KEN MALLOY HARBOR REGIONAL PARK DEVELOPMENT PROGRAM VOLUME I Habitat Restoration and Lake Water Quality **Improvement Design Development Report** Prepared for **City of Los Angeles Department of Recreation and Parks** and Palos Verdes/Southbay Audubon Society Prepared by PARSONS **110 West Walnut Street** Pasadena, California 91124

4-21

<...

Y

KEN MALLOY HARBOR REGIONAL PARK HABITAT IMPROVEMENT AND LAKE WATER QUALITY IMPROVEMENT DESIGN DEVELOPMENT REPORT

TABLE OF CONTENTS

List of Tablesiii
List of Figures iii
Acronyms and Abbreviationsv
List of Preparers and Agencies Consulted vii
EXECUTIVE SUMMARYES-1
SECTION 1: INTRODUCTION
1.1 Project Background1-1
1.2 Scope of Work 1-4
1.3 Report Organization1-4
SECTION 2: EXISTING CONDITIONS
2.1 Habitat Resources
2.2 Existing Park Usages
2.3 Existing Mitigation Projects2-7
2.4 Lake Water Quality Characteristics
2.4.1 Monitoring Program Performed in 1974-19772-8
2.4.2 Monitoring Program Performed in 1991-19932-13
2.4.3 Current Water Quality Sampling
2.5 Lake Bathymetry
2.6 Soil and Sediment Characteristics
2.6.1 Soil Characteristics
2.6.2 Sediment Characteristics
2.7 Fish Tissue Analysis
SECTION 3: HABITAT RESTORATION AND IMPROVEMENT
3.1 Goals of Habitat Restoration
3.2 Conceptual Habitat Restoration Plan 3-2
3.2.1 Floating Boardwalk Design
3.2.2 Habitat Restoration Opportunity 3-4
3.2.3 Proposed Planting Palette
3.2.4 Suggested Planting Stock & Sources
3.2.5 Sycamore-Alamo Riparian Woodland 3-20
3.2.6 Coastal Sage Scrub (including Natural Heritage Center and
Campground Landscaping)
3.2.7 TOSCO-BP Screen Concept

3.2.8 Nesting Island Design	3-23
3.2.9 Aquatic, Freshwater Marsh and Willow Riparian Forest	
Enhancement Concept	3-24
3.2.10 Mitigation Banking Concept	3-24
3.2.11 Maintenance & Monitoring Plan	
3.3 Cost Estimates	3-26
3.4 Recommended Project Priority	

SECTION 4: LAKEWATER QUALITY IMPROVEMENT

4.1	Goals of Water Quality Improvement	
4.2	Lake Water Quality Improvement Analyses	
	4.2.1 Current Machado Lake Water Quality	
	4.2.2 Water Supply Alternative Sources	
	4.2.3 Water Aeration System	
	4.2.4 Dredging	
	4.2.5 Dredge Spoil Disposal	
	4.2.6 Stormwater Best Management Practices	4-13
4.3	Cost Estimates	4-22
	4.3.1 Water Make-Up	4-22
	4.3.2 Dredging	
	4.3.3 Dredge Spoil Disposal	
	4.3.4 BMP	4-24
4.4	Recommendations	

SECTION 5: REGULATORY FRAMEWORK

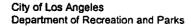
5.1	Federal Endangered Species Act	. 5-1
5.2	California Endangered Species Act	. 5-1
5.3	Migratory Bird Treaty Act	. 5-2
5.4	Wetlands and Other Jurisdictional Waters of the United States	. 5-2
5.5	Section 401 Certification	. 5-3
5.6	National Pollutants Discharge Elimination System	. 5-3
5.7	CDFG 1600 Series Streambed Alteration	. 5-4
5.8	California Fish and Game Code	. 5-4
5.9	City and Port of Los Angeles Regulations	. 5-4
5.10	California Environmental Quality Act	. 5-5
5.11	Model Permitting Scenario: Nesting Islands and Mosquito Control	
	Plan Implementation	. 5-5

SECTION 6: REFERENCES

APPENDICES

- A Topographic Map of KMHRP
- B Lake Machado Water Quality Sampling Data
- C Sediment Characterization Data
- D BMP Information
- E Comments on Draft DDR

LIST OF TABLES


Table No.

Page

2-1	Sediment Sample Matrix	2-26
2-2	Result of Laboratory Analysis for Sediment Samples	
2-3	Results of Laboratory Analysis for Sediment Samples (Continued)	2-29
2-4	Fish Tissue Sampling Results – Metals	2-36
2-5	Fish Tissue Sampling Results – Organics/ Organochlorine Pesticides	2-36
2-6	Fish Tissue Sampling Results – Organics/PCB	2-37
2-7	Fish Tissue Sampling Results – Metals	2-38
2-8	Fish Tissue Sampling Results – Organics	2-38
3-1	Proposed Planting Palette	3-10
3-2	Projected Nursery Stock Needs for the KMHRP Lands	3-15
3-3	Proposed KMHRP Habitat Improvement Actions	
4-1	Recommended Water Quality Improvement Activities at KMHRP	4-25

LIST OF FIGURES

Figu	ire No.	Page
1-1	KMHRP Location Map	
1-2	Aerial Photographic Map of KMHRP	
	· · · · ·	
2-1	Schematic Layout of Drainage Systems Discharging to	
	Machado Lake	
2-2	Sample Locations within Harbor Lake (1974-1977)	2-10
2-3	Sample Locations Within Wilmington Drain (1974-1977)	
2-4	Sample Location at Machado Lake (1992-1993)	2-13
2-5	Current Sampling Locations at Machado Lake	
2-6	Bathymetric Map of Machado Lake	2-21 ⁻

2-7	Soil boring Locations at Lower Machado Lake (1991)	2-22
2-8	Sediment Sampling Locations	2-24
3-1	Proposed Park Development Layout	3-5
3-2	College Entrance, Floating Boardwalk, Willow Riparian, and New Channel Concept	
3-3	Park Entrance, Nature Center, and Botanical Garden Design	
3-4	Legend	
3-5	Campground, Coastal Scrub, and Sycamore-Alamo Riparian Design	3-32
3-6	Section Below Dam and Campground	
3-7	Nature Center, Lath House and TOSCO-BP Berm Screen Concept	
3-8	Nesting Island, Sediment Basin, and Floating Boardwalk Concept	
3-9	Conceptual Nesting Island Profile	3-36
4-1	Bathymetric Map of Machado Lake	4-5
4-2	Bathymetric Elevation Map of Machado Lake	
4-3	Full Dredging Bathymetric Elevation Map of Machado	
4-4	Full Dredging Excavation Map of Machado Lake	4-9
4-5	Mosquito Control Plan and Nesting Island Option Project Depth Map of Machado Lake	4-10
4-6	Mosquito Control Plan and Nesting Island Option Excavation Map of Machado Lake	
4-7	Mosquito Control Plan and Nesting Island Option with Sedimentation Control Basin	4-19
4-8	Sedimentation Control Basin Excavation Map	4-20

• •

iv

2.3 EXISTING MITIGATION PROJECTS

Several areas within the KMHRP have been used as an environmental mitigation site for agencies which are required to provide off-site mitigation of environmental impacts. There are two current habitat enhancement projects within the boundaries of the park including:

- 1. Mitigation Plan for Emergency Channel Maintenance Activities at Agro Ditch, Los Angeles International Airport (LAX). This project proposed to restore and enhance a total of three acres of wetland areas (eight different sites) south of Machado Lake. The status report received from Sapphos Environmental Inc., a consultant working on this project, on January 9, 2001, revealed that six out of eight areas were planted but the plants did not survive the first year mostly because of the vandalism by off-road vehicles. Planting at areas 7 and 8 were reportedly successful.
- 2. Revegetation Plan for the Wilmington Drain Outlet Clearing Project, Los Angeles County Department of Public Works (DPW). This project is required to fulfill the Steambed Alteration Agreement issued by California Department of Fish and Game to DPW as a condition for granting a permission to DPW to cut a 130 foot wide by 1350 foot drainage way through the willow forest of Machado Lake to enhance water flow during the rainy season. Two sites were identified, one is located near the east side of the Lake and another is located near the Pacific Coast Highway (PCH) for a total of four acres. The first site was originally planned for native willow planting but later was proposed by Ultrasystem Environmental Incorporated, DPW's consultant, for revision to plant coast live oak instead. Sycamore and cottonwood are the species to be planted at the site near PCH. The planting activities are on-going.

