

SITE ASSESSMENT REPORT

LOWER LAKES HANSEN DAM FLOOD CONTROL BASIN LOS ANGELES, CALIFORNIA

Prepared for:

US Army Corps of Engineers Los Angeles District CESPL-ED-MI 911 Wilshire Boulevard Los Angeles, California 90017-3401

Contract No. DACA09-01-D-0004 D.O. No. 0005

Prepared by:

SOTA Environmental Technology, Inc. 16835 W. Bernardo Drive, Suite 212 San Diego, California 92127-1613

> Version: Draft Project No. 02HW013 May 19, 2003

SITE ASSESSMENT REPORT

LOWER LAKES HANSEN DAM FLOOD CONTROL BASIN LOS ANGELES, CALIFORNIA

Contract No. DACA09-01-D-0004, D.O. No. 0005

Prepared for:

U.S. Army Corps of Engineers Los Angeles District CESPL-ED-MI 911 Wilshire Boulevard Los Angeles, California 90017-3401

Prepared by:

SOTA Environmental Technology, Inc. 16835 W Bernardo Dr., Suite 212 San Diego, California 92127

> Version: Draft May 19, 2003 SOTA Project No. 02HW013

Signature:

Yu Zeng, Ph.D., Project Manager

Signature:

Dakshana Murthy, Ph.D., P.E., Program Manager

Date:

Date: 05/22/03

າ ເຊ

25

ထု

ഗ

.

Contract No. DACA09-01-D-0004 Version: Draft Date: May 19, 2003

Å

Table of Contents

ENGINEER'S	S CERTIFICATIONv
EXECUTIVE	SUMMARY1
1.0 INTRO 1.1 1.2 1.3	ODUCTION
2.0 SITE 2.1 2.2 2.3 2.4	BACKGROUND AND HISTORY
3.0 FIELI 3.1 3.2 3.3	D SAMPLING ACTIVITIES8Sample Locations.8Sampling Procedure.93.2.1 Soil Sampling.93.2.2 Sediment Sampling.103.2.3 Lake Water Sampling103.2.4 Background Surface Water Sampling.11Equipment Decontamination11
4.0 LABO 4.1 4.2 4.3	DRATORY ANALYSIS
5.0 ANAI 5.1	LYTICAL RESULTS
5.2	Sediment Sampling Results
5.3	5.2.2 Small Lower Lake 17 Lake Water Sampling Results 17 5.3.1 Large Lower Lake 18 5.2.2 Swell Lower Lake 18
5.4 5.5	5.3.2 Small Lower Lake

Low Lakes, Hansen Dam Flood Control Basin Los Angeles, California Contract No. DACA09-01-D-0004 Version: Draft Date: May 19, 2003

6.0	DISCUSSIONS AND CONCLUSIONS	.21
7.0	REFERENCES	23

TABLES

Table 1	Sampling Locations
Table 2	Laboratory Analytical Results for Source and Soil Samples
Table 3	Laboratory Analytical Results for Sediment Samples
Table 4	Laboratory Analytical Results for Surface Water Samples
Table 5	Laboratory Analytical Results for Background Surface Water Samples

FIGURES

Figure 1	Site Location Map
Figure 2	Stockpile Locations
Figure 3	Sample Locations
Figure 4	Site Plan and Analytical Results at Large Lower Lake
Figure 5	Site Plan and Analytical Results at Small Lower Lake

APPENDICES

- Appendix A Laboratory Analytical Reports
- Appendix B Photo Documentation Log
- Appendix C Analytical Laboratories Certifications
- Appendix D Sections of the 1999, 2000, 2001 RWQCB Water Quality Monitoring Results

Low Lakes, Hansen Dam Flood Control Basin Los Angeles, California Contract No. DACA09-01-D-0004 Version: Draft Date: May 19, 2003

ACRONYMS AND ABBREVIATIONS

bgs	below ground surface
COPC	Contaminants of Potential Concern
CRDL	Contract Required Detection Limit
CRWQCB	California Regional Water Quality Control Board
CWC	California Water Code
DHS	California Department of Health Services
D.O.	Delivery Order
DQO	data quality objective
EPA	(United States) Environmental Protection Agency
FCB	Flood Control Basin
GPS	Global positioning systems
HSA	Hydrographic Sub-Area
IWMB	Integrated Waste Management Board
LACDA	Los Angeles County Drainage Area
LARWQCB	Los Angeles Regional Water Quality Control Board
LEA	Local Enforcement Agency
MCL	Primary Maximum Contaminant Level (DHS, 1999)
NPDES	National Pollutant Discharge Elimination System
MSL	mean sea level
PARCC	precision, accuracy, representativeness, completeness and compatibility
PID	Photo Ionization Detector
PRG	Preliminary Remediation Goals (EPA Region IX, 1999)
QA	quality assurance
QC	quality control
PM	Project Manager
SOTA	SOTA Environmental Technology, Inc.
SOW	Scope of Work
SSHSP	Site Specific Health and Safety Plan
US	United States
USACE	United States Army Corps of Engineers
VOC	volatile organic compound
WDR	Waste Discharge Requirement

Contract No. DACA09-01-D-0004 Version: Draft Date: May 19, 2003

ENGINEER'S CERTIFICATION

I certify that the work performed and the report prepared herein was conducted under the direct supervision of the undersigned who is a Registered Civil Engineer and Registered Environmental Assessor in the States of California and Arizona.

FE8810 2/03

Dakshana Murthy, Ph.D., P. REA Daksnana Province, and Civil Engine Software California Registered Civil Engine Software 01046 Expires on 6-30-03 Expires on 6-30-04 Arizona Registered Civil Engineer #29090 Expires on 6-30-04

Contract No. DACA09-01-D-0004 Version: Draft Date: May 19, 2003

1

EXECUTIVE SUMMARY

2003 MAY 23 AM 8: 55

CALIFORNIA REGIONAL WATER

This Site Assessment (SA) summarizes the results of the December 2002 through March 2003 lake water, sediment, and soil sampling activities that occurred at the Lower Lakes, Hansen Dam Flood Control Basin (FCB), California. This report evaluates the nature of contamination present in and near the Large and Small Lower Lakes that may have resulted from the placement of material at those locations by the U.S. Army Corps of Engineers and potential adverse impacts to surface water, groundwater, and human health resulting from the placement of the material. The Site Assessment was conducted under contract with the United States Army Corps of Engineers (USACE), Los Angeles District.

Samples were collected from stockpiles of soil located near both Lower Lakes and analyzed for a number of constituents including VOCs, PCBs and perchlorate. None of these compounds were detected in the samples collected, except PCB-1260. PCB-1260, alpha-chlordane, gamma-chlordane, P,P'-DDD, P,P'-DDE, P,P'-DDT, and dieldrin were detected in soil stockpile samples near both lakes at concentrations below the industrial and residential Preliminary Remediation Goals (PRGs). TPH-gasoline, diesel, and motor oil, for which industrial and residential PRGs have not yet been established, were reported in one or more soil stockpile samples. Several priority pollutant metals were present at low levels comparable to background soil levels. These minerals appear to be naturally occurring at the project site. None of the metals detected in the soil samples, except arsenic and mercury, (in trace or estimated concentrations) exceeded the industrial or residential PRGs.

VOCs, perchlorate, NDMA, 1,2,3-TCP, gasoline and 1,4-dioxane were analyzed and not detected in sediment samples collected in both lakes. PCB-1260, alpha-chlordane, gamma-chlordane, P,P'-DDD, P,P'-DDE, P,P'-DDT, dieldrin, endrin aldehyde, heptachlor, and heptachlor expoxide were detected at levels much below industrial and residential PRGs in the sediment samples collected. Low levels (estimated concentrations) of TPH-diesel and motor oil were detected. Cadmium, chromium, copper, lead, nickel, selenium, silver, and zinc were detected at levels below the industrial and residential PRGs. Arsenic and mercury were detected (in trace or estimated concentrations), but are believed to be naturally occurring at the site.

The water quality data suggest that lake water quality is relatively good. No VOCs, pesticides, PCBs, or perchlorate were found in lake water samples. TPH-gasoline (estimated concentrations) was present in the water in both lakes. Gasoline was also detected at the same level in the up gradient background surface water samples. Several metals were detected at low or estimated levels in the water in both lakes and were below the Maximum Contaminant Levels (MCLs). Most of the detected metals (cadmium, chromium, copper, nickel, selenium, zinc and mercury) were also found in the up gradient background surface water samples.

The SA activities and laboratory analysis indicate no evidence of elevated levels of organic or inorganic compounds in the soil, sediment, or water samples that were collected from the Lower Lakes, except for diesel detected in one stockpile sample collected near the Small Lower Lake. It should be noted that no diesel was found in water or sediment samples collected in the Small Lower Lake.

Low Lakes, Hansen Dam Flood Control Basin Los Angeles, California Contract No. DACA09-01-D-0004 Version: Draft Date: May 19, 2003

The Site Assessment results suggest that there has been no significant release of hazardous substances from the materials placed in and adjacent to the Lower Lakes into the water at either site. Further, sediment samples collected from the Lower Lakes indicate that lake sediment was not impacted by the materials placed in either lake. Thus, it appears unlikely that groundwater at the site has been adversely impacted by the placement of materials in and near the Lower Lakes. It is therefore our conclusion that the materials placed in and near the Lower Lakes pose no significant risk to human health or to the environment, and may be disposed on-site following approval and proper permitting by the RWQCB and the City of Los Angeles, Local Enforcement Agency. Following regulatory approval and disposal of the remaining *Arundo*/soil stockpile located to the north of the Small Lower Lake in an approved landfill, SOTA recommends No Further Action at the Hansen Dam FCB.

Low Lakes, Hansen Dam Flood Control Basin Los Angeles, California Contract No. DACA09-01-D-0004 Version: Draft Date: May 19, 2003

1.0 INTRODUCTION

SOTA Environmental Technology, Inc. (SOTA) has been contracted by the United States Army Corps of Engineers (USACE), Los Angeles District, to conduct surface water, sediment, and soil sampling associated with site assessment activities, under Contract No. DACA09-01-D-0004, D.O. No. 0005, in accordance with the Scope of Work (SOW) dated September 4, 2002. The site assessment activities took place at the Large and Small Lower Lakes at Hansen Dam Flood Control Basin (FCB), California. The site location map is presented in Figure 1.

The Site Assessment (SA) is performed to characterize *Arundo donax* (a type of reed) mixed with soil, stockpiled to the north of the Small Lower Lake, and native soil stockpiled on the northwest corner of the Large Lower Lake at Hansen Dam Flood Control Basin (FCB). The SA is intended to provide data that will be compared to various regulatory guidance documents that address water quality and solid waste requirements. The approved Work Plan (WP), along with the Site Specific Health and Safety Plan (SSHSP), comprised all the project-related documentation.

Prior to the SA, SOTA prepared the WP and SSHSP, dated October 28, 2002, and submitted for approval by USACE and Los Angeles Regional Water Quality Control Board (LARWQCB), the lead regulatory agency.

1.1 Objectives

The assessment is intended to provide a preliminary characterization of soil, sediment, and surface water at the site. Specifically, the proposed SA activities are intended to help fulfill the following objectives:

- Characterize the types of contaminants, if any, present at the site, as a result of *Arundo Donax* mixed with soil, which were stockpiled at the smaller lake and native soil stockpiled at the larger lake
- Delineate the distribution of contamination, if any, related to the soil stockpiles among the soil stockpile areas, nearby surface water, and sediment in the Lower Lakes
- Characterize the potential migration paths of any subsurface contamination, and
- Identify and assess the potential adverse effects to public health and the environment

1.2 Scope of Work

The scope of work for this project includes the following activities:

- After the regulators approved WP and SSHSP, sampling of nine source and soil samples, five sediment samples, and the collection of nineteen surface water samples
- Laboratory analysis of the samples collected, and
- Preparation and presentation of a report summarizing the results, conclusions, and recommendations of the SA activities at the subject site.

1.3 Report Format

The Lower Lake SA Report is organized as follows:

- Section 1 Introduction
- Section 2 Site Background and History
- Section 3 Field Sampling Activities
- Section 4 Laboratory Analyses
- Section 5 Analytical Results
- Section 6 Discussions and Conclusions
- Section 7 References

Tables and Figures are included at the end of section 7. Appendices are attached with the following information:

- Appendix A Laboratory Analytical Reports
- Appendix B Photo documentation Logs
- Appendix C Analytical Laboratories Certifications
- Appendix D Sections of the 1999, 2000, 2001 RWQCB Water Quality Monitoring Results

2.0 SITE BACKGROUND AND HISTORY

2.1 Site Location and Description

The Large and Small Lower Lakes are located within Hansen Dam FCB in Los Angeles County, California. The geographic coordinates are 34° 16' 6.18" N latitude and 118° 23' 7.92" W longitude for the Large Lower Lake and 34° 16' 6.1" N latitude and 118 22' 27.9" W longitude for the Small Lower Lake. To reach the site, travel northwest from Los Angeles approximately 0.2 miles from the intersection of the 210-freeway and Foothill Drive.

Hansen Dam was constructed between September 1939 and September 1940 as part of the general system of flood control for the Los Angeles County Drainage Area (LACDA). It was constructed primarily for the purpose of flood control for the lower portions of the San Fernando Valley and the City of Los Angeles. The Dam is located on the northern edge of the San Fernando Valley in Tujunga Wash just below the confluence of the Big and Little Tujunga Creeks, approximately four miles west of the town of Sunland, California (Figure 1). The City of Los Angeles Department of Recreation and Parks leases 1,437 acres within the Hansen Dam Flood Control Basin and operates several recreational facilities on the property.

The climate of Hansen Dam is characteristically temperate; summers are warm and dry with daily temperatures reaching 90° F or higher, and winters are generally mild with daily average temperatures 55° F to 65° F. Mean annual rainfall is 12 inches.

2.2 Site History

In the 1990s, U.S. Army Corps of Engineers or Corps' contractors removed accumulations of sand and gravel to restore flood control storage capacity lost due to sediment buildup from the Big Tujunga and Little Tujunga Washes. The excavations resulted in the creation of "borrow pits." Over time, the pits filled with water and appeared like natural lakes. Currently, there are two such lakes (Large and Small Lower Lakes); they contain fish, are surrounded by vegetation, and have become important resources for birds and other wildlife.

The USACE contractors placed various materials in or adjacent to the Lower Lakes at Hansen Dam FCB. During the SA activities, two source areas were identified in these two artificially created lakes. One source area is composed of approximately 2,200 cubic yards of native soil that was excavated from beneath the re-constructed swim lake and placed above approximately 1,650 cubic yards of construction debris that was comprised mostly of crushed concrete and other clean fill in the northwest corner of the Large Lower Lake. The majority of this material is beneath the water surface with the exception of a small disposal pile of native soil near the northwestern edge of the Large Lower Lake. The other source area is approximately 900 cubic yards of *Arundo donax* (a type of reed) mixed with soil from Sepulveda Dam FCB and approximately 300 cubic yards of *Arundo donax* mixed with soil from Whittier Narrows Dam FCB. All this was placed in the northeastern embankment of the Small Lower Lake. The stockpile locations are presented in Figure 2.

The public raised concerns regarding potential threats to public health and the environment because of the materials placed in and near the Lower Lakes at Hansen Dam FCB. The City of Los Angeles, Local Enforcement Agency (LEA), contacted the Corps of Engineers concerning the piles of *Arundo donax* and soil stockpiled to the north of the Small Lower Lake. The LEA regulates solid waste in the City of Los Angeles on behalf of the California Integrated Waste Management Board (IWMB). The Los Angeles District Army Corps of Engineers has contracted with SOTA to characterize the fill material and determine whether or not the filling activities were conducted in compliance with LARWQCB General National Pollutant Discharge Elimination System (NPDES) Permits, Waste Discharge Requirements (WDR), and other applicable regulatory requirements.

2.3 Local Hydrology

The two lakes are located at approximately 1000 feet above mean sea level (MSL) in the Los Angeles River watershed. The nearby upstream surface water includes Haines Canyon Creek and the Big and Little Tujunga Washes. No drinking water intakes are within three downstream miles of the site. Although the site is not a residential area, it is a public recreational facility.

The Los Angeles River Watershed is shaped by the path of the Los Angeles River, which flows from its headwaters in the mountains eastward to the northern corner of Griffith Park where the channel turns southward through the Glendale Narrows, around the Hansen FCB, before it flows across the coastal plain and into San Pedro Bay near Long Beach. The upper portion of the Los Angeles River Watershed is covered by forest or open space, while the remaining watershed is highly developed with commercial, industrial, or residential uses. The Los Angeles River Watershed has impaired water quality in the middle and lower portions of the basin due to runoff from dense clusters of commercial, industrial, residential, and other urban activities. The Clear Water Act 1998 Section 303d lists impairments in a majority of the watershed are due to point and nonpoint sources. These impairments include pH, ammonia, a number of metals, coliform, trash, scum, algae, oil, chlorpyrifos, as well as other pesticides, and volatile organics.

The site is located in the Tujunga Hydrological Area of the Los Angeles-San Gabriel Hydrological Unit (RWQCB, 1995). LARWQCB has designated the surface water in this area with current and potential beneficial usage. The Hansen Dam floodplain behind the Dam supports open coastal sage-scrub vegetation in the Los Angeles area. The Hansen Dam area is valuable as a wildlife corridor. The Hansen Dam FCB and lakes are within the Big and Little Tujunga Wash. The existing beneficial usage of the surface water is to supply groundwater recharge, provide contact and non-contact water recreation, habitats for warm, cold, wild and rare threatened or endangered species, and the potential beneficial usage is to supply groundwater for municipal and domestic purposes. Furthermore, the existing beneficial usage of the groundwater in this area is for municipal and domestic supply, industrial process, services, and agricultural supply.

Low Lakes, Hansen Dam Flood Control Basin Los Angeles, California

2.4 Contaminants of Potential Concern (COPC)

Based on preliminary information provided to SOTA regarding the origins of the stockpiled waste, the contaminants of potential concern for this area include emergent chemicals, Total Petroleum Hydrocarbons (TPHs), Polychlorinated Biphenyls (PCBs), and general water quality parameters. All of the COPCs are listed as follows:

Emergent Chemicals

- Volatile organic compounds (VOCs) included methyl tertiary-butyl ether (MTBE)
- Pesticides
- Perchlorate
- Priority Pollutant Metals
- N-nitrosodimethylamine (NDMA)
- 1,4-Dioxane
- 1,2,3-Trichloropropane (1,2,3-TCP)
- Chromium(VI)

Total Petroleum Hydrocarbons and PCBs:

- TPHs such as gasoline, diesel, and motor oil
- PCBs

General Water Quality parameters

- Biological Oxygen Demand (BOD)
- Nitrate
- Nitrite
- Sulfate
- Sulfide
- Chloride
- Total and Fecal Coliform

Low Lakes, Hansen Dam Flood Control Basin Los Angeles, California Contract No. DACA09-01-D-0004 Version: Draft Date: May 19, 2003

3.0 FIELD SAMPLING ACTIVITIES

From December 2002 through March 2003, field sampling activities were conducted for the Large Lower Lake and the Small Lower Lake under phased planning activities with the approval of regulators. The sampling activities included collecting soil, water, and sediment at the site and collecting background soil and surface water samples. The completed field activities were in general accordance with the Work Plan and Health and Safety Plan (SOTA, 2002) that were approved prior to the fieldwork by USACE and LARWQCB. The plans defined the field, analytical, Quality Assurance/Quality Control (QA/QC), and health and safety procedures that were implemented during the SA.

Fieldwork began with a site reconnaissance in the morning to verify that the planned sample locations were appropriate and accessible. During the reconnaissance, ambient air was monitored with PID. All field activities were performed under the direct supervision of a California-registered geologist and overseen by the Project Manager from USACE. All field personnel attended daily health and safety meetings, called "tailgate safety meetings". Tri-County Drilling, Inc., San Diego, provided drilling/sampling equipment and a tow boat.

3.1 Sample Locations

The locations and depths for stockpiled soil, background soil, sediment, and water samples were selected based on the approved Work Plan and the comments dated December 17, 2002 and e-mail dated Feb. 11, 2003 from LARWQCB. Consideration was given to the nature of suspected contaminants, and the nature of potentially- contaminated media. Global positioning system (GPS), which uses satellite telemetry, was used to locate the actual sampling points; sample locations are indicated in Figure 3. The actual latitudes and longitudes of the sample locations are listed in Table 1.

According to the work plan, eight stockpiled soil samples were collected and analyzed for COPCs. Four samples (SS-1 through SS-4) were collected from the graded area on the northwest corner of the Large Lower Lake; the sampling location was as close as possible to the fill material. Three samples (SS-5 through SS-7) were collected from the large debris pile located in the north corner of the Small Lower Lake. For quality control purposes, one field duplicate (QC-1) was collected along with SS-3. Also, one sample was collected from the stockpile at the Small Lower Lake, then sorted and weighted for the trash/physical components based on soil (2,000 g), *Arundo donax*(141 g), and plastics, glass and others (3 g). The weight percentage of the trash/physical components are approximately 92 percent soil, 7 percent *Arundo donax*, and 1 percent plastics, glass and others.

One background soil sample (BG-1) was collected from an area outside of the Large Lower Lake not impacted by dumping.

Samples were collected at all possible lake water targets identified as primary targets during the SA. Eighteen samples were collected at the Large Lower Lake and Small Lower Lake to investigate possible contamination. Seven lake water samples (SW-1 through SW-3 at different

8

Low Lakes, Hansen Dam Flood Control Basin Los Angeles, California

depths) from the north corner of the Small Lower Lake and nine water samples (SW-4 through SW-6 at different depths) from the northwest corner of the Large Lower Lake were collected. These water samples were obtained at random locations. Two field duplicate lake water samples (QC-2 and QC-3) from the Large Lower Lake (QC-3) and the Small Lower Lake (QC-2) were collected for quality control purposes. QC-3 was collected along with SW-6-3, and QC-2 was collected along with SW-1-1.

Five surface sediment samples (SD-1 through SD-4) were collected in March 2003 at the Small Lower Lake and Large Lower Lakes to evaluate the surface water pathway. Two sediment samples (SD-1 and SD-2) were collected at sample points directly tangent to the periphery of the fill material on the northeast corner of the Small Lower Lake, and two sediment samples (SD-3 and SD-4) were collected at sample points directly tangent to the periphery of the fill material on the west corner of the Large Lower Lake (Figures 4 and 5). One field duplicate sediment sample (SD-QC-1) was collected along with SD-4 at the Large Lower Lake for quality control purposes.

Four surface background water samples (BG-SW-1 through BG-SW-3) were collected from upstream of the Lower Lakes to determine background levels, originating from the upper watershed of Big and Little Tujunga Washes at the following locations: 1) Big Tujunga Wash, 2) Haines Canyon Creek, outflow from Tujunga Ponds, and 3) Haines Canyon Creek, inflow to Tujunga Ponds, along with one field duplicate sample (BG-SW-QC1) at Haines Canyon Creek, inflow to Tujunga Ponds.

3.2 Sampling Procedure

The following subsection describes sampling procedures that were followed during the collection of soil, sediment and surface water samples.

3.2.1 Soil Sampling

On December 10 and 11, 2002, seven borings (SS-1 through SS-7) were advanced and sampled by Tri-County Drilling Inc. The soil samples were collected from the stockpiled materials using a hand auger at spatially disparate areas. These locations were chosen to identify possible hazardous substances at the site. The soil sample locations are shown in Figures 4 and 5. The samples were collected at horizontal intervals of 2 feet, 5 feet, and 10 feet from the edge of the stockpile and at depths of 2 feet, 6 feet, and 8 feet below the top of the stockpiled materials. This sampling procedure followed LARWQCB directions of 3 vertical and 3 horizontal samples at the Small Lower Lake with dredged soil and vegetative fill material. Similar sampling procedures were followed for the stockpiled soil placed above demolition debris at the Large Lower Lake.

The lead sample was prioritized for all VOCs and TPH-gasoline analyses and transferred to En Core[®] samplers, in accordance with EPA Method 5035. Then, the end sample was transferred to a stainless steel liner from each sampling interval and was sealed with Teflon[®] sheets and plastic caps. En Core[®] samples and liners containing soil samples were labeled properly and submitted for laboratory analysis.

A background soil sample (BG-1) was advanced and sampled by Tri-County Drilling Company at the site, approximately 100 feet from the source area near the Large Lower Lake to evaluate the background soil concentrations.

3.2.2 Sediment Sampling

On March 25, 2003, two surface sediment samples (0-12 inches) at the Small Lower Lake and three surface sediment samples (0-12 inches) at the Large Lower Lake were collected using Navy diver sampling technique. Grab core samples were collected using pre-cleaned dedicated acetate liners. The lead sample was prioritized for all VOCs, TPH-gasoline, and 1,2,3-TCP analyses and transferred to En Core[®] samplers, in accordance with EPA method 5035 and a laboratory-supplied pre-cleaned 4-ounce glass jars with a Teflon-lined lid. Then, the end sample was sealed with Teflon[®] sheets and plastic caps. En Core[®] samples, liners and glass jars containing sediment samples were labeled properly and submitted for laboratory analyses.

3.2.3 Lake Water Sampling

On December 10, 11, 2002 seven lake water samples (SW-1 through SW-3) and nine lake water samples (SW-4 through SW-6), along with two field duplicate samples (QC-2 and QC-3), were collected and sampled by Tri-County Drilling Inc. Lake water samples were taken to determine whether any release to lake water occurred, and whether the release impacted the fishery in Wildlife Creek, and habitats of endangered species associated with the lakes. To collect samples at distinct depth per sample point, a slow speed peristaltic pump (18 grams/liter/minute) was used at three different locations that were spaced laterally in both the Small Lower Lake and the Large Lower Lake. Surface and subsurface water samples at different desired depths were collected using a peristaltic pump and the sample flows were directed into the laboratory-prepared sample containers.

At Small Lower Lake, the samples were collected at three different sample depths (near surface - \sim 3" below the water surface, midway to the bottom, and near the bottom of the lake). The water depths at the lake range between 3 to 3.5 feet at each sample location.

At the Large Lower Lake, due to the observations made during the sampling of the shallow depth of the water body, the samples were collected at three different sample depths (near surface -3" below the water surface, midway to the bottom, and near the bottom) in one location, and at two different depths (near surface -3" below the water surface, and near the bottom) in two locations. The water depths at the lake range from 10 to 13 feet at each sample location. The LARWQCB was notified the change of the sample depths and concurrence was obtained in the field. The samplers were labeled properly and submitted for laboratory analysis.

3.2.4 Background Surface Water Sampling

On March 26, 2003, three background surface water samples (BG-SW-1 through BG-SW-3) along with one field duplicate sample (BG-SW-QC1) were collected with a pre-cleaned dip

Low Lakes, Hansen Dam Flood Control Basin Los Angeles, California

sampler. The background surface water samples were collected upstream of the probable points of entry. The water samples were then transferred into laboratory-supplied sample bottles.

All sample containers were labeled, and immediately placed in a cooler with ice at 4 ± 2 degrees Celsius. SOTA field personnel delivered all samples to the laboratory immediately after sample collection to meet analytical holding times. Upon receipt by the laboratory, samples were stored and analyzed in accordance with the analytical methods and quality assurance/quality control (QA/QC) procedures established in the Work Plan.

3.3 Equipment Decontamination

All drilling and sampling equipment were thoroughly cleaned prior to initiating any site work and between sample locations. Decontamination of equipment other than soil, sediment, or surface water samplers included the following:

• Hand washing of sample rods using a laboratory grade non-phosphate detergent potable water and scrub brushes, followed by a potable water rinse.

All soil, sediment, or surface water sampling equipment which directly contact sample media, were cleaned between samples according to the following procedure:

- Potable water and non-phosphate detergent wash (using brushes)
- Potable water rinse
- Distilled water rinse
- Air dry and storage in clean aluminum foil or plastic until used

Low Lakes, Hansen Dam Flood Control Basin Los Angeles, California Contract No. DACA09-01-D-0004 Versiòn: Draft Date: May 19, 2003

4.0 LABORATORY ANALYSIS

Soil, sediment, and water samples that were collected during the proposed assessment activities were submitted to the fixed-based analytical laboratories for analyses. The analytical laboratories selected for this program (Applied P & Ch Laboratory (APCL), Chino, California; Fruit Growers Laboratory, Inc. (FGL) of Santa Paula, California; Maxxam Analytics, Inc. (Maxxam) of Ontario, Canada) are certified or accepted by the California Department of Health Services (DHS) Environmental Laboratory Accreditation Program. APCL has been validated by the U.S. Army Corps of Engineers Hazardous, Toxic and Radioactive Waste Center of Expertise. FGL and Maxxam are referred by CADHS for the low-level 1,2,3-TCP and NDMA analyses. The laboratory certifications are presented in Appendix C. Laboratory analyses were compliant with the requirements described in the LADPW *Guidelines for Report Submittals* (LADPW, 1991) and LARWQCB's updated laboratory testing requirements (LARWQCB, 2000).

4.1 Analytical Methods and Requirements

The analytical methods selected for the soil, sediment, and water samples are based on the DQO process discussed in the work plan's Section 4.0. The selected analytical methods reflect the types of contaminants of potential concern for the sampled medium and current regulatory agency guidelines.

Soil samples were submitted to the laboratory and analyzed for the following parameters:

- VOCs (including fuel oxygenates) by EPA method 5035/8260B
- TPH-gasoline by EPA method 5035/8015M
- TPH-diesel by EPA method 8015M
- Organochlorinate Pesticides by EPA method 8081A
- PCBs by EPA method 8082
- Perchlorate by EPA 314, and
- Metals by EPA method 6010/7471

Additionally, three soil samples were analyzed for TCLP metals by EPA method 6010/7470.

Sediment samples were submitted to the laboratory and analyzed for the following parameters:

- VOCs (including fuel oxygenates) by EPA method 5035/8260B
- TPH-gasoline by EPA method 5035/8015M
- TPH-diesel by EPA method 8015M
- Organochlorinate Pesticides by EPA method 8081A
- PCBs by EPA method 8082

Low Lakes, Hansen Dam Flood Control Basin Los Angeles, California Contract No. DACA09-01-D-0004 Version: Draft Date: May 19, 2003

- Perchlorate by EPA 314
- Metals by EPA method 6010/7471
- Chromium (VI) by EPA method 7199
- 1,4-Dioxane by EPA SIM 8270C
- 1,2,3-TCP by EPA 8260B, and
- NDMA by EPA 1625C

Additionally, one sediment sample was analyzed for TCLP metals by EPA method 6010/7470.

Lake water samples and background surface water samples were submitted to the laboratory and analyzed for the following parameters:

- VOCs (including fuel oxygenates) by EPA method 8260B
- TPH-gasoline and diesel by EPA method 8015M
- Organochlorinate Pesticides by EPA method 8081A
- PCBs by EPA method 8082
- Perchlorate by EPA 314
- Dissolved Metals by EPA method 6010/7470, and
- General Chemistry including nitrate, nitrite, sulfate, sulfide, chloride, Total Dissolved Solid, Total Settable Solid, pH, Total and Fecal Coliform by Various EPA or Standard Methods.

Additionally, the background surface water samples were analyzed for the following parameters:

- 1,4-Dioxane by EPA SIM 8270C
- Chromium (VI) by EPA method 218.6
- 1,2,3-TCP by EPA 504.1, and
- NDMA by EPA 1625C

4.2 Field and Laboratory Quality Control Samples

Five field duplicate samples (QC-1, QC-2, QC-3, SD-QC-1, and BG-SW-QC1) and trip blank (TB-1) were collected. The QC samples were handled and transported in the same manner as the primary samples. Field and laboratory quality control samples (including surrogate compound, laboratory control and duplicate) are presented in Section 5.5.

4.3 Data Validation and Verification

The purpose of data verification and validation is to ensure that the collected data meet the data quality objectives (DQOs), and that the data are of sufficient quality to meet the objectives outlined in the work plan (SOTA, 2002).

The overall quality of tasks performed for the SA was assured by conformance to protocols established for sample collection, analytical procedures, and data management following the precision, accuracy, representativeness, completeness and compatibility (PARCC) criteria. The following procedures were used for data quality control during the proposed assessment activities at the subject site.

- Field procedures outlined in Section 3 were used during field data collection and sampling activities.
- Field data (e.g., GPS data), as well as calculations, were subjected to an in-house review by qualified staff. Calculations and notes were reviewed for internal consistency. No discrepancies were found. All geologic work was performed under the direction of a California-registered geologist.
- Electronic laboratory data deliverables were used to generate the result tables and were subjected to 100 percent verification against hard-copy reports.
- The proposed assessment and the data quality evaluation were performed in general accordance with the procedures in the project quality assurance requirements.

All collected data were subject to internal data verification. Consistent, systematic data verification was followed to determine whether the data were collected in accordance to the specification of the project quality assurance requirements (i.e., compliance, correctness, consistency, and completeness). Non-technical errors in the data package that can be corrected (e.g., typographical errors) were also checked, and sample identifiers on laboratory reports (hard copy) were matched with the chain-of-custody record.

Low Lakes, Hansen Dam Flood Control Basin Los Angeles, California

5.0 ANALYTICAL RESULTS

This section summarizes the results of the SA activities, including soil, sediment, surface water and background soil and surface water analytical results. The analytical results are presented in Tables 2 through 5 along with the project regulatory criteria. The detected concentrations are also presented in Figures 4 and 5 for the samples that were collected along the Large Lower Lake and Small Lower Lake.

5.1 Soil Sampling Results

Table 2 summarizes the analytical results from the stockpiled soil sampling efforts for the Large Lower Lake and Small Lower Lake along with the EPA Region 9 Industrial and Residential PRG (EPA, 2002).

5.1.1 Large Lower Lake

VOCs in soil samples were analyzed and none of the volatile organic compounds (including MTBE) was detected above the laboratory detection limits, except that trace levels of acetone and methylene chloride were detected in a few samples. However, acetone and methylene chloride are commonly found as laboratory contaminants.

PCBs and perchlorate were analyzed in all samples that were collected, and none of them were detected above the laboratory detection limits.

Pesticides such as alpha-chlordane, gamma-chlordane, P,P'-DDD, P,P'-DDE, P,P'-DDT, and dieldrin were detected in one or few samples (SS-1 through SS-4) at trace levels much below the industrial and residential PRGs (Table 2). None of the pesticides was detected in the background soil (BG-1), or surface water samples (SW-1 through SW-3). However, trace levels of alpha-chlordane, gamma-chlordane, P,P'-DDD, P,P'-DDE, P,P'-DDT, and dieldrin were present in sediment samples (SD-3 and SD-4) with additional pesticides. Detailed discussion about the sediment is included in Section 5.2.

Estimated concentrations of TPH-gasoline, diesel and motor oil were present in all samples, except that gasoline was below the detection limit in SS-1 and diesel was below the detection limit in SS-3. No industrial and residential PRGs exist for gasoline, diesel, and motor oil. Similar levels of concentrations for TPH-gasoline (0.07J mg/kg), diesel (1J mg/kg) and motor oil (30 mg/kg) were also found in the background sample (BG-1).

Thirteen priority pollutant metals were analyzed in all samples. Arsenic, cadmium, chromium, copper, lead, nickel, zinc, and mercury were present in all four samples (SS-1 through SS-4) at low levels, which were comparable to the background soil levels (BG-1). However, cadmium was not detected in the background sample. None of the detections exceeded the industrial or residential PRGs except arsenic and mercury. These detected metals may be occurred naturally in Hansen Dam soils.

Contract No. DACA09-01-D-0004 Version: Draft Date: May 19, 2003

ſ

5.1.2 Small Lower Lake

VOCs in soil samples were analyzed and none of the VOCs were found in samples (SS-5 through SS-7), except that trace levels of acetone and methylene chloride were detected in a few samples. Acetone and methylene chloride are common laboratory contaminants.

Perchlorate was analyzed in all samples collected, and none was above the laboratory detection limits.

Alpha-chlordane, gamma-chlordane, P,P'-DDD, P,P'-DDE, P,P'-DDT, and dieldrin were detected in one or few samples (SS-5 through SS-7) at levels much below the industrial and residential PRGs. Background soil sample BG-1, sediment samples (SD-1 and SD-2) and surface water samples (SW-4 through SW-6) contained none of these substances.

PCB-1260 was detected in all three samples (SS-5 through SS-7) at estimated concentrations, which were below the industrial and residential PRG. Background soil sample BG-1 contained none of the PCBs.

Estimated concentrations of TPH-gasoline were present in all three samples (SS-5 through SS-7). Elevated levels of diesel and motor oil were also found in all samples with the maximum concentrations of 1,970 mg/kg for diesel and 250 mg/kg for motor oil. Lower concentrations of TPH-gasoline (0.07J mg/kg), diesel (1 mg/kg) and motor oil (30 mg/kg) were found in the background sample (BG-1). No industrial or residential PRGs exist for gasoline, diesel and motor oil. The samples collected from the Large Lower Lake had lower TPH concentrations compared to samples that were collected from the Small Lower Lake. Additional samples of the materials stockpiled near the Small Lower Lake suggest that the elevated diesel and motor oil concentrations initially detected are not representative of those materials. The results will be included in the Draft Final Report.

Thirteen priority pollutant metals were analyzed in all samples. Antimony, arsenic, cadmium, chromium, copper, lead, nickel, selenium, silver, zinc and mercury were present in one or all samples (SS-5 through SS-7) at low levels, which were slightly higher than the background soil levels (BG-1). However, antimony, cadmium, selenium, silver were not detected in the background sample, and none of the concentrations exceeded industrial or residential PRGs except trace or estimated levels of arsenic and mercury which are believed to be naturally occurring.

5.2 Sediment Sampling Results

Table 3 summarizes the analytical results from the sediment sampling efforts for the Large Lower Lake and Small Lower Lake along with the EPA Region 9-established Industrial and Residential PRG values (EPA, 2002).

Low Lakes, Hansen Dam Flood Control Basin Los Angeles, California

5.2.1 Large Lower Lake

VOCs, perchlorate, NDMA, 1,2,3-TCP, and 1,4-dioxane were analyzed in all collected samples, and none of them were detected above the laboratory detection limits in two sediment samples (SD-3 and SD-4).

Alpha-chlordane, gamma-chlordane, P,P'-DDD, P,P'-DDE, P,P'-DDT, and dieldrin, , endrin aldehyde, heptachlor, and heptachlor expoxide, were detected in all samples (SD-3 and SD-4) at trace levels much below industrial and residential PRGs.

PCB-1260 was detected in both samples at estimated levels much below industrial and residential PRGs.

Estimated concentrations of TPH-diesel were present in both samples. Low levels of motor oil were detected, with maximum concentrations of 68 mg/kg for motor oil. No industrial and residential PRGs exist for diesel and motor oil.

Thirteen priority pollutant metals were analyzed in all samples. Arsenic, cadmium, chromium, copper, lead, nickel, selenium, silver, zinc and mercury were present in both samples at levels below the industrial and residential PRGs except arsenic and mercury.

5.2.2 Small Lower Lake

VOCs, pesticides, PCBs, perchlorate, NDMA, 1,2,3-TCP, TPH-gasoline, diesel, motor oil, and 1,4-dioxane were analyzed and none of them were detected above the laboratory detection limits in both sediment samples (SD-1 and SD-2).

Thirteen priority pollutant metals were analyzed in all samples. Trace amounts of arsenic, cadmium, chromium, copper, lead, nickel, zinc and mercury were present in both samples at levels below the industrial and residential PRGs except arsenic and mercury.

5.3 Lake Water Sampling Results

Table 4 summarizes the analytical results from the water sampling efforts for the Large Lower Lake and Small Lower Lake along with the Primary Maximum Contaminant Levels (MCLs) from the California Department of Health Services (DHS).

5.3.1 Large Lower Lake

The general water quality was tested in eight surface water samples (SW-1 through SW-3) at different depths. The BOD test indirectly measured the amount of readily-degradable organic compounds in water. The BOD readings were relatively low in all samples. Chloride, TDS, and sulfate were below the surface water quality objectives of 250 mg/L, 500 mg/L and 250 mg/L, respectively. Sample pH of 6.5 to 8.5 was within the acceptable range for surface water. Nitrate and nitrite concentrations were below the primary drinking water standards of 45 mg/L and 1

Low Lakes, Hansen Dam Flood Control Basin Los Angeles, California

mg/L. Total and fecal coliform were used to indicate the likelihood of pathogenic bacterial in surface water. The fecal coliform concentrations were below the water quality objective for water designated for contact recreation of 200 MPN/100 ml.

VOCs, pesticides, PCBs, and perchlorate were analyzed in all samples that were collected, and none of them were detected above the laboratory detection limits.

Estimated concentrations of TPH-gasoline and diesel were present in one or more samples. No MCLs values exist for gasoline and diesel.

Thirteen priority pollutant metals were analyzed in all samples. Antimony, arsenic, cadmium, chromium, copper, lead, nickel, selenium, silver, thallium, zinc and mercury were present in one or all samples at low or estimated levels, which are comparable to the background surface water levels. Although antimony, arsenic, lead, silver, and thallium were not detected in background samples, all of the detected concentrations were below the MCLs.

5.3.2 Small Lower Lake

The general water quality was tested in ten samples (SW-4 through SW-6) at different depths. The BOD readings were very low in all samples. Chloride, TDS, and sulfate were below the surface water quality objectives at 250 mg/L, 500 mg/L and 250 mg/L, respectively. pH of 6.5 to 8.5 in collected water samples were within the acceptable range for surface water. Nitrate and nitrite concentrations were below the primary drinking water standards of 45 mg/L and 1 mg/L. The fecal coliform concentrations of 200 MPN/100 ml were below the water quality objective for water designated for contact recreation.

VOCs, pesticides, PCBs, and perchlorate were analyzed in all samples that were collected and none of them were detected above the laboratory detection limits.

Estimated concentrations of TPH-gasoline and diesel were present in one or more samples.

Thirteen priority pollutant metals were analyzed in all samples. Antimony, arsenic, chromium, copper, lead, nickel, selenium, silver, thallium, zinc and mercury were present in all samples at low or estimated levels, which are comparable to the background surface water levels. However, antimony, arsenic, lead, silver, and thallium were not detected in background samples. All of the detected concentrations were below the MCLs.

5.4 Baseline Ambient Water Quality

Table 5 summarizes the analytical results from the background surface water sampling efforts for the three offsite locations along with the Primary Maximum Contaminant Levels (MCLs) from the California Department of Health Services (DHS).

The water quality at the three locations was evaluated as relatively good by RWQCB, based on their annual monitoring program from 1999 to 2001 (Appendix D).

Low Lakes, Hansen Dam Flood Control Basin Los Angeles, California

The general water quality was tested in four background surface water samples (BG-SW-1 through BG-SW-3) by SOTA in March 2003. Compared with the on-site samples, the BOD readings were slightly higher. Chloride, TDS, and sulfate were below the surface water quality objectives of 250 mg/L, 500 mg/L and 250 mg/L, respectively, and were comparable to the on-site samples. In all Samples, pH of 6.5 to 8.5 was within the acceptable range for surface water. Nitrate and nitrite concentrations were below the primary drinking water standards of 45 mg/L and 1 mg/L, respectively. The coliform concentration of 200 MPN/100 ml was below the water quality objective for water designated for contact recreation, and the total coliform in two locations were slightly higher than the on-site samples, except sample SW-2-2 that was collected in the Large Lower Lake.

VOCs, 1,2,3-TCP, pesticides, PCBs, NDMA, perchlorate and 1,4-dioxane were analyzed in all collected samples, and none were detected above the laboratory detection limits, except estimated concentrations of methyl isobutyl ketone and methylene chloride which are likely laboratory contaminants.

Estimated concentrations of TPH-gasoline were present in all samples and the concentrations were comparable to the lake water samples results.

Thirteen priority pollutant metals were analyzed in all background surface water samples. Cadmium, chromium, copper, nickel, selenium, zinc and mercury were present in one or all samples at low or estimated levels.

Compared with the background general water quality data, the water quality in surface water at both lakes was relatively good. No VOCs, pesticides, PCBs, and perchlorate were found in all collected surface water samples. Estimated concentrations of TPH-gasoline were present in the surface water in both lakes. However, gasoline was also detected at the same level in the up gradient background surface water samples. Several priority metals were detected at low or estimated levels in the surface water in both lakes. All of them were below the MCLs. Chromium does not have federal or state regulatory criteria. Most of the detected priority metals (cadmium, chromium, copper, nickel, selenium, zinc and mercury) were also found in the up gradient background surface water samples.

5.5 Field and Laboratory QA/QC Sample Results

All field QA/QC sample results were within the project quality control limits. The trip blank was non-detect for VOCs. The temperature in each cooler was within 4 ± 2 degrees Celsius.

All laboratory QA/QC samples were within the project quality control limits. Results of surrogate compounds, laboratory control samples and duplicates, laboratory MSs, MSDs, and method blank analyses were within the project quality control limits.

Low Lakes, Hansen Dam Flood Control Basin Los Angeles, California Contract No. DACA09-01-D-0004 Version: Draft Date: May 19, 2003

6.0 DISCUSSIONS AND CONCLUSIONS

The USACE requested SOTA evaluate the nature of any contamination present as a result of the placement of material in and near the Lower Lakes and potential adverse impacts to surface water, groundwater, and human health. Waste and environmental samples were collected and analyzed to characterize the types of substances deposited at the site and potential migration pathways. The stockpiled material was adequately characterized. Analytical results of sampling are presented in Tables 2 through 5 and Figures 4 and 5.

At the stockpiled soil locations, VOCs, PCBs and perchlorate were not found in any samples, except for an estimated concentration of PCB-1260 at the Large Lower Lake. Several pesticides such as alpha-chlordane, gamma-chlordane, P,P'-DDD, P,P'-DDE, P,P'-DDT, and dieldrin were detected in some samples in both lakes. None of the pesticides that were detected exceeded the industrial or residential PRGs. Estimated and elevated concentrations of TPH-gasoline, diesel, and motor oil were reported in one or more samples. No industrial and residential PRGs exist for gasoline, diesel, and motor oil. Several priority pollutant metals were present in all samples at low or estimated levels. However, these values are comparable to the background soil levels (BG-1), indicating that these minerals are naturally occurring at the project site. None of the metal detections exceeded the industrial or residential PRGs, except naturally occurring arsenic and mercury.

Sediment samples collected from both lakes indicated no presence of VOCs, perchlorate, NDMA, 1,2,3-TCP, gasoline or 1,4-dioxane in the lake sediment. In the Large Lower Lake, trace amounts of PCB-1260 and the pesticides alpha-chlordane, gamma-chlordane, P,P'-DDD, P,P'-DDE, P,P'-DDT, dieldrin, endrin aldehyde, heptachlor, and heptachlor expoxide were detected in samples at levels much below industrial and residential PRGs. Low or estimated levels of TPH-diesel and motor oil were detected. Arsenic, cadmium, chromium, copper, lead, nickel, selenium, silver, zinc and mercury were present in samples at levels below the industrial and residential PRGs. Low or estimated levels arsenic and mercury were also detected.

By evaluating water samples in various strata in the lakes, the water quality was found to be of relatively good quality. No VOCs, pesticides, PCBs, or perchlorate were found in any water samples. Estimated concentrations of TPH-gasoline were present in the water in both lakes. Gasoline was also detected at the same level in the up gradient background surface water samples. Several metals were detected at low or estimated levels in the water in both lakes. All of the detected metals were found in concentrations below the MCLs. Most of the detected metals (cadmium, chromium, copper, nickel, selenium, zinc and mercury) were also found in the up gradient background surface water samples. Therefore, it is concluded that these minerals are naturally occurring at the project site.

The SA activities and laboratory analysis indicate no evidence of elevated levels of organic or inorganic compounds in the soil, sediment, or water samples that were collected from the Lower Lakes, except for diesel, which was detected in one stockpile sample collected near the Small Lower Lake. It should be noted that no diesel was found in water or sediment samples collected in the Small Lower Lake.

Low Lakes, Hansen Dam Flood Control Basin Los Angeles, California Contract No. DACA09-01-D-0004 Version: Draft Date: May 19, 2003

The Site Assessment results suggest that there has been no significant release of hazardous substances from the materials placed in and adjacent to the Lower Lakes into the water at either site. Further, sediment samples collected from the Lower Lakes indicate that lake sediment was not impacted by the materials placed in either lake. Thus, it appears unlikely that groundwater at the site has been adversely impacted by the placement of materials in and near the Lower Lakes. It is therefore our conclusion that the materials placed in and near the Lower Lakes pose no significant risk to human health or to the environment, and may be disposed on-site following approval and proper permitting by the LARWQCB and the City of Los Angeles, Local Enforcement Agency. Following regulatory approval and disposal of the remaining *Arundo*/soil stockpile located to the north of the Small Lower Lake in an approved landfill, SOTA recommends No Further Action at the Hansen Dam FCB.

Contract No. DACA09-01-D-0004 Version: Draft Date: May 19, 2003

7.0 **REFERENCES**

- California Department of Health Services, 2000, Drinking Water Standards, Primary Maximum Contaminant Levels (MCLs) and Lead and Copper Action Levels, May 23.
- California Regional Water Quality Control Board, Los Angeles Region, 1994, Water Quality Control Plan for the Los Angeles Region (4), September 8.
- LADPW Guidelines for Report Submittals, dated March 1991 and revised June 1993. CRWQCB – Los Angeles Region memoranda dated March 30, 2000, June 22, 2000 and June 28, 2001.

SOTA, 2002, Work Plan and Health Safety Plan, Lower Lakes, Hansen Dam FCB, CA

State of California, California Regional Water Quality Control Board, Los Angeles Region, WDR Order No 91-93, Non-Hazardous Contaminated Soils and Other Wastes in Los Angeles and Santa Clara River Basins, June 12, 1991

State of California, California Regional Water Quality Control Board, Los Angeles Region, General Information Form for Waste Discharge Requirements, NPDES Permit

United States Environmental Protection Agency, 2000 Guidance for the Data Quality Objectives Process, EPA QA/G-4, August. . .

. .

. . .

TABLE 1SOIL, SEDIMENT, SURFACE WATER SAMPLE LOCATIONS(LOWER LAKES, HDFCB, LOS ANGELES, CA)

	SAMPLE LOCATIONS	SAMPLE ID	LATITUDE	LONGITUDE	SAMPLING DATE		
		SS-1	N 34º 16' 6.14"	W 118° 23' 8.57"			
		SS-2	N 34° 16' 5.64"	W 118° 23' 8.76"			
		SS-3 (QC-1)	N 34º 16' 5.34"	W 118° 23' 9.3"			
Coil Complee		SS-4	N 34° 16' 6.42"	W 118° 23' 9.24"	December 11, 12,		
Soli Samples		SS-5	N 34º 16' 7.68"	W 118° 22' 27.9"	2002		
		SS-6	N 34° 16' 7.98"	W 118° 22' 27.42"			
	Smail Lower Lake	SS-7	N 34º 16' 7.68"	W 118° 22' 26.94"			
		BG-1	N 34° 16' 4.56"	W 118° 23' 9.72"			
	Small ower Leke	SD-1	N 34° 16' 6.1"	W 118° 22' 27.5 "			
Sediment		SD-2	N 34° 16' 5.9"	W 118° 22' 27.7"	March 05, 0002		
Samples		SD-3	N 34° 16' 6.3"	W 118° 23' 8.4"	March 25, 2005		
		SD-4 (SD-QC-1)	N 34° 16' 6.5"	W 118° 23' 8.2"			
		SW-1 (QC-2)	N 34° 16' 5.52"	W 118° 23' 7.38"			
	Large Lower Lake	SW-2	N 34° 16' 6.0"	W 118° 23' 7.8"			
Surface Water		SW-3	N 34° 16' 7.38"	W 118° 23' 8.88"	December 12, 13,		
Samples		SW-4	N 34 [°] 16' 7.38"	W 118° 22' 27.30"	2002		
	Small Lower Lake	SW-5	N 34° 16' 7.38"	W 118° 22' 27.54"			
		SW-6 (QC-3)	N 34° 16' 7.14"	W 118° 22' 28.08"	l		
Background	Big Tujunga Wash	BG-SW-1	N 34° 16' 11.7"	W 118° 21' 4.0"			
Surface Water	Haines Canyon Creek, outflow from Tujunga Ponds	BG-SW-2	N 34° 16' 7.1"	W 118° 20' 28.3"	March 26, 2003		
Samples	Haines Canyon Creek, inflow to Tujunga Ponds	BG-SW-3 (BG-SW-QC1)	N 34° 16' 6.9"	W 118° 20' 18.7"			

TABLE 2LABORATORY ANALYTICAL RESULTS FOR SOIL SAMPLES(LOWER LAKES, HDFCB, LOS ANGELES, CA)

ANALYTICAL PARAMETERS UN	IIT Ind	lustrial PRG	Residential PRG		LARGE LC	OWER LAKE	<u></u>	S	MALL LOWER LAK	E	BACKGROUND	QC SAMPLE
				SS-1	SS-2	SS-3	SS-4	SS-5	SS-6	SS-7	BG-1	QC-1
					0		2		4			2
DEPTH TO THE SURFACE (FEET)				10/10/2002	3	J0/11/2002	3	12/10/2002	4	10/10/2002	4	12/10/2002
SAMPLING DATE				12/10/2002	12/10/2002	12/11/2002	12/11/2002	12/10/2002	12/10/2002	12/10/2002	12/11/2002	12/10/2002
INORGANIC PARAMETERS (VARIOUS EPA MET	iods)											
MOISTURE Per	cent	-	-	12.6	9.3	9	7.8	8	5.5	3.8	6.1	9.3
Ug Ug	/kg 1.0	0E+02	7.8E+00	< 23	< 22	< 22	< 22	< 22	< 21	< 21	< 21	< 21
PRIORITY POLLUTANT METALS (EPA 6010B/747	1A)					·			· • • •			
ANTIMONY mg	/kg 4.1	1E+02	3.1E+01	< 5.7	< 5.5	< 5.5	< 5.4	< 5.4	0.11 J	< 5.2	< 5.3	< 5.3
ARSENIC mg	/kg 1.0	6E+00	3.9E-01	2.2	3.0	1.8	2.0	3.4	3.4	2.6	1.2	3.0
BERYLLIUM mg	/kg 1.	9E+03	1.5E+02	< 0.23	< 0.22	< 0.22	< 0.22	< 0.22	< 0.21	< 0.21	< 0.21	< 0.21
CADMIUM mg	/kg 4.	5E+02	3.1E+01	0.048 J	0.05 J	0.034 J	0.07 J	0.62	0.65	0.61	< 0.21	0.05 J
CHROMIUM mg	/kg 4.	5E+02	2.1E+02	12.9	18.2	13.8	9.2	13.8	12	9.5	8.2	18.2
COPPER mg	/kg 4.	1E+04	3.1E+03	10.9	14.4	11	9.6	25.4	24.3	13.1	10.1	14.4
LEAD mg	/kg 7.	5E+02	1.5E+02	4.4	5.2	3.9	- 4.4	21.6	29.7	13.5	2.8	5.2
MERCURY mg	/kg 0.	0E+00	0.0E+00	0.089 J	0.13 J	0.11 J	0.14 J	0.081 J	0.097 J	0.094 J	0.058 J	0.13 J
NICKEL mg	/kg 2.	0E+04	1.6E+03	9.2	13.2	9.2	7.2	16.6	12.3	11	5.9	13.2
SELENIUM mg	/kg 5.1	1E+03	3.9E+02	< 0.57	< 0.55	< 0.55	< 0.54	< 0.54	0.14 J	0.16 J	< 0.53	< 0.53
SILVER mg	/kg 5.	1E+03	3.9E+02	< 0.57	< 0.55	< 0.55	< 0.54	0.15 J	0.16 J	< 0.52	< 0.53	0.022 J
THALLIUM mg	/kg 6.	7E+01	5.2E+00	< 0.57	< 0.55	< 0.55	< 0.54	< 0.54	< 0.53	< 0.52	< 0.53	< 0.53
ZINC mg	/kg 1.	0E+05	2.3E+04	32.0	39.0	32.3	27.2	92.1	86.3	53.1	28.3	39.0
TCLP METALS (EPA 6010B/7470A)					-	-	-		-	-	· ·	-
ARSENIC uç	ı∕L	-	-	5.7 J	-	-	-	9.8 J	-	-	< 10	-
BARIUM ug	J∕L	-	-	309	-	- ·	-	678	-	-	230	-
CADMIUM ug	J/L	-	-	1.3 J	-	-	-	8.9	-	-	< 4	-
CHROMIUM ug	J∕L	-	-	3.8 J	-	-	-	1.1 J	-	-	2.6 J	-
LEAD ug	J∕L	-	.	4.4 J	-		-	6.5 J	· •	-	6.3 J	-
MERCURY u	J∕L	-	-	0.047 J	-	-	-	0.041 J	-	-	0.3 J	-
SELENIUM ug	µ∕L.	-	-	< 20	-	-	- '	< 20	-	-	< 20	-
SILVER ug	J/L	-	-	57.4		-	-	1.1 J	-	-	1.7 J	-
TOTAL PETROLEUM HYDROCARBONS (EPA 50	35/8015M)											
PHC AS GASOLINE mg	/kg	-	-	< 0.9	0.02 J	0.02 J	. 0.03 J	0.1 J	0.03 J	0.07 J	0.07 J	< 0.95
PHC AS DIESEL FUEL mg	/kg	-	-	0.9 J	5 J	< 11	0.9 J	1970	120	53	1	< 11
MOTOR OILS mg	/kg	-	-	8 J	31	9 J	9 J	200	200	250	30	31
VOLATILE ORGANIC COMPOUNDS (EPA 5035/8	260B)											
1,1,1,2-TETRACHLOROETHANE ug	/kg 7.	.3E+03	3.2E+03	< 4.6	< 4.4	< 4.5	< 4.6	< 6.1	< 6.5	< 5.7	< 6.0	< 4.7
1,1,1-TRICHLOROETHANE ug	/kg 1.	2E+06	1.2E+06	< 4.6	< 4.4	< 4.5	< 4.6	< 6.1	< 6.5	< 5.7	< 6.0	< 4.7
1,1,2,2-TETRACHLOROETHANE ug	/kg 9.	3E+02	4.1E+02	< 46	< 4.4	< 4.5	< 4.6	< 6.1	< 6.5	< 5.7	< 6.0	< 4.7
1,1,2-TRICHLOROETHANE ug	/kg 1.	6E+03	1.5E+04	< 4.6	< 4.4	< 4.5	< 4.6	< 6.1	< 6.5	< 5.7	< 6.0	< 4.7
1,1-DICHLOROETHANE ug	/kg 1.	7E+06	5.1E+05	< 4.6	< 4.4	< 4.5	< 4.6	< 6.1	< 6.5	< 5.7	< 6.0	< 4.7
1,1-DICHLOROETHENE ug	/kg 4.	1E+05	1.2E+05	< 4.6	< 4.4	< 4.5	< 4.6	< 6.1	< 6.5	< 5.7	< 6.0	< 4.7
1,1-DICHLOROPROPENE ug	/kg	÷ .	-	< 4.6	< 4.4	< 4.5	< 4.6	< 6.1	< 6.5	< 5.7	< 6.0	< 4.7
1,2,3-TRICHLOROBENZENE ug	/kg	-	-	< 4.6	< 4.4	< 4.5	< 4.6	< 6.1	< 6.5	< 5.7	< 6.0	< 4.7
1,2,3-TRICHLOROPROPANE	/kg	-	-	< 4.6	< 4.4	< 4.5	< 4.6	< 6.1	< 6.5	< 5.7	< 6.0	< 4.7
1,2,4-TRICHLOROBENZENE	/kg 3.	0E+06	6.5E+05	< 4.6	< 4.4	< 4.5	< 4.6	< 6.1	< 6.5	< 5.7	< 6.0	< 4.7
1.2.4-TRIMETHYLBENZENE	/ka 1.	7E+05	5.2E+04	< 4.6	< 4.4	< 4.5	< 4.6	< 6.1	< 6.5	< 5.7	< 6.0	< 4.7
1.2-DIBROMO-3-CHLOROPROPANE	/ka 4.	6E+01	1.9E+01	< 4.6	< 4.4	< 4.5	< 4.6	< 6.1	< 6.5	< 5.7	< 6.0	< 4.7
1,2-DIBROMOETHANE ug	/kg 2.	8E+01	6.9E+00	< 4.6	< 4.4	< 4.5	< 4.6	< 6.1	< 6.5	< 5.7	< 6.0	< 4.7

TABLE 2LABORATORY ANALYTICAL RESULTS FOR SOIL SAMPLES(LOWER LAKES, HDFCB, LOS ANGELES, CA)

ANALYTICAL PARAMETERS	UNIT	Industrial PRG	Residential PRG			OWER LAKE	<u> </u>		SMALL LOWER LAK	(E	BACKGROUND	QC SAMPLE
				SS-1	SS-2	SS-3	SS-4	\$\$-5	SS-6	SS-7	BG-1	QC-1
DEPTH TO THE SURFACE (FEET)				1	3	3	3	2	4	6	4	3
				12/10/2002	12/10/2002	12/11/2002	12/11/2002	12/10/2002	12/10/2002	12/10/2002	12/11/2002	12/10/2002
1,2-DICHLOROBENZENE	ug/kg	3.7E+05	3.7E+05	< 4.6	< 4.4	< 4.5	< 4.6	< 6.1	< 6.5	< 5.7	< 6.0	< 4.7
1,2-DICHLOROETHANE	ug/kg	6.0E+02	2.8E+02	< 4.6	< 4.4	< 4.5	< 4.6	< 6.1	< 6.5	< 5.7	< 6.0	< 4.7
1,2-DICHLOROPROPANE	ug/kg	7.4E+02	3.4E+02	< 4.6	< 4.4	< 4.5	< 4.6	< 6.1	< 6.5	< 5.7	< 6.0	< 4.7
1,3,5-TRIMETHYLBENZENE	ug/kg	7.0E+04	2.1E+04	< 4.6	< 4.4	< 4.5	< 4.6	< 6.1	< 6.5	< 5.7	< 6.0	< 4.7
1,3-DICHLOROBENZENE	ug/kg	6.3E+04	1.6E+04	< 4.6	< 4.4	< 4.5	< 4.6	< 6.1	< 6.5	< 5.7	< 6.0	< 4.7
1,3-DICHLOROPROPANE	ug/kg	-	-	< 4.6	< 4.4	< 4.5	< 4.6	< 6.1	< 6.5	< 5.7	< 6.0	< 4.7
1,4-DICHLOROBENZENE	ug/kg	7.9E+03	3.4E+03	< 46	< 4.4	< 4.5	< 4.6	< 6.1	< 6.5	< 5.7	< 6.0	< 4.7
2,2-DICHLOROPROPANE	ug/kg	-	-	< 4.6	< 4.4	< 4.5	< 4.6	< 6.1	< 6.5	< 5.7	< 6.0	< 4.7
2-CHLOROTOLUENE	ug/kg	-	-	< 4.6	< 4.4	< 4.5	< 4.6	< 6.1	< 6.5	< 5.7	< 6.0	< 4.7
4-CHLOROTOLUENE	ug/kg	-	-	< 4.6	< 4.4	< 4.5	< 4.6	< 6.1	< 6.5	< 5.7	< 6.0	< 4.7
ACETONE	ug/kg	6.0E+06	1.6E+06	< 46	7 J	11 J	< 46	< 61	17 J	8 J	< 60.0	< 47
BENZENE	ug/kg	1.3E+03	6.0E+02	< 4.6	< 4.4	< 4.5	< 4.6	< 6.1	< 6.5	< 5.7	< 6.0	< 4.7
BROMOBENZENE	ug/kg	9.2E+04	2.8E+04	< 4.6	< 4.4	< 4.5	< 4.6	< 6.1	< 6.5	< 5.7	< 6.0	< 4.7
BROMOCHLOROMETHANE	ug/kg	-	-	< 4.6	< 4.4	< 4.5	< 4.6	< 6.1	< 6.5	< 5.7	< 6.0	< 4.7
BROMODICHLOROMETHANE	ug/kg	1.8E+03	8.2E+02	< 4.6	< 4.4	< 4.5	< 4.6	< 6.1	< 6.5	< 5.7	< 6.0	< 4.7
BROMOFORM	ug/kg	2.2E+05	6.2E+04	< 4.6	< 4.4	< 4.5	< 4.6	< 6.1	< 6.5	< 5.7	< 6.0	< 4.7
BROMOMETHANE	ug/kg	1.3E+04	3.9E+03	< 4.6	< 4.4	< 4.5	< 4.6	< 6.1	< 6.5	< 5.7	< 6.0	< 4.7
CARBON DISULFIDE	ua/ka	7.2E+02	3.6E+02	< 4.6	< 4.4	< 4.5	< 4.6	< 6.1	< 6.5	< 5.7	< 6.0	< 4.7
CARBON TETRACHLORIDE	ua/ka	5.5E+02	2.5E+02	< 4.6	< 4.4	< 4.5	< 4.6	< 6.1	< 6.5	< 5.7	< 6.0	< 4.7
CHLOROBENZENE	ua/ka	5.3E+05	1.5E+05	< 4.6	< 4.4	< 4.5	< 4.6	< 6.1	< 6.5	< 5.7	< 6.0	< 4.7
CHLOROETHANE	ua/ka	6.5E+03	3.0E+03	< 4.6	< 4.4	< 4.5	< 4.6	< 6.1	< 6.5	< 5.7	< 6.0	< 4.7
CHLOROFORM	ua/ka	2.0E+03	9.4E+02	< 4.6	< 4.4	< 4.5	< 4.6	< 6.1	< 6.5	< 5.7	< 6.0	< 4.7
CHLOROMETHANE	ua/ka	2.6E+03	1.2E+03	< 4.6	< 4.4	< 4.5	< 4.6	< 6.1	< 6.5	< 5.7	< 6.0	< 4.7
CIS-1.2-DICHLOBOETHYLENE	ua/ka	1.5E+05	4.3E+04	< 4.6	< 4.4	< 4.5	< 4.6	< 61	< 6.5	< 5.7	< 6.0	< 4.7
CIS-1 3-DICHLOBOPBOPENE	ua/ka	1.8E+03	7.8E+02	< 4.6	< 4.4	< 4.5	< 46	< 61	< 6.5	< 5.7	< 6.0	< 4.7
DIBROMOCHLOBOMETHANE	ua/ka	2.6E+03	1.1E+03	< 4.6	< 4.4	< 4.5	< 4.6	< 6.1	< 6.5	< 5.7	< 6.0	< 4.7
DIBROMOMETHANE	ua/ka		-	< 4.6	< 4.4	< 4.5	< 46	< 6.1	< 6.5	< 5.7	< 6.0	< 4.7
DICHLOBODIFLUOROMETHANE	ua/ka	3.1E+05	9.4F+04	< 4.6	< 4.4	< 4.5	< 46	< 61	< 65	< 5.7	< 6.0	< 4.7
FTHYLBENZENE	ua/ka	2.0E+04	8.9E+03	< 46	< 4.4	< 4.5	< 46	< 61	< 6.5	< 5.7	< 60	< 4.7
HEXACHLOROBUTADIENE	ua/ka	2.2E+04	6.2E+03	< 4.6	< 4.4	< 4.5	< 46	< 61	< 6.5	< 5.7	< 6.0	< 4.7
ISOPBOPYLBENZENE (CUMENE)	ua/ka	5.7E+05	2.0E+05	< 4.6	< 4.4	< 4.5	< 4.6	< 61	< 65	< 5.7	< 6.0	< 4.7
M P-XYLENE	ua/ka	4.2E+05	2.7E+05	< 46	< 4.4	< 4.5	< 4.6	< 61	< 6.5	< 57	< 60	< 4.7
METHYLETHYL KETONE	ug/kg	2 7E+07	7.3E+06	< 44	< 87	2 89	< 92	< 120	< 130	< 110	< 120	< 93
METHYLISOBUTYL KETONE	ug/kg	2.8E+06	7.9E+05	< 93	< 44	< 45	< 46		< 65	< 57	46 .1	< 47
METHYLENE CHLOBIDE	ug/kg	2 1E+04	9 1E+03	< 46	0.6 .1	< 45	< 46		6 1	9	- 60	< 47
NAPHTHAI ENE	ug/kg	1 9E+05	5.6E+04	< 4.6	- 44	< 4.5	< 4.0	61	65	- 57	< 60	< 47
	ug/kg	2 4E+05	2 4E+05	< 4.6		< 4.5	< 4.0	< 61	< 65	< 57	< 60	- 47
N-PBOPYI BENZENE	ug/kg	2.4E+05	2.4E+05	< 4.6		< 4.5	< 4.0	< 61	< 65	< 57		< 4.7
O-XVI ENE	ug/kg	4 2E+05	2.4E+05	< 4.6		< 4.5	< 4.0	< 61	< 65	57		< 4.7
	ug/kg		2.7 2700	< 4.6		~ 4.5	< 16	61	< 65	57	60	- 47
SEC-BUTYI BENZENE	ug/kg ug/kg	2 2F±05	2 2E±05	< 46		< 4.5	< 16		< 65	57		- 47
STYRENE	ug/kg	1 7F±06	1 7E±06	- 46		- 4.5	< 4.0			57	< 60	
	ug/kg	3 05 105	3 9 5 4 05	< 16		- 4.5	< 4.0	- 61		< 5.7	< 60	
TERT-BUTYL METHYL ETHER	ug/kg	3.6E+04	1.7E+04	< 9.3	< 8.7	< 8.9	< 9.2	< 12	< 13	< 11	< 12	< 9.3

TABLE 2LABORATORY ANALYTICAL RESULTS FOR SOIL SAMPLES(LOWER LAKES, HDFCB, LOS ANGELES, CA)

ANALYTICAL PARAMETERS	UNIT	Industrial PRG	Residential PRG		LARGE LO	OWER LAKE		s	MALL LOWER LAK	E	BACKGROUND	QC SAMPLE
				SS-1	SS-2	SS-3	SS-4	SS-5	SS-6	SS-7	BG-1	QC-1
DEPTH TO THE SUBFACE (FEET)				1	3	3	3	2	4	6	4	3
				12/10/2002	12/10/2002	12/11/2002	12/11/2002	12/10/2002	12/10/2002	12/10/2002	12/11/2002	12/10/2002
	uo/ka	1.5E+04	3.4E+03	< 4.6	< 4.4	< 45	< 46	< 61	< 65	< 57	< 6.0	< 4.7
	ug/kg ug/kg	5.2E+05	5.4E+05	< 4.6	< 4.4	< 4.5	< 4.6	< 61	< 6.5	< 57	< 6.0	< 4.7
TRANS 1 2-DICHLOBOETHENE	ug/kg ug/kg	2 3E+05	6.9E+04	< 4.6	< 4.4	< 4.5	< 4.6	< 61	< 6.5	< 5.7	< 6.0	< 47
TRANS-1,2-DICHLOROPBOPENE	ug/kg ug/kg	2.02+00	-	< 4.6	< 4.4	< 4.5	< 4.6	< 61	< 6.5	< 57	< 6.0	< 4.7
	ug/kg	1 1 5+02	5 3E+01	< 4.6		< 4.5	- 46	< 61	< 65	< 57	60	< 47
	ug/kg	2 0E+06	3.95+05	< 1.6	< 4.4	< 4.5	< 4.6	< 61	< 65	< 57	< 60	< 47
	ug/kg ug/kg	7.5E+00	3.9E+03 7 9E+01	< 4.6	< 4.4	< 4.5	< 4.6	< 61	< 65	< 57	< 6.0	< 4.7
CHI OPINATED PESTICIDES (EPA 8081A)	ug/ng	7.56702		<u> </u>	<u> </u>	< 4 .0		<u> </u>	<u> </u>	× 0.1		
AI DRIN	uo/ka	1.0E+02	2 9E±01	z 19	- 19	- 19	< 18	< 18	< 18	< 18	< 1.8	< 18
	ug/kg ug/kg	1.0E+02	3 2F+07	< 19	~ 1.0	< 1.9	< 1.0	< 1.0	< 1.0	< 1.8	1.0	< 1.0
	ug/kg ug/kg	3.6E+00	9 0F+01	< 1.0	- 10	- 10	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8
	ug/kg ug/kg	0.0E+02	-	< 1.9	~ 1.0	< 1.0	< 1.0	< 1.0	< 1.8	< 1.8	< 1.8	< 1.8
GAMMA BHC (LINDANE)	ug/kg ug/kg	1 7E±03	4 4F±02	< 1.9	- 19		< 1.0	< 1.0	< 1.8	< 1.8	< 1.8	< 1.8
	ug/kg	6.5E±03	1 6E+03	1			04 1			1	2 1 1	< 11
	ug/kg	6.5E+03	1.65+03	09.1				0.8 .1			2 11	2 1 1
	ug/kg ug/kg	1 0E+03	2 4E+03	0.5 0	- 33	< 3.3	< 33	< 3.3	< 32	3	< 32	< 32
	ug/kg ug/kg	7.02+03	1 7E+03	3	- 33	< 3.3	- 33	< 3.3	1 .		< 32	< 32
	ug/kg ug/kg	7.0E+00	1.7E+00	< 34	- 33	< 3.3	- 33	< 33	< 32	3 1	< 32	< 32
	ug/kg ug/kg	1 1E+02	3 05+01		- 33	< 3.3	< 3.3	< 3.3	< 3.2	08 1	< 32	< 32
	ug/kg ug/kg	3.7E+02	3.7E±05	- 19	< 0.0	< 1.0	< 1.8	< 1.8	< 1.8	< 1.8	< 18	< 18
	ug/kg	3.7E+06	3.7E+05	- 34	- 33	< 3.3	< 3.3	< 33	< 32	< 31	< 32	< 32
	ug/kg	0.72+00	5.7 2 + 00	< 57	< 5.5	< 5.5	< 5.0	< 5.0	< 53	< 52	< 5.3	< 5.3
	ug/kg	1 8E±05	1 8E±04	< 34	< 3.3	< 3.3	- 33	- 33	< 3.2	< 3.1	< 32	< 32
	ug/kg ug/kg	1.02+00	1.02+04	< 3.4	< 3.3	< 3.3	< 3.3	< 3.3	< 3.2	< 31	< 32	< 32
	ug/kg	_	_	< 23	< 2.2	< 2.2	< 2.2	< 2.2	< 21	< 21	< 21	< 21
	ug/kg ua/ka	3.8E±02	1 1F+02	< 19	~ 19	< 1.2	~ 1.8	< 1.8	< 1.8	2.18	< 1.8	< 18
	ug/kg ug/kg	1 9E+02	5.3E+01	< 1.9	< 1.0	< 1.9	< 1.0	< 1.0	< 1.8	< 1.8	< 1.8	< 1.0
METHOXYCHIOR	ug/kg	3 1E+06	3 1E+05	< 11 < 11	- 11	- 11	- 11	~ 11	< 11 < 11	< 10	< 11	< 11
TOXAPHENE	ug/kg	1.6E+03	4.4E+02	< 110	< 110	< 110	< 110	< 110	< 110	< 100	< 110	< 110
PCBS (EPA 8082)	<u>ug, ng</u>											
PCB-1016 (ABOCI OB 1016)	ua/ka	2 1E+04	3.9E+03	< 38	< 36	< 36	- 36	< 36	< 35	< 34	< 35	< 35
PCB-1221 (ABOCI OB 1221)	ug/kg	7 4E+02	2 2F+02	< 76	< 73		< 72	< 72	< 70		< 70	< 70
PCB-1232 (ABOCLOB 1232)	ug/kg ug/kg	7.4E+02	2.2E+02	< 38	< 36	< 36	< 36	< 36	< 35	2 34	< 35	< 35
PCB-1242 (AROCLOB 1242)	ua/ka	7 4F+02	2 2F+02	< 38	2 36	< 36	- 36	< 36	< 35	< 34	2 35	< 35
PCB-1248 (ABOCI OB 1248)	un/kn	7.4E+02	2.2E+02	< 38	2 36	2 36	< 36	< 36	< 35	2 34	< 35	< 35
PCB-1254 (ABOCLOB 1254)	un/kn	7 4F+02	2 2F+02	< 38	< 36	2 36	< 36	< 36	< 35	< 34	< 35	< 35
PCB-1260 (ABOCLOB 1260)	ua/ka	7.4E+02	2.2E+02	< 38	< 36	< 36	< 36		9 1	1 9 J	35	< 35

Notes:

PRG = Preliminary Remediation Goal from U.S. Environmental Protection Agency Region IX (EPA, 2002).

