1 BRIDGE REF	352	2/23/93	14.0	-9.00	-9	-9	-9.000	-9.000	-9.0000	-9.000
CONTROL-CH1 32.0 3.94 -9 -9 9.500 0.189 -8.0000 -9.000 30027.0 MONTEREY BAY REF. SOUTH 1323 5/16/94 32.0 1.73 ns NT 10.000 0.459 0.0071 8.100 30013.0 MONTEREY STORMDRAIN NO.2 1324 5/16/94 32.0 2.99 • NT 7.900 0.197 0.0024 14.000 30028.0 ELKHORN SL. PORTRERO REF. 1325 5/17/94 32.0 2.68 • NT 9.300 0.227 0.0035 57.000 31002.0 HIGHWAY 1 BRIDGE REF 1327 5/17/94 32.0 1.92 ns NT 9.300 0.227 0.0034 23.000 30008.0 SAN LUIS HARBOR TRANS 1328 5/20/94 32.0 2.70 ns NT 11.000 0.439 0.0012 2.500 30032.0 CARPINETRIA MARSH-3 1330 5/20/94 32.0 2.33 • NT 10.000 0.218 0.00029 <td></td> <td>CONTROL-CH2</td> <td></td> <td></td> <td>32.0</td> <td>-9.00</td> <td>-9</td> <td>-9</td> <td>-9.000</td> <td>-9.000</td> <td>-9.0000</td> <td>-9.000</td>		CONTROL-CH2			32.0	-9.00	-9	-9	-9.000	-9.000	-9.0000	-9.000
30027.0 MONTEREY BAY REF. SOUTH 1323 5/16/94 32.0 1.73 ns NT 10.000 0.459 0.0071 8.100 30013.0 MONTEREY STORMDRAIN NO.2 1324 5/16/94 32.0 2.99 • NT 7.900 0.197 0.0024 14.000 30028.0 ELKHORN SL. PORTRERO REF. 1325 5/17/94 32.0 2.68 • NT 9.300 0.227 0.0035 57.000 30019.0 MORO COJO SLOUGH 1326 5/17/94 32.0 2.68 • NT 9.300 0.227 0.0035 57.000 31002.0 HIGHWAY 1 BRIDGE REF 1327 5/17/94 32.0 2.70 ns NT 9.300 0.222 0.0034 23.000 30020.0 MORRO BAY-MID BAY 1328 5/20/94 32.0 2.70 ns NT 10.000 0.218 0.0029 8.700 30032.0 CARPINETRIA MARSH-3 1330 5/20/94 32.0 2.33 • NT 10.000 0.218 0.002 8.700 2.500 0.0012 2.500		CONTROL-CH3			32.0	-9.00	-9	-9	-9.000	-9.000	9.0000	-9.000
30013.0 MONTEREY STORMDRAIN NO.2 1324 5/16/94 32.0 2.99 * NT 7.900 0.197 0.0024 14.000 30013.0 ELKHORN SL. PORTRERO REF. 1325 5/17/94 32.0 3.65 ns NT 10.000 0.267 0.0066 7.000 30013.0 MORO COJO SLOUGH 1326 5/17/94 32.0 2.68 * NT 9.300 0.227 0.0035 57.000 31002.0 HIGHWAY 1 BRIDGE REF 1327 5/17/94 32.0 1.92 ns NT 9.300 0.222 0.0050 12.000 30008.0 SAN LUIS HARBOR TRANS 1328 5/20/94 32.0 2.70 ns NT 10.000 0.439 0.0024 23.000 30022.0 MORO BAY-MID BAY 1329 5/20/94 32.0 2.33 * NT 10.000 0.218 0.0029 8.700 30032.0 CARPINETRIA MARSH-3 1330 5/20/94 32.0 2.33 * NT 10.000 0.218 0.0024 8.700 30004.0 M.L. YACHT HA		CONTROL-CH1			32.0	3.94	-9	-9	9.500	0.189	-8.0000	-9.000
30028.0 ELKHORN SL. PORTRERO REF. 1325 5/17/94 32.0 3.65 ns NT 10.000 0.267 0.0066 7.000 30019.0 MORO COJO SLOUGH 1326 5/17/94 32.0 2.68 * NT 9.300 0.227 0.0035 57.000 31002.0 HIGHWAY 1 BRIDGE REF 1327 5/17/94 32.0 1.92 ns NT 9.300 0.222 0.0050 12.000 30008.0 SAN LUIS HARBOR TRANS 1328 5/20/94 32.0 2.70 ns NT 11.000 0.439 0.0034 23.000 30029.0 MCRO BAY-MID BAY 1329 5/20/94 32.0 2.70 ns NT 10.000 0.218 0.0029 8.700 30032.0 CARPINETRIA MARSH-3 1330 5/20/94 32.0 2.33 * NT 10.000 0.218 0.0029 8.700 CONTROL-CH1	30027.0	MONTEREY BAY REF. SOUTH	1323	5/16/94	32.0	1.73	ns	NT	10.000	0.459	0.0071	8.100
30019.0 MORO COJO SLOUGH 1326 5/17/94 32.0 2.68 * NT 9.300 0.227 0.0035 57.000 31002.0 HIGHWAY 1 BRIDGE REF 1327 5/17/94 32.0 1.92 ns NT 9.300 0.222 0.0035 12.000 30008.0 SAN LUIS HARBOR TRANS 1328 5/20/94 32.0 2.70 ns NT 11.000 0.439 0.0034 23.000 3002.0 MORRO BAY-MID BAY 1329 5/20/94 32.0 2.70 ns NT 10.000 0.218 0.0029 8.700 30032.0 CARPINETRIA MARSH-3 1330 5/20/94 32.0 2.33 * NT 10.000 0.218 0.0029 8.700 30032.0 CARPINETRIA MARSH-3 1330 5/20/94 32.0 2.33 * NT 10.000 0.218 0.0029 8.700 3004.0 M.L YACHT HARBOR REP1 1362 6/15/94 33.0 1.27 * NT 6.100 0.264 0.0063 9.900 30004.0 M.L YACHT HARBOR REP3 <td>30013.0</td> <td>MONTEREY STORMDRAIN NO.2</td> <td>1324</td> <td>5/16/94</td> <td>32.0</td> <td>2.99</td> <td>*</td> <td>NT</td> <td>7.900</td> <td>0.197</td> <td>0.0024</td> <td>14.000</td>	30013.0	MONTEREY STORMDRAIN NO.2	1324	5/16/94	32.0	2.99	*	NT	7.900	0.197	0.0024	14.000
31002.0 HIGHWAY 1 BRIDGE REF 1327 5/17/94 32.0 1.92 ns NT 9,300 0.222 0.0050 12.00 3008.0 SAN LUIS HARBOR TRANS 1328 5/20/94 32.0 2.70 ns NT 11.000 0.439 0.0034 23.00 3002.0 MORRO BAY-MID BAY 1329 5/20/94 32.0 2.70 ns NT 10.000 0.209 0.0012 2.500 30032.0 CARPINETRIA MARSH-3 1330 5/20/94 32.0 2.33 * NT 10.000 0.218 0.0029 8.700 30032.0 CARPINETRIA MARSH-3 1330 5/20/94 32.0 2.33 * NT 10.000 0.218 0.0029 8.700 30032.0 CARPINETRIA MARSH-3 1360 5/20/94 32.0 2.24 * NT 6.100 0.264 0.0066 -9.000 30004.0 M.L. YACHT HARBOR REP1 1362 6/15/94 33.0 1.27 * NT 6.600 0.230 0.0043 -9.000 30007.0 SANDHOLDT BRIDGE REP1	30028.0	ELKHORN SL. PORTRERO REF.	1325	5/17/94	32.0	3.65	ns	NT	10.000	0.267	0.0066	7.000
3008.0 SAN LUIS HARBOR TRANS 1328 5/20/94 32.0 2.70 ns NT 11.000 0.439 0.0034 23.00 30029.0 MORRO BAY-MID BAY 1329 5/20/94 32.0 2.70 ns NT 10.000 0.209 0.0012 2.500 3002.0 CARPINETRIA MARSH-3 1330 5/20/94 32.0 2.33 * NT 10.000 0.218 0.0029 8.700 3003.0 CARPINETRIA MARSH-3 1330 5/20/94 32.0 2.33 * NT 10.000 0.218 0.0029 8.700 3003.0 CARPINETRIA MARSH-3 1360 5/20/94 32.0 2.33 * NT 10.000 0.218 0.0029 8.700 3004.0 M.L YACHT HARBOR REP1 1362 6/15/94 33.0 2.24 * NT 6.100 0.264 0.0005 -9.000 30004.0 M.L YACHT HARBOR REP2 1363 6/15/94 33.0 1.27 * NT 6.600 0.230 0.0043 -9.000 30007.0 SANDHOLDT BRIDGE REP1 <td>30019.0</td> <td>MORO COJO SLOUGH</td> <td>1326</td> <td>5/17/94</td> <td>32.0</td> <td>2.68</td> <td>*</td> <td>NT</td> <td>9.300</td> <td>0.227</td> <td>0.0035</td> <td>57.000</td>	30019.0	MORO COJO SLOUGH	1326	5/17/94	32.0	2.68	*	NT	9.300	0.227	0.0035	57.000
30029.0 MORRO BAY-MID BAY 1329 5/20/94 32.0 2.70 ns NT 10.000 0.209 0.0012 2.500 30032.0 CARPINETRIA MARSH-3 1330 5/20/94 32.0 2.33 * NT 10.000 0.218 0.0029 8.700 30032.0 CARPINETRIA MARSH-3 1330 5/20/94 32.0 2.33 * NT 10.000 0.218 0.0029 8.700 CONTROL-CH1	31002.0	HIGHWAY 1 BRIDGE REF	1327	5/17/94	32.0	1.92	ns	NT	9.300	0.222	0.0050	12.000
30032.0 CARPINETRIA MARSH-3 1330 5/20/94 32.0 2.33 * NT 10.000 0.218 0.0029 8.700 30032.0 CONTROL-CH1 33.0 1.97 -9 -9 3.400 0.106 -8.0000 -9.000 30004.0 M.L. YACHT HARBOR REP1 1362 6/15/94 33.0 2.24 * NT 6.100 0.264 0.0006 -9.000 30004.0 M.L. YACHT HARBOR REP2 1363 6/15/94 33.0 1.51 ns NT 7.700 0.401 0.0035 -9.000 30004.0 M.L. YACHT HARBOR REP2 1363 6/15/94 33.0 1.27 * NT 6.600 0.230 0.0043 -9.000 30007.0 SANDHOLDT BRIDGE REP1 1365 6/15/94 33.0 1.27 * NT 5.500 0.195 0.0039 -9.000 30007.0 SANDHOLDT BRIDGE REP1 1365 6/15/94 33.0 0.77 * NT 5.800 0.282 0.0021 -9.000 30007.0 SANDHOLDT BRIDGE REP3 1367 6/1	30008.0	SAN LUIS HARBOR TRANS	1328	5/20/94	32.0	2.70	ns	NT	11.000	0.439	0.0034	23.000
CONTROL-CH1 33.0 1.97 -9 -9 3.400 0.106 -8.000 -9.000 30004.0 M.L. YACHT HARBOR REP1 1362 6/15/94 33.0 2.24 * NT 6.100 0.264 0.0066 -9.000 30004.0 M.L. YACHT HARBOR REP2 1363 6/15/94 33.0 1.51 ns NT 6.100 0.264 0.0066 -9.000 30004.0 M.L. YACHT HARBOR REP2 1363 6/15/94 33.0 1.51 ns NT 7.700 0.401 0.0035 -9.000 30004.0 M.L. YACHT HARBOR REP3 1364 6/15/94 33.0 1.27 * NT 6.600 0.230 0.0043 -9.000 30007.0 SANDHOLDT BRIDGE REP1 1365 6/15/94 33.0 1.27 * NT 5.500 0.195 0.0039 -9.000 30007.0 SANDHOLDT BRIDGE REP1 1366 6/15/94 33.0 0.77 * NT 5.800 0.282 0.0021 -9.000 30023.0 BENNETT SL/ESTUARY REP1 1368 6/16/94 <t< td=""><td>30029.0</td><td>MORRO BAY-MID BAY</td><td>1329</td><td>5/20/94</td><td>32.0</td><td>2.70</td><td>ns</td><td>NT</td><td>10.000</td><td>0.209</td><td>0.0012</td><td>2.500</td></t<>	30029.0	MORRO BAY-MID BAY	1329	5/20/94	32.0	2.70	ns	NT	10.000	0.209	0.0012	2.500
30004.0 M.L. YACHT HARBOR REP1 1362 6/15/94 33.0 2.24 * NT 6.100 0.264 0.0006 -9.000 30004.0 M.L. YACHT HARBOR REP2 1363 6/15/94 33.0 1.51 ns NT 7.700 0.401 0.0035 -9.000 30004.0 M.L. YACHT HARBOR REP2 1363 6/15/94 33.0 1.51 ns NT 7.700 0.401 0.0035 -9.000 30004.0 M.L. YACHT HARBOR REP3 1364 6/15/94 33.0 1.27 * NT 6.600 0.230 0.0043 -9.000 30007.0 SANDHOLDT BRIDGE REP1 1365 6/15/94 33.0 1.27 * NT 5.500 0.195 0.0039 -9.000 30007.0 SANDHOLDT BRIDGE REP2 1366 6/15/94 33.0 0.77 * NT 5.800 0.282 0.0029 -9.000 30007.0 SANDHOLDT BRIDGE REP3 1367 6/15/94 33.0 1.47 * NT 11.000 0.420 0.0021 -9.000 30023.0 BENN	30032.0	CARPINETRIA MARSH-3	1330	5/20/94	32.0	2.33	*	NT	10.000	0.218	0.0029	8.700
30004.0 M.L. YACHT HARBOR REP2 1363 6/15/94 33.0 1.51 ns NT 7.700 0.401 0.0035 -9.000 30004.0 M.L. YACHT HARBOR REP3 1364 6/15/94 33.0 1.27 * NT 6.600 0.230 0.0043 -9.000 30007.0 SANDHOLDT BRIDGE REP1 1365 6/15/94 33.0 1.27 * NT 5.500 0.195 0.0039 -9.000 30007.0 SANDHOLDT BRIDGE REP1 1365 6/15/94 33.0 1.27 * NT 5.500 0.195 0.0039 -9.000 30007.0 SANDHOLDT BRIDGE REP2 1366 6/15/94 33.0 0.77 * NT 5.800 0.282 0.0029 -9.000 30007.0 SANDHOLDT BRIDGE REP3 1367 6/15/94 33.0 1.47 * NT 11.000 0.420 0.0021 -9.000 30023.0 BENNETT SL/ESTUARY REP1 1368 6/16/94 33.0 1.30 * NT 9.600 0.412 0.0091 -9.000 30023.0 BENNE		CONTROL-CH1			33.0	1.97	-9	-9	3.400	0.106	-8.0000	-9.000
30004.0 M.L. YACHT HARBOR REP3 1364 6/15/94 33.0 1.27 * NT 6.600 0.230 0.0043 -9.000 30007.0 SANDHOLDT BRIDGE REP1 1365 6/15/94 33.0 1.27 * NT 5.500 0.195 0.0039 -9.000 30007.0 SANDHOLDT BRIDGE REP1 1365 6/15/94 33.0 1.27 * NT 5.500 0.195 0.0039 -9.000 30007.0 SANDHOLDT BRIDGE REP2 1366 6/15/94 33.0 0.77 * NT 5.800 0.282 0.0029 -9.000 30007.0 SANDHOLDT BRIDGE REP3 1367 6/15/94 33.0 1.47 * NT 11.000 0.420 0.0021 -9.000 30023.0 BENNETT SL/ESTUARY REP1 1368 6/16/94 33.0 1.30 * NT 9.600 0.412 0.0091 -9.000 30023.0 BENNETT SL/ESTUARY REP2 1369 6/16/94 33.0 2.26 * NT 14.000 0.652 0.0045 -9.000	30004.0	M.L. YACHT HARBOR REPI	1362	6/15/94	33.0	2.24	*	NT	6.100	0.264	0.0006	-9.000
30007.0 SANDHOLDT BRIDGE REP1 1365 6/15/94 33.0 1.27 * NT 5.500 0.195 0.0039 -9.000 30007.0 SANDHOLDT BRIDGE REP2 1366 6/15/94 33.0 0.77 * NT 5.800 0.282 0.0029 -9.000 30007.0 SANDHOLDT BRIDGE REP2 1366 6/15/94 33.0 0.77 * NT 5.800 0.282 0.0029 -9.000 30007.0 SANDHOLDT BRIDGE REP3 1367 6/15/94 33.0 1.47 * NT 11.000 0.420 0.0021 -9.000 30023.0 BENNETT SL/ESTUARY REP1 1368 6/16/94 33.0 1.30 * NT 9.600 0.412 0.0091 -9.000 30023.0 BENNETT SL/ESTUARY REP2 1369 6/16/94 33.0 2.26 * NT 14.000 0.652 0.0045 -9.000	30004.0	M.L. YACHT HARBOR REP2	1363	6/15/94	33.0	1.51	ns	NT	7.700	0.401	0.0035	-9.000
30007.0 SANDHOLDT BRIDGE REP2 1366 6/15/94 33.0 0.77 * NT 5.800 0.282 0.0029 -9.000 30007.0 SANDHOLDT BRIDGE REP3 1367 6/15/94 33.0 1.47 * NT 11.000 0.420 0.0021 -9.000 30023.0 BENNETT SL/ESTUARY REP1 1368 6/16/94 33.0 1.30 * NT 9.600 0.412 0.0091 -9.000 30023.0 BENNETT SL/ESTUARY REP1 1369 6/16/94 33.0 2.26 * NT 14.000 0.652 0.0045 -9.000	30004.0	M.L. YACHT HARBOR REP3	1364	6/15/94	33.0	1.27	*	NT	6.600	0.230	0.0043	-9.000
30007.0 SANDHOLDT BRIDGE REP3 1367 6/15/94 33.0 1.47 * NT 11.000 0.420 0.0021 -9.000 30023.0 BENNETT SL/ESTUARY REP1 1368 6/16/94 33.0 1.30 * NT 9.600 0.412 0.0091 -9.000 30023.0 BENNETT SL/ESTUARY REP2 1369 6/16/94 33.0 2.26 * NT 14.000 0.652 0.0045 -9.000	30007.0	SANDHOLDT BRIDGE REPI	1365	6/15/94	33.0	1.27	*	NT	5.500	0.195	0.0039	-9.000
30023.0 BENNETT SL/ESTUARY REP1 1368 6/16/94 33.0 1.30 * NT 9,600 0.412 0.0091 -9,000 30023.0 BENNETT SL/ESTUARY REP2 1369 6/16/94 33.0 2.26 * NT 14.000 0.652 0.0045 -9,000	30007.0	SANDHOLDT BRIDGE REP2	1366	6/15/94	33.0	0.77	*	NT	5.800	0.282	0.0029	-9.000
30023.0 BENNETT SL/ESTUARY REP2 1369 6/16/94 33.0 2.26 * NT 14.000 0.652 0.0045 -9.000	30007.0	SANDHOLDT BRIDGE REP3	1367	6/15/94	33.0	1.47	*	NT	11.000	0.420	0.0021	-9.000
	30023.0	BENNETT SL./ESTUARY REPI	1368	6/16/94	33.0	1.30	*	NT	9.600	0.412	0.0091	-9.000
30023.0 BENNETT SL/ESTUARY REP3 1370 6/16/94 33.0 1.13 * NT 9.900 0.573 0.0150 -9.000	30023.0	BENNETT SL./ESTUARY REP2	1369	6/16/94	33.0	2.26	*	NT	14.000	0.652	0.0045	-9.000
	30023.0	BENNETT SL./ESTUARY REP3	1370	6/16/94	33.0	1.13	*	NT	9.900	0.573	0.0150	-9.000