Another potential mitigation project is proposed by the California Department of Transportation (Caltrans). Caltrans is required by Fish and Game Code section 1601 to perform off-site mitigation to compensate for impacts associated with construction of the Route 710 bridge over Compton Creek to allow for the protection and continuance of existing fish and wildlife resources that may be substantially adversely affected by those activities. A Memorandum of Understanding (MOU) between the City of Los Angeles and Caltrans was drafted in early 2001 but the agreement has not been finalized. The draft MOU stated that Caltrans will fund the Audubon Society for the removal of exotic weeds from the Blackberry Draw area within the KMHRP. Weed removal will take place between April 15 and October 15 to take advantage of most efficient time for the removal. In addition, Caltrans will fund The Audubon Society for native plant restoration, per mutually agreed upon plans, at Blackberry Draw within KMHRP.

Other agencies which may be required to provide offsite environmental mitigation may include, but are not limited to, the Port of Long Beach, the Port of Los Angeles, petroleum refineries in the Dominguez Channel watershed area, etc. However, no potential projects have been identified as of this date.

(·)

2.4 LAKE WATER QUALITY CHARACTERISTICS

Machado Lake is approximately 103.5 acres in total size. The upper portion, including open water, is approximately 40 acres and the lower seasonal wetland is about 63.5 acres. The lake surface is held at approximately ten feet above MSL by the low dam separating the upper lake and the lower wetland portion. Below the dam, the wetland system is hydrologically controlled by an outlet weir with a low water culvert set at about five feet above MSL and a high water box weir set at about 8 feet above MSL.

Figure 2-14 Concrete dam separating Machado Lake and the lower wetland area.

Machado Lake is a receiving body of urban and stormwater runoff from storm drain systems covering an approximately 20 square-mile watershed. Figure 2-1 shows a schematic layout of drainage system discharging to Machado Lake. The lake water has a constant brownish-yellow color with a red tint in the summer months. The lake is bordered by a golf course on the east side and a grassy park area on the west side. There is a marsh area at the upper north end of the lake downstream of the Wilmington Drain discharge point. This area is heavily vegetated with aquatic plants including cattails and reed plants. The lower end of the lake is bounded by a concrete dam. Water from the lake overflows the concrete dam to a wetland area prior to flowing out to the ocean through the Harbor Outflow located at the southeast corner of the park. The Harbor Outflow structure is connected to the West Basin of Los Angeles Harbor.

Limited lake water quality data are available for review. The following subsections summarize lake water quality data from various references as well as field sample collection conducted as part of this project study.

2.4.1 Monitoring Program Performed in 1974-1977

This monitoring program for Machado Lake was conducted during the period between August 1974 and September 1977. The program included basic water quality monitoring on a bi-weekly basis and water chemistry monitoring on a quarterly basis. Four sampling stations were located in the lake and four stations in Wilmington Drain (Figures 2-2 and 2-3). Sediment samples were collected from the same stations in the lake for analysis on an annual basis.

Sampling stations in Machado Lake:

Station	Description
L-1	North end of lake in heavy growth of tules (5 to 8 feet feet tall)
L-2	Central portion of lake with depths up to 8 feet, no rooted vegetation
L-3	Off the boat dock in the south end of the lake

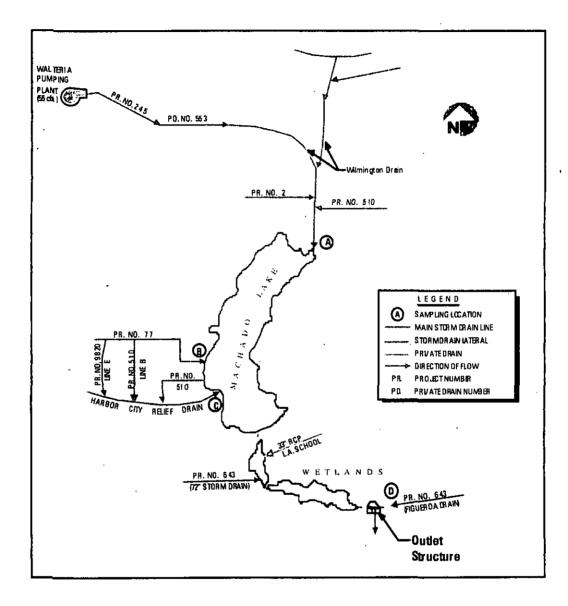


Figure 2-1 Schematic Layout of Drainage Systems Discharging to Machado Lake

(...

- L-4 South end of the lake, tules growing along the eastern side across from the boat-house
- L-5 Outlet of Harbor Lake (now known as Machado Lake)
- L-6 Leachate from landfill at the south end of the lake (note: doesn't exist at present
- L-7 Lake water into which leachate drain (doesn't exist at present)

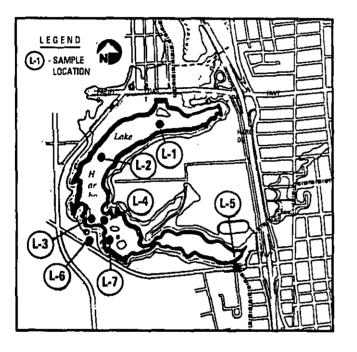


Figure 2-2 Sample Locations Within Harbor Lake (1974-1977)

Sampling stations in Wilmington Drain:

Station	Description
D-1	SD1201 at Sepulveda and Figueroa Street
D-2	PD553 at Harbor Freeway
D-3	Under Harbor Freeway at the Joint Water Pollution Control Plant (JWPCP)
D-4	Southern end of culvert under Pacific Coast Highway

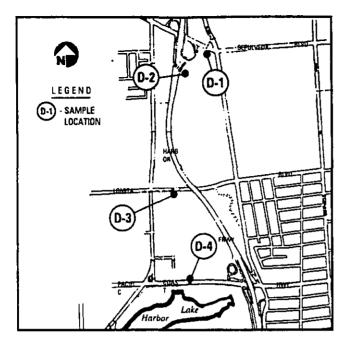


Figure 2-3 Sample Locations Within Wilmington Drain

Water Analyses of Harbor Lake

Only slight differences in the water quality parameters were recorded between the Harbor Lake stations at any given bi-weekly or quarterly sampling date. Much larger differences exist between samples taken on different dates. Two-way analysis of variance was used to determine the significance of these two types of variation for several of the water quality parameters.

Nitrate (NO₃), phosphate (PO₄), total dissolved solids (TDS), biochemical oxygen demand (BOD₅), chemical oxygen demand (COD), dissolved oxygen (DO) and temperature were found to be not significantly different between the four stations during 1975 on any given sampling date. In contrast, all parameters except temperature exhibited significant seasonal differences. Based on the conclusion of the report, the data collected from Harbor Lake during the course of the monitoring program indicated that the water quality objective for inland surface waters were being met. Although the concentration of dissolved oxygen periodically dropped below the 5.0 mg/l water quality objective, it was the result of natural, non-controllable, water quality factors. TDS concentrations within the lake water were below 500 mg/l during all but one of the quarterly samplings. During July 1976, the mean TDS concentration was 730 mg/l. This elevated value is directly attributable to the drought condition at that time.

Other water quality parameters that were monitored included oil and grease, conductivity, and pH. Oil and grease concentrations were normally 1 mg/l or less. Conductivity fluctuated within a range from 225 μ ohms to 975 μ ohms, and pH within a range from 6.9 to 8.8.

PARSONS

3

Sediment Analyses of Harbor Lake

Mercury (Hg) and lead (Pb) concentrations increased throughout the lake since the first sampling. The mean concentration of Hg was 0.12 mg/l, 0.14 mg/l, and 0.37 mg/l for the years 1975, 1976, and 1977, respectively. During the same period, mean lead concentrations were 64 mg/l, 194 mg/l, and 224 mg/l.