MCL = Max Contaminant Level (drinking water), California Department of Health Services (DHS, 2000)

mg/kg = milligrams per kilogram

 μ g/kg= micrograms per kilogram

 μ g/L = micrograms per liter

- = Not Analyzed or Not Available

TABLE 3LABORATORY ANALYTICAL RESULTS FOR SEDIMENT SAMPLES(LOWER LAKES, HDFCB, LOS ANGELES, CA)

ANALYTICAL PARAMETERS	UNIT	Industrial PRG	Residential PRG	SMALL LO	WER LAKE	LARC	GE LOWER L	AKE
SAMPLE ID				SD-1	SD-2	SD-3	SD-4	SD-QC-1
DEPTH TO THE SURFACE (INC SAMPLING DATE	CH)			1-12 03/25/2003	1-12 03/25/2003	1-12 03/25/2003	1-12 03/25/2003	1-12 03/25/2003
INORGANIC PARAMETERS (V	ARIOUS	EPA METHO	DS)					
MOISTURE	Percent	-	-	18.7	6.0	24.8	28.7	21.0
PERCHLORATE	ug/kg	1.0E+02	7.8E+00	< 25	< 21	< 27	< 28	-
PRIORITY POLLUTANT META	LS (EPA	6010B/7471/	4/7199)	-				
ANTIMONY	mg/kg	4.1E+02	3.1E+01	< 6.2	< 5.3	< 6.6	< 7.0	-
ARSENIC	mg/kg	1.6E+00	3.9E-01	0.66	0.49	4.4	1.8	-
BERYLLIUM	mg/kg	1.9E+03	1.5E+02	< 0.25	< 0.21	< 0.27	< 0.28) -)
CADMIUM	mg/kg	4.5E+02	3.1E+01	< 0.25	< 0.21	1.3	0.69	-
CHROMIUM	mg/kg	4.5E+02	2.1E+02	10.1	10.0	23.2	13.7	-
	mg/kg	6.4E+01	3.0E+01	< 0.006	< 0.005	< 0.007	< 0.007	< 0.0063
COPPER	mg/kg	4.1E+04	3.1E+03	6.7	8.3	24.1	13.1	- 1
LEAD	mg/kg	7.5E+02	1.5E+02	2.5	2.2	62.9	21.3	- 1
MERCURY	mg/kg	0.0E+00	0.0E+00	0.041 J	0.025 J	0.063 J	0.029 J	-
NICKEL	ma/ka	2.0E+04	1.6E+03	4.4	6.2	20.9	12.3	-
SELENIUM	ma/ka	5.1E+03	3.9E+02	< 0.62	< 0.53	0.88	0.31 J	-
SILVER	ma/ka	5.1E+03	3.9E+02	0.046 J	< 0.53	0.15 J	0.20 J	-
THALLUM	ma/ka	6.7E+01	5.2E+00	< 0.62	< 0.53	< 0.66	< 0.70	- 1
ZINC	ma/ka	1.0E+05	2.3E+04	17.2	17.4	82.6	47.9	
TCLP METALS (EPA 6010B/74	70 <u>A</u>)				[
ABSENIC	ug/l	-	-	< 10	_	-	-	-
BABILIM	ug/L	· .	-	239	_	_	-	_
CADMILIM	ug/L	-	-	0.81			-	
CHBOMIUM	ug/L	-	_	36 1	_	_	_	
	ug/L	_	_	- 10				
MERCURY	ug/L	-	-	< 0.5			_	
	ug/L	-	_	< 20			_	
SILLENION	ug/L	-	-	26	_		_	
TOTAL PETROLEUM HYDROC	ABBON	S (EDA 5035	(8015M)	2.0 0				
PHC AS GASOLINE	ma/ka	-	-	c 12	-13	< 15	e 1 4	_
	ma/ka	_	_	< 12	< 11	10	6 1	
MOTOROUS	ma/ka	_	-	< 12	< 11	68	35	_
1 2 3 TCP (EPA 8260B)	ug/kg				< 5	25	- 5	< 5
VOLATILE OBGANIC COMPO		PA 5035/826		<u>``</u>	<u>``</u>	~		
1 1 1 2 TETBACHLOBOETHA		735+03	3 2 = + 03	- 59	- 57	- 60	- 72	_
	ug/kg	1.25+06	1.2E+06	< 5.9	< 5.7		< 7.2	
	ug/kg ug/kg	0.25+02	1.207	< 5.9	< 5.7		< 7.2	
	ug/kg	1 6E 1 02	4.12+02	< 5.9	< 5.7		< 7.2	-
	ug/kg	1.00+03	1.3E+04	< 5.9	< 5.7		< 7.2	-
	uy/ky	1.7 = +00	5.1E+05	< 5.9	< 5.7	< 0.0	< 7.2	-
	ug/kg	4.10+05	1.20+05	< 5.9	< 5.7	< 0.0	< 1.2	-
	ug/kg	-	-	< 5.9	< 0.1	< 0.0	< 1.2	-
	ug/kg	-	-	< 5.9	< 5./	< 0.0	< 1.2	-
1,2,3-1 HICHLOHOPHOPANE	ug/kg	•	-	< 5.9	< 5./	< 6.0	< 1.2	-
1,2,4-1 HICHLOROBENZENE	ug/kg	3.0E+06	6.5E+05	< 5.9	< 5.7	< 6.0	< 7.2	-
1,2,4-TRIMETHYLBENZENE	ug/kg	1.7E+05	5.2E+04	< 5.9	< 5.7	< 6.0	< 7.2	- 1
1,2-DIBROMO-3-CHLOROPR	ug/kg	4.6E+01	1.9E+01	< 5.9	< 5.7	< 6.0	< 7.2	-
1,2-DIBROMOETHANE	ug/kg	2.8E+01	6.9E+00	< 5.9	< 5.7	< 6.0	< 7.2	- 1
1,2-DICHLOROBENZENE	ug/kg	3.7E+05	3.7E+05	< 5.9	< 5.7	< 6.0	< 7.2	-

TABLE 3	
LABORATORY ANALYTICAL RESULTS FOR SEDIMENT S	SAMPLES
(LOWER LAKES, HDFCB, LOS ANGELES, CA)	

ANALYTICAL PARAMETERS	UNIT	Industrial PRG	Residential PRG	SMALL LO	WER LAKE	LARC	AKE	
SAMPLE ID	<u></u>			SD-1	SD-2	SD-3	SD-4	SD-QC-1
DEPTH TO THE SUBFACE (INC	CH)			1-12	1-12	1-12	1-12	1-12
SAMPLING DATE	,			03/25/2003	03/25/2003	03/25/2003	03/25/2003	03/25/2003
1.2-DICHLOROETHANE	ua/ka	6.0E+02	2.8E+02	< 5.9	< 5.7	< 6.0	< 7.2	-
1.2-DICHLOROPROPANE	ua/ka	7.4E+02	3.4F+02	< 5.9	< 5.7	< 6.0	< 7.2	.
1 3 5-TRIMETHYI BENZENE	ug/ka	7 0F+04	2 1F+04	< 5.9	< 57	< 6.0	< 7.2	_
1 3-DICHLOBOBENZENE	ug/kg	6.3F+04	1.6E+04	< 5.9	< 5.7	< 6.0	< 7.2	_
1 3-DICHI OBOPBOPANE	ug/ka	-	-	< 59	< 5.7	< 6.0	< 7.2	_
1 4-DICHLOROBENZENE	ug/kg	7 9F±03	3 4F+03	2 5 9	57	< 60	< 7.2	.
2 2-DICHI OBOPROPANE	ug/kg	-		< 5.9	< 57	< 6.0	< 7.2	.
2-BUTANONE	ug/kg ug/kg	-	-	2 24	2 23	< 24	< 29	.
	ug/kg un/kn	-	-	- 59	- 57		2 72	_
	ug/kg ug/kg	-		~ 24	23	~ 24	299	
	ug/kg	1 55.00		24	< 23 2 E 7		270	
	ug/kg			< 5.9	< 0./		< 7.2	-
	ug/kg	9.20+04	2.8E+04	< 24	< 23	< 24	< 29	-
	ug/kg	1.32+03	6.0E+02	< 5.9	< 5./	< 0.0	< 1.2	-
	ug/kg	9.20+04	2.80+04	< 5.9	< 0./	< 0.0	< 1.2	-
	ug/kg			< 5.9	< 5.1	< 0.0	< 1.2	-
	ug/kg		0.2E+U2	< 5.9	< 5./	< 0.0	< 1.2	
	ug/kg	2.20+05	0.20+04	< 5.9	< 5./	< 0.0	< 1.2	-
	ug/kg	1.3E+04	3.92+03	< 5.9	< 5./	< 0.0	< 1.2	-
	ug/kg	5.5=+02	2.50+02	< 5.9	< 5.7	< 0.0	< 1.2	-
	ug/kg	5.3E+05	1.5E+05	< 5.9	< 5./	< 0.0	< 7.2	-
	ug/kg	2.02+03	1.10+03	< 5.9	< 0./	< 0.0	< 1.2	-
	ug/kg	0.00+03	3.UE+U3	< 5.9	< 0./	< 0.0	< 1.2	-
	ug/kg	2.00+03	9.4E+U2	< 5.9	< 5./		< 7.2	
	uy/ky	1 55 05	1.20+03	< 5.9 < 5.0	< 5.7		~ 7.2	
	ug/kg	1.90+00	4.3C+04	5.9	< 0.1		< 1.C	
	ug/kg	1.00+03	1.00+02	< 5.9	< 5.1	< 0.0	< 1.2	-
	ug/kg	- 3 1 E - 0 E		< 5.9 < 5.9	< 5.7		~ 7.2	
	ug/kg	3.12+03	9.4⊏+04	< 5.9	< 5.1		< 1.2	-
	ug/kg	-	-	< 5.9	< 5.1	< 6.0	< 1.2	
	ug/kg	205:04	9 0E 02	< 5.9	< 5./		< 1.2	-
	ug/kg	2.00+04	0.9E+U3	< 5.9 < 5.0	< 0.1	< 0.0	< 1.C	-
	ug/kg	575.05	0.20+03	< 5.9	< 5.1	< 0.0	< 1.2	-
	ug/kg	0.1E+00	2.00+05	< 5.9	< 0./	< 0.0	< 1.2	-
	ug/kg	2.15+04	9.12+03	< 5.9 . 5.0	< 0./	< 0.0	< 1.2	-
	ug/kg	3.0E+04	1./E+04	< 5.9	< 5./		< 1.2	-
	ug/kg	1.9E+00	5.0C+U4	< 5.9	< 0.1	< 0.0	< 1.2	-
	ug/kg ug/kg	2.46+00	2.42+00	5.9	< 5.7		< 1.4 < 70	-
	ug/kg	2.40+03	2.40+00	< 5.9	< 0.1	< 0.0	< 1.2	-
	ug/kg	2 25.05	2 25.05	< 5.9	< 0.1	< 0.0	< 1.2	-
	ug/kg ug/kg	175.00	175.00	< 5.9	< 5.1	< 0.0	< 1.2	-
	ug/kg ug/kg	1.7 2+00	1.72+00	5.9	< 5.1 < 5.7		< <u>1.4</u>	-
	ug/kg	-	-	< 0.9	< 0./	< 0.0	< 1.4	-
	ug/kg	3 05 05	3 05.05	~ 24	< 23 < 57	~ 24	< 23 - 70	-
	uy/ky	3.5E+03	3.90+03	< 5.9	< 0.1 - 57	< 0.0	< 1.2	-
	ug/kg	1.35+04	5.40+03	< 5.9	< 5./	< 0.0	< 1.2	-
	ug/kg	5.20+05	5.20+05	< 5.9	< 5./	< 0.0	< 1.2	
INANO-1,2-DICHLORUETHET	ug/Kg	2.36+05	6.9E+04	< 5.9	< 5./	< 6.0	< 1.2	-
TABLE 3								
--	---------							
LABORATORY ANALYTICAL RESULTS FOR SEDIMENT S	SAMPLES							
(LOWER LAKES, HDFCB, LOS ANGELES, CA)								

,

ANALYTICAL PARAMETERS	UNIT	Industrial	Residential	SMALL LO	WER LAKE	LARC	GE LOWER L	AKE
		PRG	PRG	SD-1	SD-2	SD-3	SD-4	SD-OC-1
				0.01		1.10	1.10	
DEPTH TO THE SURFACE (INC	эн)			1-12	1-12	1-12	1-12	1-12
SAMPLING DATE				03/25/2003	03/25/2003	03/25/2003	03/25/2003	03/25/2003
TRANS-1,3-DICHLOROPROP	ug/kg	•	-	< 5.9	< 5.7	< 6.0	< 7.2	-
TRICHLOROETHENE	ug/kg	1.1E+02	5.3E+01	< 5.9	< 5.7	< 6.0	< 7.2	-
TRICHLOROFLUOROMETHA	ug/kg	2.0E+06	3.9E+05	< 5.9	< 5.7	< 6.0	< 7.2	-
VINYL CHLORIDE	ug/kg	7.5E+02	7.9E+01	< 5.9	< 5.7	< 6.0	< 7.2	-
XYLENES (TOTAL)	ug/kg	4.2E+05	2.7E+05	< 5.9	< 5.7	< 6.0	< 7.2	-
1,4-DIOXANE (EPA 8270 SIM	ug/kg	1.6E+05	4.4E+04	< 41	< 35	< 44	< 46	< 42
NDMA (EPA 1625C)	ug/kg	3.4E+01	9.5E+00	< 5	< 5	< 5	< 5	< 5
CHLORINATED PESTICIDES (I	EPA 8081	1A)						
ALDRIN	ug/kg	1.5E+02	2.9E+01	< 1.2	< 1.1	< 1.3	< 1.4	-
ALPHA BHC	ug/kg	5.9E+02	9.0E+01	< 1.2	< 1.1	< 1.3	< 1.4	-
ALPHA ENDOSULFAN	ug/kg	5.3E+06	3.7E+05	< 1.2	< 1.1	< 1.3	< 1.4	-
ALPHA-CHLORDANE	ug/kg	1.1E+04	1.6E+03	< 1.2	< 1.1	15	9.1	-
BETA BHC	ug/kg	2.1E+03	3.2E+02	< 1.2	< 1.1	< 1.3	< 1.4	-
BETA ENDOSULFAN	ug/kg	-	-	< 2.5	< 2.1	< 2.7	< 2.8	-
DELTA BHC	ug/kg	-	-	< 1.2	< 1.1	< 1.3	< 1.4	
DIELDRIN	ug/kg	1.5E+02	3.0E+01	< 2.5	< 2.1	2 J	< 2.8	-
ENDOSULFAN SULFATE	ug/kg	-	-	< 2.5	< 2.1	< 2.7	< 2.8	-
ENDRIN	ug/kg	2.6E+05	1.8E+04	< 2.5	< 2.1	< 2.7	< 2.8	-
ENDRIN ALDEHYDE	ug/kg	-	-	< 2.5	< 2.1	2 J	< 2.8	-
ENDRIN KETONE	ug/kg	-	-	< 2.5	< 2.1	< 2.7	< 2.8	-
GAMMA BHC (LINDANE)	ug/kg	2.9E+03	4.4E+02	< 1.2	< 1.1	< 1.3	< 1.4	-
GAMMA-CHLORDANE	ug/kg	-	-	< 1.2	< 1.1	14	7.5	-
HEPTACHLOR	ug/kg	5.5E+02	1.1E+02	< 1.2	< 1.1	2	0.7 J	-
HEPTACHLOR EPOXIDE	ug/kg	2.7E+02	5.3E+01	< 1.2	< 1.1	1	0.4 J	-
METHOXYCHLOR	ug/kg	4.4E+06	3.1E+05	< 62	< 53	< 66	< 70	-
P,P'-DDD	ug/kg	1.7E+04	2.4E+03	< 2.5	< 2.1	15	5	-
P,P'-DDE	ug/kg	1.2E+04	1.7E+03	< 2.5	< 2.1	11	4	-
P,P'-DDT	ug/kg	1.2E+04	1.7E+03	< 2.5	< 2.1	6.4	3 J	-
	ug/kg	2.2E+03	4.4E+02	< 62	< 53	< 66	< 70	
PCBS (EPA 8082)								
PCB-1016 (AROCLOR 1016)	ug/kg	2.9E+04	3.9E+03	< 41	< 35	< 44	< 46	-
PCB-1221 (AROCLOR 1221)	ug/kg	1.0E+03	2.2E+02	< 82	< 71	< 89	< 94	-
PCB-1232 (AROCLOR 1232)	ug/kg	1.0E+03	2.2E+02	< 41	< 35	< 44	< 46	-
PCB-1242 (AROCLOR 1242)	ug/kg	1.0E+03	2.2E+02	< 41	< 35	< 44	< 46	-
PCB-1248 (AROCLOR 1248)	ug/kg	1.0E+03	2.2E+02	< 41	< 35	< 44	< 46	-
PCB-1254 (AROCLOR 1254)	ug/kg	1.0E+03	2.2E+02	< 41	< 35	< 44	< 46	-
PCB-1260 (AROCLOR 1260)	_ug/kg	1.0E+03	2.2E+02	< 41	< 35	24 J	23 J	-

Notes:

PRG = Preliminary Remediation Goal from U.S. Environmental Protection Agency Region IX (EPA, 2002).

MCL = Max Contaminant Level (drinking water), California Department of Health Services (DHS, 2000)

mg/kg = milligrams per kilogram

µg/kg= micrograms per kilogram

 μ g/L = micrograms per liter

- = Not Analyzed or Not Available

TABLE 4	
ABORATORY ANALYTICAL RESULTS FOR SURFACE WATER SAMPI	LES
(LOWER LAKES, HDFCB, LOS ANGELES, CA)	

ANALYTICAL PARAMETERS	UNIT	MCL/AL					WER LAKE								SMALL LO	WER LAKE				
SAMPLE ID			SW-1-1	SW-1-2	SW-1-3	SW-2-1	SW-2-2	SW-3-1	SW-3-2	QC-2	SW-4-1	SW-4-2	SW-4-3	SW-5-1	SW-5-2	SW-5-3	SW-6-1	SW-6-2	SW-6-3	QC-3
DEPTH TO THE SURFACE (INC	H)		24	42	3	36	3	36	3	24	138	72	3	156	78	3	120	66	3	3
SAMPLING DATE			12/11/2002	12/11/2002	12/11/2002	12/11/2002	12/11/2002	12/11/2002	12/11/2002	12/11/2002	12/12/2002	12/12/2002	12/12/2002	12/12/2002	12/12/2002	12/12/2002	12/12/2002	12/12/2002	12/12/2002	12/12/2002
INORGANIC PARAMETERS (V	ARIOUS EP/	A METHOD	S)				<u> </u>													
BIOLOGICAL OXYGEN DEMAND (BOD)	mg-O2/L	-	0.84 J	1.2 J	1.1 J	1.2 J	0.9 J	0.89 J	.1 J	-	0.93 J	< 2	< 2	< 2	< 2	< 2	0.78 J	< 2	0.68 J	-
CHLORIDE	mg/L	2.5E+02	33.5	29.0	32.0	29.5	31.0	33.0	31.5	-	24.0	22.0	24.0	23.0	22.0	23.0	25.5	23.0	22.0	-
NITRATE AS N	mg/L	4.5E+01	1.2	1.2	1	1.1	1.1	1.1	1.1	-	1.1	1.2	1.3	1.1	1.2	1.3	1.1	1.2	1.3	-
NITRITE AS N	mg/L	1.0E+00	0.02 J	0.02 J	0.02 J	0.017 J	0.02 J	0.02 J	0.02 J	-	0.022	0.02 J	0.02	0.02	0.02	0.02	0.02	0.02 J	0.017 J	-
pH	pH UNIT		7.86	7.8	7.84	7.68	7.78	7.86	7.85	-	7.56	7.59	7.55	7.58	7.6	7.61	7.62	7.62	7.63	-
SETTABLE SOLIDS (SS)	M/L-HR	-	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	-	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	-
TOTAL DISSOLVED SOLIDS (TDS)	mg/L	5.0E+02	317	309	311	322	323	333	312	-	396	365	372	359	369	358	389	406	396	-
TOTAL SUSPENDED SOLIDS (TSS)	mg/L	-	12	10	9	10	9	11	6	-	4	6	5	5.	3 J	3 J	4	3 J	3 J	-
SULFATE	mg/L	2.5E+02	70.5	62.2	63.3	49.8	53.4	65.4	65.7	i -	70.9	76.6	104	118	84.2	89.7	101	94.3	87.4	- 1
DISSOLVED SULFIDE	mg/L	-	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	-	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	-
TOTAL COLIFORM	PMPN/100 mL	2.0E+02	90	50	140	80	300	50	50	-	27	130	13	27	13	80	110	11	110	-
FECAL COLIFORM	MPN/100mL	-	90	50	140	23	50	50	50	-	13	23	13	2	13	9	< 2	7	< 2	-
PERCHLORATE	ug/L	4.0E+00	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4
PRIORITY POLLUTANT META	.S (EPA 601	0B/7470A)																		
ANTIMONY	ug/L	6.00E+00	< 10	< 10	< 10	< 10	3.5 J	< 10	< 10	< 10	< 10	3.3 J	3 J	3.9 J	3.2 J	5.5 J	4 J	4.2 J	3.8 J	3.2 J
ARSENIC	ug/L	5.00E+01	< 5	< 5	2.3 J	< 5	2.3 J	< 5	3.2 J	2.9 J	< 5	< 5	4 J	< 5	2.7 J	< 5	1.8 J	< 5	< 5	< 5
BERYLLIUM	ug/L	1.00E+03	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
CADMIUM	ug/L	5.00E+00	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
CHROMIUM	ug/L	5.00E+01	4.2 J	2.9 J	0.68 J	3.3 J	< 5	4.8 J	1 J	2.8 J	0.94 J	2.1 J	1.3 J	0.53 J	0.86 J	< 5	0.77 J	< 5	0.49 J	0.83 J
COPPER	ug/L	1.00E+03	2.6 J	2.1 J	1.2 J	1.9 J	1 J	1.2 J	1.6 J	2.8 J	2.6 J	2.8 J	1.9 J	3.3 J	1.3 J	1 J	1.7 J	1.3 J	1.6 J	3.7 J
LEAD	ug/L	1.50E+01	0.75 J	< 5	< 5	0.96 J	< 5	0.79 J	< 5	< 5	1.2 J	23.7	1.7 J	2.1 J	2 J	1.4 J	1.5 J	2.2 J	0.86 J	1.1 J
NICKEL	ug/L	2.00E+00	8.3	1.8 J	0.86 J	3.4 J	< 5	4.1 J	2.2 J	2.6 J	2 J	2.7 J	1.3 J	1.4 J	4.2 J	6.9	3 J	2.1 J	3.4 J	4.4 J
SELENIUM	ug/L	1.00E+02	< 10	4.4 J	< 10	< 10	3.1 J	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	4.4 J	3.8 J	< 10	3.2 J	< 10
SILVER	ug/L	5.00E+01	< 10	< 10	< 10	< 10	< 10	0.51 J	< 10	0.53 J	0.51 J	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
THALLIUM	ug/L	1.00E+02	3.6 J	2.4 J	3.5 J	3.1 J	3 J	2.3 J	4.3 J	3.3 J	4.1 J	5.2 J	2.1 J	3.4 J	2 J	4.3 J	1.6 J	2.3 J	2.7 J	4.6 J
ZINC	ug/L	2.00E+00	73.7	53.2	12.4	41.7	25.5	51.5	24.3	67.7	16.7	416	35.3	37.3	22.9	7.6 J	10 J	41.7	8.4 J	17.6
MERCURY	ug/L	5.00E+03	< 0.5	< 0.5	0 <u>.17</u> J	0.14 J	0.13 J	< 0.5	<u>0.19</u> J	< 0.5	0.039 J	0.05 J	[0.03J	0.03 J	0.03 J	0.04 J	0.03 J	0.04 J	0.07 <u>2</u> J	0.03 J
TOTAL PETROLEUM HYDROC	ARBONS (E	EPA 8015M)																		
PHC AS GASOLINE	mg/L	-	0.02 J	0.02 J	0.02 J	0.03 J	0.02 J	0.02 J	0.02 J	0.03 J	0.02 J	0.02 J	0.03 J	0.02 J	0.03 J	0.02 J				
PHC AS DIESEL FUEL	mg/L	-	< 0.48	< 0.48	< 0.48	< 0.48	< 0.48	< 0.48	< 0.48	< 0.48	< 0.48	< 0.48	< 0.48	0.02 J	0.02 J	< 0.48	< 0.48	< 0.48	< 0.48	< 0.48
MOTOR OILS	mg/L	-	< 0.48	0.04 J	0.03 J	< 0.48	< 0.48	< 0.48	< 0.48	< 0.48	0.02	< 0.48	< 0.48	< 0.48	0.05 J	< 0.48	0.02 J	< 0.48	< 0.48	< 0.48
VOLATILE ORGANIC COMPOU	JNDŠ (EPA	8260B)				1		1					•	_					_	
1,1,1,2-TETRACHLOROETHAN	l ug/L	-	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
1,1,1-TRICHLOROETHANE	ug/L	2.0E+02	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
1,1,2,2-TETRACHLOROETHANE	ug/L	1.0E+00	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
1,1,2-TRICHLOROETHANE	ug/L	5.0E+00	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
1,1-DICHLOROETHANE	ug/L	5.0E+00	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
1,1-DICHLOROETHENE	ug/L	6.0E+00	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
1,1-DICHLOROPROPENE	ug/L	-	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
1,2,3-TRICHLOROBENZENE	ug/L	-	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
1,2,3-TRICHLOROPROPANE	ug/L	-	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5 ,	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
1,2,4-TRICHLOROBENZENE	ug/L	7.0E+01	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
1,2,4-TRIMETHYLBENZENE	ug/L	-	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
1,2-DIBROMO-3-CHLOROPROPANE	ug/L	-	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
1,2-DIBROMOETHANE	ug/L	-	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
1,2-DICHLOROBENZENE	ug/L	6.0E+02	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
1,2-DICHLOROETHANE	ug/L	5.0E-01	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
1,2-DICHLOROPROPANE	ug/L	5.0E+00	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
1,3,5-TRIMETHYLBENZENE	ug/L	-	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
1,3-DICHLOROBENZENE	ug/L	-	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
1,3-DICHLOROPROPANE	ug/L	•	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
1,4-DICHLOROBENZENE	ug/L	5.0E+00	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	<u> </u>	< 5	< 5	< 5	< 5

LA

Page 1 of 3

TABLE 4	•
LABORATORY ANALYTICAL RESULTS FOR SURFACE WATER SAM	IPLES
(LOWER LAKES, HDFCB, LOS ANGELES, CA)	

ANALYTICAL PARAMETERS	UNIT	MCL/AL			=	LARGE LO	WER LAKE		- <u>, ,, , , , , , , , , , , , , , , , , ,</u>						SMALL LO	WER LAKE				
SAMPLE ID			SW-1-1	SW-1-2	SW-1-3	SW-2-1	SW-2-2	SW-3-1	SW-3-2	QC-2	SW-4-1	SW-4-2	SW-4-3	SW-5-1	SW-5-2	SW-5-3	SW-6-1	SW-6-2	SW-6-3	QC-3
DEPTH TO THE SURFACE (INCH)		24	42	- 3	36	3	36	3	24	138	72	3	156	78	3	120	66	3	3
SAMPLING DATE			12/11/2002	12/11/2002	12/11/2002	12/11/2002	12/11/2002	12/11/2002	12/11/2002	12/11/2002	12/12/2002	12/12/2002	12/12/2002	12/12/2002	12/12/2002	12/12/2002	12/12/2002	12/12/2002	12/12/2002	12/12/2002
2,2-DICHLOROPROPANE	ug/L	-	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
2-CHLOROTOLUENE	ug/L	-	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
4-CHLOROTOLUENE	ug/L	-	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
	ug/L	1 05.00	< 50	< 50	< 50	< 50	< 50	9 J	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 5	< 5	< 50
	ug/L	1.0E+00	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5		< 5 - 5	< 5	< 5	< 5
	ug/L	1 05 00	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5		5	< 5	< 5	< 5
	ug/L	1.0E+02	< 5	< 5	< 5	< 5	< 5 - 5	- 5		- 5	< 5	< 5	< 5	< 5	- 5		5	< 5	< 5	< 5
BROMODICHLONOMETHANE	ug/L	1.05+02	< 5	< 5				- 5		< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
BROMONETHANE	ug/L	1.02702	~ 5	> 5	2 5	25	25	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
CABBON DISULFIDE	ug/L	-	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
CARBON TETRACHLORIDE	ua/L	5.0E-01	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
CHLOROBENZENE	ua/L	7.0E+01	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
CHLOROETHANE	ua/L	-	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
CHLOROFORM	ua/L	1.0E+02	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
CHLOROMETHANE	ug/L	-	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
CIS-1,2-DICHLOROETHENE	uğ/L	6.0E+00	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
CIS-1,3-DICHLOROPROPENE	ug/L	5.0E+00	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
DIBROMOCHLOROMETHANE	ug/L	1.0E+02	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
DIBROMOMETHANE	ug/L	-	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
DICHLORODIFLUOROMETHANE	ug/L	-	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< .5	< 5	< 5
ETHYLBENZENE	ug/L	7.0E+02	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
HEXACHLOROBUTADIENE	ug/L	-	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< ∙5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
ISOPROPYLBENZENE (CUMENE)	ug/L	-	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
M,P-XYLENE	ug/L	1.8E+03	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
METHYL ETHYL KETONE	ug/L	-	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100
METHYL ISOBUTYL KETONE	ug/L	-	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< '50	< 50
METHYLENE CHLORIDE	ug/L	5.0E+00	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
NAPHTHALENE	ug/L	-	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
N-BUTYLBENZENE	ug/L	-	< 5	< 5	< 5	5	5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
N-PROPYLBENZENE	ug/L		< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
O-XYLENE	ug/L	1.8E+03	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
P-CYMENE (P-ISOPROPYLTOLUENE)	ug/L	-	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	K 5	< 5	< 5	< 5	< 5
SEC-BUTYLBENZENE	ug/L	-	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
	ug/L	-	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5		< 5	< 5		< 5	< 5
	ug/L	- 1 0E 01	< 5	< 5	< 5	< 5	< 5	< 5			< 10	< 5	10		10	10	10	10	< 10	10
	ug/∟	1.3E+01	< 10	< 10	< 10			< 10					< 10		< 10			< 5	< 5	- 5
	ug/L	5.0E+00	< 5	< 5	< 5		< 5	< 5		- 5	< 5							2 5	< 5	< 5
	ug/L	1.50+02	< 5	< 5	< 5				< 5			< 5		2 5		- 5	5		< 5	< 5
TRANS-1,2-DICHLOROETHENE	ug/L		< 5	< 5			5	< 5 < 5		< 5	< 5		- 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
	ug/L	5.0E+01	- 5	< 5	5	- 5	- 5	- 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
	ug/L	1.5E+02	 	< 5	< 5		5	- 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
VINYL CHLOBIDE	ug/L	5 OF-01	< 5		< 5	2 5	- 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
CHI OPINATED PESTICIDES (EP		0.02.01	<u>``</u>	<u> </u>			<u> </u>	<u> ``</u>			<u> </u>		<u> </u>							
AI DRIN		~) _	- 0.05	- 0.05	- 0.05	- 0.048	- 0.05	< 0.05	< 0.05	< 0.05	< 0.048	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.048	< 0.05
	ug/L	-	< 0.05	< 0.05	< 0.05	< 0.048	< 0.05	< 0.05	< 0.05	< 0.05	< 0.048	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.048	< 0.05
	ug/L	<u> </u>	20.05	< 0.05	< 0.05	< 0.048	20.05	20.05	< 0.05	< 0.05	< 0.048	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.048	< 0.05
	ug/L	1 0E-01	< 0.05	0.05	< 0.05	< 0.048	< 0.05	< 0.05	< 0.05	< 0.05	< 0.048	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.048	< 0.05
BETA BHC	un/l	-	< 0.05	< 0.05	2 0.05	< 0.048	< 0.05	< 0.05	< 0.05	< 0.05	< 0.048	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.048	< 0.05
BETA ENDOSULEAN	ug/L	-	< 0.1	201		< 0.096	< 0.1	< 0.1	< 0.1	< 0.1	< 0.096	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.096	< 0.1
DELTA BHC	ug/L un/l	-	< 0.05	< 0.05	< 0.05	< 0.048	< 0.05	< 0.05	< 0.05	< 0.05	< 0.048	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.048	< 0.05
DIELDRIN	ug/L	-	< 0.1	< 0.1	< 0.1	< 0.096	< 0.1	< 0.1	< 0.1	< 0.1	< 0.096	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.096	< 0.1

TABLE 4									
LABORATORY ANALYTICAL RESULTS FOR SURFACE WATER SAMPLES									
(LOWER LAKES, HDFCB, LOS ANGELES, CA)									

ANALYTICAL PARAMETERS	UNIT	MCL/AL				LARGE LO	WER LAKE				SMALL LOWER LAKE									
SAMPLE ID			SW-1-1	SW-1-2	SW-1-3	SW-2-1	SW-2-2	SW-3-1	SW-3-2	QC-2	SW-4-1	SW-4-2	SW-4-3	SW-5-1	SW-5-2	SW-5-3	SW-6-1	SW-6-2	SW-6-3	QC-3
DEPTH TO THE SURFACE (INCH	l)		24	42	3	36	3	36	3	24	138	72	3	156	78	3	120	66	3	3
SAMPLING DATE			12/11/2002	12/11/2002	12/11/2002	12/11/2002	12/11/2002	12/11/2002	12/11/2002	12/11/2002	12/12/2002	12/12/2002	12/12/2002	12/12/2002	12/12/2002	12/12/2002	12/12/2002	12/12/2002	12/12/2002	12/12/2002
ENDOSULFAN SULFATE	ug/L	-	< 0.48	< 0.48	< 0.48	< 0.48	< 0.48	< 0.48	< 0.48	< 0.48	< 0.48	< 0.48	< 0.48	< 0.48	< 0.48	< 0.48	< 0.48	< 0.48	< 0.48	< 0.48
ENDRIN	ug/L	-	< 0.1	< 0.1	< 0.1	< 0.096	< 0.1	< 0.1	< 0.1	< 0.1	< 0.096	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.096	< 0.1
ENDRIN ALDEHYDE	ug/L	-	< 0.1	< 0.1	< 0.1	< 0.096	< 0.1	< 0.1	< 0.1	< 0.1	< 0.096	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.096	< 0.1
ENDRIN KETONE	ug/L	-	< 0.1	< 0.1	< 0.1	< 0.096	< 0.1	< 0.1	< 0.1	< 0.1	< 0.096	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.096	< 0.1
GAMMA BHC (LINDANE)	ug/L	2.0E-01	< 0.05	< 0.05	< 0.05	< 0.048	< 0.05	< 0.05	< 0.05	< 0.05	< 0.048	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.048	< 0.05
GAMMA-CHLORDANE	ug/L	-	< 0.05	< 0.05	< 0.05	< 0.048	< 0.05	< 0.05	< 0.05	< 0.05	< 0.048	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.048	< 0.05
HEPTACHLOR	ug/L	1.0E-02	< 0.05	< 0.05	< 0.05	< 0.048	< 0.05	< 0.05	< 0.05	< 0.05	< 0.048	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.048	< 0.05
HEPTACHLOR EPOXIDE	ug/L	1.0E-02	< 0.05	< 0.05	< 0.05	< 0.048	< 0.05	< 0.05	< 0.05	< 0.05	< 0.048	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.048	< 0.05
METHOXYCHLOR	ug/L	4.0E+01	< 1.9	< 1.9	< 1.9	< 1.9	< 1.9	< 1.9	< 1.9	< 1.9	< 1.9	< 1.9	< 1.9	< 1.9	< 1.9	< 1.9	< 1.9	< 1.9	< 1.9	< 1.9
P,P'-DDD	ug/L	-	< 0.1	< 0.1	< 0.1	< 0.096	< 0.1	< 0.1	< 0.1	< 0.1	< 0.096	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.096	< 0.1
P,P'-DDE	ug/L	-	< 0.1	< 0.1	< 0.1	< 0.096	< 0.1	< 0.1	< 0.1	< 0.1	< 0.096	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.096	< 0.1
P,P'-DDT	ug/L	-	< 0.1	< 0.1	< 0.1	< 0.096	< 0.1	< 0.1	< 0.1	< 0.1	< 0.096	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.096	< 0.1
TOXAPHENE	ug/L	3.0E+00	< 4.8	< 4.8	< 4.8	< 4.8	< 4.8	< 4.8	< 4.8	< 4.8	< 4.8	< 4.8	< 4.8	< 4.8	< 4.8	< 4.8	< 4.8	< 4.8	< 4.8	< 4.8
PCBS (EPA 8082)																				
PCB-1016 (AROCLOR 1016)	ug/L	5.0E-01	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96
PCB-1221 (AROCLOR 1221)	ug/L	5.0E-01	< 1.9	< 1.9	< 1.9	< 1.9	< 1.9	< 1.9	< 1.9	<u><</u> 1.9	< 1.9	< 1.9	< 1.9	< 1.9	< 1.9	< 1.9	< 1.9	< 1.9	< 1.9	< 1.9
PCB-1232 (AROCLOR 1232)	ug/L	5.0E-01	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96
PCB-1242 (AROCLOR 1242)	ug/L	5.0E-01	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96
PCB-1248 (AROCLOR 1248)	ug/L	5.0E-01	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96
PCB-1254 (AROCLOR 1254)	ug/L	5.0E-01	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96
PCB-1260 (AROCLOR 1260)	ug/L	5.0E-01	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	<u>< 0.96</u>	< 0.96	<u>< 0.96</u>	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96

Notes:

PRG = Preliminary Remediation Goal from U.S. Environmental Protection Agency Region IX (EPA, 2002).

~

MCL = Max Contaminant Level (drinking water), California Department of Health Services (DHS, 2000)

AL = Action Level (drinking water), California Department of Health Services (DHS, 2000)

mg/L = milligrams per liter

 μ g/L = micrograms per liter

- = Not Analyzed or Not Available

. i -

i.

.

TABLE 5 LABORATORY ANALYTICAL RESULTS FOR BACKGROUND SURFACE WATER SAMPLES (LOWER LAKES, HDFCB, LOS ANGELES, CA)

ANALYTICAL PARAMETERS	UNIT	MCL/AL	· · · · · · · · · · · · · · · · · · ·	BACKGROL	JND SURFAC	E WATER	
SAMPLE ID			BG-SW-1	BG-SW-2	BG-SW-3	BG-SW-QC1	TB-1
DEPTH TO THE SURFACE (INCH)			0-6	0-6	0-6	0-6	
SAMPLING DATE			03/26/2003	03/26/2003	03/26/2003	03/26/2003	03/26/2003
INORGANIC PARAMETERS (VARIOU	JS EPA METI	HODS)					
BIOLOGICAL OXYGEN DEMAND (BC	mg-O2/L	-	6	1.7	< 2	< 2	- ·
CHLORIDE	mg/L	2.5E+02	14.0	25.5	26.5	27.5	-
NITRATE AS N	mg/L	4.5E+01	0.35	3.3	4.4	4.2	-
NITRITE AS N	mg/L	1.0E+00	< 0.02	< 0.02	0.03	0.034	-
рН ·	pH UNIT	-	8.49	8.08	7.37	7.32	-
SETTABLE SOLIDS (SS)	M/L-HR	-	< 0.2	< 0.2	< 0.2	< 0.2	-
TOTAL DISSOLVED SOLIDS (TDS)	mg/L	5.0E+02	339	370	358	380	-
TOTAL SUSPENDED SOLIDS (TSS)	mg/L	-	< 4	< 4	< 4	5	-
SULFATE	mg/L	2.5E+02	67.5	58.5	47.7	53.4	-
DISSOLVED SULFIDE	mg/L	-	< 0.2	< 0.2	< 0.2	< 0.2	-
TOTAL COLIFORM	PMPN/100ml	2.0E+02	240	240	50	6	-
FECAL COLIFORM	MPN/100mL	-	23	50	8	< 2	-
PERCHLORATE	ug/L	4.0E+00	< 4	< 4	< 4	< 4	-
PRIORITY POLLUTANT METALS (EF	PA 6010B/747	/0A/218.6)					
ANTIMONY	ug/L	6.00E+00	< 2.9 J	< 10	< 10	2.4 J	-
ARSENIC	ug/L	5.00E+01	< 5	< 5	< 5	< 5	-
BERYLLIUM	ug/L	1.00E+03	< 2	< 2	< 2	< 2	-
CADMIUM	ug/L	5.00E+00	< 0.49 J	< 0.32 J	0.55 J	0.42 J	-
СНВОМШМ	ug/l	5.00E+01	1.5 J	1.9 J	2.0 J	2.0 J	-
	ug/L	-	< 1	< 1	< 1	< 1	_]
COPPER	ug/L	1.00E+03	< 3.1 J	< 10	< 10	< 10	-
LEAD	ua/L	1.50E+01	< 5	< 5	< 5	< 5	-
MERCURY	ua/L	2.00E+00	0.33 J	0.18 J	0.25 J	0.24 J	-
NICKEL	ug/L	1.00E+02	< 5	1.6 J	< 5	< 5	-
SELENIUM	ua/L	5.00E+01	< 10	< 10	< 10	3.0 J	-
SILVER	μα/L	1.00E+02	< 10	< 10	< 10	< 10	-
THALLIUM	ug/L	2.00F+00	< 10	< 10	< 10	< 10	-
ZINC	ua/L	5.00E+03	9.0 J	< 8.0 J	17.7	11.3	-
TOTAL PETROLEUM HYDROCARBO	NS (EPA 80	15M)					
PHC AS GASOLINE	ma/L	-	0.02 J	0.02 J	0.02 J	0.02 J	-
PHC AS DIESEL FUEL	mg/L	-	< 0.5	< 0.5	< 0.5	< 0.5	-
MOTOR OILS	mg/L	-	< 0.5	< 0.5	< 0.5	< 0.5	-
1,2,3-TCP (EPA 504.1)	ug/L	-	< 0.005	< 0.005	< 0.005	< 0.005	-
VOLATILE ORGANIC COMPOUNDS	(EPA 8260B)						
1,1,1,2-TETRACHLOROETHANE	ug/L	-	< 5	< 5	< 5	< 5	< 5
1,1,1-TRICHLOROETHANE	ug/L	2.00E+02	< 5	< 5	< 5	< 5	< 5
1,1,2,2-TETRACHLOROETHANE	ug/L	1.00E+00	< 5	< 5	< 5	< 5	< 5
1,1,2-TRICHLOROETHANE	ug/L	5.00E+00	< 5	< 5 [.]	< 5	< 5	< 5
1,1-DICHLOROETHANE	ug/L	5.00E+00	< 5	< 5	< 5	< 5	< 5
1,1-DICHLOROETHENE	ug/L	6.00E+00	< 5	< 5	< 5	< 5	< 5
1,1-DICHLOROPROPENE	ug/L	-	< .5	< 5	< 5	< 5	< 5
1,2,3-TRICHLOROBENZENE	ug/L	-	< 5	< 5	< 5	< 5	< 5
1,2,3-TRICHLOROPROPANE	ug/L	- .	< 5	< 5	< 5	< 5	< 5
1,2,4-TRICHLOROBENZENE	ug/L	7.00E+01	< 5	< 5	< 5	< 5	< 5
1,2,4-TRIMETHYLBENZENE	ug/L	-	< 5	< 5	< 5	< 5	< 5
1,2-DIBROMO-3-CHLOROPROPANE	ug/L	-	< 5	< 5	< 5	< 5	< 5

TABLE 5 LABORATORY ANALYTICAL RESULTS FOR BACKGROUND SURFACE WATER SAMPLES (LOWER LAKES, HDFCB, LOS ANGELES, CA)

ANALYTICAL PARAMETERS	UNIT	MCL/AL		BACKGROL	JND SURFAC	E WATER	
SAMPLE ID			BG-SW-1	BG-SW-2	BG-SW-3	BG-SW-QC1	TB-1
DEPTH TO THE SURFACE (INCH)			0-6	0-6	0-6	0-6	
SAMPLING DATE			03/26/2003	03/26/2003	03/26/2003	03/26/2003	03/26/2003
1,2-DIBROMOETHANE	ug/L	-	< 5	< 5	< 5	< 5	< 5
1.2-DICHLOROBENZENE	ug/L	6.00E+02	< 5	< 5	< 5	< 5	< 5
1,2-DICHLOROETHANE	ug/L	5.00E-01	< 5	< 5	< 5	< 5	< 5
1,2-DICHLOROPROPANE	ug/L	5.00E+00	< 5	< 5	< 5	< 5	< 5
1,3,5-TRIMETHYLBENZENE	ug/L	-	< 5	< 5	< 5	< 5	< 5
1,3-DICHLOROBENZENE	ug/L	-	< 5	< 5	< 5	< 5	< 5
1,3-DICHLOROPROPANE	ug/L	-	< 5	< 5	< 5	< 5	< 5
1,4-DICHLOROBENZENE	ug/L	5.00E+00	< 5	< 5	< 5	< 5	< 5
2,2-DICHLOROPROPANE	ug/L	-	< 5	< 5	< 5	< 5	< 5
2-CHLOROTOLUENE	ug/L	-	< 5	< 5	< 5	< 5	< 5
4-CHLOROTOLUENE	ug/L	-	< 5	< 5	< 5	< 5	< 5
ACETONE	ug/L		< 50	< 50	< 50	< 50	< 50
BENZENE	ug/L	1.00E+00	< 5	< 5	< 5	< 5	< 5
BROMOBENZENE	ug/L	-	< 5	< 5	< 5	< 5	< 5
BROMOCHLOROMETHANE	ug/L	1.00E+02	< 5	< 5	< 5	< 5	< 5
BROMODICHLOROMETHANE	ug/L	1.00E+02	< 5	< 5	< 5	< 5	< 5
BROMOFORM	ug/L	1.00E+02	< 5	< 5	< 5	< 5	< 5
BROMOMETHANE	ug/L	-	< 5	< 5	< 5	< 5	< 5
CARBON DISULFIDE	ua/L	-	< 5	< 5	< 5	< 5	< 5
CARBON TETRACHLORIDE	ua/L	5.00E-01	< 5	< 5	< 5	< 5	< 5
CHLOROBENZENE	ua/L	7.00E+01	< 5	< 5	< 5	< 5	< 5
CHLOROETHANE	·ua/L	-	< 5	< 5	< 5	< 5	< 5
CHLOBOFORM	ug/L	1.00E+02	< 5	< 5	< 5	< 5	< 5
CHLOBOMETHANE	υ <u>σ</u> /Ι	-	< 5	< 5	< 5	< 5	< 5
CIS-1.2-DICHLOROETHENE	ug/L	6.00E+00	< 5	< 5	< 5	< 5	< 5
CIS-1.3-DICHLOROPROPENE	ua/L	5.00E-01	< 5	< 5	< 5	< 5	< 5
DIBROMOCHLOROMETHANE	ua/L	1.00E+02	< 5	< 5	< 5	< 5	< 5
DIBROMOMETHANE	ua/L	-	< 5	< 5	< 5	< 5	< 5
DICHLORODIFLUOROMETHANE	ug/L	-	< 5	< 5	< 5	< 5	< 5
DIISOPROPYL ETHER (DIPE)	ug/L	-	< 5	< 5	< 5	< 5	< 5
ETHYL TERT BUTYL EHTER (ETBE)	ug/L	-	< 5	< 5	< 5	< 5	< 5
ETHYLBENZENE	ug/L	7.00E+02	< 5	< 5	< 5	< 5	< 5
HEXACHLOROBUTADIENE	ug/L	-	< 5	< 5	< 5	< 5	< 5
ISOPROPYLBENZENE (CUMENE)	ug/L	-	< 5	< 5	< 5	< 5	< 5
M,P-XYLENE	ug/L	1.75E+03	< 10	< 10	< 10	< 10	< 10
METHYL ETHYL KETONE	ug/L	-	< 100	< 100	< 100	< 100	< 100
METHYL ISOBUTYL KETONE	ug/L	-	1 J	< 50	2 J	< 50	1 J
METHYLENE CHLORIDE	ug/L	5.00E+00	5 J	3 J	3 J	6	3 J
NAPHTHALENE	ug/L	-	< 5	< 5	< 5	< 5	< 5
N-BUTYLBENZENE	ug/L	-	< 5	< 5	. < 5	< 5	< 5
N-PROPYLBENZENE	ug/L	-	< 5	< 5	< 5	< 5	< 5
O-XYLENE	ug/L	1.75E+03	< 5	< 5	< 5	< 5 -4	< 5
P-CYMENE (P-ISOPROPYLTOLUENE	ug/L	-	< 5	< 5	< 5	< 5	< 5
SEC-BUTYLBENZENE	ug/L	-	< 5	< 5	< 5	< 5	< 5
STYRENE	ug/L		< 5	< 5	< 5	< 5	< 5
IT-BUTYLBENZENE	ug/L	-	< 5	< 5	< 5	< 5	< 5
TERT AMYL METHYL ETHER (TAME)	ug/L	-	< 5	< 5	< 5	< 5	< 5
TERT BUTYL ALCOHOL (TBA)	ug/L	-	< 20	< 20	< 20	< 20	< 20

TABLE 5 LABORATORY ANALYTICAL RESULTS FOR BACKGROUND SURFACE WATER SAMPLES (LOWER LAKES, HDFCB, LOS ANGELES, CA)

ANALYTICAL PARAMETERS	UNIT	MCL/AL		BACKGROL	JND SURFAC	E WATER	
SAMPLE ID			BG-SW-1	BG-SW-2	BG-SW-3	BG-SW-QC1	TB-1
DEPTH TO THE SURFACE (INCH) SAMPLING DATE	•		0-6 03/26/2003	0-6 03/26/2003	0-6 03/26/2003	0-6 03/26/2003	03/26/2003
TERT-BUTYL METHYL ETHER	ug/L	-	< 10	< 10	< 10	< 10	< 10
TETRACHLOROETHENE(PCE)	ug/L	5.00E+00	< 5	. < 5	< 5	< 5	< 5
TOLUENE	ug/L	1.50E+02	< 5	< 5	< 5	< 5	< 5
TRANS-1,2-DICHLOROETHENE	ug/L	1.00E+01	< 5	< 5	< 5	< 5	< 5
TRANS-1,3-DICHLOROPROPENE	ug/L	5.00E-01	< 5	< 5	< 5	< 5	< 5
TRICHLOROETHENE (TCE)	ug/L	5.00E+00	< 5	< 5	< 5	< 5	< 5
TRICHLOROFLUOROMETHANE	ug/L	1.50E+02	< 5.	< 5	< 5	·< 5	< 5
VINYL CHLORIDE	ug/L	5.00E-01	< 5	< 5	< 5	< 5	< 5
1,4-DIOXANE (EPA 8270 SIM)	ug/L	3.0E+00	< 1	< 1	< 1	< 1	< 1
NDMA (EPA 1625C)	ug/L	-	< 1	< 1	< 1	< 1	< 1
	6081A)			0.040	0.040	0.040	
	ug/L	-	< 0.048	< 0.048	< 0.048	< 0.048	-
	ug/L	-	< 0.048	< 0.048	< 0.048	< 0.048	-
	ug/L	+ 05 01	< 0.048	< 0.048	< 0.048	< 0.048	-
	ug/L	1.0E-01	< 0.048	< 0.048	< 0.048	< 0.048	-
	ug/L	-	< 0.046	< 0.046	< 0.046	< 0.046	-
	ug/L	-	< 0.090	< 0.096	< 0.090	< 0.090	-
	ug/L	-	< 0.048	< 0.048	< 0.048	< 0.046	-
	ug/∟ ug/l	-	< 0.090	< 0.090	< 0.090	< 0.090	-
	ug/L	-	< 0.46	< 0.46	< 0.40		-
	ug/L	-	< 0.090	< 0.090	0.090	< 0.090	-
	ug/L	-	< 0.096	< 0.096	< 0.096	< 0.096	•
	ug/L		< 0.096	< 0.096	< 0.096	< 0.096	-
	ug/L	2.0E-01	< 0.048	< 0.048	< 0.048	< 0.048	-
	ug/L	1 05 02	< 0.048	< 0.048	< 0.048	< 0.048	-
	ug/L	1.0E-02	< 0.048	< 0.048	< 0.048	< 0.048	_
	ug/L	4 0F±01	< 19	< 1.9	< 1.9	< 1.9	-
HEPTACHLOB	ug/L		< 0.096	< 0.096	< 0.096	< 0.096	-
HEPTACHLOR EPOXIDE	ua/L	- 1	< 0.096	< 0.096	< 0.096	< 0.096	-
METHOXYCHLOR	ug/L	-	< 0.096	< 0.096	< 0.096	< 0.096	· -
TOXAPHENE	ug/L	3.0E+00	< 4.8	< 4.8	< 4.8	< 4.8	-
PCBS (EPA 8082)			·				
PCB-1016 (AROCLOR 1016)	ug/L	5.0E-01	< 0.96	< 0.96	< 0.96	< 0.96	-
PCB-1221 (AROCLOR 1221)	ug/L	5.0E-01	< 1.9	< 1.9	< 1.9	< 1.9	-
PCB-1232 (AROCLOR 1232)	ug/L	5.0E-01	< 0.96	< 0.96	< 0.96	< 0.96	-
PCB-1242 (AROCLOR 1242)	ug/L	5.0E-01	< 0.96	< 0.96	< 0.96	< 0.96	-
PCB-1248 (AROCLOR 1248)	ug/L	5.0E-01	< 0.96	< 0.96	< 0.96	< 0.96	-
PCB-1254 (AROCLOR 1254)	ug/L	5.0E-01	< 0.96	< 0.96	< 0.96	< 0.96	-
PCB-1260 (AROCLOR 1260)	ug/L	5.0E-01	< 0.96	< 0.96	< 0.96	. < 0.96	-

Notes:

PRG = Preliminary Remediation Goal from U.S. Environmental Protection Agency Region IX (EPA, 2002).

MCL = Max Contaminant Level (drinking water), California Department of Health Services (DHS, 2000)

AL = Action Level (drinking water), California Department of Health Services (DHS, 2000)

mg/L = milligrams per liter

 μ g/L = micrograms per liter

- = Not Analyzed or Not Available

SEDIMENT SAMPLE LOCATION (SOTA 2003)

APPENDIX A

APPLIED PHYSICS & CHEMISTRY LABORATORY

13760 Magnolia Ave. Chino CA 91710

Tel: (909) 590-1828 Fax: (909) 590-1498 Submitted to:

SOTA Environmental Attention: Yu Zeng 16835 W. Bernardo Dr, Ste. 212 San Diego CA 92127 Tel: (858)485-8100 Fax: (858)485-0812

APCL Analytical Report

Service ID #: 801-026595 Collected by: MES/DM Collected on: 12/12/02 Received: 12/13/02 Extracted: 12/16-17/02 Tested: 12/13-20/02 Reported: 01/02/03

Sample Description: Water Project Description: 02HW013 Lowers Lakes

Analysis of Water Samples

					Analys	is Result	
Component Analyzed	Method	Unit	PQL	QC-3	SW-4-1	SW-4-2	SW-4-3
·				02-06595-1	02-06595-2	02-06595-3	02-06595-4
BIOLOGICAL OXYGEN DEMAND (BOD)	405.1	mg-O ₂ /L	2	-	0.93J	< 2	< 2
CHLORIDE CL ⁻	325.3	mg/L	1	-	24.0	22.0	24.0
NITRATE (NO_3^-) AS N	353.3	mg/L	0.1	-	1.1	1.2	1.3
NITRITE (NO_2) AS N	354.1	mg/L	0.02	-	0.022	0.019J	0.021
РН	9040B	pH unit	0.01		7.56	7.59	7.55
SOLIDS, SETTLEABLE (SS)	160.5	mL/L-hr	0.2		$< 0.2^{(a)}$	$< 0.2^{(a)}$	$< 0.2^{(a)}$
SOLIDS, TOTAL DISSOLVED (TDS)	160. 1	mg/L	10	-	396	365	372
SOLIDS, TOTAL SUSPENDED (TSS)	160.2	mg/L	4	-	4.0	6.0	5.0
SULFATE $(SO_4^{})$	375.4	mg/L	2	-	70.9	76.6	104
SULFIDE, DISSOLVED	376.2	mg/L	0.2	-	< 0.2	< 0.2	< 0.2
TOTAL COLIFORM, MTF, 3X5 TUBES	SM9221B	MPN/100mL	2		27.0	130	13.0
FECAL COLIFORM, MTF, 3X5 TUBES	SM9221E	MPN/100mL	2	-	13.0	23.0	13.0
Dilution Factor				1	1	1	1
PERCHLORATE	314.0	"g/L	4	< 4	< 4	< 4	< 4
PRIORITY POLLUTANT METALS (CWA) (13)	F 01					
Dilution Factor				1	1	1	1
ANTIMONY	6010B	$_{\mu}\mathrm{g/L}$	10	3.2J	<10	3.3J	3.0J
ARSENIC	6010B	$\mu g/L$	5	< 5	< 5	< 5	4.0J
BERYLLIUM	6010B	$_{\mu}\mathrm{g/L}$	2	< 2	< 2	< 2	< 2
CADMIUM	6010B	$\mu g/L$	2	< 2	< 2	2.0	< 2
CHROMIUM	6010B	$\mu g/L$	5	0.83J	0.94J	2.1J	1. 3 J
COPPER	6010B	$_{\mu}\mathrm{g/L}$	10	3.7J	2.6J	2.8J	1.9J
LEAD	6010B	$_{\mu}g/L$	5	1.1J	1.2J	23.7	1.7J
MERCURY	7470A	$_{\mu}\mathrm{g/L}$	0.5	0.034J	0.039J	0.047 J	0.030J
NICKEL	6010B	$_{\mu}\mathrm{g/L}$	5	4.4J	2.0J	$2.7 \mathrm{J}$	1.3J
SELENIUM	6010B	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10	< 10
SILVER	6010B	$_{\mu}\mathrm{g/L}$	10	< 10	0.51J	<10	<10
THALLIUM	6010B	$\mu g/L$	10	4.6J	4.1J	5.2J	$2.1 \mathrm{J}$
ZINC	6010B	"g/L .	10	17.6	16.7	416	35.3
Dilution Factor		μ0,		1 .	1	1	1
PHC AS GASOLINE	M8015V	mg/L	0.05	0.02J	0.02J	0.02J	0.03J
Dilution Factor				0.96	0.96	0.96	0.96
PHC AS DIESEL FUEL	M8015E	mg/L	0.5	< 0.48	< 0.48	< 0.48	< 0.48
Dilution Factor		-		0.96	0.96	0.96	0.96
MOTOR OILS	M8015E	mg/L	0.5	< 0.48	0.02J	< 0.48	< 0.48

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analys	is Result	
Component Analyzed	Method	Unit	\mathbf{PQL}	QC-3	SW-4-1	SW-4-2	SW-4-3
• • •				02-06595-1	02-06595-2	02-06595-3	02-06595-4
VOLATILE ORGANICS							
Dilution Factor				1	1	1	1
ACETONE	8260B	$\mu g/L$	50	< 50	< 50	< 50	< 50
BENZENE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
BROMOBENZENE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
BROMOCHLOROMETHANE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
BROMODICHLOROMETHANE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
BROMOFORM	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
BROMOMETHANE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
METHYL ETHYL KETONE	8260B	$\mu g/L$	100	< 100	< 100	<100	< 100
N-BUTYLBENZENE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
SEC-BUTYLBENZENE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
T-BUTYLBENZENE	8260B	$\mu g/L$	5	< 5	< 5	• < 5	< 5
CARBON DISULFIDE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
CARBON TETRACHLORIDE	8260B	$_{\mu}{ m g/L}$	5	< 5	< 5	< 5	< 5
CHLOROBENZENE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
DIBROMOCHLOROMETHANE	8260B	$_{\mu}\mathrm{g/L}$	5	< 5	< 5	< 5	< 5
CHLOROETHANE	8260B	$_{\mu}\mathrm{g/L}$	5	< 5	< 5	< 5	< 5
CHLOROFORM	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
CHLOROMETHANE	8260B	$\mu g/L$	5	< 5	• < 5	< 5	< 5
2-CHLOROTOLUENE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
4-CHLOROTOLUENE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
1,2-DIBROMO-3-CHLOROPROPANE	8260B	$\mu g/L$	5	⁻ < 5	< 5	< 5	< 5
1,2-DIBROMOETHANE	8260B	_µ g/L	5	< 5	< 5	< 5	< 5
DIBROMOMETHANE	8260B	$\mu g/L$	5	< 5	< 5	· < 5	< 5
1,2-DICHLOROBENZENE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
1,3-DICHLOROBENZENE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
1,4-DICHLOROBENZENE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
DICHLORODIFLUOROMETHANE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
1,1-DICHLOROETHANE	8260B	$_{\mu}g/L$	5	< 5	< 5	< 5	< 5
1,2-DICHLOROETHANE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
1,1-DICHLOROETHENE	8260B	$_{\mu}\mathrm{g/L}$	5	< 5	< 5	< 5	< 5
CIS-1,2-DICHLOROETHENE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
TRANS-1,2-DICHLOROETHENE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
1,2-DICHLOROPROPANE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
1,3-DICHLOROPROPANE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
2,2-DICHLOROPROPANE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
1,1-DICHLOROPROPENE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
CIS-1,3-DICHLOROPROPENE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
TRANS-1,3-DICHLOROPROPENE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
ETHYLBENZENE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
HEXACHLOROBUTADIENE	8260B	$_{\mu}\mathrm{g/L}$	5	< 5	< 5	< 5	< 5
ISOPROPYLBENZENE (CUMENE)	8260B	$_{\mu}g/L$	5	< 5	< 5	< 5	< 5
P-CYMENE (P-ISOPROPYLTOLUENE)	8260B	$_{\mu}g/L$	5	< 5	< 5	< 5	< 5

١.

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analys	is Result	
Component Analyzed	Method	Unit	\mathbf{PQL}	QC-3	SW-4-1	SW-4-2	SW-4-3
				02-06595-1	02-06595-2	02-06595-3	02-06595-4
METHYLENE CHLORIDE	8260B	g/L	5	< 5	< 5	< 5	< 5
METHYL ISOBUTYL KETONE	8260B	μ8/ g/L	50	< 50	< 50	< 50	< 50
TERT-BUTYL METHYL ETHER	8260B	μ8/ 	10	< 10	< 10	< 10	< 10
NAPHTHALENE	8260B	μ8/2 φ/L	5	< 5	< 5	< 5	< 5
N-PROPYLBENZENE	8260B	μ8/2 	5	< 5	< 5	< 5	< 5
STYRENE	8260B	μ8/ g/L	5	< 5	< 5	< 5	< 5
1112-TETRACHLOROETHANE	8260B	да/— 	5	< 5	< 5	< 5	< 5
1 1 2 2-TETBACHLOBOETHANE	8260B	μ8/ φ/Ι.	5	< 5	< 5	< 5	< 5
TETRACHLOROETHENE(PCE)	8260B	μ6/± σ/Ι.	5	< 5	< 5	< 5	< 5
TOLUENE	8260B	μ6/5 σ/Ι.	5	< 5	< 5	< 5	< 5
1 2 3-TRICHLOROBENZENE	8260B	μ6/12 σ/T.	5	< 5	< 5	< 5	< 5
1.2.4-TRICHLOROBENZENE	8260B	μ8/15 σ/1.	5	< 5	< 5	< 5	< 5
1 1 1-TRICHLOROETHANE	8260B	μ6/Ц σ/Т.	5	< 5	< 5	< 5	< 5
1 1 2-TRICHLOROETHANE	8260B	μ6/10 σ/Ţ.	5	< 5	< 5	< 5	< 5
TRICHLOROETHENE (TCE)	8260B	μ6/12 σ/Ι.	5	< 5	< 5	< 5	< 5
TRICHLOROFLUOROMETHANE	8260B	μ8/12 φ/L	5	< 5	< 5	< 5	< 5
1 2 3-TRICHLOROPROPANE	8260B	μ8/Ξ σ/Ι	5	< 5	< 5	< 5	< 5
1.2 4-TRIMETHYLBENZENE	8260B	μ8/~ σ/ፒ	5	< 5	< 5	< 5	< 5
1 3 5-TRIMETHYLBENZENE	8260B	μ8/Ξ. σ/Ι.	5	< 5	< 5	< 5	< 5
VINYL CHLORIDE	8260B	μ ₆ /1	5	< 5	< 5	< 5	< 5
O-XYLENE	8260B	μ6/10 σ/L	5	< 5	< 5	< 5	< 5
M P-XVLENE	8260B	μ <u>σ</u> /Ι.	5	< 5	< 5	< 5	< 5
ORGANOCHLORINE PESTICIDES	02001	μв/ Б	U	20	20	20	
Dilution Factor				<u> 96 0</u>	0.96	0.96	0.96
ALDRIN	8081 A		0.05	< 0.048	< 0.048	< 0.048	< 0.048
BETA BHC	8081 A	μ6/5 σ/L	0.00	< 0.048	< 0.048	< 0.048	< 0.048
ALPHA BHC	8081 A	μ6/12 σ/T.	0.05	< 0.048	< 0.048	< 0.048	< 0.048
DELTA BHC	8081A	μ6/± σ/L	0.00	< 0.048	< 0.048	< 0.048	< 0.048
GAMMA BHC (LINDANE)	8081A	μ6/1 σ/L	0.05	< 0.048	< 0.048	< 0.048	< 0.048
ALPHA-CHLORDANE	8081A	μ6/ L σ/L	0.00	< 0.048	< 0.048	< 0.048	< 0.048
GAMMA-CHLOBDANE	8081A	μь/± σ/Т.	0.00	< 0.048	< 0.048	< 0.048	< 0.048
P P'-DDD	8081 A	μ8/± σ/Ι.	0.00	< 0.096	< 0.096	< 0.096	< 0.096
P P'-DDF	80814	μ6/D σ/Ι	0.1	< 0.000	< 0.006	< 0.006	< 0.006
משש- ב, ו	ALGOO	μ6/D	0.1	C 0.030	C 0.090	< 0.090	0.000
P,P-DD1	8081A	μg/L	0.1	< 0.096	< 0.096	< 0.096	< 0.096
ALDHA ENDOSILLEAN	8081A	μg/L π/T	0.1	< 0.096	< 0.096	< 0.096	< 0.096
DETA ENDOSULEAN	A1000	μΒ/ L	0.03	< 0.048	< 0.048	< 0.048	< 0.046
ENDOSILI EAN CULEATE	8081A	μg/L	0.1 0.5	< 0.096	< 0.096	< 0.096	< 0.096
ENDOSULIAN SULIAIE	0001A	$\mu g/L$	0.5	< 0.48	< 0.48	< 0.48	< 0.48
ENDEN ALDEUVDE	0001A	μ8/15 ~/T	0.1	< 0.096	< 0.096	< 0.096	< 0.096
ENDRIN KETONE	8081 Y	µg/Ъ α/Т	0.1	< 0.096	< 0.096	< 0.096	< 0.090
HEPTACHLOR	8081 A	μ <u>Β</u> /ມ α/Τ	0.1 0.05	< 0.096	< 0.096	< 0.096	< 0.048
HEPTACHLOR FROMINE	8081 V	μ <u></u> β/ μ α/Τ	0.05	< 0.048	< 0.040	< 0.048	< 0.040
METHOXYCHLOR	8081 A	μ6/ш σ/Т	0.00 2	< 0.040	< 1.040	~ 1 0	< 1.040
TOXAPHENE	80814	μ6/υ σ/T.	5	< 1.3	~ 1.9	< 4.8	< 4.8
	0001/1	μь/ ц	0	<i>1</i> ,0	× 7.0	× 7.0	\ 1.0

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

						Analysis	Result	
Component Analyzed	Method	Unit	PQ	L QC-3	S	W-4-1	SW-4-2	SW-4-3
			•	02-06595-1	02-	06595-2	02-06595-3	02-06595-4
PCBS								
Dilution Factor				0.96		0.96	0.96	0.96
PCB-1016 (ABOCLOR 1016)	8082	g/L	1	< 0.96		< 0.96	< 0.96	< 0.96
PCB-1221 (AROCLOR 1221)	8082	μ8/	$\hat{2}$	< 1.9		< 1.9	<1.9	<1.9
PCB-1232 (AROCLOR 1232)	8082	μα/L	1	< 0.96		< 0.96	< 0.96	< 0.96
PCB-1242 (AROCLOR 1242)	8082	"g/L	1	< 0.96		< 0.96	< 0.96	< 0.96
PCB-1248 (AROCLOR 1248)	8082	"g/L	1	< 0.96		< 0.96	< 0.96	< 0.96
PCB-1254 (AROCLOR 1254)	8082	"g/L	1	< 0.96		< 0.96	< 0.96	< 0.96
PCB-1260 (AROCLOR 1260)	8082	$\mu g/L$	1	< 0.96		< 0.96	< 0.96	< 0.96
					<u> </u>			
~					DO 1		Analysis Res	sult
Component Analyzed		Met	hod	Unit	PQL	SW-5-1	SW-5-2	SW-5-3
·						02-06595-5	02-06595-6	02-06595-7
BIOLOGICAL OXYGEN DEMA	ND (BOD)	40	5.1	mg-O ₂ /L	2	< 2	< 2	< 2
CHLORIDE CL-		32	5.3	mg/L	1	23.0	22.0	23.0
NITRATE (NO_2^-) AS N		353	3.3	mg/L	0.1	1.1	1.2	1.3
NITRITE (NOT) AS N		354	41	mg/L	0.02	0.021	0.024	0.024
PH		904	1.1 INR	nH unit	0.01	7 58	7 60	7 61
		160	0 5	mI/I hr	0.01	$(0,2)^{(a)}$	$(0,2)^{(a)}$	<0.2
SOLIDS, SETTLEABLE (SS)		100	0.0	11112/11-111	10	250	260	250
SOLIDS, TOTAL DISSOLVED (TDS)	101	0.1	mg/L	10	509	209	2000
SOLIDS, TOTAL SUSPENDED	(TSS)	160	0.2	mg/L	4	5.0	3.UJ	3.UJ
SULFATE (SO_4)		375	5.4	mg/L	2	118	84.2	89.7
SULFIDE, DISSOLVED		370	5.2 5.2	mg/L	0.2	< 0.2	< 0.2	< 0.2
TOTAL COLIFORM, MTF, 3X5	TUBES	SM92	221B	MPN/100mL	2	27.0	13.0	80.0
FECAL COLIFORM, MTF, 3X5	TUBES	S1V192	221E ·	MPN/100mL	Z	2.0	13.0	9.0
		21/	1.0	~ /T	4	1	1	1
PROPERV DOLLUTANT METAL		315	±.U	μ8/1	4	1 4	14	1 4
Dilution Factor	5 (CWA) (15	9				1	1	1
ANTIMONY		601	0B		10	3.91	3.2J	5.5.1
ARSENIC		601	0B	με/1.	5	< 5	2.7J	< 5
BERYLLIUM		601	0B	μ8/	2	< 2	< 2	< 2
CADMIUM		601	0B	μ8/	2	<2	< 2	<2
CHROMIUM		601	0B	μ8/- g/L	5	0.53J	0.86J	< 5
COPPER		601	0B	μ8/ – "g/L	10	3.3J	1.3J	1.0J
LEAD		601	0B	"g/L	5	$2.1 \mathrm{J}$	2.0J	1.4J
MERCURY		747	0 A	"g/L	0.5	0.034J	0.029J	0.035J
NICKEI		601	0B	μ6/ Δ σ/Ι	5	141	4 21	6 0
SELENIIM		601	0B	μ6/⊔ σ/T	10	- 10	1.20 <10	4.4.1
SILVER		601	0B	μ6/10 μ/[.	10	< 10	< 10	< 10
THALLIUM		601	0B	"g/L	10	3 4J	2.0.1	4.3J
ZINC		601	0B	μα/ Ξ μg/L	10	37.3	22.9	7.6J
Dilution Factor				p01 -		1	1	1
PHC AS GASOLINE		M80	15V	mg/L	0.05	0.02J	0.02 J	0.02J
Dilution Factor				01		0.96	0.96	0.96
PHC AS DIESEL FUEL		M80	15E	mg/L	0.5	0.02J	0.02 J	< 0.48
Dilution Factor						0.96	0.96	0.96
MOTOR OILS		M80	15E	mg/L	0.5	< 0.48	0.05J	< 0.48

Applied Physics & Chemistry Laboratory

13760 Magnolia Ave. Chino CA 91710 Tel. (909) 590-1828 Fax (909) 590-1498

May 2, 2003

SOTA Environmental Attention: Yu Zeng 16835 W. Bernardo Dr. Suite 212 San Diego CA 92127

Dear Yu,

This package contains samples in our Service ID 02-6595 and your project is 02HW013 Lowers Lakes. Enclosed please find:

- (1) One copy of analytical report.
- (2) One copy of Chain of Custody.
- (3) One original of Level D Data Package Deliverable.

If anything is missing or you have any questions, please feel free to contact me.

Respectfully submitted, Regina Kirakozova Associate QA/QC Director

Applied P & Ch Laboratory

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						Analysis Resu	lt
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Component Analyzed	Method	Unit	PQL	SW-5-1	SW-5-2	SW-5-3
VOLATILE ORGANICS 1 <th1< th=""> 1 1</th1<>					02-06595-5	02-06595-6	02-06595-7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	VOLATILE ORGANICS					· ·	
ACETONE8260B $\mu_{\rm g}/L$ 50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50	Dilution Factor				1	1	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ACETONE	8260B	"g/L	50	< 50	< 50	< 50
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	BENZENE	8260B	μ0/ "g/L	5	< 5	< 5	< 5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	BROMOBENZENE	8260B	"g/L	. 5	< 5	< 5	< 5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	BROMOCHLOROMETHANE	8260B	"g/L	5	< 5	< 5	< 5
BROMOFORM2200B $\mu g/L$ 5<5<5<5BROMOMETTANE8260B $\mu g/L$ 5<5	BROMODICHLOROMETHANE	8260B	μ8/— g/L	5	< 5	< 5	< 5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	BROMOFORM	8260B	μ8/ g/L	5	< 5	< 5	< 5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BROMOMETHANE	8260B	μ8/ "g/L	5	< 5	< 5	< 5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	METHYL ETHYL KETONE	8260B	μ8/ 	100	< 100	< 100	< 100
SEC-BUTYLBENZENE μ_{BJ}/L 5<5<5<5<5T-BUTYLBENZENE8260B μ_{B}/L 5<5	N-BUTYLBENZENE	8260B	μ8/ g/L	5	< 5	< 5	< 5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SEC-BUTYLBENZENE	8260B	до/ – "g/L	5	< 5	< 5	< 5
CARBON DISULFIDE $220B$ gg/L 5 <5 <5 <5 <5 CARBON TETRACHLORIDE $8260B$ gg/L gg/L 5 <5 <5 <5 CHLOROBENZENE $8260B$ gg/L gg/L 5 <5 <5 <5 CHLOROMETHANE $8260B$ gg/L gg/L 5 <5 <5 <5 CHLOROFORM $8260B$ gg/L gg/L 5 <5 <5 <5 CHLOROFORM $8260B$ gg/L gg/L 5 <5 <5 <5 CHLOROTOLUENE $8260B$ gg/L gg/L 5 <5 <5 <5 2-CHLOROTOLUENE $8260B$ gg/L gg/L 5 <5 <5 <5 1,2-DIBROMO-3-CHLOROPROPANE $8260B$ gg/L gg/L 5 <5 <5 <5 1,2-DIBROMO-3-CHLOROPROPANE $8260B$ gg/L gg/L 5 <5 <5 <5 1,2-DIGHLOROBENZENE $8260B$ gg/L gg/L 5 <5 <5 <5 1,3-DICHLOROBENZENE $8260B$ gg/L gg/L 5 <5 <5 <5 1,1-DICHLOROBENZENE $8260B$ gg/L gg/L 5 <5 <5 <5 1,2-DICHLOROETHANE $8260B$ gg/L gg/L 5 <5 <5 <5 1,2-DICHLOROETHANE $8260B$ gg/L gg/L 5 <5 <5 <5 1,2-DICHLOROETHANE $8260B$ gg/L gg/L 5 <5 <5 <5	T-BUTYLBENZENE	8260B	μ8/ g/L	5	< 5	< 5	< 5
CARBON TETRACHLORIDE $220B$ gg/L gg/L 5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <	CARBON DISULFIDE	8260B	"g/L	5	< 5	< 5	< 5
CHLOROBENZENE8260B $\mu g/L$ g/L 5<5<5<5DIBROMOCHLOROMETHANE8260B $\mu g/L$ g/L 5<5	CARBON TETRACHLORIDE	8260B	да/ — "g/L	5	< 5	< 5	< 5
CHIDOLOGUELDADICBotol μ_B/L 5<5<5<5DIBROMOCHLOROMETHANE8260B μ_B/L 5<5	CHLOBOBENZENE	8260B	μ6/ σ/Ι.	5	< 5	< 5	< 5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DIBROMOCHLOROMETHANE	8260B	μ6/12 σ/1.	5	< 5	< 5	< 5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CHLOROETHANE	8260B	μ6/Ξ .σ/Τ.	5	< 5	< 5	< 5
CHLOROMETHANEB200D $\mu g/L$ 5<5<5<5CHLOROTOLUENE8260B $\mu g/L$ 5<5	CHLOROFORM	8260B	μ6/1 α/Ι	5	< 5	< 5	< 5
CHIONOMENTANE5200D $\mu g/L$ 5<5<5<52-CHLOROTOLUENE8260B $\mu g/L$ 5<5	CHLOROTORM	0200D 0260D	μg/L σ/Ι	Ъ. Б	< 5	< 5	< 5
2-CHLOROTOLUENE $8260B \ \mu g/L$ $5 < 5$ $<5 < 5$ <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <t< td=""><td></td><td>0200D</td><td>μ8/Ъ</td><td>0 -</td><td>< 5</td><td>< 5</td><td>< 0</td></t<>		0200D	μ8/Ъ	0 -	< 5	< 5	< 0
4-CHLOROTODUENE 8260B $\mu g/L$ 5 <5	2-CHLOROTOLUENE	8260B	μg/L	5	< 5	< 5	< 5
1,2-DIBROMO-3-CHLOROPROPANE $8260B$ $\mu g/L$ $\mu g/L$ 5 < 5 < 5 < 5 1,2-DIBROMOETHANE $8260B$ $\mu g/L$ $\mu g/L$ 5 < 5 < 5 < 5 DIBROMOMETHANE $8260B$ $\mu g/L$ g/L 5 < 5 < 5 < 5 1,2-DICHLOROBENZENE $8260B$ $\mu g/L$ g/L 5 < 5 < 5 < 5 1,3-DICHLOROBENZENE $8260B$ $\mu g/L$ g/L 5 < 5 < 5 < 5 1,4-DICHLOROBENZENE $8260B$ $\mu g/L$ g/L 5 < 5 < 5 < 5 DICHLORODIFLUOROMETHANE $8260B$ $\mu g/L$ g/L 5 < 5 < 5 < 5 1,1-DICHLOROETHANE $8260B$ $\mu g/L$ g/L 5 < 5 < 5 < 5 1,2-DICHLOROETHENE $8260B$ $\mu g/L$ g/L 5 < 5 < 5 < 5 1,1-DICHLOROETHENE $8260B$ $\mu g/L$ g/L 5 < 5 < 5 < 5 1,2-DICHLOROETHENE $8260B$ $\mu g/L$ g/L 5 < 5 < 5 < 5 1,2-DICHLOROPTANE $8260B$ $\mu g/L$ g/L 5 < 5 < 5 < 5 1,3-DICHLOROPROPANE $8260B$ $\mu g/L$ g/L 5 < 5 < 5 < 5 1,3-DICHLOROPROPANE $8260B$ $\mu g/L$ g/L 5 < 5 < 5 < 5 1,3-DICHLOROPROPENE $8260B$ $\mu g/L$ g/L 5 < 5 < 5 < 5 1,3-DICHLOROPROPENE 82	4-CHLOROTOLUENE	8260B	μg/L	5	· < 5	< 5	< 5
1,2-DIBROMOETHANE8260B $\mu g/L$ 5<5<5<5DIBROMOETHANE8260B $\mu g/L$ 5<5	1,2-DIBROMO-3-CHLOROPROPANE	8260B	$\mu g/L$	5	< 5	< 5	< 5
DIBROMOMETHANE $8200B$ $\mu g/L$ 5 < 5 < 5 < 5 1,2-DICHLOROBENZENE $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 1,3-DICHLOROBENZENE $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 1,4-DICHLOROBENZENE $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 DICHLORODIFLUOROMETHANE $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 DICHLOROETHANE $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 1,1-DICHLOROETHANE $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 1,2-DICHLOROETHENE $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 1,1-DICHLOROETHENE $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 1,2-DICHLOROETHENE $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 1,2-DICHLOROETHENE $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 1,2-DICHLOROPROPANE $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 1,3-DICHLOROPROPANE $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 1,3-DICHLOROPROPENE $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 1,1-DICHLOROPROPENE $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 1,1-DICHLOROPROPENE $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 1,1-DICHLOROPROPENE $8260B$ $\mu g/L$ 5	1,2-DIBROMOETHANE	8260B	µg/L	5	< 5	< 5	< 5
1,2-DICHLOROBENZENE $8260B$ $\mu g/L$ 5 <5 <5 <5 <5 1,3-DICHLOROBENZENE $8260B$ $\mu g/L$ 5 <5 <5 <5 <5 1,4-DICHLOROBENZENE $8260B$ $\mu g/L$ 5 <5 <5 <5 <5 DICHLORODIFLUOROMETHANE $8260B$ $\mu g/L$ 5 <5 <5 <5 <5 1,1-DICHLOROETHANE $8260B$ $\mu g/L$ 5 <5 <5 <5 <5 1,2-DICHLOROETHANE $8260B$ $\mu g/L$ 5 <5 <5 <5 <5 1,2-DICHLOROETHENE $8260B$ $\mu g/L$ 5 <5 <5 <5 <5 1,1-DICHLOROETHENE $8260B$ $\mu g/L$ 5 <5 <5 <5 <5 1,2-DICHLOROETHENE $8260B$ $\mu g/L$ 5 <5 <5 <5 <5 1,2-DICHLOROPROPANE $8260B$ $\mu g/L$ 5 <5 <5 <5 <5 1,3-DICHLOROPROPANE $8260B$ $\mu g/L$ 5 <5 <5 <5 <5 1,3-DICHLOROPROPANE $8260B$ $\mu g/L$ 5 <5 <5 <5 <5 1,3-DICHLOROPROPENE $8260B$ $\mu g/L$ 5 <5 <5 <5 <5 1,3-DICHLOROPROPENE $8260B$ $\mu g/L$ 5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <td></td> <td>8260B</td> <td>μg/L /T</td> <td>5 F</td> <td>< 5</td> <td>< 5</td> <td>< 5</td>		8260B	μg/L /T	5 F	< 5	< 5	< 5
1,3-DICHLOROBENZENE $8260B$ μ g/L 5 <5 <5 <5 <5 1,4-DICHLOROBENZENE $8260B$ μ g/L 5 <5 <5 <5 <5 DICHLORODIFLUOROMETHANE $8260B$ μ g/L 5 <5 <5 <5 <5 1,1-DICHLOROETHANE $8260B$ μ g/L 5 <5 <5 <5 <5 1,2-DICHLOROETHANE $8260B$ μ g/L 5 <5 <5 <5 <5 1,1-DICHLOROETHENE $8260B$ μ g/L 5 <5 <5 <5 <5 CIS-1,2-DICHLOROETHENE $8260B$ μ g/L 5 <5 <5 <5 <5 TRANS-1,2-DICHLOROETHENE $8260B$ μ g/L 5 <5 <5 <5 <5 1,3-DICHLOROPROPANE $8260B$ μ g/L 5 <5 <5 <5 <5 1,3-DICHLOROPROPANE $8260B$ μ g/L 5 <5 <5 <5 <5 1,1-DICHLOROPROPANE $8260B$ μ g/L 5 <5 <5 <5 <5 1,3-DICHLOROPROPENE $8260B$ μ g/L 5 <5 <5 <5 <5 CIS-1,3-DICHLOROPROPENE $8260B$ μ g/L 5 <5 <5 <5 <5 TRANS-1,3-DICHLOROPROPENE $8260B$ μ g/L 5 <5 <5 <5 <5 FTHYLBENZENE $8260B$ μ g/L 5 <5 <5 <5 <5 <5 <5 HEXACHLOROB	1,2-DICHLOROBENZENE	8260B	μg/L /T	5	< 5	< 5	< 5
1,4-DICHLOROBELVENE8260B $\mu g/L$ 5<5<5<5<5DICHLORODIFLUOROMETHANE8260B $\mu g/L$ 5<5	1,3-DICHLOROBENZENE	8260B	μg/L	5	< 5	< 5	< 5
DICHLORODIFLUOROMETHANE $8260B$ $\mu g/L$ 5 <5 <5 <5 <5 <5 1,1-DICHLOROETHANE $8260B$ $\mu g/L$ 5 <5 <5 <5 <5 1,2-DICHLOROETHANE $8260B$ $\mu g/L$ 5 <5 <5 <5 1,1-DICHLOROETHENE $8260B$ $\mu g/L$ 5 <5 <5 <5 CIS-1,2-DICHLOROETHENE $8260B$ $\mu g/L$ 5 <5 <5 <5 TRANS-1,2-DICHLOROETHENE $8260B$ $\mu g/L$ 5 <5 <5 <5 1,2-DICHLOROPROPANE $8260B$ $\mu g/L$ 5 <5 <5 <5 1,3-DICHLOROPROPANE $8260B$ $\mu g/L$ 5 <5 <5 <5 2,2-DICHLOROPROPANE $8260B$ $\mu g/L$ 5 <5 <5 <5 1,1-DICHLOROPROPANE $8260B$ $\mu g/L$ 5 <5 <5 <5 1,1-DICHLOROPROPANE $8260B$ $\mu g/L$ 5 <5 <5 <5 1,1-DICHLOROPROPENE $8260B$ $\mu g/L$ 5 <5 <5 <5 CIS-1,3-DICHLOROPROPENE $8260B$ $\mu g/L$ 5 <5 <5 <5 TRANS-1,3-DICHLOROPROPENE $8260B$ $\mu g/L$ 5 <5 <5 <5 HEXACHLOROBUTADIENE $8260B$ $\mu g/L$ 5 <5 <5 <5 ISOPROPYLBENZENE (CUMENE) $8260B$ $\mu g/L$ 5 <5 <5 <5 P-CYMENE (P-ISOPROPYLTOLUENE) $8260B$	1,4-DICHLOROBENZENE	8260B	μg/L	5	< 5	< 5	< 5
1,1-DICHLOROETHANE $8260B$ $\mu g/L$ 5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <	DICHLORODIFLUOROMETHANE	8260B	μg/L	5	< 5	< 5	< 5
1,2-DICHLOROETHANE8260B $_{\mu}g/L$ 5<5<5<5<51,1-DICHLOROETHENE8260B $_{\mu}g/L$ 5<5	1,1-DICHLOROETHANE	8260B	$\mu g/L$	5	< 5	< 5	< 5
1,1-DICHLOROETHENE8260B $\mu g/L$ 5<5<5<5CIS-1,2-DICHLOROETHENE8260B $\mu g/L$ 5<5	1,2-DICHLOROETHANE	8260B	μg/L	5	< 5	< 5	< 5
CIS-1,2-DICHLOROETHENE $8260B$ $\mu g/L$ 5 <5 <5 <5 <5 TRANS-1,2-DICHLOROETHENE $8260B$ $\mu g/L$ 5 <5 <5 <5 <5 1,2-DICHLOROPROPANE $8260B$ $\mu g/L$ 5 <5 <5 <5 <5 1,3-DICHLOROPROPANE $8260B$ $\mu g/L$ 5 <5 <5 <5 2,2-DICHLOROPROPANE $8260B$ $\mu g/L$ 5 <5 <5 <5 1,1-DICHLOROPROPENE $8260B$ $\mu g/L$ 5 <5 <5 <5 CIS-1,3-DICHLOROPROPENE $8260B$ $\mu g/L$ 5 <5 <5 <5 TRANS-1,3-DICHLOROPROPENE $8260B$ $\mu g/L$ 5 <5 <5 <5 ETHYLBENZENE $8260B$ $\mu g/L$ 5 <5 <5 <5 HEXACHLOROBUTADIENE $8260B$ $\mu g/L$ 5 <5 <5 <5 ISOPROPYLBENZENE (CUMENE) $8260B$ $\mu g/L$ 5 <5 <5 <5 P-CYMENE (P-ISOPROPYLTOLUENE) $8260B$ $\mu g/L$ 5 <5 <5 <5	1,1-DICHLOROETHENE	8260B	µg/L	5	< 5	< 5	< 5
TRANS-1,2-DICHLOROETHENE $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 1,2-DICHLOROPROPANE $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 1,3-DICHLOROPROPANE $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 2,2-DICHLOROPROPANE $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 1,1-DICHLOROPROPANE $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 CIS-1,3-DICHLOROPROPENE $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 TRANS-1,3-DICHLOROPROPENE $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 ETHYLBENZENE $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 HEXACHLOROBUTADIENE $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 ISOPROPYLBENZENE (CUMENE) $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 P-CYMENE (P-ISOPROPYLTOLUENE) $8260B$ $\mu g/L$ 5 < 5 < 5 < 5	CIS-1,2-DICHLOROETHENE	8260B	$\mu g/L$	5	< 5	< 5	< 5
1,2-DICHLOROPROPANE $8260B$ $\mu g/L$ $\mu g/L$ 5 <5 <5 <5 1,3-DICHLOROPROPANE $8260B$ $\mu g/L$ $\mu g/L$ 5 <5 <5 <5 2,2-DICHLOROPROPANE $8260B$ $\mu g/L$ $\mu g/L$ 5 <5 <5 <5 1,1-DICHLOROPROPENE $8260B$ $\mu g/L$ $\mu g/L$ 5 <5 <5 <5 CIS-1,3-DICHLOROPROPENE $8260B$ $\mu g/L$ $\mu g/L$ 5 <5 <5 <5 TRANS-1,3-DICHLOROPROPENE $8260B$ $\mu g/L$ $\mu g/L$ 5 <5 <5 <5 ETHYLBENZENE $8260B$ $\mu g/L$ $\mu g/L$ 5 <5 <5 <5 HEXACHLOROBUTADIENE $8260B$ $\mu g/L$ $\mu g/L$ 5 <5 <5 <5 ISOPROPYLBENZENE (CUMENE) $8260B$ $\mu g/L$ $\mu g/L$ 5 <5 <5 <5 P-CYMENE (P-ISOPROPYLTOLUENE) $8260B$ 	TRANS-1,2-DICHLOROETHENE	8260B	$\mu g/L$	5	< 5	< 5	< 5
1,3-DICHLOROPROPANE $8260B$ $\mu g/L$ 5 <5 <5 <5 2,2-DICHLOROPROPANE $8260B$ $\mu g/L$ 5 <5 <5 <5 1,1-DICHLOROPROPENE $8260B$ $\mu g/L$ 5 <5 <5 <5 CIS-1,3-DICHLOROPROPENE $8260B$ $\mu g/L$ 5 <5 <5 <5 TRANS-1,3-DICHLOROPROPENE $8260B$ $\mu g/L$ 5 <5 <5 <5 ETHYLBENZENE $8260B$ $\mu g/L$ 5 <5 <5 <5 HEXACHLOROBUTADIENE $8260B$ $\mu g/L$ 5 <5 <5 <5 ISOPROPYLBENZENE (CUMENE) $8260B$ $\mu g/L$ 5 <5 <5 <5 P-CYMENE (P-ISOPROPYLTOLUENE) $8260B$ $\mu g/L$ 5 <5 <5 <5	1,2-DICHLOROPROPANE	8260B	$\mu g/L$	5	< 5	< 5	< 5
2,2-DICHLOROPROPANE $8260B$ $\mu g/L$ 5 <5 <5 <5 1,1-DICHLOROPROPENE $8260B$ $\mu g/L$ 5 <5 <5 <5 CIS-1,3-DICHLOROPROPENE $8260B$ $\mu g/L$ 5 <5 <5 <5 TRANS-1,3-DICHLOROPROPENE $8260B$ $\mu g/L$ 5 <5 <5 <5 ETHYLBENZENE $8260B$ $\mu g/L$ 5 <5 <5 <5 HEXACHLOROBUTADIENE $8260B$ $\mu g/L$ 5 <5 <5 ISOPROPYLBENZENE (CUMENE) $8260B$ $\mu g/L$ 5 <5 <5 P-CYMENE (P-ISOPROPYLTOLUENE) $8260B$ $\mu g/L$ 5 <5 <5	1,3-DICHLOROPROPANE	8260B	$\mu g/L$	5	< 5	< 5	< 5
1,1-DICHLOROPROPENE $8260B$ $\mu g/L$ 5 <5 <5 <5 CIS-1,3-DICHLOROPROPENE $8260B$ $\mu g/L$ 5 <5 <5 <5 TRANS-1,3-DICHLOROPROPENE $8260B$ $\mu g/L$ 5 <5 <5 <5 ETHYLBENZENE $8260B$ $\mu g/L$ 5 <5 <5 <5 HEXACHLOROBUTADIENE $8260B$ $\mu g/L$ 5 <5 <5 <5 ISOPROPYLBENZENE (CUMENE) $8260B$ $\mu g/L$ 5 <5 <5 <5 P-CYMENE (P-ISOPROPYLTOLUENE) $8260B$ $\mu g/L$ 5 <5 <5 <5	2,2-DICHLOROPROPANE	8260B	$_{\mu}\mathrm{g/L}$	5	< 5	< 5	< 5
CIS-1,3-DICHLOROPROPENE $8260B$ $\mu g/L$ 5 <5 <5 <5 TRANS-1,3-DICHLOROPROPENE $8260B$ $\mu g/L$ 5 <5 <5 <5 ETHYLBENZENE $8260B$ $\mu g/L$ 5 <5 <5 <5 HEXACHLOROBUTADIENE $8260B$ $\mu g/L$ 5 <5 <5 <5 ISOPROPYLBENZENE (CUMENE) $8260B$ $\mu g/L$ 5 <5 <5 <5 P-CYMENE (P-ISOPROPYLTOLUENE) $8260B$ $\mu g/L$ 5 <5 <5 <5	1,1-DICHLOROPROPENE	8260B	$_{\mu} m g/L$. 5	< 5	< 5	< 5
TRANS-1,3-DICHLOROPROPENE 8260B μ g/L 5 <5 <5 <5 ETHYLBENZENE 8260B μ g/L 5 <5	CIS-1,3-DICHLOROPROPENE	8260B	$\mu g/L$	5	< 5	< 5	< 5
ETHYLBENZENE 8260B μ g/L 5 <5 <5 <5 HEXACHLOROBUTADIENE 8260B μ g/L 5 <5	TRANS-1,3-DICHLOROPROPENE	8260B	$\mu g/L$	5	< 5	< 5	< 5
HEXACHLOROBUTADIENE $8260B$ $\mu g/L$ 5 < 5 < 5 ISOPROPYLBENZENE (CUMENE) $8260B$ $\mu g/L$ 5 < 5 < 5 P-CYMENE (P-ISOPROPYLTOLUENE) $8260B$ $\mu g/L$ 5 < 5 < 5	ETHYLBENZENE	8260B	$\mu g/L$	5	< 5	< 5	< 5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	HEXACHLOROBUTADIENE	8260B	$\mu g/L$	5	< 5	< 5	< 5
P-CYMENE (P-ISOPROPYLTOLUENE) 8260B μ g/L 5 < 5 < 5	ISOPROPYLBENZENE (CUMENE)	8260B	$\mu g/L$	5	< 5	< 5	< 5
	P-CYMENE (P-ISOPROPYLTOLUENE)	8260B	$_{\mu}\mathrm{g/L}$	5	< 5	< 5	< 5