STANUM	STATION	IDORG	DATE	LEG	NAWT_SD	NAWT_SG	NAWT_TOX	NA_OTNH3	NA_OUNH3_	NA_OH2S	NA_ITNH3
31001.0	EGRET LANDING REPI	1371	6/15/94	33.0	1.45	*	NT	7.000	0.380	0.0008	-9.000
31001.0	EGRET LANDING REP2	1372	6/15/94	33.0	1.61	•	NT	7.200	0.426	0.0044	-9.000
31001.0	EGRET LANDING REP3	1373	6/15/94	33.0	1.84	*	NT	8.700	0.493	0.0015	-9.000
31002.0	HIGHWAY 1 BRIDGE REP1	1374	6/15/94	33.0	2.21	*	NT	10.000	0.453	0.0028	-9.000
31002.0	HIGHWAY 1 BRIDGE REP2	1375	6/15/94	33.0	1.88	*	NT	8.800	0.414	0.0018	-9.000
31002.0	HIGHWAY 1 BRIDGE REP3	1376	6/15/94	33.0	0.91	*	NT	7.300	0.334	0.0084	-9.000
31003.0	ANDREWS POND REPI	1377	6/16/94	33.0	0.78	*	NT	11.000	0.455	0.0018	-9.000
31003.0	ANDREWS POND REP2	1378	6/16/94	33.0	1.22	+	NT	7.000	0.352	0.0031	-9.000
31003.0	ANDREWS POND REP3	1379	6/16/94	33.0	2.49	*	NT	6.900	0.306	0.0040	-9.000
	CONTROL-CH1			43.0	-9.00	-9	-9	-9.000	-9.000	-9.0000	-9.000
30001.0	SANTA CRUZ YACHT BASIN	1588	5/9/96	43.0	-9.00	-9	-9	-9.000	-9.000	-9.0000	-9.000
35003.0	MONTEREY BOATYARD-LEAD 1	1591	5/9/96	43.0	-9.00	-9	-9	-9.000	-9.000	-9.0000	-9.000
30002.0	MONTEREY YACHT CLUB	1596	5/9/96	43.0	-9.00	-9	-9	-9.000	-9.000	-9.0000	-9.000
30007.0	SANDHOLDT BRIDGE	1597	5/9/96	43.0	-9.00	-9	-9	-9.000	-9.000	-9.0000	-9.000
	CONTROL-C2			52.0	-9.00	-9	-9	-9.000	-9.000	-9.0000	-9.000
	CONTROL-C1			52.0	-9.00	-9	-9	-9.000	-9.000	-9.0000	-9.000
30007.0	SANDHOLDT BRIDGE	1762	5/8/97	52.0	-9.00	-9	-9	-9.000	-9.000	-9.0000	-9.000
36002.0	TEMBLADERO MOUTH	1763	5/8/97	52.0	-9.00	-9	-9	-9.000	-9.000	-9.0000	-9.000
36003.0	CENTRAL TEMBLADERO	1764	5/8/97	52.0	-9.00	-9	-9	-9.000	-9.000	-9.0000	-9.000
36004.0	UPPER TEMBLADERO- SALINAS CITY	1765	5/8/97	52.0	-9.00	-9	-9	-9.000	-9.000	· -9.0000	-9.000
36005.0	ESPINOSA SLOUGH	1766	5/8/97	52.0	-9.00	-9	-9	-9.000	-9.000	-9.0000	-9.000
36006.0	ALISAL SLOUGH	1767	5/8/97	52.0	-9.00	-9	-9	-9.000	-9.000	-9.0000	-9.000
36007.0	OLD SALINAS RIVER CHANNEL	1768	5/8/97	52.0	-9.00	-9	-9	-9.000	-9.000	-9.0000	-9.000