Similarly, oil and grease concentrations showed a consistent increase throughout the lake. The mean oil and grease concentration was 695 mg/l, 988 mg/l, 2,338 mg/l for the three respective years. Total organic matter increased from an average of 2.4 and 7.1 percentage dry weight composition in 1975 and 1976 to 56.8 percent in 1977.

Nickel (Ni) was consistently found in the highest concentrations at the northern station, L-1. Concentrations of Chromium (Cr), Cadmium (Cd), Copper (Cu), Ni, and Zinc (Zn) were always the lowest at station L-3. The study suggested that constant agitation of the shallow water at station L-3 by paddle boat traffic (at that time) may be partially responsible for this decrease in deposition.

The total identifiable chlorinated hydrocarbons (TICH) in the samples were uniformly low in 1975. Biological samplings of sediment at all four stations in Harbor Lake were conducted on January 7, 1975. Station L-3 had the highest density of oligochaetes (annelid worms) and was the only station to have chironomid (midge) larvae. Oligochaetes were found at all other stations, but in lesser quantities.

Bottom sediments were not found to be homogeneous throughout the lake. The general characteristics of each sample are summarized below:

Station	Observations
L-1	Gray-black, plant fragments plentiful, no sulfide odor
L-2	Gray-black mud, sulfide odor present
L-3	Grainy mud, much sand, no sulfide odor
L-3	Grainy mud, much sand, no sulfide odor

L-4 Dark brown surface mud, gray-green clay beneath mud, no sulfide odor

Wilmington Drain Analyses

The sampling stations exhibited similar trends throughout the period of observation. Both algae and surface scum were most frequently observed at Station D-1. Insects were observed throughout the year at Station D-3, and only during the summer months at Stations D-1 and D-4, and were never observed at Station D-2. Gnats and dragonflies were the insects most commonly recorded.

In summary the report concluded that during the monitoring period the lake did not appear to have been adversely affected by man-induced changes in the surrounding environment. The high turbidity of the lake is largely attributable to the composition of the soil in that area. The increase in water temperature and TDS were a reflection of the continuing drought condition that existed in this area.

 $\nabla (z)$

2.4.2 Monitoring Program Performed in 1991-1993

The "Evaluation of Water Quality for Selected Lakes in the Los Angeles Hydrologic Basin – Final Report" submitted to the California Regional Water Quality Control Board, Los Angeles Region by the University of California, Riverside in April 1994, provided the results of a water quality study for 23 lakes in the Los Angeles area, including Machado Lake (then Harbor Lake), during the period 1992-1993.

Machado Lake was sampled 12 times from July 1992 to June 1993. Because the lake was so shallow, only surface samples could be collected. A single sampling station was located in the middle of the lake near the east side (Figure 2-4). Water parameters analyzed included physical characteristics, general minerals, nutrients, organics, volatile organics, and trace elements.

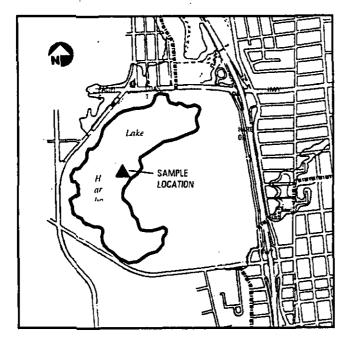


Figure 2-4 Sample Location at Machado Lake (1992-1993)

Fish tissue analysis was also conducted during the period 1991 and 1992 by the California Department of Fish and Game.

Results of Machado Lake (then Harbor Lake) water quality study are summarized below:

Physical Condition. Water temperatures varied greatly with time of sampling with the lowest average of 11° C in December 1992 and the highest average of 30° C in August, 1992. The shallow water limited temperature stratification in the water column. Usually the temperature decreased slightly with depth. The DO levels were always greater than 5 mg/l. Secchi depths¹ ranged from 1 to 5 feet.

¹ Secchi Depth is a simple method for assessing the clarity of the lake. A Secchi disk is a circular plate divided into quarters painted alternately black and white. The disk is attached to a rope and lowered into the water until it is no longer visible. Secchi disk depth, then, is a measure of water clarity. Higher Secchi readings mean more rope was let out before the disk disappeared from sight and indicates clearer water.

Minerals and Nutrients. The quality of the water in Machado Lake varied greatly during the year of sampling. The major cause of the variation was storm water runoff in the lake in December 1992 and January 1993. Major cations found in the lake were sodium and calcium. Alkalinity, chloride and sulfate all contributed to the anions in the water. The lake has the second highest average phosphorus content among the 23 lakes in Southern California monitored, and thus ranked high according to the Carlson's Trophic State Index (TSI) for total phosphorus.

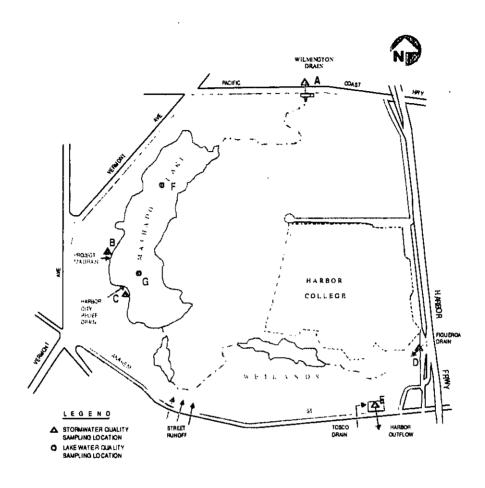
Trace Elements. Generally trace element concentrations were below the Inland Surface Waters Plan water quality objectives. Cu and Pb were found in elevated levels for two sampling times.

Toxicity. Some organics were detected but mostly at the levels below standards. Heptachlor and heptachlor epoxide were found at levels above the Department of Health Services maximum contaminant level (MCL) of 0.01 μ g/l in a few samples. A suite of organics (chlordane, dieldrin, oxadiazon, and polychlorinated biphenyls (PCB) was found in a 1991 fish tissue sample, but none were detected in a sample from 1992.

The study rated the Machado Lake water quality as highly impaired based on nutrients, organics, productivity, and aesthetics. The most likely source of nutrients is from fertilizers applied to lawns, parks, and golf courses. To improve the water quality of the Machado Lake, the report recommended park cleanup, nutrient reduction, and metal reduction.

2.4.3 Current Water Quality Sampling

During the course of this project study, three lake water quality sampling events were conducted. One sampling event occurred during the wet period (March 6, 2001) and two sampling events occurred during the dry period (May 22, 2001 and June 27, 2001).


Seven sampling locations were identified within KMHRP for this study (Figure 2-5). These sampling locations represent runoff influent to Machado Lake and the wetland area, lake water, and effluent from KMHRP.

The sampling locations are described below.

<u>Station</u>	Description
А	Wilmington Drain outlet at the north end of KMHRP
В	Project 77 - Drain outlet west side of lake
С	Project 510 - Harbor City Relief Drain outlet west side of lake
	immediately north of the Boat House
D	Project No. 643 - Figueroa Street Drain outlet at southeast corner of
	KMHRP off of Figueroa Place
E	Harbor Outflow structure, southeast corner of KMHRP off of Anaheim
	Street
F	Lake water in northern portion of lake
G	Lake water in southern portion of lake

City of Los Angeles Department of Recreation and Parks

Water samples were analyzed for physical characteristics, nutrients, coliform bacteria, trace metals, organochlorine pesticides, polychlorinated biphenyls (PCB), and polynuclear aromatic hydrocarbons (PAH). A summary of the results of the wet weather and first dry weather sampling events is provided below.