,

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

$\begin{array}{c c c c c c c c c c c c c c c c c c c $						Analysis Resul	t
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Component Analyzed	Method	Unit	\mathbf{PQL}	SW-5-1	SW-5-2	SW-5-3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					02-06595-5	02-06595-6	02-06595-7
METHYL ISOBUTYL KETONE 8260B $\mu g/L$ 50 < 50 < 50 < 50 TERT-BUTYL METHYL ETHER 8260B $\mu g/L$ 10 < 10	METHYLENE CHLORIDE	8260B	"g/L	5	< 5	< 5	< 5
TERT-BUTYL METHYL ETHER 8260B $\mu g/L$ 10 <10 <10 <10 <10 NAPHTHALENE 8260B $\mu g/L$ 5 <5	METHYL ISOBUTYL KETONE	8260B	μ8/ "g/L	50	< 50	< 50	< 50
NAPHTHALENE 8260B $\mu g/L$ 5 < 5 < 5 < 5 N-PROPYLBENZENE 8260B $\mu g/L$ 5 < 5	TERT-BUTYL METHYL ETHER	8260B	"g/L	10	< 10	<10	< 10
N-PROPYLBENZENE 8260B $\mu g/L$ 5 < 5 < 5 < 5 STYRENE 8260B $\mu g/L$ 5 < 5 < 5 < 5 < 5 1,1,2-TETRACHLOROETHANE 8260B $\mu g/L$ 5 < 5 < 5 < 5 < 5 1,1,2-TETRACHLOROETHANE 8260B $\mu g/L$ 5 < 5 < 5 < 5 < 5 TETRACHLOROETHANE 8260B $\mu g/L$ 5 < 5 < 5 < 5 < 5 TETRACHLOROETHANE 8260B $\mu g/L$ 5 < 5 < 5 < 5 < 5 TOLUENE 8260B $\mu g/L$ 5 < 5 < 5 < 5 < 5 1,2-TRICHLOROBENZENE 8260B $\mu g/L$ 5 < 5 < 5 < 5 < 5 1,2-TRICHLOROETHANE 8260B $\mu g/L$ 5 < 5 < 5 < 5 < 5 1,1-TRICHLOROETHANE 8260B $\mu g/L$ 5 < 5 < 5 < 5 < 5 1,2-TRICHLOROETHANE 8260B $\mu g/L$ 5 < 5 < 5 < 5	NAPHTHALENE	8260B	μ8/- g/L	5	< 5	< 5	< 5
STYRENE8260B $\mu g/L$ 5< 5< 5< 51,1,1,2-TETRACHLOROETHANE8260B $\mu g/L$ 5< 5	N-PROPYLBENZENE	8260B	μ0, ,,g/L	5	< 5	< 5	< 5
1,1,1,2-TETRACHLOROETHANE8200B $\mu g/L$ 5< 5< 5< 51,1,2,2-TETRACHLOROETHANE8260B $\mu g/L$ 5< 5	STYRENE	8260B	μ8/- g/L	5	< 5	< 5	< 5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.1.1.2-TETRACHLOROETHANE	8260B	"g/L	5	< 5	< 5	< 5
TETRACHLOROETHENE(PCE) $2260B$ μ g/L 5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <	1.1.2.2-TETRACHLOROETHANE	8260B	"g/L	5	< 5	< 5	< 5
TOLUENE $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 1,2,3-TRICHLOROBENZENE $8260B$ $\mu g/L$ 5 < 5	TETRACHLOROETHENE(PCE)	8260B	ив/— "g/L	5	< 5	< 5	< 5
1,2,3-TRICHLOROBENZENE 8260B $\mu g/L$ 5 < 5 < 5 < 5 1,2,3-TRICHLOROBENZENE 8260B $\mu g/L$ 5 < 5	TOLUENE	8260B	μ8/~ g/L	5	< 5	< 5	< 5
1,2,4-TRICHLOROBENZENE 8260B μ g/L 5 <5	1.2.3-TRICHLOROBENZENE	8260B	"g/L	5	< 5	< 5	< 5
1,1-TRICHLOROETHANE 8260B $\mu g/L$ 5 <5 <5 <5 1,1,2-TRICHLOROETHANE 8260B $\mu g/L$ 5 <5	1.2.4-TRICHLOROBENZENE	8260B	μ8/ "g/L	5	< 5	< 5	< 5
1,1,2-TRICHLOROETHANE $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 TRICHLOROETHENE (TCE) $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 TRICHLOROFLUOROMETHANE $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 1,2,3-TRICHLOROPROPANE $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 1,2,4-TRIMETHYLBENZENE $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 1,3,5-TRIMETHYLBENZENE $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 VINYL CHLORIDE $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 O-XYLENE $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 M,P-XYLENE $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 ORGANOCHLORINE PESTICIDES $\mu g/L$ 5 < 5 < 5 < 5 Dilution Factor 0.96 0.96 0.96 0.948 < 0.048 < 0.048 BETA BHC $8081A$	1,1,1-TRICHLOROETHANE	8260B	"g/L	5	< 5	< 5	< 5
TRICHLOROETHENE (TCE) $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 TRICHLOROFLUOROMETHANE $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 1,2,3-TRICHLOROPROPANE $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 1,2,4-TRIMETHYLBENZENE $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 1,3,5-TRIMETHYLBENZENE $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 VINYL CHLORIDE $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 O-XYLENE $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 M,P-XYLENE $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 ORGANOCHLORINE PESTICIDES $\mu g/L$ 5 < 5 < 5 < 5 Dilution Factor 0.96 0.96 0.96 0.96 0.96 ALDRIN $8081A$ $\mu g/L$ 0.05 <0.048 <0.048 <0.048	1.1.2-TRICHLOROETHANE	8260B	µ8,≃ ,,g/L	5	< 5	< 5	< 5
TRICHLOROFLUOROMETHANE 8260B μ g/L 5 < 5 < 5 < 5 1,2,3-TRICHLOROPROPANE 8260B μ g/L 5 < 5	TRICHLOROETHENE (TCE)	8260B	μg/L	5	< 5	< 5	< 5
1,2,3-TRICHLOROPROPANE $8260B$ $\mu g/L$ 5 <5 <5 <5 1,2,4-TRIMETHYLBENZENE $8260B$ $\mu g/L$ 5 <5 <5 <5 1,3,5-TRIMETHYLBENZENE $8260B$ $\mu g/L$ 5 <5 <5 <5 VINYL CHLORIDE $8260B$ $\mu g/L$ 5 <5 <5 <5 O-XYLENE $8260B$ $\mu g/L$ 5 <5 <5 <5 M,P-XYLENE $8260B$ $\mu g/L$ 5 <5 <5 <5 ORGANOCHLORINE PESTICIDES $BETA$ BHC $8081A$ $\mu g/L$ 0.05 <0.048 <0.048 ALDRIN $8081A$ $\mu g/L$ 0.05 <0.048 <0.048 ALPHA BHC $8081A$ $\mu g/L$ 0.05 <0.048 <0.048	TRICHLOROFLUOROMETHANE	8260B	$\mu g/L$	5	< 5	< 5	< 5
1,2,4-TRIMETHYLBENZENE 8260B μ g/L 5 < 5 < 5 < 5 1,3,5-TRIMETHYLBENZENE 8260B μ g/L 5 < 5	1,2,3-TRICHLOROPROPANE	8260B	$\mu g/L$	5	< 5	< 5	< 5
1,3,5-TRIMETHYLBENZENE $8260B$ $\mu g/L$ 5 <5 <5 <5 VINYL CHLORIDE $8260B$ $\mu g/L$ 5 <5 <5 <5 O-XYLENE $8260B$ $\mu g/L$ 5 <5 <5 <5 O-XYLENE $8260B$ $\mu g/L$ 5 <5 <5 <5 O-XYLENE $8260B$ $\mu g/L$ 5 <5 <5 <5 ORGANOCHLORINE PESTICIDES Dilution Factor 0.96 0.96 0.96 DIlution Factor $8081A$ $\mu g/L$ 0.05 <0.048 <0.048 BETA BHC $8081A$ $\mu g/L$ 0.05 <0.048 <0.048 ALPHA BHC $8081A$ $\mu g/L$ 0.05 <0.048 <0.048	1,2,4-TRIMETHYLBENZENE	8260B	$\mu g/L$	5	< 5	< 5	< 5
VINYL CHLORIDE $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 O-XYLENE $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 M,P-XYLENE $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 ORGANOCHLORINE PESTICIDES Dilution Factor 0.96 0.96 0.96 0.96 Dilution Factor 0.96 0.96 0.96 0.96 0.96 ALDRIN $8081A$ $\mu g/L$ 0.05 < 0.048 < 0.048 < 0.048 BETA BHC $8081A$ $\mu g/L$ 0.05 < 0.048 < 0.048 < 0.048	1,3,5-TRIMETHYLBENZENE	8260B	"g/L	5	< 5	< 5	< 5
O-XYLENE $8260B$ $\mu g/L$ 5 <5 <5 <5 M,P-XYLENE $8260B$ $\mu g/L$ 5 <5 <5 <5 ORGANOCHLORINE PESTICIDES Dilution Factor 0.96 0.96 0.96 0.96 Dilution Factor 0.96 0.96 0.96 0.96 0.96 BETA BHC $8081A$ $\mu g/L$ 0.05 <0.048 <0.048 <0.048 ALDRIN $8081A$ $\mu g/L$ 0.05 <0.048 <0.048 <0.048	VINYL CHLORIDE	8260B		5	< 5	< 5	< 5
M,P-XYLENE $8260B$ $\mu g/L$ 5 <5 <5 ORGANOCHLORINE PESTICIDES Dilution Factor 0.96 0.96 0.96 ALDRIN $8081A$ $\mu g/L$ 0.05 <0.048 <0.048 BETA BHC $8081A$ $\mu g/L$ 0.05 <0.048 <0.048 ALPHA BHC $8081A$ $\mu g/L$ 0.05 <0.048 <0.048	O-XYLENE	8260B	μο/ – σ/ L	5	< 5	< 5	< 5
ORGANOCHLORINE PESTICIDES 0.96 0.96 0.96 Dilution Factor 0.96 0.96 0.96 ALDRIN 8081A µg/L 0.05 <0.048	M.P-XYLENE	8260B	да/ — "g/L	5	< 5	< 5	< 5
Dilution Factor 0.96 0.96 0.96 ALDRIN 8081A μg/L 0.05 <0.048	ORGANOCHLORINE PESTICIDES		<i>µ01</i>				
ALDRIN $8081A$ $\mu g/L$ 0.05 < 0.048 < 0.048 < 0.048 BETA BHC $8081A$ $\mu g/L$ 0.05 < 0.048 < 0.048 < 0.048 ALPHA BHC $8081A$ $\mu g/L$ 0.05 < 0.048 < 0.048 < 0.048	Dilution Factor				0.96	0.96	0.96
BETA BHC $8081A$ $\mu g/L$ 0.05 < 0.048 < 0.048 < 0.048 ALPHA BHC $8081A$ $\mu g/L$ 0.05 < 0.048 < 0.048 < 0.048	ALDRIN	8081A	"g/L	0.05	< 0.048	< 0.048	< 0.048
ALPHA BHC 8081A (g/L 0.05 < 0.048 < 0.048 < 0.048	BETA BHC	8081A	$\mu g/L$	0.05	< 0.048	< 0.048	< 0.048
	ALPHA BHC	8081A	$\mu g/L$	0.05	< 0.048	< 0.048	< 0.048
DELTA BHC 8081A µg/L 0.05 < 0.048 < 0.048 < 0.048	DELTA BHC	8081A	$\mu g/L$	0.05	< 0.048	< 0.048	< 0.048
GAMMA BHC (LINDANE) 8081A µg/L 0.05 < 0.048 < 0.048 < 0.048	GAMMA BHC (LINDANE)	8081A	$\mu g/L$	0.05	< 0.048	< 0.048	< 0.048
ALPHA-CHLORDANE 8081A µg/L 0.05 <0.048 <0.048 <0.048	ALPHA-CHLORDANE	8081A	$\mu g/L$	0.05	< 0.048	< 0.048	< 0.048
GAMMA-CHLORDANE 8081A µg/L 0.05 < 0.048 < 0.048 < 0.048	GAMMA-CHLORDANE	8081A	$\mu g/L$	0.05	< 0.048	< 0.048	< 0.048
P,P'-DDD 8081A $\mu g/L$ 0.1 < 0.096 < 0.096 < 0.096	P,P'-DDD	8081A	$\mu g/L$	0.1	< 0.096	< 0.096	< 0.096
P,P'-DDE 8081A µg/L 0.1 <0.096 <0.096 <0.096	P,P'-DDE	8081A	μg/L	0.1	< 0.096	< 0.096	< 0.096
P,P'-DDT 8081A µg/L 0.1 <0.096 <0.096 <0.096	P,P'-DDT	8081A	$\mu g/L$	0.1	< 0.096	< 0.096	< 0.096
DIELDRIN 8081Ag/L 0.1 < 0.096 < 0.096 < 0.096	DIELDRIN	8081 A		0.1	< 0.096	< 0.096	< 0.096
ALPHA ENDOSULFAN $8081A$ g/L 0.05 < 0.048 < 0.048 < 0.048	ALPHA ENDOSULFAN	8081A	μ6/~ "g/L	0.05	< 0.048	< 0.048	< 0.048
BETA ENDOSULFAN 8081A "g/L 0.1 <0.096 <0.096 <0.096	BETA ENDOSULFAN	8081A	μα/	0.1	< 0.096	< 0.096	< 0.096
ENDOSULFAN SULFATE 8081A "g/L 0.5 < 0.48 < 0.48 < 0.48	ENDOSULFAN SULFATE	8081A	"g/L	0.5	< 0.48	< 0.48	< 0.48
ENDRIN $8081A \mu g/L 0.1 < 0.096 < 0.096 < 0.096$	ENDRIN	8081A	"g/L	0.1	< 0.096	< 0.096	< 0.096
ENDRIN ALDEHYDE $8081A \mu g/L 0.1 < 0.096 < 0.096 < 0.096$	ENDRIN ALDEHYDE	8081A	μg/L	0.1	< 0.096	< 0.096	< 0.096
ENDRIN KETONE 8081A (g/L 0.1 < 0.096 < 0.096 < 0.096	ENDRIN KETONE	8081A	"g/L	0.1	< 0.096	< 0.096	< 0.096
HEPTACHLOR 8081A $\mu g/L$ 0.05 < 0.048 < 0.048 < 0.048	HEPTACHLOR	8081A	$\mu g/L$	0.05	< 0.048	< 0.048	< 0.048
HEPTACHLOR EPOXIDE 8081A µg/L 0.05 < 0.048 < 0.048 < 0.048	HEPTACHLOR EPOXIDE	8081A	$\mu g/L$	0.05	< 0.048	< 0.048	< 0.048
METHOXYCHLOR 8081A µg/L 2 <1.9 <1.9 <1.9	METHOXYCHLOR	8081A	$\mu g/L$	2	< 1.9	< 1.9	< 1.9
TOXAPHENE 8081A $\mu g/L$ 5 < 4.8 < 4.8 < 4.8	TOXAPHENE	8081A	$_{\mu}g/L$	5	< 4.8	< 4.8	< 4.8

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Component Analyzed	Method	Unit	PQL	SW-5-1 02-06595	Analy SV -5 02-0	sis Result V-5-2 6595-6 (SW-5-3 02-06595-7
PCBS							
Dilution Factor				0.96	0	.96	0.96
PCB-1016 (AROCLOR 1016)	8082	"g/L	1	< 0.96	<	0.96	< 0.96
PCB-1221 (AROCLOR 1221)	8082	$\mu g/L$	2	<1.9	<	1.9	< 1.9
PCB-1232 (AROCLOR 1232)	8082	$\mu g/L$	1	< 0.96	<	0.96	< 0.96
PCB-1242 (AROCLOR 1242)	8082	$\mu g/L$	1	< 0.96	<	0.96	< 0.96
PCB-1248 (AROCLOR 1248)	8082	$\mu g/L$	1	< 0.96	<	0.96	< 0.96
PCB-1254 (AROCLOR 1254)	8082	$\mu g/L$	1	< 0.96	<	0.96	< 0.96
PCB-1260 (AROCLOR 1260)	8082	μg/L	1	< 0.96	<	0.96	< 0.96
Component Analyzed		Method	Unit	POL	SW-6-1	Analysis Re SW-6-2	sult SW-6-3
		Method	Omt	т¢п	02-06595-8	02-06595-9	02-06595-10
BIOLOGICAL OXYGEN DEMANI) (BOD)	405.1	$mg-O_2/L$	2	.0.78J	< 2	0.68J
CHLORIDE CL ⁻		325.3	mg/L	1	25.5	23.0	22.0
NITRATE (NO_3^-) AS N		353.3	mg/L	0.1	1.1	1.2	1.3
NITRITE (NOT) AS N		354.1	mg/L	0.02	0.020	0.018J	0.017J
РН		9040B	pH unit	0.01	7.62	7.62	7.63
SOLIDS, SETTLEABLE (SS)		160.5	mL/L-hr	0.2	< 0.2	< 0.2	< 0.2
SOLIDS, TOTAL DISSOLVED (TD	S)	160.1	mg/L	10	389	406	396
SOLIDS, TOTAL SUSPENDED (TS	SŚ)	160.2	mg/L	4	4.0	3.0J	3.0J
SULFATE (SO_4^{-})		375.4	mg/L	2	101	94.3	87.4
SULFIDE, DISSOLVED		376.2	mg/L	0.2	< 0.2	< 0.2	< 0.2
TOTAL COLIFORM. MTF. 3X5 TI	JBES	SM9221B	MPN/100mI	2	110	11.0	110
FECAL COLIFORM, MTF, 3X5 TU	JBES	SM9221E	MPN/100mI	2	< 2	7.0	< 2
Dilution Factor			,		1	1	1
PERCHLORATE		314.0	$_{\mu}\mathrm{g/L}$	4	< 4	< 4	< 4
PRIORITY POLLUTANT METALS (C	CWA) (13)				_		_
Dilution Factor							1
ANTIMONY		6010B	$\mu g/L$	10	4.0J	4.2J	3.81
ARSENIC BEDVITIUM		6010B	μg/L -/I	5	1.8J	< 5	< 5
		6010B	μg/L ~/]	2	< 2	< 4	< 2
CHROMIUM		6010B	$\mu g/L$	5	0771	< 5	0 491
COPPER		6010B	μg/11 σ/T.	10	171	1 31	1 6J
LEAD		6010B	μ6/12 σ/Τ.	5	1.51	2.2J	0.86J
MERCURY		7470A	μ6/12 σ/1.	0.5	0.031J	0.036J	0.072J
NICKEL		6010B	με/Σ ε/L	5	3.0J	2.1J	3.4J
SELENIUM		6010B	μ8/- ,,g/L	10	3.8J	<10	3.2J
SUVER		6010B	μ0/- σ/Τ	10	<10	< 10	< 10
THALLIIM		6010B	$\mu 5/1$	10	1 61	2 31	2 7]
ZINC		6010B	μ6/13 e/1.	10	10 J	41.7	8.4J
Dilution Factor			- 104		1	1	1
PHC AS GASOLINE		M8015V	mg/L	0.05	0.02 J	0.02 J	0.03J
Dilution Factor					0.96	0.96	0.96
PHC AS DIESEL FUEL		M8015E	mg/L	0.5	< 0.48	< 0.48	< 0.48
Dilution Factor		M8015F	mg/T	05	0.96 0.001	0.96	0.96
		. MI001010	mg\r	0.0	0.020	< 0.40	< 0.40

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

					Analysis Resu	alt
Component Analyzed	Method	Unit	PQL	SW-6-1	SW-6-2	SW-6-3
				02-06595-8	02-06595-9	02-06595-10
VOLATILE ORGANICS						
Dilution Factor				1	1	1
ACETONE	8260B	$_{\mu}g/L$	50	< 50	< 50	< 50
BENZENE	8260B	$\mu g/L$	5	< 5	< 5	< 5
BROMOBENZENE	8260B	$\mu g/L$	5	< 5	< 5	< 5
BROMOCHLOROMETHANE	8260B	$\mu g/L$	5	< 5	< 5	< 5
BROMODICHLOROMETHANE	8260B	$\mu g/L$	5	< 5	< 5	< 5
BROMOFORM	8260B	$_{\mu}\mathrm{g/L}$	5	< 5	< 5	< 5
BROMOMETHANE	8260B	$_{\mu}\mathrm{g/L}$	5	< 5	< 5	< 5
METHYL ETHYL KETONE	8260B	$_{\mu}\mathrm{g/L}$	100	< 100	<100	< 100
N-BUTYLBENZENE	8260B	$_{\mu}g/L$	5	< 5	< 5	< 5
SEC-BUTYLBENZENE	8260B	$_{\mu}\mathrm{g/L}$	5	< 5	< 5	< 5
T-BUTYLBENZENE	8260B	$_{\mu}\mathrm{g/L}$	5	< 5	< 5	< 5 *
CARBON DISULFIDE	8260B	$\mu g/L$	5	< 5	< 5	< 5
CARBON TETRACHLORIDE	8260B	$\mu g/L$	5	< 5	< 5	< 5
CHLOROBENZENE	8260B	$\mu g/L$	5	< 5	< 5	< 5
DIBROMOCHLOROMETHANE	8260B	$_{\mu}g/L$	5	< 5	< 5	< 5
CHLOROETHANE	8260B	$\mu g/L$	5	< 5	< 5	< 5
CHLOROFORM	8260B	$\mu g/L$	5	< 5	< 5	< 5
CHLOROMETHANE	8260B	$\mu g/L$	5	< 5	< 5	< 5
2-CHLOROTOLUENE	8260B	$_{\mu}\mathrm{g/L}$	5	< 5	< 5	< 5
4-CHLOROTOLUENE	8260B	$\mu g/L$	5	< 5	< 5	< 5
1,2-DIBROMO-3-CHLOROPROPANE	8260B	$_{\mu}\mathrm{g/L}$	5	< 5	< 5	< 5
1,2-DIBROMOETHANE	8260B	$_{\mu}{ m g/L}$	5	< 5	< 5	< 5
DIBROMOMETHANE	8260B	$_{\mu}g/L$	5	< 5	< 5	< 5
1,2-DICHLOROBENZENE	8260B	$_{\mu}\mathrm{g/L}$	5	< 5	< 5	< 5
1,3-DICHLOROBENZENE	8260B	$_{\mu}\mathrm{g/L}$	5	< 5	< 5	< 5
1,4-DICHLOROBENZENE	8260B	$_{\mu}\mathrm{g/L}$	5	< 5	< 5	< 5
DICHLORODIFLUOROMETHANE	8260B	$_{\mu}\mathrm{g/L}$	5	< 5	< 5	< 5
1,1-DICHLOROETHANE	8260B	$_{\mu}g/L$	5	< 5	< 5	< 5
1,2-DICHLOROETHANE	8260B	$_{\mu}\mathrm{g/L}$	5	< 5	< 5	< 5
1,1-DICHLOROETHENE	8260B	$_{\mu} m g/L$	5	< 5	< 5	< 5
CIS-1,2-DICHLOROETHENE	8260B	$_{\mu \mathrm{g/L}}$	5	< 5	< 5	< 5
TRANS-1,2-DICHLOROETHENE	8260B	$_{\mu}{ m g/L}$	5	< 5	< 5	< 5
1,2-DICHLOROPROPANE	8260B	$_{\mu}\mathrm{g/L}$	5	< 5	< 5	< 5
1,3-DICHLOROPROPANE	8260B	$_{\mu}\mathrm{g/L}$	5	< 5	< 5	< 5
2,2-DICHLOROPROPANE	8260B	$\mu g/L$	5	< 5	< 5	< 5
1,1-DICHLOROPROPENE	8260B	$_{\mu}{ m g/L}$	5	< 5	< 5	< 5
CIS-1,3-DICHLOROPROPENE	8260B	$\mu g/L$	5	< 5	< 5	< 5
TRANS-1,3-DICHLOROPROPENE	8260B	$_{\mu}g/L$	5	< 5	< 5	< 5
ETHYLBENZENE	8260B	$_{\mu}\mathrm{g/L}$	5	< 5	< 5	< 5
HEXACHLOROBUTADIENE	8260B	$_{\mu}g/L$	5	< 5	< 5	< 5
ISOPROPYLBENZENE (CUMENE)	8260B	$_{\mu}\mathrm{g/L}$	5	< 5	< 5	< 5
P-CYMENE (P-ISOPROPYLTOLUENE)	8260B	$_{\mu}g/L$	5	< 5	< 5	< 5

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

					Analysis Resu	lt
Component Analyzed	Method	Unit	PQL	SW-6-1	SW-6-2	SW-6-3
	. · ·			02-06595-8	02-06595-9	02-06595-10
METHYLENE CHLORIDE	8260B	"g/L	5	< 5	< 5	< 5
METHYL ISOBUTYL KETONE	8260B	μ8/ g/L	50	< 50	< 50	< 50
TERT-BUTYL METHYL ETHER	8260B	µ8/~ "g/L	10	<10	<10	< 10
NAPHTHALENE	8260B	"g/L	5	< 5	< 5	< 5
N-PROPYLBENZENE	8260B	$\mu g/L$	5	< 5	< 5	< 5
STYRENE	8260B	"g/L	5	< 5	< 5	< 5
1,1,1,2-TETRACHLOROETHANE	8260B	$\mu g/L$	5	< 5	< 5	< 5
1,1,2,2-TETRACHLOROETHANE	8260B	ug/L	5	< 5	< 5	< 5
TETRACHLOROETHENE(PCE)	8260B	$\mu g/L$	5	< 5	< 5	< 5
TOLUENE	8260B	$\mu g/L$	5	< 5	< 5	< 5
1,2,3-TRICHLOROBENZENE	8260B	$\mu g/L$	5	< 5	< 5	< 5
1,2,4-TRICHLOROBENZENE	8260B	$\mu g/L$	5	< 5	< 5	< 5
1,1,1-TRICHLOROETHANE	8260B	$\mu g/L$	5	< 5	< 5	< 5
1,1,2-TRICHLOROETHANE	8260B	$\mu g/L$	5	< 5	< 5	< 5
TRICHLOROETHENE (TCE)	8260B	$\mu g/L$	5	< 5	< 5	< 5
TRICHLOROFLUOROMETHANE	8260B	$\mu g/L$	5	< 5	< 5	< 5
1,2,3-TRICHLOROPROPANE	8260B	$\mu g/L$	5	< 5	< 5	< 5
1,2,4-TRIMETHYLBENZENE	8260B	$\mu g/L$	5	< 5	< 5	< 5
1,3,5-TRIMETHYLBENZENE	8260B	$\mu g/L$	5	< 5	< 5	< 5
VINYL CHLORIDE	8260B	$\mu g/L$	5	< 5	< 5	< 5
O-XYLENE	8260B	$_{\mu}\mathrm{g/L}$	5	< 5	< 5	< 5
M,P-XYLENE	8260B	$_{\mu}\mathrm{g/L}$	5	< 5	< 5	< 5
ORGANOCHLORINE PESTICIDES						
Dilution Factor				0.96	0.96	0.96
ALDRIN	8081A	$_{\mu}g/L$	0.05	< 0.048	< 0.048	< 0.048
BETA BHC	8081A	$_{\mu}\mathrm{g/L}$	0.05	< 0.048	< 0.048	< 0.048
ALPHA BHC	8081A	$_{\mu}\mathrm{g/L}$	0.05	< 0.048	< 0.048	< 0.048
DELTA BHC	8081A	$_{\mu}g/L$	0.05	< 0.048	< 0.048	< 0.048
GAMMA BHC (LINDANE)	8081A	$_{\mu}\mathrm{g/L}$	0.05	< 0.048	< 0.048	< 0.048
ALPHA-CHLORDANE	8081A	$_{\mu}{ m g/L}$	0.05	< 0.048	< 0.048	< 0.048
GAMMA-CHLORDANE	8081A	$_{\mu}\mathrm{g/L}$	0.05	< 0.048	< 0.048	< 0.048
P,P'-DDD	8081A	$\mu g/L$	0.1	< 0.096	< 0.096	< 0.096
P,P'-DDE	8081A	$\mu g/L$	0.1	< 0.096	< 0.096	< 0.096
P,P'-DDT	8081A	$\mu g/L$	0.1	< 0.096	< 0.096	< 0.096
DIELDRIN	8081A	$_{\mu}\mathrm{g/L}$	0.1	< 0.096	< 0.096	< 0.096
ALPHA ENDOSULFAN	8081A	$\mu g/L$	0.05	< 0.048	< 0.048	< 0.048
BETA ENDOSULFAN	8081A	$_{\mu}g/L$	0.1	< 0.096	< 0.096	< 0.096
ENDOSULFAN SULFATE	8081A	$_{\mu}\mathrm{g/L}$	0.5	< 0.48	< 0.48	< 0.48
ENDRIN	8081A	$_{\mu}\mathrm{g/L}$	0.1	< 0.096	< 0.096	< 0.096
ENDRIN ALDEHYDE	8081A	$_{\mu}g/L$	0.1	< 0.096	< 0.096	< 0.096
ENDRIN KETONE	8081A	$\mu g/L$	0.1	< 0.096	< 0.096	< 0.096
HEPTACHLOR	8081A	$\mu g/L$	0.05	< 0.048	< 0.048	< 0.048
HEPTACHLOR EPOXIDE	8081A	$\mu g/L$	0.05	< 0.048	< 0.048	< 0.048
METHOXYCHLOR	8081A	μg/L	2	< 1.9	< 1.9	< 1.9
IOXAPHENE	8081A	µg/L	5	< 4.8	< 4.8	< 4.8

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Resu	lt
Component Analyzed	Method	Unit	PQL	SW-6-1	SW-6-2	SW-6-3
				02-06595-8	02-06595-9	02-06595-10
PCBS						
Dilution Factor				0.96	0.96	0.96
PCB-1016 (AROCLOR 1016)	8082	$\mu g/L$	1	< 0.96	< 0.96	< 0.96
PCB-1221 (AROCLOR 1221)	8082	$\mu g/L$	2	< 1.9	< 1.9	< 1.9
PCB-1232 (AROCLOR 1232)	8082	$_{\mu}\mathrm{g/L}$	1	< 0.96	< 0.96	< 0.96
PCB-1242 (AROCLOR 1242)	8082	$_{\mu}g/L$	1	< 0.96	< 0.96	< 0.96
PCB-1248 (AROCLOR 1248)	8082	$_{\mu}\mathrm{g/L}$	1	< 0.96	< 0.96	< 0.96
PCB-1254 (AROCLOR 1254)	8082	$\mu g/L$	1	< 0.96	< 0.96	< 0.96
PCB-1260 (AROCLOR 1260)	8082	μg/L	1	< 0.96	< 0.96	< 0.96

PQL: Practical Quantitation Limit. MDL: Method Detection Limit.

N.D.: Not Detected or less than the practical quantitation limit.

"-": Analysis is not required.

CRDL: Contract Required Detection Limit

J: Reported between PQL and MDL.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0 (a) 500mL sample was used.

Respectfully submitted.

Laboratory Director Applied P & Ch Laboratory

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498 **Case Narrative**

Project: Lowers Lakes/02HW013

For SOTA Environmental

APCL Service No: 02-6595

1. Sample Identification

The sample identifications are listed in the following table:

SOTA Environmental	Sample ID APCL Sample ID	
SW-4-1	02-06595-2	
SW-4-2	02-06595-3	
SW-4-3	02-06595-4	
SW-5-1	02-06595-5	
SW-5-2	02-06595-6	
SW-6-1	02-06595-8	
SW-6-2	02-06595-9	
SW-5-3	02-06595-7	
SW-6-3	02-06595-10	
QC-3	02-06595-1	

2. Analytical Methodology

Samples are analyzed by EPA methods 8260B (Volatile organics), M8015V (Gasoline), M8015E (TPH: Diesel), M8015E (TPH: Motor Oil), 8081A (Organochlorine pesticides), 8082 (PCBs), 314.0 (Perchlorate, low level), 6010B/7470A (Priority Pollutant Metals (CWA) (13)), 376.1 (Sulfide, Dissolved), 405.1 (Biological Oxygen Demand (BOD)), 375.4 (Sulfate (SO₄⁻⁻)), 325.3 (Chloride Cl-), 160.1 (Solids, Total Dissolved (TDS)), 160.2 (Solids, Total Suspended (TSS)), 160.5 (Solids, Settleable (SS)), 9040B (pH), SM9221B (Total Coliform, MTF, 3X5 tubes), SM9221E (Fecal Coliform, MTF, 3X5 tubes), 353.3 (Nitrate (NO_3^-) as N), 354.1 (Nitrite (NO_2^-) as N),

3. Holding Time

All samples were extracted, digested and analyzed within the holding times defined by the appropriate EPA methods of the analyses.

4. Preservation

All samples were preserved and stored according to the appropriate EPA methods.

5. Tele-log

None

6. Anomaly

None

"I certify that these data are technically accurate, complete, and in compliance with the terms and conditions of the contract, for other than the conditions detailed above. Release of the data contained in the hardcopy data package and its electronic data deliverable submitted on diskette had been authorized by the Laboratory Manager or her/his designee, as verified by the following signature."

Respectfully submitted,

Regina Kirakozova $V \int$ Associate QA/QC Director Applied P & Ch Laboratory

30				San Dieg	jo, CA 92	2127-1613					C)2H	W0 [^]	13					,
Environmental Tech	hnology, Inc.	Т	el: (858	<u>8) 485-810</u>	00 F	ax: (858) 4	185-0812				F	Plea	se l	Print	t in	pen	Pag	<u>e of</u>	<u></u>
aboratory In	formation:			Project l	nformat	tion:					A	naly	/sis	Iten	ns	<u>-</u>			
ab Name: App	lied P & Ch Laboratory			Name: Lo	wers Lak	es, HD FCE	, LA, CA	á	<u>ĝ</u>	Â			a						
ddress: 13760	Magnolia Ave.			Proj. 02	HW013	•	·······			3081			5	-1		B/E	9.1) 0.1)		
ity: Chino	State: CA 2	Zip: 91710		PM: YU	ZENG				₹.	PA.	5M)		PA PA	1 (2.9	1	9221	TS: (15		
ab Phone: 1-9	909-590-1828 Quotat	ion #:		Sampler:	MES /DM	Pin			2	e El	801	314	13 (E	37	1	SMS	0.1) PH		
Due Date:	regular 🛛 rushday	shours		4		, ·		801		cide		PA	Aeta	itide))))	, (16 50.5)		
Field Sample ID Sa No.	ample Description	Date Collec	Time ted	Sample Matrix	Preser- vative	# of Container	Type of Container	TPH-G (EPA	vous, uxyge	Organo Pesti	PCBS (EPA 8 TPH-d & m (E	Perchlorate (I	13 Assorted N	Disspired Sul	BOD (405.1)	Total/Fecal C Suifate (375 4	CI(325.3)TDS CI(325.3)TDS (160.2) SS(16	Rem	arks
SW-3-3				Water	1	6	40-mL VOA	x	×										
SW-3-3				Water	5	3	1-L Amber Glass			×	× x	4	\square						
SW-3-3		E		Water	5	. 1	125-mL Poly					×						no	Sam
SW-3-3	\sim			Water	5	2	1-L Poly						×				×	11	
SW-3-3	CAR .			Water	3	1	500 mL Poly, pH<2							x					
SW-3-3				Water	4 ·	1	250-mL pH>12					ŀ		×	: L				
SW-3-3	NO.			Water	5	1	500-mL Poly					Ŀ			×				
SW-3-3				Water	6	1	100 mL Sterilized Poly									X			
	•																	4	-
SW-4-1	11,5 BELOU SURE.	12/12/02	0912	Water	1	6	40-mL VOA	×	×					_	1				
SW-4-1				Water	5	3	1-L Amber Glass			×	×	4	<u> </u>	Ļ	4-				
SW-4-1			· .	Water	5	1	125-mL Poly		_			×					RE	$(\Omega P$	
SW-4-1				Water	5.	470	500ml + Poly m						×		Ĺ			7.	9
SW-4-1				Water	3	1	500 mL Poly, pH<2		Ŀ					×					
SW-4-1				Water	4	1	250-mL pH>12	$\downarrow \downarrow$			<u> </u>		\square	×	-				
SW-4-1	· · · · · · · · · · · · · · · · · · ·			Water	5	1	500-mL Poly	\square				1	\square		×			ļ	
SW-4-1	V		١	Water	6	1	100 mL Sterilized Poly	11					Ŀ	<u> </u>	1-	X		<u> </u>	
	· .		•																

Environmental	Technology, Inc.			Tel:	858	8) 485-810)0	Fax: (858)	485-0812				F	Print	in p	pen Page <u>2</u>				_of_ <u>(</u>		
.aboratory	Information	1:				Project	Informa	ation:					A	alysis Items						. J F	Remarks	
ab Name: Ap	oplied P & Ch	Laboratory				Name: Lo	ame: Lowers Lakes, HD FCB, LA, CA					T	Τ						5)			
ddress: 137	30 Magnolia /	Ave.				Proj. 02	HW013					2			ê		1		60.2			
City: Chino		State: CA Zip	: 91710			PM: YU	ZENG			826		808			60	=		18/E	S (1			
ab Phone:	1-909-590-18	28 Quotatio	n #:			Sampler:	MES/DI	on .		P P		Ρd	5M)		EPA	5.24 (2.2)		922) TS			
Due Date:	regular] rushdays	hou	rs		4		ſ		5M)		S (E	801	312	i) sla 10.0	37		NS)	30.1) 50.1)			
Field Sample ID No.	Sample	Description	Dat C	e Tir ollected	ne I	Sample Matrix	Preser vative	# of Container	Type of Container	TPH-G (EPA 801 VOCs Oxygenat		Organo Pesticide	TPH-d & m (EPA	Perchlorate (EPA	13 Assorted Meta	Nitrate/Nitrite (35 Dissolved Sulfide	BOD (405.1)	Total/Fecal Colli.	Sulfate (375.4) Cl(325.3)TDS (16 SS(160.5) pH (15			
SW-4-2	6 55	LOW SHOF	12/12/0	2 084	-6	Water	1	6	40-mL VOA	X	×	11	Ť	T						<u> </u>		
SW-4-2				1 1		Water	5	3	1-L Amber Glass			×	x)	(
SW-4-2		1 .	T T			Water	5	1	125-mL Poly					x								
SW-4-2						Water	5	4 3/2	500 mit Poly						x				x			
SW-4-2	· · _ · _ · _ · _ · · _ · · · · ·					Water	3	1	500 mL Poly, pH<2							x						
SW-4-2						Water	4	1	250-mL pH>12	\Box)	<					
SW-4-2						Water	5	1	500-mL Poly	\Box							X	-				
SW-4-2		1				Water	6	1	100 mL Sterilized Poly									x				
										Ē					\square							
SW-4-3	3" 3	en Surf.	12/12/	2 09	23	Water	1	6	40-mL VOA	X	x								G	R	<u>ne</u>	
SW-4-3						Water	5	3	1-L Amber Glass			×	x	4						<u> </u>	70	
SW-4-3						Water	5	1	125-mL Poly	\square				×				Į				
SW-4-3						Water	5	4 3/	500 mbc Poly						×		_		×	1		
SW-4-3						Water	3	1	500 mL Poly, pH<2							×	1.	 				
SW-4-3			\Box			Water	4	1	250-mL pH>12								4		L	1	<u> </u>	
SW-4-3						Water	5	1	500-mL Poly			\square			\square		×	 				
SW-4-3		L				Water	6	1	100 mL Sterilized Poly	\downarrow		11		\bot	\square		\perp	×	ļ			
																					<u> </u>	

Environmental Laboratory										5 W. Bernardo Drive, Suite 212								Diago						
	avironmental Technology, inc. Tel: (858) 485-8100								Diego, CA 92127-1613 (02HW013 Print in pen Page 3							6	Please	9
Laboratory	Information				el: (050) 485-81	485-8100 Fax: (858) 485-0812							<u>Γ</u> []	n III Ivei	s Ite	m		aye		<u> </u>	منابع ومنعاد اعجب ر	- 1.
Laboratory mormation.							Nome																	
Lab Name: Applied P & Ch Laboratory							Proj 0		akes, HD F(1		6							0.2)				
Address: 13760 Magnolia Ave.						. <u> </u>	PIOJ. U		· · · · · · · · · · · · · · · · · · ·		1	200	081/2			010			<u>3/E)</u>	3		•		1.
Lab Phone: 1-909-590-1828 Quotation #:							Sampler	: MES/D	M	<u> </u>	1	M	A 8		ŝ	PA 6	54.1	ลิ	271	Tss				
Due Date:	■ regular [∃rush davs		hou	s			r			ŝ	S (E	Ē		314		.3/3	(376	6MS	(F)				
Field Sample ID No.	Sample	Description	D	ate Colle	Tin	ne	Sample Matrix	Preser vative	# of Container	Type of Container	TPH-G (EPA 8015	VOCs, Oxygenate	Organo Pesticides	PCBs (EPA 8082)	TPH-d & m (EPA { Perchlorate (EPA	13 Assorted Metal	Nitrate/Nitrite (353	Dissolved Sulfide	BOD (405.1) Total/Fecal Colli /	SS(160.5) pH (15(Rei	marks	
SW-5-1	13'BEL	ou SURFALE	12/	2/02	101	٦	Water	1	6	40-mL VOA	×	x			·									_
SW-5-1							Water	5	3	1-L Amber Glass			×	×	X						<u> </u>			_
SW-5-1							Water	5	1	125-mL Poly	_	L-L	_			×					_		<u> </u>	_1
SW-5-1		·					Water	5	4/2-	500ml Poly	\perp					1×	4			× .				
SW-5-1							Water	. 3		500 mL Poly, pH<2	<u> </u>	 					×		-+		-			
SW-5-1							Water	4	1	250-mL pH>12		\square				<u>_</u>	4	×			<u> </u>	_ <u></u>		_
SW-5-1							Water	5	1	500-mL Poly	-	\vdash							×	·	_			·
SW-5-1		• . 					Water	6	1	100 mL Sterilized Poly	╞			+		-	+			×	1-		-	
											-	┢╌╟	-	$\left - \right $	\vdash	+-				R	F	U		-
SW-5-2	6.5 BEL	ow SURFACE	"4	i/or	104	13	Water	1	6	40-mL VOA	+×	<u> ×</u>	-			+-	+		-		<u> </u>	<u>a /</u>	2.2	
SVV-5-2			-				vvater		3	1-L Amber Glass	+-	┼╌┼	+ <u>×</u>	+×	×	╋	+							
SVV-5-2					┝╌╌┨╌		Vvater		11 7	125-ML Poly	╉	╄╌╋		$\left\{ -\right\}$	\vdash	4		$\left - \right $		+				
SVV-5-2					-		Vvater		70	SOUNT POIN	╉	┼─┼			┝╍┼	+-		$\left - \right $						
SIA/ 5-2							Water		1	250 mi runi 2	╀╌	┼─┼		╋┥	┝╌┼		+	Ļ	$\left \cdot \right $					
SVV-0-2 SVV-0-2				<u> </u>	┝╌┨╌	~ 	Water	5	+	500-mL Pri-12	+	┼╌┼		+	┠╌┠		+	Ĥ	$\left \right\rangle$			<u>-</u> -*•		
SIN/15-2		<u></u>			┼╌┼		Water	F F	1. 1.	100 mi Starilized Poly	+-	╉╌╂	-+-	+	┟╌╂	-† -	+	$\left - \right $.				<u> </u>
077-J-Z			'		├			+	<u> </u>		+-	╆╋		+	┢─┼	+-		$\left - \right $	┝─┼	<u>^</u>				
			L		L		<u></u>	<u> </u>	<u></u>	1	1	<u>l</u>		<u></u>			<u></u>	<u> </u>			<u></u>			
QC Requireme Sample Dispos Sample Condit	ent: ⊡Regula sal: ⊡Disposa tions: □Intact	r □QA/QC Report al by Lab □Hold fo □Broken Coole	r Se	vip 🗆 	Raw E _days ntact	oata aftei DBr	DExtended receiving o oken DNor	l Raw Dat Jate. ne	a CLP CA	DE DAFCEE DNEESA 1Drinking Water 4 S 2 Waste Water 5 A 3 Oil/Organic Liquid 6 A	Solid Aque ir	(E,C /Soil ous	or D) []	Othe	er Prese ative	erv-	1H 2 H 3 H 4 N	_(Plea CI INO₃ I₂SO₄ I₂SO₄	ase specify 5 Ice 6 Oth 7 No	/) Only her <u>Na2</u> t Preser	2 <u>S2O8</u> rved		
Temperature:	Degi	rees C		<u></u>					••••••••••••••••••••••••••••••••••••••	<u> </u>			<u></u>		<u>.</u>						···			
Relinquishe	d by:	hA.	₽а	ite/Tir	ne /2	12	02 16 4	56	Received I	DY: SILA	K	1		1	\	C)ate	./Ti	me	17-1-	2-0	>	165	6

Environmen	tal Technology, In				Environmental Technology, Inc. Tel: (858) 485-										² rint	in r	ben	Page 4 of 6					
Laborato	ry Informa	tion:			101.	(000	Project	Г			A	naly	sis	Item	าร								
ab Name:	Applied P 8	Ch Laboratory					Name: L	t	T	TT	Т	T	Π	Τ	\square	Π	(3	l					
Address: 1	3760 Magno	olia Ave.	Proj. 0	2HW013	3			80B	¥		·	ê				160.1							
City: Chi	ino	State: CA	PM: YI	1	82(808			8			18	S (1										
Lab Phone: 1-909-590-1828 Quotation #: Due Date: ■ regular □ rushdayshours								Sampler: MES/DM							F	EPA	6.2		922) TS	ŀ		
														801	31) si	6		NS I	60.1 50.1			
Field Sample ID No. Description Date Time Collected						Sample Matrix	Preser vative	# of Container	Type of Container		VOCs, Oxygenat	Organo Pesticide	РСВS (ЕРА 8082 ТРН-d & m (ЕРА	Perchlorate (EPA	13 Assorted Meta	Dissolved Sulfide	BOD (405.1)	Total/Fecal Colli.	Sulfate (375.4) Cl(325.3)TDS (16 SS(160.5) pH (14	R	emarks		
SW-6-1	10' 84	LOW SURFACE	12/	2/02	112	58	Water	1	6	40-mL VOA	×	×											
SW-6-1	T	1					Water	5	3	1-L Amber Glass			x	x ;	< .								
SW-6-1					1		Water	5	1 .	125-mL Poly	Γ	Π			X	Π	Т	1.					
SW-6-1							Water	5	2	1-L Poly	Γ					×	Τ	Τ		x			
SW-6-1						1	Water	3	1	500 mL Poly, pH<2	T	Π				Π	x	Τ					
SW-6-1		······································				<u> </u>	Water	4	1	250-mL pH>12		TT		Π	T		X				1		
SW-6-1	<u>†</u> ↓			1-			Water	5	1	500-mL Poly	T		-		1	TT		X					
SW-6-1	<u> </u>					Water	6	1	100 mL Sterilized Poly	Γ				Τ				x		1			
						1	1			t	\square												
SW-6-2	5.5 BE	ow SURFACE	12/	102	13	27	Water	1	6	40-mL VOA	×	x				Π		T		C	E	015	
SW-6-2		1	11		T	<u> </u>	Water	5	3	1-L Amber Glass	Τ	Π	×	×	×	Π				O		フリ	
SW-6-2		1	Π		П		Water	5	1	125-mL Poly	Τ	Π	Τ		×	Π							
SW-6-2	1	1	17				Water	5	2	1-L Poly	Τ	Π			Τ	X				×			
SW-6-2							Water	3	1	500 mL Poly, pH<2							×						
SW-6-2							Water	4	1	250-mL pH>12		\prod				\Box	×	:					
SW-6-2							Water	5	1	500-mL Poly		\Box				\Box		X					
SW-6-2	1	b					Water	6	1	100 mL Sterilized Poly	Γ								X				
	1		1					1			Τ		T										
OC Requiren	nent ORegul	ar DOA/OC Report		/IP 🗆	Raw	Data		Raw Dat		CE DAFCEE DNEESA		(E.C	or D)		ther			(P	leas	e specify)			
Sample Disp	osal: Dispos ditions: Dintag	sal by Lab □Hold fo	or er Se	al: 🖸	_day	/s afte t ⊡Bi	r receiving o	Jate. ne	Sample Matrix	1Drinking Water 4 S 2 Waste Water 5 A 3 Oil/Organic Liquid 6 Al	Solid. Aque	/Soll ous			Pr	eserv ve	- 11 2 3 4	HCI HNC H ₂ S(NaO)₃ D₄ H	5 Ice C 6 Othe 7 Not I)nly r <u>Na2S2C</u> Preserved	08	

Environmen	tal Technology, Ir	ic. =			el: (858	<u>3) 485-81</u>	00	Fax: (858	3) 485-0812				1	Prin	t in	pen	_	Pa	ge <u>5</u>	of <u>6</u>	
Laboratory Information: Lab Name: Applied P & Ch Laboratory							Project Information:						A 	naly	ysis	Iter	ns	r			
							Name: Lowers Lakes, HD FCB, LA, CA).2)		
Address: 13760 Magnolia Ave. City: Chino State: CA Zip: 91710						Proj. 0	2HW013	3			200	81A			910		1	Û	(16(
						PM: YU ZENG						A 80		-	A 6	<u>-</u>	-	21B	SS		
ab Phone	: 1-909-59	0-1828 Quota	ation	#:		Sampler: MES/DM						(EP)	15	1	Ē	3/35 376		M92	Ę.Ę.		
Due Date: regular LJ rushdayshours										151	ates	des	32) A B		etals	353.		II.(S	150		
Field Sample ID No.	Sample	Description	D	ate Colle	Time ected	Sample Matrix	Preser vative	# of Container	Type of Container	TPH-G (EPA 80	VOCs, Oxygen	Organo Pestici	PCBs (EPA 80	Perchlorate (EF	13 Assorted Me	Nitrate/Nitrite (BOD (405.1)	Total/Fecal Col	Sulfate (375.4) Ci(325.3)TDS (SS(160.5) pH (Ren	narks
SW-5-3	3"BELO	- SURFACE	12/1	2/02	1108	Water	1	6	40-mL VOA	×	×							Π			
SW-5-3						Water	5	3	1-L Amber Glass			x	x	×							
SW-5-3						Water	5	1	125-mL Poly					X							
SW-5-3		·				Water	5	2	1-L Poly						x				x		
SW-5-3						Water	3	1	500 mL Poly, pH<2							x					
SW-5-3				1		Water	4	1	250-mL pH>12	-	Ë.		ГĻ		Τ		×				
SW-5-3					•	Water	5	1	500-mL Poly	l.							X				
SW-5-3				1	l	Water	6	1	100 mL Sterilized Poly									x			. FOR
											┟╷┝								_6	EU	5
SW-6-3	3" BELD	w SURFACK	2/1	2/02	1353	Water 1 6 40-mL VOA						·									
SW-6-3						Water	5	3	1-L Amber Glass			×	×	×						L	
SW-6-3				Ĩ		Water	5	1	125-mL Poly				\square	×			_				
SW-6-3						Water	5	2	1-L Poly						×				×		
SW-6-3					·	Water	3	1	500 mL Poly, pH<2				\square			x			-	· .	
SW-6-3						Water	4	1	250-mL pH>12								×				
SW-6-3						Water	5	1	500-mL Poly								×				
SW-6-3					1	Water	6	1	100 mL Sterilized Poly						Ĺ		· L	X			· · · · · · · · · · · · · · · · · · ·
]	
C Requiren	nent: 🗆 Regu	lar DQA/QC Report			Raw Data		Raw Dat				E,C	or D		Other			_(P	leas	e specify)		
Sample Disp Sample Con	osal: ⊡Dispo ittions: ⊡Inta	sai by Lab ⊡Hold fo ct ⊡Broken Coole	or er Se	al: DI	_days aften ntact DBr	r receiving o	late.	Sample Matrix	1Drinking Water 4 S 2 Waste Water 5 A 3 Oil/Organic Llquid 6 A	Solid/((quec ir	Soil Jus			Pilat	resen ive	v- 1 2 3	HCI HNC H2SI NaO)₃ 0₄ H	5 Ice 0 6 Othe 7 Not F	only r <u>Na2S2O8</u> Preserved	
Cemperature	: De	grees C																			

	35 W. Bernardo Drive	, Suite 212 7-1613			،	241		ייי ז				Please
Environmental Technology, Inc	3485-8100 Fav	(858) 485-0812			P	Print	in p	en .	Pa	ige 6	of	6
aboratory Information:	Project Information			Ar	naly	sis l	tems					
ab Name: Applied P & Ch Laboratory	Name: Lowers Lakes.		Π		ΤŤ	Τ	TT	Т		1		
ddress: 13760 Magnolia Ave.	Proj. 02HW013		60B	(<u></u>			<u>(</u>					
City: Chino State: CA Zip: 91710	PM: YU ZENG	4 82	808			A 60						
ab Phone: 1-909-590-1828 Quotation #:	Sampler: MES/DM		(EP)	EPA	15M	Ŧ	(EP)					
Due Date: ■ regular □ rushdayshours			tes	es (2) A 80	A 31	tals					
Field Sample ID Sample Description Date Time No.	Sample Preser # Matrix vative Cont	of ainer Type of Container	/OCs, Oxygena	Drgano Pesticid	•СВ\$ (ЕРА 808 РН-d & m (ЕР/	erchiorate (EP	3 Assorted Me					Remarks
<u>М-2</u>	Water 1 6	40-mL VOA		Ĕ								
C-2	Water 5	1-L Amber Glass		x	x x			++			7	NO
QC-2	Water 5	125-mL Poly				-					+	SAMPLE
C2	Water 5 2	1-L Poly		+			x	TT			-7	
· · · ·						·						· · · · · · · · · · · · · · · · · · ·
											_	
			·								-	
2C-3 12/12/02 1353	Water 1 6	40-mL VOA	x x		┟╌┟╴			11		h'		
QC-3	Water 5	1-L Amber Glass		×	x x	4		++	1			
QC-3	Water 5	125-mL Poly				×	 	++		·		
QC-3	Water 5 1	Th 1-L Poty				_	×	┼╌┼				
				+	┝╌┝╴		┝╌┠	++		<u> </u>	+-	
	├ ───┤ ·─── ├ ───		-+-+		┨╌┠╴		┼╌┼	┥┥				· · · · · · · · · · · · · · · · · · ·
┉═╾╾┉╗═╋╍╌╌┉╧┈┙╍╍╼┉┑══╸┅═╉┲╾╌╍┲╋	↓↓		╶┼╍┼	+-	┝╍┝	+	┼╌┼	┽┽				
	├			-+	++		┼╌┼╴	++	+			
						<u> </u>	<u></u>			1		
C Requirement: DRegular DQA/QC Report DWIP DRaw Data I	Extended Raw Data ECL	P DACE DAFCEE DNEESA_	(E,C	or D)		ther_		((Plea	se specif	y)	
ample Disposal: Disposal by Lab DHold fordays after ample Conditions: Dintact DBroken Cooler Seal: Dintact DBro	receiving date. Sample	Matrix 1Drinking Water 4 So 2 Waste Water 5 Aq 3 Oil/Organic Liquid 6 Air	lid/Soil ueous			Pre ativ	eserv- ve	1HC 2 HI 3 H; <u>4 N</u> ;	∠I NO₃ ₂SO₄ ⊒OH	5 100 6 Ot 7 No	her_ <u>N</u> her_N t Pres	a2S2O8
emperature:Degrees C												

Tel: (909) 590-1828 Fax: (909) 590-1498	Sample Receiving Checklist
APCL ServiceID: 655	15 Client Name/Project: <u>57a</u> Envivonmental
1. Sample Arrival Date/Time Received Custody Transfer: D Client	$\frac{200005 \text{ LaRes}}{22 \text{ Date/Time Opened}} \frac{12 \text{ B}/22 083071}{2 \text{ Golden State}} \text{ By (name): } \frac{12 \text{ B}/25 083071}{2 \text{ B}/25 083071} \text{ By (name): } \frac{12 \text{ B}/25 083071}{2 083071} \text{ By (name): } \frac{12 \text{ B}/25 083071}{2 083071} \text{ By (name): } \frac{12 12 083071}{2 083071} \text{ By (name): } 12 $
2. Chain-of-Custody (CoC)	·7
With Samples? Project ID? CoC/Docs Zip-Locked under Discrepancies? Client	d? Client has Copy? Signed, dated? By: yses Clear? Hold Samples? #on Hold # Received Compos.#: Compos.#: t notified? Response (attach docs):
3. Shipping Container/Cooler	
Cooler Used? # of 5 C Temp °C $3,7$ (Cooler temperature n	cooled by: $1ce$ $Blue lce Dry lce None 40 3.8 40 $
Cooler Custody Seal?	Absent Intact Tampered?
4. Sample Preservation	······································
$\Box pH < 2 \qquad \Box pH$ If Not, pH = Prese	H >12 erved by: Client CAPCL Third Party
5. Holding-time Requirements	
Def 24hr BACT 6/ □ Cl₂ ASAP □ Turbidity □ HT Expired? □ Client no	/24hr Cr ^{VI} 24hr DNO ₃ 48hr BOD 48hr 1 48hr DO ASAP DFe(II) ASAP 1 fified?
6. Sample Container Condition	
Type: Delastic Type: Delastic Caps tight? Labels: Unique ID?	Documented? Number: Deglass Tube: brass/SS Tedlar Bag Leaking? Anomaly? Air Bubbles? Anomaly? Date/Time Preserved?
7. Turn Around Time RUSH TAT: St	d (7-10 days) 🗆 Not Marked
8. Sample Matrix] Soil 🗌 Wipe 🗌 Polymer 🗌 Air 🗌 Other:] Filter 🔲 Oil/Petro 🔲 Paint 🗍 W. Water 🔲 Extract 🗍 Unknown
\Box Ground H ₂ O \Box Sludge	
Ground H ₂ O Sludge	ted & OK?
Ground H2O Sludge	s) Client Contact? (Name:)Date/Time:

、 .

DocumentFile: [neal.texfiles]smprcl.tex.

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Sample Login: Check List 2nd

02-06595 (1288_ 435) (4858100_ 435) $\frac{12}{16}$

Part 1: General Information SOTA Environmental Company Information Name . 16835 W. Bernardo Dr, Ste. 212 , San Diego , CA 92127 Address: **Project Information** Project Description: Lowers Lakes 02HW013 Project #: **Billing Information** P.O. #: 16835 W. Bernardo Dr, Ste. 212 , San Diego , CA 92127 Bill Address: Lab Project ID: Client Database #: 0 Receiving Information Who Received Sample? Kenny Chan Receiving Date/Time: 12/13/02 0830 COC No. Shipping Information Shipping Company APCL pick up Cooler/Ice Chester Packing Information: 3.7 4.0 4.2 3.7 4.0 °C Cooler Temperature: Container Information Container Provider: Client Sampling Information Sampling Person: Sampling Company: Client Rush 5 working day(s) Turn-Around-Time Option: NEESA C QC Option: Disposal Option: Not specify

02-06595 Check List Login on 12/16/02 File: CHG004c.tex

Part 2: Sample Information

,

Seq.	Sample ID	Sample	APCL		Cont-	Preser-	Vol. ml	# of	Condition	Collected		Compositè	TAT	
#	(on COC)	Sub-ID	Sample ID	Matrix	tainer	vative	Am. g	,, Replica	G, L, B	mmddyy	Hold ?	Group	Days	
	SW_4_1	VOC/Gas	02.06595.2 a		V	C	40	6		101000	N		7	
+	SW-4-1	8015	02-06595-2- <i>G</i>	w	G	0	1000	1	G	121202	N	0	7	
	SW-4-1	8081	$02-06595-2-\gamma$	W	G		1000	1	G	121202	N	0	7	
	SW-4-1	8082	, 02-06595-2-δ	w	G		1000	1	G	121202	N	0	7	
	SW-4-1	PH/SS	02-06595-2-ζ	w	Р		1000	2	G	121202	N	0	7	
	SW-4-1	Perch	02-06595-2-η	W	Р		125	1	G	121202	Ν	0	7	
	SW-4-1	Metal	02-06595-2-θ	· w	Р	N	1000	2	G	121202	Ν	0	7	
	SW-4-1	NO3/NO2	02-06595-2- <i>ι</i>	w	Р	S	500	1	G	121202	N	0	7	
	SW-4-1	DSulfide	02-06595-2- <i>ĸ</i>	W	P	В	250	1	G	121202	Ν	0	7	
	SW-4-1	BOD	02-06595-2- μ	w	Р		500	1	G	121202	N	0	7	
	SW-4-1	Colif	$02-06595-2-\nu$	w	Р	Т	120	· 1	G	121202	Ν	0	7	
2	SW-4-2	VOC/Gas	02-06595-3- α	w	v	С	40	6	G	121202	Ν	0	7	
	SW-4-2	8015	02-06595-3- eta	w	G		1000	1	G	121202	Ν	0	7	
	SW-4-2	8081	02-06595-3- γ	w	G		1000	1	G	121202	Ν	0	7	
	SW-4-2	8082	02-06595-3- δ	W	G		1000	1	G	121202	Ν	0	7	
	SW-4-2	PH/SS	02-06595-3- ζ	w	Ρ		1000	2	G	121202	Ν	0	7	
	SW-4-2	Perch	02-06595-3- η	W	Ρ		. 125	1	G	121202	N	0	7	
	SW-4-2	Metal	02-06595-3-θ	W	Р	N	1000	2	G	121202	Ν	0	7	
	SW-4-2	NO3/NO2	02-06595-3- <i>i</i>	W	Р	S	500	1	G	121202	Ν	0	7	
	SW-4-2	DSulfide	02-06595-3- <i>ĸ</i>	W	Р	В	250	1	G	121202	N	0	7	
	SW-4-2	BOD	02-06595-3- μ	W	Р		500	1	G	121202	Ν	0	7 -	
	SW-4-2	Colif	02-06595-3- ν	w	Ρ	Т	120	1	G	121202	Ν	0	7	
3	SW-4-3	VOC/Gas	$02-06595-4-\alpha$	W	v	С	40	6	G	121202	Ν	0	7	
	SW-4-3	8015	02-06595-4- eta	W	G		1000	1	G	121202	Ν	0	7	
	SW-4-3	8081	02-06595-4- γ	W	G		1000	1	G	121202	N	0	7	
	SW-4-3	8082	02-06595-4- δ	w	G		1000	1	G	121202	N	0	7	
	SW-4-3	PH/SS	02-06595-4- ζ	W	Р		1000	2	G	121202	Ν	0	7	
	SW-4-3	Perch	02-06595-4- η	W	Р		125	1	G	121202	N	0	7	
	SW-4-3	Metal	02-06595-4- θ	w	Ρ	Ν	1000	2	G	121202	Ν	0	7	
	SW-4-3	NO3/NO2	02-065 <u>9</u> 5-4- <i>ι</i>	w	Р	S	500	1	G	121202	Ν	0	7	
	SW-4-3	DSulfide	02-06595 -4- ĸ	w	Р	B	250	1	G	121202	Ν	0	7	
	SW-4-3	BOD	02-06595-4-µ	w	Р		500	1	G	121202	Ν	0	7	
	SW-4-3	Colif	02-06595-4- ν	w	Р	Т	120	1	G	121202	Ν	0	7	
4	SW-5-1	VOC/Gas	02-06595-5-α	W	v	С	40	6	G	121202	N	0	7	
	SW-5-1	8015	02-06595-5- eta	W	G		1000	1	G	121202	Ν	0	7	
	SW-5-1	8081	02-06595-5- γ	w	G		1000	1	G	121202	Ν	0	7	
	SW-5-1	8082	02-06595-5- δ	w	G		1000	1	G	121202	N	0	7	
	SW-5-1	PH/SS	02-06595-5- ζ	W	Ρ		1000	2	G	121202	Ν	0	7	
	SW-5-1	Perch	02-06595-5- η	w	Ρ		125	1	G	121202	N	0	7	
	SW-5-1	Metal	02-06595-5-θ	W	Р	Ν	1000	2	G	121202	Ν	0	7	
	SW-5-1	NO3/NO2	02-06595-5-1	w	Р	S	500	1	G	121202	N	0	7	
	SW-5-1	DSulfide	02-06595-5- <i>ĸ</i>	w	Р	В	250	1	G	121202	N	0	7	

02-06595 Check List
												•			
		SW-5-1	BOD	02-06595-5- μ	w	Р		500	1	G	121202	N	0	7	
		SW-5-1	Colif	$02-06595-5-\nu$	w	Р	Т	120	1	G	121202	N	0	7	
Ę	5	SW-5-2	VOC/Gas	02-06595-6- α	w	v	С	40	6	G	121202	N	0	7	
		SW-5-2	8015	02-06595-6- eta	w [.]	G		1000	1	G	121202	Ν	0	7	
		SW-5-2	8081	02-06595-6- γ	w	G		1000	1	G	121202	Ν	0	7	
		SW-5-2	8082	02-06595-6-δ	W	G		1000	1	G	121202	Ν	0	7	
		SW-5-2	PH/SS	02-06595-6-ζ	w	Р		1000	2	G	121202	N	0	7	
		SW-5-2	Perch	02-06595-6- η	W	Р		125	1	G	121202	Ν	0	7	
		SW-5-2	Metal	02-06595-6- θ	w	Р	Ν	1000	-2	G	121202	Ν	0	7	
		SW-5-2	NO3/NO2	02-06595-6-1	W	Р	S	500	· 1	G	121202	N	0	7	
		SW-5-2	DSulfide	02-06595-6- <i>ĸ</i>	W	Р	В	250	1	G	121202	Ν	0	7	
		SW-5-2	BOD	02-06595-6- μ	W	Р		500	1	G	121202	Ν	0	7	
		SW-5-2	Colif	$02-06595-6-\nu$	w	Р	Т	120	1	G	121202	Ν	0	7	
(3	SW-6-1	VOC/Gas	02-06595-8-α	W	v	С	40	6	G	121202	N	0	7	
		SW-6-1	8015	02-06595-8- eta	W	G		1000	1	G	121202	N	0	7	
		SW-6-1	8081	02-06595-8- γ	W	G		1000	1	G	121202	N	0	7	
		SW-6-1	8082	02-06595-8- δ	w	G.		1000	1	G	121202	N	0	7	
		SW-6-1	PH/SS	02-06595-8- ζ	w	Р		1000	2	G	121202	Ν	0	7	
		SW-6-1	Perch	02-06595-8- η	w	Р		125	1	G	121202	N	0	7	
		SW-6-1	Metal	02-06595-8- <i>θ</i>	w	Р	N	1000	2	G	121202	Ν	0	7	
		SW-6-1	NO3/NO2	02-06595-8- <i>i</i>	w	Р	S	500	1	G	121202	N	0	7	
_		SW-6-1	DSulfide	02-06595-8- <i>ĸ</i>	W	Р	в	250	1	G	121202	N	0	7	
		SW-6-1	BOD	02-06595-8- μ	W	Р		500	1	G	121202	Ν	0	7	
		SW-6-1	Colif	$02-06595-8-\nu$	w	Р	т	120	1	G	121202	N ·	0	7	
	7	SW-6-2	VOC/Gas	02-06595-9-α	w	v	С	40	6	G	121202	Ν	0	7	
		SW-6-2	8015	02-06595-9- <i>β</i>	W	G		1000	1	G	121202	N	0	7	
		SW-6-2	8081	02-06595-9- γ	W	G		1000	1	G	121202	N	0	7	
		SW-6-2	8082	02-06595-9-δ	w	G		1000	1	G	121202	N	0	7	
		SW-6-2	PH/SS	02-06595-9-ζ	w	Р		1000	2	G	121202	N	0	7	
		SW-6-2	Perch	02-06595-9-η	w	Р		125	1	G	121202	N	0	7	
		SW-6-2	Metal	02-06595-9-θ	w	Р	Ν	1000	2	G	121202	N	0	7	
		SW-6-2	NO3/NO2	02-06595-9- <i>i</i>	w	Р	S	500	. 1	G	121202	N	0	7	
		SW-6-2	DSulfide	02-06595-9- <i>ĸ</i>	W	Р	в	250	1	G	121202	N	Q	7	
		SW-6-2	BOD	02-06595-9- μ	W	Р		500	1	G	121202	N	0	7	
		SW-6-2	Colif	02-06595-9-V	W	Р	Т	120	1	G	121202	N	0	7	
٤	3	SW-5-3	VOC/Gas	02-06595-7-α	w	v	С	40	6	G	121202	N	0	7	
		SW-5-3	8015	02-06595-7-β	w	G		1000	1	G	121202	N	0	7	
		SW-5-3	8081	$02-06595-7-\gamma$	w	G		1000	1	G	121202	N	0	7	
		SW-5-3	8082	02-06595-7-δ	w	G		1000	1	G	121202	N	0	7	Π
		SW-5-3	PH/SS	02-06595-7-(w	P		1000	2	G	121202	N	0	7	
				02 00000 7 5		• •		1000	-	9	121202		0	-	
		SW-5-3	Perch Motol	02-06595-7-11	VV 3A7	Р Ъ	N.	125	1	G	121202	IN N	0	7	
		SW. K 2		02-00333-7-0	127	r D	6 14	1000		G	101000	N	0	(7	
		SW-5-3	DSpl6de	02-00000-1-1	Ŵ	ı P	ы Р	200	1	G	121202	N	U A	(7	
		SW-5-3	BUD	02-00030-1-N	17	r D	L)	£00	1	c	101000	N	0	-	
		SW-5-2	Colif	02-00000-1-H	VV 1,87	r D	ጥ	100	1	G	121202	או	U .	(7	
		0 11-0-0		02-00090-1-1/	٧Y	1	т	120	T	9	121202	11	U	(Ц

	9

9	SW-6-3	VOC/Gas	02-06595-10- $lpha$	W	v	С	40	6	G	121202	N	0	7	
	SW-6-3	8015	02-06595-10- eta	W	G		1000	1	G	121202	N	0	7	
	SW-6-3	8081	02-06595-10- γ	W	G		1000	1	G	121202	N	0	7	
	SW-6-3	8082	02-06595-10- δ	W	G		1000	1	G	121202	N	0	7	
	SW-6-3	PH/SS	02-06595-10- ζ	W	Р		1000	2	G	121202	N	0	7	
	SW-6-3	Perch	02-06595-10- η	W	Р		125	1	G	121202	N	0	7	
	SW-6-3	Metal	02-06595-10- θ	W	Р	N	1000	2	G	121202	Ν	0	7	
	SW-6-3	NO3/NO2	02-06595-10- <i>i</i>	W	Р	S	500	1	G	121202	N	0	7	
	SW-6-3	DSulfide	02-06595-10- <i>ĸ</i>	W	Ρ	В	250	1	G	121202	N	0	7	
	SW-6-3	BOD	02-06595-10- μ	W	Р.		500	1	G	121202	N	0	7	
	SW-6-3	Colif	$02-06595-10-\nu$	W	Ρ	Т	120	1	G	121202	N	0	7	
10	QC-3	VOC/Gas	$02-06595-1-\alpha$	W	V	С	40	6	G	121202	N	0	7	
	QC-3	8015	02-06595-1- <i>β</i>	W	G		1000	1.	G	121202	N	0	7	
	QC-3	8081	02-06595-1- γ	W	G		1000	1	G	121202	N	0	7	
	QC-3	8082	02-06595-1- δ	W	G		1000	1	G	121202	N	0	7	
	QC-3	Perch	02-06595-1- ζ	W	Р		125	1	G	121202	Ν	0	7	
	QC-3	Metal	02-06595-1- η	W	Р	Ν	1000	2	G	121202	N	0	7	

Part 3: Analysis Information

Test	Items:
------	--------

□ 8260B Volatile organics □ M8015V/M8015GGasoline □ M8015E/M8015DTPH: Diesel □ M8015E/M8015MTPH: Motor Oil 🗌 8081A Organochlorine pesticides 8082 PCBs 314.0/300.0 Perchlorate, low level □ 6010B/7000A Priority Pollutant Metals (CWA) (13) □ 376.1/9030B Sulfide, Dissolved 405.1 Biological Oxygen Demand (BOD) 375.4/9038 Sulfate (SO_4^{--}) □ 325.3/9252A Chloride Cl-□ 160.1 Solids, Total Dissolved (TDS) 160.2 Solids, Total Suspended (TSS) □ 160.5 Solids, Settleable (SS) □ 9040B/150.1 рĦ 🗖 SM9221B/9131 Total Coliform, MTF, 3X5 tubes □ SM9221E Fecal Coliform, MTF, 3X5 tubes € 353.3 Nitrate (NO_3^-) as N Cd reduction

02-06595 Check List

Login on 12/16/02 File: CHG004c.tex

Applied Physics & Chemistry Laboratory

13760 Magnolia Ave. Chino CA 91710 Tel. (909) 590-1828 Fax (909) 590-1498

May 2, 2003

SOTA Environmental Attention: Yu Zeng 16835 W. Bernardo Dr. Suite 212 San Diego CA 92127

Dear Yu,

This package contains samples in our Service ID 02-6564 and your project is 02HW013 Lowers Lakes. Enclosed please find:

- (1) One copy of analytical report.
- (2) One copy of Chain of Custody.
- (3) One original of Level D Data Package Deliverable.

If anything is missing or you have any questions, please feel free to contact me.