Ł

STANUM	STATION	IDORG	DATE	LEG	NA_IUNH3	NA_IH2S	NA_BATCH	NAQC
30034.1	MONTEREY BAY REFERENCE	100	8/5/92	1.0	-9.000	-9.0000	-9	-9
30034.2	MONTEREY BAY REFERENCE	101	8/5/92	1.0	-9.000	-9.0000	-9	-9
30034.3	MONTEREY BAY REFERENCE	102	8/5/92	1.0	-9.000	-9.0000	-9	-9
30035.1	ELKHORN SLOUGH-SEAL POINT	130	9/4/92	3.0	-9.000	-9.0000	-9	-9
30035.2	ELKHORN SLOUGH-SEAL POINT	131	9/4/92	3.0	-9.000	-9.0000	-9	-9
30035.3	ELKHORN SLOUGH-SEAL POINT	132	9/4/92	3.0	-9.000	-9.0000	÷9	-9
30036.1	ELKHORN SLOUGH-SEAL BEND	133	9/11/92	4.0	-9.000	-9.0000	-9	-9
30036.2	ELKHORN SLOUGH-SEAL BEND	134	9/11/92	4.0	-9.000	-9.0000	-9	-9
30036.3	ELKHORN SLOUGH-SEAL BEND	135	9/11/92	4.0	-9.000	-9.0000	-9	-9
31001.0	EGRET LANDING- REF	251	10/9/92	5.0	-9.000	-9.0000	-9	-9
31002.0	HIGHWAY 1 BRIDGE- REF	254	10/23/92	6.0	-9.000	-9.0000	-9	-9
31003.0	ANDREWS POND- REF	258	11/8/92	7.0	-9.000	-9.0000	! 9	-9
31002.0	HWY. 1 BRIDGE- REF	351	11/27/92	8.0	-9.000	-9.0000	-9	-9
31003.0	ANDREW'S POND REF.	451	12/8/92	9.0	-9.000	-9.0000	¥9	-9
30001.0	SANTA CRUZ YACHT BASIN	501	12/21/92	10.0	-9.000	-9.0000	-9	-9
30002.0	MONTEREY YACHT CLUB	502	12/21/92	10.0	-9.000	-9.0000	-9	-9
30004.0	M.L. YACHT HARBOR	504	12/21/92	10.0	-9.000	-9.0000	-9	-9
30005.0	M.L. SOUTH HARBOR	505	12/21/92	10.0	-9.000	-9.0000	-9	-9
30006.0	PAJARO RIVER ESTUARY	506	12/21/92	10.0	-9.000	-9.0000	-9	-9
30007.0	SANDHOLDT BRIDGE	507	12/21/92	10.0	-9.000	-9.0000	÷9	-9
30011.0	SALINAS RIVER LAGOON	511	12/21/92	10.0	-9.000	-9.0000	-9	-9
30012.0	MONTEREY BOATYARD	512	12/21/92	10.0	-9.000	-9.0000	-9	-9
30013.0	MONTEREY STORMDRAIN NO.2	513	12/21/92	10.0	-9.000	-9.0000	-9	-9
30014.0	MONTEREY STORMDRAIN NO. 3	514	12/21/92	10.0	-9.000	-9.0000	-9	-9
30019.0	MORO COJO SLOUGH	519	12/22/92	10.0	-9.000	-9.0000	-9	-9
30022.0	SOQUEL LAGOON	522	12/21/92	10.0	-9.000	-9.0000	-9	-9
30023.0	BENNETT SL./ESTUARY	523	12/22/92	10.0	-9.000	- 9.0000	-9	-9
30026.0	SCOTT CREEK #26B	526	12/18/92	10.0	-9.000	-9.0000	-9	-9
30027.0	MONTEREY BAY REF. SOUTH	527	12/21/92	10.0	-9.000	-9.0000	-9	-9
30028.0	ELKHORN SL. PORTRERO REF.	528	12/18/92	10.0	-9.000	-9.0000	<u>-9</u>	-9
31002.0	HWY 1 BRIDGE REF.	675	1/14/93	11.0	-9.000	-9.0000	÷9	-9
30003.0	SANTA BARBARA HARBOR	503	2/10/93	13.0	-9.000	-9.0000	-9	-9
30008.0	SAN LUIS HARBOR TRANS	508	2/9/93	13.0	-9.000	-9.0000	-9	-9

Page 7 of 9

STANUM	STATION	IDORG	DATE	LEĠ	NA_IUNH3	NA_IH2S	NA_BATCH	NAQC
30009.0	GOLETA SL.	509	2/10/93	13.0	-9.000	-9.0000	94	-9
30010.0	CARPINTERIA MARSH-1	510	2/10/93	13.0	-9.000	-9.0000	-9	-9
30020.0	SANTA MARIA RIVER ESTUARY	520	2/9/93	13.0	-9.000	-9.0000	<u>*9</u>	-9
30021.0	SANTA YNEZ RIVER ESTUARY	521	2/11/93	13.0	-9.000	-9.0000	<u>-9</u>	-9
30024.0	MORRO BAY	524	2/9/93	13.0	-9.000	-9.0000	-9	-9
30025.0	MORRO BAY-SOUTH BAY	525	2/9/93	13.0	-9.000	-9.0000	-9	-9
30029.0	MORRO BAY-MID BAY	530	2/9/93	13.0	-9.000	-9.0000	÷9	-9
30030.0	CANADA DE LA GAVIOTA (26d)	531	2/11/93	13.0	-9.000	-9.0000	<u>-9</u>	-9
30031.0	CARPINTERIA MARSH-2	532	2/10/93	13.0	-9.000	-9.0000	-9	-9
30032.0	CARPINETRIA MARSH-3	533	2/10/93	13.0	-9.000	-9.0000	-9	-9
30033.0	MORRO BAY-FUEL DOCK	534	2/9/93	13.0	-9.000	-9.0000	-9	-9
31002.0	HIGHWAY 1 BRIDGE REF	352	2/23/93	14.0	-9.000	-9.0000	-9	-9
	CONTROL-CH2			32.0	-9.000	-9.0000	-9	-9
	CONTROL-CH3			32.0	-9.000	-9.0000	-9	-9
	CONTROL-CH1			32.0	-9.000	-9.0000	<u>-9</u>	-9
30027.0	MONTEREY BAY REF. SOUTH	1323	5/16/94	32.0	0.148	0.0274	-9	-9
30013.0	MONTEREY STORMDRAIN NO.2	1324	5/16/94	32.0	0.261	0.0585	-9	-9
30028.0	ELKHORN SL. PORTRERO REF.	1325	5/17/94	32.0	0.058	0.0286	-9	-9
30019.0	MORO COJO SLOUGH	1326	5/17/94	32.0	0.690	0.1035	-9	-9
31002.0	HIGHWAY 1 BRIDGE REF	1327	5/17/94	32.0	0.448	0.0105	-9	-9
30008.0	SAN LUIS HARBOR TRANS	1328	5/20/94	32.0	0.320	0.0431	- 9	-9
30029.0	MORRO BAY-MID BAY	1329	5/20/94	32.0	0.065	0.0140	-9	-9
30032.0	CARPINETRIA MARSH-3	1330	5/20/94	32.0	0.065	0.0429	-9	-9
	CONTROL-CH1			33.0	-9.000	-9.0000	-9	-9
30004.0	M.L. YACHT HARBOR REPI	1362	6/15/94	33.0	-9.000	-9.0000	-9	-9
30004.0	M.L. YACHT HARBOR REP2	1363	6/15/94	33.0	-9.000	-9.0000	-9	-9
30004.0	M.L. YACHT HARBOR REP3	1364	6/15/94	33.0	-9.000	-9.0000	-9	-9
30007.0	SANDHOLDT BRIDGE REPI	1365	6/15/94	33.0	-9.000	-9.0000	-9	-9
30007.0	SANDHOLDT BRIDGE REP2	1366	6/15/94	33.0	-9.000	-9.0000	-9	-9
30007.0	SANDHOLDT BRIDGE REP3	1367	6/15/94	33.0	-9.000	-9.0000	. 9	-9
30023.0	BENNETT SL/ESTUARY REPI	1368	6/16/94	33.0	-9.000	-9.0000	-9	-9
30023.0	BENNETT SL./ESTUARY REP2	1369	6/16/94	33.0	-9.000	-9.0000	-9	-9
30023.0	BENNETT SL./ESTUARY REP3	1370	6/16/94	33.0	-9.000	-9.0000	-9	-9

Page 8 of 9

4

4

.

STANUM	STATION	IDORG	DATE	LEG	NA_IUNH3	NA_IH2S	NA_BATCH	NAQC
31001.0	EGRET LANDING REPI	1371	6/15/9 à	33.0	-9.000	-9.0000	-9	-9
31001.0	EGRET LANDING REP2	1372	6/15/94	33.0	-9.000	-9.0000	-9	-9
31001.0	EGRET LANDING REP3	1373	6/15/94	33.0	-9.000	-9.0000	-9	-9
31002.0	HIGHWAY 1 BRIDGE REP1	1374	6/15/94	33.0	-9.000	-9.0000	-9	-9
31002.0	HIGHWAY 1 BRIDGE REP2	1375	6/15/94	33.0	-9.000	-9.0000	-9	-9
31002.0	HIGHWAY 1 BRIDGE REP3	1376	6/15/94	33.0	-9.000	-9.0000	-9	-9
31003.0	ANDREWS POND REP1	1377	6/16/94	33.0	-9.000	-9.0000	-9	-9
31003.0	ANDREWS POND REP2	1378	6/16/94	33.0	-9.000	-9.0000	-9	-9
31003.0	ANDREWS POND REP3	1379	6/16/94	33.0	-9.000	-9.0000	-9	-9
	CONTROL-CH1	-		43.0	-9.000	-9.0000	-9	-9
30001.0	SANTA CRUZ YACHT BASIN	1588	5/9/96	43.0	-9.000	-9.0000	-9	-9
35003.0	MONTEREY BOATY ARD-LEAD 1	1591	5/9/96	43.0	-9.000	-9.0000	-9	-9
30002.0	MONTEREY YACHT CLUB	1596	5/9/96	43.0	-9.000	-9.0000	19	-9
30007.0	SANDHOLDT BRIDGE	1597	5/9/96	43.0	-9.000	-9.0000	49	-9
	CONTROL-C2			52.0	-9.000	-9.0000	-9	-9
	CONTROL-C1			52.0	-9.000	-9.0000	49	-9
30007.0	SANDHOLDT BRIDGE	1762	5/8/97	52.0	-9.000	-9.0000	9	-9
36002.0	TEMBLADERO MOUTH	1763	5/8/97	52.0	-9.000	-9.0000	-9	-9
36003.0	CENTRAL TEMBLADERO	1764	5/8/97	52.0	-9.000	-9.0000	-9	-9
36004.0	UPPER TEMBLADERO- SALINAS CITY	1765	5/8/97	52.0	-9.000	-9.0000	<u>+9</u>	-9
36005.0	ESPINOSA SLOUGH	1766	5/8/97	52.0	-9.000	-9.0000	-9	-9
36006.0	ALISAL SLOUGH	1767	5/8/97	52.0	-9.000	-9.0000	-19	-9
36007.0	OLD SALINAS RIVER CHANNEL	1768	5/8/97	52.0	-9.000	-9.0000	<u>-9</u>	-9

SECTION XI

ʻ.