Wet Weather Sampling Event (March 6, 2001)

The 100 percent chance of precipitation predicted for March 6, 2001 did not materialize. However, heavy rainfall occurred on March 5 and runoff was still discharging to and from KMHRP during the sampling activities. The water level of the lake was very high, with water discharging over the concrete dam and blocking the dam from sight. Discharge at the Harbor Outfall structure was extremely heavy. Water was discharging over the concrete wall surrounding the outfall structure. The top of the concrete wall is the same elevation as the concrete dam south of the lake. A lot of floating trash was observed discharging into the lake (i.e., styrofoam cups, plastic bottles, aluminum cans, paper goods, etc.). **Physical Conditions.** The pH values for the influent to KMHRP ranged from 7.9 to 8.3. The pH of the lake water was 7.4 to 7.5, and the effluent pH was 7.3. The temperature of the water samples did not vary greatly. The temperatures of the influent ranged from 16.5°C to 18.0°C, while the temperature of the lake water was 15.1°C to 16.5°C. The temperature at the outfall was 17.1°C. DO concentrations were above 5 mg/l for all samples. BOD₅ concentrations measured in the influent samples averaged less than 5 mg/l. The lake water samples and the effluent sample had BOD₅ concentrations ≤ 2 mg/l. TSS concentrations in the influent samples ranged from 5 mg/l to 172 mg/l with the highest concentration measured at the Wilmington Drain. TSS concentrations in the lake water varied between 35 mg/l to 72 mg/l with the highest concentration being measured in the northern portion of the lake, which is immediately downstream of Wilmington Drain. The effluent had a TSS concentration of 77 mg/l.

Nutrients. Total phosphorus concentrations in the influent samples ranged from 0.23 mg/l to 0.92 mg/l and the lake water samples showed a total phosphorus concentration approximately 0.44 mg/l. The total phosphorus concentration at the outfall was 0.38 mg/l. NO₃ concentrations in the influent ranged from 0.67 mg/l to 0.92 mg/l while the NO₃ concentrations in the lake water were around 0.30 mg/l and the effluent was 0.35 mg/l.

Coliform Bacteria. All seven samples showed total and fecal bacteria results to be >1,600 MPN/100 ml. The test for coliform bacteria did not utilize the correct dilutions to show counts above 1,600 MPN/100 ml.

Trace Metals. Of the 17 trace metals analyzed, only four were consistently measured at less than the practical quantitative limits (PQLs) at all sampling locations (beryllium, mercury, selenium, and silver). Sampling Station B showed a copper (Cu) concentration of 97 $\mu g/l$, while the other influent samples had Cu concentrations around 16 $\mu g/l$. Lake water samples had Cu concentrations around 12 μ g/l and the effluent was measured at approximately 9 μ g/l. Lead (Pb) concentrations in the influent samples averaged around 9 μ g/l with lake water measuring around 6.5 μ g/l and the effluent measuring around 5 μ g/l. Zinc (Zn) concentrations were also high, ranging from 77 µg/l to 93 µg/l in the influent samples, around 68 µg/l in the lake, and 49 µg/l in the effluent sample. Trace metals results were compared to ecological data quality levels (EDQL) (USEPA, 2001). EDQLs are initial screening levels identify which parameters are most likely to pose an unacceptable risk to the environment. Water with which site contaminant concentrations can be compared to quality sample results exceeded the EDQLs for five metals: Cu, Pb, thallium (Th), vanadium (V), and Zn. Cu, Pb, and Th concentrations exceeded the EDQLs (5 μ g/l, 1.3 μ g/l, and 0.56 μ g/l respectively) at all of the sampling locations. Zn concentrations exceeded the EDQL for Zn (58.9 μ g/l) at all of the sampling locations with the exception of the outfall. V concentrations exceeded the EDQL for V (19 μ g/l) in the samples collected at Sampling Stations A and B.

Toxicity. Organochlorine pesticides, PCBs, and PAHs were all detected below the PQLs at all seven sampling stations.

(

•

Dry Weather Sampling Event (May 22, 2001)

The first dry weather sample was collected on May 22, 2001. Only four sampling locations were sampled due to lack of runoff flow at some sampling locations. The water level of the lake was approximately 6 to 12 inches below the concrete dam at the south side of the lake. Influent samples were collected at Sampling Stations B and C and both lake stations were sampled. There was no dry weather runoff entering KMHRP from the Wilmington Drain and Figueroa Drain. There was also no discharge from KMHRP at the outfall structure. Floating trash was observed in the discharge to the lake.

Physical Conditions. The pH values for the influent to KMHRP were in the low 8s while the pH values in the lake water were in the high 7s. The temperature of the water samples did not vary greatly, however, the influent temperatures were a few degrees less than the lake water (temperatures in the low $20s^{\circ}$ C). DO concentrations were above 5 mg/l for all samples, with influent samples measuring around 9 mg/l. BOD₅ concentrations measured in the influent samples ranged from <2 mg/l to 25 mg/l (Sampling Station B) and 26 mg/l in the lake water. TSS concentrations in the influent samples were low measuring 6 mg/l while the TSS concentrations in the lake water samples were around 26 mg/l.

Nutrients. Total phosphorus concentrations in the influent samples ranged from 0.24 mg/l to 2.09 mg/l and the lake water samples showed a total phosphorus concentration approximately 1.2 mg/l. NO₃ concentrations in the influent ranged from 0.5 mg/l to 0.83 mg/l while the NO₃ concentrations in the lake water were less than the detection limit (0.4 mg/l).

Coliform Bacteria. Sampling Station B showed total and fecal coliform bacteria counts of 59,400 MPN/100 ml and 6,790 MPN/100 ml, respectively and Sampling Station C showed total and fecal coliform bacteria counts of 2,070 MPN/100 ml and 402 MPN/100 ml, respectively. The lake water samples showed total and fecal coliform bacteria counts to be <200 MPN/100 ml.

Trace Metals. Of the 17 trace metals analyzed, only four were consistently measured at less than the PQLs at all sampling locations (beryllium, selenium, silver, and thallium). The equipment blank (collected using the sampling equipment for the lake water sampling) for this sampling event showed contamination for several of the metals (Cd, Cu, Pb, Hg, Ni, and Zn). Cu concentrations in the influent samples ranged from 15 to 24 μ g/l and the lake water samples had Cu concentrations below the PQL for Cu (10 μ g/l). Pb concentrations in the influent samples ranged from 17.6 μ g/l to 19 μ g/l. The lake water sample results are questionable due to contamination of the equipment blank. The Ni concentration at Sampling Station C was 65 μ g/l. Zn concentrations were also high, ranging from 79 μ g/l to 116 μ g/l in the influent Again lake water Zn concentrations are suspect due to contamination of the samples. equipment blank for lake water sampling. As for the wet weather sample results, trace metals results were compared to EDQLs (USEPA, 2001). Cu and Pb concentrations exceeded the EDQL for Cu and Pb (5 μ g/l and 1.3 μ g/l, respectively) at all dry weather sampling stations. Cu concentrations in the lake are suspect because the equipment blank had a Cu concentration of 6.5 μ g/l. Zn concentrations exceeded the EDQL for Zn (58.9 μ g/l) at Sampling Stations B and C.

Toxicity. Organochlorine pesticides, PCBs, and PAHs were all detected below the PQLs at all four sampling stations.

Based on water quality results from the wet and dry weather sampling events, water quality in Machado Lake is impaired due to metals and aesthetics. Influent to the lake shows elevated concentrations of metals, fecal coliform, and trash. To improve the water quality of the lake, trash needs to be removed along with reducing metals influent to the lake.

Dry Weather Sampling Event (June 27, 2001)

The second dry weather sample was collected on June 27, 2001. Only five sampling locations were sampled due to unavailability of runoff flow at some sampling locations. The water level of the lake was approximately 6 to 12 inches below the concrete dam at the south side of the lake. Influent samples were collected at Sampling Stations A, B, and C and both lake water sampling locations were sampled. There was no dry weather runoff entering KMHRP from the Figueroa Drain. There was also no discharge from KMHRP at the outfall structure. Field parameters (pH, temperature, conductivity, and DO) for Sampling Stations B and C were not measured due to a lack of sample.

Physical Conditions. The pH values for the influent to KMHRP from Sampling Station A was 7.4 while the pH values in the lake water were in the high 7s. The temperature of the water samples did not vary greatly, however, the influent temperature was slightly lower than the lake water (temperatures in the mid $20s^{\circ}C$). DO concentrations were above 5 mg/l for all samples, with influent samples measuring around 6 mg/l. BOD₅ concentrations measured in the influent samples ranged from <4.9 mg/l to 57 mg/l (Sampling Station B) and 4.2 mg/l to 8.9 mg/l in the lake water. TSS concentrations in the influent samples were low measuring <4 mg/l, with the exception of Sampling Station B which measured 100 mg/L. TSS concentrations in the lake water samples ranged from 14 mg/l to 23 mg/l. Total dissolved solids (TDS) concentrations in the influent ranged from 405 mg/l to 1,780 mg/l (Sampling Station A) while the TDS concentrations in the lake were in the mid to high 500 mg/l range.