Respectfully submitted,

Regina Kirakozova V J Associate QA/QC Director Applied P & Ch Laboratory

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498 Submitted to: SOTA Environmental Attention: Yu Zeng 16835 W. Bernardo Dr, Ste. 212 San Diego CA 92127 Tel: (858)485-8100 Fax: (858)485-0812

Analysis of Soil Samples

APCL Analytical Report

Service ID #: 801-026564 Collected by: MES/DM Collected on: 12/11/02 Received:12/12/02Extracted:12/12-19/02Tested:12/12-19/02Reported:01/02/03

Sample Description: Soil

Project Description: 02HW013 Lowers Lakes

					Analys	is Result	
Component Analyzed	Method	Unit	PQL	BG-1	QC-1	SS-3	SS-4
				02-06564-1	02-06564-2	02-06564-3	02-06564-4
MOISTURE	ASTM-D2216	%Moisture	0.5	6.1	5.7	9.0	7.8
Dilution Factor				1 .	1	1	1
PERCHLORATE	314.0	$\mu g/kg$	20	< 21	< 21	< 22	< 22
PRIORITY POLLUTANT	METALS (CWA)	(13)					·
Dilution Factor				1	1	1	1
ANTIMONY	6010B	mg/kg	5	< 5.3	< 5.3	< 5.5	< 5.4
ARSENIC	6010B	mg/kg	0.3	1.2	3.9	1.8	2.0
BERYLLIUM	6010B	mg/kg	0.2	< 0.21	< 0.21	< 0.22	< 0.22
CADMIUM	6010B	mg/kg	0.2	< 0.21	0.034J	0.034J	$0.070 \mathbf{J}$
CHROMIUM	6010B	mg/kg	0.5	8.2	9.3	13.8	9.2
COPPER	6010B	mg/kg	0.5	10.1	9.1	11.0	9.6
LEAD	6010B	mg/kg	0.3	2.8	3.2	3.9	4.4
MERCURY	7471A	mg/kg	0.2	0.058J	0.12J	0.11J	0.14J
NICKEL	6010B	mg/kg	0.3	5.9	5.8	9.2	7.2
SELENIUM	6010B	mg/kg	0.5	< 0.53	< 0.53	< 0.55	< 0.54
SILVER	6010B	mg/kg	0.5	< 0.53	0.19J	< 0.55	< 0.54
THALLIUM	6010B	mg/kg	0.5	< 0.53	< 0.53	< 0.55	< 0.54
ZINC	6010B	mg/kg	0.5	28.3	26.9	32.3	27.2
Dilution Factor				1.34	0.9	0.96	0.86
PHC AS GASOLINE	M8015V	mg/kg	1	0.07 J	< 0.95	0.02J	0.03J
Dilution Factor				1	1	1	1
PHC AS DIESEL FUEL	M8015E	mg/kg	10	1J	<11	<11	0.9J
Dilution Factor				1	1	1	1
MOTOR OILS	M8015E	mg/kg	10	30	13	9J	9J

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analys	is Result	
Component Analyzed	Method	Unit	PQL	BG-1	QC-1	SS-3	SS-4
				02-06564-1	02-06564-2	02-06564-3	02-06564-4
VOLATILE ORGANICS							
Dilution Factor				1.13	0.88	0.81	0.85
ACETONE	8260B	"g/kg	50	< 60	< 47	.11J	< 46
BENZENE	8260B	$\mu g/kg$	5	< 6.0	< 4.7	< 4.5	< 4.6
BROMOBENZENE	8260B	μg/kg	5	< 6.0	< 4.7	< 4.5	< 4.6
BROMOCHLOROMETHANE	8260B	μg/kg	5	< 6.0	< 4.7	< 4.5	< 4.6
BROMODICHLOROMETHANE	8260B	μg/kg	5	< 6.0	< 4.7	< 4.5	< 4.6
BROMOFORM	8260B	$\mu g/kg$	5	< 6.0	< 4.7	< 4.5	< 4.6
BROMOMETHANE	8260B	μg/kg	5	< 6.0	< 4.7	< 4.5	< 4.6
METHYL ETHYL KETONE	8260B	μg/kg	100	<120	< 93	< 89	< 92
N-BUTYLBENZENE	8260B	μg/kg	5	< 6.0	< 4.7	< 4.5	< 4.6
SEC-BUTYLBENZENE	8260B	μg/kg	5	< 6.0	< 4.7	< 4.5	< 4.6
T-BUTYLBENZENE	8260B	μg/kg	5	< 6.0	< 4.7	< 4.5	< 4.6
CARBON DISULFIDE	8260B	µg/kg	5	< 6.0	< 4.7	< 4.5	< 4.6
CARBON TETRACHLORIDE	8260B	$\mu g/kg$	5	< 6.0	< 4.7	< 4.5	< 4.6
CHLOROBENZENE	8260B	µg/kg	5	< 6.0	< 4.7	< 4.5	< 4.6
DIBROMOCHLOROMETHANE	8260B	$\mu g/kg$	5	< 6.0	< 4.7	< 4.5	< 4.6
CHLOROETHANE	8260B	$\mu g/kg$	5	< 6.0	< 4.7	< 4.5	< 4.6
CHLOROFORM	8260B	$\mu g/kg$	5	< 6.0	< 4.7	< 4.5	< 4.6
CHLOROMETHANE	8260B	$\mu g/kg$	5	< 6.0	< 4.7	< 4.5	< 4.6
2-CHLOROTOLUENE	8260B	$\mu g/kg$	5	< 6.0	< 4.7	< 4.5	< 4.6
4-CHLOROTOLUENE	8260B	$\mu g/kg$	5	< 6.0	< 4.7	< 4.5	< 4.6
1,2-DIBROMO-3-CHLOROPROPANE	8260B	$\mu g/kg$	5	< 6.0	< 4.7	< 4.5	< 4.6
1,2-DIBROMOETHANE	8260B	$\mu g/kg$	5	< 6.0	< 4.7	< 4.5	< 4.6
DIBROMOMETHANE	8260B	µg/kg	5	< 6.0	< 4.7	< 4.5	< 4.6
1,2-DICHLOROBENZENE	8260B	$_{\mu}\mathrm{g/kg}$	5	< 6.0	< 4.7	< 4.5	< 4.6
1,3-DICHLOROBENZENE	8260B	$\mu g/kg$	5	< 6.0	< 4.7	< 4.5	< 4.6
1,4-DICHLOROBENZENE	8260B	µg/kg	5	< 6.0	< 4.7	< 4.5	< 4.6
DICHLORODIFLUOROMETHANE	8260B	µg∕kg	5	< 6.0	< 4.7	< 4.5	< 4.6
1,1-DICHLOROETHANE	8260B	µg/kg	5	< 6.0	< 4.7	< 4.5	< 4.6
1,2-DICHLOROETHANE	8260B	$\mu g/kg$	5	< 6.0	< 4.7	< 4.5	< 4.6
1,1-DICHLOROETHENE	8260B	$\mu g/kg$	5	< 6.0	< 4.7	< 4.5	< 4.6
CIS-1,2-DICHLOROETHENE	8260B	µg/kg	5	< 6.0	< 4.7	< 4.5	< 4.6
TRANS-1,2-DICHLOROETHENE	8260B	$\mu g/kg$	5	< 6.0	< 4.7	< 4.5	< 4.6
1,2-DICHLOROPROPANE	8260B	$\mu g/kg$	5	< 6.0	< 4.7	< 4.5	< 4.6
1,3-DICHLOROPROPANE	8260B	µg/kg	5	< 6.0	< 4.7	< 4.5	< 4.6
2,2-DICHLOROPROPANE	8260B	$\mu g/kg$	5	< 6.0	< 4.7	< 4.5	<4.6
1.1-DICHLOROPROPENE	8260B	"g/kg	5	< 6.0	< 4.7	< 4.5	< 4.6
CIS-1,3-DICHLOROPROPENE	8260B	$\mu g/kg$	5	< 6.0	< 4.7	< 4.5	< 4.6
TRANS-1,3-DICHLOROPROPENE	8260B	$\mu g/kg$	5	< 6.0	< 4.7	< 4.5	< 4.6
ETHYLBENZENE	8260B	$\mu g/kg$	5	< 6.0	< 4.7	< 4.5	< 4.6
HEXACHLOROBUTADIENE	8260B	$\mu g/kg$	5	< 6.0	< 4.7	< 4.5	< 4.6
ISOPROPYLBENZENE (CUMENE)	8260B	$\mu g/kg$	5	< 6.0	< 4.7	< 4.5	< 4.6
P-CYMENE (P-ISOPROPYLTOLUENE)	8260B	µg∕kg	5	< 6.0	< 4.7	< 4.5	< 4.6

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94

Cl-1288 X 02-6564 Page: 2 of 4

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

	x				Analys	is Result	
Component Analyzed	Method	Unit	PQL	BG-1	QC-1	SS-3	SS-4
				02-06564-1	02-06564-2	02-06564-3	02-06564-4
METHYLENE CHLOBIDE	8260B		5	< 6.0	< 4.7	< 4.5	< 4.6
METHYL ISOBUTYL KETONE	8260B	μ6/16 σ/kg	50	2J	< 47	< 45	< 46
TERT-BUTYL METHYL ETHER	8260B	μ6/16 σ/kg	10	< 12	< 9.3	< 8.9	< 9.2
NAPHTHALENE	8260B	μ6/16 σ/kσ	5	< 6.0	< 4.7	< 4.5	< 4.6
N-PROPYLBENZENE	8260B	µ6/~6 	5	< 6.0	< 4.7	< 4.5	< 4.6
STYRENE	8260B	μ6/8 g/kg	5	< 6.0	< 4.7	< 4.5	< 4.6
1.1.1.2-TETRACHLOROETHANE	8260B	µ8/*-8 g/kg	5	< 6.0	< 4.7	< 4.5	< 4.6
1.1.2.2-TETRACHLOROETHANE	8260B	"g/kg	5	< 6.0	< 4.7	< 4.5	< 4.6
TETRACHLOROETHENE(PCE)	8260B	µ8,≕8 "g/kg	5	< 6.0	< 4.7	< 4.5	< 4.6
TOLUENE	8260B	"g/kg	5	< 6.0	< 4.7	< 4.5	< 4.6
1.2.3-TRICHLOROBENZENE	8260B	μ8/ 8 "g/kg	5	< 6.0	< 4.7	< 4.5	< 4.6
1.2.4-TRICHLOROBENZENE	8260B	$\mu g/kg$	5	< 6.0	< 4.7	< 4.5	< 4.6
1,1,1-TRICHLOROETHANE	8260B	$\mu g/kg$	5	< 6.0	< 4.7	< 4.5	< 4.6
1,1,2-TRICHLOROETHANE	8260B	$\mu g/kg$	5	< 6.0	< 4.7	< 4.5	< 4.6
TRICHLOROETHENE (TCE)	8260B	$\mu g/kg$	5	< 6.0	< 4.7	< 4.5	< 4.6
TRICHLOROFLUOROMETHANE	8260B	$\mu g/kg$	5	< 6.0	< 4.7	< 4.5	< 4.6
1,2,3-TRICHLOROPROPANE	8260B	μg/kg	5	< 6.0	< 4.7	< 4.5	< 4.6
1,2,4-TRIMETHYLBENZENE	8260B	μg/kg	5	< 6.0	< 4.7	< 4.5	< 4.6
1,3,5-TRIMETHYLBENZENE	8260B	$\mu g/kg$	5	< 6.0	< 4.7	< 4.5	< 4.6
VINYL CHLORIDE	8260B	μg/kg	5	< 6.0	< 4.7	< 4.5	< 4.6
O-XYLENE	8260B	$\mu g/kg$	5	< 6.0	< 4.7	< 4.5	< 4.6
M.P-XYLENE	8260B	"g/kg	5	< 6.0	< 4.7	< 4.5	< 4.6
ORGANOCHLORINE PESTICIDES		<i>μ</i> 0, 0					
Dilution Factor				1	1	1	1
ALDRIN	8081A	µg/kg	1.7	< 1.8	< 1.8	< 1.9	< 1.8
BETA BHC	8081A	μg/kg	1.7	< 1.8	<1.8	< 1.9	<1.8
ALPHA BHC	8081A	μg/kg	1.7	<1.8	< 1.8	< 1.9	< 1.8
DELTA BHC	8081A	µg/kg	1.7	< 1.8	< 1.8	< 1.9	< 1.8
GAMMA BHC (LINDANE)	8081A	$\mu g/kg$	1.7	< 1.8	< 1.8	< 1.9	<1.8
ALPHA-CHLORDANE	8081A	µg/kg	1	< 1.1	<1.1	0.3J	0.4J
GAMMA-CHLORDANE	8081A	µg/kg	1	< 1.1	< 1.1	0.2J	0.3J
P,P'-DDD	8081A	$\mu g/kg$	3	< 3.2	< 3.2	< 3.3	< 3.3
P,P'-DDE	8081A	$\mu g/kg$	3	< 3.2	< 3.2	<3.3	< 3.3
P;P'-DDT	8081A	µg/kg	3	< 3.2	< 3.2	< 3.3	< 3.3
DIELDRIN	8081A	$_{\mu}\mathrm{g/kg}$	3	< 3.2	< 3.2	< 3.3	< 3.3
ALPHA ENDOSULFAN	8081A	$\mu g/kg$	1.7	< 1.8	< 1.8	<1.9	< 1.8
BETA ENDOSULFAN	8081A	µg/kg	3	< 3.2	< 3.2	< 3.3	< 3.3
ENDOSULFAN SULFATE	8081A	µg/kg	5	< 5.3	< 5.3	< 5.5	< 5.4
ENDRIN	8081A	μg/kg	3	< 3.2	< 3.2	< 3.3	< 3.3
ENDRIN ALDEHYDE	8081A	µg/kg	3	< 3.2	< 3.2	< 3.3	< 3.3
ENDRIN KETONE	8081A	μg/kg	2	< 2.1	< 2.1	< 2.2	< 2.2
HEPTACHLOR	8081A	$\mu g/kg$	1.7	<1.8	< 1.8	< 1.9	< 1.8
HEPTACHLOR EPOXIDE	8081A	$\mu g/kg$	1.7	< 1.8	< 1.8	< 1.9	< 1.8
METHOXYCHLOR	8081A	$\mu g/kg$	10	< 11	<11	<11	<11
TOXAPHENE	8081A	$\mu g/kg$	100	<110	<110	<110	< 110

Cl-1288 X 02-6564 Page: 3 of 4

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analys	is Result	
Component Analyzed	Method	Unit	PQL	BG-1	QC-1	SS-3	SS-4
				02-06564-1	02-06564-2	02-06564-3	02-06564-4
PCBS				-			
Dilution Factor				1	1	1 .	1
PCB-1016 (AROCLOR 1016)	8082	$\mu g/kg$	33	< 35	< 35	< 36	< 36
PCB-1221 (AROCLOR 1221)	8082	$\mu g/kg$	66	< 70	< 70	< 73	< 72
PCB-1232 (AROCLOR 1232)	8082	$\mu g/kg$	33	< 35	< 35	< 36	< 36
PCB-1242 (AROCLOR 1242)	8082	µg/kg	33	< 35	< 35	< 36	< 36
PCB-1248 (AROCLOR 1248)	8082	$\mu g/kg$	33	< 35	< 35	< 36	< 36
PCB-1254 (AROCLOR 1254)	8082	$\mu g/kg$	33	< 35	< 35	< 36	< 36
PCB-1260 (AROCLOR 1260)	8082	$\mu g/kg$	33	< 35	< 35	< 36	< 36

Component Analyzed	Method	Unit	PQL	Analysis Result BG-1 02-06564-1
TCLP METAL				
Dilution Factor				2
ARSENIC	6010B	$_{\mu}\mathrm{g/L}$	· 5	< 10
BARIUM	6010B	$_{\mu}\mathrm{g/L}$	10	230
CADMIUM	6010B	$_{\mu}\mathrm{g/L}$	2	< 4
CHROMIUM	6010B	$_{\mu}g/L$	5	2.6J
LEAD	6010B	$\mu g/L$	5	6.3J
Dilution Factor		,		1
MERCURY	7470A	$_{\mu}\mathrm{g/L}$	0.5	0.30J
Dilution Factor				2
SELENIUM	6010B	$\mu g/L$	10	< 20
SILVER	6010B	$_{\mu}\mathrm{g/L}$	10	1.7J

PQL: Practical Quantitation Limit. MDL: Method Detection Limit. N.D.: Not Detected or less than the practical quantitation limit.

CRDL: Contract Required Detection Limit

"-": Analysis is not required.

† All results are reported on dry basis for soil samples.

J: Reported between PQL and MDL.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

ectfully_subm

Laboratory Director Applied P & Ch Laboratory

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498 **Case Narrative**

Project: Lowers Lakes/02HW013

For SOTA Environmental

APCL Service No: 02-6564

1. Sample Identification

The sample identifications are listed in the following table:

SOTA Environmental Sample ID	APCL Sample ID	
SS-3	02-06564-3	
SS-4	02-06564-4	
QC-1	02-06564-2	
BG-1	02-06564-1	

2. Analytical Methodology

Samples are analyzed by EPA methods

8260B (Volatile organics),
M8015V (Gasoline),
M8015E (TPH: Diesel),
M8015E (TPH: Motor Oil),
8081A (Organochlorine pesticides),
8082 (PCBs),
314.0 (Perchlorate, low level),
6010B/7470A (Priority Pollutant Metals (CWA) (13)),
6010B (TCLP metal, EPA Primary List),
ASTM-D2216 (Moisture, percent in soil),
9040B (pH),

3. Holding Time

All samples were extracted, digested and analyzed within the holding times defined by the appropriate EPA methods of the analyses.

4. Preservation

All samples were preserved and stored according to the appropriate EPA methods.

5. Tele-log

None

6. Anomaly

None

"I certify that these data are technically accurate, complete, and in compliance with the terms and conditions of the contract, for other than the conditions detailed above. Release of the data contained in the hardcopy data package and its electronic data deliverable submitted on diskette had been authorized by the Laboratory Manager or her/his designee, as verified by the following signature."

Respectfully submitted,

Regina Kirakozova VSAssociate QA/QC Director Applied P & Ch Laboratory

er			:	SOTA 168	Enviro 835 W. E	nment Bernardo	al Techno Drive, Su	ology Inc. iite 212					C	い	າa	in	С	of	Custo	ody
			San Di	iego, C	A 92127	'-1613		Tel:					02	HV	V01:	3			- /	. 7
Environmental	Technology, Inc.			(858)	485-810	<u>10</u>	-ax: (858)	485-0812		<u></u>			Ple	eas	ie P	rint	in p		Page _C	_ or
Laboratory	Information	1:			Project	Inform	ation:					\na	lysi	s It	ems		T - T		1	
Lab Name: Ap	plied P & Ch	Laboratory			Name: L	owers La	kes, HD FO	CB, LA, CA		<u>ه</u>	12								í	
Address: 1376	0 Magnolia A	ve.			Proj. 0	2HW013				3260	081/				ğ					
City: Chino	000 500 100	State: CA Zip:	91710		PM: YU	J ZENG	A			PA	A 8		Î		A					
Lab Phone:	-909-590-182	28 Quotation	#:		Sampler				Ŷ	s (E	EF		<u>015</u>	314)	s E				•	
Field Sample	Sample	Description	Date Colle	Time cted	Sample Matrix	Preser- vative	# of Container	Type of Container	TPH-G (EPA 8015	VOCs, Oxygenate	Organo Pesticides	PCBs (EPA 8082)	TPH-d & m (EPA 8	Perchlorate (EPA	13 Assorted Metal				Rem	arks
SS-3	3Ft	dept	12/11/02	7:45	Soil	5	6	Encore-5g	x	×										
i i	Conten	It helow	T '	7:05				,				ŀ								
SS-3	<u> </u>	11		8: W	Soil	5	2	StainlessSteel Sleeve			×	×								
SS-3	FC .	alend		8. 24	Soil	5	2	StainlessSteel Sleeve					×	x					· · · ·	4
SS-3	()			8: 43	Soil	5	1	StainlessSteel Sleeve						·	×			K	56	A
																		M	<u>100</u>	
SS-4	3 FF	deep	12/11/0	9:19	Soil	5	6	Encore-5g	×	×	_	+								
SS-4				a	Soil	5	2	StainlessSteel Sleeve	-	$\left \right $,	(x			┝╾┼╸	+-	┢			
SS-4	Fr	Ĥ		9.20	Soil	5	2	StainlessSteel Sleeve	╞			+	×	×		1	╎			
SS-4	M	ent		9:4	Soil	5	1	StainlessSteel Sleeve							x					
			Ţ																	
QC Requirement	DRegular DQ	A/QC Report DWI	P DRaw [Data 🗆 Ex	xtended Ray	w Data 🖸		AFCEE DNEESA(E	,C a	or D)		her_			(P	lease	e spe	ecify)	
Sample Disposal Sample Condition	: □Disposal by ns: □Intact □B	Lab 🗆 Hold for roken Cooler Sea	days	after rec □Broker	eiving date. n DNone		Sample Matrix	1Drinking Water4 So2 Waste Water5 Aq3 Oil/Organic Liquid6 Air	lid/S ueo	ioll us				Pre ativ	eserv-	1F 2 3 4	HCI HNO H₂SC NaOł	3)4 H	5 Ice Only 6 Other 7 Not Preserv	ed
Temperature:	Degrees	С						11	6											
Relinquished	v the	and the second s	Date/T	me 12	11/02	1825	Received	by: Manur	C						Da	te/Ti	ime	ľ.	2/11/02	1655
Relinquished	by: Horm	uno	Date/T	me /)	14/0-	1990	Received	by: Min	(-	2					Dat	te/Ti	ime	k	2/12/02_	BZOA

30				S	an Diego	o, CA 92	2127-1613					02	2HW	013			-7	. 7	Plea	se
Environmental T	echnology, inc.	-		Tel: (858)	485-8100) F	ax: (858) 4	85-0812				Pr	rint i	n per)	Pag)f	, -	
Laboratory Ir	formation:				Project	Inform	ation:				Ana	alysi	IS Ite	ms						
Lab Name: App	lied P & Ch L	aboratory			Name: L	owers La	akes, HD FC	B, LA, CA	i i	-										
Address: 13760	Magnolia Av	e.	14740		Proj. 0	2HVV013			2090		81A									
ab Phone: 1-	000-500-1828	ale. CA Zip. 8	<u>81710</u>		Sampler	Sampler: MES/DM						Ŵ	946							
Due Date:	Due Date: ■ regular □ rushdayshours											0151	314) 114)							
Field Sample ID No.	Sample	Description	Dat	e Time collected	Sample Matrix	Preser- vative	# of Container	Type of Container	TPH-G (EPA 8015	TCLP Metal	Organo Pesticides PCBs (EPA 8082)	TPH-d & m (EPA 8	Perchlorate (EPA :					Rema	arks	
QC-1	1	ZII	121	11- 8:15	Soil	5	6	Encore-5g	x	x										
	Δ.	loter p	121	. /					IT		[T]		-							
QC-1			12/1	10-8:30	Soil	5	2	StainlessSteel Sleeve			x >	< _								
QC-1			12/1	10 8:35	Soil	5	2	StainlessSteel Sleeve				×	×							
QC-1			12/1	1-8:40	Soil	5	1	StainlessSteel Sleeve						×						
BG-1	ACH	hea		T Las ray	Soil	5	6	Encore-5g	×	×	┼╌┼╴		┢┼				ZA		<u></u>	
BG-1	E.	<u>soud</u>	12	1, 10.19	soil	5	,	stainless sted		X		1	\square				00)		
BG-1	UI C'	0 0	1.1		Soil	5	2	StainlessSteel	Π	-	X-1	×	\square							
BG-1			14	<u>4 10 0 0</u>	Soll	5	2	StainlessSteel	┢┼╿	╶┼╴	f 	+ ×				+-				
BG-1			12/1	10:2	Soìl	5	1	Sleeve StainlessSteef	┥┤	+	╆╋	+	┢╌╂	x	┝╌┼╸	+				
,			$+\mathcal{Y}$	K-10. 2	+			Sieeve	$\left \cdot \right $		┨╧┠╸		\dagger	+	┝╌┼╴	+				
-			+			1			\vdash		+	1	╆╋		╞╌┠╴	1-				
OC Requirement:		IOC Report CIWIP		Data DEvten	ded Raw Da			EE FINEESA (FC					(Pli	Pase	speci	Γν)			
Sample Disposal:	Disposal by La	ib OHold for	day	/s after receivi	ng date.		Sample Matrix	1Drinking Water 2 Waste Water 3 Oll/Omagic Liquid	4 3	Solid/S Aqueo	ioli us		Pres ative	erv-	1HCI 2 HN0 3 H25	03 504	5 Ice Onl 6 Other_ 7 Not Pi	y Na2S2C reserved	08	
Tomporature:						· · ·	L						I		4 NaC	DH				
Dolinguished		00	Data	Time in /			Paceivad	HATTA						Date	/Tim	_ /	s tuta	Ζ	7825	
Relinguished b	y yan	uny-	Data		102 18	525	Received L	NO VOUL	1	-				Date	/Tim	<u> </u>	74/07		100)	n
Relinquisned b	Y Hanni	umile	Date		1/02-19	150	Received L	ру. <u></u>	110	\subseteq	<u>)</u>			Date	/ 1 1111	e	<u>ispli</u>	R	USD	<u> </u>

APCL ServiceID:	Hient Name/Project: Levilonmental
1. Sample Arrival	Lowers Lakes
Date/Time Received	Date/Time Opened/2/2/02 By (name):////////////////////////////////
Custody Transfer: 🛛 Client 🔲	Golden State 🛛 UPS 🗌 US Mail 🖓 FedEx 🖉 APCL Empl: .
2. Chain-of-Custody (CoC)	
⊠ With Samples? ☐ Faxed? ☑ Project ID? ☑ Analyses (☑ CoC/Docs Zip-Locked under lid? □ Discrepancies? □ Client noti	Client has Copy? Signed, dated? By: Clear? Hold Samples? # on Hold # Received Compos.#: X #Samples OK? tified? Response (attach docs):
3. Shipping Container/Cooler	
Cooler Used? # of Cooled	d by: 💢 Ice 🗆 Blue Ice 🗆 Dry Ice 🗌 None
(Cooler temperature measu Cooler Custody Seal?	ured from temp blank if present, otherwise measured from the cooler). sent Alntact Tampered?
4. Sample Preservation	÷
□ pH <2 □ pH >1 If Not, pH = Preserved	12 I by: Client APCL Third Party
5. Holding-time Requirements	
□ pH 24hr □ BACT 6/24hr □ Cl ₂ ASAP □ Turbidity 48hr □ HT Expired? □ Client notified	r \Box Cr ^{VJ} 24hr \Box NO ₃ 48hr \Box BOD 48hr hr \Box DO ASAP \Box Fe(II) ASAP d?
6. Sample Container Condition	
Image: Sector of the sector	Documented? Number: glass
7. Turn Around Time	
RUSH TAT: RUSH (7-	-10 days) 🖾 Not Marked
8. Sample Matrix	
Drinking H20 Other Liq Soil	I 🗌 Wipe 🔤 Polymer 🔤 Air 🔤 Other: ter 🗋 Oil/Petro 📄 Paint 🔤 W. Water 🔤 Extract 🗍 Unknow
9. Pre-Login Check List Completed	& OK?

.

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Sample Login: Check List

02-06564 (1288₋ 431) (4858100₋ 431) $\frac{12}{12}$

	Company Information	Name:	SOTA Environmental
		Address:	16835 W. Bernardo Dr, Ste. 212 ,San Diego ,CA 92127
	Project Information	Project Description:	Lowers Lakes
		Project #:	02HW013
	Billing Information	P.O. #:	
		Bill Address:	16835 W. Bernardo Dr, Ste. 212 ,San Diego ,CA 92127
		Lab Project ID: Client Database #:	0
	Receiving Information	Who Received Sample?	Kenny Chan
		Receiving Date/Time:	12/12/02 0820
	•	COC No.	
	Shipping Information	Shipping Company	APCL pick up
		Packing Information:	Cooler/Ice Chester
		Cooler Temperature:	3.5 °C
	Container Information	Container Provider:	Client
	Sampling Information	Sampling Person:	
		Sampling Company:	Client
	Turn-Around-Time Opti	ion:	Rush 5 working day(s)
	QC Option:		NEESA C
	Disposal Option:		Not specify
•		· ·	

Part 1: General Information

02-06564 Check List Login on 12/12/02 File: TMP010c.tex

Part 2: Sample Information

Seq.	Sample ID	Sample	APCL		Cont-	Preser-	Vol, ml	# of	Condition	Collected	•.	Composite	TAT	
#	(on COC)	Sub-ID	Sample ID	Matrix	tainer	vative	Am. g	Replica	G, L, B	mmddyy	Hold ?	Group	Days	
1	SS-3 🖌	Encore	02-06564-3-α	S	Р		5	6	G	121102	N	0	7	
	SS-3	Sleeve	02-06564-3- β	S	в		250	5	G	121102	Ν	0	7	
2	SS-4	Encore	02-06564-4-α	S	Р		5	6	G	121102	N	0	7	
	SS-4	Sleeve	02-06564-4- eta	S	в		250	5	G	121102	N	0	7	
3	QC-1	Encore	02-06564-2-α	S	Р		5	6	G	121102	N	0	7	
	QC-1	Sleeve	02-06564-2- β	S	в		250	5	G	121102	Ν	0	7	
4	BG-1 🗸	Encore	02-06564-1-α	S	Р		5	6	G	121102	Ν	0	7	
	BG-1	Sleeve	02-06564-1- β	S	В		250	6	G	121102	Ν	· 0	7	

Part 3: Analysis Information

Test Items:	_ ₽ 8260B	Volatile organics
	₩8015V/M8015	5GGasoline
	M8015E/M8015	DTPH: Diesel
	M8015E/M801	5MTPH: Motor Oil
		Organochlorine pesticides
	8082	PCBs
	\$14.0/300.0	Perchlorate, low level
	6010B/7000A	Priority Pollutant Metals (CWA) (13)
	6010B	TCLP metal, EPA Primary List
	□ ASTM-D2216	Moisture, percent in soil
	🗖 9040B/150.1	рН

Seq.	Client"s Sample ID	Sample	APCL										
#	(as given on COC)	Sub-ID	Sample ID	Matrix	8260	TPH	ТРН	TPH	8081	8082	PERCHL	METALS	;
1	SS-3	Encore	02-06564-3-α	S	X	х							
	SS-3	Sleeve	02-06564-3- eta	S			х	х	х	х	Х	х	
2	SS-4	Encore	02-06564- 4- α	S	х	Х							
	SS-4	Sleeve	02-06564-4- β	S			Х	Х	Х	Х	Х	Х	
3	QC-1	Encore	02-06564-2-lpha	S	х	x							
	QC-1	Sleeve	02-06564-2- β	S			Х	Х	х	х	Х	х	
4	BG-1	Encore	$02-06564-1-\alpha$	S	X	Х							
	BG-1	Sleeve	02-06564-1-β	. S			х	х	x	х	х	X	
	·				:								
Se	eq. Client"s San	nple ID	Sample	APCL				TCLI	C				
#	(as given on	COC)	Sub-ID	Sample	ID	Ma	trix	TCLI	>	MOIST	URE	рН	
1	SS-3		Encore	02-0656	4-3-α	5	5			x		х []

.

Applied Physics & Chemistry Laboratory

13760 Magnolia Ave. Chino CA 91710 Tel. (909) 590-1828 Fax (909) 590-1498

May 2, 2003

SOTA Environmental Attention: Yu Zeng 16835 W. Bernardo Dr. Suite 212 San Diego CA 92127

Dear Yu,

This package contains samples in our Service ID 02-6571 and your project is 02HW013 Lowers Lakes. Enclosed please find:

- (1) One copy of analytical report.
- (2) One copy of Chain of Custody.
- (3) One original of Level D Data Package Deliverable.

If anything is missing or you have any questions, please feel free to contact me.

Respectfully submitted,

Regina Kirakozova VS Associate QA/QC Director Applied P & Ch Laboratory

13760 Magnolia Ave. Chino CA 91710

Tel: (909) 590-1828 **Fax:** (909) 590-1498 Submitted to: SOTA Environmental Attention: Yu Zeng

16835 W. Bernardo Dr, Ste. 212 San Diego CA 92127 Tel: (858)485-8100 Fax: (858)485-0812

APCL Analytical Report

Service ID #: 801-026571 Collected by: MES/DM. Collected on: 12/11/02 Received: 12/12/02 Extracted: 12/13-16/02 Tested: 12/12-20/02 Reported: 01/02/03

Sample Description: Water Project Description: 02HW013 Lowers lakes

Analysis of Water Samples

					Analys	is Result	
Component Analyzed	Method	Unit	PQL	QC-2	SW-1-1	SW-1-2	SW-1-3
				02-06571-1	02-06571-2	02-06571-3	02-06571-4
BIOLOGICAL OXYGEN DEMAND (BOD)	405.1	mg-O ₂ /L	2	-	0.84J	1.2 J	1.1J
CHLORIDE CL ⁻	325.3	mg/L	1	-	33.5	29.0	32.0
NITRATE (NO_3^-) AS N	353.3	mg/L	0.1	-	1.2	1.2	1.0
NITRITE (NO_2) AS N	354.1	mg/L	0.02	-	0.017 J	0.017J	0.017J
РН	9040B	pH unit	0.01	-	7.86	7.80	7.84
SOLIDS, SETTLEABLE (SS)	160.5	mL/L-hr	0.2	-	< 0.2	< 0.2	< 0.2
SOLIDS, TOTAL DISSOLVED (TDS)	160.1	mg/L	10	-	317	309	311
SOLIDS, TOTAL SUSPENDED (TSS)	160.2	mg/L	4	-	12.0	10.0	9.0
SULFATE $(SO_4^{})$	375.4	mg/L	2	-	70.5	62.2	63.3
SULFIDE, DISSOLVED	376.2	mg/L	0.2	-	< 0.2	< 0.2	< 0.2
TOTAL COLIFORM, MTF, 3X5 TUBES	SM9221B	MPN/100mL	2	-	90.0	50.0	140
FECAL COLIFORM, MTF, 3X5 TUBES	SM9221E	MPN/100mL	2	-	90.0	50.0	140
Dilution Factor				1	1	1	1
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	-	< 4	< 4	< 4
PRIORITY POLLUTANT METALS (CWA) (13)						
Dilution Factor				1.	1	1	1
ANTIMONY	6010B	$_{\mu}\mathrm{g/L}$	10	< 10	<10	< 10	< 10
ARSENIC	6010B	$_{\mu}\mathrm{g/L}$	5	2.9J	< 5	< 5	2.3J
BERYLLIUM	6010B	$\mu g/L$	2	< 2	< 2	< 2	< 2
CADMIUM	6010B	$_{\mu} m g/L$	2	< 2	< 2	< 2	< 2
CHROMIUM	6010B	$\mu g/L$	5	2.8J	4.2J	2.9J	0.68J
COPPER	6010B	$\mu g/L$	10	2.8J	2.6J	2.1J	1.2J
LEAD	6010B	$\mu g/L$	5	< 5	0.75J	< 5	< 5
MERCURY	7470A	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	0.17J
NICKEL	6010B	$\mu g/L$	5	2.6J	8.3	1.8 J	0.86J
SELENIUM	6010B	$\mu g/L$	10	< 10	<10	4.4J	< 10
SILVER	6010B	$\mu g/L$	10	0.53J	<10	< 10	< 10
THALLIUM	6010B	$\mu g/L$	10	3.3J	3.6J	2.4J	3.5J
ZINC	6010B	$\mu g/L$	10	67.7	73.7	53.2	12.4
Dilution Factor		,		1	1	1	1
PHC AS GASOLINE	M8015V	mg/L	0.05	0.03J	0.02 J	0.02J	0.02J
Dilution Factor				0.96	0.96	0.96	0.96
PHC AS DIESEL FUEL	M8015E	mg/L	0.5	< 0.48	< 0.48	< 0.48	< 0.48
Dilution Factor				0.96	0.96	0.96	0.96
MOTOR OILS	M8015E	mg/L	0.5	< 0.48	< 0.48	0.04J	0.03J
							

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

Analys					is Result		
Component Analyzed	Method	Unit	PQL	QC-2	SW-1-1	SW-1-2	SW-1-3
				02-06571-1	02-06571-2	02-06571-3	02-06571-4
VOLATILE ORGANICS							
Dilution Factor				1	1	1	1
ACETONE	8260B	µg/L	50	< 50	< 50	< 50	< 50
BENZENE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
BROMOBENZENE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
BROMOCHLOROMETHANE	8260B	$\mu g/L$	5	< 5	< 5	< 5	- < 5
BROMODICHLOROMETHANE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
BROMOFORM	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
BROMOMETHANE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
METHYL ETHYL KETONE	8260B	$\mu g/L$	100	< 100	< 100	< 100	< 100
N-BUTYLBENZENE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
SEC-BUTYLBENZENE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
T-BUTYLBENZENE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
CARBON DISULFIDE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
CARBON TETRACHLORIDE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
CHLOROBENZENE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
DIBROMOCHLOROMETHANE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
CHLOROETHANE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
CHLOROFORM	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
CHLOROMETHANE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
2-CHLOROTOLUENE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
4-CHLOROTOLUENE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
1,2-DIBROMO-3-CHLOROPROPANE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
1,2-DIBROMOETHANE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
DIBROMOMETHANE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
1,2-DICHLOROBENZENE	8260B	$\mu g/L$	5	< 5	< 5	< 5 ·	< 5
1,3-DICHLOROBENZENE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
1.4-DICHLOROBENZENE	8260B	e/L	5	< 5	< 5	< 5	< 5
DICHLORODIFLUOROMETHANE	8260B	"g/L	5.	< 5	< 5	< 5	< 5
1.1-DICHLOROETHANE	8260B	μ8/ = μg/L	5	< 5	< 5	< 5	< 5
1.2-DICHLOROETHANE	8260B	"g/L	5	< 5	< 5	< 5	< 5
1,1-DICHLOROETHENE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
CIS-1,2-DICHLOROETHENE	8260B	ug/L	5	< 5	< 5	< 5	< 5
TRANS-1.2-DICHLOROETHENE	8260B	$\frac{1}{\mu g}/L$	5	< 5	< 5	< 5	< 5
1.2-DICHLOROPROPANE	8260B	. "g/L	- 5	< 5	< 5	< 5	< 5
1.3-DICHLOROPROPANE	8260B	"g/L	5	< 5	< 5	< 5	< 5
2.2-DICHLOROPROPANE	8260B	"g/L	5	< 5	< 5	< 5	< 5
1.1-DICHLOROPROPENE	8260B	"g/L	5	< 5	< 5	< 5	< 5
CIS-1.3-DICHLOROPROPENE	8260B	"g/L	5	< 5	< 5	< 5	< 5
TRANS-1 3-DICHLOROPROPENE	8260B		5	< 5	< 5	< 5	< 5
FTUVI DENZENE	0060D	μο/ ~ ~/Τ	r			, r	~ K
DINIODADINE HEVACHIODODUNADIENE	0200D	μ8/L	0 E	< 0	< 0	< 0 < 5	< 0
ILLANGLUNUDU IADILINE ISADDADVI DENZENE (AUMENE)	0200D 8260D	μ5/10 σ/Τ	9 5	< 0	< 0 	~ 5	~5
D CVMENE (D ISODODVITOI UENE)	0200D	μδ/⊔ T	U E	ري 1	< U	~ 5	~ 5
r-ormene (P-ISOPROPILIOLUENE)	0200D	μ8/L	Э	< 0	< 5	< 9	< 0

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analys	is Result	
Component Analyzed	Method	Unit	PQL	QC-2	SW-1-1	SW-1-2	SW-1-3
				02-06571-1	02-06571-2	02-06571-3	02-06571-4
METHYLENE CHLORIDE	8260B	e/L	5	< 5	< 5	< 5	< 5
METHYL ISOBUTYL KETONE	8260B	μ8/ – "g/L	50	< 50	< 50	< 50	< 50
TERT-BUTYL METHYL ETHER	8260B	μ8/ "g/L	10	< 10	< 10	< 10	< 10
NAPHTHALENE	8260B	μ8/	5	< 5	< 5	< 5	< 5
N-PROPYLBENZENE	8260B	μ8/ g/L	5	< 5	< 5	< 5	< 5
STYRENE	8260B	µ8/ ,,g/L	5	< 5	< 5	< 5	< 5
1,1,1,2-TETRACHLOROETHANE	8260B	μ8/ g/L	5	< 5	< 5	< 5	< 5
1,1,2,2-TETRACHLOROETHANE	8260B	"g/L	5	< 5	< 5	< 5	< 5
TETRACHLOROETHENE(PCE)	8260B	"g/L	5	< 5	< 5	< 5	< 5
TOLUENE	8260B	μg/L	5	< 5	< 5	< 5	< 5
1,2,3-TRICHLOROBENZENE	8260B	"g/L	5	< 5	< 5	< 5	< 5
1,2,4-TRICHLOROBENZENE	8260B	"g/L	5	< 5	< 5	< 5	< 5
1,1,1-TRICHLOROETHANE	8260B	μg/L	5	< 5	< 5	< 5	< 5
1,1,2-TRICHLOROETHANE	8260B	"g/L	5	< 5	< 5	< 5	< 5
TRICHLOROETHENE (TCE)	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
TRICHLOROFLUOROMETHANE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
1,2,3-TRICHLOROPROPANE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
1,2,4-TRIMETHYLBENZENE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
1,3,5-TRIMETHYLBENZENE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
VINYL CHLORIDE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5
O-XYLENE	8260B	$_{\mu}\mathrm{g/L}$	5	< 5	< 5	< 5	< 5
M,P-XYLENE	8260B	$_{\mu}\mathrm{g/L}$	5	< 5	< 5	< 5	< 5
ORGANOCHLORINE PESTICIDES							
Dilution Factor				0.96	0.96	0.96	0.96
ALDRIN	8081A	$_{\mu}\mathrm{g/L}$	0.05	< 0.048	< 0.048	< 0.048	< 0.048
BETA BHC	8081A	$\mu g/L$	0.05	< 0.048	< 0.048	< 0.048	< 0.048
ALPHA BHC	8081A	$_{\mu}g/L$	0.05	< 0.048	< 0.048	< 0.048	< 0.048
DELTA BHC	8081A	$\mu g/L$	0.05	< 0.048	< 0.048	< 0.048	< 0.048
GAMMA BHC (LINDANE)	8081A	$\mu g/L$	0.05	< 0.048	< 0.048	< 0.048	< 0.048
ALPHA-CHLORDANE	8081A	$\mu g/L$	0.05	< 0.048	< 0.048	< 0.048	< 0.048
GAMMA-CHLORDANE	8081A	$_{\mu}\mathrm{g/L}$	0.05	< 0.048	< 0.048	< 0.048	< 0.048
P,P'-DDD	8081A	$_{\mu}\mathrm{g/L}$	0.1	< 0.096	< 0.096	< 0.096	< 0.096
P,P'-DDE	8081A	$\mu g/L$	0.1	< 0.096	< 0.096	< 0.096	< 0.096
P,P'-DDT	8081A	μg/L	0.1	< 0.096	< 0.096	< 0.096	< 0.096
DIELDRIN	8081A	$_{\mu}\mathrm{g/L}$	0.1	< 0.096	< 0.096	< 0.096	< 0.096
ALPHA ENDOSULFAN	8081A	$_{\mu}\mathrm{g/L}$	0.05	< 0.048	< 0.048	< 0.048	< 0.048
BETA ENDOSULFAN	8081A	$_{\mu}\mathrm{g/L}$	0.1	< 0.096	< 0.096	< 0.096	< 0.096
ENDOSULFAN SULFATE	8081A	$_{\mu}\mathrm{g/L}$	0.5	< 0.48	< 0.48	< 0.48	< 0.48
ENDRIN	8081A	$\mu g/L$	0.1	< 0.096	< 0.096	< 0.096	< 0.096
ENDRIN ALDEHYDE	8081A	μg/L	0.1	< 0.096	< 0.096	< 0.096	< 0.096
ENDRIN KETONE	8081A	$\mu g/L$	0.1	< 0.096	< 0.096	< 0.096	< 0.096
HEPTACHLOR	8081A	$\mu g/L$	0.05	< 0.048	< 0.048	< 0.048	< 0.048
HEPTACHLOR EPOXIDE	8081A	$_{\mu}g/L$	0.05	< 0:048	< 0.048	< 0.048	< 0.048
METHOXYCHLOR	8081A	$_{\mu}g/L$	2	<1.9	<1.9	< 1.9	< 1.9
TOXAPHENE	8081A	$_{\mu}\mathrm{g/L}$	5	< 4.8	< 4.8	< 4.8	< 4.8

13760 Magnolia Ave. Chino CA 91710

Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analys	is Result	
Component Analyzed	Method	Unit	\mathbf{PQL}	QC-2	SW-1-1	SW-1-2	SW-1-3
				02-06571-1	02-06571-2	02-06571-3	02-06571-4
PCBS							
Dilution Factor				0.96	0.96	0.96	0.96
PCB-1016 (AROCLOR 1016)	8082	$\mu g/L$	1	< 0.96	< 0.96	< 0.96	< 0.96
PCB-1221 (AROCLOR 1221)	8082	$\mu g/L$	2	< 1.9	< 1.9	<1.9	<1.9
PCB-1232 (AROCLOR 1232)	8082	$\mu g/L$	1	< 0.96	< 0.96	< 0.96	< 0.96
PCB-1242 (AROCLOR 1242)	8082	$\mu g/L$	1	< 0.96	< 0.96	< 0.96	< 0.96
PCB-1248 (AROCLOR 1248)	8082	$\mu g/L$	1	< 0.96	< 0.96	< 0.96	< 0.96
PCB-1254 (AROCLOR 1254)	8082	$\mu g/L$	1	< 0.96	< 0.96	< 0.96	< 0.96
PCB-1260 (AROCLOR 1260)	8082	$\mu g/L$	1 .	, < 0.96	< 0.96	< 0.96	< 0.96

Component Analyzed	Method	Unit	PQL	SW-2-1 02-06571-5	Analys SW-2-2 02-06571-6	is Result SW-3-1 02-06571-7	SW-3-2 02-06571-8
BIOLOGICAL OXYGEN DEMAND (BOD)	405.1	mg-O ₂ /L	2	1.2J	0.90J	0.89 J	1.0J
CHLORIDE CL ⁻	325.3	mg/L	1	29.5	31.0	33.0	31.5
NITRATE (NO_3^-) AS N	353.3	mg/L	0.1	1.1	1.1	1.1	1.1
NITRITE (NO_{1}^{-}) AS N	354.1	mg/L	0.02	0.017J	0.017J	0.017J	0.016J
PH	9040B	pH unit	0.01	7.68	7.78	7.86	7.85
SOLIDS, SETTLEABLE (SS)	160.5	mL/L-hr	0.2	< 0.2	< 0.2	< 0.2	< 0.2
SOLIDS, TOTAL DISSOLVED (TDS)	160.1	mg/L	10	322	323	333	312
SOLIDS, TOTAL SUSPENDED (TSS)	160.2	mg/L	4	10.0	9.0	11.0	6.0
SULFATE $(SO_4^{})$	375.4	mg/L	2	49.8	53.4	65.4	65.7
SULFIDE, DISSOLVED	376.2	mg/L	0.2	< 0.2	< 0.2	< 0.2	< 0.2
TOTAL COLIFORM, MTF, 3X5 TUBES	SM9221B	MPN/100mL	2	80.0	300	50.0	50.0
FECAL COLIFORM, MTF, 3X5 TUBES	SM9221E	MPN/100mL	2	23.0	50.0	50.0	30.0
Dilution Factor				· 1	1	1	1
PERCHLORATE	314.0	$\mu g/L$	· 4	< 4	< 4	< 4	< 4
PRIORITY POLLUTANT METALS (CWA) (13)	,					
Dilution Factor				1	1	1	1
ANTIMONY	6010B	$\mu g/L$	10	< 10	3.5J	< 10	< 10
ARSENIC	6010B	$\mu g/L$	5	< 5	2.3J	< 5	3.2J
BERYLLIUM	6010B	$\mu g/L$	2	< 2	< 2	< 2	< 2
CADMIUM	6010B	$\mu g/L$	2	. <2	< 2	< 2	< 2
CHROMIUM	6010B	$\mu g/L$	5	3.3J	< 5	4.8J	1.0J
COPPER	6010B	$\mu g/L$	10	1.9J	1.0J	$1.2 \mathrm{J}$	1.6J
LEAD	6010B	"g/L	5	0.96J	< 5	0.79J	< 5
MERCURY	7470A	$\mu g/L$	0.5	0.14J	0.13J	< 0.5	0.19J
NICKEL	6010B	$\mu g/L$	5	3.4J	< 5	4.1J	2.2J
SELENIUM	6010B	$\mu g/L$	10	< 10	3.1J	<10	< 10
SILVER	6010B	$\mu g/L$	10	< 10	<10	0.51J	< 10
THALLIUM	6010B	$\mu g/L$	10	3.1J	3.0J	2.3J	4.3J
ZINC	6010B	$\mu g/L$	10	41.7	25.5	51.5	24.3
Dilution Factor		<i>F</i> 0,		1	1	1	1
PHC AS GASOLINE	M8015V	mg/L	0.05	0.03J	0.02J	0.02J	0.02J
Dilution Factor		01	•	0.96	0.96	0.96	0.96
PHC AS DIESEL FUEL	M8015E	mg/L	0.5	< 0.48	< 0.48	< 0.48	< 0.48
Dilution Factor		,		0.96	0.96	0.96	0.96
MOTOR OILS	M8015E	mg/L	0.5	< 0.48	< 0.48	< 0.48	< 0.48

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94

Cl-1288 ℵ 02-6571 ♀ Page: 4 of 7

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

Component Analyzed Method Unit PQL SW-2-1 SW-2-2 SW-3-1 SW-3-2 SW-3-2 VOLATILE ORGANICS 02-06571-5 02-06571-5 02-06571-7 02-06571-7 02-06571-7 02-06571-7 02-06571-7 Dilution Factor 1 1 1 1 1 1 ACETONE 8260B $\mu g/L$ 5 <5 <5 <5 <5 BROMOCHLOROMETHANE 8260B $\mu g/L$ 5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	•				Analysis Result					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Component Analyzed	Method	Unit	PQL	SW-2-1	SW-2-2	SW-3-1	SW-3-2		
VOLATILE ORGANICS 1 <th1< th=""> 1 1</th1<>					02-06571-5	02-06571-6	02-06571-7	02-06571-8		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	VOLATILE ORGANICS	·								
ACETONE $8260B$ $\mu g/L$ 50 <50 <50 $9J$ <50 BENDODENZENE $8200B$ $\mu g/L$ 5 <5 <5 <5 <5 BROMOGELOROMETHANE $8200B$ $\mu g/L$ 5 <5 <5 <5 BROMOGRIONOMETHANE $8200B$ $\mu g/L$ 5 <5 <5 <5 BROMOFORM $8200B$ $\mu g/L$ 5 <5 <5 <5 <5 BROMOMETHANE $8200B$ $\mu g/L$ 5 <5 <5 <5 <5 BROMOMETHANE $8200B$ $\mu g/L$ 5 <5 <5 <5 <5 BROMOMETHANE $8200B$ $\mu g/L$ 5 <5 <5 <5 <5 BROMOMETHANE $8200B$ $\mu g/L$ 5 <5 <5 <5 <5 NBUTYLBENZENE $8200B$ $\mu g/L$ 5 <5 <5 <5 <5 SDEDUTYLBENZENE $8200B$ $\mu g/L$ 5 <5 <5 <5 <5 CARBON ISULFIDE $8200B$ $\mu g/L$ 5 <5 <5 <5 <5 <5 CHLOROETHANE $8200B$ $\mu g/L$ 5 <5 <5 <5 <5 <5 CHLOROETHANE $8200B$ $\mu g/L$ 5 <5 <5 <5 <5 <5 CHLOROFORM $8200B$ $\mu g/L$ 5 <5 <5 <5 <5 <5 CHLOROFORM $8200B$ $\mu g/L$ 5 <5 <5 <5 <t< td=""><td>Dilution Factor</td><td></td><td></td><td></td><td>1</td><td>1</td><td>1</td><td>1</td></t<>	Dilution Factor				1	1	1	1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ACETONE	8260B	$_{\mu}g/L$	50	< 50	< 50	9J	< 50		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BENZENE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	BROMOBENZENE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BROMOCHLOROMETHANE	8260B	μg/L	5	< 5	< 5	< 5	< 5		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BROMODICHLOROMETHANE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BROMOFORM	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5		
METHYL ETHYL KETONE $8260B \ \mu g/L$ $100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 100 \ < 1000 \ < 1000 \ < 1000 \ < 100 \ \ < 1000 \ < 10$	BROMOMETHANE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5		
N-BUTYLBENZENE8260B $\mu g/L$ 5<5<5<5<5SEC-BUTYLBENZENE8260B $\mu g/L$ 5<5	METHYL ETHYL KETONE	8260B	$\mu g/L$	100	< 100	< 100	< 100	< 100		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N-BUTYLBENZENE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SEC-BUTYLBENZENE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T-BUTYLBENZENE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CARBON DISULFIDE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CARBON TETRACHLORIDE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5		
DIBROMOCHLOROMETHANE $2260B$ $\mu g/L$ g/L 5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	CHLOROBENZENE	8260B	μg/L	5	< 5	< 5	< 5	< 5		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DIBROMOCHLOROMETHANE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5		
CHLOROFORM $8260B$ $\mu g/L$ 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 <	CHLOROETHANE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5		
CHLOROMETHANE $8260B \ \mu g/L$ $5 < < 5 < < 5 < < 5 < < 5 < < 5$ 2-CHLOROTOLUENE $8260B \ \mu g/L$ $5 < < 5 < < 5 < < 5 < < 5 < < 5$ 4-CHLOROTOLUENE $8260B \ \mu g/L$ $5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 < < 5 $	CHLOROFORM	8260B	$\mu g/L$	5.	< 5	< 5	< 5	< 5		
2-CHLOROTOLUENE $8260B \ \mu g/L$ $5 < < 5 < < 5 < < 5 < < 5$ < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 <th< td=""><td>CHLOROMETHANE</td><td>8260B</td><td>$\mu g/L$</td><td>5</td><td>< 5</td><td>< 5</td><td>< 5</td><td>< 5</td></th<>	CHLOROMETHANE	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5		
4-CHLOROTOLUENE $8260B$ $\mu g/L$ 5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	2-CHLOROTOLUENE	8260B	μg/L	5	< 5	< 5	< 5	< 5		
1,2-DIBROMO-3-CHLOROPROPANE $8260B \ \mu g/L$ 5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <td>4-CHLOROTOLUENE</td> <td>8260B</td> <td>μg/L</td> <td>5</td> <td>< 5</td> <td>< 5</td> <td>< 5</td> <td>< 5</td>	4-CHLOROTOLUENE	8260B	μg/L	5	< 5	< 5	< 5	< 5		
1,2-DIBROMOETHANE $8260B \ \mu g/L$ 5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	1,2-DIBROMO-3-CHLOROPROPANE	8260B	µg/L	5	< 5	< 5	< 5	. < 5		
DIBROMOMETHANE $3260B \ \mu g/L$ $5 < 5 < 5 < 5 < 5 < 5$ 1,2-DICHLOROBENZENE $8260B \ \mu g/L$ $5 < 5 < 5 < 5 < 5 < 5$ 1,3-DICHLOROBENZENE $8260B \ \mu g/L$ $5 < 5 < 5 < 5 < 5 < 5$ 1,4-DICHLOROBENZENE $8260B \ \mu g/L$ $5 < 5 < 5 < 5 < 5 < 5$ 1,1-DICHLOROBENZENE $8260B \ \mu g/L$ $5 < 5 < 5 < 5 < 5 < 5$ 1,2-DICHLOROBENZENE $8260B \ \mu g/L$ $5 < 5 < 5 < 5 < 5 < 5$ 1,1-DICHLOROETHANE $8260B \ \mu g/L$ $5 < 5 < 5 < 5 < 5 < 5$ 1,2-DICHLOROETHANE $8260B \ \mu g/L$ $5 < 5 < 5 < 5 < 5 < 5$ 1,1-DICHLOROETHENE $8260B \ \mu g/L$ $5 < 5 < 5 < 5 < 5 < 5$ 1,1-DICHLOROETHENE $8260B \ \mu g/L$ $5 < 5 < 5 < 5 < 5 < 5$ 1,2-DICHLOROETHENE $8260B \ \mu g/L$ $5 < 5 < 5 < 5 < 5 < 5$ 1,2-DICHLOROETHENE $8260B \ \mu g/L$ $5 < 5 < 5 < 5 < 5 < 5$ 1,2-DICHLOROETHENE $8260B \ \mu g/L$ $5 < 5 < 5 < 5 < 5 < 5$ 1,2-DICHLOROPANE $8260B \ \mu g/L$ $5 < 5 < 5 < 5 < 5 < 5$ 1,3-DICHLOROPROPANE $8260B \ \mu g/L$ $5 < 5 < 5 < 5 < 5 < 5$ 1,3-DICHLOROPROPANE $8260B \ \mu g/L$ $5 < 5 < 5 < 5 < 5 < 5$ 1,1-DICHLOROPROPANE $8260B \ \mu g/L$ $5 < 5 < 5 < 5 < 5 < 5$ 1,3-DICHLOROPROPENE $8260B \ \mu g/L$ $5 < 5 < 5 < 5 < 5 < 5 < 5$ 1,3-DICHLOROPROPENE $8260B \ \mu g/L$ $5 < 5 < 5 < 5 < 5 < 5 < 5$ 1,3-DICHLOROPROPENE $8260B \ \mu g/L$ $5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 <$	1,2-DIBROMOETHANE	8260B	μg/L	5 F	< 5	< 5	< 5	< 5		
1,2-DICHLOROBENZENE8260B $\mu g/L$ g/L 5 < 5 < 5 < 5 < 5 1,3-DICHLOROBENZENE8260B $\mu g/L$ $\mu g/L$ 5 < 5 < 5 < 5 < 5 1,4-DICHLOROBENZENE8260B $\mu g/L$ $\mu g/L$ 5 < 5 < 5 < 5 < 5 DICHLORODIFLUOROMETHANE8260B 	DIDROMOMETHANE	8200D	μg/ L α/T	ט ד	< 5	< 5	< 5	< 5		
1,3-DICHLOROBENZENE8200D $\mu g/L$ 5<5<5<51,4-DICHLOROBENZENE8260B $\mu g/L$ 5<5	1,2-DICHLOROBENZENE	0200D 8260B	μg/L σ/I	5	< 5	< 5	< 5	< 5		
1,4-DICHLOROBELVDENE $8200B \ \mu g/L$ 5 $(5$ $(5$ $(5$ $(5$ $(5$ DICHLORODIFLUOROMETHANE $8260B \ \mu g/L$ 5 $(5$ $(5$ $(5$ $(5$ $(5$ 1,1-DICHLOROETHANE $8260B \ \mu g/L$ 5 $(5$ $(5$ $(5$ $(5$ $(5$ 1,2-DICHLOROETHANE $8260B \ \mu g/L$ 5 $(5$ $(5$ $(5$ $(5$ 1,1-DICHLOROETHENE $8260B \ \mu g/L$ 5 $(5$ $(5$ $(5$ $(5$ CIS-1,2-DICHLOROETHENE $8260B \ \mu g/L$ 5 $(5$ $(5$ $(5$ $(5$ TRANS-1,2-DICHLOROETHENE $8260B \ \mu g/L$ 5 $(5$ $(5$ $(5$ $(5$ 1,2-DICHLOROPROPANE $8260B \ \mu g/L$ 5 $(5$ $(5$ $(5$ $(5$ 1,3-DICHLOROPROPANE $8260B \ \mu g/L$ 5 $(5$ $(5$ $(5$ $(5$ 2,2-DICHLOROPROPANE $8260B \ \mu g/L$ 5 $(5$ $(5$ $(5$ $(5$ 1,1-DICHLOROPROPANE $8260B \ \mu g/L$ 5 $(5$ $(5$ $(5$ $(5$ 1,1-DICHLOROPROPENE $8260B \ \mu g/L$ 5 $(5$ $(5$ $(5$ $(5$ 1,1-DICHLOROPROPENE $8260B \ \mu g/L$ 5 $(5$ $(5$ $(5$ $(5$ 1,1-DICHLOROPROPENE $8260B \ \mu g/L$ 5 $(5$ $(5$ $(5$ $(5$ 1,1-DICHLOROPROPENE $8260B \ \mu g/L$ 5 $(5$ $(5$ $(5$ $(5$ TRANS-1,3-DICHLOROPROPENE $8260B \ \mu g/L$ $(5$ $(5$ $(5$ $(5$ <td>1,5-DICHLOROBENZENE</td> <td>8260B</td> <td>μБ/Ш α/Т</td> <td>5</td> <td>< 5</td> <td>< 5</td> <td>< 5</td> <td>< 5</td>	1,5-DICHLOROBENZENE	8260B	μБ/Ш α/Т	5	< 5	< 5	< 5	< 5		
1,1-DICHLOROETHANE8260B $\mu g/L$ 5<5<5<51,2-DICHLOROETHANE8260B $\mu g/L$ 5<5	DICHLORODIFLUOROMETHANE	8260B	μ <u></u> σ/Τ.	5	25	< 5	< 5	< 5		
1,2-DICHLOROETHANE8260B $\mu g/L$ 5<5<5<5<51,2-DICHLOROETHENE8260B $\mu g/L$ 5<5	1 1-DICHLOROFTHANE	8260B	μ6/D σ/T.	5	< 5	< 5	< 5	< 5		
1,1-DICHLOROETHENE $8260B \ \mu g/L$ $5 \ < 5$ $< 5 \ < 5$ $< 5 \ < 5$ $< 5 \ < 5$ $< 5 \ < 5$ $< 5 \ < 5$ $< 5 \ < 5$ $< 5 \ < 5 \ < 5$ $< 5 \ < 5 \ < 5 \ < 5$ $< 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ \ < 5 \ < 5 \ < 5 \ < 5 \ \ < 5 \ \ < 5 \ \ < 5 \ \ \ \$	1.2-DICHLOROETHANE	8260B	μ6/= g/L	5	< 5	< 5	< 5	< 5		
CIS-1,2-DICHLOROETHENE $8260B \ \mu g/L$ $5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ \ < 5 \ \ < 5 \ \ < 5 \ \ < 5 \ \ < 5 \ \ < 5 \ \ \ \$	1.1-DICHLOROETHENE	8260B	μα/L	5	< 5	< 5	< 5	< 5		
TRANS-1,2-DICHLOROETHENE $8260B \ \mu g/L$ $5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ < 5 \ \ < 5 \ \ < 5 \ \ < 5 \ \ < 5 \ \ < 5 \ \ < 5 \ \ \ \$	CIS-1.2-DICHLOROETHENE	8260B	μ8/~ "g/L	5	< 5	< 5	< 5	< 5		
1,2-DICHLOROPROPANE8260B $\mu g/L$ 5<5<5<5<51,3-DICHLOROPROPANE8260B $\mu g/L$ 5<5	TRANS-1.2-DICHLOROETHENE	8260B	_μg/ _μg/L	5	< 5	< 5	< 5	< 5		
1,3-DICHLOROPROPANE $8260B \ \mu g/L$ $5 < 5$ $<5 < 5$ <5 <5 2,2-DICHLOROPROPANE $8260B \ \mu g/L$ $5 < 5$ <5 <5 <5 <5 1,1-DICHLOROPROPENE $8260B \ \mu g/L$ 5 <5 <5 <5 <5 CIS-1,3-DICHLOROPROPENE $8260B \ \mu g/L$ 5 <5 <5 <5 <5 TRANS-1,3-DICHLOROPROPENE $8260B \ \mu g/L$ 5 <5 <5 <5 <5 TRANS-1,3-DICHLOROPROPENE $8260B \ \mu g/L$ 5 <5 <5 <5 <5 TRANS-1,3-DICHLOROPROPENE $8260B \ \mu g/L$ 5 <5 <5 <5 <5 TRANS-1,3-DICHLOROPROPENE $8260B \ \mu g/L$ 5 <5 <5 <5 <5 TRANS-1,3-DICHLOROPROPENE $8260B \ \mu g/L$ 5 <5 <5 <5 <5 ISOPROPYLBENZENE $8260B \ \mu g/L$ 5 <5 <5 <5 <5 P-CYMENE (P-ISOPROPYLTOLUENE) $8260B \ \mu g/L$ 5 <5 <5 <5 <5	1.2-DICHLOROPROPANE	8260B	"g/L	5	< 5	< 5	< 5	< 5		
2,2-DICHLOROPROPANE $8260B \ \mu g/L$ $5 < 5$ $<5 < 5$ <5 <5 1,1-DICHLOROPROPENE $8260B \ \mu g/L$ 5 <5 <5 <5 <5 CIS-1,3-DICHLOROPROPENE $8260B \ \mu g/L$ 5 <5 <5 <5 <5 TRANS-1,3-DICHLOROPROPENE $8260B \ \mu g/L$ 5 <5 <5 <5 <5 TRANS-1,3-DICHLOROPROPENE $8260B \ \mu g/L$ 5 <5 <5 <5 <5 ETHYLBENZENE $8260B \ \mu g/L$ 5 <5 <5 <5 <5 HEXACHLOROBUTADIENE $8260B \ \mu g/L$ 5 <5 <5 <5 <5 ISOPROPYLBENZENE (CUMENE) $8260B \ \mu g/L$ 5 <5 <5 <5 <5 P-CYMENE (P-ISOPROPYLTOLUENE) $8260B \ \mu g/L$ 5 <5 <5 <5 <5	1,3-DICHLOROPROPANE	8260B	"g/L	5	< 5	< 5	< 5	< 5		
1,1-DICHLOROPROPENE $8260B \ \mu g/L$ $5 < 5$ $<5 < 5$ <5 <5 <5 CIS-1,3-DICHLOROPROPENE $8260B \ \mu g/L$ 5 <5 <5 <5 <5 <5 TRANS-1,3-DICHLOROPROPENE $8260B \ \mu g/L$ 5 <5 <5 <5 <5 <5 ETHYLBENZENE $8260B \ \mu g/L$ 5 <5 <5 <5 <5 <5 HEXACHLOROBUTADIENE $8260B \ \mu g/L$ 5 <5 <5 <5 <5 ISOPROPYLBENZENE (CUMENE) $8260B \ \mu g/L$ 5 <5 <5 <5 <5 P-CYMENE (P-ISOPROPYLTOLUENE) $8260B \ \mu g/L$ 5 <5 <5 <5 <5	2,2-DICHLOROPROPANE	8260B	"g/L	5	< 5	< 5	< 5	< 5		
CIS-1,3-DICHLOROPROPENE $8260B \ \mu g/L$ $5 < 5$ $<5 < 5$ <5 <5 TRANS-1,3-DICHLOROPROPENE $8260B \ \mu g/L$ $5 < 5$ <5 <5 <5 <5 ETHYLBENZENE $8260B \ \mu g/L$ $5 < 5$ <5 <5 <5 <5 HEXACHLOROBUTADIENE $8260B \ \mu g/L$ $5 < 5$ <5 <5 <5 ISOPROPYLBENZENE (CUMENE) $8260B \ \mu g/L$ 5 <5 <5 <5 P-CYMENE (P-ISOPROPYLTOLUENE) $8260B \ \mu g/L$ 5 <5 <5 <5	1,1-DICHLOROPROPENE	8260B	"g/L	5	< 5	< 5	< 5	< 5		
TRANS-1,3-DICHLOROPROPENE $8260B \ \mu g/L$ 5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	CIS-1.3-DICHLOROPROPENE	8260B	"g/L	5	< 5	< 5	< 5	< 5		
ETHYLBENZENE8260B $\mu g/L$ 5<5<5<5<5HEXACHLOROBUTADIENE8260B $\mu g/L$ 5<5	TRANS-1 3-DICHIOROPROPENE	8260B	μ0/ α/Ι.	5	~ 5	< 5	< 5	< 5		
HEXACHLOROBUTADIENE $8260B \mu g/L$ 5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	ETHYLBENZENE	-8260B	μ6/11 μg/L	5	< 5	< 5	< 5	< 5		
ISOPROPYLBENZENE (CUMENE) $8260B \mu g/L$ 5 <5 <5 <5 <5 <5 P-CYMENE (P-ISOPROPYLTOLUENE) $8260B \mu g/L$ 5 <5 <5 <5 <5 <5	HEXACHLOROBUTADIENE	8260B	"g/L	5	< 5	< 5	< 5	< 5		
P-CYMENE (P-ISOPROPYLTOLUENE) 8260B μ g/L 5 <5 <5 <5 <5	ISOPROPYLBENZENE (CUMENE)	8260B	"g/L	5	< 5	< 5	< 5	< 5		
	P-CYMENE (P-ISOPROPYLTOLUENE)	8260B	$\mu g/L$	5	< 5	< 5	< 5	< 5		

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

$\begin{array}{c c c c c c c c c c c c c c c c c c c $						Analys	is Result	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Component Analyzed	Method	Unit	PQL	SW-2-1	SW-2-2	SW-3-1	SW-3-2
METHYLENE CHLORIDE8260B μ g/L5< 5< 5< 5< 5< 5METHYL ISOBUTYL KETONE8260B μ g/L50< 50					02-06571-5	02-06571-6	02-06571-7	02-06571-8
METHYL ISOBUTYL KETONE8260B $\mu g/L$ 50<50<50<50<50<50METHYL ISOBUTYL KETONE8260B $\mu g/L$ 50<50	METHYLENE CHLOBIDE	8260B	ø/L	5	< 5	< 5	< 5	< 5
TERT-BUTYL METHYL ETHER8260B $\mu g/L$ 10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10	METHYL ISOBUTYL KETONE	8260B	μ8/ – ε/L	50	< 50	< 50	< 50	< 50
NAPHTHALENE8260B $\mu g/L$ 5<5<5<5NAPHTHALENE8260B $\mu g/L$ 5<5	TERT-BUTYL METHYL ETHER	8260B	μ6/2 σ/L	10	< 10	< 10	< 10	< 10
N.PROPYLBENZENE8260B $\mu g/L$ 5<5<5<5<5STYRENE8260B $\mu g/L$ 5<5	NAPHTHALENE	8260B	μ6/1 σ/Ι.	5	< 5	< 5	< 5	< 5
N-1 ROT HDENDEND6000 $\mu g/D$ 6666666STYRENE8260B $\mu g/L$ 5<5	N PROPVI BENZENE	8260B	$\mu_{\rm G}/\Sigma$	5	< 5	< 5	< 5	< 5
1,1,2.TETRACHLOROETHANE8260B $\mu g/L$ 5<5<5<51,1,2.TETRACHLOROETHANE8260B $\mu g/L$ 5<5	STYRENE	8260B	$\mu s/L$	5	< 5	< 5	< 5	< 5
1,1,2,2-TETRACHLOROETHANE8260B $\mu g/L$ 5<5<5<5<5TETRACHLOROETHENE(PCE)8260B $\mu g/L$ 5<5	1 1 1 2 TETRACHLOROFTHANE	8260B	$\mu \mathbf{b}/\mathbf{L}$	5	< 5	< 5	< 5	< 5
1,,2,2-111111110111001111101110011100TETRACHLOROETHENE(PCE) $8260B \ \mu g/L$ $5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 <$	1 1 2 2-TETRACHLOROETHANE	8260B	μ ₆ /1	5	< 5	< 5	< 5	< 5
TDITIONE $0200D$ $\mu g/L$ 0 $000D$ $\mu g/L$ 0 $000D$ $00D$ 0	TETRACHLOROETHENE(PCE)	8260B	$\mu S/\Sigma$	5	× 5	< 5	< 5	< 5
1010111101001 $\mu g/L$ 0000001,2,3-TRICHLOROBENZENE8260B $\mu g/L$ 5<5	TOLUENE	8260B	μ6/12 σ/T.	5	< 5	< 5	< 5	< 5
1,2,0-TRICHLOROBENZENE8260B $\mu g/L$ 5<5<5<51,2,4-TRICHLOROBENZENE8260B $\mu g/L$ 5<5	1 2 3-TRICHLOROBENZENE	8260B	μ6/Σ 	5	< 5	< 5	< 5	< 5
1,2,1 TRICHLOROETHANE8260B $\mu g/L$ 5<5<5<51,1,1-TRICHLOROETHANE8260B $\mu g/L$ 5<5	1 2 4-TRICHLOROBENZENE	8260B	μ6/Ξ σ/L	5	< 5	< 5	< 5	< 5
1,1,1-TRICHLORIGHTHARD $0200D$ $\mu g/L$ 0 <t< td=""><td>1 1 1-TRICHLOROETHANE</td><td>8260B</td><td>μ6/∞ σ/Ι.</td><td>5</td><td>< 5</td><td>~ 5</td><td>< 5</td><td>< 5</td></t<>	1 1 1-TRICHLOROETHANE	8260B	μ6/∞ σ/Ι.	5	< 5	~ 5	< 5	< 5
TRICHLOROETHENE (TCE) 8260B $\mu g/L$ 5 <5 <5 <5 TRICHLOROFLUOROMETHANE 8260B $\mu g/L$ 5 <5	1 1 2-TRICHLOROETHANE	8260B	μ6/L	5	< 5	< 5	< 5	< 5
TRICHLOROFLUOROMETHANE 8260B $\mu g/L$ 5 <5 <5 <5 TRICHLOROFLUOROMETHANE 8260B $\mu g/L$ 5 <5 <5 <5 <5 1,2,3-TRICHLOROPROPANE 8260B $\mu g/L$ 5 <5 <5 <5 <5 1,2,4-TRIMETHYLBENZENE 8260B $\mu g/L$ 5 <5 <5 <5 <5 1,3,5-TRIMETHYLBENZENE 8260B $\mu g/L$ 5 <5 <5 <5 <5 VINYL CHLORIDE 8260B $\mu g/L$ 5 <5 <5 <5 <5 O-XYLENE 8260B $\mu g/L$ 5 <5 <5 <5 <5 M P-XYLENE 8260B $\mu g/L$ 5 <5 <5 <5 <5	TRICHLOBOETHENE (TCE)	8260B	μ6/5 σ/L	5	< 5	< 5	< 5	< 5
1,2,3-TRICHLOROPROPANE8260B $\mu g/L$ 5<5<5<51,2,4-TRIMETHYLBENZENE8260B $\mu g/L$ 5<5	TRICHLOROFLUOROMETHANE	8260B	μ6/2 σ/L	5	< 5	< 5	< 5	< 5
1,2,4-TRIMETHYLBENZENE 8260B $\mu g/L$ 5 <5	1 2 3-TRICHLOROPROPANE	8260B	μ6/2 σ/Τ.	5	< 5	< 5	< 5	< 5
1,3,5-TRIMETHYLBENZENE 8260B $\mu g/L$ 5 <5 <5 <5 VINYL CHLORIDE 8260B $\mu g/L$ 5 <5 <5 <5 <5 O-XYLENE 8260B $\mu g/L$ 5 <5 <5 <5 <5 M P-XYLENE 8260B $\mu g/L$ 5 <5 <5 <5 <5	1.2.4-TRIMETHYLBENZENE	8260B	μ6/2 σ/L	5	< 5	< 5	×5	< 5
VINYL CHLORIDE 8260B $\mu g/L$ 5 <5 <5 <5 O-XYLENE 8260B $\mu g/L$ 5 <5 <5 <5 M P-XYLENE 8260B $\mu g/L$ 5 <5 <5 <5	1 3 5-TRIMETHYLBENZENE	8260B	μ6/2 σ/L	5	< 5	< 5	< 5	< 5
O-XYLENE 8260B $\mu g/L$ 5 <5 <5 <5 M P-XYLENE 8260B $\mu g/L$ 5 <5	VINVI CHI ORIDE	8260B	μ <u></u> 5, Σ α/Ι.	5	< 5	< 5	< 5	< 5
$M P_XYLENE 8260Bg/L 5 < 5 < 5 < 5 < 5$	O YVI ENE	8260B	μ <u></u> σ/Ι.	5	< 5	< 5	< 5	< 5
	M P XVI FNF	8260B	μ5/12 σ/L	5	< 5	< 5	< 5	< 5
OBGANOCHLORINE DESTICIDES	ORGANOCHLORINE PESTICIDES	02001	μ6/1	0				
Dilution Factor 0.96 0.96 0.96	Dilution Factor				0.96	0.96	0.96	0.96
$\Delta I D P I N = \frac{8081}{1000} = \frac{600}{1000} = 60$	ALDRIN	8081 A	g/L	0.05	< 0.048	< 0.048	< 0.048	< 0.048
BETA BHC $8081A u \sigma/L 0.05 <0.048 <0.048 <0.048 <0.048$	BETA BHC	8081 A	μ6/12 σ/1.	0.05	< 0.048	< 0.048	< 0.048	< 0.048
ALPHA BHC $8081A$ g/L $0.05 < 0.048 < 0.048 < 0.048 < 0.048$	ALPHA BHC	8081 A	μ6/ - σ/ Γ.	0.05	< 0.048	< 0.048	< 0.048	< 0.048
DELTA BHC $8081A \dots g/L = 0.05 < 0.048 < 0.048 < 0.048 < 0.048$	DELTA BHC	8081 A	μ6/ σ/Ι.	0.05	< 0.048	< 0.048	< 0.048	< 0.048
GAMMA BHC (LINDANE) 8081A g/L 0.05 < 0.048 < 0.048 < 0.048 < 0.048	GAMMA BHC (LINDANE)	8081 A	μ8/2 σ/L	0.05	< 0.048	< 0.048	< 0.048	< 0.048
$\Delta LPH \Delta_{-}CHLORDANE$ 8081A g/L 0.05 < 0.048 < 0.048 < 0.048 < 0.048	ALPHA-CHLORDANE	8081 A	μ6/~ σ/L	0.05	< 0.048	< 0.048	< 0.048	< 0.048
GAMMA-CHLORDANE 8081A g/L 0.05 <0.048 <0.048 <0.048 <0.048	GAMMA-CHLORDANE	8081 A	μ6/± σ/Έ	0.05	< 0.048	< 0.048	< 0.048	< 0.048
$\frac{1}{\mu_{B}} \frac{1}{\mu_{B}} \frac{1}$	ממת ומ מ	000111	μ6/	0.00	.0.000	.0.000	10.006	10.006
$P,P-DDD$ $8081A \mu g/L 0.1 < 0.096 < 0.096 < 0.096 < 0.096 < 0.096$		A1000	$\mu g/L$	0.1	< 0.096	< 0.096	< 0.096	< 0.090
$P,P'-DDE$ 8081A $\mu g/L$ 0.1 < 0.096 < 0.096 < 0.096		8081A	μg/L /T	0.1	< 0.096	< 0.096	< 0.096	< 0.096
$P,P'-DDI$ 8081A $\mu g/L$ 0.1 < 0.096 < 0.096 < 0.096	P,P-DDI	8081A	μg/L	0.1	< 0.096	< 0.096	< 0.096	< 0.096
DIELDRIN $8081A \mu g/L = 0.1 < 0.096 < 0.096 < 0.096$	DIELDRIN	8081A	μg/L /r	0.1	< 0.096	< 0.096	< 0.096	< 0.096
ALPHA ENDOSULFAN $8081A \mu g/L 0.05 < 0.048 < 0.048 < 0.048 < 0.048$	ALPHA ENDOSULFAN	8081A	μg/L	0.05	< 0.048	< 0.048	< 0.048	<0.048
BETA ENDOSULFAN $8081A \mu g/L = 0.1 < 0.096 < 0.096 < 0.096 < 0.096$	BETA ENDOSULFAN	8081A	μg/L	0.1	< 0.096	< 0.096	< 0.096	< 0.096
ENDOSULFAN SULFATE $8081A \mu g/L 0.5 < 0.48 < 0.48 < 0.48 < 0.48$	ENDOSULFAN SULFATE	8081A	μg/L	0.5	< 0.48	< 0.48	< 0.48	< 0.48
ENDRIN $8081A \mu g/L = 0.1 < 0.096 < 0.096 < 0.096$	ENDRIN	8081A	μg/L	0.1	< 0.096	< 0.096	< 0.096	< 0.096
ENDRIN ALDEHYDE $8081A \mu g/L 0.1 < 0.096 < 0.096 < 0.096 < 0.096$	ENDRIN ALDEHYDE	8081A	µg/L	0.1	< 0.096	< 0.096	< 0.096	< 0.096
ENDRIN KETONE 8081A μ g/L 0.1 < 0.096 < 0.096 < 0.096 < 0.096	ENDRIN KETONE	8081A	$\mu g/L$	0.1	< 0.096	< 0.096	< 0.096	< 0.096
HEPTACHLOR 8081A μ g/L 0.05 < 0.048 < 0.048 < 0.048 < 0.048	HEPTACHLOR	8081A	$\mu g/L$	0.05	< 0.048	< 0.048	< 0.048	< 0.048
HEPTACHLOR EPOXIDE 8081A µg/L 0.05 < 0.048 < 0.048 < 0.048 < 0.048	HEPTACHLOR EPOXIDE	8081A	$_{\mu}g/L$	0.05	< 0.048	< 0.048	< 0.048	< 0.048
METHOXYCHLOR 8081A µg/L 2 <1.9 <1.9 <1.9 <1.9	METHOXYCHLOR	8081A	$\mu g/L$	2	< 1.9	< 1.9	< 1.9	< 1.9
TOXAPHENE 8081A μ g/L 5 < 4.8 < 4.8 < 4.8 < 4.8	TOXAPHENE	8081A	$_{\mu}g/L$	5	< 4.8	< 4.8	< 4.8	< 4.8

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analys	is Result	•
Component Analyzed	Method	Unit	PQL	SW-2-1	SW-2-2	SW-3-1	SW-3-2
· .				02-06571-5	02-06571-6	02-06571-7	02-06571-8
PCBS				·····			
Dilution Factor				0.96	0.96	0.96	0.96
PCB-1016 (AROCLOR 1016)	8082	$_{\mu}\mathrm{g/L}$	1	< 0.96	< 0.96	< 0.96	< 0.96
PCB-1221 (AROCLOR 1221)	8082	$_{\mu g/L}$	2	< 1.9	< 1.9	<1.9	< 1.9
PCB-1232 (AROCLOR 1232)	8082	$_{\mu}\mathrm{g/L}$	1	< 0.96	< 0.96	< 0.96	< 0.96
PCB-1242 (AROCLOR 1242)	8082	$\mu g/L$	1	< 0.96	< 0.96	< 0.96	< 0.96
PCB-1248 (AROCLOR 1248)	8082	$_{\mu}g/L$	1	< 0.96	< 0.96	< 0.96	< 0.96
PCB-1254 (AROCLOR 1254)	8082	$_{\mu}g/L$	1	< 0.96	< 0.96	< 0.96	< 0.96
PCB-1260 (AROCLOR 1260)	8082	$_{\mu}g/L$	1	< 0.96	< 0.96	< 0.96	< 0.96

PQL: Practical Quantitation Limit. MDL: Method Detection Limit. N.D.: Not Detected or less than the practical quantitation limit. CRDL: Contract Required Detection Limit

"-": Analysis is not required.

J: Reported between PQL and MDL.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Respectfully submitted,

Laboratory Director Applied P & Ch Laboratory

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498 **Case Narrative**

Project: Lowers lakes/02HW013

For SOTA Environmental

APCL Service No: 02-6571

1. Sample Identification

The sample identifications are listed in the following table:

SOTA Envir	onmental Sample ID	APCL Sample ID	
SW-1-1		02-06571-2	
SW-1-2		02-06571-3	
SW-1-3		02-06571-4	
SW-2-1		02-06571-5	
SW-2-2		02-06571-6	
SW-3-1		02-06571-7	
SW-3-2		02-06571-8	
QC-2		02-06571-1	

2. Analytical Methodology

Samples are analyzed by EPA methods

8260B (Volatile organics), M8015V (Gasoline), M8015E (TPH: Diesel), M8015E (TPH: Motor Oil), 8081A (Organochlorine pesticides), 8082 (PCBs), 314.0 (Perchlorate, low level), 6010B/7470A (Priority Pollutant Metals (CWA) (13)), 376.1 (Sulfide, Dissolved), 405.1 (Biological Oxygen Demand (BOD)), 375.4 (Sulfate (SO_4^{--})), 325.3 (Chloride CI⁻), 160.1 (Solids, Total Dissolved (TDS)), 160.2 (Solids, Total Suspended (TSS)), 160.5 (Solids, Settleable (SS)), 9040B (pH), SM9221B (Total Coliform, MTF, 3X5 tubes), SM9221E (Fecal Coliform, MTF, 3X5 tubes), 353.3 (Nitrate (NO_3^-) as N Cd reduction), 354.1 (Nitrite (NO_2^-) as N),

3. Holding Time

All samples were extracted, digested and analyzed within the holding times defined by the appropriate EPA methods of the analyses.

4. Preservation

All samples were preserved and stored according to the appropriate EPA methods.

5. Tele-log

None

6. Anomaly

None

"I certify that these data are technically accurate, complete, and in compliance with the terms and conditions of the contract, for other than the conditions detailed above. Release of the data contained in the hardcopy data package and its electronic data deliverable submitted on diskette had been authorized by the Laboratory Manager or her/his designee, as verified by the following signature."