Ceriodaphnia dubia Subsurface Water Survival

Ceriodaphnia dubia PERCENT SURVIVAL FOR SUBSURFACE WATER, AND WATER QUALITY (mg/L)

STANUM	STATION	IDORG	DATE	LEG	METADATA	CTRL	CDSS_MN	CDSS_SD	CDSS_SG	CDSS_TOX	CDSS_BATCH	CDSSQC
36003.0	CENTRAL TEMBLADERO	1764	5/8/97	52.0	toxdata7.wpd	Cl	40	40	*	Т	152tcd	-5
36004.0	UPPER TEMBLADERO - SALINAS CITY	1765	5/8/97	52.0	toxdata7.wpd	CI	4	9	, * *	Т	152tcd	÷5
36005.0	ESPINOSA SLOUGH	1766	5/8/97	52.0	toxdata7.wpd	CI	100	0	ns	NT	152tcd	-5
36006.0	ALISAL SLOUGH	1767	5/8/97	52.0	toxdata7.wpd	C 1	96	9	ns	NT	152tcd	-5
	CONTROL			52.0	toxdata7.wpd	CI	100	0	-9	-9	152tcd	-5
	CONTROL		•	52.0	toxdata7.wpd	Cl	96	9	-9	-9	152tcd	-5

Ceriodaphnia dubia PERCENT SURVIVAL FOR SUBSURFACE WATER, AND WATER QUALITY	(mg/L)	
---	--------	--

STANUM	STATION	IDORG	DATE	LEG	CDSS_OTNH3	CDSS_OUNH3	CDSS_OH2S	CDSS_OHDLO	CDSS_OHDHI	CDSS_OCYHI
36003.0	CENTRAL TEMBLADERO	1764	5/8/97	52.0	0.880	0.210	0.0025	330	-9	2950
36004.0	UPPER TEMBLADERO - SALINAS CITY	1765	5/8/97	52.0	0.830	0.117	0.0067	340	-9	2560
36005.0	ESPINOSA SLOUGH	1766	5/8/97	52.0	0.220	0.080	0.0015	279	-9	3270
36006.0	ALISAL SLOUGH	1767	5/8/97	52.0	0.220	0.058	0.0038	418	-9	4100
	CONTROL			52.0	0.320	0.026	0.0097	85	-9	4180
	CONTROL			52.0	0.260	0.050	0.0019	80	-9	427

4

.

SECTION XII

Hyalella azteca Solid Phase Survival

STANUM	STATION	IDORG	DATE	LEG	METADATA	CTRL	HA_MN	HA_SD	HA_SG	HA_TOX	HA_BATCH	HAQC	HA_OTNH3
36003.0	CENTRAL TEMBLADERO	1764	5/8/97	52.0	toxdata7.wpd	Cl	90	6	*	NT	152tha	-4	0.530
36004.0	UPPER TEMBLADERO - SALINAS CITY	1765	5/8/97	52.0	toxdata7.wpd	Cl	8	8	*	Т	152tha	-4	5.500
36005.0	ESPINOSA SLOUGH	1766	5/8/97	52.0	toxdata7.wpd	Cl	0	0	*	Т	152tha	-4	1.800
36006.0	ALISAL SLOUGH	1767	5/8/97	52.0	toxdata7.wpd	Cl	92	6	ns	NT	152tha	-4	1.800
	CONTROL			52.0	toxdata7.wpd	Cl	98	4	-9	-9	152tha	-4	0.230

Hyalella azteca PERCENT SURVIVAL FOR SOLID PHASE TEST AND WATER QUALITY (mg/L)

STANUM	STATION	IDORG	DATE	LEG	HA_OUNH3	HA_ITNH3	HA_IUNH3	HA_IH2S	HA_OHDLO	HA_OHDHI	НА_ОСҮНІ
36003.0	CENTRAL TEMBLADERO	1764	5/8/97	52.0	0.023	0.670	0.042	0.0446	-9	-9	1581
36004.0	UPPER TEMBLADERO - SALINAS CITY	1765	5/8/97	52.0	0.360	14.000	0.355	0.1608	-9	-9	1011
36005.0	ESPINOSA SLOUGH	1766	5/8/97	52.0	0.128	4.500	0.212	0.0305	-9	-9	1090
36006.0	ALISAL SLOUGH	1767	5/8/97	52.0	0.131	1.200	0.046	0.0191	-9	-9	1125
	CONTROL			52.0	0.022	-9.000	-9.000	-9.0000	-9	-9	1294

Hyalella azteca PERCENT SURVIVAL FOR SOLID PHASE TEST AND WATER QUALITY (mg/L)

Page 2 of 2

1

SECTION XIII

Holmesimysis costata Subsurface Water Survival

STANUM	STATION	IDORG	DATE	LEG	METADATA	CTRL	HC_MN	HC_SD	HC_SG	HC_TOX	HC_BATCH	HCQC
30007.0	SANDHOLDT BRIDGE	1762	5/8/97	52.0	toxdata7.wpd	Cl	100	0	ns	NT	152thc	-5
36002.0	TEMBLADERO MOUTH	1763	5/8/97	52.0	toxdata7.wpd	CI	100	0	ns	NT	152thc	-4
36007.0	OLD SALINAS RIVER CHANNEL	1768	5/8/97	52.0	toxdata7.wpd	CI	100	0	ns	NT	152thc	-4
	CONTROL			52.0	toxdata7.wpd	CI	100	0	-9	-9	152thc	-4
	CONTROL			52.0	toxdata7.wpd	ci	100	0	-9	-9	152thc	-4

Holmesimysis costata PERCENT SURVIVAL FOR SUBSURFACE WATER, AND WATER QUALITY (mg/L)

STANUM	STATION	IDORG	DATE	LEG	HC_OTNH3	HC_OUNH3	HC_OH2S
30007.0	SANDHOLDT BRIDGE	İ762	5/8/97	52.0	0.500	0.013	-8.0000
36002.0	TEMBLADERO MOUTH	1763	5/8/97	52.0	0.320	0.013	0.0023
36007.0	OLD SALINAS RIVER CHANNEL	1768	5/8/97	52.0	0.280	0.012	0.0056
	CONTROL			52.0	0.190	0.004	-9.0000
	CONTROL			52.0	0.190	0.004	-9.0000

Holmesimysis costata PERCENT SURVIVAL FOR SUBSURFACE WATER, AND WATER QUALITY (mg/L)

.

٠

.

-4

.

APPENDIX F

÷

Benthic Community Analysis Data

STANUM 35003	STATION MONTEREY BOATYARD-LEAD 1	IDORG 1591	DATE 05/09/96	LEG 43										
	Species	Taxa	# of Sp.		nber per o	core			Sumn	nary Stat	tistics			
	· · · · · · · · · · · · · · · · · · ·			rep 1	rep 2	гер 3	mean	median	min	max	St. Dev.	S.E.	95%CL	sum
	Cancer gracilis	Decapoda		1	0	0	0.3	0.5	0	1	0.6	·0.3	1.3	1
	Opisthopus transversus	Decapoda		0	1	0	0.3	0.5	0	1	0.6	0.3	1.3	1
	Ampithoe valida	Gammaridea		0	1	0	0.3	0.5	0	1	0.6	0.3	1.3	1
	Synchelidium shoemakeri	Gammaridea		12	1	4	5.7	6.5	1	12	5.7	3.3	12.8	17
	Asteropella slatteryi	Ostracoda		3	2	1	2.0	2.0	1	3	1.0	0.6	2.3	6
	Bathyleberis sp.	Ostracoda		1	0	0	0.3	0.5	0	1	0.6	0.3	1.3	1
	Euphilomedes carcharodonta	Ostracoda		9	3	4	5.3	6.0	3	9	3.2	1.9	7.2	16
	Leptochelia dubia	Tanaidacea		5	0	0	i .7	2.5	0	5	2.9	1.7	6.5	5
	Macoma secta	Bivalvia		1	0	0	0.3	0.5	0	1	0.6	0.3	1.3	1
	Mysella sp.	Bivalvia		1	0	0	0.3	0.5	0	1	0.6	0.3	1.3	1
	Tellina modesta	Bivalvia		3	2	0	1.7	1.5	0	3	1.5	0.9	3.4	5
	Apoprionospio pygmaea	Polychaeta		63	28	9	33.3	36.0	9	63	27.4	15.8	61.6	100
	Armandia brevis	Polychaeta		6	0	2	2.7	3.0	0	6	3.1	1.8	6.9	8
	Carazziella califia	Polychaeta		5	0	0	1.7	2.5	0	5	2.9	1.7	6.5	5
	Chaetozone hedgpethi	Polychaeta		11	7	0	6.0	5.5	0	11	5.6	3.2	12.5	18
	Exogone lourei	Polychaeta		7	5	7	6.3	<u></u> 6.0	5	7	1.2	0.7	2.6	19
	Mediomastus californiensis	Polychaeta		4.	3	21	9.3	12.0	3	21	10.1	5.8	22.8	28
	Notomastus tenuis	Polychaeta		6	10	3	6.3	6.5	3	10	3.5	2.0	7.9	19
	Rhynchospio glutaea	Polychaeta		2	3	0	1.7	1.5	0	3	1.5	0.9	3.4	5
	Spiophanes duplex	Polychaeta		11	5	3	6.3	7.0	3	11	4.2	2.4	9.4	19
-	Capitella capitata	Polychaeta		0	5	2	2.3	2.5	0	5	2.5	1.5	5.7	7
	Micropodarke dubia	Polychaeta		0	0	1	0.3	0.5	0	1	0.6	0.3	1.3	i
	Nephtys caecoides	Polychaeta		0	1	0	0.3	0.5	0	1	0.6	0.3	1.3	1
	Prionospio lighti	Polychaeta		0	0	1	0.3	0.5	0	Ì	0.6	0.3	1.3	1
	Pseudopolydora paucibranchiata	Polychaeta		0	0	1	0.3	0.5	0	1	0.6	0.3	1.3	1
	Nemertea	Nemertea		1	1	0	0.7	0.5	0	i	0.6	0.3	1.3	2
	Oligochaeta	Oligochaeta		103	99	76	92.7	89.5	76	103	14.6	8.4	32.8	278
	Total Individuals			255	177	135	189.0	195.0	135	255	60.9	35.2	137.0	567
	Total Species		27	20	17	14	17.0	17.0	14	20	3.0	1.7	6.8	51
	Total Crust. Indiv.			31	8	9	16.0	19.5	8	31	13.0	7.5	29.3	48
	Total Crust. Sp.		8	6	5	3	4.7	4.5	3	6	1.5	0.9	3.4	14
	Gammarid Indiv.			12	2	4	6.0	7.0	2	12	5.3	3.1	11.9	18
	Gammarid Sp.		2	i	2	1	1.3	1.5	1	2	0.6	0.3	1.3	4
	Other Crustacean Indiv.			19	6	5	10.0	12.0	5	19	7.8	4.5	17.6	30
	Other Crustacean Sp.		6	5	3	2	3.3	3.5	2	5	1.5	0.9	3.4	10

.