Nutrients. Total phosphorus concentrations in the influent samples ranged from 0.34 mg/l to 0.5 mg/l and the lake water samples showed a total phosphorus concentration approximately 1.2 mg/l. NO₃ concentrations in the influent ranged from <0.4 mg/l to 0.6 mg/l while the NO₃ concentrations in the lake water were less than the detection limit (0.2 mg/l).

Coliform Bacteria. Sampling Station A showed total and fecal coliform bacteria counts of 2,860 MPN/100 ml, while Sampling Station B showed total and fecal coliform bacteria counts >1,600 MPN/100 ml. Sampling Station C showed total and fecal coliform bacteria counts of 300 MPN/100 ml. The lake water samples showed total and fecal coliform bacteria counts for 170 MPN/100 ml to 300 MPN/100ml.

Trace Metals. Of the 17 trace metals analyzed, eight were consistently measured at less than the PQLs at all sampling locations (antimony, arsenic, beryllium, cobalt, selenium, silver, thallium, and vanadium). The equipment blank for this sampling event showed some contamination for Zn. Cu concentrations in the influent samples ranged from 14 μ g/l to 83 μ g/l (Sampling Station B) and the lake water samples had Cu concentrations below the PQL for Cu (10 μ g/l). Mercury (Hg) concentrations were a little higher in the influent 0.7 μ g/l to

ંુ

1.8 μ g/l (Sampling Station C) than in the lake water 0.5 μ g/l to 1.0 μ g/l. Sampling Station B had elevated levels of both Pb (16 μ g/l) and Zn (159 μ g/l). Sampling Station A had the highest Ni concentration at 31 μ g/l. As for the other two sample results, trace metals results were compared to EDQLs (USEPA, 2001). Cu concentrations exceeded the EDQL for Cu (5 μ g/l) at Sampling Stations B and C. Pb and Zn concentrations exceeded the EDQL for Pb (1.3 μ g/l) and Zn (58.9 μ g/l) at Sampling Station B. Ni concentrations exceeded the EDQL for Ni (24 μ g/l) at Sampling Station A. Hg concentrations exceeded the EDQL for Hg (0.0013 μ g/l) at Sampling Stations B, C, F, and G.

Toxicity. Organochlorine pesticides, PCBs, and PAHs were all detected below the PQLs at all five sampling stations.

Based on water quality results from the wet and dry weather sampling events, water quality in Machado Lake is impaired due to metals and aesthetics. Influent to the lake shows elevated concentrations of metals, fecal coliform, and trash. To improve the water quality of the lake, trash needs to be removed along with reducing metals influent to the lake.

2.5 LAKE BATHYMETRY

An updated bathymetric map, using new depth measurements, of Lake Machado was required for:

- 1. analysis of sedimentation patterns, which reveal long-term circulation patterns;
- 2. evaluation and design of a sediment dredging scenario; and
- 3. design of the artificial islands.

On April 10, 2001, Parsons performed a field survey to collect bathymetric data in Lake Machado. Bathymetric data are the distance from the water surface, which is a horizontal planar surface, to the sediment surface of the lake bottom. The data were gathered with a multi-frequency acoustic profiler in conjunction with a multi-channel global positioning system (GPS) to simultaneously record the bathymetric data and the location of the data points. The acoustic profiler utilized multi-frequency sonar to derive depth measurements while the GPS utilizes satellites to obtain position fixes. Both the acoustic profiler and the GPS unit were connected to a laptop field computer that digitally recorded the information generated by each unit.

The field survey equipment was mounted in an inflatable boat driven by an electric trolling motor. An earlier optical survey established an elevation datum so that the absolute elevation of the water surface could be recorded during the bathymetric survey. During the bathymetric survey, the depth data from the acoustic profiler, along with the location data from the GPS, were continuously recorded along transects along the length and width of the lake to provide sufficient spatial coverage to allow contouring of the data points for the development of a detailed lake bathymetric map. The boat moved in relatively straight transect lines at a speed of 3 to 4 miles per hour. More than 3,000 depth measurements were obtained during the field survey.

KEN MALLOY HARBOR REGIONAL PARK (WET WEATHER SAMPLING)

SAMPLING EVENT: March 6, 2001

		1						Lake	Water	FD	EB
Station ID		PQL .	A	B	С	D	E	F	G	H (C)	1
Grab 1	Time		11:05	10:35	10:25	10:48	10:30	12:45	1:10	10:25	9:55
Grab 2	Time		11:50	11:30	11:25	11:20	11:10			11:27	
Grab 3	Time		12:30	12:15	12:05	12:12	12:00			12:02	
Composite	pH		7.9	8.3	8.0	8.0	7.3	7.5	7.4	8.0	7.3
	Flow (cfs)			ļ							
	Temp. (°F)		16.5	17.1	17.6	17.8	17.1	16.5	15.1	18.3	19.4
	Cond. (umhos/cm)		0.17	0.44	0.21	0.21	0.12	0.09	0.09	0.22	0.002
	DO (mg/i)		7.9	7.5	7.7	7.7	7.1	6.6	6.9	7.3	7.6
Laboratory	Ammonia (mg/l)	0.2	0.2	0.3	0.1	<0.2	<0.2	<0.2	<0.2	0.2	<0.2
Analysis	BOD5 (mg/l)	2	4.4	5.1	5.3	2	2	1	<2	4.6	2
	Chiorophyli (mg/l)	0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Ortho Phosphorus (mg/l)	0.02	0.41	0.62	0.43	0.21	0.27	0.28	0.29	0.45	<0.02
	Total Phosphorous (mg/l)	0.1	0.61	0.92	0.59	0.23	0.38	0.43	0.46	0.53	<0.1
	TSS (mg/l)	4	172	59	94	5	34	72	35		<4
	TVS (mg/i)	10	67	78	49	<10	25	23	20	53	<10
	Chromium (VI) (mg/l)	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	Total Coliform (MPN/100 ml)		>1600	>1600	>1600	>1600	>1600	>1600	>1600	>1600	>1600
	Fecal Coliform (MPN/100 ml)		>1600	>1600	>1600	>1600	>1600	>1600	>1600	>1600	>1600
1	Nilrate (mg/l)	0.04	0.67	0.85	0.89	0.23	0.35	0.31	0.32	0.94	0.02
	Nitrite (mg/i)	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	TTLC 17 Metale			· ·						·	
	Antimony (ug/L)	10	<10	4.8	<10	<10	<10	<10	<10	<10	<10
	Arsenic (ug/L)	5	4.3	7.4	6.7	4	3.6	3,4	3.7	5.7	<5
	Barium (ug/L)		123	118	76	17	48	62	60	83	<10
	Beryillum (ug/L)	2	<2	<u> </u>	2	~2	~2	2	2	2	2
	Cadmlum (ug/L)	2	1.2	0.7	0.7	0.3	0.4	. 0.6	0.63	0.42	<2