Respectfully submitted,

Regina Kirakozova

Associate QA/QC Director Applied P & Ch Laboratory

50	572	0	W. CA	Berr 9212	nardo D 27-1613	rive, Suit	e 212	T	San Diego, el: (858) 485-8100)			(ם אסי	11 17 13	10)T		SU	00) 7	y Plea	ise
Environment	al Technology, Inc.			<u></u>		Fax	(858) 4	485-0812		r				-rin		ben		Pag	<u>e_</u>				
Laboratory	/ informatio		····			Project	Inform			┝╌	<u> </u>							-		┥			
Lab Name: A	Applied P & Cr	Laboratory			·	Name: L	owers L	akes, HD FC				(A)			é				~				۰ I.
Address: 13	760 Magnolia	Ave.	<u></u>	1710		Proj. U		<u> </u>	<u></u>			80			A 60				SS 50.1				
ab Phone	1-909-590-18	31216. CA ZI	p. 9 n #·	1710		Sampler	· MES/D	M	· · · · · · · · · · · · · · · · · · ·		Ē	EPA	15N	€	E D	76.2			3 H F F				
Due Date:		I rush davs		hours	<u> </u>	Campici			r		Ites	les ((2) A 80	A3	tals	 e (3		5	5) p				
Field Sample ID No.	Sample	Description	C	ate Colle	Time cted	Sample Matrix	Preser vative	# of Container	Type of Container	TPH-G (EPA 80	vocs, oxygen	Organo Pesticic	PCBs (EPA 808 TPH-d & m /FP	Perchlorate (EP	13 Assorted Me	Dissolved Sulfic	BOD (405.1)	I otal/recal Coll Sulfate (375.4)	CI(325.3)TDS ((160.2) SS(160		Ren	narks	
SW-1-1	2' BQLO.	SURFACE	12/	1/02	0853	Water	1	6	40-mL VOA	X	×												
SW-1-1	· · · · · · · · · · · · · · · · · · ·					Water	5	3	1-L Amber Glass	Π	Τ	x	X	×						·			
SW-1-1	1	1				Water	5	1	125-mL Poly	Π				x									
SW-1-1	·					Water	5	2	1-L Poly						×				, X				
SW-1-1						Water	3	1	500 mL Poly, pH<2	Π		Τ				x							
SW-1-1						Water	4	1	250-mL pH>12							x			A				
SW-1-1						Water	5	1	500-mL Poly								X		で	T		·	
SW-1-1	· · · · ·					Water	6	1	100 mL Sterilized Poly			·						×	\mathbf{U}				
SW(1.2			12/	1/29	0919	Mator		6			÷	+	┝╌┟╸	+-	┢╌╽		┼╌┥	-					
SW-1-2	3.5 8010	W JURFACE	17	y00	0121	Water	5	3	1-L Amber Glass	+	-	+		$\frac{1}{x}$	+	+	+	-		+		<u></u>	-1
SW-1-2		······································			┟╼╂╼╼╍	Water	5	1	125-mi Poly	┼╌┤	+	+			++	+-	+			+			
SW-1-2	<u> </u>	<u> </u>			┞╺╏───	Water	5	2	1-L Poly	┼╌┥	+	┿	┝┼╴	+-	$\frac{1}{x}$	+	╉╼┨	-	x	+			
SW-1-2	<u> </u>				<u>}</u>	Water	3	1	500 mL Poly, pH<2	┼╌┤	+	+-	╞┼╴		+	x	+	+		+	······		
SW-1-2	++		́	1	┟╌┠╾╍╸	Water	4	1	250-mL pH>12	┽┥		+-	$\uparrow \uparrow$		┼┤		+-	-		+	<u>_</u>		
SW-1-2	<u> </u>	······································		+	 	Water	5	1	500-mL Poly		-+	+-	 		┼╌┤					1	·····		\neg
SW-1-2	<u> </u>			+	┼╌┨───	Water	6	1	100 mL Sterilized Poly	╉╌╢	-+-	+	$\uparrow \uparrow$	+-	╀╌┨		+	$\overline{\mathbf{x}}$		+			
					<u> </u>	+	†					+	╞╼┼╴		╆┥	+-	╅┥	-	··	+			
QC Requirements	nt: DRegular D al: DDisposal by	QA/QC Report DV	VIP (]Raw [days	Data DExt	tended Raw	Data DC	LP DACE DA	NFCEE DINEESA (E,C 1Drinking Water 4 So 2 Waste Water 5 Aq	or D lid/So) [](Other	• <u>•••</u> ••	Pr	(Pl eserv	ease - 11 2	spec	ify)	5 ice 0 6 Othe)nly r_Na2			
Sample Conditi	ons: Dintact D	Broken Cooler Se	al: C	Intact	Broken	None		l	3 Oil/Organic Liquid 6 Air							3 4	NaOł	'4 1		- i eser	veu	<u></u> -	
Temperature:	Degree	50				,					4	4							< 1	Im			4
Relinquishe	d by:	m	Da	te/Tim		11/02	825	Received b	WITCHM V	vŢ					Da	te/T	ime	1	<u>+ </u>	ļ.	- 14	521	2
Relinquishe	d by: ACM	nUmO	Da	te/Tim	ne (2//	1/02/	950	Received b	by: Mim	C	>				Da	ate/T	īme	l	ปณ	102	Ś	3304	

		San Die	ego, CA	92127-161	13				02H	W01	3		~		Please
Environmental Technology, Inc. 😑 🛩	Tel: (85	8) 485-81	00	Fax: (858	3) 485-0812				Prin	t in p	ben	P	Page <u>4</u>	_of/	
boratory Information:		Project	Inform	nation:					Anal	/sis	Item	s			
Name: Applied P & Ch Laboratory		Name: L	owers L	akes, HD F	CB, LA, CA						·		5)		
dress: 13760 Magnolia Ave.		Proj. 0	2HW01:	3		260E	81A			<u>9</u>		Ξ.	199		
y: Chino State: CA Zip: 91	710	PM: Y	U ZENG				6		e	A 6(21B	SS (
Phone: 1-909-590-1828 Quotation #:		Sampler	: MES/C	M	· .		/60		15N	Ē	76.2	192	F F F		
e Date: 📕 regular 🛛 rushdayshc	urs	4	1			15M tes	CLP es (2)	4 80 A 31	tals	e (3	(SN	50.		
Field mple ID Sample Description Co No.	Time llected	Sample Matrix	Preser vative	# of Container	Type of Container	TPH-G (EPA 80 VOCs. Oxvgena	TCLP Metals (T Organo Pesticid	PCBs (EPA 808	TPH-d & m (EP) Perchlorate (EP	13 Assorted Me	Dissolved Sulfid	BOD (405.1) Total/Fecal Coll	Sulfate (375.4) Cl(325.3)TDS (1 SS(160.5) pH (1	Re	marks
C-2 2/11/0	0853	WATER	na I	6	40 ml NOA	X				\square					
			5	3	1.L AWRER GLASS	T	17	$\mathbf{\nabla}$							
		-1-	5	1	1-L POLY			T		M					
	-						$\uparrow \uparrow$		\square						
		+												1	
				<u> </u>	···-·	<u>†</u> -†-				T			1		
			1		· · · · · · · · · · · · · · · · · · ·		++			\dagger			+	1.	
		+	1.				$\uparrow \uparrow$			$\uparrow \uparrow$	-1				
		1	1				+			$\uparrow \uparrow$					
				<u> </u>		╏╴┤╴	++			\dagger			CE		
			<u> </u>		······		++	1.		$\uparrow \uparrow$	-	\vdash			
						╏╌┠╸	++								
			1			┢╴┠╴	+	+				\vdash			
						╂╌╂╌	┼┼	+		1-1		┠╌┼╸	-	• • • • • • • • • • • • • • • • • • •	
·		-			``````````````````````````````````````	╋╋	┼╌┼╴	+-		╆╍╆		┢╍┟╸			
		+	1	· · ·		╋╍╊╸	┽╍┾╴	+		╋╋		╞╌┠╸	-	1	
·····		-+	+			┼╌┼╴	┽┼	+-	┝╌┼─	╋╌╋		+	+	·{	
			+			┟┾╋	┽╌┼╴	+-	┝╌┠╌	┼─┼		┢┼┼			····
				1	l		<u></u>							<u> </u>	
Requirement: DRegular DQA/QC Report DWIP	⊐Raw Data		Raw Dat		CE DAFCEE DNEESA	(E	,C or [) 🗆	Other			_(Plea	ase specify))	
nple Disposal: Disposal by Lab DHold for	days afte	er receiving	date.	Sample Matrix	1Drinking Water 4 S	olid/So	il		Pr	eserv ve	. 1H 2 H	UI INO ₃	5 Ice 0 6 Othe	uniy er <u>Na2S2O8</u>	
nole Conditions: Elintact ElBroken Cooler Seal	Jintact CIR	roken 🖽 No	ne	ļ	2 Waste Water 5 A	queou: r	5				31	I₂SO₄	7 Not	Preserved	
				1							41	NaOH			
					I.A.	Δ								1	_

			so	АТС	En	viro	nmental	Tech	nology in) I c. 16835					C	h	ai	n	0) f	Cu	sto	• dv
50				W. B	ern	ardo	Drive, S	uite 212	2	San									U	/1	Uu	310	Gy
			Di	ego,	CA	9212	27-1613	-	(050) 405	Tel: (858)					021	-W	013			Doc	3		Please 7
Environmental	echnology, Inc				-	485-	-8100	Fax:	(858) 485-	0812	T				PIII Apal	IL II Vei			. r	-ay	<u></u>	01_1	
Laboratory I	mormatio			· · · · · · · · · · · · · · · · · · ·			Project	mom			┢			τ-ή	T	y 51. T			, 			1	
Lab Name: App	Diled P & Cl	1 Laboratory		·			Name: Lo	owers La	akes, HD FC	JB, LA, CA	4	<u>a</u>	F								0.2)	1	•
Address: 1376	0 Magnolia	Ave.	. 0.4	740		·	Proj. 02	2HW013			4	3260	081			010			3/F)	Ĩ	(16	L	
City: Chino	000 500 40	State: CA Zip	: 91	/10	·		PM: YU	ZENG	N.A.		-	Ă	A 80		ŝ	PA®	54.1	<u>ה</u>	234	5	rss		
Lab Phone: 1	-909-590-18		1#:				Sampler:	MES/D			ŧ	Ē	Ē		015) E E	3/3	376	100 100		(F) (F)		
Due Date:	regular	Li rusnday	s 1	nour	S		4				015	ate	des	82)	9 A 8	etal	353	de (57 ill		(160 (150		
Field Sample ID No.	Sample	Description		Date Colle	Ti ecte	me d	Sample Matrix	Preser vative.	# of Container	Type of Containe	TPH-G (EPA 8	VOCs, Oxygen	Organo Pestici	PCBs (EPA 80	TPH-d & m (EF Perchlorate (FI	13 Assorted M	Nitrate/Nitrite (Dissolved Sulfi	BOD (405.1) Total/Fecal Co	LUIAI/FEUALUU Suifate (375.4)	SS(160.5) pH		Remarks
SW-1-3	3" 88	LOW SURFACE	12/0	1/02	09	156	Water	1	[′] 6	40-mL VOA	Ťx	x	Ť			T	1	H	1	T			
SW-1-3			11			1	Water	5	3	1-L Amber Glass	\uparrow	t t	Tx	×	x	T	T		\uparrow	T			
SW-1-3	[<u> </u>	1	Water	5	1	125-mL Poly	1-	1	╈	\square		×				T			
SW-1-3		· · · · · · · · · · · · · · · · · · ·				1	Water	5	2	1-L Poly	1	\square							T	T	x		<u></u>
SW-1-3					\square		Water	3	1	500 mL Poly, pH<2	1	$\uparrow \uparrow$	-				×			十			
SW-1-3				·····	╎╌	1	Water	4	1	250-mL pH>12	╧		╈			╈	+-	x	1	+	, , , , , , , ,		
SW-1-3			+		+		Water	5	1	500-mL Poly		+	╈		┝╼╋	-	┢		x	+		İ	<u> </u>
SW-1-3				 		<u> </u>	Water	6	1	100 mL Sterilized Poly	╋		+	+		+-	†-			x			
									1		╈		+	╈	┝╌╋	╧	+-		-	+			
SW-2-1	2'00.	an England	17/	1/02	1.	15	Water	1	6	40-mL VOA	T _x	x	╈		┝─╋╴	╈	+			+		5	71
SW-2-1		J		10-		T T	Water	5	3	1-L Amber Glass	╈	\mathbf{H}	1,	x	x	╈	+-		1	+			
SW-2-1		1			-	 	Water	5	1	125-mL Poly	╈			+		x	\uparrow		-	+			
SW-2-1	<u>}</u>	1	+		<u> </u>		Water	5	2	1-L Poly	╈	11	\uparrow	+	\vdash		-	\square	-	1	×		······
SW-2-1	[1	┼╌┦				Water	3	1	500 mL Poly, pH<2	+-	††	-	+	\vdash	\uparrow	×	Ħ		+		[
SW-2-1		1		1	+		Water	4	1	250-mL pH>12	+	$\uparrow \uparrow$		1		+		x		+	· · · ·		<u> </u>
SW-2-1	 	1	\mathbf{T}		+		Water	5	1	500-mL Poly	+	$\uparrow \uparrow$	-	+		\uparrow	+-		x	1		[
SW-2-1		1					Water	6	1	100 mL Sterilized Poly	+	+	-†-	╈	\vdash	╈	+-	\square		\mathbf{x}^{\dagger}			······································
	<u> </u>				<u>† – '</u>		+	<u> </u>			+	┼╌┤	-+-	+	╞╌┼	+	+			+		<u> </u>	····
QC Requirement: Sample Disposal: Sample Conditions Temperature: Relinguished b	Disposal by Disposal by Clintact Disposed	QA/QC Report DW y Lab DHold for Broken Cooler Sea		Raw D days Intact	ata I after DBro	DExter receiv	nded Raw D ring date. INone	ata DCLF	P DACE DAF	CEE DNEESA(E 1Drinking Water & 2 Waste Water & 3 Oil/Organic Liquid 6 by::::::::::::::::::::::::::::::::::::	C oi Soli Aqu Air	d/Soil eous		her	i i i	Presentive	_(Ple	ase 1H(2 H 3 H 4 N		cify)) 5 Ice 0 6 Other 7 Not F	nly _Na2S2(/reserved	28
Relinquished b Air Bill Number	4: 4 4	amum	Da	ite/Tin	ne (2/11	1/02 1	950	Received	by:	he -	6	2			[Date	e/Ti	me		nfnf	62	0830A

.

SOTA Environmental Technology Inc.

16835 W. Bernardo Drive, Suite 212 San Diego, CA 92127-1613

Environmenta	I Technology, In		Te	l: (858) 485-8	92127-1013 3100 Fa	, ax: (858)	485-0812						Ple	ase	Pr	int i	ר pe	en Pa	ge <u>4</u>	of 7
Laborator	y Informa	tion:				Project In	formatic	on:		Γ	<u> </u>		1	Anal	lysi	s ite	ems	_		T	······································
Lab Name: A	Applied P 8	Ch Laborator	y			Name: Low	ers Lakes	, HD FCB, L	A, CA	h		T	Π	T	Т	\Box		T		1	
Address: 13	760 Magno	olia Ave.			· ·	Proj. 02H	W013		•	1	8	R			6				30.2		
City: Chin	0	State: C/	ĄΖ	ip: 917	10	PM: YUZ	ZENG		······································	1	826	3081			601	-		B/E	Ē		
Lab Phone:	1-909-590	0-1828 Quo	tatio	on #:		Sampler: N	IES/DM		·····		¥.	PA 8		ŝ	₹ A	154.	(; ; ; ; ;	221	13,		
Due Date:	regula	r □ rushd	ays	ho	urs					5M)	es (E	s (El		314	als (E	3.3/2	(37	SMS)	0.1)		
Field Sample ID No.	S Des	ample scription		Date Colle	Time cted	Sample Matrix	Preser- vative	# of Container	Type of Container '	TPH-G (EPA 801	VOCs, Oxygenat	Organo Pesticide	PCBs (EPA 8082	TPH-d & m (EPA Perchlorate (EPA	13 Assorted Meta	Nitrate/Nitrite (35	Dissolved Sulfide	Total/Fecal Colli.	Sulfate (375.4) Cl(325.3)TDS (16 SS(160.5) pH (15	Re	marks
SW-2-2	3"BE	1000 SURFACE	12/	1/02	1141	Water	1	6	40-mL VOA	X	x										
SW-2-2						Water	5	3	1-L Amber Glass			×	×	x							
SW-2-2						Water	5	1	125-mL Poly					>	٢						
SW-2-2						Water	5	2	1-L Poly						×				x		
SW-2-2	-		Π			Water	3	1	500 mL Poly, pH<2							X					
SW-2-2						Water	4	1	250-mL pH>12								x				
SW-2-2						Water	. 5	1	500-mL Poly									×	G		
SW-2-2		1				Water	6	1	100 mL Sterilized Poly	<u> </u>						-		×	\mathbf{O}		
			Γ																		
SV V-2-3						Water	1	6	40-mL VOA	x	x					L					Λ
SW-2-3						Water	5	3	1-L Amber Glass			4		*	T						
SW-2-3					•	Water	5	1-1	125 mL Poly	Γ				,	< 🗌	Ι.				NO	
SW-2-3						Water	5	2	1-L Poly						X				x .	501	APLK
SW-2-3						Water	3	1	500 mL Poty, pH<2				\square	\perp		×		ŀ			1
SW-2-3						Water	4	1	250-mL pH>12	ľ							X	-		1	
SW-2-3						Water	5	1	500-mL Poly									×		<u> </u>	
SW-2-3		· · · · · · · · · · · · · · · · · · ·				Water	6	1	100 mL Sterilized Poly									×	(·		
	·									1											
QC Requiremen	nt: DRegula	ar DQA/QC Repor	t 🗆		aw Data	Extended Raw	/ Data DCLI		CEE DINEESA (E.C	or	D) [Othe	er		(Plea	ise s	pecil	fy)		
Sample Dispos Sample Conditi	al: Disposi ons: Dintac	al by Lab □Hold t t □Broken Cool	ior er Si	eal: Din	days after tact ⊡Bro	receiving date. oken ©None	•	Sample Matrix	1Drinking Water 4 2 Waste Water 5 3 Oil/Organic Liquid 6	Soll Aqu Air	d/Soli eous			P	rese tive	rv-	1HC 2 HN 3 H ₂ 4 Na	IO₃ SO₄ OH	5 Ice O 6 Other 7 Not F	nly r <u>Na2S2O8</u> Preserved	
Temperature:	Deg	rees C)							И	1									1	1	
Relinquished	d by:	the	Pa	te/Tim	e 12/1	102 182	S	Received by	mound	Ð				······	D	ate	/Tin	1e	12/11	102	1827
Air Dill Num	YOY:	THIS MUNIC	ZDa	ile/ I Im	= <i>12-11</i>	1/02 190		Received by	y: Mar	_	2		_			ate		18	<u>14 pp</u>	12 0	1004
	ber:	· · · · · · · · · · · · · · · · · · ·							/												

			SOTA	Envir	onmenta	al Tech	nology In	c. 16835)				റ	h	aiı	ר ר	٦f	Cu	eta	dv	,—	
6/	ンディ		W. I	Bernard	o Drive, S	Suite 212	2	San					C	IIC	ווג	1 (ור	Cu	510	uy		
			Diego,	CA 92 ⁻	127-1613			Tel: (858)					02H	IW0	13			_		,	Pleas	е
Environmen	tal Technology, Ir	nc. =		48	5-8100	Fax:	(858) 485-	0812					Prir	nt in	per		Pa	ge <u>5</u>	of			فسيسقده
aborator	y Information	on:			Project	Informa	tion:					<u>, /</u>	Anal	lysis	te	ms			l i	Rem	arks	
ab Name: /	Applied P & (Ch Laboratory	·		Name: Lo	owers Lal	(es, HD FCE	B, LA, CA		(<u>8</u>)	<u>[</u>]			õ			ا ش	_	•			
ddress: 13	760 Magnolia	a Ave.			Proj. 02	2HW013		· · · · · · · · · · · · · · · · · · ·	4	826	808			60	εļ		₽Į	S0.1)				
ab Phone:		State: CA ZIP	5: 91710	<u></u>	PM: YU	J ZENG				EPA	PA		M0 (4	ÉPA	(354 76.21	5	1922) TS H (1:				
Due Date:			hours	N.e.	Sampler.		 	1	151	tes (es (I		A 31	als (53.3		S)	60.1 5) pł			•	
Jue Date.					· ·				80	Jena	ticid	808		Met	e (3)		≣ S	(4) S (1 160.				
Field	0	D	Date	Time	Sample	Preser-	# of	Type of	(EP)	Š	Pes	AT I	rate a	Inted	가 다 다	05.1	cal	(3/5) 3)TD SS(
Sample ID	Sample	Description	Coll	ected	Matrix	vative	Container	Container	Ŷ	S,	ano	Se l	후 F	Assc	ate/	4	alFe	325.; 0.2)		·		
INU.									d L	§	<u>Bio</u>	0	Per F	13,		<u>B</u>	Į		· ·			
W-3-1	3'6000	W SURFACE	12/1/02	1327	Water	1	6	40-mL VOA	×	×									<u> </u>			
W-3-1		· .			Water	.5	3	1-L Amber Glass		\square	×	×	×						ļ			
W-3-1		[Water	5	1	125-mL Poly					<u> </u>	·			_					
W-3-1		· · · · · · · · · · · · · · · · · · ·		<u> · </u>	Water	5	2	1-L Poly			<u> </u>	\downarrow		×			_	×				,
W-3-1			┨──┤───		Water	3	1	500 mL Poly, pH<2			_	\downarrow	_	\bot	x				ļ			
W-3-1		·····	╏╌╏──		Water	4	· 1	250-mL pH>12			_	1	-			×	-					•.
W-3-1		· · · · · · · · · · · · · · · · · · ·	┨	 	Water	5	1	500-mL Poly				\square			ŀ	×			ļ			<u>a</u> -
W-3-1		·	<u> </u>	1	Water	6	1	100 mL Sterilized Poly		┝-┞-		$\left \right $	<u>.</u>	1			X		<u>c</u> f	<u> </u>	7_	
			1.27		· · · · ·				· ·	[+-	$\left \cdot \right $	-						\mathbf{D}		A .	R.
VV-3-2	3" BELO	W SURFACE	1-711/02	1356	Water	- 1	6	40-mL VOA	<u>+×</u>	×	4-	┨╾┨	╇	+			-				· · · · ·	
W-3-2			┦╌┠───	├ ─ │ ──	Water	5	3	1-L Amber Glass	+-	-	×	×	×	+		+-						
VV-3-2			┼╌┼───	├ ─ ├ ──	Water	5	1	125-mL Poly	+	┠╌┠╴	┥	++		4		+			· · ·			
VV-3-2			┼╌┟──┈	┟╌┠──	vvater	5	2	1-L Poly	-	┝╌┝		+		+×				×		<u> </u>		
VV-3-2	<u> </u>		┟╌┠───	<u> </u>	vvater	3	1	500 mL Poly, pH<2	· 	┝╌┝	+-	┼╌┤		+	×	+-	-					
NAL 3-2			╂┈┨───	<u>├</u> -{	Vvater	4		200-mL pH>12	┼┵	<u></u>	+-	┼╌┦	-	+	$\left - \right $	1.	-+	<u></u>	<u> </u>	·		
N/-3-2			┼┄╁╌┈	┼╾╂──	Water			100 mL Starilized Debt	+	┝╼┠╸		┼┼		+	┝╌┼	- ^	H		+			
	<u> </u>			<u> </u>	vvalei			TOO THE Sternized Poly	╋	┝╌┠╴	-+-	┼╌┤	-+-	+	+	+-	쉬					
									<u> </u>							<u></u>			<u> </u>	<u> </u>		
	nt: Linkegulari				ended Raw			CEE LINEESA(E,	Cor	U) L			10		Piea	se sp HCL		/) 5 Ice Or				
ample Dispos	al: Disposal	by Lab □Hold for	days	after rece	iving date.		Saniple Matrix	1Drinking Water 4	Soli	d/Soil			a	live	ŀ	INO₃		6 Other_h	a2S2O8			
ample Conditi	ions: Dintact I	⊐Broken Cooler Sea	il: Dintact	DBroken	DNone		ł	3 Oil/Organic Liquid 6	Air	003		•			. 3	H ₂ SC NaO	ka	7 Not P	reserved			
emperature:	Degre	es C			,		1	1	6				<u></u>				<u>.</u>		1			
Relinquishe	d by:	1 hours	Date/Ti	me 12/	11/62	1825	Received t	by port						Da	ate/	Гime	1	2/11/	<u>c</u> 2	/8	-29	
Olinguishe	down the la	MARIO	Date/Ti	me /) /	11/12/10	550	Received b	ov: Inla	int	5				Da	ate/	Гime		phil	D	05	320A	

Applied P & Ch Laboratory 13760 Magnolia Ave., Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498 Sample Receiving Checklist
APCL ServiceID: 657 Client Name/Project: Sota Lowers Lakes
1. Sample Arrival Date/Time Received
 2. Chain-of-Custody (CoC)
3. Shipping Container/Cooler Cooler Used? # of Cooled by: X lce Blue Ice Dry Ice None Temp °C 3.8 4.0 3.7 4.2 (Cooler temperature measured from temp blank if present, otherwise measured from the cooler). Cooler Custody Seal? Absent None Absent Tampered?
4. Sample Preservation Image: pH < 2
5. Holding-time Requirements PH 24hr BACT 6/24hr Cr ^{VI} 24hr NO ₃ 48hr BOD 48hr Cl ₂ ASAP Turbidity 48hr DO ASAP Fe(II) ASAP HT Expired? Client notified?
6. Sample Container Condition Antact? Broken? Documented? Number: Type: Aplastic Aglass Tube: brass/SS Tedlar Bag Quantity OK? Leaking? Anomaly? Caps tight? Air Bubbles? Anomaly? Labels: Unique ID? Date/Time Preserved?
7. Turn Around Time RUSH TAT: XStd (7-10 days) Not Marked
8. Sample Matrix Drinking H20 Other Liq Osoil Wipe Polymer Air Other: Ground H20 Sludge Filter Oil/Petro Paint W. Water Extract Unknown
9. Pre-Login Check List Completed & OK?
Samples must be analyzed for results to reflect total concentrations. Results generated outside required of holding times are considered minimal values and may be used to define waste as hazardous but not as non-hazardous.

DocumentFile:	[neal.texfiles]ampyc].tex.
	(near realized) and breach.

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Sample Login: Check List 2rd

02-06571 (1288_ 433) (4858100_ 433) ${}_{12/16/02}$

	Company Information	Name:	SOTA Environmental
		Address:	16835 W. Bernardo Dr, Ste. 212 ,San Diego ,CA 92127
	Project Information	Project Description:	Lowers lakes
		- 1 M	
		Project #:	02H W013
	Billing Information	P.O. #:	
		Bill Address:	16835 W. Bernardo Dr, Ste. 212 ,San Diego ,CA 92127
		Lab Project ID:	
		Client Database #:	0
	Receiving Information	Who Received Sample?	Kenny Chan
		Receiving Date/Time:	12/12/02 0820
		COC No.	
	Shipping Information	Shipping Company	APCL pick up
		Packing Information:	Cooler/Ice Chester
		Cooler Temperature:	3.8 4.0 3.7 4.2 °C
	Container Information	Container Provider:	Client
	Sampling Information	Sampling Person:	
		Sampling Company:	Client
	Turn-Around-Time Opti	on:	Rush 5 working day(s)
	QC Option:		NEESA C
П	Disposal Option:		Not specify

Part 2: Sample Information

Seq.	Sample ID	Sample	APCL		Cont-	Preser-	Vol, ml	# of	Condition	Collected		Composite	TAT	
#	(on COC)	Sub-ID	Sample ID	Matrix	tainer	vative	Am. g	Replica	G, L, B	mmddyy	Hold ?	Group	Days	
1	SW-1-1	VOC/Gas	02-06571-2-α	w	v	С	40	6	G	121102	N	0	7	
	SW-1-1	8015	02-06571-2- β	w	G		1000	1	G	121102	N	0	7	
	SW-1-1	8081	02-06571-2-γ	W	G		1000	1	G	121102	N	0	7	
	SW-1-1	8082	02-06571-2-δ	w	G		1000	1	G	121102	N	0	7	
	SW-1-1	PH/SS	02-06571-2-ζ	W	Р		1000	1	G	121102	N	0	7	
	SW-1-1	Perch	$02-06571-2-\eta$	W	Р		125	1	G	121102	N	0	7	
	SW-1-1	Metal	02-06571-2-θ	w	Р	Ν	1000	1	G	121102	Ν	0	7	
	SW-1-1	NO3/NO2	02-06571-2- <i>i</i>	w	Р	S	500	1	G	121102	Ν	0	7	
	SW-1-1	DSulfide	02-06571-2- <i>ĸ</i>	w	Р	В	250	1	G	121102	N	0	7	
	SW-1-1	BOD	$02-06571-2-\mu$	W	Р		500	1	G	121102	N	0	7	
	SW-1-1	Colif	$02-06571-2-\nu$	W	Р	Т	120	1	G	121102	N	0	7	
2	SW-1-2	VOC/Gas	02-06571-3-α	Ŵ	v	С	40	6	G	121102	N	0	7	
	SW-1-2	8015	02-06571-3- eta	W	G		1000	1	G	121102	Ν	0	7	
	SW-1-2	8081	02-06571-3- γ	W	G		1000	1	G	121102	Ν	0	7	
	SW-1-2	8082	02-06571-3-δ	W	G		1000	1	G	121102	Ν	0	7	
	SW-1-2	PH/SS	02-06571-3- ζ	W	Р		1000	1	G	121102	Ν	0	7	
	SW-1-2	Perch	02-06571-3- η	W	Р		125	1	G	121102	Ν	0	7	
	SW-1-2	Metal	02-06571-3- θ	W	Р	N	1000	1	Ġ	121102	N	0	7	
	SW-1-2	NO3/NO2	02-06571-3-1	W	Р	S	500	1	G	121102	N	0	7	
	SW-1-2	DSulfide	02-06571-3- <i>ĸ</i>	W	Ρ	В	250	1	G	121102	Ν	` 0	7	
	SW-1-2	BOD	02-06571-3- μ	W	Ρ		500	1	G	121102	N	0	7	
	SW-1-2	Colif	02-06571-3- ν	W	Р	Т	120	1	G	121102	Ν	0	7	
3	SW-1-3	VOC/Gas	02-06571-4- α	W	v	С	40	6	G	121102	Ν	0	7	
	SW-1-3	8015	02-06571-4- eta	W	G		1000	1	G	121102	N	0	7	
	SW-1-3	8081	02-06571-4- γ	W	G		1000	1	G	121102	N	0	7	
	SW-1-3	8082	02-06571-4-δ	W	G		1000	1	G	121102	N	0	7	
	SW-1-3	PH/SS	02-06571-4- ζ	W	Р		1000	1	G	121102	Ν	0	7	
	SW-1-3	Perch	02-06571-4- η	W	Р		125	1	G	121102	Ν	0	7	
	SW-1-3	Metal	$02-06571-4-\theta$	W	Р	Ν	1000	1	G	121102	N	0	7	
	SW-1-3	NO3/NO2	02-06571-4- <i>i</i>	W	Р	S	500	1	G	121102	N.	0	7	
	SW-1-3	DSulfide	02-06571-4- <i>ĸ</i>	W	P	В	250	1	G	121102	Ν	0	7	
	SW-1-3	BOD	02-06571-4- μ	W	Р		500	1	G	121102	Ν	0	7	
	SW-1-3	Colif	$02-06571-4-\nu$	w	Р	Т	120	1	G	121102	Ν	0	7	
4	SW-2-1	VOC/Gas	02-06571-5- α	W	v	C	40	6	G	121102	N	0	7	
	SW-2-1	8015	02-06571-5- β	W	G		1000	1	G	121102	Ν	0	7 ·	
	SW-2-1	8081	02-06571-5- γ	w	G		1000	1	G	121102	Ν	0	7	
	SW-2-1	8082	02-06571-5- δ	W	G		1000	1	G	121102	N	0	7	
	SW-2-1	PH/SS	02-06571-5- ζ	W	Р		1000	. 1	G	121102	N	0	7	
	SW-2-1	Perch	02-06571-5- η	W	Р		125	1	G	121102	N	. 0	7	
	SW-2-1	Metal	02-06571-5-θ	w	Р	N	1000	1	G	121102	N	0	7	
•	SW-2-1	NO3/NO2	02-06571-5- <i>i</i>	W	Ρ	S	500	1	G	121102	N	0	7	
	SW-2-1	DSulfide	02-06571-5- <i>ĸ</i>	w	Ρ	в	250	1	G	121102	N	0	7	

	SW-2-1	BOD	02-06571-5-11	w	р		500	1	G	121102	N	0	7	п
	SW-2-1	Colif	$02-06571-5-\nu$	w	P	т	120	1	G	121102	N	0	7	
5	SW-2-2	VOC/Gas	02-06571-6-α	w	v	c .	40	6	G	121102	N	0	7	n
	SW-2-2	8015	02-06571-6-β	w	G	-	1000	1	G	121102	N	0	7	
	SW-2-2	8081	$02-06571-6-\gamma$	w	G		1000	1	G	121102	N	0	7	
	SW-2-2	8082	02-06571-6-δ	w	G		1000	1	G	121102	N	0	7	
	SW-2-2	PH/SS	02-06571-6- (W	Р		1000	1	G	121102	N	0	7	
	SW-2-2	Perch	$02-06571-6-\eta$	w	Р		125	1	G	121102	Ν	0	7	
	SW-2-2	Metal	02-06571-6-θ	w	Р	N	1000	· 1	G	121102	Ν	0	7	
	SW-2-2	NO3/NO2	02-06571-6- <i>i</i>	w	Р	S	500	1	G	121102	N	0	7	
	SW-2-2	DSulfide	02-06571 - 6- <i>ĸ</i>	w	P	в	250	1	G	121102	N	0	7	
	SW-2-2	BOD	02-06571-6- μ	w	Р		500	1	G	121102	N	0	7	
	SW-2-2	Colif	$02-06571-6-\nu$	W	Р	Т	120	1	G	121102	N	0	7	
6	SW-3-1	VOC/Gas	02-06571-7 - α	W	v	С	40	6	G	121102	Ν	0	7	
	SW-3-1 -	8015	02-06571-7- β	w	G		1000	1	G	121102	Ν	0	7	
	SW-3-1	8081	$02-06571-7-\gamma$	W	G		1000	1	G	121102	Ν	0	7	
	SW-3-1	8082	02-06571-7-δ	w	G.		1000	1	G	121102	Ν	0	7	
	SW-3-1	PH/SS	02-06571-7-ζ	w	Р		1000	1	G	121102	N	0	7	
	SW-3-1	Perch	02-06571-7-ŋ	w	P		125	1	G	121102	Ν	0	.7	
	SW-3-1	Metal	02-06571-7-θ	W .	Р	Ν	1000	1	G	121102	N	0	7	
	SW-3-1	NO3/NO2	02-06571-7- <i>i</i>	W	Р	S	500	1	G	121102	N	0	7	
	SW-3-1	DSulfide	02-06571-7- <i>ĸ</i>	W	Р	в	250	1	G	121102	N	0	7	
5	SW-3-1	BOD	02-06571-7- μ	W	P		500	1	G	121102	Ν	0	7	
	SW-3-1	Colif	02-06571-7- ν	Ŵ	P.	Т	120	1	G	121102	Ν	0	7	
7	SW-3-2	VOC/Gas	02-06571-8- α	W .	v	C	40	6	G	121102	Ν	0	7	
	SW-3-2	8015	02-06571-8- eta	W	G		1000	1	G	121102	. N	0	7	
	SW-3-2	8081	02-06571-8- γ	w	G		1000	1	G	121102	Ν	0	7	
	SW-3-2	8082	02-06571-8-δ	W	G		1000	1	G	121102	Ν	0	7	
	SW-3-2	PH/SS	02-06571-8- ζ	W	Ρ		1000	1	G	121102	Ν	0	7	
	SW-3-2	Perch	02-06571-8- η	W	Ρ		125	1	G	121102	N	0	7	
	SW-3-2	Metal	02-06571-8-θ	W	P	N	1000	1	G	121102	N	0	7	
	SW-3-2	NO3/NO2	02-06571-8- <i>i</i>	w	Р	S	500	1	G	121102	N	0	7	
	SW-3-2	DSulfide .	02-06571-8- <i>ĸ</i>	w	P	в	250	1	G	121102	N	0	7	
	SW-3-2	BOD	02-06571-8- <i>µ</i>	w	Р		500	1	G	121102	N	0	7	
	SW-3-2	Colif	02-06571-8-v	W	Ρ	T	120	1	G	121102	N	. 0	7	
8	QC-2	VOC/Gas	$02-06571-1-\alpha$	w	v	С	40	6	G	121102	N	0	7	
	QC-2	8015	02-06571-1- β	w	G		1000	1	G	121102	·N	0	7	
	QC-2	8081	$02-06571-1-\gamma$	w	G		1000	1	G	121102	N	0	7	
	QC-2	8082	02-06571-1-δ	w	G		1000	1	G	121102	N	0	7	
	QC-2	Metal	02-06571-1-ζ	w	Р	Ν	1000	1	G	121102	N	0	7	

Part 3: Analysis Information

Test Items:

🗖 8260B

Volatile organics

- ☐ *M8015V/M8015G*Gasoline
- □ *M8015E/M8015D* TPH: Diesel

Login on 12/16/02 File: CHG006c.tex

13760 Magnolia Ave. Chino CA 91710 Tel. (909) 590-1828 Fax (909) 590-1498

April 28, 2003

SOTA Environmental Attention: Yu Zeng 16835 W. Bernardo Dr. Suite 212 San Diego CA 92127

Dear Yu,

This package contains samples in our Service ID 03-2419 and your project is 02HW013 Lower Lakes HD FCB. Enclosed please find:

- (1) One original report.
- (2) One original Chain of Custody.
- (3) One diskette containing EDD Deliverable.
- (4) One original of Level D Data Package Deliverable.

If anything is missing or you have any questions, please feel free to contact me.

Respectfully submitted,

Regina Kirakozova

Associate QA/QC Director Applied P & Ch Laboratory

13760 Magnolia Ave. Chino CA 91710

Tel: (909) 590-1828 Fax: (909) 590-1498 Submitted to: SOTA Environmental Attention: Yu Zeng

16835 W. Bernardo Dr, Ste. 212 San Diego CA 92127 Tel: (858)485-8100 Fax: (858)485-0812

APCL Analytical Report

Service ID #: 801-032419 Collected by: MES Collected on: 03/25/03

Received: 03/26/03 Extracted: 03/26-04/04/03 Tested: 03/27-04/04/03 Revised: 04/24/03

Sample Description: Soil

Project Description: 02HW013 Lower Lakes, HD FCB.

Analysis of Soil Samples

				Analysis Result		
Component Analyzed	Method	Unit	PQL	SD-1	SD-2	
				03-02419-1	03-02419-2	
MOISTURE, PERCENT	D2216	%Moisture	0.5	18.7	6.0	
Dilution Factor				1	1	
CHROMIUM (VI) ^(a)	7199	$\mu g/kg$	5	< 6.2	< 5.3	
Dilution Factor				1	1	
PERCHLORATE ^(a)	314.0	$_{\mu { m g}}/{ m kg}$	20	< 25	< 21	
PRIORITY POLLUTANT ME	TALS (CWA) (1	3)				
Dilution Factor				1	1	
ANTIMONY	6010B	mg/kg	5	< 6.2	< 5.3	
ARSENIC	6010B	mg/kg	0.3	0.66	0.49	
BERYLLIUM	6010B	mg/kg	0.2	< 0.25	< 0.21	
CADMIUM	6010B	mg/kg	0.2	< 0.25	< 0.21	
CHROMIUM	6010B	mg/kg	0.5	10.1	10.0	
COPPER	6010B	mg/kg	0.5	6.7	8.3	
LEAD	6010B	mg/kg	0.3	2.5	2.2	
MERCURY	7471A	mg/kg	0.2	0.041 J	0.025J	
NICKEL	6010B	mg/kg	0.3	4.4	6.2	
SELENIUM	6010B	mg/kg	0.5	< 0.62	< 0.53	
SILVER	6010B	mg/kg	0.5	0.046J	< 0.53	
THALLIUM	6010B	mg/kg	0.5	< 0.62	< 0.53	
ZINC	6010B	mg/kg	0.5	17.2	17.4	
Dilution Factor				0.97	1.19	
PHC AS GASOLINE	M8015V	mg/kg	1.	< 1.2	< 1.3	
Dilution Factor	•			1	1	
PHC AS DIESEL FUEL	M8015E	mg/kg	10	< 12	<11	
Dilution Factor	,			1	1	
MOTOR OILS	M8015E	mg/kg	10	< 12	< 11	

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

				Analysis Result	
Component Analyzed	Method	Unit	PQL	SD-1	SD-2
				03-02419-1	03-02419-2
VOLATILE ORGANICS BY SW5030/SW8260B	·				
Dilution Factor				0.96	1.08
BENZENE	SW8260B	μg/kg	5	< 5.9	< 5.7
BROMOBENZENE	SW8260B	µg/kg	5	< 5.9	< 5.7
BROMOCHLOROMETHANE	SW8260B	$\mu g/kg$	5	< 5.9	< 5.7
BROMODICHLOROMETHANE	SW8260B	$\mu g/kg$	5	< 5.9	< 5.7
BROMOFORM	SW8260B	$\mu g/kg$	5	< 5.9	< 5.7
BROMOMETHANE	SW8260B	μg/kg	5	< 5.9	< 5.7
2-BUTANONE	SW8260B	$\mu g/kg$	20	< 24	< 23
N-BUTYLBENZENE	SW8260B	$\mu g/kg$	5	< 5.9	< 5.7
SEC-BUTYLBENZENE	SW8260B	$\mu g/kg$	5	< 5.9	< 5.7
TERT-BUTYLBENZENE	SW8260B	$\mu g/kg$	5	< 5.9	< 5.7
CARBON TETRACHLORIDE	SW8260B	$\mu g/kg$	5	< 5.9	< 5.7
CHLOROBENZENE	SW8260B	$\mu g/kg$	5	< 5.9	< 5.7
CHLORODIBROMOMETHANE	SW8260B	$\mu g/kg$	5	< 5.9	< 5.7
CHLOROETHANE	SW8260B	$\mu g/kg$	5	< 5.9	< 5.7
CHLOROFORM	SW8260B	$\mu g/kg$	5	< 5.9	< 5.7
CHLOROMETHANE	SW8260B	$\mu g/kg$	5	< 5.9	< 5.7
2-CHLOROTOLUENE	SW8260B	$\mu g/kg$	5	· < 5.9	< 5.7
4-CHLOROTOLUENE	SW8260B	$\mu g/kg$	5	< 5.9	< 5.7
1,2-DIBROMO-3-CHLOROPROPANE	SW8260B	$\mu g/kg$	5	< 5.9	< 5.7
1,2-DIBROMOETHANE	SW8260B	µg/kg	5	< 5.9	< 5.7
DIBROMOMETHANE	SW8260B	$\mu g/kg$	5	< 5.9	< 5.7
1,2-DICHLOROBENZENE	SW8260B	µg/kg	5	< 5.9	< 5.7
1,3-DICHLOROBENZENE	SW8260B	$\mu g/kg$	5	< 5.9	< 5.7
1.4-DICHLOROBENZENE	SW8260B	"g/kg	5	< 5.9	< 5.7
DICHLORODIFLUOROMETHANE	SW8260B	µ8/8 g/kg	5	< 5.9	< 5.7
1,1-DICHLOROETHANE	SW8260B	"g/kg	5	< 5.9	< 5.7
1,2-DICHLOROETHANE	SW8260B	"g/kg	5	< 5.9	< 5.7
1,1-DICHLOROETHENE	SW8260B	µ0/0 ,,g/kg	5	< 5.9	< 5.7
CIS-1,2-DICHLOROETHENE	SW8260B	µ8/*8 ,,g/kg	5	< 5.9	< 5.7
TRANS-1,2-DICHLOROETHENE	SW8260B	"g/kg	5	< 5.9	< 5.7
1.2-DICHLOROPROPANE	SW8260B	µ8/8 .,g/kg	5	< 5.9	< 5.7
1,3-DICHLOROPROPANE	SW8260B	µ8/8 ,,g/kg	5	< 5.9	< 5.7
2,2-DICHLOROPROPANE	SW8260B	"g/kg	5	< 5.9	< 5.7
1,1-DICHLOROPROPENE	SW8260B	µ8/8 ,,g/kg	5	< 5.9	< 5.7
CIS-1.3-DICHLOROPROPENE	SW8260B	μ8/8 g/kg	5	< 5.9	< 5.7
TRANS-1.3-DICHLOROPROPENE	SW8260B	μ8/8 σ/kg	5	< 5.9	< 5 7
ETHYLBENZENE	SW8260B		5	< 5.9	< 5 7
HEXACHLOBOBUTADIENE	SW8260B	μ6/**8 σ/krσ	5	< 5.9	< 5.7
2-HEXANONE	SWADEND	μο/ **δ σ /1-σ	20	. 0.0	. 00
ISODDODU DENZENE (OUMENE)	SW0200D	$\mu g/\kappa g$	20 F	< 24	< 23
P.ISOPROPVITOLUENE	SWSZOUD	$\mu g/kg$	ວ =	< 5.9	< 5.7
METHYLENE CHLORIDE	SW80200B	$\mu S/KS$	ن ۲	< 5.9	. < 0.7
4-METHYL-2-PENTANONE	SW8260B	μ5/Kg σ/bσ	3 20	< 0.8	< 0.1
METHYL-TERT-BUTYL-ETHER (MTRE)	SW8260B	µ5/∿5 	20 5	< 44 25 Q	< 40
	011020010	μ6/ <u>*</u> 6	0	< 0.0	× 0.7

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94
13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

				Analys	is Result
Component Analyzed	Method	Unit .	POL	SD-1	SD-2
Component Analyzed	Micinou	0110 .	I QD	03-02419-1	03-02419-2
NAPHTHALENE	SW8260B	$\mu g/kg$	5	< 5.9	< 5.7
N-PROPYLBENZENE	SW8260B	$\mu g/kg$	5	< 5.9	< 5.7
STYRENE	SW8260B	$\mu g/kg$	5	< 5.9	< 5.7
1,1,1,2-TETRACHLOROETHANE	SW8260B	$\mu g/kg$	5	< 5.9	< 5.7
1,1,2,2-TETRACHLOROETHANE	SW8260B	$\mu g/kg$	5	< 5.9	< 5.7
TETRACHLOROETHENE	SW8260B	$_{\mu}\mathrm{g/kg}$	5	< 5.9	< 5.7
TOLUENE	SW8260B	$_{\mu}{ m g/kg}$	5	< 5.9	< 5.7
1,2,3-TRICHLOROBENZENE	SW8260B	$_{\mu}{ m g/kg}$	5	< 5.9	< 5.7
1,2,4-TRICHLOROBENZENE	SW8260B	$_{\mu}{ m g/kg}$	5	< 5.9	< 5.7
1,1,1-TRICHLOROETHANE	SW8260B	$\mu g/kg$	5	< 5.9	< 5.7
1,1,2-TRICHLOROETHANE	SW8260B	µg/kg	5	< 5.9	< 5.7
TRICHLOROETHENE	SW8260B	$\mu g/kg$	5	< 5.9	< 5.7
TRICHLOROFLUOROMETHANE	SW8260B	$\mu g/kg$	5	< 5.9	< 5.7
1,2,3-TRICHLOROPROPANE	SW8260B	$\mu g/kg$	5	< 5.9	< 5.7
1,2,4-TRIMETHYLBENZENE	SW8260B	$\mu g/kg$	5	< 5.9	< 5.7
1,3,5-TRIMETHYLBENZENE	SW8260B	$\mu g/kg$	5	< 5.9	< 5.7
VINYL CHLORIDE	SW8260B	$\mu g/kg$	5	< 5.9	< 5.7
XYLENES (TOTAL)	SW8260B	$_{\mu}{ m g/kg}$	5	< 5.9	< 5.7
TERT BUTYL ALCOHOL (TBA)	SW8260B	$\mu g/kg$	20	< 24	< 23
DIISOPROPYL ETHER(DIPE)	SW8260B	$\mu g/kg$	5	< 5.9	< 5.7
ETHYL TERT BUTYL ETHER (ETBE)	SW8260B	$\mu g/kg$	5	< 5.9	< 5.7
TERT AMYL METHYL ETHER (TAME)	SW8260B	$\mu g/kg$	5	< 5.9	< 5.7
Dilution Factor				1	1
1,4-DIOXANE	8270-SIM	μg/kg	33	< 41	< 35
ORGANOCHLORINE PESTICIDES		, _, _			
Dilution Factor				1	1
ALDRIN	8081A	$\mu g/kg$	1	< 1.2	< 1.1
BETA BHC	8081A	$\mu g/kg$	1	< 1.2	< 1.1
ALPHA BHC	8081A	$\mu g/kg$	1	< 1.2	< 1.1
DELTA BHC	8081A	$\mu g/kg$	1	< 1.2	< 1.1
GAMMA BHC (LINDANE)	8081A	"g/kg	1	< 1.2	< 1.1
ALPHA-CHLORDANE	8081A	"g/kg	1	< 1.2	< 1.1
GAMMA-CHLORDANE	8081A	$\mu g/kg$	1	< 1.2	< 1.1
Р.Р'-DDD	8081A	"g/kg	2	< 2.5	< 2.1
$P_{i}P'_{i}$	8081 A	µ8/8 e/kg	2	< 2.5	< 2.1
$P_{i}P_{j}^{\prime}$	8081 A	μ8/8 g/kg	2	< 2.5	< 2.1
DIELDRIN	8081 A	μ8/8 σ/kg	2	< 2.5	< 2.1
ALPHA ENDOSULFAN	8081 A	μ8/18 g/kg	1	< 1.2	<1.1
BETA ENDOSULFAN	8081 A	μ8/16 g/kg	2	< 2.5	< 2.1
ENDOSIL FAN SIL FATE	8081 A	$\mu 6/\kappa 6$	2	< 2.5	< 2.1
ENDRIN	80814	$\mu g/kg$	2	< 2.0 < 2.5	< 2.1 < 2.1
	0001A	$\mu g/Kg$	4	< 2.J	< 2.1 0.1
ENDRIN ALDEHYDE	AISUS	$\mu g/kg$	2	< 2.5	< 2.1
LENDRIN KETONE	8081A	$\mu g/kg$	2	< 2.5	< 2.1
REPTAULLOR	AIQUA	$\mu g/kg$	-	<1.2	< 1.1
HEPTACHLOR EPOXIDE	8081A	$\mu g/kg$	1	< 1.2	< 1.1
METHOXYCHLOR	8081A	µg/kg	50	< 62	< 53
TOXAPHENE	8081A	$\mu g/kg$	50	< 62	< 53

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis	Result
Component Analyzed		Method	Unit	PQL	SD-1	SD-2
					03-02419-1	03-02419-2
PCBS						· · · · · · · · · · · · · · · · · · ·
Dilution Factor					1	1
PCB-1016 (AROCLOR	1016)	SW8082	e/ke	33	< 41	< 35
PCB-1221 (AROCLOR	1221)	SW8082	"g/kg	67	< 82	< 71
PCB-1232 (AROCLOR	. 1232)	SW8082	"g/kg	- 33	< 41	< 35
PCB-1242 (AROCLOR	1242)	SW8082	"g/kg	33	< 41	< 35
PCB-1248 (AROCLOR	1248)	SW8082	"g/kg	33	< 41	< 35
PCB-1254 (AROCLOR	. 1254)	SW8082	"e/ke	33	< 41	< 35
PCB-1260 (AROCLOR	. 1260)	SW8082	μ8/8 μg/kg	33	< 41	< 35
			<i>µ</i> 0/ 0			<u></u>
		<u></u>			Analysis Resi	ılt
Component Analyzed	Method	Unit	PQL	SD-3	SD-4	SD-QC-1
1 5			· ·	03-02419-3	03-02419-4	03-02419-5
MOISTURE, PERCENT	D2216	%Moisture	0.5	24.8	28.7	21.0
Dilution Factor				1	1	1
CHROMIUM (VI) ^(a)	7199	$\mu g/kg$	5	< 6.6	< 7.0	< 6.3
Dilution Factor		<i>p</i> 0 <i>i</i> 0	•	1	1	1
PERCHLORATE (a)	314.0	"g/kg	20	< 27	< 28	-
PRIORITY POLLUTANT	METALS	,,				
Dilution Factor				1	1	. 1
ANTIMONY	6010B	mg/kg	5	< 6.6	< 7.0	-
ARSENIC	6010B	mg/kg	0.3	4.4	1.8	-
BERYLLIUM	6010B	mg/kg	0.2	< 0.27	< 0.28	-
CADMIUM	6010B	mg/kg	0.2	1.3	0.69	· _
CHROMIUM	6010B	mg/kg	0.5	23.2	13.7	-
COPPER	6010B	8/8 mg/kg	0.5	24.1	13.1	-
LEAD	6010B	mg/kg	0.3	62.9	21.3	_
MERCURY	7471A	mg/kg	0.2	0.063J	0.029J	-
NICKEL	6010B	me/ke	0.3	20.9	12.3	_
SELENIUM	6010B	mg/kg	0.5	0.88	0.31.1	-
SILVER	6010B	8/8 mg/kg	0.5	0.15J	0.20.1	-
THALLIUM	6010B	mg/kg	0.5	< 0.66	< 0.70	-
ZINC	6010B		0.5	82 K	47 9	-
Dilution Factor	0010D	115/ NS	0.0	1 1 3	1.0	1
PHC AS GASOLINE		malla	1	, 1 E	U.33	1
Dilution Factor	11100101	mg/ vg	T	< 1.5	< 1.4	-
	Mooter	/1	10	1	L TO	1
Dilution Frates	M8015E	mg/kg	10	101	61	-
	M0015D		10	1	1 25	1
MOIOR OILS	W18012E	mg/kg	10	08	30	-

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94

,

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

					Analysis Resu	sult		
Component Analyzed	Method	Unit	PQL	SD-3	SD-4	SD-QC-1		
				03-02419-3	03-02419-4	03-02419-5		
VOLATILE OBGANICS BY SW5030/SW8260B	•							
Dilution Factor				0.9	1.02	1		
BENZENE	SW8260B	e/ke	5	< 6.0	< 7.2	-		
BBOMOBENZENE	SW8260B	μο/ο g/kg	5	< 6.0	< 7.2	-		
BROMOCHLOROMETHANE	SW8260B	"g/kg	5	< 6.0	< 7.2	-		
BROMODICHLOROMETHANE	SW8260B	"g/kg	5	< 6.0	< 7.2	-		
BROMOFORM	SW8260B	"g/kg	5	< 6.0	< 7.2	-		
BROMOMETHANE	SW8260B	"g/kg	5	< 6.0	< 7.2	-		
2-BUTANONE	SW8260B	"g/kg	20	< 24	< 29	-		
N-BUTYLBENZENE	SW8260B	µ8/≕8 ,,g/kg	5	< 6.0	< 7.2	-		
SEC-BUTYLBENZENE	SW8260B	"g/kg	5	< 6.0	< 7.2	-		
TERT-BUTYLBENZENE	SW8260B	"g/kg	5	< 6.0	< 7.2	-		
CARBON TETRACHLORIDE	SW8260B	"e/ke	5	< 6.0	< 7.2	-		
CHLOROBENZENE	SW8260B	"g/kg	5	< 6.0	< 7.2	-		
CHLORODIBROMOMETHANE	SW8260B	µ8/*8 ,,g/kg	5	< 6.0	< 7.2	-		
CHLOROETHANE	SW8260B	"g/kg	5	< 6.0	< 7.2	-		
CHLOROFORM	SW8260B	"g/kg	5	< 6.0	< 7.2	-		
CHLOROMETHANE	SW8260B	"g/kg	5	< 6.0	< 7.2	<u> </u>		
2-CHLOROTOLUENE	SW8260B	"g/kg	5	< 6.0	< 7.2	-		
4-CHLOROTOLUENE	SW8260B	µ8/8 .,g/kg	5	< 6.0	< 7.2	-		
1.2-DIBROMO-3-CHLOROPROPANE	SW8260B	µ8/8 g/kg	5	< 6.0	< 7.2	-		
1.2-DIBROMOETHANE	SW8260B	"g/kg	5	< 6.0	< 7.2	-		
DIBROMOMETHANE	SW8260B	"g/kg	5	< 6.0	< 7.2	-		
1.2-DICHLOROBENZENE	SW8260B	"g/kg	5	< 6.0	< 7.2	-		
1.3-DICHLOROBENZENE	SW8260B	µ8/~8 .,g/kg	5	< 6.0	< 7.2	-		
1.4-DICHLOROBENZENE	SW8260B	"g/kg	5	< 6.0	< 7.2	-		
DICHLORODIFLUOROMETHANE	SW8260B	"g/kg	5	< 6.0	< 7.2	-		
1.1-DICHLOROETHANE	SW8260B	"g/kg	5	< 6.0	< 7.2	-		
1.2-DICHLOROETHANE	SW8260B	"g/kg	5	< 6.0	< 7.2	-		
1,1-DICHLOROETHENE	SW8260B	μg/kg	5	< 6.0	< 7.2	-		
CIS-1,2-DICHLOROETHENE	SW8260B	$\mu g/kg$	5	< 6.0	< 7.2	-		
TRANS-1,2-DICHLOROETHENE	SW8260B	$\mu g/kg$	5	< 6.0	< 7.2	-		
1,2-DICHLOROPROPANE	SW8260B	"g/kg	5	< 6.0	< 7.2	-		
1,3-DICHLOROPROPANE	SW8260B	$\mu g/kg$	5	< 6.0	< 7.2	-		
2,2-DICHLOROPROPANE	SW8260B	$\mu g/kg$	5	< 6.0	< 7.2	-		
1,1-DICHLOROPROPENE	SW8260B	$\mu g/kg$	5	< 6.0	< 7.2	~		
CIS-1,3-DICHLOROPROPENE	SW8260B	"g/kg	5	< 6.0	< 7.2	-		
TRANS-1 3-DICHLOROPROPENE	SW8260B		5	< 6 D	<72	-		
FTHVI PENZENE	SWebenB	$\mu 6/\pi 6$	5	< 6.0	< 7.0	_		
HEXACHIOROBUTADIENE	SW8260B	μ8/ * 8 α/kα	5	< 6.0	< 7.2	_		
2-HEXANONE	SW8260B	μ5/15 α/ka	20	< 24	< 29	_		
ISOPROPYI RENZENE (CUMENE)	SW8260B	μ5/ <u>5</u> σ/kg	5	< 24	< 7.0	_		
P-ISOPROPVITOLUENE	SW8260D	μ ^g / ^{kg}	ט ג	< 0.0	< 1.2	-		
ΜΕΥΗΝΙ ΕΝΕ ΟΗΙ ΟΒΙΝΕ	CIMODEND	μ _B / κ _B	5 E	< 0.0	< 1.4	-		
	GW0200D	$\mu g/kg$	0	< 0.0	< 1.2	-		
ΥΠΕΤΗΙΡ-2-ΓΕΝΙΑΝΟΝΕ Μέμπαι μέρω Βίμωνι έμπερ (Μωρό)	SW020UD	$\mu g/Kg$	∠∪ ਵ	< 24	< 29	-		
METHIC-LEAT-DOLLE-CILER (MIBE)	3 VV 8200B	μg/kg	э	< 6.0	< 1.2	-		

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

	Mathad IInit			_	Analysis Resu	lt
Component Analyzed	Method	Unit	PQL	SD-3	SD-4	SD-QC-1
				03-02419-3	03-02419-4	03-02419-5
NAPHTHALENE	SW8260B	a/ka	5		< 7 2	
N-PROPYLBENZENE	SW8260B	μς/κς σ/kσ	5	< 6.0	< 7.2	_
STYRENE	SW8260B	μ6/116 σ/kσ	5	< 6.0	< 7.2	-
1 1 1 2-TETRACHLOROETHANE	SW8260B	μ6/*6 σ/kσ	5	< 6.0	< 7.2	-
1 1 2 2-TETRACHLOROETHANE	SW8260B	μ6/16 σ/kg	5	< 6.0	< 7.2	-
TETRACHLOROETHENE	SW8260B	μο/ 1-0 g/kg	5	< 6.0	< 7.2	_
TOLUENE	SW8260B	μ8/118 σ/kg	5	< 6.0	< 7.2	.
1.2.3-TRICHLOROBENZENE	SW8260B	μα/1-8 g/kg	5	< 6.0	< 7.2	-
1.2.4-TRICHLOROBENZENE	SW8260B	"g/kg	5 .	< 6.0	< 7.2	-
1 1 1-TRICHLOROETHANE	SW8260B	µ8/~8 g/kg	5	< 6.0	< 7.2	-
1.1.2-TRICHLOROETHANE	SW8260B	"g/kg	5	< 6.0	< 7.2	-
TRICHLOROETHENE	SW8260B	"g/kg	5	< 6.0	< 7.2	-
TRICHLOROFLUOROMETHANE	SW8260B		5	< 6.0	< 7.2	-
1 2 3-TRICHLOROPROPANE	SW8260B	μο/ο e/ke	5	< 6.0	< 7.2	-
1 2 4-TRIMETHYLBENZENE	SW8260B	µ8/~8 g/kg	5	< 6.0	< 7.2	-
1.3.5-TRIMETHYLBENZENE	SW8260B	"g/kg	5	< 6.0	< 7.2	-
VINYL CHLORIDE	SW8260B	"g/kg	5	< 6.0	< 7.2	-
XYLENES (TOTAL)	SW8260B	"g/kg	5	< 6.0	< 7.2	-
TERT BUTYL ALCOHOL (TBA)	SW8260B	"g/kg	20	< 24	< 29	-
DIISOPROPYL ETHER(DIPE)	SW8260B	"g/kg	5	< 6.0	< 7.2	-
ETHYL TERT BUTYL ETHER (ETBE)	SW8260B	μg/kg	5	< 6.0	< 7.2	-
TERT AMYL METHYL ETHER (TAMÉ)	SW8260B	"g/kg	5	< 6.0	< 7.2	-
Dilution Factor		μο, ο		1	1	1
1,4-DIOXANE (P-DIOXANE)	8270-SIM	$\mu g/kg$	33	< 44	< 46	< 42
ORGANOCHLORINE PESTICIDES		<i>,</i>				
Dilution Factor				1	1	1
ALDRIN	8081A	$\mu g/kg$	1	< 1.3	< 1.4	-
BETA BHC	8081A	$\mu g/kg$	· 1	< 1.3	< 1.4	-
ALPHA BHC	8081A	$\mu g/kg$	1	< 1.3	< 1.4	-
DELTA BHC	8081A	$\mu g/kg$	1	< 1.3	< 1.4	-
GAMMA BHC (LINDANE)	8081A	$\mu g/kg$	1	< 1.3	< 1.4	-
ALPHA-CHLORDANE	8081A	$\mu g/kg$	1	15	9.1	· -
GAMMA-CHLORDANE	8081A	$\mu g/kg$	1	14	7.5	-
P,P'-DDD	8081A	$\mu g/kg$	2	$15^{(b)}$	$5^{(b)}$	-
P.P'-DDE	8081 A		2	11 (b)	4 (b)	-
דתחים ס	20211	μ6/ 46 σ/λο	2	6 1 (b)	ат (b)	_
	ALGOS	$\mu g/\kappa g$	2	0.4	00 ()	-
DIELDRIN ALDUA DNDOGULDAN	8081A	$\mu g/kg$	2	25 (0)	< 2.8	-
ALPHA ENDOSULFAN	8081A	$\mu g/kg$	1	< 1.3	< 1.4	-
BETA ENDOSULFAN	8081A	$\mu g/kg$	2	< 2.7	< 2.8	-
ENDOSULFAN SULFATE	8081A	μg/kg	2	< 2.7	< 2.8	- .
ENDRIN	8081A	µg/kg	2	< 2.7	< 2.8	-
ENDRIN ALDEHYDE	8081A	$\mu g/kg$	2	2J ^(b)	< 2.8	-
ENDRIN KETONE	8081A	$\mu g/kg$	2	< 2.7	< 2.8	-
HEPTACHLOR	8081A	μg/kg	1	$2^{(b)}$	0.7J ^(b)	. –
HEPTACHLOR EPOXIDE	8081 A		1	1 (b)	$0.41^{(b)}$	-
METHOXYCHLOR	8081A	μ6/**5 "g/kg	50	< 66	< 70	-
TOXAPHENE	8081 A	µ0/**8 ,,g/kg	50	< 66	< 70	•
		μo/ **o				

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Resul	t
Component Analyzed	Method	Unit	PQL	SD-3	SD-4	SD-QC-1
				03-02419-3	03-02419-4	03-02419-5
PCBS						
Dilution Factor				1	1	1
PCB-1016 (AROCLOR 1016)	SW8082	$\mu g/kg$. 33	< 44	< 46	-
PCB-1221 (AROCLOR 1221)	SW8082	$\mu g/kg$	67	< 89	< 94	· -
PCB-1232 (AROCLOR 1232)	SW8082	$\mu g/kg$	33	< 44	< 46	-
PCB-1242 (AROCLOR 1242)	SW8082	$\mu g/kg$	33	< 44	< 46	-
PCB-1248 (AROCLOR 1248)	SW8082	$\mu g/kg$	33	< 44	< 46	-
PCB-1254 (AROCLOR 1254)	SW8082	$\mu g/kg$	33	< 44	< 46	-
PCB-1260 (AROCLOR 1260)	SW8082	$\mu g/kg$	33	24J	23J	-

Component Analyzed	Method	Unit	PQL	Analysis Result SD-1 03-02419-1
TCLP METAL	······································			
Dilution Factor				2
ARSENIC	6010B	$\mu g/L$	5	< 10
BARIUM	6010B	$\mu g/L$	10	239
CADMIUM	6010B	$\mu g/L$	2	0.81 J
CHROMIUM	6010B	$\mu g/L$	5	3.6J
LEAD	6010B	$\mu g/L$	5	< 10
Dilution Factor				1
MERCURY	7470A	$_{\mu g}/L$	0.5	0.040J
Dilution Factor		,		2
SELENIUM	6010B	$_{\mu}g/L$. 10	< 20
SILVER	6010B	$_{\mu}\mathrm{g/L}$	10	2.6J

PQL: Practical Quantitation Limit. MDL: Method Detection Limit.

N.D.: Not Detected or less than the practical quantitation limit.

J: Reported between PQL and MDL.

† All results are reported on dry basis for soil samples.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

(a) Analyzed on a 1:5 water extract.

^(b) Presence of PCB may cause false positives in pesticides chromatogram.

pectfully_subm R ted Dominic Lau Laboratory Director

CRDL: Contract Required Detection Limit

"-": Analysis is not required.

Applied P & Ch Laboratory

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498 **Case Narrative**

Project: Lower Lakes/02HW013

For SOTA Environmental

APCL Service No: 03-2419

1. Sample Identification

The sample identifications are listed in the following table:

SOTA Environmental Sample ID	APCL Sample ID
 SD-1	03-02419-1
SD-2	03-02419-2
SD-3	03-02419-3
SD-4	03-02419-4
SD-QC-1	03-02419-5

2. Analytical Methodology

Samples are analyzed by EPA methods

SW8260B (Volatile organics), M8015V (Gasoline), M8015E (TPH: Diesel), M8015E (TPH: Motor Oil), 8081A (Organochlorine pesticides), 8082 (PCBs), 314.0 (Perchlorate, low level), 6010B/7471A (Priority Pollutant Metals (CWA) (13)), 7199 (Chromium (VI)), 8270-SIM (1,4-Dioxane), ASTM-D2216 (Moisture, percent in soil), 6010B (TCLP metal, EPA Primary List),

3. Holding Time

All samples were extracted, digested and analyzed within the holding times defined by the appropriate EPA methods of the analyses.

4. Preservation

All samples were preserved and stored according to the appropriate EPA methods.

5. Tele-log

None

6. Anomaly

None

"I certify that these data are technically accurate, complete, and in compliance with the terms and condi-

tions of the contract, for other than the conditions detailed above. Release of the data contained in the hardcopy data package and its electronic data deliverable submitted on diskette had been authorized by the Laboratory Manager or her/his designee, as verified by the following signature."

Respectfully submitted,

Regina Kirakozova VS Associate QA/QC Director Applied P & Ch Laboratory

50	·1		Ś	SOTA Er 16835	vironm W. Bern	iental T iardo Dri	echnolog ive, Suite 2	gy Inc. 212					C	h	ai	in	C	of	Custody
Environmental	echnology, Inc.		т	S: al: (858)	an Diego	, CA 92 ⁻	127-1613	95 0912	~		02HW013 Please Print in pen								Page i of 2
Laboratory Ir	formation	· · · · · · · · · · · · · · · · · · ·			Project	T.		A	nal	lvsi	s Ite	ms							
Lab Name: Apr	lied P & Ch	Laboratory			Name: Lo	owers Lal	kes HD FC	B LA CA	┢	ê	Ta		ΓĪ	1	1	Τ	Т		*
Address: 13760	Magnolia A	ve.	·····		Proi. 02	2HW013			1	3260	81					6	·		
City: Chino	gitter	State: CA Zip: 9	91710		PM: YU ZENG						4		ŝ		É	Ĭ			
Lab Phone: 1-	909-590-18	28 Quotation #	ł:		Sampler: MES						Ē		5	3	<u>_</u>	۲ ۵	NS.		
Due Date:	regular	🗆 rushdays	hours		-				15	late	Ides	82)	Ř	A	625	Ĩ	121		
Field Sample ID No.	Time ected	Sample Matrix	Preser- vative	# of Container	Type of Container	TPH-G (EPA 8	VOCs, Oxyger	Organo Pestici	PCBs (EPA 80	TPH-d & m (El	Perchlorate (E	NDMA (FPA 1	CHROMIUM (1,4-Dioxane (8		Remarks			
SD-3	Targe l	ower lake	Zhotos	1:20pm	Sediment	5	6	Encore-5g	x	×									
SD-3		1		[120m]	Sediment	5	2	Stainless Steet	-		×	x	x	X	x >	×	×		
		1					-												
SD-4	·	1 .	1	125000	Sediment	5	6	Encore-5g	×	×			Π		╋		1		
SD-4				Ziopm	Sediment	5	2	ALP Sleeve by			×	x	×	x	××	×	×		
								112	465	П								\Box	·
			L.	ļ		ļ		Ctoinless Pterster	_		_		Ц	_				+'	
SD-QC-1		,		2=00m	Sediment	5	1 A	ACRY Sleeve Th		Ш					<u>'</u>	×	×		47764
				ļ			<u> </u>		1 2		_	-						Ð	A19-
				 		}	<u> </u>	<u></u>	╞	┞┼	┦	╞		$\left + \right $	╋	+-			
			·	 					+	┝╊	+-	┢	\square	-+	+	+	+-	┢	
								<u> </u>	╈	╞╌╋	╈	┢─	H		╈	-	1-	┢	
QC Requirement:	DRegular DC	A/QC Report DWIP	Raw Data	DExtended	Raw Data		CE DAFCEE	DNEESA(E,C o	or D) 🗆 Ó	ther_	<u> </u>		_(Pi	ease	sp	ecify	<i></i>	
Sample Disposal: Sample Conditions	Disposal by	Lab 🖾 Hold for roken Cooler Seal:	ate. Ne		Sample Matrix	1Drinking Water 2 Waste Water 3 Oil/Organic Liquid	4 9 5 / 6 A	Solid/S Aqueou .ir	oil IS			Pres ative	erv-	1) 2 3 4	ici HNO H2S(NaOl	13 04 H	5 lce Only 6 Other_Na2S2O8 7 Not Preserved		
Temperature:	Degrees	ç																	
Relinquished b	Relinquished by / M Date/Time 3/26					+17	Received I	by: Paul						I	Date	e/T	ime	; 3	126103 1420
Relinquished b	y:/		Date/Tim	e		Received by: Date					e/T	ime	ne						
Air Bill Number														_					

50		5	S	SOTA En 16835 Sa	wironm W. Berr an Diego	iental T iardo Dr , CA 92	echnolog ive, Suite 2 127-1613	gy Inc. 212				(ha wo	air 13	า	O	f C	Custo	ody
Environmenta	I Technology, Ir	nc	T	<u>el: (858) 4</u>	85-8100) _ Fa	<u>ax: (858) 4</u>	85-0812	Please Print in pen Page 2 of 2									<u>2_of</u> 2		
Laboratory	Informati	on:			Project	Inform	ation:				A	naly	sis	lten	าร					
Lab Name: A	pplied P & (Ch Laboratory			Name: L	owers La	akes, HD FC	B, LA, CA		B	1A)		Ţ	6			Т			
Address: 137	60 Magnolia	a Ave.			Proj. 0	2HW013				8	808			ò		6				
City: Chino)	State: CA Zip	<u>: 91710</u>		PM: YU ZENG					A la	A		E a	Ъ.		Ă	€			
Lab Phone:	1-909-590-	1828 Quotation	1 #: 	······································	Sampler	: MES	r		ŝ	es (als (2)	۳	S			
Field Sample ID No.	Sample	Description	Date Colle	Time	Sample Matrix	Preser- vative	# of Container	Type of Container	TPH-G (EPA 801	VOCs, Oxygenat	Organo Pesticide	PCBs (EPA 8082	Perchlorate (EPA	13 Assorted Meta	NDMA (EPA 162	CHROMIUM (VI)	1,4-Dioxane (827		Rema	arks
SD-1	Ginall	In ser lake.	3/25/03	11:400m	Sediment	5	6	Encore-5g	x	×					Π	T		Τ		
SD-1		 	1	17.0000	Sediment	5	2	StainlessSteel		5	(×	x	x x	×	x	x	×	1	• .	
			<u>├ - </u>					Vie Sleeve // U		Ť	+		+		\vdash	-+	+	1		
		<u> </u>	$\left - \right - \left \right $			<u> </u>	<u> </u>	<u> </u>	$\left\{ +\right\}$		+	-+	+	+	\vdash	-+	-			
5D-2		<u> </u>		12:150	Sediment	5	6	Encore-5g	×	×										
SD-2		L		prism	Sediment	. 5	Ż	ALP Sleeve			×	x	x x	×	×	×	×			
		· · · · · · · · · · · · · · · · · · ·							\square		4	_	\bot		Ц	_				
							ļ			\bot	1_		\perp	1	Ц					<u> </u>
																2				M
		······································											Τ			-19		1-	-	
					<u> </u>				┢╴╢	-+-	╉	-+	+	┼──	\vdash	-+	╉	╋		
		<u> </u>			<u> </u>						4	-+			\square	-+	+	_		
										·T							Τ			
QC Requirement	: DRegular	DQA/QC Report DW	P DRaw Data	DExtended	Raw Data			DNEESA_ (E,C or I	D) [Othe	er		_(P	lease	e spe	ecify)			
Sample Disposal Sample Conditio	l: DDisposal ns: DIntact I	by Lab 🛛 Hold for □Broken Cooler Sea	days afte	er receiving da	ate. e		Sample Matrix	1Drinking Water 4 2 Waste Water 5 3 Oil/Organic Liquid 6	Solic Aqui Air	1/Soil eous			Prati	eserv	1-	1HC 2 HN 3 H2 4 Na	юз SO4		5 Ice Only 6 Other_Na2 7 Not Preser	S2O8 ved
Temperature:	Degre	 es-6					.L	·····								1140				
Relinguished	by:	h	Date/Time	3/21.1-	> 14	17	Received I	$p_{i} = Q_{i} M$						Da	ate/	Tim	ne	21-	L 10 2	1420
Relinguished	by		Date/Time	-/240	J	· · ·	Received I	JAN (Da	ate/	Tim	ie	512		
	- 1.									_	_	_						_		

-

PCL ServiceID	Client Name/Project: Sola Envionmente
. Sample Arrival	
Date/Time Received <u>3126103</u> Custody Transfer: DClient	Date/Time Opened <u>3/26/03 142</u> ∂ By (name): <u>Paul Kan</u> Golden State □UPS □US Mail □ FedEx □ APCL Empl:
. Chain-of-Custody (CoC)	· · · · · · · · · · · · · · · · · · ·
With Samples? Faxe	d? Client has Copy?
Project ID? Analy CoC/Docs Zip-Locked under Discrepancies? Clien	yses Clear? Hold Samples? #on Hold # Received Id? Compos.#: #Samples OK? It potified? Response (attach docs):
. Snipping Container/Cooler	
$E Cooler Used (\# \text{ of } \underline{/} \underline{/} \underline{/} \underline{/} \underline{/} \underline{/} \underline{/} $	
(Cooler temperature) Cooler Custody Seal?	measured from temp blank if present, otherwise measured from the cooler). Absent Intact ITampered?
. Sample Preservation	· · · · · · · · · · · · · · · · · · ·
$\Box pH < 2 \qquad \Box p$ If Not, pH = Pres	H >12 served by: Client CAPCL Third Party
. Holding-time Requirements	
\Box pH 24hr \Box BACT 6 \Box Cl2 ASAP \Box Turbidit \Box HT Expired? \Box Client no	$0/24hr \square Cr^{VI} 24hr \square NO_3^- 48hr \square BOD 48hr$ y 48hr \square DO ASAP \square Fe(11) ASAP otified?
. Sample Container Condition	1
Intact? Broken?	Documented? Number:
Type: plastic	□ glass 1 Tube: brass/SS □ Tedlar Bag
Caps tight?	$\square \text{ Air Bubbles?} \qquad \square \text{ Anomaly?}$
Labels: Unique ID?	Date/Time Dreserved?
. Turn Around Time	itd (7-10 days) 🗆 Not Marked
. Sample Matrix	·
\Box Drinking H ₂ O \Box Other Liq ξ	Soil 🛛 Wipe 🔤 Polymer 🗆 Air 🔹 Other:
□ Ground H ₂ O □ Sludge [🗆 Filter 🔲 Oil/Petro 🔲 Paint 🗌 W. Water 🔲 Extract 🗌 Unknow
Pre-Login Check List Compl	eted & OK?
ALL OK? (if not, attach doc	cs) Client Contact? (Name:)Date/Time:
-	

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Part 1: General Information

Sample Login: Check List

03-02419 (1288_ 474) (4858100_ 474) $_{03/26/03}$

Company Information	Name:	SOTA Environmental
	Address:	16835 W. Bernardo Dr, Ste. 212 ,San Diego ,CA 92127
Project Information	Project Description:	Lower Lakes
	Project #:	02HW013
Billing Information	P.O. #:	· · · · · · · · · · · · · · · · · · ·
	Bill Address:	16835 W. Bernardo Dr, Ste. 212 ,San Diego ,CA 92127
	Lab Project ID:	
	Client Database #:	0
Receiving Information	Who Received Sample?	Paul Kou
	Receiving Date/Time:	03/26/03 1420
	CDC No.	
Shipping Information	Shipping Company	by Client
	Packing Information:	Cooler/Ice Chester
	Cooler Temperature:	2.7 ° C
Container Information	Container Provider:	Client
Sampling Information	Sampling Person:	
	Sampling Company:	Client
Turn-Around-Time Opt	ion:	Rush 5 working day(s)
QC Option:		NEESA C
Disposal Option:		Not specify

03-02419 Check List Login on 03/26/03 File: TMP014c.tex

Part 2: Sample Information

Seq. #	Sample ID (on COC)	Sample Sub-ID	APCL Sample ID	Matrix	Cont- tainer	Preser- vative	Vol, ml Am. g	# of Replica	Condition G, L, B	Collected mmddyy	Hold ?	Composite Group	TAT Days	
1.	SD-1	Encore	03-02419-1-α	S	Р		5	6	G	032503	N	0	7	
	SD-1	Sleeve	03-02419-1- eta	S	В		500	`1	G	032503	Ν	0	7	
2	SD-2	Encore	$03-02419-2-\alpha$	S	Р		5	6	G	032503	Ν	0	7	
	SD-2	Sleeve	03-02419-2- β	S	В		500	i	G	032503	N	0	7	
3	SD-3,	Encore	03-02419-3-lpha	S	Ρ		5	6	G	032503	Ν	0	7	
	SD-3	Sleeve	03-02419-3- eta	Ś	в		500	1	G	032503	Ν	0	7	
4	SD-4	Encore	$03-02419-4-\alpha$	S	Р		5	6	G	032503	Ν	0	7	
	SD-4	Sleeve	03-02419-4- eta	S	В		500	1	G	032503	Ν	0	7	
5	SD-QC-1,	Sleeve	03-02419-5	S	В		500	1	G	032503	Ν	0	7	

Part 3: Analysis Information

Test Items:	🗖 8260B	Volatile organics
	□ M8015V/M80150	GGasoline
	🗖 M8015E/M8015L	OTPH: Diesel
	□ M8015E/M8015M	MTPH: Motor Oil
	□ 8081A	Organochlorine pesticides
	□ 8082	PCBs
	□ 314.0/300.0	Perchlorate, low level
	□ 6010B/7000A	Priority Pollutant Metals (CWA) (13)
	□ 376.1/9030B	Sulfide, Dissolved
	405.1	Biological Oxygen Demand (BOD)
	□ 375.4/9038	Sulfate $(SO_4^{})$
	🗖 325.3/9252A	Chloride Cl-
	□ 160.1	Solids, Total Dissolved (TDS)
	□ 160.2	Solids, Total Suspended (TSS)
	□ 160.5	Solids, Settleable (SS)
	🗖 9040B/150.1	рН
	□ SM9221B/9131	Total Coliform, MTF, 3X5 tubes
	🗖 SM9221E	Fecal Coliform, MTF, 3X5 tubes
	□ 353.3	Nitrate (NO $_3^-$) as N Cd reduction
	□ 354.1	Nitrite (NO_2^-) as N
	218.6/7199	Chromium (VI)
·	🗖 8270-SIM	1,4-Dioxane

03-02419 Check List

Login on 03/26/03 File: TMP014c.tex

13760 Magnolia Ave. Chino CA 91710 Tel. (909) 590-1828 Fax (909) 590-1498

April 23, 2003

SOTA Environmental Attention: Yu Zeng 16835 W. Bernardo Dr. Suite 212 San Diego CA 92127

Dear Yu,

This package contains samples in our Service ID 03-2417 and your project is 02HW013 Lower Lakes, HD FCB. Enclosed please find:

- (1) One original report.
- (2) One original Chain of Custody.
- (3) One diskette containing EDD Deliverable.
- (4) One original of Level D Data Package Deliverable.

If anything is missing or you have any questions, please feel free to contact me.

Respectfully submitted,

Regina Kirakozova

Associate QA/QC Director Applied P & Ch Laboratory

13760 Magnolia Ave. Chino CA 91710

Tel: (909) 590-1828 Fax: (909) 590-1498 Submitted to: SOTA Environmental Attention: Yu Zeng 16835 W. Bernardo Dr, Ste. 212 San Diego CA 92127 Tel: (858)485-8100 Fax: (858)485-0812

APCL Analytical Report

Service ID #: 801-032417 Collected by: MES Collected on: 03/26/03 Received: 03/26/03 Extracted: 03/28-04/01/03 Tested: 03/26-04/02/03 Reported: 04/07/03

Sample Description: Water

Project Description: 02HW013 Lower Lakes, HD FCB.