Ð

Page 1 of 8

STANUM 35003	STATION MONTEREY BOATYARD-LEAD 1 (cont.)	IDORG 1591	DATE 05/09/96	LEG 43										
	Species	Taxa	# of Sp.	Nur	nber per o	core			Summ	nary Stat	istics			
				rep 1	rep 2	rep 3	mean	median	min	max	St. Dev.	S .E.	95%CL	sum
	Total Echinoderm Indiv.			0	0	0	0.0	0.0	0	0	0.0	0.0	0.0	0
	Total Echinoderm Sp.		0	0	0	0	0.0	0.0	0	0	0.0	0.0	0.0	0
	Total Mollusc Indiv.			5	2	0	2.3	2.5	0	5	2.5	1.5	5.7	7
	Total Mollusc Sp.		3	3	1	0	Ì.3	1.5	0	3	1.5	0.9	3.4	4
	Total Polychaete Indiv.			115	67	50	77.3	82.5	50	115	33.7	19.5	75.8	232
	Total Polychaete Sp.		14	9	9	10	9.3	9.5	9	10	0.6	0.3	1.3	28

STATION	IDORG	DATE	LEG										
MONTEREY BOATYARD-LEAD 2	1592	05/09/96	43										
Species	Taxa	# of Sp.	Nun	nber per o	ore			Sum	mary Stat	istics			
			rep 1	rep 2	rep 3	mean	median	min	max	St. Dev.	S.E.	95%CL	sum
Cumella sp.	Cumacea		. 1	0	0	0.3	0.5	0	1	0.6	0.3	1.3	1
Leucon sp.	Cumacea		0	0	1	0.3	0.5	0	1	0.6	0.3	1.3	i
Cancer sp.	Decapoda		0	1	0	0.3	0.5	0	1	0.6	0.3	1.3	1
Pinnixa sp.	Decapoda		1	0	0	0.3	0.5	0	1	0.6	0.3	1.3	1
Ampelisca cristata	Gammaridea		2	1	0	1.0	1.0	Ó	2	1.0	0.6	2.3	3
Atylus tridens	Gammaridea		0	1	0	0.3	0.5	0	1	0.6	0.3	1.3	1
Gammaropsis sp.	Gammaridea		0	2	0	0.7	1.0	0	2	1.2	0.7	2.6	2
Munnogonium tillerae	Isopoda		2	0	0	0.7	1.0	0	2	1.2	0.7	2.6	2
Asteropella slatteryi	Ostracoda		0	1	0	0.3	0.5	0	1	0.6	0.3	1.3	1
Bathyleberis sp.	Ostracoda		13	28	60	33.7	36.5	13	60	24.0	13.9	54.0	101
Euphilomedes carcharodonta	Ostracoda		0	0	1	0.3	0.5	0	1	0.6	0.3	1.3	1
Mysella sp.	Bivalvia		0	1	Ģ	0.3	0.5	0	İ	0.6	0.3	1.3	1
Tellina modesta	Bivalvia		1	1	1	1.0	1.0	1	1	0.0	0.0	0.0	3
Mangelia sp.	Gastropoda		1	0	0	0.3	0.5	0	1	0.6	0.3	1.3	1
Aphelochaeta monilaris	Polychaeta		1	2	. 0	1.0	1.0	0	2	1.0	0.6	2.3	3
Apoprionospio pygmaea	Polychaeta		18	20	7	15.0	13.5	7	20	7.0	4.0	15.8	45
Armandia brevis	Polychaeta		7	28	3	12.7	15.5	3	28	13.4	7.8	30.2	38
Chaetozone hedgpethi	Polychaeta		4	3	2	3.0	3.0	2	4	1.0	0.6	2.3	9
Chaetozone lunula	Polychaeta		2	2	4	2.7	3.0	2	4	1.2	0.7	2.6	8
Chone spp. juv.	Polychaeta		6	11	10	9.0	8.5	6	11	2.6	1.5	6.0	27
Cossura candida	Polychaeta		i	0	0	0.3	0.5	0	1	0.6	0.3	1.3	1
Eumida longicornata	Polychaeta		2	0	3	1.7	1.5	0	3	1.5	0.9	3.4	5
	MONTEREY BOATYARD-LEAD 2 Species Cumella sp. Leucon sp. Cancer sp. Pinnixa sp. Ampelisca cristata Atylus tridens Gammaropsis sp. Munnogonium tillerae Asteropella slatteryi Bathyleberis sp. Euphilomedes carcharodonta Mysella sp. Tellina modesta Mangelia sp. Aphelochaeta monilaris Apoprionospio pygmaea Armandia brevis Chaetozone hedgpethi Chone spp. juv. Cossura candida	MONTEREY BOATYARD-LEAD 21592SpeciesTaxaCumella sp.CumaceaLeucon sp.CumaceaCancer sp.DecapodaPinnixa sp.DecapodaAmpelisca cristataGammarideaAtylus tridensGammarideaGammaropsis sp.GammarideaMunnogonium tilleraeIsopodaAsteropella slatteryiOstracodaBathyleberis sp.OstracodaEuphilomedes carcharodontaOstracodaMysella sp.BivalviaTellina modestaBivalviaAphelochaeta monilarisPolychaetaApoprionospio pygmaeaPolychaetaArmandia brevisPolychaetaChaetozone hedgpethiPolychaetaChaetozone lunulaPolychaetaChaetozone lunulaPolychaetaChaetozone kognetaPolychaetaPolychaetaPolychaetaPolychaetaPolychaetaPolychaetaPolychaetaChaetozone kognethiPolychaetaPolychaetaPolychaetaPolychaetaPolychaetaPolychaetaPolychaetaPolychaetaPolychaetaPolychaetaPolychaetaPolychaetaPolychaetaPolychaetaPolychaetaPolychaetaPolychaetaPolychaetaPolychaetaPolychaetaPolychaetaPolychaetaPolychaetaPolychaetaPolychaetaPolychaetaPolychaetaPolychaetaPolychaetaPolychaetaPolychaeta	MONTEREY BOATYARD-LEAD 2159205/09/96SpeciesTaxa# of Sp.Cumella sp.CumaceaLeucon sp.CumaceaCancer sp.DecapodaPinnixa sp.DecapodaAmpelisca cristataGammarideaAtylus tridensGammarideaGammaropsis sp.GammarideaMunnogonium tilleraeIsopodaAsteropella slatteryiOstracodaBathyleberis sp.OstracodaEuphilomedes carcharodontaOstracodaMysella sp.BivalviaTellina modestaBivalviaAphelochaeta monilarisPolychaetaAportionospio pygmaeaPolychaetaArmandia brevisPolychaetaChaetozone lunulaPolychaetaChaetozone lunulaPolychaetaChaetozone lunulaPolychaetaChaetozone juv.PolychaetaChaetozone lunulaPolychaetaChaetozone lunulaPolychaetaChaetozone lunulaPolychaetaChaetozone lunulaPolychaetaChaetozone lunulaPolychaetaCossura candidaPolychaetaPolychaetaPolychaetaChaetozone lunulaPolychaetaChaetozone lunulaPolychaetaChaetozone lunulaPolychaetaChaetozone lunulaPolychaetaChaetozone lunulaPolychaetaChaetozone lunulaPolychaetaChaetozone lunulaPolychaetaCossura candidaPolychaetaCossura candidaPolychaetaCossura ca	MONTEREY BOATYARD-LEAD 2159205/09/9643SpeciesTaxa# of Sp.Nur rep 1Cumella sp.Cumacea1Leucon sp.Cumacea0Cancer sp.Decapoda0Pinnixa sp.Decapoda1Ampelisca cristataGammaridea2Atylus tridensGammaridea0Gammaropsis sp.Gammaridea0Munnogonium tilleraeIsopoda1Asteropella slatteryiOstracoda0Buhyleberis sp.Ostracoda1Mysella sp.Bivalvia1Tellina modestaBivalvia1Aphelochaeta monilarisPolychaeta1Apprionospio pygmaeaPolychaeta1Armandia brevisPolychaeta2Chaetozone lunulaPolychaeta4Choe spp. juv.Polychaeta6Cossura candidaPolychaeta1IPolychaeta1IPolychaeta1IPolychaeta1IPolychaeta1IPolychaeta1IPolychaeta1IPolychaeta1IPolychaeta1IPolychaeta1IPolychaeta1IPolychaeta1IPolychaeta1IPolychaeta1IPolychaeta1IPolychaeta1IPolychaeta1I	MONTEREY BOATYARD-LEAD 2159205/09/9643SpeciesTaxa# of Sp.Number per of rep 1rep 2Cumella sp.Cumacea00Leucon sp.Cumacea00Cancer sp.Decapoda01Pinnixa sp.Decapoda10Arpelisca cristataGammaridea21Atylus tridensGammaridea02Gamnaropsis sp.Gammaridea02Munnogonium tilleraeIsopoda01Bathyleberis sp.Ostracoda01Bathyleberis sp.Ostracoda01Tellina modestaBivalvia11Mangelia sp.Gastropoda10Apoprionospio pygmaeaPolychaeta728Chaetozone hedgpethiPolychaeta43Chaetozone hunulaPolychaeta43Chaetozone hunulaPolychaeta41Cossura candidaPolychaeta611Cossura candidaPolychaeta611	MONTEREY BOATYARD-LEAD 2 1592 05/09/96 43 Species Taxa # of Sp. Number per core Cumella sp. Cumacea 1 0 0 Leucon sp. Cumacea 0 0 1 Cancer sp. Decapoda 0 1 0 0 Pinnixa sp. Decapoda 1 0 0 1 0 Ampelisca cristata Gammaridea 0 1 0 0 1 0 Atylus tridens Gammaridea 0 1 0 0 1 0 Gammaropsis sp. Gammaridea 0 1 0 0 1 0 Munnogonium tillerae Isopoda 13 28 60 1 0 Bathyleberis sp. Ostracoda 0 1 0 1 0 Munnogonium tillerae Bivalvia 1 1 1 0 1 0 Mysella sp. Ostracoda	MONTEREY BOATYARD-LEAD 2 1592 05/09/96 43 Species Taxa # of Sp. Number per core Cumella sp. Cumacea 1 0 0 0.3 Leucon sp. Cumacea 0 0 1 0.3 Carcer sp. Decapoda 0 1 0 0.3 Pinnixa sp. Decapoda 0 1 0 0.3 Ampelisca cristata Garnmaridea 2 1 0 0.3 Ampelisca cristata Garnmaridea 0 1 0 0.3 Garnmaridea 0 2 0 0.7 0.3 Munnogonium tillerae Isopoda 1 0 0.3 3.7 Munhogonium tillerae Ostracoda 0 1 0 0.3 Bathyleberis sp. Ostracoda 0 1 0 0.3 Buylelbags Bivalvia 0 1 0 0.3 Tellina modesta Bivalvia 1<	MONTEREY BOATYARD-LEAD 2 1592 05/09/96 43 Species Taxa # of Sp. Number per core Cumella sp. Cumacea 1 0 0 0.3 0.5 Leucon sp. Cumacea 0 0 1 0.3 0.5 Carcer sp. Decapoda 0 1 0.3 0.5 Ampelisca cristata Gammaridea 2 1 0 0.3 0.5 Anylus tridens Gammaridea 0 1 0 0.3 0.5 Gammaropsis sp. Gammaridea 0 1 0 0.3 0.5 Gammaropsis sp. Gammaridea 0 1 0 0.3 0.5 Bathyleberis sp. Ostracoda 0 1 0 0.3 0.5 Bathyleberis sp. Ostracoda 0 1 0 0.3 0.5 Bathyleberis sp. Ostracoda 13 28 60 33.7 36.5 Magelia sp. </td <td>MONTEREY BOATYARD-LEAD 2 1592 05/09/96 43 Species Taxa # of Sp. Number per core Sum Cumalla sp. Cumacea 1 0 0 0.3 0.5 0 Leucon sp. Cumacea 0 0 1 0.3 0.5 0 Carneer sp. Decapoda 0 1 0 0.3 0.5 0 Ampelisca cristata Gammaridea 0 1 0 0.3 0.5 0 Atylus tridens Gammaridea 0 1 0 0.3 0.5 0 Munnogonium tillerae Gammaridea 0 1 0 0.3 0.5 0 Asteropella slatteryi Ostracoda 0 1 0 0.3 0.5 0 Bathyleberis sp. Ostracoda 0 1 0 0.3 0.5 0 Munnogonium tillerae Bivalvia 0 1 0 0.3 0.5 0</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>MONTEREY BOATYARD-LEAD 2 1592 05/09/6 43 Species Taxa # of Sp. Number per core Summary statistics Cumala sp. Cumacea 1 0 0 0.3 0.5 0 1 0.6 Leucon sp. Cumacea 0 0 1 0.3 0.5 0 1 0.6 Cancer sp. Decapoda 0 1 0 0.3 0.5 0 1 0.6 Ampelisca cristata Gammaridea 0 1 0 0.3 0.5 0 1 0.6 Garmaridea 0 1 0 0.3 0.5 0 1 0.6 Garmaridea 0 1 0 0.3 0.5 0 1 0.6 Garmaridea 0 2 0 0.7 1.0 0 2 1.2 Munogonium tillerae Isopoda 2 0 0.7 1.0 0 2 1.2<td>MONTEREY BOATYARD-LEAD 2 1592 05/09/96 43 Species Taxa # of Sp. Number per core Summary Statistic Cumella sp. Cumacea 1 0 0 3 0.5 0 1 0.6 0.3 Leucon sp. Cumacea 0 0 1 0.3 0.5 0 1 0.6 0.3 Cancer sp. Decapoda 0 1 0 0.3 0.5 0 1 0.6 0.3 Ampelisca cristata Gammaridea 2 1 0 1.0 1.0 0 2 1.0 0.0 2 1.0 0.0 2 1.0 0.0 2 1.0 0.0 0.3 0.5 0 1.0 0.0 0.3 0.5 0 1.0 0.0 0.3 0.5 0 1.0 0.0 0.3 0.5 0 1.0 0.0 0.3 0.5 0 1.0 0.0 0.3 0.5 <t< td=""><td>MONTEREY BOATYARD-LEAD 2 1592 05/09/0 43 Species Taxa # of Sp. Number per core summation and the sp. State state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state stat</td></t<></td></td>	MONTEREY BOATYARD-LEAD 2 1592 05/09/96 43 Species Taxa # of Sp. Number per core Sum Cumalla sp. Cumacea 1 0 0 0.3 0.5 0 Leucon sp. Cumacea 0 0 1 0.3 0.5 0 Carneer sp. Decapoda 0 1 0 0.3 0.5 0 Ampelisca cristata Gammaridea 0 1 0 0.3 0.5 0 Atylus tridens Gammaridea 0 1 0 0.3 0.5 0 Munnogonium tillerae Gammaridea 0 1 0 0.3 0.5 0 Asteropella slatteryi Ostracoda 0 1 0 0.3 0.5 0 Bathyleberis sp. Ostracoda 0 1 0 0.3 0.5 0 Munnogonium tillerae Bivalvia 0 1 0 0.3 0.5 0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MONTEREY BOATYARD-LEAD 2 1592 05/09/6 43 Species Taxa # of Sp. Number per core Summary statistics Cumala sp. Cumacea 1 0 0 0.3 0.5 0 1 0.6 Leucon sp. Cumacea 0 0 1 0.3 0.5 0 1 0.6 Cancer sp. Decapoda 0 1 0 0.3 0.5 0 1 0.6 Ampelisca cristata Gammaridea 0 1 0 0.3 0.5 0 1 0.6 Garmaridea 0 1 0 0.3 0.5 0 1 0.6 Garmaridea 0 1 0 0.3 0.5 0 1 0.6 Garmaridea 0 2 0 0.7 1.0 0 2 1.2 Munogonium tillerae Isopoda 2 0 0.7 1.0 0 2 1.2 <td>MONTEREY BOATYARD-LEAD 2 1592 05/09/96 43 Species Taxa # of Sp. Number per core Summary Statistic Cumella sp. Cumacea 1 0 0 3 0.5 0 1 0.6 0.3 Leucon sp. Cumacea 0 0 1 0.3 0.5 0 1 0.6 0.3 Cancer sp. Decapoda 0 1 0 0.3 0.5 0 1 0.6 0.3 Ampelisca cristata Gammaridea 2 1 0 1.0 1.0 0 2 1.0 0.0 2 1.0 0.0 2 1.0 0.0 2 1.0 0.0 0.3 0.5 0 1.0 0.0 0.3 0.5 0 1.0 0.0 0.3 0.5 0 1.0 0.0 0.3 0.5 0 1.0 0.0 0.3 0.5 0 1.0 0.0 0.3 0.5 <t< td=""><td>MONTEREY BOATYARD-LEAD 2 1592 05/09/0 43 Species Taxa # of Sp. Number per core summation and the sp. State state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state stat</td></t<></td>	MONTEREY BOATYARD-LEAD 2 1592 05/09/96 43 Species Taxa # of Sp. Number per core Summary Statistic Cumella sp. Cumacea 1 0 0 3 0.5 0 1 0.6 0.3 Leucon sp. Cumacea 0 0 1 0.3 0.5 0 1 0.6 0.3 Cancer sp. Decapoda 0 1 0 0.3 0.5 0 1 0.6 0.3 Ampelisca cristata Gammaridea 2 1 0 1.0 1.0 0 2 1.0 0.0 2 1.0 0.0 2 1.0 0.0 2 1.0 0.0 0.3 0.5 0 1.0 0.0 0.3 0.5 0 1.0 0.0 0.3 0.5 0 1.0 0.0 0.3 0.5 0 1.0 0.0 0.3 0.5 0 1.0 0.0 0.3 0.5 <t< td=""><td>MONTEREY BOATYARD-LEAD 2 1592 05/09/0 43 Species Taxa # of Sp. Number per core summation and the sp. State state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state stat</td></t<>	MONTEREY BOATYARD-LEAD 2 1592 05/09/0 43 Species Taxa # of Sp. Number per core summation and the sp. State state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state stat