63

4

								Lake	Water	EB	FD
Station ID		PQL	Α	В	C	D	E	F	G	Н	I (C)
	Chromium (ug/l)	5	17	10	10	4.t	5.9	13.0	13.6	11	2.6
Laboratory	Cobalt (ug/L)	5	3.3	2.0	2.8	0.66	1.1	1.5	1.8	2.7	0.45
Analysis	Copper (ug/L)	10	16.4	96.8	16.6	8	8.8	12.4	11.1	17.2	<10
(con't)	Lead (ug/L)	5	5.2	7.7	17.8	5.2	5.1	6.8	6.1	8.4	<5
	Mercury (ug/L)	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Molybdenum (ug/L)	5	6.0	8.3	3.7	<5	4.0	2.7	3.1	3.4	්ත්
	Nickel (ug/L)	5	23.3	21.2	11.6	3.4	7.6	11.7	16.4	12.8	<5
	Selenium (ug/L)	10	<10	<10	<10	<10	<10	<10	. <10	<10	<10
	Silver (ug/L)	10	<10	<10	<10	<10	<10	<10	<10	<10	<10
	Thalilum (ug/L)	10	1.8	2.7	2.5	3.1	3.3	3.8	<10	<10	<10
	Vanadium (ug/L)	10	33.8	22.2	17.0	4	9.5	15.9	18.2	18.8	<10
	Zinc (ug/L)	10	77.4	92.5	83.8	78.6	48.7	68.8	67.9	91.7	<10
	Organochiorine Pesticides										
	Aldrin (ug/L)	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Beta BHC (ug/L)	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.0
	Alpha BHC (ug/L)	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.0
	Detta BHC (ug/L)	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.0
	Gamma BHC (Lindane) (ug/L)	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.0
	Alpha-chlordane (ug/L)	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.0
	Gamma-chlordane (ug/L)	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.0
	P,P'-DDD (ug/L)	0.1	<0.1	<0.1	<0.1	⊲0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	P,P'-DDE (ug/L)	0.1	<0.1	<0.1	<0.1	⊲0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	P,P-DDT (ug/L)	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Dieidrin (ug/L)	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Alpha Endosulfan (ug/L)	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.0
	Beta Endosulfan (ug/L)	-0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Endosullan sulfate (ug/L)	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Endrin (ug/L)	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Endrin Aldehyde (ug/L)	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Endrin Ketone (ug/L)	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Heptachlor (ug/L)	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.0
	Heptachior Epoxide (ug/L)	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.0
	Methoxychior (ug/L)	2	~2	2	2	~2	2	2	2	2	থ
	Toxaphene (ug/L)	5	-5	<5	<5	<5	-5	<5	<5	<5	<5
	PCBs										

ſ

Sampling\wq030601.xis

· · ·

.

Page 2 of 3

. ;

								Lake	Water	EB	FD
Station ID		PQL	A	B	C	D	E	F	G	H	I (C)
	PCB-1016 (Arochior 1016) (ug/L)	2	~2	<2	2	~2	2	<2	2	~2	2
Laboratory	PCB-1221 (Arochlor 1221) (ug/L)	5	<5	-6	<5	-5	<5	<5	<5	<5	<5
Analysis	PCB-1232 (Arochlor 1232) (ug/L)	2	<2	<2	<2	<2	2	~2	~2	<2	<2
con't)	PCB-1242 (Arochlor 1242) (ug/L)	2	<2	2	<2	<2	2	<2	<2	2	<2
·	PCB-1248 (Arochior 1248) (ug/L)	2	<2	<2	<2	<2	<2	<2	~2	<2	<2
	PCB-1254 (Arochlor 1254) (ug/L)	1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	PCB-1260 (Arochior 1260) (ug/L)	1	<1	<1	<1	<1	<1	<1	<1	<1	1
	Polynuclear Aromatic HC (PAH)		÷						•		
	Acenaphthene (ug/L)	5	-5	ත්	<5	<5	<5	<5	<5	<5	<5
	Acenaphthylene (ug/L)	2 .	<2	<2	<2	<2	~2	<2	2	2	<2
	Anthracene (ug/L)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
	Benzo(A)anthracene (ug/L)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
	Benzo(A)pyrene (ug/L)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
	Benzo(B)fluranthene (ug/L)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
	Benzo(G,H,I)perylene (ug/L)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
	Benzo(K)fluoranthene (ug/L)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
	Chrysene (ug/L)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
	Dibenz(A,H)anthracene (ug/L)	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Fluoranthene (ug/L)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
	Fluorene (ug/L)	1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	Indenc(1,2,3-C,D)pyrene (ug/L)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
	Naphtalene (ug/L)	5	<5	<5	<5	<5	<5	<5	ර	්	<5
	Phenathrene (ug/L)	1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	Pyrene (uty/L)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2

FD = Field Duplicate, EB = Equipment Blank PQL = Practical Quantilation Limit

Remark:

Duplicate sample for Sampling Location C was designated as Sample Location H

KEN MALLOY HARBOR REGIONAL PARK (DRY WEATHER SAMPLING)

SAMPLING EVENT: MAY 22, 2001

								Lake	Water	FD	EB
Station ID		PQL	A	В	C	D	E	F	G	H (G)	1
Grab 1	Time			9:16	9:00	-	•	11:30	11:55	11:55	10:10
Grab 2	Time			10:05	10:00	. <u></u>	-				
Grab 3	Time			11:05	11:00	-					
Composite	рН			8.2	8.4	•	•	7.9	7.8	8.1	6.3
	Flow (cfs)										
	Temp. (°F)	_	<u> </u>	21.3	20.5	-	· · · · ·	22.8	23.3	24	21.4
	Cond. (umhos/cm)	-	<u> </u>	1.20	0.67	-	· •	0.78	0.77	0.77	0.008
· · · · · · · · · · · · · · · · · · ·	DO (mg/l)		-	9.2	8.9	-	•	5.9	6.3	6.2	8.9
Laboratory	Ammonia (mg/l)	0.2	•	0.41	0.3	•	•	0.1J	0.1J	0.2J	<0.2
Analysis	BOD5 (mg/l)	2	-	25	<2	•	•	8.1	5.1	4.6	<2
	Chlorophyll (mg/l)	0.1	-	<0.1	<0.1	-	•	<0.1	<0.1	<0.1	<0.1
	Ortho Phosphorus (mg/l)	0.02	-	1.40	0.18	•	-	0.84	0.72	0.69	<0.02
	Total Phosphorous (mg/l)	0.1	•	2.09	0.24	•	•	1.2	1.4	1.0	<0.1
	TSS (mg/l)	4	-	6	6		-	26	25	28	<4
	TVS (mg/l)	10	-	67	59	•	•	110	110	78	<10
	Chromium (VI) (mg/l)	0.01	•	<0.01	<0.01	-	-	<0.01	<0.01	<0.01	<0.01
	Total Collform (MPN/100 ml)		• •	59,400	2,070	· -		<200	45J	<200	2
	Fecal Coliform (MPN/100 ml)		•	6,790	402	•	-	<200	<200	<200	<2
	Nitrate (mg/i)	0.04	•	0.50	0.83	-	-	<0.4	0.4	<0.4	0.08
	Nitrite (mg/l)	0.05	•	<0.5	<0.5	•	-	<0.5	<0.5	<0.5	<0.05
	TTLC 17 Metals										
	Antimony (ug/L)	10	•	5.0J	<10	•	•	3.2J	4.2J	3.7J	<10
	Arsenic (ug/L)	5		<5	<5	•	•	1.9J	<5	<5	<5
	Barium (ug/L)	10	•	67.7	57	-		95	104	105	1.7J
	Beryllium (ug/L)	2	•	<2	2	•	· ·	~2	2	2	<2
	Cadmlum (ug/L)	2	•	2.2	1.9J	•		1.9J	1.9J	1.8J	2.3