Analysis of Water Samples

				Analys	is Result
Component Analyzed	Method	Unit	POL	BG-SW-1	BG-SW-2
+ F				03-02417-1	03-02417-2
Pielesiael Owners Demand (POD)	405.1	ma O /I	ງ	6.0	1 71
Chlorida CL	400.1	$mg - O_2 / D$	2 1	14.0	25.5
Nitrate (NO^{-}) as N	320.0	mg/L	0 1	0.35	20.0
Nitrate (NO_3) as N	303.3	Ing/L	0.1	0.00	0.0
Nitrite (NO_2) as N	354.1	mg/L	0.02	< 0.02 P 40	< U.UZ P A P
	9040B	pH unit	0.01	0.49	0.00
Solids, Settleable (SS)	160.5	mL/L-nr	0.2	< 0,2	< U.2 970
Solids, Total Dissolved (TDS)	160.1	mg/L	10	339	370
Solids, Total Suspended (TSS)	160.2	mg/L	4	< 4	< 4
Sulfate (SO_4)	375.4	mg/L	2	07.5	58.5
Sulfide, Dissolved	376.2	mg/L	0.2	< 0.2	< 0.2
Total Coliform, MTF, 3X5 tubes	SM9221B	MPN/100mL	2	240	240
Fecal Coliform, MTF, 3X5 tubes	SM9221E	MPN/100mL	2	23.0	50.0
Dilution Factor				1	1
Chromium (VI)	218.6	$\mu g/L$	1	< 1	< 1
Dilution Factor				1	1
Perchlorate	314.0	$\mu g/L$	4	< 4	< 4
Priority Pollutant Metals (CWA) (13)					
Dilution Factor				1	1
ANTIMONY	6010B	$_{\mu}\mathrm{g/L}$	10	2.9J	< 10
ARSENIC	6010B	$\mu g/L$	5	< 5	< 5
BERYLLIUM	6010B	$\mu g/L$	2	< 2	< 2
CADMIUM	6010B	$\mu g/L$	2	0.49J	0.32J
CHROMIUM	6010B	$\mu g/L$	5	1.5 J	1.9J
COPPER	6010B	$\mu g/L$	10	3.1J	< 10
LEAD	6010B	$\mu g/L$	5	< 5	< 5
MERCURY	7470A	$\mu g/L$	0.5	0.33J	0.18J
NICKEL	6010B	$\mu g/L$	5	1.3 J	1.6J
SELENIUM	6010B	$\mu g/L$	10	< 10	<10
SILVER	6010B	$\mu g/L$	10	< 10	<10
THALLIUM	6010B	μg/L	10	< 10	< 10
ZINC	6010B	,g/L	10	9.0.1	8.0.1
Dilution Factor		μ0/ -		1	1
PHC as GASOLINE	M8015V	mg/L	0.05	0.02.1	0.021
Dilution Factor			0.00	1	1
PHC as DIESEL FUEL	M8015E	mg/L	0.5	< 0.5	< 0.5
Dilution Factor		0/ -	•••	1	1
MOTOR OILS	M8015F	malt	0.5	1	1
	MICOIOL	IIIE/ L	0.0	< 0.5	< 0.5

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

				Analys	is Result
Component Analyzed	Method	Unit	POL ·	BG-SW-1	BG-SW-2
component imary bed	111011101			03-02417-1	03-02417-2
					· · · · · · · · · · · · · · · · · · ·
Volatile organics				1	1
	8260B	a / T	50	1	- 50
ACEIONE	8200D	μg/L α/Ι	50	< 50	< 5
DDNDDNE	8200D	μ8/1 σ/Ι	5	< 5	< 5
	0200D 0260P	$\mu B/L$.5	< 5	<5
	0200D	μΒ/ L α/T	5	< 5	<5
BROMODICILOROMETHANE BROMOFORM	0200D	μΒ/ ¹	5	< 5	< 5
	0200D	μB/L σ/Ι	5	< 5	< 5
METHVI FTHVI VETONE	8260D	μg/15 σ/Ι	100	< 100	< 100
N DUTVI DENZENE	8200D	$\mu g/L$	100	< 100	< 100
N-DUIILDENZENE SEC DUTVIDENZENE	8260B	$\mu g/L$	5	< 5	<5
T DUTVI DENZENE	0200D	μ8/1 σ/Ι	5	< 5	<5
CARDON DISULTIDE	8260D	$\mu g/L$	5	< 0	< 5
CARBON DISULFIDE	0200D	μ8/1/ /Τ	5	< 0	< 5
CHLOROPENZENE	0200D	μg/L α/Ι	5	< 5	< 5
	8200D	μg/L ~/T	5 E	< 5	< 5
OULODODTUAND	0200D	μg/L ~/I	5	< 0	< 0 . F
CHLOROEIHANE	8200B	μβ/L. -/T	5 F	< 5	< 5
CHLOROFORM	8200D	μ8/L	5 F	< 0	< 5
	8200D	μg/L	5	< 5	< 5
2-CHLOROTOLUENE	8260B	μg/L	5	< 5	< 5
4-CHLOROIOLUENE	8260B	μg/L /T	ວ ະ	< 5	< 5
1.2 DIBROMOETHANE	0200D	μ8/L α/Ι	5	< 0	< 5
	0200D	μg/ມ α/Ι	5	< 0	< 5
1 2 DICHLORODENZENE	8260B	μg/15 σ/Τ	5	< 5	< 5
1.2 DICHLORODENZENE	0200D	μg/ L ~/T	5	< 0 < 5	< 5
1 4 DICHLORODENZENE	8200D	μ8/15 α/Τ	5	< 5	< 5
	8260B	μg/1. α/Ι	5	< 5	× 5
	8200D	_ μg/ ມ /Τ	5	< 0 - F	< 5 - 5
	0200D	μg/L ~/T	5	< 0	< 5
1,2-DICHLOROETHANE	8200D	μ8/L		< 5	< 0
1,1-DICHLOROETHENE	8260B	μg/L	5	< 5	< 5
CIS-1,2-DICHLOROETHENE	8260B	΄ μg/L	5	< 5	< 5
TRANS-1,2-DICHLOROETHENE	8260B	μg/L	5	< 5	< 5
1,2-DICHLOROPROPANE	8260B	μ g/L	5	< 5	< 5
1,3-DICHLOROPROPANE	8260B	$_{\mu}g/L$	5	< 5	< 5
2,2-DICHLOROPROPANE	8260B	$_{\mu}\mathrm{g/L}$	5	< 5	< 5
1,1-DICHLOROPROPENE	8260B	$_{\mu}{ m g/L}$	5	< 5	< 5
CIS-1,3-DICHLOROPROPENE	8260B	$_{\mu}\mathrm{g/L}$	5	< 5	< 5
TRANS-1,3-DICHLOROPROPENE	8260B	$\mu g/L$	5	< 5	< 5
ETHYLBENZENE	8260B	$\mu g/L$	5	< 5	< 5
HEXACHLOROBUTADIENE	8260B	$\mu g/L$	5	< 5	< 5
ISOPROPYLBENZENE (CUMENE)	8260B	$\mu g/L$	5	< 5	< 5
P-CYMENE (P-ISOPROPYLTOLUÉNE)	8260B	$\mu g/L$	5	< 5	< 5
METHYLENE CHLORIDE	8260B	$\mu g/L$	5	5J	3J
METHYL ISOBUTYL KETONE	8260B	$\mu g/L$	50	1J	< 50
TERT-BUTYL METHYL ETHER	8260B	"g/L	10	< 10	< 10
		μ01			-

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

				Analys	is Result
Component Analyzed	Method	Unit	PQL	BG-SW-1 03-02417-1	BG-SW-2 03-02417-2
NAPHTHALENE	8260B	μg/L	5	< 5	< 5
N-PROPYLBENZENE	8260B	$n_{g/L}$	5	< 5	< 5
STYRENE	8260B	"g/L	5	< 5	< 5
	8260B	μο/ σ/Ι.	5	< 5	< 5
1,1,2,2 TETRACHLOROBINAND	8260B	μ6/D σ/Ι	5	< 5	< 5
TETRACHIOROFTHENE(PCE)	8260B	μ <u>β</u> /1) α/1.	5	< 5	< 5
TOLUENE	8260B	μб/ш 	5	< 5	< 5
1 2 3-TRICHLOROBENZENE	8260B	μ8/± σ/Τ.	5	< 5	< 5
1.2.4-TRICHLOROBENZENE	8260B	μ6/ σ/Τι	5	< 5	< 5
1 1 1-TRICHLOROETHANE	8260B	μ8/2 	5	< 5	< 5
1 1 2-TRICHLOROETHANE	8260B	, μ8/Ξ g/L	5	< 5	< 5
TRICHLOROETHENE (TCE)	8260B	μ8/- ε/L	5	< 5	< 5
TRICHLOROFLUOROMETHANE	8260B	μ8/ g/L	5	< 5	< 5
1.2.3-TRICHLOROPROPANE	8260B	μ8/ g/L	5	< 5	< 5
1 2 4-TRIMETHYLBENZENE	8260B	μ8/ g/L	5	< 5	< 5
1.3.5-TRIMETHYLBENZENE	8260B	μ6/ σ/Τ.	5	< 5	< 5
VINYI, CHLOBIDE	8260B	μ6/12 g/L	5	< 5	< 5
O-XVIENE	8260B	μ8/ - σ/Τ.	5	< 5	< 5
M P-XYLENE	8260B	μ8/2 σ/L	10	< 10	<10
TERT BUTYL ALCOHOL (TBA)	8260B	μ8/12 g/L	20	< 20	< 20
DUSOPROPYL ETHER (DIPE)	8260B	μ8/ - g/L	5	< 5	< 5
ETHVL TERT BUTVL EHTER (ETBE)	8260B	μ8/2 σ/Ι.	5	< 5	< 5
TERT AMYL METHYL ETHER (TAME)	8260B	με/1. σ/1.	5	< 5	< 5
Dilution Factor	02002	μ8/	Ū	1	1
$1 4 - DIOX A NE (P_DIOX A NE)$	8270-SIM		1	<1	<1
Organochlorine pesticides	0210-DIM	_μ <i>6/ ¹¹</i>	-	~ *	
Dilution Factor				0.962	0.962
ALDRIN	8081 A	g/L	0.05	< 0.048	< 0.048
BETA BHC	8081 A	μ8/- g/L	0.05	< 0.048	< 0.048
ALPHA BHC	8081A	μg/L	0.05	< 0.048	< 0.048
DELTA BHC	8081A	μ8/- "g/L	0.05	< 0.048	< 0.048
GAMMA BHC (LINDANE)	8081A	"g/L	0.05	< 0.048	< 0.048
ALPHA-CHLORDANE	8081A	μg/L	0.05	< 0.048	< 0.048
GAMMA-CHLORDANE	8081A	$\mu g/L$	0.05	< 0.048	< 0.048
P,P'-DDD	8081A	"g/L	0.1	< 0.096	< 0.096
P,P'-DDE	8081A	"g/L	0.1	< 0.096	< 0.096
P.P'-DDT	8081A	"g/L	0.1	< 0.096	< 0.096
DIELDRIN	8081A	"g/L	0.1	< 0.096	< 0.096
ALPHA ENDOSULFAN	8081 A	"g/L	0.05	< 0.048	< 0.048
BETA ENDOSULFAN	8081A	"g/L	0.1	< 0.096	< 0.096
ENDOSULFAN SULFATE	8081A	μα/L	0.5	< 0.48	< 0.48
ENDRIN	8081 A	μο/ — σ/ [.	0.1	< 0.096	< 0.096
ENDRIN ALDEHYDE	8081 A	μ8/ ε/L	0.1	< 0.096	< 0.096
ENDRIN KETONE	8081 A	μ8/ σ/Τ.	01	< 0.096	< 0.096
	00011	μο/ Π ~/T	0.05	-0.040	40.049
	ALOUG	μ8/.L	0.05	< 0.048	< 0.048
METHORVOULOP	ALGUG	$\mu g/L$	0.05	< 0.048	< 0.048
METIOA I CHLOR TAY A DUENE	ALOUO	μΒ/ L ~/T	2 ·	< 1.9	< 1.8
IOAAFIENE	8081A	μg/L	Э	< 4.8	< 4.8

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

				Analys	is Result
Component Analyzed	Method	Unit	PQL	BG-SW-1	BG-SW-2
				03-02417-1	03-02417-2
PCBs					
Dilution Factor				0.96	0.96
PCB-1016 (AROCLOR 1016)	8082	$_{\mu}\mathrm{g/L}$	1	< 0.96	< 0.96
PCB-1221 (AROCLOR 1221)	8082	$\mu g/L$	2	< 1.9	< 1.9
PCB-1232 (AROCLOR 1232)	8082	$_{\mu}\mathrm{g/L}$	1	< 0.96	< 0.96
PCB-1242 (AROCLOR 1242)	8082	$_{\mu}\mathrm{g/L}$	1	< 0.96	< 0.96
PCB-1248 (AROCLOR 1248)	8082	$_{\mu}\mathrm{g/L}$	1 ·	< 0.96	< 0.96
PCB-1254 (AROCLOR 1254)	8082	$_{\mu}{ m g}/{ m L}$	1	< 0.96	< 0.96
PCB-1260 (AROCLOR 1260)	8082	$_{\mu}g/L$	1	< 0.96	< 0.96

					Analysis Resul	t
Component Analyzed	Method	Unit	PQL	BG-SW-3	BG-SW-QC1	TB-1
· .				03-02417-3	03-02417-4	03-02417-5
Biological Oxygen Demand (BOD)	405.1	$mg-O_2/L$	2	< 2	< 2	-
Chloride Cl ⁻	325.3	mg/L	1	26.5	27.5	-
Nitrate (NO_3) as N	353.3	mg/L	0.1	4.4	4.2	-
Nitrite (NO_2) as N	354.1	mg/L	0.02	0.030	0.034	-
pH	9040B	pH unit	0.01	7.37	7.32	-
Solids, Settleable (SS)	160.5	mL/L-hr	0.2	< 0.2	< 0.2	-
Solids, Total Dissolved (TDS)	160.1	mg/L	10	358	380	-
Solids, Total Suspended (TSS)	160.2	mg/L	4	< 4	5.0	-
Sulfate (SO_4^{-})	375.4	mg/L	2	47.7	53.4	-
Sulfide, Dissolved	376.2	mg/L	0.2	< 0.2	< 0.2	
Total Coliform, MTF, 3X5 tubes	SM9221B	MPN/100mL	2	50.0	6.0	-
Fecal Coliform, MTF, 3X5 tubes	SM9221E	MPN/100mL	2	8.0	< 2	-
Dilution Factor				1	1	1
Chromium (VI)	218.6	$_{\mu}\mathrm{g/L}$	1	<1	< 1	· _
Dilution Factor				1	1	1
Perchlorate	314.0	$_{\mu}{ m g/L}$	4	< 4	< 4	-

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Component Analyzed	Method	Unit	PQL	BG-SW-3	Analysis Result BG-SW-QC1	TB-1
				03-02417-3	03-02417-4	03-02417-5
Priority Pollutant Metals (CWA) (13)						
Dilution Factor			•	1	1 .	1
ANTIMONY	6010B	$\mu g/L$	10	< 10	2.4J	-
ARSENIC	6010B	$\mu g/L$	5	< 5	< 5	~
BERYLLIUM	6010B	$_{\mu}\mathrm{g/L}$	2 ·	< 2	< 2	-
CADMIUM	6010B	"g/L	2	0.55J	0.42J	-
CHROMIUM	6010B	μg/L	5	2.0J	2.0J	-
COPPER	6010B	μg/L	10	< 10	< 10	-
LEAD	6010B	$\mu g/L$	5	< 5	< 5	-
MERCURY	7470A	$\mu g/L$	0.5	0.25 J	0.24J	-
NICKEL	6010B	$\mu g/L$	5	< 5	< 5	-
SELENIUM	6010B	$\mu g/L$	10	< 10	3.0J	-
SILVER	6010B	$\mu g/L$	10	< 10	< 10	-
THALLIUM	6010B	$\mu g/L$	10	< 10	< 10	-
ZINC	6010B	$\mu g/L$	10	17.7	11.3	-
Dilution Factor				1	1	1 .
PHC as GASOLINE	M8015V	mg/L	0.05	0.02J	0.02J	-
Dilution Factor				1	1	1
PHC as DIESEL FUEL	M8015E	mg/L	0.5	< 0.5	< 0.5	-
Dilution Factor				1	1	1
MOTOR OILS	M8015E	mg/L	0.5	< 0.5	< 0.5	-
Volatile organics						
Dilution Factor				1	1	1
ACETONE	8260B	$\mu g/L$	50	< 50	< 50	< 50
BENZENE	8260B	$\mu g/L$	5	< 5	< 5	< 5
BROMOBENZENE	8260B	$_{\mu}{ m g}/{ m L}$	5	< 5	< 5	< 5
BROMOCHLOROMETHANE	8260B	$_{\mu}\mathrm{g/L}$	5	< 5	< 5	< 5
BROMODICHLOROMETHANE	8260B	$_{\mu}g/L$	5	< 5	< 5	< 5
BROMOFORM	8260B	$\mu g/L$	5	< 5	< 5	< 5
BROMOMETHANE	8260B	$_{\mu}\mathrm{g/L}$	5	< 5	< 5	< 5
METHYL ETHYL KETONE	8260B	$\mu g/L$	100	< 100	< 100	<100
N-BUTYLBENZENE	8260B	$\mu g/L$	5	< 5	< 5	< 5
SEC-BUTYLBENZENE	8260B	µg/L	5	< 5	< 5	< 5
T-BUTYLBENZENE	8260B	μg/L	5	< 5	< 5	< 5
CARBON DISULFIDE	8260B	μg/L	5	< 5	< 5	< 5
CARBON TETRACHLORIDE	8260B	µg/L	5	< 5	< 5	< 5
CHLOROBENZENE	8260B	µg/L	5	< 5	< 5	< 5
DIBROMOCHLOROMETHANE	8260B	µg/L	5	< 5	< 5	< 5
CHLOROETHANE	8260B	µg/L	5	< 5	< 5	< 5
CHLOROFORM	8260B	$\mu g/L$	5	< 5	< 5	< 5
CHLOROMETHANE	8260B	$\mu g/L$	5	< 5	< 5	< 5
2-CHLOROTOLUENE	8260B	$_{\mu}\mathrm{g/L}$	5	< 5	< 5	< 5
4-CHLOROTOLUENE	8260B	$\mu g/L$	5	< 5	< 5	< 5
1,2-DIBROMO-3-CHLOROPROPANE	8260B	$_{\mu}{ m g/L}$	5	< 5	< 5	< 5
1,2-DIBROMOETHANE	8260B	$_{\mu}\mathrm{g/L}$	5	< 5	< 5	< 5
DIBROMOMETHANE	8260B	$\mu g/L$	5	< 5	< 5	< 5

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Resul	t TP 1
Component Analyzed	Method	Unit	PQL	BG-SW-3 03-02417-3	03-02417-4	03-02417-5
	_					
1,2-DICHLOROBENZENE	8260B	$\mu g/L$	5	< 5	< 5	< 5
1,3-DICHLOROBENZENE	8260B	$\mu g/L$	5	< 5	< 5	< 5
1,4-DICHLOROBENZENE	8260B	$_{\mu}{ m g/L}$	5	· < 5	< 5	< 5
DICHLORODIFLUOROMETHANE	8260B	$_{\mu}\mathrm{g/L}$	5	< 5	< 5	< 5
1,1-DICHLOROETHANE	8260B	$_{\mu}\mathrm{g/L}$	5	< 5	< 5	< 5
1,2-DICHLOROETHANE	8260B	$\mu g/L$	5	< 5	< 5	< 5
1,1-DICHLOROETHENE	8260B	$\mu g/L$	5	< 5	< 5	< 5
CIS-1,2-DICHLOROETHENE	8260B	$\mu g/L$	5	< 5	< 5	< 5
TRANS-1,2-DICHLOROETHENE	8260B	$\mu g/L$	5	< 5	< 5	< 5
1,2-DICHLOROPROPANE	8260B	$_{\mu}g/L$	5	< 5	< 5	< 5
1,3-DICHLOROPROPANE	8260B	$\mu g/L$	5	< 5	< 5	< 5
2,2-DICHLOROPROPANE	8260B	$\mu g/L$	5	< 5	< 5	< 5
1,1-DICHLOROPROPENE	8260B	$\mu g/L$	5	< 5	< 5	< 5
CIS-1.3-DICHLOROPROPENE	8260B	$\mu g/L$	5	< 5	< 5	< 5
TRANS-1.3-DICHLOROPROPENE	8260B	"g/L	5	< 5	< 5	< 5.
ETHYLBENZENE	8260B	μg/L	5	< 5	< 5	< 5
HEXACHLOROBUTADIENE	8260B	$\mu g/L$	5	< 5	< 5	< 5
ISOPROPYLBENZENE (CUMENE)	8260B	"g/L	5	< 5	< 5	< 5
P-CYMENE (P-ISOPROPYLTOLUENE)	8260B	"g/L	5	< 5	< 5	< 5
METHYLENE CHLORIDE	8260B	$\mu g/L$	5	3J	6	3J
METHYL ISOBUTYL KETONE	8260B	μg/L	50	2 J	< 50	1J
TERT-BUTYL METHYL ETHER	8260B	$\mu g/L$	10	<10	< 10	< 10
NAPHTHALENE	8260B	"g/L	5	< 5	< 5	< 5
N-PROPYLBENZENE	8260B	"g/L	5	< 5	< 5	< 5
STYRENE	8260B	"g/L	5	< 5	< 5	< 5
1,1,1,2-TETRACHLOROETHANE	8260B	"g/L	5	< 5	< 5	< 5
1.1.2.2-TETRACHLOROETHANE	8260B	"g/L	5	< 5	< 5	< 5
TETRACHLOROETHENE(PCE)	8260B	μg/L	5	< 5	< 5	< 5
TOLUENE	8260B	$\mu g/L$	5	< 5	< 5	< 5
1.2.3-TRICHLOROBENZENE	8260B	"g/L	5	< 5	< 5	. < 5
1.2.4-TRICHLOROBENZENE	8260B	"g/L	5	< 5	< 5	< 5
1,1,1-TRICHLOROETHANE	8260B	$\mu g/L$	5	< 5	< 5	< 5
1,1,2-TRICHLOROETHANE	8260B	$\mu g/L$	5	< 5	< 5	< 5
TRICHLOROETHENE (TCE)	8260B	$\mu g/L$	5	< 5	< 5	< 5
TRICHLOROFLUOROMETHANE	8260B	$\mu g/L$	5	< 5	< 5	< 5
1,2,3-TRICHLOROPROPANE	8260B	$\mu g/L$	5	< 5	< 5	< 5
1,2,4-TRIMETHYLBENZENE	8260B	$\mu g/L$	5	< 5	< 5	< 5
1.3.5-TRIMETHYLBENZENE	8260B	$\mu g/L$	5	< 5	< 5	< 5
VINYL CHLORIDE	8260B	"g/L	5	< 5	< 5	< 5
O-XYLENE	8260B	"g/L	5	< 5	< 5	< 5
M.P-XYLENE	8260B	"g/L	10	< 10	< 10	<10
TERT BUTYL ALCOHOL (TBA)	8260B	"g/L	20	< 20	< 20	< 20
DIISOPROPYL ETHER (DIPE)	8260B	"g/T	5	< 5	< 5	< 5
ETHYL TERT BUTYL ETHER (ETBE)	8260B	"g/L	5	< 5	< 5	< 5
TERT AMVI METUVI ETUED (TAME)	8260B	μο, σ/Ι	5	~ 5	25	<5
Disting Post	0200D	μб/ ^ц	J	ر ب ۱	1	1
LILUTION FACTOR	8070 SIN	a /T	т	1	1	1
1,4-DIOAANE (F-DIOAANE)	0210-01WI	μΒ/L	Т	< 1	< 1	-

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Result	
Component Analyzed	Method	Unit	PQL	BG-SW-3	BG-SW-QC1	TB-1
				03-02417-3	03-02417-4	03-02417-5
Organochlorine pesticides				<u> </u>		<u> </u>
Dilution Factor				0.962	0.962	1
ALDRIN	8081A	$_{\mu}\mathrm{g/L}$	0.05	< 0.048	< 0.048	-
BETA BHC	8081A	$\mu g/L$	0.05	< 0.048	< 0.048	-
ALPHA BHC	8081A	$\mu g/L$	0.05	< 0.048	< 0.048	-
DELTA BHC	8081A	"g/L	0.05	< 0.048	< 0.048	-
GAMMA BHC (LINDANE)	8081A	$\mu g/L$	0.05	< 0.048	< 0.048	-
ALPHA-CHLORDANE	8081A	$\mu g/L$	0.05	< 0.048	< 0.048	-
GAMMA-CHLORDANE	8081A	ug/L	0.05	< 0.048	< 0.048	-
P,P'-DDD	8081A	$\mu g/L$	0.1	< 0.096	< 0.096	-
P,P'-DDE	8081A	$\mu g/L$	0.1	< 0.096	< 0.096	-
P,P'-DDT	8081A	$\mu g/L$	0.1	< 0.096	< 0.096	-
DIELDRIN	8081A	$_{\mu}\mathrm{g/L}$	0.1	< 0.096	< 0.096	-
ALPHA ENDOSULFAN	8081A	$\mu g/L$	0.05	< 0.048	< 0.048	-
BETA ENDOSULFAN	8081A	$_{\mu} g/L$	0.1	< 0.096	< 0.096	-
ENDOSULFAN SULFATE	8081A	$_{\mu}\mathrm{g/L}$	0.5	< 0.48	< 0.48	-
ENDRIN	8081A	$_{\mu}\mathrm{g/L}$	0.1	< 0.096	< 0.096	-
ENDRIN ALDEHYDE	8081A	$_{\mu}\mathrm{g/L}$	0.1	< 0.096	< 0.096	-
ENDRIN KETONE	8081A	$_{\mu}{ m g/L}$	0.1	< 0.096	< 0.096	-
HEPTACHLOR	8081A	$_{\mu}\mathrm{g/L}$	0.05	< 0.048	< 0.048	-
HEPTACHLOR EPOXIDE	8081A	$_{\mu}g/L$	0.05	< 0.048	< 0.048	-
METHOXYCHLOR	8081A	$_{\mu}g/L$	2	< 1.9	< 1.9	-
TOXAPHENE	8081A	$_{\mu}\mathrm{g/L}$	5	< 4.8	< 4.8	-
PCBs						
Dilution Factor	•			0.96	0.96	1
PCB-1016 (AROCLOR 1016)	8082	$\mu g/L$	1	< 0.96	< 0.96	-
PCB-1221 (AROCLOR 1221)	8082	$\mu g/L$	2	< 1.9	< 1.9	-
PCB-1232 (AROCLOR 1232)	8082	$\mu g/L$	1	< 0.96	< 0.96	-
PCB-1242 (AROCLOR 1242)	8082	$\mu g/L$	1	< 0.96	< 0.96	-
PCB-1248 (AROCLOR 1248)	8082	$\mu g/L$	1	< 0.96	< 0.96	-
PCB-1254 (AROCLOR 1254)	8082	$\mu g/L$	1	< 0.96	< 0.96	-
PCB-1260 (AROCLOR 1260)	8082	$\mu g/L$	1	< 0.96	< 0.96	-

PQL: Practical Quantitation Limit. MDL: Method Detection Limit. N.D.: Not Detected or less than the practical quantitation limit. CRDL: Contract Required Detection Limit "-": Analysis is not required.

J: Reported between PQL and MDL.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

minicLau

Laboratory Director Applied P & Ch Laboratory

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498 **Case Narrative**

Project: Lower Lakes/02HW013

For SOTA Environmental

APCL Service No: 03-2417

1. Sample Identification

The sample identifications are listed in the following table:

 SOTA Environmental Sample ID	APCL Sample ID	
 BG-SW-1	03-02417-1	
BG-SW-2	03-02417-2	
BG-SW-3	03-02417-3	
BG-SW-QC1	03-02417-4	
TB-1	03-02417-5	

2. Analytical Methodology

Samples are analyzed by EPA methods

8260B (Volatile organics),

M8015V (Gasoline), M8015E (TPH: Diesel), M8015E (TPH: Motor Oil), 8081A (Organochlorine pesticides), 8082 (PCBs), 314.0 (Perchlorate, low level), 6010B (Priority Pollutant Metals (CWA) (13)), 376.1 (Sulfide, Dissolved), 405.1 (Biological Oxygen Demand (BOD)), 375.4 (Sulfate (SO_4^{--})), 325.3 (Chloride Cl⁻), 160.1 (Solids, Total Dissolved (TDS)), 160.2 (Solids, Total Suspended (TSS)), 160.5 (Solids, Settleable (SS)), 9040B (pH), SM9221B (Total Coliform, MTF, 3X5 tubes), SM9221E (Fecal Coliform, MTF, 3X5 tubes), 353.3 (Nitrate (NO_3^-) as N Cd reduction), 354.1 (Nitrite (NO_2^-) as N), 218.6 (Chromium (VI)), 8270-SIM (1,4-Dioxane), ASTM-D2216 (Moisture, percent in soil),

3. Holding Time

All samples were extracted, digested and analyzed within the holding times defined by the appropriate EPA methods of the analyses.

4. Preservation

All samples were preserved and stored according to the appropriate EPA methods.

5. Tele-log

None

6. Anomaly

None

"I certify that these data are technically accurate, complete, and in compliance with the terms and conditions of the contract, for other than the conditions detailed above. Release of the data contained in the hardcopy data package and its electronic data deliverable submitted on diskette had been authorized by the Laboratory Manager or her/his designee, as verified by the following signature."

Respectfully submitted,

Regina Kirakozova VS Associate QA/QC Director Applied P & Ch Laboratory

5(ってん				SC	0TA 168	Enviro 35 W. B	nment ernardo	al Techno Drive, Sui	logy Inc. te 212							С	ha	ai	n of	С	Cu	stody
							San Die	ego, CA	92127-16	13						-		_	• •	02HV	V01	3	1
Environmenta	al Techniology, Inc		_		Tel:	(858	<u>3) 485-8</u>	<u>100</u>	Fax: (858) 485-0812	_					<u> </u>	eas	e P	nnt	n pen	<u> </u>	age	<u>_1_01_3_</u>
aboratory	Informatio	n:					Project	Inform	ation:			, , ,				Ana	lysi	s Ite	ems	.			
ab Name: A	Applied P & C	h Laboratory					Name: L	owers L	akes, HD FC	CB, LA, CA		8	814			010			μ	1 ⊋		<u>ج</u> ا_	
ddress: 137	760 Magnolia	Ave.					Proj. 0	2HW013	3		1	8	8		e	8 e	÷	ລ	21B	SS.		8.6 8.6	
ity: Chine	0	State: CA Zi	p: 9	01710			PM: Y	U ZENG	<u>_</u>		┨╔	Ē	EP		5	€₩	135	76	192			212	
ab Phone:	1-909-590-1	828 Quotatio	n#	: 			Sampler	: MES		·	ΤĘ	fes	es (ิล	8	A di	53.3	0	S)	5) p	କ୍ଳ	× III	Remarks
Field Sample ID No.	Sample	Description		Date Colle	Til ected	me d	Sample Matrix	Preser vative	# of Container	Type of Container	TPH-G (EPA 80	VOCs, Oxygens	Organo Pesticid	PCBs (EPA 808	TPH-d & m (EP)	Perchlorate (EP 13 Assorted Me	Nitrate/Nitrite (3	Dissolved Sulfic	BOD (405.1) Totat/Fecal Coll	Sulfate (375.4) Cl(325.3)TDS (100.2) SS(160.2)	NDMA (EPA 16	1,4-Dioxane (Ef Chromium (VI)	
G-SW-1			3/	26/03	0	730	Water	1	6	40-mL VOA	×	×		\Box				Π	Τ		\Box		
G-SW-1		·		T		T	Water	5	7	1-L Amber Glass	Т		×	×	x						x	x	MDMA (2 special bottles)
G-SW-1							Water	5	2	125-mL Poly	Τ	Π				x		Π				×	
G-SW-1				1			Water	5	2	500-mL Poly	Т	Π	Τ		Т	×	:			x	Π		Sample for metal Anal will be filtrated in the lab
G-SW-1							Water	3	1	500 mL Poly, pH<2		\square				-1-	×	Ħ		1	Ħ		-
G-SW-1							Water	4	1	500-mL pH>12		Ħ						X		1	Π		
G-SW-1							Water	5	1	500-mL Poly	1	\square				1		Π	x		П		
G-SW-1			-	<u>L</u>		•	Water	6	2	100 mL Sterilized Poly	1	\prod	+	\Box		4	-	Π	_ >		\square	X	416
G-SW/2		·····	3/1	1/42		30	Water		6		┽	╏╻╿		╉┥	-+	-	╋	╏╌┨	╈		╂╼┨		
G-SW-2		·····	7.	1	10	1	Water	5	6	1-L Amber Glass	+-	\uparrow	+	x	x	-	╋	+	+			x	
G-SW-2			1-		+		Water	5	2	125-mL Poly	╋	+	+			x	╋	+	╈	1	\mathbf{H}	x	
G-SW-2					+	+	Water	5	2	500-mL Poly	+-	╋	╈			-,		\mathbf{H}		×	Ħ		Sample for metal Anal will b
G-SW-2			┢──	1	╧	1	Water	3	1	500 mL Poly, pH<2	╈	++	+			╈	×	t-†			11		
G-SW-2					1-	1	Water	4	1	500-mL pH>12	╈		+			-†		X			Π		
G-SW-2	1		\square	 	1-	1	Water	5	1	500-mL Poly	↑	$\uparrow \uparrow$				-†	Τ		x		\Box		
G-SW-2		· · · · · · · · · · · · · · · · · · ·		L		F	Water	6	2	100 mL Sterilized Poly	T	\square		Т		-		Π)	۲ <u> </u>	\Box		
			1				1	1			T			Τ	Π		T	Π			Π		
C Requiremen	nt: 🗆 Regular D		MP	©Raw	Data	DExt	ended Raw	Data 🗆 C	LP DACE DA	FCEE DINEESA(E,C	or	D) []	Othe	er		(Plea	se si Tirit	pecif	/) 5 10e	Only		
imple Disposi	ai: LiDisposal b ons: Dintact D	Broken Cooler Se	eal: I	day	s afte	r recei roken	None		Sample Matrix	2 Waste Water 5 Av 3 Oil/Organic Liquid 6 Air	navs Jueor	011 15 				Pres ati	erv- ve 	2 H 3 H 4 N	NO₃ ₂SO₄ aOH	6 Oth 7 Not	er <u>N</u> Pres	a2S2C served	98{{
imperature: _	Degree	sC)															_						
	_																			5	- 4 - 7		• 1 •
elinquished	d by:	m	Da	ate/Tir	ne 🗄	3/26	103 14	417	Received b	y: Vanle				<u>.</u>						U	atei	lime	3/26/00 1420

-

50				SC	0 TA 168	Enviro 35 W. B	nment ernardo	al Techno Drive, Sui	ology Inc. ite 212							(CI	ha	ai	n of	C	2	J	stody
JU						San Die	ego, CA	92127-16	13											02HV	V01	13		
Environmental Tech	nology, Inc. 🚽	-		Tel:	(858	3) 4 <u>85-8</u>	100	Fax: (858	3) 485-0812				_			Ple	ase	e Pi	rint	in pen	P	°aç	je	<u>of</u>
Laboratory Info	ormation:			_		Project	Inform	nation:							Α	naly	ysis	s Ite	ems	3				
Lab Name: Applie	d P & Ch Laboratory					Name: L	owers L	akes, HD F(CB, LA, CA		8		11A	Т		ê		T	í	_ 	Π)		
Address: 13760 M	lagnolia Ave.					Proj. 0	2HW013	3		1	8		Se l			8	,		ļ	S 20.		SIM	(9.	
City: Chino	State: CA Z	Zip: 9	91710			PM: Y	J ZENG	i			ΕÞ		₹		Ē Į∓	Ē	354	9.7	6			20	218	
Lab Phone: 1-90	9-590-1828 Quotati	ion #	:			Sampler	: MES			5M)	l S		S S) à	3 6) sie	3.3	6	No.		5	A 82	PA	Remarks
Due Date: Field Sample ID No.	■ regular □ rush Sample Description	_day:	s Date Colle	Til Til	ne f	Sample Matrix	Preser vative	# of Container	Type of Container	TPH-G (EPA 801	VOCs, Oxygenat		Organo Pesticide	PCBS (EPA 8082 TPU 4 8 m /EDA	Perchlorate (EPA	13 Assorted Met	Nitrate/Nitrite (35	Dissolved Sulfide	BOD (405.1) Total/Eacat Colli	Sulfate (375.4) Ci(325.3)TDS (16 (160.2) SS(160.5)	NDMA (EPA 162	1,4-Dioxane (EP	Chromium (VI) (E	
BG-SW-3		3/	26/03	-	100	Water	1	6	40-mL VOA	x	x				Τ	Π			Т		Π			
BG-SW-3				15	130	Water	5	7	1-L Amber Glass	1			×	×	×	Π		Т	Т		x	x		MDMA (2 special bottles)
BG-SW-3					T	Water	5	2	125-mL Poly				T		×			T			Π		x	
BG-SW-3					T	Water	5	2	500-mL Poly		Π		Т	Т	Τ	x		Т	Т	×	Π			Sample for metal Anal will be filtrated in the lab
BG-SW-3				1-	1-	Water	3	1	500 mL Poly, pH<2	t				╋	┢		x	+	╈		Ħ			
BG-SW-3						Water	4	1	500-mL pH>12	t	\mathbf{T}	H	╈	╉	+			x	\uparrow					
BG-SW-3	······································	+ +		1		Water	5	1	500-mL Poly	1-			+	╈	╈		H	-	x	6				
BG-SW-3		╧	~ 7	1	L	Water	6	2	100 mL Sterilized Poly	1-		h	-†	╈					1,	×	g	4		
		·		1-		t		[t			╈	╈		t	\square		1	1	П			· · ·
BG-SW-QC1		3/	26/03	11	30	Water	1	6	40-mL VOA	x	x		+	1					╈		Π			
BG-SW-QC1			1		1	Water	5	6	1-L Amber Glass				x	×	×				╈		×	x		
BG-SW-QC1				1		Water	5	2	125-mL Poly	Γ		Π		T	×				T		Π		x	
BG-SW-QC1			T	1	Γ	Water	5	2	500-mL Poly	Γ						×	Π		Т	×	\square			Sample for metal Anal will be filtrated in the lab.
BG-SW-QC1				1		Water	3	1	500 mL Poly, pH<2	Γ		Π		T			x		Т		Π			
BG-SW-QC1						Water	4	1.	500-mL pH>12	Γ	T	П	T		Τ	T		x		1	Π			
BG-SW-QC1						Water	5	1	500-mL Poly		Γ	П		Т	Τ	T	Π		x		\square			
BG-SW-QC1				-	-	Water	6	2	100 mL Sterilized Poly	T			T	T			П			×				
				1			1	1		T	T	Π	\uparrow	T			Π		T		\square	-		
QC Requirement:	Regular DQA/QC Report D	IWIP	DRaw	Data	DExt	ended Raw	Data DC		FCEE DNEESA(E,C	or I	D) [JOti	ner_			_(P	leas	se s	peci	fy)				
Sample Disposal:	Disposal by Lab DHold for _ DIntact DBroken Cooler S	Seal:	day	s afte ⊡Bi	r rece oken	iving date.		Sample Matrix	1Drinking Water4 Soli2 Waste Water5 Aqu3 Oil/Organic Liquid6 Air	id/So Jeou	oil Is				F	Prese ative	rv- e	1HC 2 HN 3 H ₂ 4 Na	;i NO₃ ,SO₄ <u>ŧOH</u>	5 Ice 6 Oth 7 Not	Dniy er <u>N</u> Pres	la2S serv	20) ed	<u>B</u>
Temperature:	Degrees C		·····													_								
Relinquished by	". / M	Da	ite/Tin	ne	3/2	6/03 1	417	Received t	y: Karl											Da	ate/	Tir	ne	3/26/03 1420
Relinquished by:		Da	ite/Tin	ne		*		Received t	y:											Da	ate/	Tir	ne	 }
Air Bill Number.																								

SOTA Environmental Technology Inc. 1835 W. Bernardo Drive, Suite 213 San Diego, CA 20127-1613 Tel: (858) 485-8100 Fax: (858) 485-0812 Devoid 1 provided for the state of th																						
Terter construction Tert (158) 485-8100 Fax: (858) 485-8100 Project Information: Analysis terms Laboratory Information: Project Information: Analysis terms Analysis terms Lab Name: Applied P & Ch. Laboratory Name: Lowers Lakes, HD FCB, LA, CA Analysis terms Analysis terms City: Chino State: CA Zip: 91710 PM. YUZENG Edition Analysis terms Lab Name: Applied P & Ch. Laboratory Name: Lowers Lakes, HD FCB, LA, CA Image: Construction of the	50	DTA	0		SOTA 168	Enviror 35 W. Be San Die	nmenta ernardo go, CA	al Techno Drive, Sui 92127-161	blogy Inc. te 212 13				(a vo1:	in ³	0	f	Cu	istc	ody	' 2
Laboratory Information: Project Information: Analysis Items Laboratory Information: Analysis Items Laboratory Information: Analysis Items Laboratory Information: Analysis Items Laboratory Name: Lowers Laboratory Name: Lowers Laboratory Name: Description Date Time Sample Description Date Time Sample Preser No. TB-1 TELY BLANAX Yeldys Yeld	Environmen	ital Technology, Ind	c. 🐺 🌌		Fel: (858	<u>8) 485-81</u>	00	Fax: (858) 485-0812					Pleas	e Pi	rint	in pe	en	Pa	ge		<u> </u>
Lab Name: Lopoled P & Ch Laboratory Name: Lowers Lakes, HD CR, LA, CA is defended and the second	Laborato	ry Informat	tion:			Project	Inform	nation:					A	nalys	is It	ems	5					
Address: 13760 Magnolia Ave. Proj. 0214W013 \$\$ City: Chino State: CA Zip: 91710 PN: YUZENG \$\$ Lab Phone: 1:909-500-1828 Quotation #: Sample: NES \$\$ Due Date: = regular rush_days_hours \$\$ \$\$ \$\$ Field Sample ID Date Time Sample ID Collected # of Container Type of Container \$\$ No. Date Time Sample ID Date Time Sample ID	Lab Name:	Applied P &	Ch Laboratory			Name: L	owers L	akes, HD F	CB, LA, CA											1		
City: Chino State: CA Zip: 91710 PM: YUZENG Due Date: regular rush days hours Field Sample Description Date Time Collected Sample Preser Hof No. Date Time Collected Date Collected Date Time Collected Date Collected Da	Address: 1	3760 Magno	lia Ave.			Proj. 0	2HW01:	3		826										1		
Lab Phone: 1:309-530-1828 Quotation #: Sample: MES	City: Ch	ino	State: CA	Zip: 9171	0	PM: YI	J ZENG	·	·	4												
Due Date: • regular I nush days hours Field Sample Description Date Time Collected Africe Africe <td>Lab Phone</td> <td>: 1-909-590</td> <td>0-1828 Quota</td> <td>tion #:</td> <td></td> <td>Sampler</td> <td>MES</td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td>- <u></u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Lab Phone	: 1-909-590	0-1828 Quota	tion #:		Sampler	MES		· · · · · · · · · · · · · · · · · · ·	- <u></u>							1					
Field Sample ID No. Date Time Collected Sample Preser Matrix Preser Valve # of Container Type of Container Sample ID Sample ID Sample ID Remarks TB-1 TRNE BLANX 3/24/os OQ220 Water 1 2 40-mL VOA X 1 <td< td=""><td>Due Date:</td><td>■ regular</td><td>D rush days</td><td><u>hou</u></td><td><u>s</u></td><td>ł</td><td></td><td></td><td></td><td>ate</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Due Date:	■ regular	D rush days	<u>hou</u>	<u>s</u>	ł				ate												
TB-1 True Buance 3/24/35 0920 Water 1 2 40mL VOA X 1	Field Sample ID No.	Sample	Description	Date Colle	Time ected	Sample Matrix	Preser vative	# of Container	Type of Containe	VOCs, Oxygen											Rema	arks
And Controls Internet	тв-1	TRUP	BLOBALL	3/26/03	0920	Water	1	2	40-mL VOA	x	++	\top		++	+	\top	╈	1		+		
CRequirement: CRequirement:<				1-1	0100	<u> </u>		<u> </u>		\top			\vdash	+-†	+	+		+				
QC Requirement: DRegular DQAQC Report DWP DRaw Data DELP DAFCEE DMFCEE			<u> </u>									1-				+		+		1		
QC Requirement: DRegular DOA/QC Report DWP Date/Time Sample Matrix DOthing Mater 4 Solid/Soli Sample Conditions: Difference Sample Matrix Dothing Mater 4 Solid/Soli Sample Conditions: Difference Sample Matrix Dothing Mater 4 Solid/Soli Sample Conditions: Difference Sample Matrix Dothing Mater 4 Solid/Soli Sample Conditions: Difference Sample Matrix Dothing Mater 4 Solid/Soli Sample Conditions: Difference Sample Matrix Dothing Materix 4 Solid/Soli Sample Conditions: Difference Sample Matrix Dothing Materix 4 Solid/Soli Sample Conditions: Difference Sample Matrix Dothing Materix 4 Solid/Soli Sample Conditions: Difference Sample Matrix Dothing Materix 4 Solid/Soli Sample Conditions: Difference Sample Conditions: Difference Sample Matrix Dothing Materix 4 Solid/Soli Sample Conditions: Difference Sample Conditions: Difference Tirk Sample Conditions: Difference Sample Conditions: Date/Time 3 /26 /63 (4 2 D) Relinquished Drive Date/Time Received by: Date/Time	<u> </u>					<u>├</u>								++	┿			+		1		
CC Requirement: DRegular IDA/QC Report DWP DRaw Data DExtended Raw Data DCLP DACE DISposal DISp	├ ──				·	<u> </u>		[+	\vdash t			+-†	+-	+		+				
CR Requirement: DRegular DQAQC Report DWP DRaw Data DExtended Raw Data DCLP DACE DAFCEE DISposal Date Date Sample Disposal Date Time Sample Disposal Time Sample Disposal Time Sample Disposal Time Sample Disposal <	}									+	┞╴┞			++				+		<u> </u>		
Image: Sample Disposal by Lab Elhold fordays after receiving date. Sample Matrix 1Drinking WaterA Solid/SoliA Solid/S		<u> </u>					<u> </u>		:		┢┼╴			++	╉							
Arrowskie Arrowskie Arrowskie Arrowskie		[++		1-1)	Z				
QC Requirement: DRegular DQA/QC Report DWIP DRaw Data DCLP DACE DAFCEE DISPosal										+-				++	-	+	F	广			.	
And Provided Prov		t				t		{		+-	┢╋			11				+		1	·····	
QC Requirement: DRegular DQA/QC Report DWP DRaw Data DExtended Raw Data DCLP DACE DAFCEE DNEESA(E,C or D) DOther(Please specify) GC Requirement: DRegular DQA/QC Report DWP DRaw Data DExtended Raw Data DCLP DACE DAFCEE DNEESA(E,C or D) DOther(Please specify) Sample Disposal: DDisposal: DDisposal: Disposal:			· · · · · · · · · · · · · · · · · · ·								$\uparrow \uparrow$			+-+	+	+		╈				
Arrow Construction Arrow Construction Arrow Construction Arrow Construction Arrow Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td></td> <td><u> </u></td> <td><u> </u></td> <td></td> <td></td> <td>+-</td> <td>++</td> <td></td> <td></td> <td>+-+</td> <td></td> <td>$\uparrow \neg$</td> <td></td> <td>1</td> <td>·</td> <td></td> <td></td> <td></td>			· · · · · · · · · · · · · · · · · · ·			<u> </u>	<u> </u>			+-	++			+-+		$\uparrow \neg$		1	·			
QC Requirement: DRegular DQA/QC Report DWIP DRaw Data DExtended Raw Data DCLP DACE DATE/CEE DNEESA	┣───	1				<u>}</u>		}						++	╈	\dagger		1		1		
QC Requirement: DRegular DQA/QC Report DWIP DRaw Data DExtended Raw Data DCLP DACE DAFCEE DNEESA_(E,C or D) DOther(Please specify) Sample Disposal: DDisposal by Lab DHold fordays after receiving date. Sample Matrix 1Drinking Water 4 Solid/Soli 5 Aqueous 3 H ₂ SO, 7 Not Preserved Sample Conditions: DIntact Broken Cooler Seal: Dintact Broken Date/Time 3 /26 /03 1 4 2 b Relinquished by: Date/Time Received by: Date/Time Date/Time Air Bill Number:		<u> </u>	······			<u> </u>									╧	+ -		╈		1		
QC Requirement: DRegular DQA/QC Report DWP DRaw Data DExtended Raw Data DCLP DACE DAFCEE DNEESA(E,C or D) DOther(Please specify) Sample Disposal: DDisposal by Lab DHold for days after receiving date. Sample Matrix 1Drinking Water 4 Solid/Soli Preserv- 1HCl 5 G8 Only Sample Conditions: DIntact DBroken Cooler Seal: DIntact Broken DNone 3 Oli/Organic Liquid 6 Air 3 H ₂ SO, 7 Not Preserved Temperature:											╆╌┼╴		┝╼╋╸	+	+	+		╋				
QC Requirement: DRegular DQA/QC Report DWP Draw Data DExtended Raw Data DCLP DACE DAFCEE DINEESA(E,C or D) DOther(Please specify) Sample Disposal: DDisposal by Lab DHold fordays after receiving date. Sample Matrix 1Drinking Water 4 Solid/Soli 5 Aqueous 3 HySO, 7 Not Preserved Sample Conditions: DIntact Broken Cooler Seal: DIntact Broken None 3 Oli/Organic Liquid 6 Air 4 NaOH Temperature: Date/Time 3/26/03 / 4/17 Received by: Date/Time 3 / 26 / 03 1 4/2D Air Bill Number: Date/Time Received by: Date/Time Date/Time 3 / 26 / 03 1 4/2D			· · · · · · · · · · · · · · · · · · ·			<u>├</u> ───		<u> </u>			┢─┟							-	··· · ·	<u> </u>		
QC Requirement: IRegular IQA/QC Report IWIP IRaw Data IExtended Raw Data <						†		· · · · · · · · · · · · · · · · · · ·		-1-	┼─┼			·† †	+			╋		1		
QC Requirement: DRegular DQA/QC Report DWIP DRaw Data DExtended Raw Data DCLP DACE DAFCEE DNEESA(E, C or D) DOther(Please specify) Sample Disposal: DDisposal by Lab Hold fordays after receiving date. Sample Matrix 1Drinking Water 4 Solid/Soli Preserv- 1HCl 5 loe Only Sample Conditions: DIntact Broken Cooler Seal: DIntact Broken DNone 3 Oil/Organic Liquid 6 Air 4 NaOH Temperature:		<u> </u>	<u>.</u>					<u> </u>			┼┼		┝╶┼		╈			+-		<u> </u>		
Concernment: Dreegular DOAdic Report DWIP Draw Data Dextended Raw Data DCLP DACE DAFCEE DREESA_(E, C or D) Dotner(Please specify) Sample Disposal: DDisposal by Lab Hold fordays after receiving date. Sample Matrix 1Drinking Water 4 Solid/Soli 2 Waste Water 5 Aqueous 3 Oil/Organic Liquid 6 Air Preserv- 1HCl 5 Ice Only 6 Other Na2S208 Sample Conditions: DIntact Broken Cooler Seal: IIntact Broken Dooler Seal: IIntact Broken Ooler Seal: IIntact Broken Ooler Seal: IIntact Broken Not Preserved Temperature:					Dete		Daw Dat							<u></u>			(Dlag	_				
Sample Disposal: Disposal by Lab Hold fordays after receiving date. Sample Matrix 1Drinking Water 4 Solid/Soil ative 2 HNO3 6 Other_Na2S208 Sample Conditions: DIntact Broken Cooler Seal: DIntact Broken DNone 3 Oil/Organic Llquid 6 Air 4 NaOH Temperature:	we requirem		a LUAVUC Report		aw Data	LEXIGN060	Raw Dat		C LAFCEE LINEES	~ <u> </u>	(E,C	or D)		mer		11=1	(mea	45e 9	specity) Dniv		
Sample Conditions: Intact Broken Cooler Seal: Intact Broken Intact	Sample Disp	osal: Dispos	al by Lab OHold fo	r	_days after	receiving d	ate.	Sample Matrix	1Drinking Water 4	Solid/	Soil			ative	ei V-	2 H	NO ₃		6 Oth	er <u>Na2S2</u>	208	
Temperature: Degrees C Relinquished by: Date/Time 7 Date/Time 7 Date/Time 7 Date/Time 7 Date/Time 8 Date/Time 7 Date/Time 7 Date/Time 8 Date/Time 8 Date/Time 9 Date/Time	Sample Cond	litions: OIntac	t 🗆 Broken Coole	r Seal: Di	ntact 🗆 Bro	oken 🗆 Nor	e		3 Oil/Organic Liquid 6	Aqueo	Jus					3 H	2SO4		7 Not	Preserve	d	
Relinquished by: Date/Time 3/26/03 1417 Received by: Date/Time 3/26/03 1420 Relinquished by: Date/Time Received by: Date/Time Date/Time 0 Air Bill Number: Date/Time Received by: Date/Time Date/Time	Temperature	:Deg	greesC		····			. I						<u> </u>		<u>4 N</u>	<u>aQH</u>					
Relinquished by: Date/Time Received by: Date/Time	Relinquish	ed by:	m	Date/Tin	ne 3/7	6/03	1417	Received b	by: 12.11						Date	e/Tii	me		3/26	107	ī	422
Air Bill Number:	Relinquish	edday.		Date/Tin	ne			Received t							Date	e/Tii	me		<u>, 120</u>			
	Air Bill Nur	nber:											_								<u>_</u> *	

s: (909) 590-1828	Fax: (909) 590-1498 Sample Receiving Checklist
PCL Servic	eID: 2417 Client Name/Project: Sola Environental
Sample Arr Date/Time Custody Tr	ival Received <u>3/26/03 1420</u> Date/Time Opened <u>3/26/03 1420</u> By (name): <u>Paul Con</u> ansfer: Client Golden State UPS US Mail FedEx APCL Empl: _
2. Chain-of-Cu	istody (CoC)
With Sa Project I CoC/Do Discrepa	mples? Faxed? Client has Copy? Signed, dated? By: D? Analyses Clear? Hold Samples? # on Hold # Received cs Zip-Locked under lid? Compos.#: #Samples OK?
3. Shipping Co	ontainer/Cooler
Cooler L Temp °C	ised? # of 4 Cooled by: \Box Ice \Box Blue Ice \Box Dry Ice \Box None $2.1^{\circ}C$ $2.6^{\circ}C$ $3.1^{\circ}C$ $2.4^{\circ}C$ Cooler temperature measured from temp blank if present, otherwise measured from the cooler).
Cooler Cust	ody Seal? Absent Intact Tampered?
l. Sample Pre	servation
□pH <2 If Not, pH	$\Box pH > 12$ = Preserved by: \Box Client \Box APCL \Box Third Party
5. Holding-tin pH 24hr Cl ₂ ASA	The Requirements \square BACT 6/24hr \square Cr ^{VI} 24hr \square NO ₃ ⁻ 48hr \square BOD 48hr P \square Turbidity 48hr \square DO ASAP \square Fe(II) ASAP red? \square Client notified?
3. Sample Cor	Itainer Condition
Type: Labels:	Dicken Documented Number Image: Dicken Image: Dicken Image: Dicken Image: Dicken Image: Dicken Image: Dicken Image: Dicken Image: Dicken Image: Dicken
7. Turn Arour	AT: Sdap Std (7-10 days) Not Marked
3. Sample Ma	trix
Drinking	H2OOOther Liq Soil Wipe Polymer Air Other: H2OOSludge Filter Oil/Petro Paint W. Water Extract Unknow
Pre-Login C	heck List Completed & OK?
Received/C	? (if not, attach docs) Client Contact? (Name:)Date/Time: hecked by:Date: 26 Mar 2003 Time: 7:42 a.m.
mples must be anal	yzed for results to reflect total concentrations. Results generated outside required of holding times are considered minima

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Part 1: General Information

Sample Login: Check List

03-02417 (1288₋ 473) (4858100₋ 473) $_{03/26/03}$

	Company Information	Name:	SOTA Environmental
		Address:	16835 W. Bernardo Dr, Ste. 212 ,San Diego ,CA 92127
	Project Information	Project Description:	Lower Lakes
		Project #:	02HW013
	Billing Information	P.O. #:	
		Bill Address:	16835 W. Bernardo Dr, Ste. 212 ,San Diego ,CA 92127
		Lab Project ID:	
		Client Database #:	0
	Receiving Information	Who Received Sample?	Paul Kou
)		Receiving Date/Time:	03/26/03 1420
		COC No.	
	Shipping Information	Shipping Company	by Client
		Packing Information:	Cooler/Ice Chester
		Cooler Temperature:	2.1 2.6 3.1 2.4 °C
	Container Information	Container Provider:	Client
	Sampling Information	Sampling Person:	
		Sampling Company:	. Client
	Turn-Around-Time Opti	on:	Rush 5 working day(s)
	QC Option:		NEESA C
	Disposal Option:		Not specify

03-02417 Check List Login on 03/26/03 File: TMP012c.tex

Par	ct.	2:	Sample	Info	rmation

Seq.	Sample ID	Sample	APCL		Cont-	Preser-	Vol, ml	# of	Condition	Collected		Composite	TAT
#	(on COC)	Sub-ID	Sample ID	Matrix	tainer	vative	Am. g	Replica	G, L, B	mmddyy	Hold ?	Group	Days.
1	BG-SW-1,	VOC/Gas	03-02417-1-α	W	v	С	40	6	G	032603	N	0	7
	BG-SW-1	8015	03-02417-1- eta	W	G		1000	2	G	032603	Ν	0	7
	BG-SW-1	8081	03-02417-1- γ	W	G		1000	2	G	032603	N	0	7
	BG-SW-1	8082	03-02417-1- δ	W	G		1000	2	G	032603	N	. 0	7
	BG-SW-1	Dioxane	03-02417-1- ζ	W	G		1000	1	G	032603	N	0	7
	BG-SW-1	Perchl	$03-02417-1-\eta$	W	Р		125	1	G	032603	N	0	7
	BG-SW-1	CR VI	03-02417-1- heta	W	Р		125	1	G	032603	Ν	· 0	7
	BG-SW-1	Metal	03-02417-1- <i>i</i>	W	Ρ	N	500	1	G	032603	N	0	7
	BG-SW-1	NO3/NO2	$03-02417-1-\kappa$	W	Ρ	S	500	1	G	032603	Ν	0	7
	BG-SW-1	DSulfd	03-02417-1- μ	W	Ρ	В	500	1	G	032603	N	0	7 🗖
	BG-SW-1	BOD	$03-02417-1-\nu$. W .	P		500	1	G	032603	N	0	7
	BG-SW-1	PH/SS	03-02417-1- ξ	W	Р		1000	1	G	032603	N	0	7
	BG-SW-1	Colif	03-02417 -1- π	W	Р	Т	120	2	G	032603	N	0	7
2	BG-SW-21	VOC/Gas	$03-02417-2-\alpha$	W	v	C	40	6	G	032603	N	0	7
	BG-SW-2	8015	03-02417-2- $meta$	W	G		1000	2	G	032603	N	0	7
	BG-SW-2	8081	03-02417-2- γ	W	G		1000	2	G	032603	N	0	7
	BG-SW-2	8082	03-02417-2-δ	W	G		1000	2	G	032603	N	0	7
	BG-SW-2	Dioxane	03-02417-2- ζ	W	G		1000	1	G	032603	N	0	7
	BG-SW-2	Perchl	03-02417-2- η	W	Ρ		125	1	G	032603	Ν	0	7
	BG-SW-2	CR VI	03-02417-2- θ	W	Ρ	· .	125	1	G	032603	N	0	7
	BG-SW-2	Metal	03-02417-2-1	W	Ρ.	N	500	1	G	032603	Ν	0	7
	BG-SW-2	NO3/NO2	03-02417-2- <i>ĸ</i>	W	Ρ	S	500	1	G	032603	N	0	7
	BG-SW-2	DSulfd	03-02417-2-μ	W	Р	В	500	1	G	032603	N	0	7
	BG-SW-2	BOD	$03-02417-2-\nu$	W	Р		500	1	G	032603	N	0	7 🗖
	BG-SW-2	PH/SS	03-02417-2- ξ	Ŵ	Ρ		1000	1	G	032603	Ν	0	7
	BG-SW-2	Colif	03-02417-2- π	W	Р	т	120	2	G	032603	Ν	0	7
3	BG-SW-3/	VOC/Gas	03-02417-3-α	W	v	С	40	6	G	032603	N	0	7
	BG-SW-3	8015	03-02417-3- eta	W	G		1000	2	G	032603	Ν	0	7
	BG-SW-3	8081	03-02417-3- γ	W	G		1000	2	G	032603	Ν	0	7
	BG-SW-3	8082	03-02417-3-δ	W	G		1000	2	G	032603	N	0	7
	BG-SW-3	Dioxane	03-02417-3- ζ	W	G		1000	1	G	032603	Ν	0	7
	BG-SW-3	Perchl	$03-02417-3-\eta$	W	Р		125	1	G	032603	Ν	0	7
	BG-SW-3	CR VI	03-02417-3- θ	W	Р		125	1	G	032603	Ν	0	7
	BG-SW-3	Metal	03-02417-3- <i>i</i>	W	Р	N	500	1	G	032603	Ν	0	7
	BG-SW-3	NO3/NO2	03-02417-3-κ	W	Ρ	S	500	1	G	032603	Ν	0	7
•	BG-SW-3	DSulfd	03-02417-3- μ	W	Р	В	500	1	G	032603	Ν	0	7
	BG-SW-3	BOD	$03-02417-3-\nu$	W	Р		500	1	G	032603	Ν	0	7
	BG-SW-3	PH/SS	03-02417-3-ξ	W	P		1000	1	G	032603	N	0	7
	BG-SW-3	Colif	03-02417-3-π	w	Ρ	Т	120	2	G	032603	Ν	0	7
4	BG-SW-QC1	/ VOC/Gas	03-02417-4-α	W	v	C.	40	6	G	032603	N	0	7
	BG-SW-QC1	8015	03-02417-4-β	w	G	-	1000	2	G	032603	N	0	7 🗖
	BG-SW-QCI	8081	$03-02417-4-\gamma$	W	G		1000	2	G	032603	Ν	0	7
	-		,										

	1													•
	BG-SW-QC1	8082	03-02417-4-δ	w	G		1000	2	G	032603	N	0	7.	
	BG-SW-QC1	Dioxane	03-02417-4- ζ	W	G		1000	1	G	032603	N	0	7	
	BG-SW-QC1	Perchl	03-02417-4-η	W	Р		125	1	G	032603	N	0	7	
	BG-SW-QC1	CR VI	03-02417 - 4-θ	W .	Ρ		125	1	G	032603	N	0	7	
	BG-SW-QC1	Metal	03-02417-4- <i>i</i>	W	Р	Ν	500	1	G	032603	N	0	7	
	BG-SW-QC1	NO3/NO2	03-02417-4- <i>ĸ</i>	w	Р	S	500	1	G	032603	N	0	7	
	BG-SW-QC1	DSulfd	03-02417-4- μ	W	Р	в	500	1	G	032603	Ν	0	7	
	BG-SW-QC1	BOD	$03-02417-4-\nu$	W	Ρ		500	1	G	032603	Ν	0	7	
	BG-SW-QC1	PH/SS	03-02417-4-ξ	w	Р		1000	1	G	032603	N	0	7	
	BG-SW-QC1	Colif	$03-02417-4-\pi$	W	Р	Т	120	2	G	032603	Ν	0	7	
5	TB-1	voc	03-02417-5	W	v	С	40	2	G	032603	N	0	7	

Part 3: Analysis Information

Test Items:	□ 8260B	Volatile organics
	□ M8015V/M80150	GGasoline
	□ M8015E/M8015I	TPH: Diesel
	□ M8015E/M8015M	MTPH: Motor Oil
	□ 8081A	Organochlorine pesticides
	□ 8082	PCBs
	□ 314.0/300.0	Perchlorate, low level
	🗖 6010B/7000A	Priority Pollutant Metals (CWA) (13)
	🗖 376.1/9030B	Sulfide, Dissolved
	405.1	Biological Oxygen Demand (BOD)
	□ 375.4/9038	Sulfate $(SO_4^{})$
	🗖 325.8/9252A	Chloride Cl-
	□ 160.1	Solids, Total Dissolved (TDS)
	□ 160.2	Solids, Total Suspended (TSS)
·	□ 160.5	Solids, Settleable (SS)
	🗖 9040B/150.1	pH
	🗖 SM9221B/9131	Total Coliform, MTF, 3X5 tubes
	□ SM9221E	Fecal Coliform, MTF, 3X5 tubes
	□ <i>353.3</i>	Nitrate (NO $_3^-$) as N Cd reduction
	□ 354.1	Nitrite (NO_2^-) as N
	218.6/7199	Chromium (VI)
	🗖 8270-SIM	1,4-Dioxane
	□ ASTM-D2216	Moisture, percent in soil

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to: SOTA Environmental Attention: Yu Zeng 16835 W. Bernardo Dr, Ste. 212 San Diego, CA 92127 Tel: (858)485-8100 Fax: (858)485-0812

Analysis of Soil

APCL QA/QC Report

Service ID #: 801-026564 R Collected by: MES/DM Te Collected on: 12/11/02 R Sample description: Soil Project: Lowers Lakes /02HW013

Received: 12/12/02 Tested: 12/12-19/02 Reported: 01/09/03

801-026564QC

	Analysis	CCV	CCV	M-Blank	Conc.	SP Level	LCS	MS	MSD	MS/MSD	Contro	l Limit
Component Name	Batch #	(mg/L)	%Rec		Unit		%Rec	%Rec	%Rec	%RPD	%Rec	%Diff
WET Analysis in Soil												
Perchlorate	02W5654	0.05	111	N.D.	mg/kg	0.25	106	92	90	2	75-125	20
	<u> </u>						1					
,	Analysis	ICV	ICV	M-Blank	Conc.	SP Level	LCS	MS	MSD	MS/MSD	Contro	ol Limit
Component Name	Batch #	(mg/L)	%Rec		Unit		%Rec	%Rec	%Rec	%RPD	%Rec	%Diff
METAL Analysis in Wa	ter											
Arsenic	02M2467	1.00	100	N.D.	mg/L	0.500	103	97	96	1	75-125	20
Barium	02M2467	10.0	99	N.D.	mg/L	4.00	105	105*	103*	2	80-120	20
Cadmium	02M2467	2.00	99	N.D.	mg/L	0.250	105	97	95	2	75-125	20
Chromium	02M2467	1.00	99	N.D.	mg/L	1.00	98	83	84	1	75-125	20
Lead	02M2467	1.00	99	N.D.	mg/L	3.00	106	85	85	1	75-125	20
Selenium	02M2467	1.00	99	N.D.	mg/L	0.500	100	92	94	1	75-125	20
Silver	02M2467	2.00	100	N.D.	mg/L	1.00	98	91	91	0	75-125	20
Mercury	02M2460	0.0075	92	N.D.	mg/L	0.0050	96	107	107	0,	75-125	20
	Analysis	ccv	ccv	M-Blank	Conc.	SP Level	LCS	MS	MSD	MS/MSD	Contrc	l Limit
Component Name	Batch #	$(\mu g/L)$	%Rec		Unit		%Rec	%Rec	%Rec	%RPD	%Rec	%Diff
Gasoline												
Gasoline	02G4973	1000	101	N.D.	mg/L	0.810	106	109	114	4	65-134	35

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL QA/QC Report

	Analysis	ICV	ICV	M-Blank	Conc.	SP Level	LCS	MS	MSD	MS/MSD	Contro	l Limit
Component Name	Batch #	(mg/L)	%Rec		Unit		%Rec	%Rec	%Rec	%RPD	%Rec	%Diff
METAL Analysis in Soil									*			
Mercury	02M2462	0.0075	92	N.D.	mg/kg	0.834	110	110	108	2	75-125	20
Antimony	02M2468	4.00	100	N.D.	mg/kg	25.0	105	94	94	0	75-125	20
Arsenic	02M2468	1.00	99	N.D.	mg/kg	25.0	105	98	99	1	75-125	20
Beryllium	02M2468	1.00	101	N.D.	mg/kg	10.0	104	94	93	1	75-125	20
Cadmium	02M2468	2.00	100	N.D.	mg/kg	12.5	106	102	102	0	75-125	20
Chromium	02M2468	1.00	100	N.D.	mg/kg	50.0	107	101	100	1	75-125	20
Copper	02M2468	4.00	101`	N.D.	mg/kg	50.0	102	102	101	1	75-125	20
Lead	02M2468	1.00	99	N.D.	mg/kg	150	110	103	103	0	75-125	20
Nickel	02M2468	4.00	100	N.D.	mg/kg	50.0	107	101	100	1	75-125	20
Selenium	02M2468	1.00	99	N.D.	mg/kg	25.0	105	101	100	1	75-125	20
Silver	02M2468	2.00	101	N.D.	mg/kg	50.0	105	104	103	1	75-125	20
Thallium	02M2468	1.00	99	N.D.	mg/kg	25.0	113	102	100	2	75-125	20
Zinc	02M2468	4.00	100	N.D.	mg/kg	25.0	108	102	100	1	75-125	20
	Analysis	ccv	ccv	M-Blank	Conc.	SP Level	LCS	MS	MSD	MS/MSD	Contro	l Limit
Component Name	Batch $#$	(mg/L)	%Rec		Unit		%Rec	%Rec	%Rec	%RPD	%Rec	%Diff
TPH: Diesel												
Diesel	02G4992	1000	96	N.D.	mg/kg	50.0	101	83	82	1	40-138	49
Motor oil/Lubricate oil	02G4992	1000	106	N.D.	mg/kg	-	-	-	-	-	-	-
· · · · · · · · · · · · · · · · · · ·		_										
·	Analysis	CCV	CCV	M-Blank	Conc.	SP Level	LCS	MS	MSD	MS/MSD	Contro	l Limit
Component Name	Batch $\#$	$(\mu_{\rm g}/{ m L}$)	%Rec		Unit		%Rec	%Rec	%Rec	%RPD	%Rec	%Diff
Volatile organics								<u></u>		1	•	
Vinyl chloride	02G4995	50.0	85	N.D.	$\mu g/kg$	-	-	- '	-	-	-	-
1,1-Dichloroethene	02G4995	50.0	90	N.D.	$\mu g/kg$	50.0	86	87	90	4	65-134	35
Chloroform	02G4995	50.0	86	N.D.	$\mu g/kg$	-	-	-	-	-	-	-
Benzene	02G4995	50.0	91	N.D.	$_{\mu}\mathrm{g/kg}$	50.0	86	86	87	2	70-127	29
1,2-Dichloropropane	02G4995	50.0	91	N.D.	$_{\mu}{ m g/kg}$	-	-	-	-	-	-	-
Trichloroethene	02G4995	50.0	93	N.D.	$_{\mu}\mathrm{g/kg}$	50.0	88	86	. 87	1	65-134	34
Toluene	02G4995	50.0	92	N.D.	$\mu g/kg$	50.0	89	88	88	1	78-119	20
Chlorobenzene	02G4995	50.0	93	N.D.	$_{\mu}\mathrm{g/kg}$	50.0	91	88	89	1	71-126	28
Ethylbenzene	02G4995	50.0	86	N.D.	$_{\mu}\mathrm{g/kg}$	-	-	-	-	-	-	-

CADHS ELAP No: 1431 APCL QA/QC Report: 801-026564 01/09/03

Applied P & Ch Laboratory 13760 Magnolia Ave. Chino CA 91710

Tel: (909) 590-1828 Fax: (909) 590-1498

APCL QA/QC Report

· · · · · · · · · · · · · · · · · · ·	Analysis	ccv	ccv	M-Blank	Conc.	SP Level	LCS	MS	MSD	MS/MSD	Contro	Limit
Component Name	Batch #	$(\mu_{g}/L$)	%Rec		Unit		%Rec	%Rec	%Rec	%RPD	%Rec	%Diff
Volatile organics	· ·	•			5. 9.							
Vinyl chloride	02G5044	50.0	97	N.D.	$_{\mu}\mathrm{g/kg}$	-	-	-	-	-	-	-
1,1-Dichloroethene	02G5044	50.0	96	N.D.	$\mu g/kg$	50.0	96	98	94	3	65-134	35
Chloroform	02G5044	50.0	81	N.D.	$\mu g/kg$	-	-	-	-	-	-	-
Benzene	02G5044	50.0	91	N.D.	$\mu g/kg$	50.0	92	93	93	0	70-127	29
1,2-Dichloropropane	02G5044	50.0	96	N.D.	$\mu g/kg$	-	-	-	-	-	-	-
Trichloroethene	02G5044	50.0	87	N.D.	$\mu g/kg$	50.0	89	91	90	1	65-134	34
Toluene	02G5044	50.0	94	N.D.	$\mu g/kg$	50.0	92	94	94	0	78-119	20
Chlorobenzene	02G5044	50.0	96	N.D.	$\mu g/kg$	50.0	96	99	98	0	71-126	28
Ethylbenzene	02G5044	50.0	81	N.D.	μg/kg	-	-		-	-	-	-
· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·						
. :	Analysis	ccv	ccv	M-Blank	Conc.	SP Level	LCS	MS	MSD	MS/MSD	Contro	l Limit
Component Name	Batch #	$(\mu_{\rm g}/{ m L})$	%Rec		Unit		%Rec	%Rec	%Rec	%RPD	%Rec	%Diff
Organochlorine pesticie	des				<u></u>							
a-bhc	02G5068	50.0	96.	N.D.	µg/kg	-	-	-	-	-	-	-
γ -BHC (Lindane)	02G5068	50.0	98	N.D.	$\mu g/kg$	16.7	99	85	88	4	59-11 1	26
<i>β</i> -внс	02G5068	50.0	114	N.D.	$\mu g/kg$	-	-	-	-	-	-	-
Heptachlor	02G5068	50.0	102	N.D.	μg/kg	16.7	84	75	80	6	40-133	47
δ-внс	02G5068	50.0	104	N.D.	$\mu g/kg$	-	-	-	-	-	-	-
Aldrin	02G5068	50.0	109	N.D.	$\mu g/kg$	16.7	105	90	96	6	58-113	28
Heptachlor epoxide	02G5068	50.0	104	N.D.	µg/kg	-	-	-	-	-	-	-
Endosulfan I	02G5068	50.0	101	N.D.	$\mu g/kg$	-	-	-	-	-	-	-
4,4'-DDE	02G5068	50.0	99	N.D.	$\mu g/kg$	-	-		-	-	-	-
Dieldrin	02G5068	50.0	104	N.D.	$\mu g/kg$	16.7	96	84	89	6	40-135	47
Endrin	02G5068	50.0	103	N.D.	$\mu g/kg$	16.7	85	83	88	5	40-139	50
4.4'-DDD	02G5068	50.0	104	N.D.	$\mu g/kg$	-	-	-	-	-	-	-
Endosulfan II	02G5068	50.0	108	N.D.	$\mu g/kg$	-	-	-	-	-	-	-
4,4'-DDT	02G5068	50.0	105	N.D.	$\mu g/kg$	16.7	87	80	84	4	40-139	50
Endrin aldehyde	02G5068	50.0	107	N.D.	ug/kg	-	-	-	-	-	-	-
Endosulfan sulfate	02G5068	50.0	109	N.D.	$\mu g/kg$	-	-	-	-	-	-	-
Methoxychlor	02G5068	50.0	100	N.D.	μg/kg	-	-	-		- '	· –	-
	Analysis	ccv	CCV	M-Blank	Conc.	SP Level	LCS	MS	MSD	MS/MSD	Contro	l Limit
Component Name	Batch #	(μ_g/L)) %Rec		Unit		%Rec	%Rec	%Rec	%RPD	%Rec	%Diff
PCBs												
Aroclor-1016 (PCB-101	16) 02G5067	1000	104	N.D.	$\mu g/kg$	167	92	84	83	1	40-139	49

1000

96

N.D.

 $\mu g/kg$

167

86

84

84

0

42-137

Aroclor-1260 (PCB-1260) 02G5067

47

13760 Magnolia Ave. Chino CA 91710

Tel: (909) 590-1828 Fax: (909) 590-1498

*: LCS/LCSD is used.

Notation: ICV - Initial Calibration Verification CCV - Continuation Calibration Verification LCS - Lab Control Spike MSD - Matrix Spike MSD - Matrix Spike Duplicate ICS - Interference Check Standard MD - Matrix Duplicate N.D. - Not detected or less than PQL

APCL QA/QC Report

CCB - Continuation Calibration Blank M-blank - Method Blank SP Level - Spike Level %Rec - Recovery Percent %RPD - Relative Percent Differences %Diff - Control Limit for %RPD ICP-SD - ICP Serial Dilution N.A. - Not Applicable

Respectfully submitted,

Regina Kirakozova, V S Associate QA/QC Director Applied P & Ch Laboratory

CADHS ELAP No: 1431 APCL QA/QC Report: 801-026564 01/09/03

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to: SOTA Environmental Attention: Yu Zeng 16835 W. Bernardo Dr, Ste. 212 San Diego, CA 92127 Tel: (858)485-8100 Fax: (858)485-0812

Analysis of Water

APCL QA/QC Report

Service ID #: 801-026571 Re Collected by: MES/DM. Te Collected on: 12/11/02 Re Sample description: Water Project: Lowers lakes /02HW013

Received: 12/12/02 Tested: 12/12-20/02 Reported: 01/13/03

801-026571QC

		Analysis	ccv	ccv	M-Blank	Conc.	SP Level	LCS	MS	MSD	MS/MSI) Contro	l Limit
Component Name		Batch #	(mg/L)	%Rec		Unit		%Rec	%Rec	%Rec	%RPD	%Rec	%Diff
WET Analysis in Water													
Biological Oxygen Demar	nd (BOD)	02W5589	-	-	N.D.	$mg-O_2/L$	198	102	102*	-	-	80-120	-
Chloride Cl by Titratio	n	02W5751	-	-	N.D.	mg/L	50.0	103	92	93	1	90-110	10
Nitrate and Nitrite, as N		02W5611	0.250	100	N.D.	mg/L	1.00	87	86	87	1	75-125	20
Nitrite as $N-NO_2^-$, by Co	lor.	0 2W 5610	0.150	99	N.D.	mg/L	0.150	94	108	106	2	75-124	25
Solids, Total Dissolved (7	DS)	02W5607	-	-	N.D.	mg/L	400	98	99	99	0	80-119	20
Sulfate $SO_4^{}$, Turbimet	ric	02W5618	20.0	93	N.D.	mg/L	100	93	93*	92*	1	80-119	20
Sulfide, Total		02W5619	0.400	101	N.D.	mg/L	0.400	104	85	84	1	75-125	20
Perchlorate		02W5637	0.05	100	N.D.	mg/L	0.05	105	90	89	1	75-125	20
					· .								
· · · · · · · · · · · · · · · · · · ·	Analysis	ICV	ICV	M-Bl	ank Co	nc. SP Le	vel LCS	MS	MS	DМ	S/MSD	Control	Limit
Component Name	Batch #	(mg/L)	%Rec		Ur	nit	%Rec	%Red	: %R	ec 9	%RPD	%Rec	%Diff
METAL Analysis in Wat	ter							·					
Antimony	02M2466	4.00	98	N.E	o. mg	/L 0.50	0 98	92	91		0	75-125	20
Arsenic	02M2466	1.00	100	N.E	o. mg	/L 0.50	0 101	97	98		1	75-125	20
Beryllium	02M2466	1.00	99	N.E	o. mg	/L 0.20	0 100	86	87	,	1	75-125	20
Cadmium	02M2466	2.00	99	N.I	o. mg	/L 0.25	0 104	97	95	i	3	75-125	20
Chromium	02M2466	1.00	99	N.E	. mg	/L 1.00	103	90	88		2	75-125	20
Copper	02 M2 466	4.00	100	N.E	o. mg	/L 1.00	102	100	97	,	3	75-125	20
Lead	02M2466	1.00	99	N.I	o. mg	/L 3.00	107	89	87		2	75-125	20
Nickel	02M2466	4.00	99	N.E	o. mg	/L 1.00	105	88	86	;	2	75-125	20
Selenium	02M2466	1.00	99	N.I	o. mg	/L 0.50	0 101	97	97		0	75-125	20
Silver	02M2466	2.00	100	N.I	o. mg	/L 1.00	102	98	. 96		3	75-125	20
Thallium	02M2466	1.00	98	N.E	o. mg	/L 0.50	0 105	83	82	;	1	75-125	20
Zinc	02M2466	4.00	99	N.I	o. mg	/L 0.50	0 108	87	85	5	3	75-125	20
Mercury	02M2460	0.0075	92	N.E	o. mg	/L 0.005	0 96	107	10	7	0	75-125	20

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498 APCL QA/QC Report

Component Name	Analysis Batch #	CCV (µg/L)	CCV %Rec	M-Blank	Conc. Unit	SP Level	LCS %Rec	MS %Rec	MSD %Rec	MS/MSD %RPD	Contro %Rec	l Limit %Diff
Gasoline												
Gasoline	02G5005	1000	105	N.D.	mg/L	1.00	102	110	107	3	65-134	35
	Analysis	ccv	ccv	M-Blank	Conc.	SP Level	LCS	MS	MSD	MS/MSD	Contro	l Limit
Component Name	Batch #	$(\mu_{g}/L$)	%Rec		Unit		%Rec	%Rec	%Rec	%RPD	%Rec	%Diff
Volatile organics					- ·							
Vinyl chloride	02G5018	50.0	95	N.D.	$_{\mu}\mathrm{g/L}$	-	-	-	-	-	-	-
1,1-Dichloroethene	02G5018	50.0	93	N.D.	$_{\mu}g/L$	50.0	100	102	101	1	65-127	31
Chloroform	02G5018	50.0	91	N.D.	$_{\mu}g/L$	· –	-	-	-	-	-	. –
Benzene	02G5018	50.0	94	N.D.	$_{\mu}\mathrm{g/L}$	50.0	96	98	98	0	65-121	28
1,2-Dichloropropane	02G5018	50.0	93	N.D.	$_{\mu}\mathrm{g/L}$	-	-	-	-	-	-	
Trichloroethene	02G5018	50.0	96	N.D.	$_{\mu}g/L$	50.0	98	100	99	1	65-125	30
Toluene	02G5018	50.0	90	N.D.	$_{\mu}\mathrm{g/L}$	50.0	91	93	94	1	65-134	35
Chlorobenzene	02G5018	50.0	95	N.D.	$_{\mu}g/L$	50.0	97	98	99	0	65-134	35
Ethylbenzene	02G5018	50.0	85	N.D.	$_{\mu}g/L$	-	-	-	-	-	-	-

CADHS ELAP No: 1431 APCL QA/QC Report: 801-026571 01/13/03

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL QA/QC Report

	Analysis	ccv	CCV	M-Blank	Conc.	SP Level	LCS	MS	MSD	MS/MSD	Control Limit	
Component Name	Batch #	$(\mu g/L)$	%Rec		Unit		%Rec	%Rec	%Rec	%RPD	%Rec	%Diff
Organochlorine pesticides												
a-bhc	02G5002	50.0	96	N.D.	$_{\mu}\mathrm{g/L}$	-	-	-	-	-	-	-
$\gamma ext{-BHC}$ (Lindane)	02G5002	50.0	103	N.D.	$\mu g/L$	0.500	82	82*	83*	1	52-114	40
eta-внс	02G5002	50.0	114	N.D.	$\mu g/L$	-	-	-	-	-	-	-
Heptachlor	02G5002	50.0	102	N.D.	$_{\mu}\mathrm{g/L}$	0.500	79	79*	80*	2	54-125	39
δ-внс	02G5002	50.0	101	N.D.	$\mu g/L$	-		-	-	-	· _	-
Aldrin	02G5002	50.0	109	N.D.	$_{\mu}\mathrm{g/L}$	0.500	85	85*	86*	1	51-126	41
Heptachlor epoxide	02G5002	50.0	106	· N.D.	$_{\mu}\mathrm{g/L}$	-	-	-	-	-	-	-
Endosulfan I	02G5002	50.0	109	N.D.	$_{\mu}{ m g/L}$	-	-	-	-	-	-	-`
4,4'-DDE	02G5002	50.0	102	N.D.	$_{\mu}g/L$	-	-	-	-	-	-	_`
Dieldrin	02G5002	50.0	105	N.D.	$_{\mu}\mathrm{g/L}$	0.500	81	81*	82*	1	50-120	41
Endrin	02G5002	50.0	97	N.D.	$_{\mu}g/L$	0.500	73	73*	74*	1	53-126	49
4,4'-DDD	02G5002	50.0	101	N.D.	$_{\mu}{ m g/L}$	-	-	-	-	-	-	-
Endosulfan II	02G5002	50.0	109	N.D.	$_{\mu}{ m g/L}$	-	-	-	-	-	-	-
4,4'-DDT	02G5002	50.0	100	N.D.	$_{\mu}g/L$	0.490	78	78*	80*	2	51-129	46
Endrin aldehyde	02G5002	50.0	108	N.D.	$_{\mu}{ m g/L}$	-	-	-	-	-	-	-
Endosulfan sulfate	02G5002	50.0	102	N.D.	$_{\mu}g/L$	-	-	-	-	· _	-	-
Methoxychlor	02G5002	50.0	100	N.D.	$_{\mu}g/L$	-	-	-	-	- '	-	-
Aroclor-1016 (PCB-1016)	02G5002	1000	101	N.D.	$_{\mu}g/L$	-	-	-	-	-	· _	-
Aroclor-1260 (PCB-1260)	02G5002	1000	94	N.D.	$_{\mu}g/L$	-	-	-	-	-	-	-
······································												
	Analysis	CCV	CCV	M-Blank	Conc.	SP Level	LCS	MS	MSD	MS/MSD	Contro	l Limit
Component Name	Batch #	$(\mu_{g/L})$	%Rec		Unit		%Rec	%Rec	%Rec	%RPD	%Rec	%Diff
PCBs												
Aroclor-1016 (PCB-1016)	02G5016	1000	114	N.D.	$\mu g/L$	5.00	89 [°]	89*	91*	2	55-123	50
Aroclor-1260 (PCB-1260)	02G5016	1000	99	N.D.	$\mu g/L$	5.00	79	79*	82*	4	55-122	.50
										·····		
	Analysis	ccv	ccv	M-Blank	Conc.	SP Level	LCS	MS	MSD	MS/MSD	Contro	l Limit
Component Name	Batch #	(mg/L)	%Rec	`	Unit		%Rec	%Rec	%Rec	%RPD	%Rec	%Diff
TPH: Diesel												
Diesel	02G5011	1000	102	N.D.	mg/L	1.00	78	67	76	12	40-138	49
Motor oil/Lubricate oil	02G5011	1000	90 ·	N.D.	mg/L	- ,	-	~	-	-	-	-

CADHS ELAP No: 1431
13760 Magnolia Ave. Chino CA 91710

Tel: (909) 590-1828 Fax: (909) 590-1498

*: LCS/LCSD is used.