Page 2 of 8

.

•

.

.

STANUM 35004	STATION MONTEREY BOATYARD-LEAD 2 (cont.)	IDORG 1592	DATE 05/09/96	LEG 43		•								
33004	Species	Taxa	# of Sp.		mber per	COFA			Sum	nary Stat	istics			
	Species .	1 0 1 0	# or op.	rep 1	rep 2	rep 3	mean	median	min	max	St. Dev.	S.E.	95%CL	sum
	Exogone lourei	Polychaeta		1	4	0	1.7	2.0	0	4	2.1	1.2	4.7	- 5
	Glycera nana	Polychaeta		3	1	2	2.0	2.0	1	3	1.0	0.6	2.3	6
	Glycinde polygnatha	Polychaeta		1	0	1	0.7	0.5	0	1	0.6	0.3	1.3	2
	Mediomastus californiensis	Polychaeta		24	16	26	22.0	21.0	16	26	5.3	3.1	11.9	66
	Mediomastus sp(p)	Polychaeta		7	4	5	5.3	5.5	4	7	1.5	0.9	3.4	16
	Micropodarke dubia	Polychaeta		1	6	3	3.3	3.5	1	6	2.5	1.5	5.7	10
	Nephtys comuta	Polychaeta		7	11	22	13.3	14.5	7	22	7.8	4.5	17.5	40
	Notomastus tenuis	Polychaeta		3	0	0	1.0	1.5	0	3	1.7	1.0	. 3.9	3
	Phyllodoce hartmanae	Polychaeta		2	0	0	0.7	1.0	0	2	1.2	0.7	2.6	2
	Polycirrus californicus	Polychaeta		1	0	0	0.3	0.5	0	1	0.6	0.3	ī.3	1
	Prionospio lighti	Polychaeta		1	1	2	1.3	1.5	1	2	0.6	0.3	1.3	4
	Scoletoma zonata	Polychaeta		i	0	Q.	0.3	0.5	0	1	0.6	0.3	1.3	1
	Capitella capitata	Polychaeta		0	0	6	2.0	3.0	Ó	6	3.5	2.0	7.8	6
	Chone albocincta	Polychaeta		0	0	1	0.3	0.5	0	1	0.6	0.3	1.3	1
	Decamastus gracilis	Polychaeta		0	8	0	2.7	4.0	0	8	4.6	2.7	10.4	8
	Dorvillea longicornis	Polychaeta		0	2	6	2.7	3.0	0	6	3.1	1.8	6.9	8
	Glycera americana	Polychaeta		0	2	0	0.7	1.0	0	2	1.2	0.7	2.6	2
	Leitoscoloplos pugettensis	Polychaeta		. 0	2	2	1.3	1.0	0.	2	1.2	0.7	2.6	4
	Malmgreniella spp. indet.	Polychaeta		Ò	0	1	0.3	0.5	0	1	0.6	0.3	1.3	1
	Mediomastus ambiseta	Polychaeta		0	3	2	1.7	1.5	. 0	3	1.5	0.9	3.4	5
	Notomastus latericeus	Polychaeta		0	ĺ	0	0.3	0.5	0	1	0.6	0.3	i.3	1
	Platynereis bicanaliculata	Polychaeta		0	25	0	8.3	İ2.5	0	25	14.4	8.3	32.5	25
	Podarkeopsis glabrus	Polychaeta		0	Ì	0	0.3	0.5	Ó	1	0.6	0.3	1.3	1
	Prionospio multibranchiata	Polychaeta		Ó	2	0	0.7	1.0	0	2	1.2	0.7	2.6	2
	Scolelepis spp. indet.	Polychaeta		0	1	0	0.3	0.5	0	1	0.6	0.3	1.3	1
	Edwardsia sp.	Anthozoa		1	0	0	0.3	0.5	0	1	0.6	0.3	1.3	1
	Nemertea	Nemertea		5	3	3	3.7	4.0	3	5	1.2	0.7	2.6	11
	Oligochaeta	Oligochaeta		44	2	Ó	15.3	22.0	0	44	24.8	14.3	55.9	46
	Sipuncula	Sipunculida		1	0	0	0.3	0.5	0	1	0.6	0.3	1.3	1
	Total Individuals			165	197	174	178.7	181.0	165	197	16.5	9.5	37.1	536
	Total Species		51	31	33	24	29.3	28.5	24	33	4.7	2.7	10.6	88
	Total Crust. Indiv.			19	34	62	38.3	40.5	19	62	21.8	12.6	49.1	115
	Total Crust. Sp.		11	5	6	3	4.7	4.5	3	6	1.5	0.9	3.4	14
	Gammarid Indiv.			2	4	0	2.0	2.0	0	4	2.0	1.2	4.5	6
	Gammarid Sp.		3	í	3	0	1.3	1.5	0	3	1.5	0.9	3.4	4

ŧ,

Page 3 of 8

STANUM 35004	STATION MONTEREY BOATYARD-LEAD 2 (cont.)	IDORG 1592	DATE 05/09/96	LEG 43										
	Species	Taxa	# of Sp.	Nur	nber per e	core			Sumi	nary Stat	tistics			
				rep l	гер 2	rep 3	mean	median	min	max	St. Dev.	S.E.	95%CL	sum
	Other Crustacean Indiv.			17	30	62	36.3	39.5	17	62	23.2	13.4	52.1	109
	Other Crustacean Sp.		8	4	3	3	3.3	3.5	3	4	0.6	0.3	1.3	10
	Total Echinoderm Indiv.			0	0	0	0.0	0.0	0	0	0.0	0.0	0.0	0
	Total Echinoderm Sp.		0	0	0	0	0.0	0.0	0	0	0.0	0.0	0.0	0
	Total Mollusc Indiv.			2	2	1	1.7	1.5	1	2	0.6	0.3	1.3	5
	Total Mollusc Sp.		3	2	2	1	1.7	1.5	1	2	0.6	0.3	1.3	5
	Total Polychaete Indiv.			93	156	108	119.0	124.5	93	156	32.9	19.0	74.0	357
	Total Polychaete Sp.		33	20	23	19	20.7	21.0	19	23	2.1	1.2	4.7	62

.