								Lake	Water	FD	EB
Station ID	<u> </u>	PQL	Α	В	С	D	E	F	G	H (G)	1
	Chromlum (ug/l)	5	-	1.8J	2.8J		1	ත්	<5	. <5	<5
aboratory	Cobalt (ug/L)	6	•	0.85J	1.1J	•	• -	0.27J	0.45J	0.32J	<5
Analysis	Copper (ug/L)	10	-	23.7	15.5	•	-	5.8J	7.2J	4.2J	6.5J
con't)	Lead (ug/L)	5	•	17.6	19	•	•	17.5	17.1	15.4	15.3
-	Mercury (ug/L)	0.5	•	0.24J	0.20J	-	•	0.20J	0.22J	0.20J	0.20J
	Molybdenum (ug/L)	5	•	8.4	5.1	-	-	5.6	5.7	5.5	<5
	Nickel (ug/L)	5	•	8.3	65.4	•	•	4.9J	7.6	5.1	1.2J
	Selenium (ug/L)	10	•	<10	<10	•	-	<10	. <10	<10	<10
	Silver (ug/L)	10	•	<10	<10	-	·	<10	<10	<10	<10
	Thailium (ug/L)	10	•	<10	<10	•	•	<10	<10	<10	<10
	Vanadium (ug/L)	10	-	4.9J	4.4J	-	-	4.3J	5.3J	5.0J	<10
	Zino (ug/L)	10	•	118	79	-		52	44.7	29.6	42.6
	Organochiorine Pesticides										
	Aldrin (ug/L)	0.05	-	<0.05	<0.05	-	•	<0.05	<0.05	<0.05	<0.05
	Beta BHC (ug/L)	0.05	-	<0.05	<0.05	-	•	<0.05	<0.05	<0.05	<0.05
	Alpha BHC (ug/L)	0.05	-	<0.05	<0.05	•	· ·	<0.05	<0.05	<0.05	<0.05
	Delta BHC (ug/L)	0.05	•	<0.05	<0.05	-	<u> </u>	<0.05	<0.05	<0.05	<0.05
	Gamma BHC (Lindane) (ug/L)	0.05		<0.05	<0.05	•	-	<0.05	<0.05	<0.05	<0.05
	Alpha-chlordane (ug/L)	0.05	-	<2	-22	-		~2	<2	<2	<2
	Gamma-chlordene (ug/L)	0.05	•	1			-				
	P,P-DDD (ug/L)	0.1	•	<0.1	<0.1			<0.1	<0.1	<0.1	<0.1
	P,P'-DDE (ug/L)	0.1	•	<0.1	<0.1	•	-	<0.1	<0.1	<0.1	<0.1
	P,P-DDT (ug/L)	0.1	•	<0.1	<0.1	•	•	<0.1	<0.1	<0.1	<0.1
	Dieldrin (ug/L)	0.1	•	<0.1	<0.1	•		<0.1	<0.1	<0.1	<0.1
	Aipha Endosullan (ug/L)	0.05		<0.05	<0.05	· ·	-	<0.05	<0.05	<0.05	<0.05
	Beta Endosulfan (ug/L)	0.1	•	<0.1	<0.1	•		<0.1	<0.1	<0.1	<0.1
	Endosulfan sulfate (ug/L)	0.5	•	<0.5	<0.5	-	•	<0.5	<0.5	<0.5	<0.5
	Endrin (ug/L)	0.1	•	<0.1	<0.1	-	•	<0.1	<0.1	<0.1	<0.1
	Endrin Aldehyde (ug/L)	0.1	-	<0.1	<0.1	<u> </u>	•	<0.1	<0.1	<0.1	<0.1
	Endrin Ketone (ug/L)	0.1	-	<0.1	<0.1		-	<0.1	<0.1	<0.1	<0.1
	Heptachlor (ug/L)	0.05		<0.05	<0.05		•	<0.05	<0.05	<0.05	<0.05
	Heptachlor Epoxide (ug/L)	0.05	•	<0.05	<0.05	•	•	<0.05	<0.05	<0.05	<0.05
-	Methoxychlor (ug/L)	2	-	<2	<2	• · · · · ·	-	~2	<2	~2	<2
	Toxaphene (ug/L)	5	•	<5	<5	•	•	<5	<5	<5	<5
	PCBs			T							

Sampling\wq052201.xls

.

قي.

•	
- 1	

r

			-						Lake Water		EB
Station ID		PQL	A	В	C	D	E	F	G	H (G)	
	PCB-1016 (Arochlor 1016) (ug/L)	2	-	<2	<2	•	•	2	<2	<2	<2
Laboratory	PCB-1221 (Arochior 1221) (ug/L)	5	-	<5	<5	•	•	<5	<5	<5	<5
Analysis	PCB-1232 (Arochior 1232) (ug/L)	2	•	<2	<2	-	•	2	~2	~2	<2
(con't)	PCB-1242 (Arochlor 1242) (ug/L)	2	•	<2	<2		-	Ŷ	<2	<2	<2
	PCB-1248 (Arochlor 1248) (ug/L)	2	-	<2	<2	-	-	~2	<2	~2	<2
	PCB-1254 (Arochior 1254) (ug/L)	1	•	<1	<1	-	•	<1	<1	<1	<1
	PCB-1260 (Arochior 1260) (ug/L)	1	•	0.1J	<1	-	-	<1	0.2J	0.2J	0.1J
	Polynucles: Aromatic HC (PAH)										
	Acenaphthene (ug/L)	5	•	<5	<5	-	•	<5	<5	<5	<5
	Acenaphthylene (ug/L)	2	•	<2	<2	-	-	<2	<2	<2	<2
	Anthracene (ug/L)	0.2	-	<0.2	<0.2	•	-	<0.2	<0.2	<0.2	<0.2
	Benzo(A)anthracene (ug/L)	0.2	•	<0.2	<0.2	-	-	<0.2	<0.2	<0.2	<0.2
	Benzo(A)pyrene (ug/L)	0.2	•	<0.2	<0.2	-	•	<0.2	<0.2	<0.2	<0.2
	Benzo(B)fluranthene (ug/L)	0.2	•	<0.2	<0.2	-	-	<0.2	<0.2	<0.2	<0.2
	Benzo(G,H,i)perylene (ug/L)	0.2	-	<0.2	<0.2	•	•	<0.2	<0.2	<0.2	<0.2
	Benzo(K)fluoranthene (ug/L)	0.2	•	<0.2	<0.2	•	-	<0.2	<0.2	<0.2	<0.2
	Chrysene (ug/L)	0.2	•	<0.2	<0.2	•	-	<0.2	<0.2	<0.2	<0.2
	Dibenz(A,H)anthracene (ug/L)	0.5	-	<0.5	<0.5	•	•	<0.5	<0.5	<0.5	<0.5
	Fluoranthene (ug/L)	0.2	•	<0.2	<0.2	-	-	<0.2	<0.2	<0.2	<0.2
2	Fluorené (ug/L)	1	•	<1	<1	•	-	<1	<1	<1	<1
·	Indeno(1,2,3-C,D)pyrene (ug/L)	0.2	•	<0.2	<0.2	•	•	<0.2	<0.2	<0.2	<0.2
	Naphtatene (ug/L)	5	•	<5	<5	•	-	\$	<5	<5	<5
	Phenathrene (ug/L)	1	•	<1	<1	•	•	<1	<1	<1	<1
	Pyrene (ug/L)	0.2	•	<0.2	<0.2		•	<0.2	<0.2	<0.2	<0.2

FD = Field Duplicate, EB = Equipment Blank

- = Samples were not collected from Sampling Locations A, D and E due to no flow.

PQL = Practical Quantitation Limit

J = reported between PQL and Method Detection Limit (MDL)

Remark:

Duplicate sample for Sampling Location G was designated as Sample Location H

÷

7/5/01

KEN MALLOY HARBOR REGIONAL PARK (DRY WEATHER SAMPLING)