Notation: ICV – Initial Calibration Verification CCV – Continuation Calibration Verification LCS – Lab Control Spike MS – Matrix Spike

- MSD Matrix Spike Duplicate
- ICS Interference Check Standard
- MD Matrix Duplicate

N.D. - Not detected or less than PQL

APCL QA/QC Report

CCB - Continuation Calibration Blank M-blank - Method Blank SP Level - Spike Level %Rec - Recovery Percent %RPD - Relative Percent Differences %Diff - Control Limit for %RPD ICP-SD - ICP Serial Dilution N.A. - Not Applicable

Respectfully submitted,

Regina Kirakozova, **V** > Associate QA/QC Director Applied P & Ch Laboratory

CADHS ELAP No: 1431

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to: SOTA Environmental Attention: Yu Zeng 16835 W. Bernardo Dr, Ste. 212 San Diego, CA 92127 Tel: (858)485-8100 Fax: (858)485-0812

Analysis of Soil

APCL QA/QC Report

Service ID #: 801-026533 R. Collected by: MES/DM Te Collected on: 12/10/02 R. Sample description: Soil Project: Lowers Lakes /02HW013

Received: 12/10/02 Tested: 12/11-17/02 Reported: 01/09/03

801-026533QC

	Analysis	ccv	CCV	M-Blank	Conc.	SP Level	LCS	MS	MSD	MS/MSD	Contro	l Limit
Component Name	Batch #	(mg/L)	%Rec		Unit		%Rec	%Rec	%Rec	%RPD	%Rec	%Diff
WET Analysis in Soil	•					•						
Perchlorate	02W5654	0.05	111	N.D.	mg/kg	0.25	106	92	90	2	75-125	20
	••••											
<u> </u>	Analysis	ICV	ICV	M-Blank	Conc.	SP Level	LCS	MS	MSD	MS/MSD	Contro	l Limit
Component Name	Batch #	(mg/L)	%Rec		Unit		%Rec	%Rec	%Rec	%RPD	%Rec	%Diff
METAL Analysis in Wa	iter											
Mercury	02M2454	0.0075	101	N.D.	mg/L	0.0050	100	98	98	0	75-125	20
Arsenic	02 M2452	1.00	101	N.D.	mg/L	0.500	105	106	106	0	75-125	20
Barium	02M2452	10.0	100	N.D.	mg/L	4.00	110	107	107	0	75-125	20
Cadmium	02M2452	2.00	98	N.D.	mg/L	0.250	106	104	104	0	75-125	20
Chromium	02M2452	1.00	98	N.D.	mg/L	1.00	105	102	102	0	75-125	20
Copper	02M2452	4.00	98	N.D.	mg/L	1.00	102	95	96	0	75-125	20
Lead	02M2452	1.00	99	N.D.	mg/L	3.00	110	106	106	0	75-125	20
Nickel	02M2452	4.00	98	N.D.	mg/L	1.00	108	99	99	0	75-125	20
Selenium	02M2452	1.00	100	N.D.	mg/L	0.500	105	102	102	0	75-125	20
Silver	02M2452	2.00	98	N.D.	mg/L	1.00	101	99	99	0	75-125	20
Thallium	02M2452	1.00	98	N.D.	mg/L	0.500	110	106	106	0	75-125	20
Zinc	02M2452	4.00	98	N.D.	mg/L	0.500	105	100	100	0	75-125	20
						· · · · · · · · · · · · · · · · · · ·						
	Analysis	ccv	ccv	M-Blank	Conc.	SP Level	LCS	MS	MSD	MS/MSD	Contro	l Limit
Component Name	Batch #	$(\mu_{\rm g}/{ m L})$	%Rec		Unit		%Rec	%Rec	%Rec	%RPD	%Rec	%Diff
Gasoline									·			
Gasoline	02G497 3	1000	101	N.D.	mg/L	0.810	106	109	114	4	65-134	35

Applied P & Ch Laboratory 13760 Magnolia Ave. Chino CA 91710

Tel: (909) 590-1828 Fax: (909) 590-1498

APCL QA/QC Report

ICV M-Blank Conc. Analysis ICV SP Level LCS MS MSD MS/MSD Control Limit Unit Component Name %Rec Batch # (mg/L)%Rec %Rec %Rec %RPD %Rec %Diff METAL Analysis in Soil Mercury 02M2462 0.0075 92 mg/kg 0.834 110 110 108 2 75-125 20 N.D. Antimony 02M2468 4.00100 mg/kg 25.0105 94 94 0 75-125 20 N.D. 1.00 105 02M2468 99 98 99 75-125 20 Arsenic mg/kg 25.01 N.D. 93 Beryllium 02M2468 1.00 101 mg/kg 10.0 104 94 1 75-125 20 N.D. 2.00 100 Cadmium mg/kg 12.5106 102 102 0 75-125 20 02M2468 N.D. Chromium 02M2468 1.00 100 mg/kg 50.0 107 101 100 1 75-125 20 N.D. Copper 02M2468 4.00 101 mg/kg 50.0 102 102 101 1 75-125 20N.D. Lead 02M2468 1.00 99 mg/kg 150 110 103 103 0 75-125 20 N.D. 4.00 100 107 Nickel mg/kg 50.0 101 100 1 75-125 20 02M2468 N.D. Selenium 02M2468 1.00 99 mg/kg 25.0105 101 100 1 75-125 20 N.D. Silver 02M2468 2.00101 N.D. mg/kg 50.0 105 104 103 1 75-125 20 100 Thallium 1.00 99 25.0 102 2 20 02M2468 mg/kg 113 75-125 N.D. 4.00 100 108 102 100 20 Zinc 25.0 75-125 02M2468 mg/kg 1 N.D. CCV CCV Conc. M-Blank SP Level LCS Analysis MS MSD MS/MSD Control Limit Unit Component Name Batch # (mg/L)%Rec %Rec %Rec %Rec %RPD %Rec %Diff **TPH:** Diesel 90 50.0 105 49 Diesel 02G4977 1000 N.D. mg/kg 68 74 9 40-138 Motor oil/Lubricate oil 02G4977 1000 98 mg/kg N.D. --_ _ --_ CCV CCV Conc. SP Level LCS Analysis M-Blank MS MSD MS/MSD Control Limit Unit (μ_{g}/L) %Rec %Rec %Rec %Rec %RPD Component Name Batch #%Rec %Diff Volatile organics Vinyl chloride 02G4995 50.085 $\mu g/kg$ N.D. -_ --90 1,1-Dichloroethene 50.090 02G4995 N.D. $\mu g/kg$ 50.0 86 87 4 65-134 35 Chloroform 50.0 86 02G4995 $\mu g/kg$ N.D. Benzene 02G4995 50.0 91 50.0 86 29 N.D. $\mu g/kg$ 86 87 2 70-127 1,2-Dichloropropane 02G4995 50.0 91 $\mu g/kg$ N.D. -_ -_ _ 50.0 Trichloroethene 02G4995 93 N.D. $\mu g/kg$ 50.0 88 86 .87 1 65-134 34 Toluene 02G4995 50.092 $\mu g/kg$ 50.089 88 88 1 78-119 20 N.D. Chlorobenzene 50.0 02G4995 93 $\mu g/kg$ 50.0 91 88 89 28 1 71-126 N.D. Ethylbenzene 02G4995 50.086 $\mu g/kg$ N.D. -_ ----

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL QA/QC Report

	Analysis	CCV	CCV	M-Blank	Conc.	SP Level	LCS	MS	MSD	MS/MSD	Control	Limit
Component Name	Batch #	$(\mu_{\tt g}/{\tt L}$)	%Rec		Unit		%Rec	%Rec	%Rec	%RPD	%Rec	%Diff
Organochlorine pesticide	5											_
α -BHC	02G4978	50.0	98	N.D.	$\mu g/kg$	-	-	-	-	-	-	-
γ -BHC (Lindane)	02G4978	50.0	100	N.D.	$\mu g/kg$	16.7	83	80	81	1	59-111	26
eta-bhc	02G4978	50.0	114	N.D.	$\mu g/kg$	-	-	-	-		-	-
Heptachlor	02G4978	50.0	104	N.D.	µg/kg	16.7	81	78	79	2	40-133	47
δ-внс	02G4978	50.0	105	N.D.	μg/kg	-	-	-	-	-	-	-
Aldrin	02G4978	50.0	107	N.D.	$\mu g/kg$	16.7	86	84	85	0	58-113	28
Heptachlor epoxide	02G4978	50.0	105	N.D.	$\mu g/kg$	-	-	-	-	-	-	-
Endosulfan I	02G4978	50.0	101	N.D.	$\mu g/kg$	-	-	-	-	-	-	-
4,4'-DDE	02G4978	50.0	100	N.D.	$\mu g/kg$	-	-	-	-	-	-	-
Dieldrin	02G4978	50.0	105	N.D.	$\mu g/kg$	16.7	82	80	80	0	40-135	47
Endrin	02G4978	50.0	97	N.D.	$_{\mu}\mathrm{g/kg}$	16.7	81	72	74	3	40-139	50
4,4'-DDD	02G4978	50.0	102	N.D.	$_{\mu}\mathrm{g/kg}$	-	-	-	-	- '	-	-
Endosulfan II	02G4978	50.0	106	N.D.	$\mu g/kg$	-	-	-	-	-	-	-
4,4'-DDT	02G4978	50.0	104	N.D.	$\mu g/kg$	16.7	60	73	75	3	40-139	50
Endrin aldehyde	02G4978	50.0	113	N.D.	$\mu g/kg$	-	-	-	-	-	-	-
Endosulfan sulfate	02G4978	50.0	104	N.D.	$\mu g/kg$	-	-	-	-	-	-	-
Methoxychlor	02G4978	50.0	101	N.D.	$_{\mu}\mathrm{g/kg}$	-	-	-	-	-	-	-
												
	Analysis	ccv	ccv	M-Blank	Conc.	SP Level	LCS	MS	MSD	MS/MSD	Contro	l Limit
Component Name	Batch #	$(\mu_{g/L})$	%Rec		Unit		%Rec	%Rec	%Rec	%RPD	%Rec	%Diff
PCBs												
Aroclor-1016 (PCB-1016)	02G4979	1000	105	N.D.	$_{\mu}\mathrm{g/kg}$	167	91	103	102	1	40-139	49
Aroclor-1260 (PCB-1260)	02G4979	1000	96	N.D.	$_{\mu}{ m g/kg}$	167	90	97	97	1	42-137	47

*: LCS/LCSD is used.

Notation: ICV – Initial Calibration Verification CCV – Continuation Calibration Verification LCS – Lab Control Spike MS – Matrix Spike MSD – Matrix Spike Duplicate ICS – Interference Check Standard MD – Matrix Duplicate N.D. – Not detected or less than PQL

CCB - Continuation Calibration Blank M-blank - Method Blank SP Level - Spike Level %Rec - Recovery Percent %RPD - Relative Percent Differences %Diff - Control Limit for %RPD ICP-SD - ICP Serial Dilution N.A. - Not Applicable

Respectfully submitted,

Regina Kirakozova, Associate QA/QC Director Applied P & Ch Laboratory

CADHS ELAP No: 1431

APCL QA/QC Report: 801-026533 01/09/03

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to: SOTA Environmental Attention: Yu Zeng 16835 W. Bernardo Dr, Ste. 212 San Diego, CA 92127 Tel: (858)485-8100 Fax: (858)485-0812

Analysis of Water

APCL QA/QC Report

Service ID #: 801-032417 Collected by: MES Collected on: 03/26/03Sample description: Water

Received: 03/26/03 Tested: 03/26-04/02/03 Reported: 05/21/03

Project: Lower Lakes, HD FCB. /02HW013

801-032417QC

			Analysis	ccv	ccv	M-Blank	Conc.	SP Level	LCS	MS	MSD	MS/MSI) Contro	ol Limit
	Component Name		Batch #	(mg/L)	%Rec		Unit	L.	%Rec	%Rec	%Rec	%RPD	%Rec	%Diff
w	ET Analysis in Water		<u> </u>											
	Biological Oxygen Demand	(BOD)	03W2158	-	-	N.D.	$mg-O_2/L$	198	97	97*	· _	-	80-120	-
	Chloride Cl ⁻ by Titration		03W2155	-	-	N.D.	mg/L	50 .0	100	99	101	2	85-115	10
	Nitrate and Nitrite, as N		03W2198	0.250	95	N.D.	mg/L	1.00	94	105	104	1	75-125	20
	Nitrite as $N-NO_2^-$, by Colo	r	0 3W2 164	0.150	96	N.D.	mg/L	0.150	93	91	93	1	75-124	25
	Solids, Total Dissolved (TD	S)	03W2143	-	-	N.D.	mg/L	400	98	95	95	Ō	80-119	20
	Sulfate $SO_4^{}$, Turbimetric	:	03W2186	20.0	98	2.68	mg/L	100	94	124	123	1	75-125	20
	Sulfide, Dissolved		03W2154	0.400	101	N.D.	mg/L	0.400	108	82	79	4	75-125	20
	Chromium (VI)		03W2152	0.250	102	N.D.	mg/L	0.250	86	96	98	2	75-125	20
	Perchlorate		0 3W2 140	0.050	93	N.D.	mg/L	0.050	93	97	99	2	75-125	20
							<u>.</u>				<u> </u>	······		
		Analysis	ICV	ICV	M-Bl	ank Col	nc. SP Lev	el LCS	MS	MS	D M	s/MSD	Control	Limit
	Component Name	Batch #	(mg/L)	%Rec		Ur	lit	%Rec	%Rec	: %R	ec 9	KRPD .	%Rec	%Diff
N	IETAL Analysis in Wate	r												
	Antimony	03M1268	4.00	100	N.I	o. mg	/L 0.500	103	101	10	0	1	75-125	20
	Arsenic	03M1268	1.00	100	N.I	o. mg	/L 0.500	107	102	10	2	1	75-125	20
	Beryllium	03M1268	1.00	101	N.E	o. mg	/L 0.200	101	98	99)	1	75-125	20
	Cadmium	03M1268	2.00	100	N.E	. mg	/L 0.250	105	100	10	1	1	75-125	20
	Chromium	03 M 1268	1.00	100	N.I	o. mg	/L 1.00	109	103	10	3	1	75-125	20
	Copper	03M1268	4.00	100	N.5	. mg	/L 1.00	108	104	104	4	1	75-125	20
	Lead	03M1268	1.00	100	N.I	. mg	/L 3.00	111	104	104	4	1 .	75-125	20
	Nickel	03M1268	4.00	99	N.I	. mg ,	/L 1.00	108	102	103	3	1	75-125	20
	Selenium	03M1268	1.00	100	N.I	. mg	/L 0.500	110	101	10	1	1	75-125	20
	Silver	D3M1268	2.00	100	N.I	. mg	/L 1.00	106	100	10	i	1 '	75-125	20
	Thallium	03M1268	1.00	98	N.I	. mg	/L 0.500	104	99	98		1	75-125	20
	Zinc	03M1268	4.00	100	N.I	o. mg	/L 0.500	109	105	10	5	1	75-125	20
	Mercury	03M1272	0.0075	97	N.E	. mg	/L 0.0050	102	88	89		1	75-125	20
													•	

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL QA/QC Report

	Analysis	ccv	ccv	M-Blank	Conc.	SP Level	LCS	MS	MSD	MS/MSD	Contro	l Limit
Component Name	Batch #	(μ_{g}/L)	%Rec		Unit		%Rec	%Rec	%Rec	%RPD	%Rec	%Diff
Gasoline					·							
Gasoline	03G1854	1000	101	N.D.	mg/L	1.00	100	113	113	0	65-134	35
						-						
	Analysis	ccv	ccv	M-Blank	Conc.	SP Level	LCS	MS	MSD	MS/MSD	Contro	l Limit
Component Name	Batch $#$	(mg/L)	%Rec		Unit		%Rec	%Rec	%Rec	%RPD	%Rec	%Diff
TPH: Diesel												
Diesel	03G1868	1000	98	N.D.	mg/L	1.00	76	76*	72*	5	59-128	35
Motor oil/Lubricate oil	03G1868	1000	102	N.D.	mg/L		-	-	-	-	-	-
	Analysis	ccv	ccv	M-Blank	Conc.	SP Level	LCS	MS	MSD	MS/MSD	Contro	l Limit
Component Name	Batch #	(μ_{g}/L)	%Rec		Unit		%Rec	%Rec	%Rec	%RPD	%Rec	%Diff
Volatile organics			· · · · · · · · · · · · · · · · · · ·									
Vinyl chloride	03G1879	50.0	87	N.D.	μg/L	-	-	-	-	-	· _	-
1,1-Dichloroethene	03G1879	50.0	95	N.D.	$\mu g/L$	50.0	100	96	96	0	66-133	34
Chloroform	03G1879	50.0	106	N.D.	$\mu g/L$	-	-	-	-	-	-	-
Benzene	03G1879	50.0	- 97	N.D.	$\mu g/L$	50.0	99	96	97	1	65-134	35
1,2-Dichloropropane	03G1879	50.0	95	N.D.	$_{\mu}g/L$	-	-	-	-	-	-	-
Trichloroethene	03G1879	50.0	96	N.D.	$_{\mu}g/L$	50.0	102	100	97	3	65-124	30
Toluene	03G1879	50.0	84	N.D.	$_{\mu}g/L$	50.0	85	84	84	0	65-131	34
Chlorobenzene	03G1879	50.0	88	N.D.	$\mu g/L$	50.0	92	89	90	1	65-130	33
Ethylbenzene	03G1879	50.0	93	N.D.	μg/L	-	-	-	-	-	-	-
												
	Analysis	ccv	ccv	M-Blank	Conc.	SP Level	LCS	MS	MSD	MS/MSD	Control	l Limit
Component Name	Batch #	(μ_{g}/L)	%Rec	•	Unit		%Rec	%Rec	%Rec	%RPD	%Rec	%Diff
1,4-Dioxane												
1,4-Dioxane	03G1883	20000	103	N.D.	$_{\mu}g/L$	20.0	99	99*	99*	0	40-140	30

11

- 14

CADHS ELAP No: 1431 APCL QA/QC Report: 801-032417 05/21/03

Page: 2

Applied P & Ch Laboratory 13760 Magnolia Ave. Chino CA 91710

Tel: (909) 590-1828 Fax: (909) 590-1498

APCL QA/QC Report

	Analysis	ccv	ccv	M-Blank	Conc.	SP Level	LCS	MS	MSD	MS/MSD	Contro	l Limit
Component Name	Batch #	(μ_{g}/L)	%Rec		Unit		%Rec	%Rec	%Rec	%RPD	%Rec	%Diff
Organochlorine pesticides	3											
a-bhc	03G1898	50.0	105	N.D.	μg/L	-	-	-	-	-	-	-
γ -BHC (Lindane)	03G1898	50.0	104	N.D.	μg/L	0.500	93	93*	94*	1	40-128	44
eta-внс	03G1898	50.0	100	N.D.	μg/L	-	-	-	-	-	-	-
Heptachlor	03G1898	50.0	100	N.D.	μg/L	0.500	92	92*	93*	1	40-132	47
δ-внс	03G1898	50.0	104	N.D.	μg/L	· _	-	-	-	-	-	-
Aldrin	03G1898	50.0	105	N.D.	$\mu g/L$	0.500	95	95*	96*	0	43-125	41
Heptachlor epoxide	03G1898	50.0	101	N.D.	μg/L	-	-	-	-	-	-	-
Endosulfan I	03G1898	50.0	102	N.D.	$_{\mu}g/L$	-	-	-	-	-	-	-
4,4'-DDE	03G1898	50.0	106	N.D.	$\mu g/L$	-	-	•	-	-	-	-
Dieldrin	03G1898	50.0	100	N.D.	$_{\mu}g/L$	0.500	89	89*	91*	3	40-125	43
Endrin	03G1898	50.0	93	N.D.	$\mu g/L$	0.500	88	88*	88*	0	42-127	43
4,4'-DDD	03G1898	50.0	110	N.D.	μg/L	-	-	-	-	-	-	-
Endosulfan II	03G1898	50.0	102	N.D.	μg/L	-	-	-	-	-	-	-
4,4'-DDT	03G1898	50.0	101	N.D.	$_{\mu}g/L$	0.490	99	99*	102*	3	42-133	41
Endrin aldehyde	03G1898	50.0	108	N.D.	$_{\mu}\mathrm{g/L}$	-	-	-	-	-	-	-
Endosulfan sulfate	03G1898	50.0	97	N.D.	$\mu g/L$	-	-	-	-	-	-	-
Methoxychlor	03G1898	50.0	106	N.D.	$_{\mu}g/L$	-	-	-	-	-	-	-
	Analysis	ccv	ccv	M-Blank	Conc.	SP Level	LCS	MS	MSD	MS/MSD	Contro	l Limit
Component Name	Batch #	$(\mu_{\rm g}/L)$	%Rec		Unit		%Rec	%Rec	%Rec	%RPD	%Rec	%Diff
PCBs												
Aroclor-1016 (PCB-1016)	03G1881	1000	95	N.D.	$_{\mu}\mathrm{g/L}$	5.00	86	86*	95 *	9	58-128	36
Aroclor-1260 (PCB-1260)	03G1881	1000	98	N.D.	$_{\mu}\mathrm{g/L}$	5.00	89	89*	98*	9	56-138	.42

*: LCS/LCSD is used.

Notation: ICV - Initial Calibration Verification

CCV - Continuation Calibration Verification

LCS - Lab Control Spike

- MS Matrix Spike
- MSD Matrix Spike Duplicate

ICS - Interference Check Standard

MD - Matrix Duplicate

N.D. - Not detected or less than PQL

CCB - Continuation Calibration Blank M-blank - Method Blank SP Level - Spike Level %Rec - Recovery Percent %RPD - Relative Percent Differences %Diff - Control Limit for %RPD ICP-SD - ICP Serial Dilution N.A. - Not Applicable

Respectfully submitted, Regina Kirakozova.

Associate QA/QC Director Applied P & Ch Laboratory

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to: SOTA Environmental Attention: Yu Zeng 16835 W. Bernardo Dr, Ste. 212 San Diego, CA 92127 Tel: (858)485-8100 Fax: (858)485-0812

Analysis of Soil

APCL QA/QC Report

Service ID #: 801-032419Received: 0.Collected by: MESTested: 03/Collected on: 03/25/03Reported: 0.Sample description:
SoilSoilProject: Lower Lakes, HD FCB. /02HW013

Received: 03/26/03 Tested: 03/27-04/04/03 Reported: 05/21/03

801-032419QC

Component Name	Analysis Batch #	CCV (mg/L)	CCV %Rec	M-Blank	Conc. Unit	SP Level	LCS %Rec	MS %Rec	MSD %Rec	MS/MSD %RPD	Control %Rec	Limit %Diff
WET Analysis in Soil									<u>-</u> -			
Chromium (VI)	03W2185	0.250	100	N.D.	mg/kg	0.250	80	96	100	4	75-125	20
Perchlorate	03W2165	0.050	94	N.D.	mg/kg	0.050	94	91	91	0	75-125	20
	Analysis	ICV	ICV	M-Blank	Conc.	SP Level	LCS	MS	MSD	MS/MSD	Control	Limit
Component Name	Batch #	(mg/L)	%Rec		Unit		%Rec	%Rec	%Rec	%RPD	%Rec	%Diff
METAL Analysis in Wa	ter											
Mercury	03M1272	0.0075	97	N.D.	mg/L	0.0050	102	88	89	1	75-125	20
Arsenic	03M1275	1.00	100	N.D.	mg/L	0.500	112	101	101	0	75-125	20
Barium	03M1275	10.0	98	N.D.	mg/L	4.00	107	99	99	0	75-125	20
Cadmium	03M1275	2.00	99	N.D.	mg/L	0.250	104	94	95	1	75-125	20
Chromium	03M1275	1.00	99	N.D.	mg/L	1.00	109	97	98	1	75-125	20
Lead	03M1275	1.00	99	N.D.	mg/L	3.00	111	95	96	1	75-125	20
Selenium	03M1275	1.00	99	N.D.	mg/L	0.500	109	96	97	i	75-125	20
Silver	03M1275	2.00	99	N.D.	mg/L	1.00	107	96	97	1	75-125	20

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL QA/QC Report

	Analysis	ICV	ICV	M-Blank	Conc.	SP Level	LCS	MS	MSD	MS/MSD	Contro	l Limit
Component Name	Batch #	(mg/L)	%Rec		Unit		%Rec	%Rec	%Rec	%RPD	%Rec	%Diff
METAL Analysis in Soil												
Mercury	03M1271	0.0075	99	N.D.	mg/kg	0.834	101	100	97	3	75-125	20
Antimony	03M1269	4.00	100	N.D.	mg/kg	25.0	102	103	103	0	75-125	20
Arsenic	03M1269	1.00	100	N.D.	mg/kg	25.0	97	100	100	1	75-125	20
Beryllium	03M1269	1.00	99	N.D.	mg/kg	10.0	99	92	94	3	75-125	20
Cadmium	03M1269	2.00	103	N.D.	m g/kg	12.5	103	108	109	1	75-125	20
Chromium	03M1269	1.00	102	N.D.	mg/kg	50.0	105	104	103	0	75-125	20
Copper	0 3M 1269	4.00	102	N.D.	mg/kg	50.0	105	109	108	1	75-125	20
Lead	03M1269	1.00	99	N.D.	mg/kg	150	103	105	106	1	75-125	20
Nickel	03M1269	4.00	102	N.D.	mg/kg	50.0	103	105	104	0	75-125	20
Selenium	03M1269	1.00	99	N.D.	mg/kg	25.0	96	103	104	1	75-125	20
Silver	03M1269	2.00	103	N.D.	mg/kg	50.0	100	105	104	1	75-125	20
Thallium	03M1269	1.00	99	N.D.	mg/kg	25.0	106	104	102	2	75-125	20
Zinc	03M1269	4.00	102	N.D.	mg/kg	25.0	100	105	103	1	75-125	20
					····	•	· · · · · · · · · · · · · · · · · · ·					
	Analysis	ccv	ccv	M-Blank	Conc.	SP Level	LCS	MS	MSD	MS/MSD	Contro	l Limit
Component Name	Batch #	($\mu g/L$)	%Rec		Unit		%Rec	%Rec	%Rec	%RPD	%Rec	%Diff
Gasoline												
Gasoline	03G1875	1000	97	N.D.	mg/kg	1.00	97	97*	96*	1	70-123	27
									-			
	Analysis	ccv	ccv	M-Blank	Conc.	SP Level	LCS	MS	MSD	MS/MSD	Control	Limit
Component Name	Batch #	(mg/L)	%Rec		Unit		%Rec	%Rec	%Rec	%RPD	%Rec	%Diff
TPH: Diesel												
Diesel	03G1843	1000	107	N.D.	mg/kg	50.0	80	88	84	5	40-139	50
Motor oil/Lubricate oil	03G1843	1000	92	N.D.	mg/kg	-	-	-	-	-	-	-

• ~

÷ -- --

~ 7

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL QA/QC Report

	Analysis	ccv	ccv	M-Blank	Conc.	SP Level	LCS	MS	MSD	MS/MSD	Contro	ol Limit
Component Name	Batch $#$	(μ_{g}/L)	%Rec		Unit		%Rec	%Rec	%Rec	%RPD	%Rec	%Diff
Volatile organics											-	
Vinyl chloride	03G1845	50.0	92	N.D.	$\mu g/kg$	-	-	-	÷	-	-	-
1,1-Dichloroethene	03G1845	50.0	108	N.D.	$\mu g/kg$	50.0	113	108	103	4	66-133	34
Chloroform	03G1845	50.0	104	N.D.	μg/kg	-	-	-	-	•	-	-
Benzene	03G1845	50.0	92	N.D.	μg/kg	50.0	98	96	94	2	65-134	35
1,2-Dichloropropane	03G1845	50.0	88	N.D.	μg/kg	-	- ·	- '	-	-	-	-
Trichloroethene	03G1845	50.0	98	N.D.	µg/kg	50.0	107	107	102	5	65-124	30
Toluene	03G1845	50.0	98	N.D.	µg/kg	50.0	110	107	106	1	65-131	34
Chlorobenzene	03G1845	50.0	95	N.D.	$\mu g/kg$	50.0	104	102	100	2	65-130	33
Ethylbenzene	03G1845	50.0	97	N.D.	µg/kg	-	-	-	-	-	-	-
E-Martin	Analysis		ccv	M-Blank	Conc.	SP Leve)	LCS	MS	MSD	MS/MSD	Contro	l Limit
Component Name	Batch #	(μ_{g}/L)	%Rec		Unit		%Rec	%Rec	%Rec	%RPD	%Rec	%Diff
1,4-Dioxane												
1,4-Dioxane	03G1900	20000	103	N.D.	µg/kg	666	98	98	100	2	40-140	30
· · · · · · · · · · · · · · · · · · ·												
	Analysis	ccv	ccv	M-Blank	Conc.	SP Level	LCS	MS	MSD	MS/MSD	Contro	l Limit
Component Name	Batch #	$(\mu_{\rm g}/{ m L}$)	%Rec		Unit		%Rec	%Rec	%Rec	%RPD	%Rec	%Diff
Organochlorine pesticid	les											
α-BHC	03G1928	50.0	106	N.D.	$\mu g/kg$	-	-	-	-	-	-	-
γ -BHC (Lindane)	03G1928	50.0	105	N.D.	$\mu g/kg$	16.7	94	95	92	4	41-133	46
β-внс	03G1928	50.0	100	N.D.	$\mu g/kg$	-	-	-	-	-	-	-
Heptachlor	03G1928	50.0	99	N.D.	$\mu g/kg$	16.7	95	94	93	1	40-134	48
δ -BHC	03G1928	50.0	102	N.D.	µg/kg	· -	-	-	-	-	-	-
Aldrin	03G1928	50.0	106	N.D.	$\mu g/kg$	16.7	98	97	95	3	41-132	46
Heptachlor epoxide	03G1928	50.0	102	N.D.	$\mu g/kg$	-	-	-	-	-	-	-
Endosulfan I	03G1928	50.0	102	N.D.	μ g/kg	-	-	-	-	-	-	-
4,4'-DDE	03G1928	50.0	107	N.D.	µg/kg	-	-	-	-	-	-	-
Dieldrin	03G1928	50.0	101	N.D.	$\mu g/kg$	16.7	93	93	91	3	41-132	46
Endrin	03G1928	50.0	98 .	N.D.	µg/kg	16.7	94	94	· 92	2	41-133	46
4,4'-DDD	03G1928	50.0	108	N.D.	$\mu g/kg$	-	-	-	-	-	-	
Endosulfan II	03G1928	50.0	103	N.D.	$\mu g/kg$	-	-	-	-	-	-	-
4,4'-DDT	03G1928	50.0	99	N.D.	$\mu g/kg$	16.7	98	97	96	1	40-134	48
Endrin aldehyde	03G1928	50.0	105	ND	a /ka		_	_	-	-	· _	-
	0001020	00.0	100	14.10.	µ6/ ™ 5	-					•	
Endosulfan sulfate	03G1928	50.0	94	N.D.	μg/kg	-		-	-	-	-	-

in a

i si si

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL QA/QC Report

Component Name	Analysis Batch #	CCV (µg/L)	CCV %Rec	M-Blank	Conc. Unit	SP Level	LCS %Rec	MS %Rec	MSD %Rec	MS/MSD %RPD	Control %Rec	Limit %Diff
РСВа						k.		,				
Aroclor-1016 (PCB-1016)	03G1911	1000	91	N.D.	$\mu g/kg$	167	98	90	89	1	46-125	40
Aroclor-1260 (PCB-1260)	03G1911	1000	93	N.D.	$\mu g/kg$	167	99	89	89	0	41-134	47

*: LCS/LCSD is used.

ICV – Initial Calibration Verification CCV – Continuation Calibration Verification Notation:

LCS - Lab Control Spike

MS - Matrix Spike

MSD - Matrix Spike Duplicate

ICS - Interference Check Standard

MD - Matrix Duplicate

N.D. - Not detected or less than PQL

CCB - Continuation Calibration Blank M-blank – Method Blank SP Level – Spike Level %Rec - Recovery Percent %RPD - Relative Percent Differences %Diff - Control Limit for %RPD ICP-SD - ICP Serial Dilution N.A. - Not Applicable

> Respectfully submitted, Regina Kirakozova, Associate QA/QC Director Applied P & Ch Laboratory

1. 14

MAXIM ANALYTICS, INC.

SUBMISSION CASE NARRATIVE NDMA SOIL

MAXXAM L.I.M.S. No. A310768

PROJECT: Applied P&CHLaboratory NDMA Analysis

I. Receipt

Samples were received at Maxxam on March 28, 2003. Samples were received in good condition.

II. Holding Times

A. Sample preparation: all holding times were met

B. Sample analysis: all holding times were met

III. Method

The method followed was Maxxam's in-house method for NDMA analysis, Entitled "EXTRACTION & ANALYSIS OF NITROSAMINES AND NDMA BY HRMS" SOP # TO.1021.08

IV. Preparation

Samples preparation proceeded normally. Samples were extracted on April 1, 2003.

V. Analysis

Analysis proceeded normally Samples were analyzed on April 1, 2003.

- A. Calibration All criteria were met.
- B. Mass Resolution: All criteria met.

000001

Maxy

- C. Method Blank: All acceptance criteria were met for the method blank and no detects have been observed above the MDL.
- D. Laboratory Control Spike: A LCS and LCSDUP were analyzed with all acceptance criteria met.
- E. Matrix spike/Matrix spike duplicate: MS and MSD were analyzed not analyzed with these samples.
- F. Surrogate Standards: All samples and QC samples met surrogate Standard criteria
- G. Samples: Sample analysis proceeded normally.
- H. Glass blank: All acceptance criteria for the glass blank were met.

I certify that this data package is in compliance with the terms and conditions agreed to by the client and Maxxam Analytics Inc., both technically and for completeness, except for any conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the HRMS Strategic Business Unit Operational Manager, as verified by the following signature.

Wright

AnnMarie Wright, B.Sc. Laboratory Operations Manager

This report contains pages.

Glossary of Definitions

NDMA	N-Nitrosodimethylamine
OPR	Ongoing Performance & Recovery Standard (Matrix spike)
PAR	Performance & Recovery Standard (Spiking Mixture)
IPR	Initial Performance & Recovery Standard (Matrix spike)
K-D	Kuderna-Danish concentrator: a device used to concentrate the analytes in
	a solvent
LIMS	Laboratory Information Management System
MISA	Municipal Industrial Strategy for Abatement
EPA	see USEPA
USEPA	United States Environmental Protection Agency
CEPA	Canadian Environmental Protection Agency
02111	
amp	ampere
cm	centimetre
g	gram
ĥ	hour
ID	internal diameter
OD	outside diameter
In.	inch
L	litre
М	Molecular ion
min	minute
mL	mililitre
mm	millimetre
m/z	mass-to-charge ratio
N	Normal; gram molecular weight of solute divided by hydrogen equivalent
	of solute, per litre of solution
mg	milligram 10 ⁻³ g
μg	microgram 10 ⁻⁶ g
ng	nanogram 10 ⁻⁹ g
pg	picogram 10 ⁻¹² g
fg	femtogram 10 ⁻¹⁵ g
ppm	parts per million (mg/L, mg/kg)
ppb	parts per billion (μg/L, μg/kg)
ppt	parts per trillion (ng/L, ng/kg)
ppq	parts per quadrillion (pg/L, pg/kg)
v/v	volume per unit volume
w/v	weight per unit volume
DCM	Dichloromethane (Methylene Chloride)
PFK	Perfluorokerosene
HIRES	High Resolution
GC	Gas Chromatography

MS Mass Spectrometry HRMS High Resolution Mass Spectrometry

Acceptance Criteria

Values used by the laboratory in order to determine that a process is in control.

- <u>Accuracy</u> It is the degree of agreement of a measured value with the true or expected value of the quantity of concern.
- <u>Analyte</u> A Nitrosodimethylamine and/or 1,4-Dioxane parameter tested by a method.
- <u>Blind Sample</u> It is a sample submitted for analysis whose composition is known to the submitter but unknown to the analyst. A blind sample is used to test the proficiency of a measurement process.

Calibration Standard (CAL)

Consist of a set of solutions containing known amounts of native & carbon-13-labelled NDMA and/or 1,4-Dioxane. These solutions are used to establish the relationship between the parameter's concentration & MS detector response over the expected range of sample concentration.

Calibration Verification Material

Consists of a calibration standard solution of intermediate level concentration (e.g. CS3), used to assess whether the initial calibration is still valid.

Certified Reference Material

It is a stable, homogenous, and well characterized reference material, one or more of whose property values are certified by repetitive analysis by several operators & different methodologies in one or more qualified laboratories of known precision & accuracy. This material is used to assess the accuracy of a measurement process.

<u>CAS#</u> Chemical Abstracts Compound Registry Number.

Control Sample

It is a reference material of known composition that is analyzed concurrently with test samples to evaluate the accuracy and/or precision of a measurement process.

<u>EDL</u> Estimated detection limit or detection limit.

Glassware Proof Rinse

It is the composite final solvent rinse of each piece of glassware intended for use in processing a batch of samples. Proof rinse samples are analyzed before sample processing begins.

Instrument Detection Limit

It is the smallest concentration/amount of analyte, in a solution containing only the analyte(s) of interest, which produces an instrumental response that satisfies all analyte detection & identification criteria.

- IS Internal Standard, a deuterated or ¹³C-labelled analyte that is added to a sample extract prior to instrument analysis.
- <u>Isomer</u> A member of a group of compounds that differ from each other only in terms of locations of a specified number of common substituent atoms, or groups of atoms, on the parent compound.

<u>Method Blank</u> Laboratory control sample using reagents, purified water, soil or relevant matrix known to be free of contaminants.

Method Detection Limit (MDL)

It is the smallest test sample concentration/amount of analyte that produces an instrumental response that satisfies all analyte detection & identification criteria when the sample is processed & analyzed according to the requirements of a specific test method. Reported MDL values reflect the composite effect of sample-related variables as well as method-related variables.

MSDS Material Safety Data Sheet

NIOSH National Institute of Occupational Safety & Health

- <u>Precision</u> It is the degree of agreement between the data generated from repetitive measurements under specified conditions. It is generally reported as the standard deviation (SD) or relative standard deviation (RSD).
- <u>%D</u> Percent Difference.

Quality Assurance (QA)

It is a system of activities whose purpose is to provide the producer or user of a product with the assurance that the product meets a defined standard of quality. The system consists of two separate but related activities, quality control & quality assessment.

000005

Quality Control (QC)

It is the overall system of activities whose purpose is to control the quality of a product so that it meets the needs of users.

Recovery Standards

They are selected compounds that are added to sample extracts immediately before instrumental analysis so that surrogate (internal standard) recoveries can be calculated.

<u>RPD (%)</u> Relative Percent Difference.

Relative Retention Factor (RRF)

It is the quotient of a target analyte response factor (instrument response per unit weight) divided by the response factor (RF) for its corresponding labelled surrogate. An RRF value remains constant over the range of concentration for which instrument response is linear.

<u>RSD</u> Relative Standard Deviation.

- <u>SDS</u> Soxhlet/Dean-Stark extractor, an extraction device applied to the extraction of solid & semi-solid materials.
- <u>Spiked blank</u> Laboratory control sample that has been fortified with native analytes of interest.
- <u>Stock Solution</u> A solution containing an analyte that is prepared using a reference material traceable to EPA, the National Institute of Science & Technology (NIST), or a source that will attest to the purity & authenticity of the reference material.
- <u>Surrogate</u> A compound whose composition and chemical properties are nearly identical to those of target analytes, but which is distinguishable from target analytes by some means of detection (i.e. MS). These include deuterated or ¹³C-labelled analogues of the target analytes, which are added to the sample prior to extraction or clean-up steps.

Window Defining Mixture

It is a solution containing the earliest & latest eluting congeners within each homologous group of target analytes on a specified GC column.

APPLIED P & CH LABORATORY 13769 MAGNOLIA AVE CHINO, CA USA 91710-7018

Attention: Kenny Chan

Your Project #: LOWER LAKES

MAXXAM JOB #: A310768 Received: 2003/03/28, 13:14

Sample Matrix: SOLID # Samples Received: 5

Analyses cosamines by HRN

AXXAM ANALYTICS INC.

EDMOND MCNEIL, B.Sc., C.Chem. Senior Analyst - HRMS

Number	Date	Date	
of Tests	Extracted	Analyzed	Laboratory Method
5	2003/03/31	2003/04/01	SOP# TO 1021,

NIVE AL

REPOR

Method <u>Reference</u> EPA 607 mod

. •

Report Date: 2003/04/03

Total pages: 1

50 Bathuret Drive Linit 12 Mat

Maxam

PROJECT #: LOWER LAKES MAXXAM JOB #: A310768

REPORT DATE: 2003/04/03

NITROSAMINES BY HRMS IN SOLID

REPORT DATE: 2003/04/03

PROJECT #: LOWER LAKES MAXXAM JOB #: A310768

NITROSAMINES BY HRMS IN SOLID

*				
Maxxam ID		/		
Sampling Date				
		SPIKED BLANK		
Parameter	Units	DUP %REC	METHOD BLANK	R
1				
% Moisture			and the	
N-Nitrosodimethylamine	ng/g	78	ND	5.00
F	Recov	verv of Surrogate	∋s	
	انې د د د مېروندې د د د مېروندې د د د	(%)		
2.5 A. 2.5 A. 2.5 A.		let litt		
		SPIKED BLANK		
Parameter		DUP %REC	METHOD BLANK	
		·		
D6-NDMA		82	. 77	
-				

ND = Not detected RL = REPORTING LIMIT

2003/04/03 dail LF LORI DENOMME

FGL ENVIRONMENTAL

SDG:

SP 303106

Case Narrative

May 19, 2003

Lab ID : SP 303106

Sota Environmental Tech., Inc. 16835 W. Bernardo Dr. #212

San Diego, CA 92127

Laboratory Report

Introduction:

This report package contains data and QC for SDG SP 303106

Sample Description	Date Sampled	Date Received	FGL Lab Sample ID #	Matrix
Travel Blank	03/26/2003	03/27/2003	SP 303106-00	LBW
BG-SW-1	03/26/2003	03/27/2003	SP 303106-01	SWP
BG-SW-2	03/26/2003	03/27/2003	SP 303106-02	SWP
BG-SW-3	03/26/2003	03/27/2003	SP 303106-03	SWP
BG-SW-QC1	03/26/2003	03/27/2003	SP 303106-04	SWP

Sampling and Receipt Information: All samples were received, prepared and analyzed within the method specified holding times. All samples arrived at 4 °C. All samples were checked for pH if acid or base preservation required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Forms.

Quality Control: All samples were prepared and analyzed according to the following tables:

Organic QC

504.1	03/31/2003:A237 All preparation quality controls are within established criteria.
	04/09/2003:A237 All preparation quality controls are within established criteria.
	03/31/2003:B - GC217 All analysis quality controls are within established criteria.
	04/09/2003:B - GC217 All analysis quality controls are within established criteria.

FGL Environmental

FGL Preparation	Batch ID	Matrix	FGL Analysis	Instrument	ARL	М	TR#
Organic Calibration			EPA 504.1M	GC217	02/25/2003-В	GC	A
504.1M	03/31/2003-A	WATE	REPA 504.1M	GC217	03/31/2003-В	GC	В
504.1M	04/09/2003-A	WATE	REPA 504.1M	GC217	04/09/2003-В	GC	С

Preparation/Analysis Traffic Report

M: CLP Method Qualifier.

The traffic report number (TR#) is used to organize the data into sections separated by analysis runlogs. Each analysis runlog is assigned a unique letter starting with A. If raw data is included in this package, the raw data for an analysis runlog is numbered using this letter (e.g. A-1 -> A-78). Forms containing the TR# field, may include a two digit number following the letter which identifies which CCV/CCB brackets the data shown within the analysis runlog.

Organic

SDG:

0.005

U

FGL Environmental

Target Analytes

96-18-4

1,2,3-Trichloropropane

Organic Analysis Data Sheet - EPA 504.1M

ug/L

1.00

Date Sampled	1 : 03/26/2003	Sample ID : Travel Blar					
Date Received : 03/27/2003		Lab San	Lab Sample ID : SP 3031				
Matrix	: WATER	File	:	G170331B((B)		
Parameter ID	Parameter Name	Units	Dilution	Results	Qualifier		
Surrogates 109-64-8	1,3-Dibromopropane	%	1.00	98.5			

05/19/2003:CL

Organic - Form I - EPA 504.1M

TR#

B02

B02

U

0.005

B02

FGL Environmental

Target Analytes 96-18-4

1,2,3-Trichloropropane

Organic Analysis Data Sheet - EPA 504.1M

Date Sampled : $03/26/2003$		Sample	Sample ID : BG-SW-1						
Matrix	: WATER	File	: inple 112	G170331B	(B)				
Parameter ID	Parameter Name	Units	Dilution	Results	Qualifier	TR#			
Surrogates 109-64-8	1,3-Dibromopropane	%	1.00	83.3		B02			

ug/L

1.00

05/19/2003:CL

Organic - Form I - EPA 504.1M

FGL Environmental

Organic Analysis Data Sheet - EPA 504.1M

Date Sampled Date Received Matrix	Sample ID: BG-SW-2Lab Sample ID: SP 303106-02File: G170331B(B)					
Parameter ID	Parameter Name	Units	Dilution	Results	Qualifier	TR#
Surrogates 109-64-8	1,3-Dibromopropane	%	1.00	70		B03
Target Analytes 96-18-4	1,2,3-Trichloropropane	ug/L	1.00	0.005	U	B03

05/19/2003:CL

Organic - Form I - EPA 504.1M

FGL Environmental

Organic Analysis Data Sheet - EPA 504.1M

Date Sampled : 03/26/2003 Date Received : 03/27/2003 Matrix : WATER Sample ID: BG-SW-3Lab Sample ID: SP 303106-03File: G170409B(C)

Parameter ID	Parameter Name	Units	Dilution	Results	Qualifier	TR#
Surrogates 109-64-8	1,3-Dibromopropane	%	1.00	82.7		C01
Target Analytes 96-18-4	1,2,3-Trichloropropane	ug/L	1.00	0.005	U	C01

U

TR#

B03

B03

FGL Environmental

Surrogates 109-64-8

Target Analytes 96-18-4 1,3-Dibromopropane

1,2,3-Trichloropropane

Organic Analysis Data Sheet - EPA 504.1M

%

ug/L

1.00

1.00

95.5

0.005

Date Sampled	: 03/26/2003		Sample 1	ID :	BG-SW-QC	21
Date Received	: 03/27/2003		Lab Sam	ple ID :	SP 303106	-04
Matrix	: WATER		File	:	G170331B(B)
Parameter ID	Parameter Nam	e	Units	Dilution	Results	Qualifier

Organic - Form I - EPA 504.1M

FGL Environmental

System Monitoring Compound Recovery

TR#	Туре	Lab_Id	13BrP 70-130	Tot Out
B01 B01 B01 B02 B02 B03 B03	Blank LCS BS BSD Sampl Sampl Sampl	SP 03033137 SP 03033137 SP 03033137 SP 03033137 SP 30310600 SP 30310601 SP 30310602 SP 30310604	110 93.9 97.2 110 98.5 83.3 70 95.5	0 0 0 0 0 0 0

504.1M 03/31/2003-A

13BrP = 1,3-Dibromopropane

SP 303106

System Monitoring Compound Recovery

TR#	Туре	Lab_Id	13BrP 70-130	Tot Out
C01 C01 C01 C01 C01	Blank LCS BS BSD Sampl	SP 03040937 SP 03040937 SP 03040937 SP 03040937 SP 03040937 SP 30310603	111 108 99.8 115 82.7	0 0 0 0 0

504.1M 04/09/2003-A

13BrP

= 1,3-Dibromopropane

05/19/2003:CL

Laboratory Control Sample

Parameter Name	Units	True	Found	С	%R	DQO	TR#
1,2,3-Trichloropropane	ug/L	0.05882	0.050588		86.0	70-130	B01

DQO: Data Quality Objective.

FGL Environmental

Laboratory Control Sample

5()4.1 I	M	04/	09/	20	03-A	

Parameter Name	Units	True	Found	С	%R	DQO	TR#	
1,2,3-Trichloropropane	ug/L	0.05882	0.057941		98.5	70-130	C01	

DQO: Data Quality Objective.

FGL Environmental

Matrix Spike and Duplicate Analysis

Parameter Name	Туре	Units	QC Result	с	QC Reference	с	Тгие	QC	Q	DQO	TR#
1,2,3-Trichloropropane	BS BSD BSRPD	ug/L ug/L ug/L	0.053529 0.065294 0.053529		0.00000 0.00000 0.065294		0.05882 0.05882 0.05882	91.0% 111% 19.8%		70-130 70-130 30	B01 B01 B01

J

504.1M 03/31/2003-A

QC: % indicates percent comparison, otherwise values are presented in units shown.

.

FGL Environmental

Matrix Spike and Duplicate Analysis

Parameter Name	Туре	Units	QC Result	с	QC Reference	с	True	QC	Q	DQO	TR#
1,2,3-Trichloropropane	BS BSD BSRPD	ug/L ug/L ug/L	0.049118 0.057941 0.049118		0.00000 0.00000 0.057941		0.05882 0.05882 0.05882	83.5% 98.5% 16.5%		70-130 70-130 30	C01 C01 C01

504.1M 04/09/2003-A

QC: % indicates percent comparison, otherwise values are presented in units shown.
SP 303106

Preparation Log

	504.1M	03/31/2003-A
--	--------	--------------

Туре	Lab_Id	Date	Time	Who	Initial	Final	Dilution
Blank LCS BS BSD Sampl Sampl Sampl Sampl	SP 03033137 SP 03033137 SP 03033137 SP 03033137 SP 30310600 SP 30310601 SP 30310602 SP 30310604	03/31/2003 03/31/2003 03/31/2003 03/31/2003 03/31/2003 03/31/2003 03/31/2003 03/31/2003	09:00 09:00 09:00 09:00 09:00 09:00 09:00 09:00	FSY FSY FSY FSY FSY FSY FSY	34ml 34ml 34ml 34ml 34ml 34ml 34ml 34ml	1.0ml 1.0ml 1.0ml 1.0ml 1.0ml 1.0ml 1.0ml 1.0ml 1.0ml	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Equivalent to CLP Method Blank Summary (Form IV).

05/19/2003:CL

Preparation Log

Туре	Lab_Id	Date	Time	Who	Initial	Final	Dilution
Blank LCS BS BSD Sampl	SP 03040937 SP 03040937 SP 03040937 SP 03040937 SP 03040937 SP 30310603	04/09/2003 04/09/2003 04/09/2003 04/09/2003 04/09/2003	09:00 09:00 09:00 09:00 09:00 09:00	FSY FSY FSY FSY FSY	34ml 34ml 34ml 34ml 34ml	1.0ml 1.0ml 1.0ml 1.0ml 1.0ml	1.0 1.0 1.0 1.0 1.0

504.1M 04/09/2003-A

Equivalent to CLP Method Blank Summary (Form IV).

SDG: SP 303106

Organic Method Blank Data Sheet - EPA 504.1M

Parameter ID	Parameter Name	Units	Dilution	Results	Qualifie
Matrix	: WATER	File	•	G170331B(B)
Date Analyzed	I : 03/31/2003	Lab Sam	ple ID :	SP 030331	-37
Date Prepped	: 03/31/2003	Sample I	ID :	Method Bla	ank

Parameter ID	Parameter Name	Units	Dilution	Results	Qualifier	IR#
Surrogates 109-64-8	1,3-Dibromopropane	%	1.00	110		B01
Target Analytes 96-18-4	1,2,3-Trichloropropane	ug/L	1.00	0.00000	U	B01

05/19/2003:CL

Parameter ID

Surrogates 109-64-8

96-18-4

Target Analytes

SP 303106 SDG:

Qualifier

U

TR#

C01

C01

Results

0.00000

111

Organic Method Blank Data Sheet - EPA 504.1M

Units

%

ug/L

Dilution

1.00

1.00

<u> </u>							T T
	Matrix	:	WATER	File		:	G170409B(C)
	Date Analyzed	:	04/09/2003	Lab	Sample ID	:	SP 030409-37
	Date Prepped	:	04/09/2003	Sam	ple ID	:	Method Blank

Parameter Name

1,3-Dibromopropane

1,2,3-Trichloropropane

05/19/2003:CL	
---------------	--

Organic - Form IV/I - EPA 504.1M

Initial and Continuing Calibration Verification

Parameter Name	Conc	Data	Time
1,3-Dibromopropane	ug/L 1.250	Area 121425	02/25
Quadradic = 27750.04+ 71140.74*Conc+ 176.6555*Conc ²	2.500 5.000 7.500 10.00	206032 375547 579908 757429	16:05 16:33 17:00 17:27
QC Pass $0.998992 \ge 0.99$	15.00 20.00	1134287 1520801	17:54 18:22
03/31/2003-B CCV-00 CCV-01 04/01/2003-B CCV-02 CCV-03 04/09/2003-B CCV-00 CCV-01	10.00 10.00 10.00 10.00 10.00 10.00	10.690 10.670 10.690 10.550 10.520 10.930	15:38 20:36 01:31 04:37 09:26 12:10
1,2,3-Trichloropropane	ug/L	Агеа	02/25
Quadradic = 353.9642+ 19451.77*Conc+ -137.0709*Conc ² QC Pass 0.999698 ≥ 0.99	0.1700 0.3400 1.000 2.000 5.000 10.00 25.00	5931 6823 17226 42484 92154 181752 400946	15:38 16:05 16:33 17:00 17:27 17:54 18:22
03/31/2003-B CCV-00 CCV-01 04/01/2003-B CCV-02 CCV-03 04/09/2003-B CCV-00 CCV-01	5.000 5.000 5.000 5.000 5.000 5.000	5.3900 5.4300 5.2500 4.2800 5.3700 4.7600	15:38 20:36 01:31 04:37 09:26 12:10

Organic EPA 504.1M GC217

Linear and Quadradic RRF's calulated using Area(s)/[Area(is)/Conc(is)] vs Conc(s)

05/19/2003:CL

SDG: SP 303106

FGL Environmental

Continuing Calibration Verification

Organic	EPA	504.1M	GC217	03/31/2003-B
---------	-----	--------	-------	--------------

Parameter Name	Туре	Units	True	Found	%D	%R	DQO	TR#
1,2,3-Trichloropropane	CCV	ug/L	5.000	5.3900	8.0	108	70-130	00
	CCV	ug/L	5.000	5.4300	9.0	109	70-130	01
	CCV	ug/L	5.000	5.2500	5.0	105	70-130	02
	CCV	ug/L	5.000	4.2800	14.4	85.6	70-130	03

%D = % Difference %R = % Recovery DQO=Data Quality Objective

Continuing Calibration Verification

Organic	EPA	504.1M	GC217	04/09/2003-B
---------	-----	--------	-------	--------------

Parameter Name	Туре	Units	True	Found	%D	%R	DQO	TR#
1,2,3-Trichloropropane	CCV	ug/L	5.000	5.3700	7.0	107	70-130	00
	CCV	ug/L	5.000	4.7600	4.8	95.2	70-130	01

%D = % Difference %R = % Recovery DQO=Data Quality Objective

Case Narrative

May 16, 2003

Lab ID : SP 303105

Sota Environmental Tech.,Inc. 16835 W. Bernardo Dr. #212 San Diego, CA 92127

Laboratory Report

Introduction:

This report package contains data and QC for SDG SP 303105

Sample Description	Date Sampled	Date Received	FGL Lab Sample ID #	Matrix
SD-1	03/25/2003	03/27/2003	SP 303105-01	S
SD-2	03/25/2003	03/27/2003	SP 303105-02	S
SD-3	03/25/2003	03/27/2003	SP 303105-03	S
SD-4	03/25/2003	03/27/2003	SP 303105-04	S
SD-QC-1	03/25/2003	03/27/2003	SP 303105-05	S

Sampling and Receipt Information: All samples were received, prepared and analyzed within the method specified holding times. All samples arrived at 4 °C. All samples were checked for pH if acid or base preservation required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Forms.

Quality Control: All samples were prepared and analyzed according to the following tables:

Organic QC

5030B	03/28/2003:A233 All preparation quality controls are within established criteria, except: The following note applies to 4-Bromofluorobenzene: 560 Surrogate percent recoveries not within the Acceptance Range (AR) due to suspected matrix interferences.
8260B	03/28/2003:A - GM207 All analysis quality controls are within established criteria.
	04/04/2003:A - GM207 All analysis quality controls are within established criteria.

RECEIVED

MAY 19 2003

SOTA ENVIRONMENTAL

05/16/2003:CL

Preparation/Analysis Traffic Report

FGL Preparation	Batch ID Matrix		FGL Analysis	Instrument	ARL	М	TR#
Organic Calibration			EPA 8260	GM207	12/30/2002-A	GM	A
8260	03/28/2003-A	SOIL	EPA 8260 EPA 8260	GM207 GM207	03/28/2003-A 04/04/2003-A	GM GM	B C

M: CLP Method Qualifier.

The traffic report number (TR#) is used to organize the data into sections separated by analysis runlogs. Each analysis runlog is assigned a unique letter starting with A. If raw data is included in this package, the raw data for an analysis runlog is numbered using this letter (e.g. A-1 -> A-78). Forms containing the TR# field, may include a two digit number following the letter which identifies which CCV/CCB brackets the data shown within the analysis runlog.

Organic

Organic Analysis Data Sheet - EPA 8260

Date Sampled : 03/25/2003 Date Received : 03/27/2003 Matrix : SOIL Sample ID: SD-1Lab Sample ID: SP 303105-01File: M7032806(B)

Parameter ID	Parameter Name	Units	Dilution	Results	Qualifier	TR#
Surrogates 460-00-4 1868-53-7 17060-07-0 2037-26-5	4-Bromofluorobenzene Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8	% % %	1.00 1.00 1.00 1.00	83.2 106 118 91		B02 B02 B02 B02 B02
Target Analytes 96-18-4	1,2,3-Trichloropropane	ug/kg	1.00	5	U	B02

SDG: SP 303105

Organic Analysis Data Sheet - EPA 8260

Date Sampled : 03/25/2003 Date Received : 03/27/2003 Matrix : SOIL Sample ID: SD-2Lab Sample ID: SP 303105-02File: M7032809(B)

Parameter ID	Parameter Name	Units	Dilution	Results	Qualifier	TR#
Surrogates 460-00-4 1868-53-7 17060-07-0 2037-26-5	4-Bromofluorobenzene Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8	% % %	1.00 1.00 1.00 1.00	78.9 117 122 88		B02 B02 B02 B02 B02
Target Analytes 96-18-4	1,2,3-Trichloropropane	ug/kg	1.00	5	U	B02

SDG: SP 303105

Organic Analysis Data Sheet - EPA 8260

File

Date Sampled : 03/25/2003 Date Received : 03/27/2003 Matrix : SOIL Sample ID: SD-3Lab Sample ID: SP 303105-03

: M7032810(B), M7040406(C)

Parameter ID	Parameter Name	Units	Dilution	Results	Qualifier	TR#
Surrogates 460-00-4 1868-53-7 17060-07-0 2037-26-5	4-Bromofluorobenzene Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8	% % %	5.00 1.00 1.00 1.00	81.4 123 131 86.2	D	C02 B02 B02 B02 B02
Target Analytes 96-18-4	1,2,3-Trichloropropane	ug/kg	5.00	25	UD	C02

SDG: SP 303105

FGL Environmental

Organic Analysis Data Sheet - EPA 8260

Date Sampled: 03/25/2003Date Received: 03/27/2003Matrix: SOIL

Sample ID : SD-4 Lab Sample ID : SP 303105-04 File : M7032811(B)

Parameter ID	Parameter Name	Units	Dilution	Results	Qualifier	TR#
Surrogates 460-00-4 1868-53-7 17060-07-0 2037-26-5	4-Bromofluorobenzene Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8	% % %	1.00 1.00 1.00 1.00	84.6 116 126 88.3		B02 B02 B02 B02 B02
Target Analytes 96-18-4	1,2,3-Trichloropropane	ug/kg	1.00	5	U	B02

SDG: SP 303105

Organic Analysis Data Sheet - EPA 8260

Date Sampled : 03/25/2003 Date Received : 03/27/2003 Matrix : SOIL Sample ID : SD-QC-1 Lab Sample ID : SP 303105-05 File : M7032812(B)

Parameter ID	Parameter Name	Units	Dilution	Results	Qualifier	TR#
Surrogates 460-00-4 1868-53-7 17060-07-0 2037-26-5	4-Bromofluorobenzene Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8	% % %	1.00 1.00 1.00 1.00	86.4 121 127 86.6		B02 B02 B02 B02
Target Analytes 96-18-4	1,2,3-Trichloropropane	ug/kg	1.00	5	U	B02

SDG:

System Monitoring Compound Recovery

TR#	Туре	Lab_Id	BFB 80-140	2BFMe 69-151	12CIE_d4 70-130	Tol_d8 81-120	Tot Out
B02 B02 B02 B02 B02 B02 B02 B02 B02 B02	LCS Blank Sampl MSD Sampl Sampl Sampl Sampl	SP 03032833 SP 03032833 SP 30310501 SP 30310501 SP 30310501 SP 30310501 SP 30310502 SP 30310503 SP 30310504 SP 30310505	81.2 77.0 83.2 84.6 83.2 78.9 84.6 86.4	98.5 108 106 99.6 105 117 123 116 121	108 117 118 110 113 122 131 126 127	90.5 90.5 91 91.8 88.6 88 86.2 88.3 86.6	0 1 0 0 1 2 0 0
C02 C02 C02	LCS Blank Sampl	SP 03032833 SP 03032833 SP 30310503	78.8 78.4 81.4	85.8 92.3 	94.7 100 	89.7 88.9 	1 1 3

8260 03/28/2003-A

BFB = 4-Bromofluorobenzene

2BFMe = Dibromofluoromethane

 $12ClE_d4 = 1,2$ -Dichloroethane-d4

 $Tol_{d8} = Toluene-d8$

05/16/2003:CL

Page: 9

SDG: SP 303105

Laboratory Control Sample

8260 03/28/2003-A

Parameter Name	Units	True	Found	С	%R	DQO	TR#
		·					

DQO: Data Quality Objective.

05/16/2003:CL

Page: 10

Matrix Spike and Duplicate Analysis

8260 03/28/2003-A

Parameter Name	Туре	Units	QC Result	с	QC Reference	с	True	QC	Q	DQO	TR#
						T	-		Ť		

QC: % indicates percent comparison, otherwise values are presented in units shown.

SDG: SP

SP 303105

Preparation Log

Туре	Lab_Id	Date	Time	Who	Initial	Final	Dilution
LCS Blank Sampl MS MSD Sampl Sampl Sampl Sampl	SP 03032833 SP 03032833 SP 30310501 SP 30310501 SP 30310501 SP 30310502 SP 30310503 SP 30310503 SP 30310504 SP 30310505	03/28/2003 03/28/2003 03/28/2003 03/28/2003 03/28/2003 03/28/2003 03/28/2003 03/28/2003 03/28/2003	09:00 09:00 09:00 09:00 09:00 09:00 09:00 09:00 09:00	FSY FSY FSY FSY FSY FSY FSY FSY	5.0g 5.0g 5.0g 5.0g 5.0g 5.0g 5.0g 5.0g	5.0ml 5.0ml 5.0ml 5.0ml 5.0ml 5.0ml 5.0ml 5.0ml 5.0ml	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
LCS Blank Sampl	SP 03032833 SP 03032833 SP 30310503	03/28/2003 03/28/2003 03/28/2003	09:00 09:00 09:00	FSY FSY FSY	5.0g 5.0g 5.0g	5.0ml 5.0ml 5.0ml	1.0 1.0 1.0

8260 03/28/2003-A

Equivalent to CLP Method Blank Summary (Form IV).

SDG: SP 303105

Organic Method Blank Data Sheet - EPA 8260

Date Prepped	: 03/28/2003	Sample ID	:	Method Blank
Date Analyzed	: 03/28/2003	Lab Sample ID	:	SP 030328-33
Matrix	: SOIL	File	:	M7032805(B)

Parameter ID	Parameter Name	Units	Dilution	Results	Qualifier	TR#
Surrogates 460-00-4 1868-53-7 17060-07-0 2037-26-5	4-Bromofluorobenzene Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8	% % %	1.00 1.00 1.00 1.00	77.0 108 117 90.5		B02 B02 B02 B02 B02
Target Analytes 96-18-4	1,2,3-Trichloropropane	ug/kg	1.00	0.00000	U	B02

SDG: SP 303105

Organic Method Blank Data Sheet - EPA 8260

Date Prepped : 03/28/2003	Sample ID : Method Blank
Date Analyzed : 04/04/2003	Lab Sample ID : SP 030328-33
Matrix : SOIL	File : M7040405(C)

Parameter ID	Parameter Name	Units	Dilution	Results	Qualifier	TR#
Surrogates 460-00-4 1868-53-7 17060-07-0 2037-26-5	4-Bromofluorobenzene Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8	% % %	1.00 1.00 1.00 1.00	78.4 92.3 100 88.9		C02 C02 C02 C02 C02
Target Analytes 96-18-4	1,2,3-Trichloropropane	ug/kg	1.00	0.00000	U	C02

SP 303105

m/e	Ref	Absolute	Relative	DQO	
50	.95	25368	16.0	15-40	Pass
75	95	71491	45.1	30-60	Pass
95	95	158677	100.0	100-100	Pass
96	· 95	10988	6.9	5-9	Pass
173	174	665	0.5	0-2	Pass
174	95	144107	90.8	50-100	Pass
175	174	10118	7.0	5-9	Pass
176	174	139776	97.0	95-101	Pass
177	176	9342	6.7	5-9	Pass

Instrument Performance Check

Organic EPA 8260 GM207 12/30/2002-A

Туре	Lab_Id	D/F	Date	Time	Data File	TR#
Tune	SP 02123001	1.00	12/30/2002	11:25	M7123001.LIM	A00
Rinse	SP 02123001	1.00	12/30/2002	11:47	M7123002.LIM	A00
CALS	SP 02123001	1.00	12/30/2002	12:33	M7123003.LIM	A00
CALS	SP 02123002	1.00	12/30/2002	13:18	M7123004.LIM	A00
CALS	SP 02123003	1.00	12/30/2002	14:01	M7123005.LIM	A00
CALS	SP 02123004	1.00	12/30/2002	14:33	M7123006.LIM	A00
CALS	SP 02123005	1.00	12/30/2002	15:06	M7123007.LIM	A00
CALS	SP 02123006	1.00	12/30/2002	15:39	M7123008.LIM	A00
CALS	SP 02123007	1.00	12/30/2002	16:12	M7123009.LIM	A00
Rinse	SP 02123001	1.00	12/30/2002	16:45	M7123010.LIM	A00
CALS	SP 02123008	1.00	12/30/2002	17:18	M7123011.LIM	A00
CALS	SP 02123009	1.00	12/30/2002	17:51	M7123012.LIM	A00
CALS	SP 02123010	1.00	12/30/2002	18:25	M7123013.LIM	A00
CALS	SP 02123011	1.00	12/30/2002	18:53	M7123014.LIM	A00
CALS	SP 02123012	1.00	12/30/2002	19:25	M7123015.LIM	A00
CALS	SP 02123013	1.00	12/30/2002	19:58	M7123016.LIM	A00

D/F Dilution factor.

SP 303105

	DQO	Relative	Absolute	Ref	m/e
Pass	15-40	20.2	16238	95	50
Pass	30-60	51.9	41780	95	75
Pass	100-100	100.0	80432	95	95
Pass	5-9	7.1	5733	95	96
Pass	0-2	0.0	0	174	173
Pass	50-100	95.3	76638	· 95	174
Pass	5-9	7.4	5677	174	175
Pass	95-101	98.1	75166	174	176
Pass	5-9	6.6	4934	176	177

Instrument Performance Check

	75	95	41780	51.9	30-60	Pass	
	95	95	80432	100.0	100-100	Pass	
	96	95	5733	7.1	5-9	Pass	
	173	174	0	0.0	0-2	Pass	
	174	[·] 95	76638	95.3	50-100	Pass	
	175	174	5677	7.4	5-9	Pass	
	176	174	75166	98.1	95-101	Pass	
	177	176	4934	6.6	5-9	Pass	
l	L				1		

Туре	Lab_Id	D/F	Date	Time	Data File	TR#
Tune	SP 03032801	1.00	03/28/2003	12:28	M7032801.LIM	B00
CCV	SP 03032801	1.00	03/28/2003	13:39	M7032802.LIM	B00
CCV	SP 03032802	1.00	03/28/2003	14:29	M7032803.LIM	B01
LCS	SP 03032833	1.00	03/28/2003	15:01	M7032804.LIM	B02
Blank	SP 03032833	1.00	03/28/2003	15:35	M7032805.LIM	B02
Sampl	SP 30310501	1.00	03/28/2003	16:08	M7032806.LIM	B02
MŠ	SP 30310501	1.00	03/28/2003	16:41	M7032807.LIM	B02
MS	SP 30310502	1.00	03/28/2003	16:41	M7032807.LIM	B02
MSD	SP 30310501	1.00	03/28/2003	17:14	M7032808.LIM	B02
MSD	SP 30310502	1.00	03/28/2003	17:14	M7032808.LIM	B02
Sampl	SP 30310502	1.00	03/28/2003	17:47	M7032809.LIM	B02
Sampl	SP 30310503	1.00	03/28/2003	18:20	M7032810.LIM	B02
Sampl	SP 30310504	1.00	03/28/2003	18:53	M7032811.LIM	B02
Sampl	SP 30310505	1.00	03/28/2003	19:26	M7032812.LIM	B02

D/F Dilution factor.

.*

m/e	Ref	Absolute	Relative	DQO	
. 50	95	17107	18.5	15-40	Pass
75	95	45246	48.9	30-60	Pass
95	95	92462	100.0	100-100	Pass
96	95	6418	6.9	5-9	Pass
173	174	154	0.2	0-2	Pass
174	95	90370	97.7	50-100	Pass
175	174	6313	7.0	5-9	Pass
176	174	87302	96.6	95-101	Pass
177	176	5757	6.6	5-9	Pass

Instrument Performance Check

Organic EPA 8260 GM207 04/04/2003-A

Туре	Lab_Id	D/F	Date	Time	Data File	TR#
Tune CCV CCV LCS Blank Sampl Sampl	SP 03040401 SP 03040401 SP 03040402 SP 03032833 SP 03032833 SP 30310503 SP 30310504	1.00 1.00 1.00 1.00 1.00 5.00	04/04/2003 04/04/2003 04/04/2003 04/04/2003 04/04/2003 04/04/2003 04/04/2003	15:00 15:24 17:47 18:19 18:52 19:59 20:32	M7040401.LIM M7040402.LIM M7040403.LIM M7040404.LIM M7040405.LIM M7040406.LIM M7040407 LIM	C00 C00 C01 C02 C02 C02 C02
Sampl	SP 30310505	5.00	04/04/2003	21:05	M7040408.LIM	C02

D/F Dilution factor.