STANUM	STATION	IDORG	DATE	LEG						•				
35005	MONTEREY BOATYARD-LEAD 3	1593	05/09/96	43										
	Species	Taxa	# of Sp.	Nur	nber per o	core				nary Staf	istics		,	
				rep l	rep 2	rep 3	mean	median	min	max	St. Dev.	S.E.	95%CL	sum
	Crangon sp.	Decapoda		0	i	0	0.3	0.5	0	1	0.6	0.3	1.3	1
	Pinnixa sp.	Decapoda		1	0	1	0.7	0.5	0	1	0.6	0.3	1.3	2
	Ampelisca cristata	Gammaridea		2	Ó	1	1.0	1.0	0	2	1.0	0.6	2.3	3
	Listriella sp.	Gammaridea		0	İ	0	0.3	0.5	0	1	0.6	0.3	1.3	1
	Munnogonium tillerae	Isopoda		1	0	0	0.3	0.5	0	1	0.6	0.3	1.3	1
	Asteropella slatteryi	Ostracoda		0	6	0	2.0	3.0	0	6	3.5	2.0	7.8	6
	Bathyleberis sp.	Ostracoda		6	0	0	2.0	3.0	0	6	3.5	2.0	7.8	6
	Amphiodia sp.	Ophiuroidea		1	ö	0	0.3	0.5	0	Ì	0.6	0.3	1.3	1
	Mysella sp.	Bivalvia		1	0	0	0.3	0.5	0	1	0.6	0.3	1.3	1
	Solen sicarius	Bivalvia		0	0	1	0.3	0.5	0	1	0.6	0.3	1.3	1
	Tellina modesta	Bivalvia		2	1	1	1.3	1.5	1	2	0.6	0.3	1.3	4
	Nassarius sp.	Gastropoda		1	0	0	0.3	0.5	0	1	0.6	0.3	1.3	1
	Aphelochaeta monilaris	Polychaeta		23	4	276	101.0	140.0	4	276	151.9	87.7	341.7	303
	Apoprionospio pygmaea	Polychaeta		6	0	0	2.0	3.0	0	6	3.5	2.0	7.8	6
	Aricidea catherinae	Polychaeta		1	0	0	0.3	0.5	0	1	0.6	0.3	1.3	1
	Caulleriella pacifica	Polychaeta		i	Ó	0	0.3	0.5	0	Ì	0.6	0.3	1.3	1
	Chaetozone lunula	Polychaeta		2	3	3	2.7	2.5	2	3	0.6	0.3	1.3	8
	Chone albocincta	Polychaeta		1	0	1	0.7	0.5	0	1	0.6	0.3	1.3	2
	Glycera americana	Polychaeta		1	<u>0</u>	0	0.3	0.5	0	1	0.6	0.3	1.3	1
	Mediomastus ambiseta	Polychaeta		3	0	2	1.7	1.5	0	3	1.5	0.9	3.4	5

Page 4 of 8

۹,

٠**h**

.

٠

35005 MONTEREY BOATYARD-LEAD 3 (cont.) 1593 05/09/96 43 Species Taxa # of Sp. Number per core Summer per core Summer statistics St. Dev. S.E. 95%CL Mediomastus californiensis Polychaeta 19 26 26 23.7 22.5 19 26 4.0 2.3 9.1 Mediomastus sof(p) Polychaeta 19 26 26 23.7 22.5 19 26 4.0 2.3 9.1 Mediomastus sof(p) Polychaeta 3 7 9 6.3 6.0 3 9 3.1 1.8 6.9 Monticellina cryptica Polychaeta 1 0 2 1.0 1.0 0 2 1.0 0.6 2.3 9.1 Nephtys comuta Polychaeta 10 10 4 8.0 7.0 4 10 3.5 2.0 7.8 Pholoe glabra Polychaeta 1 0 0 0.3 0.5 0 1 0.6 0.3 1.3	sum 71 19 3 24 1 2 2 2 7 3
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	71 19 3 24 1 2 2 2 7 3
Mediomastus californiensisPolychaeta19262623.722.519264.02.39.1Mediomastus sp(p)Polychaeta3796.36.0393.11.86.9Monticellina crypticaPolychaeta1021.01.0021.00.62.3Nephtys comutaPolychaeta101048.07.04103.52.07.8	71 19 3 24 1 2 2 2 7 3
Mediomastus sp(p)Polychaeta3796.36.0393.11.86.9Monticellina crypticaPolychaeta1021.01.0021.00.62.3Nephtys comutaPolychaeta101048.07.04103.52.07.8	19 3 24 1 2 2 2 7 3
Monticellina cryptica Polychaeta 1 0 2 1.0 1.0 2 1.0 0.6 2.3 Nephtys comuta Polychaeta 10 10 4 8.0 7.0 4 10 3.5 2.0 7.8	3 24 1 2 2 2 7 3
Nephtys cornuta Polychaeta 10 10 4 8.0 7.0 4 10 3.5 2.0 7.8	24 1 2 2 2 7 3
	1 2 2 7 3
Pholoe glabra Polychaeta 1 0 0.3 0.5 0 1 0.6 0.3 1.3	2 2 2 7 3
	2 2 7 3
Podarkeopsis glabrus Polychaeta 1 1 0 0.7 0.5 0 1 0.6 0.3 1.3	2 7 3 . *
Prionospio lighti Polychaeta 1 0 1 0.7 0.5 0 1 0.6 0.3 1.3	7 3 . [.]
Prionospio steenstrupi Polychaeta 1 0 1 0.7 0.5 0 1 0.6 0.3 1.3	3 . ·
Scoletoma tetraura Polychaeta 2 1 4 2.3 2.5 1 4 1.5 0.9 3.4	
Capitella capitata Polychaeta 0 3 0 1.0 1.5 0 3 1.7 1.0 3.9	
Chaetozone hedgpethi Polychaeta 0 9 1 3.3 4.5 0 9 4.9 2.8 11.1	10
Cossura rostrata Polychaeta 0 0 1 0.5 0 1 0.6 0.3 1.3	I
Dorvillea longicornis Polychaeta 0 1 0 0.3 0.5 0 1 0.6 0.3 1.3	1
Eteone leptotes Polychaeta 0 0 1 0.5 0 1 0.6 0.3 1.3	1
Euclymeninae sp. A Polychaeta 0 1 0 0.3 0.5 0 1 0.6 0.3 1.3	1
Giycera nana Polychaeta 0 0 0.0	0
Micropodarke dubia Polychaeta 0 1 0 0.3 0.5 0 1 0.6 0.3 1.3	1
Phyllodoce hartmanae Polychaeta 0 1 0.3 0.5 0 1 0.6 0.3 1.3	1
Spiophanes duplex Polychaeta 0 0 1 0.3 0.5 0 1 0.6 0.3 1.3	1
Sthenelais tertiaglabra Polychaeta 0 1 0 0.3 0.5 0 1 0.6 0.3 1.3	1
Nemertea Nemertea 0 2 3 1.7 1.5 0 3 1.5 0.9 3.4	5
Oligochaeta 11 3 5.7 7.0 3 11 4.6 2.7 10.4	17
Total Individuals 103 83 343 176.3 213.0 83 343 144.7 83.5 325.5	529
Total Species 42 26 20 21 22.3 23.0 20 26 3.2 1.9 7.2	67
Total Crust. Indiv. 10 8 2 6.7 6.0 2 10 4.2 2.4 9.4	20
Total Crust. Sp. 7 4 3 2 3.0 3.0 2 4 1.0 0.6 2.3	9
Gammarid Indiv. 2 1 1 1.3 1.5 1 2 0.6 0.3 1.3	4
Gammarid Sp. 2 1 1 1 1.0 1.0 1 1 0.0 0.0 0.0	3
Other Crustacean Indiv. 8 7 1 5.3 4.5 1 8 3.8 2.2 8.5	16
Other Crustacean Sp. 5 3 2 1 2.0 2.0 1 3 1.0 0.6 2.3	6
Total Echinoderm Indiv. 1 0 0.3 0.5 0 1 0.6 0.3 1.3	1
Total Echinoderm Sp. 1 1 0 0.3 0.5 0 1 0.6 0.3 1.3	1

_

0

Page 5 of 8

STANUM 350 <u>05</u>	STATION MONTEREY BOATYARD-LEAD 3 (cont.)	IDORG 1593	DATE 05/09/96	LEG 43										
	Species	Taxa	# of Sp.	Nur	nber per o	core			Sumn	nary Stat	istics			
				гер 1	rep 2	rep 3	mean	median	min	max	St. Dev.	S.E.	95%CL	sum
	Total Mollusc Indiv.			4	1	2	2.3	2.5	1	4	1.5	0.9	3.4	7
	Total Mollusc Sp.		4	3	1	2	2.0	2.0	1	3	1.0	0.6	2.3	6
	Total Polychaete Indiv.			77	69	333	159.7	201.0	69	333	150.2	86.7	337.9	479
	Total Polychaete Sp.		28	17	14	15	15.3	15.5	14	17	1.5	0.9	3.4	46

St. Dev.

0.6

0.6 1.7

0.6

0.6

5.2

2.3

0.6

0.6

1.0

1.2

2.1

0.6

0.6

1.5

0.6

0.6

2.1

1.2

0.6

0.6

3.5

2.5

٠

S.E.

0.3

0.3

1.0

0.3

0.3

3.0

1.3

0.3

0.3

0.6

0.7

1.2

0.3

0.3

0.9

0.3

0.3

1.2

0.7

0.3

0.3

2.0

1.5

95%CL sum

1.3

1.3 1

3.9 3

1.3 1

1.3 2

11.7 9

1.3

2.6 2

4.7

1.3 1

i.3

3.4

1.3

2.6 2

1.3 1

7.8 6

1.3 2

4.7 11

1.3 2

5.7 7

5.2 4 1.3

1

1 3 2.3

5

2

4

1

1

STANUM 35006	STATION MONTEREY BOATYARD-LEAD 4	IDORG 1594	DATE 05/09/96	LEG 43							
	Species	Taxa	# of Sp.	Nw	nber per o	ore			Summ	nary Stat	tistics
				rep 1	rep 2	rep 3	mean	median	min	max	St. De
	Cancer gracilis	Decapoda		1	0	0	0.3	0.5	0	1	(
	Pinnixa sp.	Decapoda		1	0	0	0.3	0.5	0	1	(
	Aoroides columbiae	Gammaridea		3	0	0	1.0	1.5	0	3	t
	Eobrolgus sp.	Gammaridea		0	0	1	0.3	0.5	0	1	(
	Listriella diffusa	Gammaridea		1	Ó	1	0.7	0.5	Ó	1	(
	Bathyleberis sp.	Ostracoda		9	0	0	3.0	4.5	0	9	1
	Leptochelia dubia	Tanaidacea		4	0	0	1.3	2.0	0	4	2
	Amphiodia sp.	Ophiuroidea		1	0	0	0.3	0.5	0	1	(
	Macoma secta	Bivalvia		1	0	0	0.3	0.5	0	1	(
	Mysella sp.	Bivalvia	*	. 2	1	0	1.0	1.0	0	2	
	Mytilus edulis	Bivalvia		2	0	0	0.7	1.0	0	2	:
	Tellina modesta	Bivalvia		4	0	1	1.7	2.0	0	4	2
	Balcis sp.	Gastropoda		1	0	0	0.3	0.5	0	1	(
	Aphelochaeta monilaris	Polychaeta		1	0	1	0.7	0.5	0	1	(
	Apoprionospio pygmaea	Polychaeta		3	1	0	1.3	Í.5	0	3	
							,				

Polychaeta

Polychaeta

Polychaeta

Polychaeta

Polychaeta

Polychaeta

Polychaeta

Polychaeta

Aricidea catherinae

Caulleriella pacifica

Chaetozone lunula

Chone spp. juv. Cirratulidae spp. indet.

Euclymene sp. A

Eumida longicornata

4

Eteone sp(p)

Page 6 of 8

ì

0

3

0

0

0

0

0

1

1

6

2

1

1

6

5

0

0

2

0

1

0

0

2

0.7

0.3

3.7

0.7

0.7

0.3

2.0

2.3

0.5 0

0.5 0

4.0 2

1.0 0

0.5 0

0.5 0

2.5 0

3.0

0

1

1

6

2

1

i

6

5

35006		IDORG	DATE	LEG										
=	MONTEREY BOATYARD-LEAD 4 (cont.)	1594	05/09/96	43					,			•		
	Species	Taxa	# of Sp.	_	nber per o			tistics	·					
	· · · · · · · · · · · · · · · · · · ·			rep 1	rep 2	rep 3		median	min	max	St. Dev.	S.E.	95%CL	sum
	Exogone dwisula	Polychaeta		1	0	0	0.3	0.5	0	1	0.6	0.3	1.3	1
	Glycera nana	Polychaeta		6	Ò	0	2.0	3.0	0	6	3,5	2.0	7.8	6
	Glycinde polygnatha	Polychaeta		1	0	0	0.3	0.5	0	. 1	0.6	0.3	1.3	1
	Glycinde spp. juv.	Polychaeta		1	0	0	0.3	0.5	0	1	0.6	0.3	1.3	1
	Harmothoinae, unident.	Polychaeta		1	0	0	0.3	0.5	0	1	0.6	. 0.3	1.3	1
	Mediomastus acutus	Polychaeta		2	0	0	0.7	1.0	0	2	1.2	0.7	2.6	2.
	Mediomastus ambiseta	Polychaeta		8	1	5	4.7	4.5	ĺ	8	3.5	2.0	7.9	14
	Mediomastus californiensis	Polychaeta		39	24	35	32.7	31.5	24	39	7.8	4.5	17.5	98
	Mediomastus sp(p)	Polychaeta		27	13	4	14.7	15.5	4	27	11.6	6.7	26.1	44
	Micropodarke dubia	Polychaeta		3	0	0	1.0	1.5	0	3	1.7	1.0	3.9	3
	Monticellina cryptica	Polychaeta		1	0	0	0.3	0.5	0	1	0.6	0.3	1.3	1
	Nephtys cornuta	Polychaeta		47	11	0	19.3	23.5	• 0	47	24.6	İ4.2	55.3	58
	Nereis latescens	Polychaeta		· 1	0	0	0.3	0.5	0	1 1	0.6	0.3	1.3	ì
	Nereis procera	Polychaeta		2	0	0	0.7	1.0	0	2	1.2	0.7	2.6	2
	Onuphidae spp. juv.	Polychaeta		1	0	0	0.3	0.5	0	1	0.6	0.3	1.3	1
	Parougia caeca	Polychaeta		1	0	0	0.3	0.5	0	1	0.6	0.3	1.3	1
	Platynereis bicanaliculata	Polychaeta		18	0	0	6.0	9.0	0	18	10.4	6.0	23.4	18
	Polydora socialis	Polychaeta		1	0	0	0.3	0.5	0	1	0.6	0.3	1.3	1
	Prionospio lighti	Polychaeta		4	4	2	3.3	3.0	2	4	1.2	0.7	2.6	10
	Scoletoma tetraura	Polychaeta		1	0	1	0.7	0.5	0	1	0.6	0.3	1.3	2
	Sphaerosyllis californiensis	Polychaeta		2	0	0	0.7	1.0	Ó	2	1.2	0.7	2.6	2
	Spiophanes berkeleyorum	Polychaeta		2	0	0	0.7	1.0	0	2	1.2	0.7	2.6	2
	Spiophanes duplex	Polychaeta		1	Ő	0	0.3	0.5	0	1	0.6	0.3	1.3	1
	Sternaspis fossor	Polychaeta		Ì	0	0	0.3	0.5	0	1	0.6	0.3	1.3	1
	Terebellides spp. juv.	Polychaeta		1	Ö	0	0.3	0.5	0	ì	0.6	0.3	1.3	i
	Euclymeninae sp. A	Polychaeta		0	0	ż	0.7	1.0	0	2	1.2	0.7	2.6	2
	Glycinde armigera	Polychaeta		0	1	0	0.3	0.5	0	1	0.6	0.3	1.3	1
	Magelona hartmanae	Polychaeta		0	1	0	0.3	0.5	0	1	0.6	0.3	1.3	1
	Nephtys caecoides	Polychaeta		0	0	2	0.7	1.0	0	2	1.2	0.7	2.6	Ż
	Notomastus tenuis	Polychaeta		Ö	Ó	1	0.3	0.5	0	i	0.6	0.3	1.3	i
	Phyllodoce hartmanae	Polychaeta		3	0	1	1.3	1.5	0	3	1.5	0.9	3.4	
	Scalibregma inflatum	Polychaeta		0	0	1	0.3	0.5	0	1	0.6	0.3	1.3	1
	Sphaerosyllis ranunculus	Polychaeta		1	0	1	0.7	0.5	0	1	0.6	0.3	1.3	
	Nematoda	Nematoda		2	Ö	0	0.7	1.0	0	2	1.2	0.7	2.6	
	Nemertea	Nemertea		4	· 3	2	3.0	3.0	2	4	1.0	0.6	2.3	

4

.

Page 7 of 8

STANUM 35006	STATION MONTEREY BOATYARD-LEAD 4 (cont.)	IDORG 1594	DATÉ 05/09/96	LEG 43										
	Species	Taxa	# of Sp.	Nu	nber per o	core	Summary Statistics							
				rep 1	rep 2	гер 3	mean	median	min	max	St. Dev.	S.E.	95%CL	sum
	Oligochaeta	Oligochaeta		18	1	3	7.3	9,5	1	18	9.3	5.4	20.9	22
	Total Individuals			258	65	69	130.7	161.5	65	258	110.3	63.7	248.2	392
	Total Species		59	52	13	20	28.3	32.5	13	52	20.8	12.0	46.8	85
	Total Crust. Indiv.			19	0	2	7.0	9.5	0	19	10.4	6.0	23.5	21
	Total Crust. Sp.		7	6	0	2	2.7	3.0	0	6.	3.1	1.8	6.9	8
	Gammarid Indiv.			4	0	2	2.0	2.0	0	4	2.0	1.2	4.5	6
	Gammarid Sp.		3	2	0	2	1.3	1.0	0	2	1.2	0.7	2.6	4
	Other Crustacean Indiv.			15	0	0	5.0	7.5	0	15	8.7	5.0	19.5	15
	Other Crustacean Sp.		4	4	0	0	1.3	2.0	0	4	2.3	1.3	5.2	4
	Total Echinoderm Indiv.			1	0	0	0.3	0.5	0	1	0.6	0.3	1.3	1
	Total Echinoderm Sp.		1	1	0	0	0.3	0.5	0	1	0.6	0.3	1.3	1
	Total Mollusc Indiv.			10	1	1	4.0	5.5	1	10	5.2	3.0	11.7	12
	Total Mollusc Sp.		5	5	1	1	2.3	3.0	1	5	2.3	1.3	· 5.2	7
	Total Polychaete Indiv.			204	60	61	108.3	132.0	60	204	82.9	47.8	186.4	325
	Total Polychaete Sp.		43	37	10	15	20.7	23.5	10	37	14.4	8.3	32.3	62

STATE WATER RESOURCES CONTROL BOARD

P.O. BOX 100. Sacramento. CA 95812-0100

Office of Legislative and Public Affairs: (916) 657-1247 Water Quality Information: (916) 657-0687

Clean Water Programs Information: (916) 227-4400 Water Rights Information: (916) 657-2170

CALIFORNIA REGIONAL WATER OUALITY CONTROL BOARDS

NORTH COAST REGION (1) 5550 Skylane Blvd., Ste. A Santa Rosa, CA 95403 (707) 576-2220

¢

SAN FRANCISCO BAY REGION (2)

SISKIYOU

MODOC

1515 Clav Street, Ste. 1400 Oakland, CA 94612 (510) 622-2300

CENTRAL COAST REGION (3) 81 Higuera Street, Ste. 200

San Luis Obispo, CA 93401-5427 (805) 549-3147

LOS ANGELES REGION (4) 101 Centre Plaza Drive Monterey Park, CA 91754-2156 (213) 266-7500

CENTRAL VALLEY REGION (5)

3443 Routier Road, Suite A Sacramento, CA 95827-3098 (916) 255-3000

FRESNO BRANCH OFFICE

3614 East Ashlan Avenue Fresno, CA 93726 (209) 445-5116

LAHONTAN REGION (6) 2501 South Lake Tahoe Bivd. South Lake Tahoe, CA 96150

(916) 542-5400 VICTORVILLE BRANCH OFFICE

15428 Civic Drive, Ste. 100 Victorville, CA 92392-2383 (760) 241-6583

COLORADO RIVER BASIN REGION (7)

73-720 Fred Waring Dr., Ste. 100 Palm Desert, CA 92260 (760) 346-7491

SANTA ANA REGION (8)

California Tower 3737 Main Street, Ste. 500 Riverside, CA 92501-3339 (909) 782-4130

SAN DIEGO REGION (9)

9771 Clairemont Mesa Blvd., Ste. A San Diego, CA 92124 (619) 467-2952

STATE OF CALIFORNIA

Pete Wilson, Governor

CALIFORNIA ENVIRONMENTAL PROTECTION AGENCY

Peter M. Rooney, Secretary

STATE WATER RESOURCES **CONTROL BOARD**

John Caffrey, Chairman