SDG: SP 303105

7

Initial and Continuing Calibration Verification

Parameter Name	Conc	Data	Time
4-Bromofluorobenzene	ng/L	RBE	12/30
	25.00	0.98280	12:33
Average = 0.9737 ± 0.026958	25.00	0.97221	13:18
~~~	25.00	0.97471	14:01
$%$ RSD 2.77 $\leq 15$	25.00	0.98295	14:33
	25.00	0.94733	15:06
	25.00	0.93/32	15:39
	25.00	0.90930	17.18
	25.00	0.99888	17:51
	25.00	0.99867	18:25
	25.00	0.98427	18:53
	25.00	0.99617	19:25
	25.00	0.97664	19:58
03/28/2003-A CCV-00	25.00	0.73150	13:39
CCV-01	25.00	0.81599	14:29
04/04/2003-A CCV-00	25.00	0.75728	15:24
CCV-01	25.00	0.78847	17:47
Dibromofluoromethane	ug/L	RRF	12/30
Automatic 0 5038 10 010074	25.00	0.48886	12:33
Average = $0.5038 \pm 0.010074$	25.00	0.50198	13:18
%RSD 2.00 < 15	25.00	0.30494	14:01
	25.00	0.49826	15:06
	25.00	0.49239	15:39
	25.00	0.51268	16:12
	25.00	0.51501	17:18
	25.00	0.50681	17:51
	25.00	0.51421	18:25
	25.00	0.50965	18:53
	25.00	0.51491	19:58
03/28/2003-A CCV-00	25.00	0.47733	13:39
CCV-01	25.00	0.46586	14:29
1,2-Dichloroethane-d4	ug/L	RRF	12/30
	25.00	0.33810	12:33
Average = $0.3452 \pm 0.0083081$	25.00	0.34963	13:18
% PSD 241 - 15	25.00	0.34703	14:01
ATOD 4.41 ≥ 10	25.00	0.33100	14:33
с.	25.00	0.33890	15:39
	25.00	0.35237	16:12
	25.00	0.35549	17:18
	25.00	0.35703	17:51
	25.00	0.35337	18:25
	25.00	0.34561	18:53
	25.00	0.34517	19:25
03/28/2003-A_CCV-00	25.00	0.37019	13:39
CCV-01	25.00	0.37086	14:29
Toluene-d8	ug/L	RRF	12/30
	25.00	1.1860	12:33
Average = $1.191 \pm 0.0074435$	25.00	1.1888	13:18
	25.00	1.1949	14:01

## Organic EPA 8260 GM207

F

Parameter Name	Conc	Data	Time
Toluene-d8 %RSD 0.63 ≤ 15	ug/L 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00	RRF 1.1904 1.1864 1.1966 1.2028 1.1955 1.1871 1.1962 1.1872 1.1962 1.1730	12/30 14:33 15:06 15:39 16:12 17:18 17:51 18:25 18:53 19:25 19:58
03/28/2003-A CCV-00	25.00	1.0987	13:39
CCV-01	25.00	1.1360	14:29
1,2,3-Trichloropropane	ug/L	RRF	12/30
	0.5000	0.62687	13:18
Average = $0.6272 \pm 0.039264$	1.000	0.70966	12:33 14:01
%RSD 6.26 ≤ 15	10.00	0.63172	14:33
	50.00	0.61682	15:06
	100.0	0.61663	15:39
	200.0	0.59989	16:12
03/28/2003-A CCV-00	50.00	0.48182	13:39
04/04/2003-A CCV-00	50.00	0.54873	15:24

Linear and Quadradic RRF's calulated using Area(s)/[Area(is)/Conc(is)] vs Conc(s)

## **Continuing Calibration Verification**

### Organic EPA 8260 GM207 03/28/2003-A

Parameter Name	Туре	Units	True	Found	%D	%R	DQO	TR#
1,2,3-Trichloropropane	CCV	ug/L	50.00	38.4095	23.2	76.8	70-130	00

%D = % Difference %R = % Recovery DQO=Data Quality Objective

## **Continuing Calibration Verification**

## Organic EPA 8260 GM207 04/04/2003-A

Parameter Name	Туре	Units	True	Found	%D	%R	DQO	TR#
1,2,3-Trichloropropane	CCV	ug/L	50.00	43.7432	12.5	87.5	70-130	00

%D = % Difference %R = % Recovery DQO=Data Quality Objective

### Internal Standard Area and RT Summary

TR#	Туре	Lab_Id	D/F	Time	Pentafluorob Area	enzene 1,4-difluorobenzene RT Area RT		enzene RT	2-Bromo-1-Chloropropane Area RT	
	DQO DQO	Upper Limit Lower Limit			1184838 296210	12.60 11.60	1781106 445277	13.71 12.71	791332 197833	16.44 15.44
00 00 00 00 00 00 00 00 00	Rinse CALS CALS CALS CALS CALS CALS CALS CALS	<ul> <li>SP 02123001</li> <li>SP 02123001</li> <li>SP 02123002</li> <li>SP 02123003</li> <li>SP 02123004</li> <li>SP 02123005</li> <li>SP 02123006</li> <li>SP 02123007</li> <li>SP 02123001</li> <li>SP 02123008</li> <li>SP 02123009</li> <li>SP 02123009</li> </ul>	$ \begin{array}{r} 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00 \end{array} $	11:47 12:33 13:18 14:01 14:33 15:06 15:39 16:12 16:45 17:18 17:51	527811 486173 466596 483654 482126 485674 498759  478785 487335	12.10 12.10 12.10 12.10 12.10 12.10 12.10 12.10 12.10 12.10	810753 763323 743048 767183 770203 767505 800391  763572 771794 7675044	 13.21 13.21 13.21 13.21 13.21 13.21 13.21  13.21 13.21 13.21 13.21 13.21	371915 354880 352224 359177 369735 376591 412899  362267 366358 265480	 15.94 15.94 15.93 15.94 15.94 15.94  15.94 15.94 15.94
00 00 00 00	CALS CALS CALS CALS	SP 02123010 SP 02123011 SP 02123012 SP 02123013	1.00 1.00 1.00 1.00	18:25 18:53 19:25 19:58	478414 481981 478511 480923	12.10 12.10 12.10 12.10	767944 762242 758808 780907	13.21 13.21 13.21 13.21	356480 356497 356744 360312	15.94 15.94 15.94 15.94

### Organic EPA 8260 GM207 12/30/2002-A

Organic EPA 8260 GM207 12/30/2002-A

TR#	Туре	Lab_Id	D/F	Time	1,4-Dichlorobe Area	nzene-d4 RT
	DQO DQO	Upper Limit Lower Limit			764476 191119	21.43 20.43
00 00 00 00 00 00 00 00 00 00 00	Rinse CALS CALS CALS CALS CALS CALS Rinse CALS CALS	SP 02123001 SP 02123001 SP 02123002 SP 02123003 SP 02123004 SP 02123005 SP 02123006 SP 02123007 SP 02123001 SP 02123008 SP 02123008	$ \begin{array}{c} 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00$	11:47 12:33 13:18 14:01 14:33 15:06 15:39 16:12 16:45 17:18 17:51	346857 331411 331926 328355 347694 354641 391180  327661 326276	20.93 20.94 20.93 20.93 20.93 20.93 20.93 20.93  20.93 20.93
00	CALS	SP 02123010	1.00	18:25	331650	20.93

DQO Area 50-200% of the initial CCV value, RT  $\pm$  0.5 minutes. Table continued on page 22

TR#	Туре	Lab_Id	D/F	Time	1,4-Dichlorob Area	enzene-d4 RT
	DQO DQO	Upper Limit Lower Limit			764476 191119	21.43 20.43
00 00 00	CALS CALS CALS	SP 02123011 SP 02123012 SP 02123013	1.00 1.00 1.00	18:53 19:25 19:58	325673 326541 334109	20.93 20.93 20.94

### Organic EPA 8260 GM207 12/30/2002-A

DQO Area 50-200% of the initial CCV value, RT  $\pm$  0.5 minutes.

SDG: SP 303105

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	TR#	Туре	Lab_Id	D/F	Time	Pentafluorob Area	enzene RT	1,4-difluorol Area	oenzene RT	2-Bromo-1-Chlo Area	oropropane RT
00CCVSP 030328011.0013:3933385812.1048216113.2122235115.901CCVSP 030328021.0014:2936954012.1051073313.2123542815.902LCSSP 030328331.0015:0133952812.1049329013.2121698715.902BlankSP 030328331.0015:3528391012.1043142913.2119286215.902SamplSP 303105011.0016:0823824512.1035461013.2115620515.902MSSP 303105011.0016:4128228712.1040902313.2117781915.902MSDSP 303105011.0017:1426435312.1039789713.2117772615.902SamplSP 303105031.0018:2018180712.1028708813.2115534615.902SamplSP 303105041.0018:5321939512.1033267213.2114872315.902SamplSP 303105051.0019:2620754712.1032978813.2114951615.902SamplSP 303105051.0019:5922090412.1034670413.2119140315.902SamplSP 303105051.0019:5922090412.1034670413.2119140315.902SamplSP 30310505<		DQO DQO	Upper Limit Lower Limit			667716 166929	12.60 11.60	964322 241081	13.71 12.71	444702 111176	16.44 15.44
02   Sampl   XXXXXXXX   1.00   21:04   479770   12.10   689853   13.21   308173   15.9	00 01 02 02 02 02 02 02 02 02 02 02 02 02 02	CCV CCV LCS Blank Sampl MSD Sampl Sampl Sampl Sampl Sampl Sampl Sampl Sampl	SP 03032801 SP 03032802 SP 03032833 SP 03032833 SP 30310501 SP 30310501 SP 30310501 SP 30310502 SP 30310503 SP 30310504 SP 30310505 XXXXXXXX XXXXXXXXXX	$\begin{array}{c} 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 5.00\\ 20.00\\ 1.00\\ \end{array}$	13:39 14:29 15:01 15:35 16:08 16:41 17:14 17:47 18:20 18:53 19:26 19:59 20:31 21:04	333858 369540 339528 283910 238245 282287 264353 216584 181807 219395 207547 220904 411840 479770	12.10 12.10 12.10 12.10 12.10 12.10 12.10 12.10 12.10 12.10 12.10 12.10 12.10 12.10 12.10 12.10	482161 510733 493290 431429 354610 409023 397897 340534 287088 332672 329788 346704 601810 689853	13.21 13.21 13.21 13.21 13.21 13.21 13.21 13.21 13.21 13.21 13.21 13.21 13.21 13.21 13.21 13.21 13.21 13.21	222351 235428 216987 192862 156205 177819 177726 155346 131235 148723 149516 191403 281248 308173	15.94 15.94 15.94 15.94 15.94 15.94 15.94 15.94 15.94 15.94 15.93 15.94 15.94 15.94

# Internal Standard Area and RT Summary

Organic EPA 8260 GM207 03/28/2003-A

<b>Organic</b>	EPA	8260	GM207	03/28/2003-A
----------------	-----	------	-------	--------------

TR#	Туре	Lab_Id	D/F	Time	1,4-Dichlorobe Area	nzene-d4 RT
	DQO DQO	Upper Limit Lower Limit			554208 138552	21.43 20.43
00 01 02 02 02 02 02 02 02 02 02 02	CCV CCV LCS Blank Sampl MSD Sampl Sampl	SP 03032801 SP 03032802 SP 03032833 SP 03032833 SP 30310501 SP 30310501 SP 30310501 SP 30310502 SP 30310503	$ \begin{array}{c} 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ \end{array} $	13:39 14:29 15:01 15:35 16:08 16:41 17:14 17:47 18:20	277104 246372 222290 197649 135333 166533 164496 134158 77930	20.93 20.93 20.93 20.94 20.93 20.93 20.93 20.93 20.93 20.94
02 02 02	Sampl Sampl Sampl	SP 30310504 SP 30310505 XXXXXXXX	1.00 1.00 5.00	18:53 19:26 19:59	107905 96633 193048	20.93 20.94 20.93

DQO Area 50-200% of the initial CCV value, RT  $\pm$  0.5 minutes. Table continued on page 24

In	ternal	Stand	lard /	Area	and	RT	Summary
----	--------	-------	--------	------	-----	----	---------

TR#	Туре	Lab_Id	D/F	Time	1,4-Dichlorobenzene-d4 Area RT	
	DQO DQO	Upper Limit Lower Limit			554208 138552	21.43 20.43
02 02 02	Sampl Sampl Sampl	XXXXXXXX XXXXXXXX XXXXXXXX	20.00 1.00 5.00	20:31 21:04 21:37	285952 361439 41074	20.93 20.93 20.93

### Organic EPA 8260 GM207 03/28/2003-A

DQO Area 50-200% of the initial CCV value, RT  $\pm$  0.5 minutes.

## Internal Standard Area and RT Summary

TR#	Туре	Lab_Id	D/F	Time	Pentafluorob Area	enzene RT	1,4-difluorot Area	enzene RT	2-Bromo-1-Chlo Area	oropropane RT
	DQO DQO	Upper Limit Lower Limit		·	1088622 272156	12.60 11.60	1487780 371945	13.71 12.71	638690 159673	16.44 15.44
00 01 02 02 02 02 02 02 02 02 02	CCV CCV LCS Blank Sampl Sampl Sampl Sampl Sampl	SP 03040401 SP 03040402 SP 03032833 SP 03032833 SP 30310503 SP 30310504 SP 30310505 XXXXXXXX XXXXXXX	$ \begin{array}{c} 1.00\\ 1.00\\ 1.00\\ 5.00\\ 5.00\\ 5.00\\ 10.00\\ 1.00\\ \end{array} $	15:24 17:47 18:19 18:52 19:59 20:32 21:05 21:38 22:10	544311 548515 498124 493307 560608 472122 432588 378870 274222	12.10 12.10 12.10 12.11 12.10 12.11 12.10 12.10 12.10 12.10	743890 743405 677199 697960 785705 679839 630071 544331 432444	13.21 13.21 13.21 13.21 13.21 13.21 13.21 13.21 13.21 13.21	319345 319138 284110 297021 325427 286568 268337 231127 174252	15.94 15.94 15.94 15.94 15.94 15.94 15.94 15.94 15.94

### Organic EPA 8260 GM207 04/04/2003-A

#### Organic EPA 8260 GM207 04/04/2003-A

TR#	Туре	Lab_Id	D/F	Time	1,4-Dichlorobe Area	nzene-d4 RT
[*]	DQO DQO	Upper Limit Lower Limit	'		756582 189146	21.43 20.43
00 01 02 02 02 02 02 02 02 02 02	CCV CCV LCS Blank Sampl Sampl Sampl Sampl Sampl	SP 03040401 SP 03040402 SP 03032833 SP 03032833 SP 30310503 SP 30310504 SP 30310505 XXXXXXXX XXXXXXXX	$ \begin{array}{r} 1.00\\ 1.00\\ 1.00\\ 5.00\\ 5.00\\ 5.00\\ 10.00\\ 1.00\\ \end{array} $	15:24 17:47 18:19 18:52 19:59 20:32 21:05 21:38 22:10	378291 360203 317585 331053 347186 284656 257800 222820 155149	20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93

DQO Area 50-200% of the initial CCV value, RT  $\pm$  0.5 minutes.

# **Raw Data**

05/16/2003:CL

.

## EPA 8260 - GM207 20021230-A

<pre>x:DATA FILE:»O</pre>	:\MAS	SPEC\MS7	\MS71230.	SEQ
---------------------------	-------	----------	-----------	-----

Туре	#	Freq	Requirement	Status	Note	Standard	Dilution	Expiration
Tune CCV	1	8.6 999?	1/ 12:Hours $1 \approx /$ 12:Hours	PASS FAIL >		20021016FSY-02	2500.0	04/25/2003
		1/1		PASS		20021016FSY-02	1000.0	04/25/2003
CALS	13	1/1	5≈/305:Days	PASS		20021227FSY-01	25000	11/30/2003
						20021227FSY-01	50000	11/30/2003
						20021227FSY-01	5000	11/30/2003
						20021227FSY-01	2500.0	11/30/2003
						20021227FSY-01	500.0	11/30/2003
						20021227FSY-01	250.00	11/30/2003
						20021227FSY-01	125.00	11/30/2003
						20021227FSY-04 20021227FSY-02 20021227FSY-03	5000 5000 5000	01/30/2003 05/24/2003 01/28/2003
						20021227FSY-04 20021227FSY-02 20021227FSY-03	2500.0 2500.0 2500.0	01/30/2003 05/24/2003 01/28/2003
						20021227FSY-04 20021227FSY-02 20021227FSY-03	1000.0 1000.0 1666.66	01/30/2003 05/24/2003 01/28/2003
						20021227FSY-04 20021227FSY-02 20021227FSY-03	500.0 500.0 1250.00	01/30/2003 05/24/2003 01/28/2003
	,					20021227FSY-04 20021227FSY-02 20021227FSY-03	250.00 250.00 1000.0	01/30/2003 05/24/2003 01/28/2003
						20021227FSY-04 20021227FSY-02 20021227FSY-03	125.00 125.00 833.33	01/30/2003 05/24/2003 01/28/2003

Table continued on page 2

#### EPA 8260 - GM207 20021230-A

Manual Rejections by SP :FSY at 01/15/2003:14:35:22 SP 02123007 CALS A -16:12 00 Rerun-Bromomethane (Methyl Bromide),

Manual Rejections by SP :FSY at 01/15/2003:14:35:52 SP 02123001 CALS A -12:33 00 Rerun-n-Butylbenzene,

Manual Rejections by SP :FSY at 01/15/2003:14:36:29 SP 02123011 CALS A -18:53 00 Rerun-Ethanol,

Manual Rejections by SP :FSY at 01/15/2003:14:37:30 SP 02123011 CALS A -18:53 00 Rerun-1,4-Dioxane,

«:NCR:»Analysis-Limits-20030115ORG-006 SP 02123011 CALS A -18:53 00

Manual Rejections by SP :FSY at 01/15/2003:14:40:48 SP 02123002 CALS A -13:18 00 Rerun-tert-Butanol, Rerun-DBCP,

Manual Rejections by SP :FSY at 01/15/2003:14:41:10 SP 02123001 CALS A -12:33 00 Rerun-DBCP,

«:NCR:»Analysis-Limits-20030115ORG-006
SP 02123001 CALS A -12:33 00
«:STORAGE:»S:\2002_12\RAW_DATA\MS71230A.PDF

05/16/2003:CL

## INSERT TR# RAW DATA FILE HERE S:\2002_12\RAW_DATA\MS71230A.PDF EPA 8260 - GM207 20021230-A

05/16/2003:CL

### RAW DATA FILE MARKER PAGETR#

Page: 3
### EPA 8260 - GM207 20030328-A

«:DATA FILE:»O:\MAS_SPEC\MS7\MS70328.SEQ

«:EDITED:»04/07/2003:16:25-FSY

SAMP_NAME	TYPE	CHANGE
SP 302967-01 A	DILUTION	1.00 » 5.00
SP 302967-01 A	DILUTION	1.00 » 20.00
SP 303113-01 A	DILUTION	1.00 » 5.00

Туре	#	Freq	Requirement	Status	Note	Standard	Dilution	Expiration
Tune CCV	1 2	9.2 7.1	1/ 12:Hours 1 ≈/ 12:Hours	PASS PASS		20021223FSY-01 20021106DJP-01 20021129DJP-01 20021216DJP-02	2500.0 1250.0 1000.0 1000.0	04/25/2003 10/09/2003 06/29/2003 03/31/2005
InStd CALS	1_0	 1/88	1/ 1:Sample 5≈/365:Days	PASS PASS		20030113FSY-02 20030113FSY-01 20021227FSY-02 20021223FSY-01	3333.3 1000.0 1000.0 1000.0	11/25/2003 04/24/2003 05/24/2003 04/25/2003

«:PREP MAP:»

8260 20030328A233

«:NCR:»Analysis-Limits-200304170RG-005

«:STORAGE:»S:\2003_03\RAW_DATA\M70328.PDF

05/16/2003:CL

Page: 1

SDG: SP 303105

## **INSERT TR# RAW DATA FILE HERE**

S:\2003_03\RAW_DATA\M70328.PDF EPA 8260 - GM207 20030328-A

05/16/2003:CL

### RAW DATA FILE MARKER PAGETR#

Page: 2

# EPA 8260 - GM207 20030404-A

«:DATA FILE:»O:\MAS_SPEC\MS7\MS70404.SEQ

«:EDITED:»04/07/2003:17:22-FSY

SAMP_NAME	TYPE	CHANGE
SP 030404-33 A LCS	LAB_ID	SP 03040433A LCS » SP 03032833A1LCS
SP 030404-33 A BLANK	LAB_ID	SP 03040433A Blank » SP 03032833A1Blank
SP 303105-03 A	DILUTION	1.00 » 5.00
SP 303105-04 A	DILUTION	1.00 » 5.00
SP 303105-05 A	DILUTION	1.00 » 5.00
SP 303113-01 A	DILUTION	1.00 » 10.00
STK3311616-01 A	LAB_ID	STK331161-0 ASampl » STK33116101A Sampl

Туре	#	Freq	Requirement	Status	Note	Standard	Dilution	Expiration
Tune CCV	1 2	7.2 4.4	1/ 12:Hours 1 ≈/ 12:Hours	PASS PASS		20021223FSY-01 20021106DJP-01 20021129DJP-01 20021216DJP-02	2500.0 1250.0 1000.0 1000.0	04/25/2003 10/09/2003 06/29/2003 03/31/2005
InStd CALS	1 0	 1/95	1/ 1:Sample 5≈/365:Days	PASS PASS		20030113FSY-02 20030113FSY-01 20021227FSY-02 20021223FSY-01	3333.3 1000.0 1000.0 1000.0	11/25/2003 04/24/2003 05/24/2003 04/25/2003

«:NCR:»Analysis-Limits-20030417ORG-006

«:STORAGE:»S:\2003_04\RAW_DATA\M70404.PDF

«:PREP MAP:» 8260

20030328A233



SDG: SP 303105

# INSERT TR# RAW DATA FILE HERE S:\2003_04\RAW_DATA\M70404.PDF EPA 8260 - GM207 20030404-A

05/16/2003:CL

### RAW DATA FILE MARKER PAGETR#

Page: 2

APPENDIX B

.

.

•



PHOTO 1: Northeast of Small Lower Lake Stockpile Location



PHOTO 2: Small Lower Lake Stockpile Location



PHOTO 3: Small Lower Lake and Facing the Stockpile Material



PHOTO 4: Diver Sampling at Small Lower Lake



PHOTO 5: Diver Sampling at Small Lower Lake



PHOTO 6: Large Lower Lake, Facing the Stockpile Location



PHOTO 7: Large Lower Lake at the Stockpile Location



PHOTO 8: Diver Sampling at Large Lower Lake



PHOTO 9: Background Surface Water Sampling Location (1) at Haines Canyon Creek



PHOTO 10: Background Surface Water Sampling Location (2) at Haines Canyon Creek



·



### DEPARTMENT OF THE ARMY

CORPS OF ENGINEERS HTRW CENTER OF EXPERTISE 12565 WEST CENTER ROAD OMAHA, NEBRASKA 68144-3869

REPLY TO ATTENTION OF:

October 8, 2002

Hazardous, Toxic and Radioactive Waste Center of Expertise

Applied Physics & Chemistry Laboratory ATTN: Kevin Xie 13760 Magnolia Avenue Chino, CA 91710

Gentlemen:

This correspondence addresses the recent evaluation of Applied Physics & Chemistry Laboratory of Chino, CA by the U.S. Army Corps of Engineers (USACE) for chemical analysis in support of the USACE Hazardous, Toxic and Radioactive Waste Program.

Your laboratory is now validated for the parameters listed below:

		•
METHOD	PARAMETERS	MATRIX ⁽¹⁾
9056/300.0	Anions ⁽⁴⁾	Water ⁽²⁾
9010B/9012A	Cyanide	Water ⁽²⁾
9013/9012A	Cyanide	Solids ^{) (2)}
8151A	Herbicides	Water ⁽²⁾
8151A	Herbicides	Solids ⁽²⁾
1664	Oil & Grease	Water ⁽²⁾
8081A	Organochlorine Pesticides	Water ⁽²⁾
8081A	Organochlorine Pesticides	Solids ⁽²⁾
8082	Polychlorinated Biphenyls	Water ⁽²⁾
8082	Polychlorinated Biphenyls	Solids ⁽²⁾
8310	Polynuclear Aromatic Hydrocarbons	Water ⁽²⁾
8310	Polynuclear Aromatic Hydrocarbons	Solids ⁽²⁾
8270C	Semivolatile Organics	Water ⁽²⁾
8270C	Semivolatile Organics	Solids ⁽²⁾
6010B/7000A	TAL Metals ⁽³⁾	Water ⁽²⁾
6010B/7000A	TAL Metals ⁽³⁾	Solids ⁽²⁾
Mod 8015	TPH - GRO/DRO	Water ⁽²⁾
Mod 8015	TPH - GRO/DRO	Solids ⁽²⁾
8260B	Volatile Organics	Water ⁽²⁾
8260B	Volatile Organics	Solids ⁽²⁾

2 –

Remarks:

1) 'Solids' includes soils, sediments, and solid waste.

- 2) The laboratory has successfully analyzed a proficiency testing (PT) sample for this method/matrix.
- 3) TAL Metals: Aluminum, antimony, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, nickel, potassium, selenium, silver, sodium, thallium, vanadium, and zinc.
- 4) Anions: Chloride, fluoride, sulfate, nitrate, nitrite, and ortho-phosphate

Based on the successful analysis of the proficiency testing (PT) samples and the outcome of the laboratory audit conducted by the Navy on October 23-25, 2001; your laboratory will be validated for sample analysis by the methods listed above. Note that any corrective action committed to by your laboratory as a result of the Navy inspection will also apply to this USACE validation. The period of validation is based on approval by the Navy and expires on January 8, 2004.

The USACE reserves the right to conduct additional laboratory inspection or to suspend validation status for any or all of the listed parameters if deemed necessary. It should be noted that your laboratory may not subcontract USACE analytical work to any other laboratory location without the approval of this office. This laboratory validation does not guarantee the delivery of any analytical samples from a USACE Contracting Officer Representative.

Any questions of comments can be directed to Richard Kissinger at (402) 697-2569. General questions regarding laboratory validation may be directed to the Laboratory Validation Coordinator at (402) 697-2574.

Sincerely,

Marcia C. Davies, Ph.D. Director, USACE Hazardous, Toxic and Radioactive Waste Center of Expertise





### STATE OF CALIFORNIA DEPARTMENT OF HEALTH SERVICES ENVIRONMENTAL LABORATORY ACCREDITATION PROGRAM

# **ENVIRONMENTAL LABORATORY CERTIFICATION**

Is hereby granted to

# **APPLIED P & CH LABORATORY**

# SOUTHERN CALIFORNIA

### **13760 MAGNOLIA AVENUE**

### CHINO, CA 91710

Scope of certification is limited to the "Accredited Fields of Testing" which accompanies this Certificate.

Continued certification status depends on successful completion of site visit, proficiency testing studies, and payment of applicable fees.

This Certificate is granted in accordance with provisions of Section 100825, et seq. of the Health and Safety Code.

Certificate No: Expiration Date: Effective Date: 1431 01/31/2005 01/01/2003

Berkeley, California subject to forfeiture or revocation.

George C. Kulys

George C. Kulasingam, Ph.D. Program Chief Environmental Laboratory Accreditation Program

# State of California—Health and Human Services Agency Department of Health Services



California Department of Health Services DIANA M. BONTÁ, R.N., Dr. P.H. Director



GRAY DAVIS Governor

May 1, 2002

Mr. Dominic Lau Laboratory Director Applied P & Ch Laboratory 13760 Magnolia Avenue Chino, CA 91710

NELAP ON-SITE ASSESSMENT REPORT: February 20, 2002 APPLICATION REFERENCE NUMBER: NP0105-16 NEW DATES OF ASSESSMENT: January 22-24, 2002

Dear Mr. Lau:

The Environmental Laboratory Accreditation Program (ELAP), acting as a primary accreditation authority has received and conducted a detailed review of your laboratory's Corrective Action Report (CAR).

Your CAR was submitted in a timely manner and we have found your plan of corrective actions as described in your CAR to be acceptable.

Your laboratory has completed the on-site assessment aspect of the NELAP accreditation process.

Please be advised that failure to implement the corrective actions as stated in your corrective action report may result in denial/revocation for fields of testing, specific methods, or analytes within those fields of testing (NELAC Standards 4.4.1 and 4/1/3 g).

For items that you specify an estimated date of completion at a future time, your laboratory is obligated to inform ELAP of actual completion and implementation and have documentation of corrective actions available for ELAP upon request.

Should you have any questions or require further assistance, please contact Nelson Lan.



Do your part to help California save energy. To learn more about saving energy, visit the following web site: www.consumerenergycenter.org/flex/index.html

Mr. Dominic Lau Applied P & Ch Laboratory Page 2 May 1, 2002

Remarks: The evaluation of your corrective action response (CAR) for the aquatic toxicity bioassay has been completed and found satisfactory by Steve Boggs on April 24, 2002.

Sincerely,

George C. Kulyn

George C. Kulasingam, Ph.D. Program Chief Environmental Laboratory Accreditation Program

Cc: Nelson Lan Assessment Team Leader

BY CERTIFIED MAIL ARTICLE NUMBER: 7000 0600 0023 8768 3497 RETURN RECEIPT REQUESTED

### DEPARTMENT OF HEALTH SERVICES

2151 BERKELEY WAY ERKELEY, CA 94704-1011

(510) 540-2800

February 2, 2000

DOMINIC LAU APPLIED P & CH LABORATORY 13760 MAGNOLIA AVENUE CHINO, CA 91710-

Dear DOMINIC LAU:

This is to advise you that the laboratory named above has been certified as an environmental testing laboratory pursuant to the provisions of the California Environmental Laboratory Improvement Act of 1988 (Health and Safety Code (HSC), Division 101, Part 1, Chapter 4, commencing with Section 100825).

The Fields of Testing for which this laboratory has been certified under this Act are indicated in the enclosed "List of Approved Fields of Testing and Analytes." Certification shall remain in effect until **January 31, 2001** unless revoked. This certificate is subject to an annual fee as prescribed by Section 100860(a), HSC, due on January 31, 2000. Your application for renewal must be received 90 days before the expiration of your certificate to remain in force according to the California Code of Regulations, Title 22, Division 4, Chapter 19, Section 64801 through 64827.

Please note that your laboratory is required to notify the Environmental Laboratory Accreditation Program of any major changes in the laboratory such as the transfer of ownership, change of laboratory director, change in location, or structural alterations which may affect adversely the quality of analyses (Section 100845(b) and (d), HSC).

Your continued cooperation is essential in order to maintain a reputation for the high quality of the data produced by environmental laboratories certified by the State of California.

If you have any questions, please contact Scott Nee at (213) 580-5731.

Sincerely,

George C. Kuly

George C. Kulasingam, Ph.D. Program Chief Environmental Laboratory Accreditation Program

Enclosure





Certificate No.: 1431

### CALIFORNIA DEPARTMENT OF HEALTH SERVICES -ENVIRONMENTAL LABORATORY ACCREDITATION PROGRAM List of Approved Fields of Testing and Analytes

APPLIED P & CH LABORATORY			Certificate No.	1431
13760 MAGNOLIA AVENUE	PHONE No.	(909) 590-1828	Expiration Date	01/31/2001
CHINO, CA	COUNTY	SAN BERNARDIN	0	

### 01 Microbiology of Drinking Water and Wastewater

- 01.01A Total and Fecal Coliform in Drinking Water by Multiple Tube Fermentation
- 01.04A Total and Fecal Coliform in Drinking Water by Clark's Presence/Absence
- 01.05 Heterotrophic Plate Count
- 01.06 Total Coliform in Wastewater by Multiple Tube Fermentation
- 01.07 Fecal Coliform in Wastewater by Multiple Tube Fermentation
- 01.12 Total Coliform in Source Water by Multiple Tube Fermentation
- 01.13 Fecal Coliform in Source Water by Multiple Tube Fermentation

### 02 Inorganic Chemistry and Physical Properties of Drinking Water

- 02.01 Alkalinity 02.02 Calcium
- 02.03 Chloride
- 02.04 Corrosivity
- 02.05 Fluoride
- 02.06 Hardness
- 02.07 Magnesium
- 02.08 MBAS
- 02.09 Nitrate
- 02.10 Nitrite
- 02.11 Sodium
- 02.12 Sulfate
- 02.13A Total Dissolved Solids
- 02.13B Conductivity
- 02.16 Phosphate, ortho
- 02.17 Silica
- V2.17 U1100
- 02.18 Cyanide
- 02.19 Potassium

### 03 Analysis of Toxic Chemical Elements in Drinking Water

03.01	Arsenic
03.02	Barium
03.03	Cadmium
03.04	Chromium, total
03.05	Copper
03.06	Iron
03.07	Lead
03.08	Manganese
03.09	Mercury
03.10	Selenium
03.11	Silver
03.12	Zinc
03.13	Aluminum
03.15	Antimony
03.16	Beryllium
03.17	Nickel

Thallium

03.18

é

Expiration Date

01/31/2001

### 04 Organic Chemistry of Drinking Water by GC/MS

- 04.02
   EPA Method 524.2

   04.03
   EPA Method 525.2
- 04.06 EPA Method 548.1

### 05 Organic Chemistry of Drinking Water (excluding GC/MS)

- 05.06 EPA Method 504.1
- 05.07 EPA Method 505
- 05.08 EPA Method 506
- 05.09 EPA Method 507 05.10A EPA Method 508
- 05.10B EPA Method 508.1
- 05.13A EPA Method 515.1
- 05.13B EPA Method 515.2
- 05.14 EPA Method 531.1
- 05.15 EPA Method 547
- 05.17 EPA Method 549.1
- 05.18 EPA Method 550
- 05.20 EPA Method 551
- 05.23 EPA Method 551 Trihalomethanes only

### 08 Aquatic Toxicity Bioassays

- 08.01.01 Hazardous Waste Aquatic Bioassays (Title 22, CCR 66261.24) using fathead minnow
- 08.03.01 Wastewater Testing According to EPA/600/4-85/013 using fathead minnow

### 09 Physical Properties Testing of Hazardous Waste

- 09.01 Ignitability by Flashpoint Determination
- 09.02 Corrosivity pH Determination
- 09.03 Corrosivity towards steel
- 09.04 Reactivity

### 10 Inorganic Chemistry and Toxic Chemical Elements of Hazardous Waste

- 10.01 Antimony
- 10.02 Arsenic
- 10.03 Barium
- 10.04 Beryllium
- 10.05 Cadmium
- 10.06 Chromium, total
- 10.07 Cobalt
- 10.08 Copper
- 10.09 Lead
- 10.10 Mercury
- 10.11 Molybdenum
- 10.12 Nickel
- 10.13 Selenium
- 10.14 Silver
- 10.15 Thallium
- 10.16 Vanadium
- 10.17 Zinc
- 10.18 Chromium (VI)

Sulfide

10.19Cyanide10.20Fluoride

10.21

ŵ

Certificate No. 1431

Expiration Date 01/31/2001

### 11 Extraction Tests of Hazardous Waste

- 11.01 California Waste Extraction Test (WET)
- 11.02 Extraction Procedure Toxicity

11.03 Toxicity Characteristic Leaching Procedure (TCLP) All Classes

### 12 Organic Chemistry of Hazardous Waste by GC/MS

- 12.01 EPA Method 8240B
- 12.03 EPA Method 8270B
- 12.06 EPA Method 8260A

### 13 Organic Chemistry of Hazardous Waste (excluding GC/MS)

13.01	EPA Method 8010B
13.02	EPA Method 8015A
13.03	EPA Method 8020A
13.04	EPA Method 8030A
13.05	EPA Method 8040A
13.06A	EPA Method 8060
13.06B	EPA Method 8061
13.07A	EPA Method 8080A
13.07B	EPA Method 8081
13.08	EPA Method 8090
13.09	EPA Method 8100
13.10A	EPA Method 8120A
13.10B	EPA Method 8121
13.11A	EPA Method 8140
13.11B	EPA Method 8141A
13.12A	EPA Method 8150B
13.12B	EPA Method 8151
13.13	EPA Method 8310
13.14A	EPA Method 632
13.14B	EPA Method 8318
13.15	Total Petroleum Hydrocarbons - Gasoline
13.16	Total Petroleum Hydrocarbons - Diesel
13.17	TRPH - Screening by IR
13.18	EPA Method 8011
13.19	EPA Method 8021A
13.20	EPA Method 8070
13.21	EPA Method 8110
13.23	EPA Method 8330
13.24A	EPA Method 8080A PCBs only
13.24B	EPA Method 8081 PCBs only
13.25A	EPA Method 8080A Organochlorine Pesticides only
13.25B	EPA Method 8081 Organochlorine Pesticides only
13.26	EPA Method 8031
13.27	EPA Method 8032
13.30	EPA Method 8321
Wastewat	er Inorganic Chemistry, Nutrients and Demand

- Wastewater Inorganic Chemistry, Nutrients and Demand 16.01 Acidity
  - 16.02 Alkalinity16.03 Ammonia16.04 Biochemical Oxygen Demand

16

-

÷

Certificate No. 1431

Expiration Date 01/

01/31/2001

	16.05	Boron
	16.06	Bromide
	16.07	Calcium
	16.08	Carbonaceous Biological Oxygen Demand (cBOD)
	16.09	Chemical Oxygen Demand
	16.10	Chloride
	16.11	Chlorine Residual, total
	16.12	Cyanide
	16.13	Cyanide amenable to Chlorination
	16.14	Fluoride
	16.15	Hardness
	16.16	Kjeldahl Nitrogen
	16.17	Magnesium
	16.18	Nitrate
	16.19	Nitrite
	16.20	Oil and Grease
	16.21	Organic Carbon
	16.22	Oxygen, Dissolved
	16.23	pH
	16.24	Phenols
	16.25	Phosphate, ortho
	16.26	Phosphorus, total
	16.27	Potassium
	16.28	Residue, Total
	16.29	Residue, Filterable (Total Dissolved Solids)
ť	16.30	Residue, Nonfilterable (Total Suspended Solids)
	16.31	Residue, Settleable (Settleable Solids)
	16.32	Residue, Volatile
	16.33	Silica
	16.34	Sodium
	16.35	Specific Conductance
	16.36	Sulfate
	16.37	Sulfide (includes total & soluble)
	16.38	Sulfite
	16.39	Surfactants (MBAS)
	16.40	Tornia and Lionia
	10.40	rannin and Lignin
	16.41	Total Recoverable Retraieum Hudrocarbans hu IR
	16.45	Total Accoverable Federali Hydrocal bons by hy
	10.45	Total Organic Halldes
17	<u>Toxic Ch</u>	emical Elements in Wastewater
	17.01	Aluminum
	17.02	Antimony
	17.03	Arsenic
	17.04	Barium
	17.05	Domilium
	17.05	Berymun
	17.05	Caomium (VI)
	17.07	Chromium (vi)
	17.00	Cabair
	17.07	Copper
	1711	Gold

As of 02/01/2000, this list supersedes all previous lists for this certificate number.

÷

Certificate No. 1431 **Expiration** Date

01/31/2001

17.13	Iron
17.14	Lead
17.15	Manganese
17.16	Mercury
17.17	Molybdenum
17.18	Nickel
17.19	Osmium
17.24	Selenium
17.25	Silver
17.27	Thallium
17.28	Tin
17.29	Titanium

17.30 Vanadium

17.31 Zinc

#### 18 Organic Chemistry of Wastewater by GC/MS

- 18.01 EPA Method 624
- 18.02 EPA Method 625
- 18.04 EPA Method 1625
- 18.06 EPA Method 1624

#### 19 Organic Chemistry of Wastewater (excluding GC/MS)

19.01	EPA Method 601
19.02	EPA Method 602
19.03	EPA Method 603
19.04	EPA Method 604
19.06	EPA Method 606
19.07	EPA Method 607
19.08	EPA Method 608
19.09	EPA Method 609
19.10	EPA Method 610
19.11	EPA Method 611
19.12	EPA Method 632
19.14	EPA Method 612

٠

FGL ENVIRONMENTL

### STATE OF CALIFORNIA DEPARTMENT OF HEALTH SERVICES

# ENVIRONMENTAL LABORATORY CERTIFICATION

is hereby granted to

FGL ENVIRONMENTAL

SANTA PAULA

853 CORPORATION STREET SANTA PAULA, CALIFORNIA

to conduct analyses of environmental samples as specified in the "List of Approved Fields of Testing and Analytes" which accompanies this Certificate.

This Certificate is granted in accordance with provisions of Section 1010, et seq. (New Section 100825) of the Health and Safety Code.

Certificate No.:

Issued on:

Expiration Date: 07/31/2003

07/01/2001

1573

at Berkeley, California, subject to forfeiture or revocation.

George C. Kulyn

George C. Kulasingam, Ph.D. Manager Environmental Laboratory Accreditation Program

002



State of California—Health and Human Services Agency Department of Health Services

DIANA M. BONTÁ, R.N., Dr. P.H. Director

December 2, 2002

Certificate No 1573

KELLY DUNNAHOO FRUIT GROWERS LABORATORY, INC. P.O. BOX 272 SANTA PAULA, CA 93061-0272

Dear KELLY DUNNAHOO:

Enclosed is an amended copy of your Accredited Fields of Testing list.

If you have any questions, please contact our office at (510) 540-2800.

Sincerely,

George C Kudyn

George C. Kulasingam, Ph.D. Program Chief Environmental Laboratory Accreditation Program

Enclosure



Do your part to help California save energy. To learn more about saving energy, visit the following web site: www.consumerenergycenter.org/fiex/index.html



GRAY DAVIS Governor

### CALIFORNIA DEPARTMENT OF HEALTH SERVICES ENVIRONMENTAL LABORATORY ACCREDITATION PROGRAM Accredited Fields of Testing

### FRUIT GROWERS LABORATORY, INC. FGL ENVIRONMENTAL - SANTA PAULA 853 CORPORATION STREET SANTA PAULA, CA 93060

Lab Phone (805) 659-0910

inid of T	Antine	01 - Microbiology of Detaking Mater and	Wastowatar	
	esung:	01 - Microbiology of Drinking Water and		 
01.01A	01	Total and Fecal Collion	SM9221A,B,E	
01.03	00	I dial Collform and E, coll	SM9223	
01.05	01		SMOOAP	
01.05	01		SM9221B	
01.07	Q1		SM9221C,E	
01.12	00		SM9221A,B,C	
01.13	00		SW0222 1E	
01.16	UQ			
ield of T	esting:	02 - Inorganic Chemistry and Physical P	roperties of Drinking Water	 ·····
02.01	00	Alkalinity		
02.02	00	Calcium		
02.03	00	Chloride		
02.04	00	Corrosivity		
02.05	00	Fluoride	· .	
02.06	00	Hardness		
02.07	00	Magnesium		
02.08	00	MBAS		
02.09	00	Nitrate		
02.10	00	Nitrite		
02.11	00	Sodium		
02.12	00	Sulfate		
02.13	00	Total Dissolved Solids and Conductivity	1	
02.16	00	Phosphate, Ortho		
02.17	00	Silica		
02.18	00	Cyanide		
02.19	00	Potassium		
leid of 1	esting	: 03 - Analysis of Toxic Chemical Elemen	ts In Drinking Water	 
03.01	00	Arsenic		
03.02	00	Barium		
03.03	00	Cadmium •		
03.04	00	Chromium, Total		
03.05	00	Copper		
03.06	00	Iron	· .	
03.07	00	Lead		
03.08	00	Manganese		
03.09	00	Mercury		
03.10	00	Selenium		
03.11	00	Silver		
03.12	00	Zinc		
03.13	00	Aluminum		
03.15	00	Antimony		
03.16	00	Bervlium		
	~~	Nickel		
03.17	00	INIGNEI		

As of  $12/2/2002\,$  , this list supersedes all previous lists for this certificate number. Customers: Please verify the current accreditation standing with the State.



.

### FRUIT GROWERS LABORATORY, INC.

### Certificate No: 1573 Renew Date: 7/31/2003

03.19	00	Chromium (VI)
Field of	Testing:	04 - Organic Chemistry of Drinking Water by GC/MS
04.02	01	Volatile Organic Compounds EPA 524.2
04.02	357	1,2,3-Trichloropropane EPA 504.1
04.08	01	PAH/Adipates/Phthalates EPA 524.2
Field of	Testing:	05 - Organic Chemistry of Drinking Water (excluding GC/MS)
05.04	01	Volatile Organic Compounds EPA 502.2
05.06	01	EDB and DBCP EPA 504.1
<b>0</b> 5.07	Q1	Pesticides EPA 505
05.09	01	N-, P- Pesticides EPA 507
05.13	01	Chlorophenoxy Herbicides EPA 515.1
05.14	01	Carbamatea EPA 531.1
05.15	01	Glyphosate EPA 547
05.16	01	Endothali EPA 548.1
05.17	01	Diquat and Paraquat EPA 549.1
05.21	01	Dalapon EPA 552.1
05.23	01	Trihalomethanes EPA 551
05.99	01	Crassostrea gigas EPA 508
Field of	Testing:	06 - Radiochemistry
06.01	00	Gross Alpha and Beta Radiation
08.02	00	Total Alpha Radium
06.03	00	Radium-226
06.04	00	Uranium
06.05	00	Radon-222
06.08	00	Strontlum-90
06.09	00	Tritium
06.10	00	Gamma and Photon Emitters
06.11	00	Gross Alpha by Coprecipitation
06.12	00	Radium-228
06.14	00	Gross Alpha and Beta in Hazardous Wastes
06.15	00	Alpha Emitting Radium Isotopes in Hazardous Waste
00.10 Etald of	Techine	Adulum 220 III nazaroous wastes
	198ting	
09.07	00	Corresivity - oH Determination
Field of	Testina	10 - Increanic Chemistry and Toxic Chemical Elements of Hazardous Waste
10.01	00	
10.01	00	
10.03	00	Barium
10.04	00	Bevilium
10.05	00	Cadmium
10.05	00	Chromium, Total
10.07	00	Cobelt
10.08	00	Copper
10.09	00	Lead
10.10	00	Mercury
10.11	00	Molvbdenum
10.12	00	Nickel
10.13	00	Selenium
10,14	00	Silver
10.15	00	Thailium
10.16	00	Vanadium

As of 12/2/2002 , this list supersedes all previous lists for this certificate number. Customers: Please verify the current accreditation standing with the State.

Certificate No: 1573 Renew Date: 7/31/2003

FRUIT GROWERS LABORATORY, INC.

44.4-			
10.17	00	ZINC	
10.18	00	Chromium (VI)	
10.19	00	Cyanide	
10.20	00	Fluoride	
10.21	00	Sulfide	
Field of	Testing:	11 - Extraction Tests of Hazardous Waste	
11.01	01	Masta Extraction Test (MET)	CCP Chanter11 Article E Annondiv II
14.03	01	Taxially Observatoriatio ( acchine Decodure (T	
11.00			
Field of	Testing:	12 - Organic Chemistry of Hazardous Waste by	y GC/MS
12.03	01	Semi-volatile Organics	EPA 8270C
12.06	01	Volatile Organic Compounds	EPA 8260B
Field of	Testing:	13 - Organic Chemistry of Hazardous Waste (e	excluding GC/MS)
43.04	04		ÉBA 90100
13.01	01		
13.00	01	Oregnonbesphonie Bestleides	
13.11	01	Chloringtod Horbioldoc	EPA 8141A
13.12	01		
13.13	01		
10,10	01	Carbamates, N-methylcarbamates	
13,13	01	Total Petroleum Hydrocarbons - Gasoline	
13.10	01		
13.17	01	IRMM Screening	EPA 418.1
13,18	רט		
13.19	01	Volatile Organic Compounds	EPA 8021B
13.23	01	Nitroaromatics and Nitramines	EPA 8330
Field of	Testing:	16 - Wastewater Inorganic Chemistry, Nutrient	s and Demand
16.01	00	Acidity	
16.02	00	Alkalinity	
16.03	00	Ammonia	
16.04	00	Biochemical Oxynen Demand	
16.05	00	Boron	
16.06	00	Bromide	
16.07	00	Calcium	
16.09	00	Chemical Oxygen Demand	
16.10	00	Chloride	
16 11	00	Chlorine Residual, Total	
16.12	00	Cvanide	
16 13	00	Cvanide smensble	,
16.10	00	Eluoride	
16 15	00	Haminese - Total as CaCO3	
16 16	00	Kisidahi Nitrogan	
16 17	00	Magazeium	
16.10	00 -	Nitmto	
10.10	00		
10.18	00		
:0.2U	00		
16.21	00		
16.22	00	Oxygen, dissolved	
16.23	00	pH	
16.24	00	Phenois	
16,25	00	Phosphate, Ortho	
16.26	00	Phosphorus, Total	
16.27	00	Potassium	
16.28	00	Residue, Total	

•

As of  $12\prime\!2/2002$  , this list supersedes all previous lists for this certificate number. Customers: Please verify the current accreditation standing with the State.

Certificate No: 1573 Renew Date: 7/31/2003

FRUIT GROWERS LABORATORY, INC.

16.29	00	Residue, Filterable		
16.30	00	Residue, Non-filterable		
16.31	00	Residue, Settleable		
16.32	00	Residue, Volatile		
16.33	00	Silica, Dissolved		
16,34	00	Sodium		
16.35	00	Conductivity	·	
16.36	00	Sulfate		
16.37	00	Sulfide		
16.38	00	Sulfite		
16.39	00	Surfactants		
16,40	00	Tannin and Lignin		
16.41	00	Turbidity		
16.44	00	Total Recoverable Petroleum Hydrocarbons		
16.45	00	Total Organic Halides		
Ciald of	Tantina	17. Tevis Chaminal Flammate in Mantaustar		
Field of	iesung:	17 - Toxic Chemical Elements in Wastewater		
17.01	-00	Aluminum		
17.02	00	Antimony .		
17.03	00	Arsenic		
17.04	00	Banum	· ·	
17.05	00	Beryllium		
17.06	00			
17.07	00	Chromium (VI)		
17.08	00	Chromium, Total		
17.09	00			
17.10	00	Copper		
17,11	00			
17.13	00	iron		
17.14	00			
47 40		Mandariese		
17.15	00	Margaria		
17.15 17.16	00	Mercury		
17.15 17.16 17.17	00 00 00	Mercury Molybdenum		
17.15 17.16 17.17 17.18	00 00 00 00	Mercury Molybdenum Nickel		
17.15 17.16 17.17 17.18 17.24 17.25	00 00 00 00	Mercury Molybdenum Nickel Selenium Silver		
17.15 17.16 17.17 17.18 17.24 17.25 17.27	00 00 00 00 00	Mercury Molybdenum Nickel Selenium Silver Thellium		
17.15 17.16 17.17 17.18 17.24 17.25 17.27 17.28	00 00 00 00 00 00	Mercury Molybdenum Nickel Selenium Silver Thallium		
17.15 17.16 17.17 17.18 17.24 17.25 17.27 17.28 17.29	00 00 00 00 00 00 00	Mercury Molybdenum Nickel Selenium Silver Thallium Tin		
17.15 17.16 17.17 17.18 17.24 17.25 17.27 17.28 17.29 17.30	00 00 00 00 00 00 00 00	Mercury Molybdenum Nickel Selenium Silver Thallium Tin Titanium Vanadlum		
17.15 17.16 17.17 17.18 17.24 17.25 17.27 17.28 17.29 17.30 17.31	00 00 00 00 00 00 00 00 00 00	Mercury Molybdenum Nickel Selenium Silver Thallium Tin Titanium Vanadlum Zinc		
17.15 17.16 17.17 17.18 17.24 17.25 17.27 17.28 17.29 17.30 17.31		Mercury Molybdenum Nickel Selenium Silver Thallium Tin Titanium Vanadlum Zinc	2445	
17.15 17.16 17.17 17.18 17.24 17.25 17.27 17.28 17.29 17.30 17.31 Fleid of	00 00 00 00 00 00 00 00 00 00 00 00 00	Mercury Molybdenum Nickel Selenium Silver Thallium Tin Titanium Vanadlum Zinc 18 - Organic Chemistry of Wastewater by GC	C/MS	
17.15 17.16 17.17 17.18 17.24 17.25 17.27 17.28 17.29 17.30 17.31 Fleid of 18.01	00 00 00 00 00 00 00 00 00 00 00 00 00	Mercury Molybdenum Nickel Selenium Silver Thallium Tin Titanium Vanadlum Zinc 18 - Organic Chemistry of Wastewater by GC All Volatile Organics	C/MS EPA 824	
17.15 17.16 17.17 17.18 17.24 17.25 17.27 17.28 17.29 17.30 17.31 Field of 18.01 18.02	00 00 00 00 00 00 00 00 00 00 00 00 00	Mercury Molybdenum Nickel Selenium Silver Thallium Tin Titanium Vanadlum Zinc 18 - Organic Chemistry of Wastewater by GC All Volatile Organics All Acid/base/neutral Compounds	2/MS EPA 624 EPA 625	
17.15 17.16 17.17 17.18 17.24 17.25 17.27 17.28 17.29 17.30 17.31 Fleid of 18.01 18.02	00 00 00 00 00 00 00 00 00 00 00 00 00	Mercury Molybdenum Nickel Selenium Silver Thallium Tin Titanium Vanadlum Zinc 18 - Organic Chemistry of Wastewater by GC All Volatile Organics All Acid/base/neutral Compounds 19 - Organic Chemistry of Wastewater (exclu	C/MS EPA 824 EPA 625 Iding GC/MS)	
17.15 17.16 17.17 17.18 17.24 17.25 17.27 17.28 17.29 17.30 17.31 Fleid of 18.01 18.02 Fleid of 19.01	00 00 00 00 00 00 00 00 00 00 00 00 00	Mercury Molybdenum Nickel Selenium Silver Thallium Tin Titanium Vanadlum Zinc 18 - Organic Chemistry of Wastewater by GC All Volatile Organics All Acid/base/neutral Compounds 19 - Organic Chemistry of Wastewater (exclu Halogenated Volatiles	C/MS EPA 624 EPA 625 Iding GC/MS) EPA 601	
17.15 17.16 17.17 17.18 17.24 17.25 17.27 17.28 17.29 17.30 17.31 Fleid of 18.01 18.02 Fleid of 19.01 19.02	00 00 00 00 00 00 00 00 00 00 00 00 00	Mercury Molybdenum Nickel Selenium Silver Thallium Tin Titanium Vanadlum Zinc 18 - Organic Chemistry of Wastewater by GC All Volatile Organics All Acid/base/neutral Compounds 19 - Organic Chemistry of Wastewater (exclu Halogenated Volatiles Aromatic Volatiles	C/MS EPA 624 EPA 625 Iding GC/MS) EPA 601 EPA 602	
17.15 17.16 17.17 17.18 17.24 17.25 17.27 17.28 17.29 17.30 17.31 Fleid of 18.01 18.02 Fleid of 19.01 19.02 19.08	00 00 00 00 00 00 00 00 00 00 00 00 00	Mercury Molybdenum Nickel Selenium Silver Thallium Tin Titanium Vanadlum Zinc 18 - Organic Chemistry of Wastewater by GC All Volatile Organics All Acid/base/neutral Compounds 19 - Organic Chemistry of Wastewater (exclu Halogenated Volatiles Aromatic Volatiles PCBs and Organochlorine Pesticides	2/MS EPA 624 EPA 625 Iding GC/MS) EPA 601 EPA 602 EPA 608	
17.15 17.16 17.17 17.18 17.24 17.25 17.27 17.28 17.29 17.30 17.31 Fleid of 18.01 18.02 Fleid of 19.01 19.02 19.08 19.10	00 00 00 00 00 00 00 00 00 00 00 00 00	Mercury Molybdenum Nickel Selenium Silver Thallium Tin Titanium Vanadlum Zinc 18 - Organic Chemistry of Wastewater by GC All Volatile Organics All Acid/base/neutral Compounds 19 - Organic Chemistry of Wastewater (exclu Halogenated Volatiles Aromatic Volatiles PCBs and Organochlorine Pesticides Polynuclear Aromatics	Z/MS         EPA 824         EPA 625         iding GC/MS)         EPA 601         EPA 602         EPA 608         EPA 810	
17.15 17.16 17.17 17.18 17.24 17.25 17.27 17.28 17.29 17.30 17.31 Field of 18.01 18.02 Field of 19.01 19.02 19.08 19.10 19.12	00 00 00 00 00 00 00 00 00 00 00 00 00	Mercury Molybdenum Nickel Selenium Silver Thallium Tin Titanium Vanadlum Zinc 18 - Organic Chemistry of Wastewater by GO All Volatile Organics All Acid/base/neutral Compounds 19 - Organic Chemistry of Wastewater (exclu Halogenated Volatiles Aromatic Volatiles PCBs and Organochlorine Pesticides Polynuclear Aromatics Carbamates	Z/MS         EPA 824         EPA 625         Iding GC/MS)         EPA 601         EPA 602         EPA 608         EPA 610         EPA 632	

As of 12/2/2002 , this list supersedes all previous lists for this certificate number. Customers: Please verify the current accreditation standing with the State.



Last Update: April 3, 2003

### <u>General Considerations</u> <u>Acceptable Analytical Approaches</u> Laboratories Capable of Low-Level Analyses for NDMA

As mentioned **elsewhere**, N-nitrosodimethylamine (NDMA) is not regulated in drinking water—therefore, no approved method exists for measurement of NDMA at concentrations near a nanogram per liter (ng/L), or 1/1000 of a ppb. The Department of Health Services' (DHS') general and specific comments related to analyses of NDMA follow.

Additional information on laboratory methods for NDMA can be obtained from Dr. Kusum Perera of DHS' Sanitation and Radiation Laboratory, at (510) 540-2201.

### **General Considerations**

- Due to the variety of methods available for NDMA analysis, DHS is providing the procedural guidelines for analysis, presented below.
- There will not be a formal approval process for NDMA-testing laboratories (as was the case with **perchlorate**).
- Performance evaluation samples are not available at this time for NDMA.
- The Drinking Water Program will determine data acceptability on a case by case basis. Generally, data meeting acceptability criteria listed below may be deemed reliable.
- Once approved method(s) and performance evaluation samples become available, it is anticipated that a formal accreditation process will be established through the ELAP.

### **Acceptable Analytical Approaches**

- Several approaches are available for analysis of NDMA at levels at or below 2 ng/L (0.002 ppb).
- Continuous liquid-liquid extraction or similar techniques capable of reproducible recovery (<20%RSD precision) such that the GC/MS signal intensity is sufficient to achieve the level at or below 2 ng/L is required.
- Gas Chromatographic/Mass Spectrometric methods offer the most sensitive and definitive measurement systems for analysis of NDMA in the low ng/L range. High-resolution electron impact mass spectrometry, and low-resolution chemical ionization (using ammonia, methanol, etc.) or other mass spectrometric techniques with equivalent sensitivity are acceptable.
- NDMA-d₆ is used as an internal standard to correct for recovery and to ensure reliable results.
- Blanks must be free of NDMA contamination (<0.5 ng/L).

- Mass calibration must be performed in the usual manner (FC43, PFK, etc.). For greater sensitivity, ions in the critical low-mass range may be biased high but within specifications of the acceptable range.
- Extracts are analyzed either by low-resolution GC/MS with the mass spectrometer operating in the SIM or by high-resolution instruments for greater sensitivity and lower detection limits.
- For positive chemical ionization, the M+1 (75) and another adduct ion is used for confirmation and quantification. If NDMA is identified with a single ion, (High-Resolution instruments), it must have sufficient resolution for unique identification.
- A calibration curve consisting of at least five standards from approximately 1 ng/L to 100 ng/L range (to bracket the concentrations in the original sample) must be available. The Mean Response Factor (RF) and Standard Deviation (SD) are calculated from the calibration standards. RSD must be within 20%.
- A method detection limit (MDL) study using the EPA protocol (40CFR136 Appendix B) must be available.
- The Reporting Level should be no less than 3 times the MDL.
- Calibration curve must be verified on an ongoing basis using continuing calibration verification (CCV) standard at the mid-range of the calibration curve. The % Difference between the CCV standard Response Factor and the mean Response Factor in the initial calibration must be within 20%.
  - Laboratory Fortified Blanks (LFB) must be run at the Reporting Level to demonstrate method performance.
  - Both precision and accuracy of the analytical process must be demonstrated for each batch of samples by the analysis of matrix spike and matrix spike duplicates (MS/MSD) at the Reporting Level. However, if the sample matrix has analyte, it should be spiked at an equivalent concentration.
  - The precision as measured by the RSD should be within 20%. Accuracy as measured by % Recovery should be 70-130% for MS/MSD and LFB.
  - A written Standard Operating Procedure (SOP) following a typical EPA 500 series GC/MS method outline must be available. This SOP must include sufficient information to independently carry out the analytical method and facilitate data validation.

### Laboratories Capable of Low-Level Analyses for NDMA*

- Maxxam Analytics, Inc.
   50 Bathurst Drive, Unit 12, Waterloo, Ontario, Canada N2V 2C5 ATTN: Antony Bouquillon (416) 455-1158, or AnnMarie Wright (519) 747-2575
- MWH Labs
   750 Royal Oaks Drive #100
   Monrovia, CA 91016
   ATTN: Dr. Andrew Eaton phone 626-386-1100 or 800-566-5227
   fax 626-386-1101
- Ontario Ministry of Energy and the Environment Laboratory Services Branch 125 Resources Road, Etobicoke, Ontario, Canada M9P 3V6 ATTN: Vincent Taguchi (416) 235-5902
- Pacific Analytical, Inc.
   6349 Paseo del Labo, Carlsbad, California 92009 ATTN: Steve Parson (760) 438-3100
- Southwest Research Institute
   6220 Culebra Road, San Antonio, Texas 78238-5166
   ATTN: Gang Sun (210) 522-3954
   fax (210) 522-3649
- Weck Laboratories, Inc.

*DHS is aware that the following laboratories are capable of NDMA analysis in the low part per trillion range. Potential clients planning to use any of these laboratories for NDMA analyses for the Drinking Water Program should be aware that the laboratories must supply data according to the data package requirements described in the **Acceptable Analytical Approaches**, presented above. Laboratories often price their product based on specific client needs along with analytical results. There may be other laboratories in the US and Canada who also are able to supply data according to the data package requirements.

### **Return to NDMA Index**

WHome.

.

000

### SECTION 8.0 - WATER QUALITY MONITORING PROGRAM

### 8.1 INTRODUCTION

In order to address both upstream and downstream water quality issues at the Big Tujunga Wash site, a water-quality monitoring program has been implemented. The monitoring program will specifically address water quality issues, such as pesticide/fertilizer percolation or runoff and subsequent groundwater contamination, which may occur due to upstream development. Monitoring for elevated levels of nitrogen and organophosphates in the flow entering the site will help determine whether nitrate-laden irrigation water or pesticide runoff from upstream developments are affecting the Big Tujunga Wash Mitigation Bank. The water quality monitoring program at Big Tujunga Wash shall complement the monitoring program that is a requirement of the upstream Red Tail Golf Course and Equestrian Project.

### 8.1.1 Purpose and Goals

The water quality program is specifically designed to look for changes in water quality that may potentially affect sensitive native fishes and amphibians in the aquatic environment. The LACDPW personnel have established baseline water quality conditions prior to the implementation of the MMP programs. The Public Works personnel conducted the baseline water quality sampling in accordance with accepted protocols and the analyses was conducted by a certified water quality laboratory. The water quality program at Big Tujunga Wash includes quarterly monitoring for the following water quality parameters:

Total Kjeldahl Nitrogen (TKN) Nitrite (NO2) Nitrate (NO3) Ammonia (NH4) Orthophosphate Dissolved Oxygen (DO) Total Fecal Coliform Organochlorides Total Phosphate Organophosphate Chlorine Turbidity Temperature (degrees Celsius) pH (pH units) Pesticides

### 8.2 METHODOLOGY/DATE OF IMPLEMENTATION

Water quality monitoring sites were permanently established with a Global Positioning System (GPS) at various locations along Haines Canyon Creek and Big Tujunga Wash. Three monitoring sites were located along Haines Canyon Creek. One site was located at the inflow to the Tujunga Ponds; a second site was located at the outflow of the Tujunga Ponds; and the third site was located in Haines Canyon Creek, just before it exits the Mitigation Bank. A water quality monitoring station was also established in Big Tujunga Wash and sampling was performed if flowing water is present during the quarterly sampling visits. Table 8-1 indicates the locations of the four sampling stations.

Sampling Locations Latitude Longitude						
Haines Canyon Creek before exiting the site.	N 34 16' 2.9"	W 118 21' 22.2"				
Haines Canyon Creek inflow to Tujunga Ponds.	N 34 16' 6.9"	W 118 20' 18.7"				
Haines Canyon Creek outflow from Tujunga Ponds.	N 34 16' 7.1"	W 118 20' 28.3"				
Big Tujunga Wash	N 34 16' 11.7"	W 118 21' 4.0"				

# Table 8-1 Water Quality Sampling Locations

An experienced Water Quality Specialist collected samples on December 12, 2000, and the samples were taken to a reputable laboratory to be analyzed immediately after sampling was completed. The results of the water quality analysis shall be summarized in a quarterly letter to LADPW, CDFG, RWQCB, and USFWS. It will be the responsibility of the CDFG, RWQCB, and USFWS to enforce the laws regarding water quality impacts on sensitive species from upstream development, and take necessary actions against the upstream sources. In addition, the Water Quality Specialist shall be responsible for providing the guarterly letter report to the Contractor responsible for preparing the Project Implementation and Annual Monitoring reports. This letter shall be submitted to these agencies and the Contractor within 30 days after the sampling date. Any notable discrepancies between the water quality and the baseline water quality established in the beginning of MMP implementation shall be brought to the attention of the resource agencies and Contractor within 7 days of receiving the water quality analysis. The Water Quality Specialist shall be responsible for sending guarterly letter reports directly to the aforementioned agencies and Contractor and for contacting the agencies directly when discrepancies are noted. In addition, the Water Quality Specialist shall be responsible for providing an annual summary report of the water quality monitoring program to the aforementioned agencies and Contractor within 60 days after the fourth sampling date. The water quality monitoring report for 2000 is included as Appendix E.

The Water Quality Monitoring Program will continue throughout the 5-year duration of the MMP Program. Continuation of this program beyond the 5 years shall be discussed during consultation with the USFWS if the Santa Ana sucker is federally listed under the Endangered Species Act.

### 8.2.1 Description of Analyses

The sampling parameters in the water quality monitoring program were analyzed by the following meters in the field:

- YSI Model 57 dissolved oxygen and temperature
- HACH DR 700 total residual chlorine
- Orion 230A pH

All other analyses were performed in duplicate at Montgomery Watson Laboratories, Pasadena, California.

### 8.2.2 Sampling Dates

Samples were taken on December 14, 2000, by Montgomery Watson and the samples were taken to a Montgomery Watson Laboratories, Pasadena, California, to be analyzed immediately after sampling was completed.

### 8.3 RESULTS

- pH: The pH in Big Tujunga Wash is at the upper objective of 8.5. Other stations are within the 6.5 to 8.5 range.
- Dissolved Oxygen: The oxygen levels in the Tujunga Ponds are below the recommended minimum for warmwater species of 5.0 mg/L. Samples from Big Tujunga Wash and Haines Canyon Creek exiting the site are over the 5.0 mg/L standard.
- Temperature: Observed temperatures were below levels of concern for growth and survival of warm water fish species.
- Fecal Coliform: Coliform bacteria levels in Big Tujunga Wash are higher than Basin Plan objectives for water contact recreation and federal public health criteria for swimming.

- Nitrate: Nitrate in Haines Canyon Creek decreases as you move downstream, from over nine to less than 2mg/L. Concentrations in the ponds are high for natural waters but below the drinking water standard of 10mg/L.
- > Ammonia: Ammonia levels were below the detection threshold at all sampling stations.
- Turbidity: Turbidity in waters leaving the site is slightly higher in Haines Canyon Creek than in Big Tujunga Ponds. Concentrations in big Tujunga Wash are similar to those in waters leaving the site. Levels are not high enough to negatively impact photosynthesis.
- > Phosphorus: Most phosphorus in site waters is present as reactive orthophosphate. Overall levels are not indicative of excessive nutrient conditions.

The results of the analysis conducted in December of 2000 are presented in Table 8-2.

Parameter	Unite	inflow to Tujunga Ponde 1	inflow to Tujungs Ponds 2 (duplicate)	Outflow from Tujunge Ponde 1	Outflow from Tujuriga Ponds 2 (duplicate)	Big Tujunga Wash 1	Big Tujunga Wash 2 (daplicate)	Hainee Canyon Crook Exiting Site 1	Haines Canyon Croek Exiting Site 2 (duplicate)
Femperature	°C	16		15.5		12.5		9.5	-
Dissolved Vgen	mg/L	2.8		3.1		5.4	-	7.0	
	std units	6.9		7.0		8.5	-	8.2	
Total residual chlorine	mg/L	<0.1		<0.1	·	<0.1	-	<0.1	
Ammonia- Nitrogen	mg/L	ND	ND	ND	ND	ND	ND	ND	ND
Geldahl Nitrogen	mg/L	ND	0.28	ND	0.43	0.70	0.62	0.72	ND
Nitrite-Nitrogen	mg/L	ND	ND	ND	ND	ND	ND	ND	ND
Nitrate- Nitrogen	mg/L	9.65	9.40	7.29	7.17	ND	ND	1.59	1.56
Orthophospate P	mg/L	0.065	0.064	0.040	0.040	0.014	0.014	0.016	0.016
Fotal Phosphorus-P	mg/L	0.07	0.07	0.04	0.05	0.03	ND (<0.20)	0.02	ND (< 0.02)
<b>Furbidity</b>	NTU	0.90	0.60	0.90	1.0	1.6	2.2	1.8	1.4
^e ecal Coliform Bacteria	MPN/100 ml	<2	2	13	13	300	. 500	80	110.
Fotal Coliform Bacteria	MPN/100 mi	3000	9000	2200/	3000	1400	2400	900	3000
ITU = nephelometric turbidity units. /PN = most probable number									

# Table 8-2Summary of Big Tujunga Wash Water Quality Results4th Quarter 2000 (December 14, 2000)

### 8.3.1 Comparison of Results with Baseline Data

Water quality in December 2000 was similar to April 12, 2000 baseline conditions. The higher bacteria and turbidity that was observed in the April 18, 2000 samples are most likely due to a rain event. Nitrate levels followed a similar pattern in both months of decreasing concentrations through the Tujunga Ponds, complete or near depletion in Big Tujunga Wash, and low levels leaving the site in Halnes Creek. Similarly, pH in samples from Haines Creek was generally lower than the more basic Big Tujunga Wash.

8-4

### 8.4 DISCUSSION OF RECOMMENDATIONS

There are no recommendations at this time.
## 2001 Annual Report

#### SECTION 10.0 - WATER QUALITY MONITORING PROGRAM

#### 10.1 INTRODUCTION

In order to address both upstream and downstream water quality issues at the Big Tujunga Wash site, a water-quality monitoring program was implemented. The monitoring program addresses specific water quality issues, such as pesticide/fertilizer percolation or run-off and subsequent groundwater contamination, which may occur due to upstream development. Monitoring for elevated levels of nitrogen and organophosphates in the flow entering the site will help determine whether nitrate-laden irrigation water or pesticide run-off from upstream developments are affecting the Big Tujunga Wash Mitigation Bank. The water quality monitoring program at Big Tujunga Wash shall complement the monitoring program that is a requirement of the upstream Canyon Trails Golf Course.

#### 10.2 PURPOSE/GOALS

The proposed water quality program is specifically designed to look for changes in water quality that may potentially affect sensitive native fishes and amphibians in the aquatic environment. The LACDPW personnel established baseline water quality conditions on April 12, 2000, prior to the implementation of the MMP programs. The LACDPW personnel conducted the baseline water quality sampling in accordance with accepted protocols and the analyses were conducted by a certified water quality laboratory. The water quality program at Big Tujunga Wash includes quarterly monitoring for the following water quality parameters:

Total Kjeldahl Nitrogen (TKN) Nitrite (NO2) Nitrate (NO3) Ammonia (NH4) Orthophosphate Dissolved Oxygen (DO) Total Fecal Coliform Organochlorides Total Phosphate Organophosphate Chlorine Turbidity Temperature (degrees Celsius) pH (pH units) Pesticides

#### 10.3 METHODOLOGY

An experienced Water Quality Specialist sampled on March 12, June 19, September 11, and December 12, 2001 and the samples were taken to Montgomery Watson Laboratories, Pasadena, California, to be analyzed immediately after sampling was completed. The results of the water quality analyses were summarized in quarterly letters and an annual report distributed to LACDPW, CDFG, RWQCB, and USFWS. The Water Quality Monitoring Program will continue on a quarterly basis throughout the 5-year duration of the MMP Program. Table 10-1 lists the locations of the four water quality monitoring sites and the 2001 sampling dates.

#### 10.3.1 Location of Sampling Sites

Water quality monitoring sites were permanently established with a Global Positioning System (GPS) at various locations along Haines Canyon Creek and Big Tujunga Wash. Three monitoring sites were located along Haines Canyon Creek. One site was located at the inflow to the Tujunga Ponds; a second site was located at the outflow of the Tujunga Ponds; and the third site was located in Haines Canyon Creek, just before it exits the Mitigation Bank. A fourth water quality monitoring station was also established in Big Tujunga Wash and sampling was performed if flowing water is present during the quarterly sampling visits. Figure 10-1 shows the locations of the four sampling locations.

10-1



Sampling Locations	Latitude	Longitude	Date of Sample
Haines Canyon Creek, just before exit from site	N 34 16' 2.9"	W 118 21' 22.2"	March 12, June, 19, September 11, December 12
Haines Canyon Creek, inflow to Tulunga Ponds	N 34 16' 6.9"	W 118 20' 18.7"	March 12, June, 19, September 11, December 12
Haines Canyon Creek, outflow from Tujunga Ponds	N 34 16' 7.1"	W 118 20' 28.3"	March 12, June, 19, September 11, December 12
Big Tujunga Wash	N 34 16' 11.7"	W 118 21' 4.0"	March 12

## Table 10-1Big Tujunga Wash2001 Water Quality Sampling Locations and Dates

#### 10.3.2 Description of Analyses

A portion of the water quality parameters were analyzed in the field using the following field equipment:

- YSI Model 57 dissolved oxygen and temperature
- HACH DR 700 total residual chlorine
- Orion 230A pH

All other analyses were performed in duplicate at Montgomery Watson Laboratories, Pasadena, California.

#### 10.4 RESULTS

The following table summarizes the results from the 2001 sampling efforts. Detailed descriptions of the analyses are located in Appendix L. Figure 10-2 shows the checklist for the program tasks that have been completed thus far.

#### 10.4.1 Comparison of Quarterly Monitoring

In general, the water quality on the site is relatively good. Sampling during 2001 did not detect any contamination of the waters due to pesticides or fertilizers. In general, pH levels varied by 0.2 units or less for waters flowing into and out of the ponds. Nitrate-nitrogen was consistently higher in the waters flowing into the ponds than from the outflow. Without flows from the Wash, nitrate in Haines Canyon Creek was similar or just slightly lower than values observed in the ponds. Water quality in 2001 was similar to the April 12, 2000 baseline conditions. The higher bacteria, phosphorus, and turbidity that was observed in the April 18, 2000 samples were most likely due to a rain event. Table 10-3 lists the baseline conditions. Results of analyses conducted by Montgomery Watson Laboratories for samples collected in 2001 are summarized in Tables 10-4 through 10-7. Where duplicate analyses were within acceptable limits (percentages) for all samples in 2001.

#### **10.5 RECOMMENDATIONS**

As previously stated, the water quality at the mitigation bank during 2001 was relatively good and there was no contamination of the waters due to pesticides or fertilizers. Therefore, there are no recommendations at this time.

#### Figure 10-2 Big Tujunga Wash Mitigation Bank Water Quality Monitoring Program Checklist

- Notify resource agencies.
- Authorization from resource agencies.
- Site visit to identify water quality monitoring stations.
- Establish monitoring stations in Haines Canyon Creek and Big Tujunga Wash with GPS.
- March 1 Conduct baseline water quality on the site prior to implementation of enhancement measures.
- Submit samples to laboratory for analysis.
- April 1 Submit baseline monitoring report.
- June 1 1st Quarterly sampling.
- Submit samples to laboratory for analysis.

July 1 – Submit first quarterly monitoring report including a summary of baseline data to resource agencies and consultant.

- September 1 2nd Quarterly sampling.
- Submit samples to laboratory for analysis.
- October 1 Submit quarterly monitoring report to resource agencies and consultant.
- December 1 3rd Quarterly sampling.
- Submit samples to laboratory for analysis.
- January 1 Submit quarterly monitoring report to resource agencies and consultant.
- March 1 4th Quarterly sampling.
- Submit samples to laboratory for analysis.
- April 1 Submit to resource agencies and consultant first quarterly monitoring report.
- May 1 Submit annual monitoring report to resource agencies and consultant.
- *Note: If at any time notable discrepancies occur between baseline data and quarterly sampling results, the resource agencies and consultant shall be notified within 7 days of receiving water quality analysis.

6629 P2 003 12/30/02

#### Table 10-2 Big Tujunga Wash Summary of 2001 Water Quality Sampling Results

Parameter	Summary
рН	Values observed in Haines Canyon Creek leaving the site (and the one data point for Big Tujunga Wash) were 1 unit higher than values observed in the ponds. The pH of water from all stations for all four sampling periods was within the 6.5 to 8.5 range identified in the Basin Plan.
Dissolved Oxygen	Dissolved oxygen (DO) levels in Haines Canyon Creek leaving the site correlated with temperature-higher DO values were observed on dates with lower temperature. DO concentrations in the ponds did not follow this pattern, but readings of inflow to and outflow from the ponds were similar. Seasonal fluctuations of up to 3.7 mg/L in DO were observed-highest overall readings were observed in December.
Temperature	Temperatures in Haines Canyon Creek leaving the site are generally 1-3 degrees cooler than temperatures in the Tujunga ponds. Seasonal fluctuations of up to 9 degrees Celcius were observed with the December readings being the lowest; and the June readings being the highest. Observed temperatures during all sample periods were below levels of concern for growth and survival of warm water fish species.
Fecai Coliform	Fecal coliform levels in 2001 ranged from <2 to 900 MPN/100ml. Total coliforms were higher (16,000 MPN/100ml) in one sample from the inflow to the ponds in September. Fecal coliform levels exceeded the water contact recreation standard of 200 MPN/100ml in September in one sample from the outflow from the ponds and one sample from Haines Canyon Creek leaving the site (although sufficient samples were not taken per the standard).
Nitrate	Ammonia-nitrogen was detected in only one sample. This was a very low reading in September at the Haines Canyon Creek sampling location leaving the site. Similarly, nitrite-nitrogen was only detected at one station on one date, at the inflow to the ponds in June. Kjeldahl nitrogen (organic plus ammonia) readings were consistently low (<1 mg/L) at all stations on all dates. Nitrate-nitrogen readings at all stations were below the drinking water standard of 10 mg/L.
Ammonia	Ammonia levels were below the detection threshold at all sampling stations.
Turbidity	Turbidity levels were low, except in March when flow was present in Big Tujunga Wash. Flows in the Wash and Haines Creek leaving the site were slightly turbid in March. Turbidity values in 2001 were not excessive for aquatic life. The drinking water standard was only exceeded in March in the Wash and in Haines Canyon Creek.
Phosphorus	Phosphorus levels were the lowest in September and generally similar in the other three quarters. Total phosphorus values at all stations for all four quarters were at or below the low end of EPA's recommendation for streams of <0.05-1.0 mg/L total phosphates.

#### Table 10-3 Big Tujunga Wash Baseline Water Quality (2000)

Parameter	Units	Date	Haines Canyon Creek, Inflow to Tujunga Ponds	Haines Canyon Creek, Outflow from Tujunga Ponds	Big Tujunga Wash	Haines Canyon Creek, Just Before Exit From Site
Total coliform	MPN/	4/12/00	3,000	5,000	170	1,700
Total Collorn	100 ml	4/18/00	2,200	170,000	2,400	70,000
Fecal	MPN/	4/12/00	500	300	40	80
coliform	100 ml	4/18/00	500	30,000	2,400	50,000
Ammonio N	ma/l	4/12/00	0	0	0	0
Annnonia-N	mg/L	4/18/00	0	0	0	0
Nitroto N	mg/L	4/12/00	8.38	5:19	0	3.73
		4/18/00	8.2	3.91	0.253	0.438
Nitrito N	mo/l	4/12/00	0.061	0	0.	0
INITIC-IN	ing/L	4/18/00	0.055	0	0	0
Kieldahl-N	mo/l	4/12/00	0	0.1062	0.163	0
Noudin-N	ng/L	4/18/00	0	0.848	0.42	0.428
Dissolved	ma/l	4/12/00	0.078	0.056	0	0.063
phosphorus	iiig/L	4/18/00	0.089	0.148	0.111	0.163
Total	mo/l	4/12/00	0.086	0.062	0	0.066
phosphorus	IIIg/E	4/18/00	0.113	0.153	0.134	0.211
nH .	std unite	4/12/00	7.78	7.68	7.96	7.91
	30 01113	4/18/00	7.18	7.47	7.45	7.06
Turbidity	NTH	4/12/00	1.83	0.38	1.75	0.6
	ITIO	4/18/00	4.24	323	4,070	737

10-6



Table 10-4Summary of Big Tujunga Wash Water Quality Results1st Quarter 2001 (3/12/01)

Parameter	Units	Inflow to Tujunga Ponds 1	Inflow to Tujunga Ponds 2 (Duplicate)	Outflow From Tujunga Ponds 1	Outflow From Tujunga Ponds 2 (Duplicate)	Big Tujunga Wash 1	Big Tujunga Wash 2 (Duplicate)	Haines Canyon Creek Exiting Site 1	Haines Canyon Creek Exiting Site 2 (Duplicate)			
Temperature	°C	17.5		16.7	-	13.5	-	14.3				
Dissolved Oxygen	mg/L	4.9		5.4		10.2		9.7				
рН	std units	7.0		7.0	-	8.3		8.2	-			
Total residual chlorine	mg/L	0.03	-	0.02		0.05		0.03	-			
Ammonia-Nitrogen	mg/L	ND	ND	ND	ND	ND	ND	ND	ND			
Kjeldahl Nitrogen	mg/L	0.28	0.41	0.51	0.48	0.49	0.57	0.47	0.43			
Nitrite-Nitrogen	· mg/L	ND	ND	ND	ND	ND	ND	ND	ND			
Nitrate-Nitrogen	mg/L	8.19	8.10	4.48	4.41	0.12	0.12	0.45	0.43			
Orthophospate-P	mg/L	0.035 (MRL 0.010)	0.037 (MRL 0.010)	0.039	0.039 (MRL 0.010)	0.012	0.012	0.016	0.016			
Total phosphorus-P	mg/L	0.03 (MRL 0.020)	0.03 (MRL 0.020)	0.06	0.03 (MRL 0.020)	0.04	ND (<0.020)	0.05	0.05			
Turbidity	NŢU	0.60	0.50	0.75	0.80	9.6	9.1	9.4	12			
Fecal Coliform Bacteria	MPN/100 m!	. 4	4	80	30	. 140	60	23	130			
Total Coliform Bacteria	MPN/100 ml	2,200	1,600	2,800	7,000	3,000	800	350	280			
NTU nephelometric tur MRL method reporting MPN most probable nu ND non-detect	NTU nephelometric turbidity units MRL method reporting limit MPN most probable number ND non-detect											



Table 10-5Summary of Big Tujunga Wash Water Quality Results2nd Quarter 2001 (6/19/01)

Parameter	Units	Inflow to Tujunga Ponds 1	Inflow to Tujunga Ponds 2 (Duplicate)	Outflow From Tujunga Ponds 1	Outflow From Tujunga Ponds 2 (Duplicate)	Big Tujunga Wash 1	Big Tejunga Wash 2 (Duplicate)	Haines Canyon Creek Exiting Site 1	Haines Canyon Creek Exiting Site 2 (Duplicate)
Temperature	°C	22.3		22.7	-	*		21.5	
Dissolved Oxygen	mg/L	5.8		5.1		. *		7.3	
pН	std units	6.9		6.9		*		7.9	
Total residual chlorine	mg/L	ND	-	ND		*		ND	
Ammonia-Nitrogen	mg/L	ND	ND	ND	ND	*	. *	ND	ND
Kjeldahl Nitrogen	mg/L	ND	ND	0.31	0.36	* .	*	ND	ND
Nitrite-Nitrogen	mg/L	0.1	0.1	ND ND	ND	*	*	ND	ND
Nitrate-Nitrogen	_mg/L	7.6	7.5	4.7	4.8	* -	*	9.6	4.8
Orthophospate-P	mg/L	0.022	0.023	0.021	0.023	*	*	0.027	0.027
Total phosphorus-P	mg/L	0.04	0.04	0.06	0.04	*	•	0.03	0.04
Turbidity	NTU	1.5	1.9	4.2	2.9	*	*	1.4	1.2
Fecal Coliform Bacteria	MPN/100 ml	4	8	17	7	*	*	23	40
Total Coliform Bacteria	MPN/100 ml	300	300	1,600	1,400	*	*	5,000	93
*No sample on this date - NTU nephelometric tu MRL method reporting MPN most probable nu ND non-detect	station dry rbidity units ilmit imber								



Table 10-6Summary of Big Tujunga Wash Water Quality Results3rd Quarter 2001 (9/11/01)

Parameter	Units	inflow to Tujunga Ponds 1	Inflow to Tujunga Ponds 2 (Duplicate)	Outflow From Tujunga Ponds 1	Outflow From Tujunga Ponds 2 (Duplicate)	Big Tujunga Wash 1	Big Tujunga Wash 2 (Duplicate)	Haines Canyon Creek Exiting Site 1	Haines Canyon Creek Exiting Site 2 (Duplicate)
Temperature	• • <b>C</b>	21.3		21.3	-	) <b>*</b>		20.3	1
Dissolved Oxygen	mg/L	8.4		8.8	-	*		7.3	-
рН	std units	7.0		7.2		*	-	8.0	-
Total residual chlorine	mg/L	ND		ND		*		ND	-
Ammonia-Nitrogen	mg/L	ND	ND	ND	ND	*	*	0.093	ND
Kjeldahl Nitrogen	mg/L	0.37	0.71	0.35	0.47	*	* *	0.45	0.54
Nitrite-Nitrogen	mg/L	ND	ND	ND	ND	*	<b>*</b> ,	ND	ND
Nitrate-Nitrogen	mg/L	7.2	7.2	5.2	5.3	*	+	4.8	4.8
Orthophospate-P	mg/L	ND	ND	ND	ND	*	*	0.016	0.016
Total phosphorus-P	mg/L	0.02	ND	ND	ND	*	*	0.04	ND (MRL 0.02)
Turbidity	NTU	0.60	1.1	0.95	0.75	*	*	0.45	0.40
Fecal Coliform Bacteria	MPN/100 ml	11	17	900	130	•	*	240	110
Total Coliform Bacteria	MPN/100 ml	1,100	16,000	900	500	*	. •	1,400	1,100
*No sample on this date - NTU nephelometric tu MRL method reporting	station dry rbidity units i limit								

most probable number non-detect

MPN ND

Table 10-7Summary of Big Tujunga Wash Water Quality Results4⁴⁵ Quarter 2001 (12/12/01)

Parameter	Units	Inflow to Tujunga Ponds 1	Inflow to Tujunga Ponds 2 (Duplicate)	Outflow From Tujunga Ponds 1	Outflow From Tujunga Ponds 2 (Duplicate)	Big Tujunga Wash 1	Big Tujunga Wash 2 (Duplicate)	Haines Canyon Creek Exiting Site 1	Haines Canyon Creek Exiting Site 2 (Duplicate)			
Temperature	°C	15		14		*		12	-			
Dissolved Oxygen	mg/L	6.9		7.1	<b></b> -	*		10.0				
рН	std units	7.5		7.7		*		8.4				
Total residual chlorine	mg/L	ND		ND	· -	* .		ND	-			
Ammonia-Nitrogen	mg/L	ND	ND	. ND	ND		*	ND	ND			
Kjeldahl Nitrogen	mg/L	0.31	0.43	ND	0.44	+	*	0.45	0.54			
Nitrite-Nitrogen	mg/L	ND ·	ND	ND	ND .	· *	*	ND	ND			
Nitrate-Nitrogen	mg/L	8.9	8.9	7.3	7.3	*	*	6.1	6.4			
Orthophospate-P	· mg/L	0.028	0.029	0.024	0.026	· *	•	0.024	0.034			
Total phosphorus-P	mg/L	0.04	0.05	0.04	0.03	•	• "	0.03	0.04			
Turbidity	NTU	0.50	0.45	0.40	0.50	.*	*	0.25	0.40			
Fecal Coliform Bacteria	MPN/100 ml	<2	4	4	14	*	•	30	17			
Total Coliform Bacteria	MPN/100 ml	2,400	500	110	500	*	*.	900	900			
No sample on this date - NTU nephelometric tur MPN most probable nu ND non≺detect	No sample on this date - station dry NTU nephelometric turbidity units MPN most probable number ND non-detect											

#### Sampling Parameters

Table 3 summarizes the sampling parameters included in the water quality monitoring program. The following meters were used in the field:

- YSI Model 57 dissolved oxygen and temperature
- HACH DR 700 total residual chlorine
- Offin 230A pH

All other analyses were performed in duplicate at MWH Laboratories, Monrovia, California. Samples were taken at mid-depth, along a transect perpendicular to the stream channel alignment. Note that sampling for pesticides and herbicides will begin after specific chemicals have been identified by the golf course owners. Quality assurance/quality control (QA/QC) procedures in the laboratory followed the methods described in the MWH Laboratories Quality Assurance Manual.

Wate	Big Tujunga Wash or Quality Sampling Pa	n Irameters
Parameter	Analysis Location	Analytical Method
total Kjeldahl nitrogen (TKN)	laboratory	EPA 351.2
nitrate (NO ₂ )	laboratory	EPA 300.0 by IC
nitrate (NO3)	laboratory	EPA 300.0 by IC
ammonia (NH4)	laboratory	EPA 350.1
orthophosphorus	laboratory	EPA 365.1
total coliform	laboratory	Standard Methods 9221
fecalcoliform	laboratory	Standard Methods 9221
total brganic halogens (organochlorides)	not sampled in 2002	
total phosphorus	laboratory	EPA 365.4
organophosphate	calculation	، ، ، ، ، <u>، ، ، ، ، ، ، ، ، ، ، ، ، ، </u>

laboratory

not sampled in 2002

not sampled in 2002

not sampled in 2002

not sampled in 2002

## Table 3

lurbigity

(total P minus ortho-P)

glyphosate (Roundup)

1 golf course herbicide

1 golf course insecticide

1 golf course fungicide

(if not Roundup)

.

EPA 180.1

---

----

#### Table 3 (Continued) Big Tujunga Wash Water Quality Sampling Parameters

	Parameter	Analysis Location	Analytical Method
dissolv	ed oxygcn	field	Standard Methods 4500-O G
iotal r	sidual chlorine	field	Standard Methods 4500-C1 D
lempe	ature	field	Standard Methods 2550
pH :		field	Standard Methods 4500-H+

Source for analytical methods:

EPA. Method and Guidance for Analysis of Water.

American Public Health Association, American Waterworks Association, and Water Environment Federation. 1998. Standard Methods for the Examination of Water and Wastewater, 20th Edition. Washington D.C.

Discharge Measurements. In addition to the water quality monitoring conducted in December 2002, flows in the outlet of Big Tujunga Ponds and in Haines Canyon Creek leaving the site were estimated using a simple field procedure. The technique uses a float (an object such as an orange, ping-pong ball, pine cone, etc.) to measure stream velocity.

Calculating flow then involves solving the following equation:

$$Flow = ALC / T$$

Where:

- A = Avcrage cross-sectional area of the stream (stream width multiplied by average water depth)
- L = [Length of the stream reach measured (usually 20 ft)]
- $C = \Lambda$  coefficient or correction factor (0.8 for rocky-bottom streams or 0.9 for muddybottom streams). This allows you to correct for the fact that water at the surface travels faster than near the stream bottom due to resistance from gravel, cobble, etc. Multiplying the surface velocity by a correction coefficient decreases the value and gives a belter measure of the stream's overall velocity.
- T = || Time, in seconds, for the float to travel the length of L

#### RESULTS

#### Baseline Water Quality

Sampling and analysis conducted by LADPW prior to implementation of the MMP is considered the baseline for water quality conditions at the site. The results of analyses conducted in April 2000 are presented in Table 4.



# Table 5Summary of Big Tujunga Wash Water Quality Results1st Quarter 2002 (3/26/02)

Parameter	Units	laflow to Tujunga Ponds 1	Inflow to Tujunga Ponds 2 (duplicate)	Outflow from Tujunga Ponds 1	Outflow from Tajaaga Ponds 2 (duplicate)	Big Tujunga Wash I	Big Tujunga Wash 2 (duplicate)	Haines Cya Creek exiting site 1	Haines Cyn Creck exiting sile 2 (duplicate)
Temperature	ъС	18.5		18.0		*		17.0	
Dissolved Oxygen	mg/L	9.3		9.2	~~	•		8.9	
рН	std units	7.3		7.7		•		8.3	••• ·
Total residual chlorine	mg/L	ND		ND		· •	-	ND	•=
Ammonia-Nitrogen	mg/L	ND	ND	ND	ND	•	•	ND	ND
Kjeldahl Nitrogen	mg/L	0.28	0.30	ND	ND	•	•	ND	ND
Nitrite-Nitrogen	mg/L	ND	ND	ND	ND.	*	+	ND	ND
Nitrate-Nitrogen	mg/L	9.1	8.9	7.3	7.0	•	•	6.4	6.4
Orthophospate-P	mg/L	ND	ND	ND	ND	•	•	0.015	0.014
s Total phosphorus-P	mg/L	ND	ND	ND	ND	+	•	ND (MRL 0.02)	ND (MRL 0.02)
Turbidity	NTU	1.2	. 1.1	0.70	0.70	٠	•	0.35	0.30
Fecal Coliform Bacteria	MPN/100ml	4	<2	4	8	•	•	50	50
Total Coliform Bacteria	MPX-100ml	500	. 900	130	220		•	900	900

No sample on this date – station dry

NTU sepbelemetrie turbidity units

MRL method reporting limit

MPN most probable number

ND non-detect

### 2002 Annual Water Quality Report

Parameter	Units	Inflow to Tujunga Ponds 1	Inflow to Tujungs Ponds 2 (duplicate)	Outflow from Tujunga Peads 1	Outflow from Tujunga Ponds 2 (duplicate)	Big Tujuoga Wash I	Big Tujuogu Wash 2 (duplicate)	Haines Cyn Creek exitiog site 1	Haines Cya Creek exiting site 2 (daplicate)		
Temperature	°C	22.5		22.5		•		20.5	~		
Dissolved Oxygen	mg/L	8.3	1	8.4		•		8.6	-		
рН	std units	7.5		7.6		•		8.2			
Total residual chlorine	mg/L	ND	<b></b> '	ND		•		ND			
Ammonia-Nitrogen	mg/L	ND	ND	ND	ND	•	•	ND	ND		
Kjeldahl Nitrogen	mg/L	0.56	0.37	0.32	0.60	•	. •	0.26	0.28		
Nitrite-Nitrogen	mg/L	ND	ND	ND	ND	•	•	ND	ND		
Nitrate-Nitrogen	mg/L	8.9	8.9	7.1	6.7		•	5.6	5.9		
Orthophospate-P	mg/L	ND	ND	0.05	0,02	•	•	0.02	0.02		
Total phosphorus-P	mg/L	ND	ND	ND	ND	•		ND (MRL 0.02)	0.37 (MRL 0.02)		
Turbidity	NTU	0.70	0.70	1.0	1.5	•	+	1,4	1.6		
Fecal Coliform Bacteria	MPN/100ml	8	7	11	13	•	•	170	60		
Total Coliform Bacteria	MPN/100ml	1300	1400	300	300	•	*	2300	3000		

## Table 6Summary of Big Tujunga Wash Water Quality Results2nd Quarter 2002 (6/25/02)

No sample on this date - station dry

NFU cophelometric turbidity units

MRL method reporting limit

MPN most probable number

ND non-detect

MWH



### 2002 Annual Water Quality Report

## Table 7 Summary of Big Tujunga Wash Water Quality Results 3rd Quarter 2002 (9/12/02)

Parameter	Units	Inflow to Tujunga Pends i	Inflow to Tujunga Ponds 2 (duplicate)	Outflow from Tujunga Ponds 1	Outflow from Tujunga Ponds 2 (duplicate)	Big Tujaoga Wash 1	Big Tujunga Wash 2 (duplicate)	Haines Cyu Creck exiting site 1	Haines Cyn Creek exifing site 2 (duplicate)
Temperature	°C	21.4		22.0	••	•		21.0	
Dissolved Oxygen	ing/L	8.5		8.3		•		8.3	
pH	std units	7.1		7.3		•	-	8.3	
Total residual chlorine	mg/L	ND		ND		•		ND	-
Ammonia-Nitrogen	mg/L	ND	ND	ND	ND	•	•	ND	ND
Kjekkahl Nitrogen	mg/L	0.20	0.47	ND	ND	•	•	0.23	ŅD
Nitrite-Nitrogen	mg/L	ND	ND	ND	ND	•	•	ND	ND
Nitrate-Nitrogen	mg/L	9.1	9.0	6.8	6.8	•	*	6.1	6.1
Orthophospate-P	mg/L	0,014	0.016	ND	NÐ	. •	•	0.011	0.011
Total phosphorus-P	mg/L	0.03	0.05	ND	ND	•	•	0.02 (MRL 0.02)	ND (MRL 0.02)
Turbidity	NTU	2.4	2.7	0.75	0.70	•		2.6	4.5
Fecal Coliform Bacteria	MPN/100ml	7	2	4	2	•	•	<2	<2
Total Coliform Bacteria	MPN-100ml	2400	3000	5000	500	•	•	500	3000

No sample on this date - station dry

NTU

MRL method reporting firmit

most probable number MPN

ND non-detect

### 2002 Annual Water Quality Report



Table 8								
Summary of Big	Tujunga Wash Water Quality Results							
<b>4</b> ^{cn}	Quarter 2002 (12/19/02)							

Parsmeter	Units	laflow to Tujunga Ponds 1	Inflow to Tujunga Pouds 2 (duplicate)	Outflow from Tujunga Ponds 1	Outflow from Tujuagu Ponds 2 (duplicate)	Big Tajanga Wash 1	Big Tujunga Wash 2 (doplicate)	Haines Cya Creek exiting site 1	Haines Cyn Creek exiting site 2 (duplicate)
Temperature	°C	15.8		14.7		•		11.7	••
Dissolved Oxygen	mg/L	6.98		6.31		•		9.75	
pH	std units	7.06		7.12		*		8.19	
Total residual chlorine	mg/L	ND	-	ND		•		ND	
Ammonia-Nitrogen	mg/L	ND	ND	ND	ND	•		ND	ND
Kjeldahl Nitrogen	mg/L	ND	0.2	0.51	0.24	•	•	0.29	ND
Nitrite-Nitrogen	mg/L	ND	ND	ND	ND	*	•	ND	ND
Nitrate-Nitrogen	mg/L	10	9.8	7.8	7.9	•	*	4.9	5.0
Orthophospate-P	mg/L	0.043	0.046	0.029	0.028	•	•	0.035	0.032
Total phospborus-P	mg/L	0.03	0.04	0.03	0.03		•	0.06	0.021
Turbidity	NTU	0.65	0.60	0.60	0.65	•	•	4.8	2.8
Fecal Coliform Bacteria	MPN/100ml	30	13	94	80	+	•	300	30
Total Coliform Bacteria	MPN/100ml	1400	2800	300	1700	•	•	5000	3000

* No sample on this date - station dry

NTU nephelometric turbidity units

MRL method reporting limit MPN most probable number

ND non-detect



## RECEIVED

REPLY TO ATTENTION OF: 2003 MAY 23 AM 8: 55

Office of the Chief Operations Branch CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD LOS ANGELES REGION

May 22, 2003

MEMORANDUM FOR Nonpoint Source Unit, Los Angeles Regional Water Quality Control Board, ATTN: Ms. Julie Clark

SUBJECT: Draft Site Assessment Report for the Lower Lakes at Hansen Dam Flood Control Basin

1. Two copies of the Draft Site Assessment (SA) Report for the Lower Lakes at Hansen Dam Flood Control Basin are enclosed for your review. Please complete the review of the Draft SA Report and provide your written review comments to this office as soon as possible, but no later than June 24, 2003.

2. Questions regarding the Draft SA Report should be directed to Jeffery Armentrout, Environmental Compliance Coordinator, at (213) 452-3415.

George L. Beams, P.E.

Chief, Construction-Operations Division

Enclosures