SAMPLING EVENT: June 27, 2001

C. Carrier

				1			2	Lake	Water	FD	EB
Station ID		PQL	A	В	С	D	Ē	F	G	H (B)	1
Grab 1	Time		6:55	8:15	8:30	-	-	10:25	10:45	8:15	7:35
Grab 2	Time		9:53	9:15	9:25	<u> </u>		<u> </u>	·	9:15	
Grab 3	Time		10:55	10:13	10:25		· -	-		10:25	
Composite	pH		7.4	•	•			7.9	7.7	•	6.9
	Flow (cfs)										
	Temp. (°F)		24.5	•	·		-	24.8	25.5	•	20.1
	Cond. (umhos/cm)		2.13	•	•		-	0.85	0.85	•	0.03
	DO (mg/i)		6.2	<u> </u>	•	· ·	-	6.0	6.1	•	7.2
Laboratory	Ammonia (mg/i)	0.2	0.3	0.52	0.49			0.3	0.3	0.4	0.2
Analysis	BOD5 (mg/l)	2	4.9	57	7.2	4	•	8.9	4.2	5.3	2
	Chlorophyll (mg/l)	0.1	<0.1	<0.1	<0.1	-	•	<0.1	<0.1	<0.1	<0.1
-	Ortho Phosphorus (mg/l)	0.02	0.49	0.40	0.33	-	-	1.02	1.19	0.37	<0.02
	Total Phosphorous (mg/l)	0.1	0.5	0.42	0.34	-	-	1	1.2	0.7	<0.1
	TSS (mg/l)	4	<4	100	<4	-	•	23	14	119	<4
-	TDS (mg/l)	10	1,780	851	405	•	-	536	590	860	16
	Chromium (VI) (mg/l)	0.01	<0.01	<0.01	<0.01	•	•	<0.01	<0.01	<0.01	<0.01
	Total Coliform (MPN/100 ml)		2,860	>1,600	300	-	•	300	170	19,000	<2
	Fecal Collform (MPN/100 ml)		2,860	>1,600	300	-	•	300	170	2,860	<2
	Nitrate (mg/l)	0.04	<0.4	0.60	0.59	-	•.	<0.2	<0.2	0.50	0.05
	Nitrite (mg/l)	0.05	<0.5	<0.5	<0.25	•		<0.25	<0.25	<0.5	<0.05
	TTLC 17 Metals										
	Antimony (ug/L)	10	<10	<10	<10	-	-	<10	<10	<10	<10
	Arsenic (ug/L)	5	<5	<5	<5	-	+	<5	<5	<5	<5
	Barium (ug/L)	10	115	127	58	•	•	135	123	129	<10
	Beryllium (ug/L)	2	~2	2	<2	-	• .	<2	<2	<2	<2

÷

3

	Cadmium (ug/L)	2	<2	<2	<2	-	-	<2	<2	<2	4
	·····										
		·		1			2	Lake	Water	FD	EB
Station ID		PQL	A	В	С	D	E	F	G	H (G)	
	Chromium (ug/i)	5	<5	<5	9	-	-	ৎ	5.8	8.8	<5
Laboratory	Cobait (ug/L)	5	<5	\$	<5	•	-	ধ	<5	হ	<5
Analysis	Copper (ug/L)	10	<10	83	14	-	•	<10	<10	74	<10
(con't)	Lead (ug/L)	5	\$	16	\$	-	-	Ś	- ব্য	7.1	<5
	Mercury (ug/L)	0.5	<0.5	0.7	1.8	4	-	0.52	0.99	<0.5	<0.5
	Molybdenum (ug/L)	5	40.0	5	<5	•	-	6.3	5.8	6.9	<5
	Nickel (ug/L)	5	31	12	<5	•	-	9.3	6.3	10.1	<5
	Selenium (ug/L)	10	<10	<10	<10		-	<10	<10	<10	<10
	Silver (ug/L)	10	<10	<10	<10	•		<10	<10	<10	<10
	Thailium (ug/L)	10	<10	<10	<10	•	-	<10	<10	<10	<10
	Vanadium (ug/L)	10	<10	<10	<10		•	<10	<10	<10	<10
	Zinc (ug/L)	10	31	159	50		•	30	30	93	17
	Organochiorine Pesticides										
	Aldrin (ug/L)	0.34	< 0.34	<0.34	<0.34	•		<0.34	<0.34	<0.34	<0.34
	Beta BHC (ug/L)	0.23	<0.23	<0.23	<0.23	-	•	<0.23	<0.23	<0.23	<0.23
	Alpha BHC (ug/L)	0.35	<0.35	<0.35	<0.35	-	•	<0.35	<0.35	<0.35	<0.35 ;
	Delta BHC (ug/L)	0.24	<0.24	<0.24	<0.24	•	-	<0.24	<0.24	<0.24	<0.24
	Gamma BHC (Lindane) (ug/L)	0.25	<0.25	<0.25	<0.25	-		<0.25	<0.25	<0.25	<0.25
	Chlordane (ug/L)	0.8	<0.8	<0.8	<0.8	-	-	<0.8	<0.8	<0.8	<0.8
	P,P'-DDD (ug/L)	0.5	<0.5	<0.5	<0.5	•	-	<0.5	<0.5	<0.5	<0.5
	P,P'-DDE (ug/L)	0.58	<0.58	<0.58	<0.58	-	· ·	<0.58	<0.58	<0.58	<0.58
	P,P'-DDT (ug/L)	0.81	<0.81	<0.81	<0.81		• • •	<0.81	<0.81	<0.81	<0.81
~	Dieldrin (ug/L)	0.44	<0.44	<0.44	<0.44	-	•	<0.44	<0.44	⊲0.44	<0.44
	Aipha Endosulfan (ug/L)	0.3	<0.3	<0.3	<0.3	-	-	<0.3	<0.3	<0.3	<0.3
-	Beta Endosulfan (ug/L)	0.4	<0.4	<0.4	<0.4	-	-	<0.4	<0.4	<0.4	<0.4
	Endosulfan sulfate (ug/L)	0.35	< 0.35	<0.35	<0.35	-	-	<0.35	<0.35	<0.35	<0.35
	Endrin (ug/L)	0.39	<0.39	<0.39	<0.39	-	-	<0.39	<0.39	<0.39	<0.39
	Endrin Aldehyde (ug/L)	0.5	<0.5	<0.5	<0.5	-	-	<0.5	<0.5	<0.5	<0.5
	Heptachlor (ug/L)	0.4	<0.4	<0.4	<0.4	•		<0.4	<0.4	<0.4	<0.4
	Heptachior Epoxide (ug/L)	0.32	< 0.32	<0.32	<0.32	•	-	<0.32	<0.32	<0.32	<0.32
	Methoxychlor (ug/L)	0.86	<0.86	<0.86	<0.86	•		<0.86	<0.86	<0.66	<0.86

Sampling\wq062701.xls

.:

÷.

• • • • •

.

•

	Toxaphene (ug/L)	0.5	<0.5	<0.5	<0.5	•	· _	0.5	<0.5	<0.5	<0.5
	PCBs					_					
				1			2	Lake	Water	FD	EB
Station ID		PQL	A	В	С	D	E	F	G	H (G)	-
	PCB-1016 (Arochior 1016) (ug/L)	1	<1	<1	<1		-	<1	ব	<1	<1
Laboratory	PCB-1221 (Arochlor 1221) (ug/L)	2	2	2	8	•		2	2	2	2
Anatysis	PCB-1232 (Arochlor 1232) (ug/L)	1	<1	<1	<1	•	•	<1	<1	<1	<1
con't)	PCB-1242 (Arochlor 1242) (ug/L)	1	ব	<1	4	•	•	<1	<u><۱</u>	<1	. .
	PCB-1248 (Arochior 1248) (ug/L)	1	<1	· . <1	<	-	-	<1	<1	<1	4
	PCB-1254 (Arochior 1254) (ug/L)	1	<1	<1	<1	•	-	<1	<1	<1	<1
	PCB-1260 (Arochlor 1260) (ug/L)	1	<1	<1 [.]	<1	-	-	<1	<1	<1	<1
	Polynuclear Aromatic HC (PAH)							•			
	Acenaphthene (ug/L)	5	<5	<5	ব	-	-	<5	<5	\$	<5
	Acenaphthylene (ug/L)	2	2	<2	<2.	•	•	~2	8	2	2
	Anthracene (vg/L)	0.2	<0.2	<0.2	<0.2	-	•	<0.2	<0.2	<0.2	<0.2
	Benzo(A)anthracene (ug/L)	0.2	<0.2	<0.2	<0.2		-	<0.2	<0.2	<0.2	<0.2
	Benzo(A)pyrene (ug/L)	0.2	<0.2	<0.2	<0.2	•	-	<0.2	<0.2	<0.2	<0.2
	Benzo(B)fluranthene (ug/L)	0.2	<0.2	<0.2	<0.2	- <u> </u>	-	<0.2	<0.2	<0.2	<0.2
	Benzo(G,H,I)perytene (ug/L)	0.2	<0.2	<0.2	<0.2	·	· .	<0.2	<0.2	<0.2	<0.2
	Benzo(K)fluoranthene (ug/L)	0.2	<0.2	<0.2	<0.2		· · ·	<0.2	<0.2	<0.2	<0.2
	Chrysene (ug/L)	0.2	<0.2	<0.2	<0.2	•	· ·	<0.2	<0.2	<0.2	<0.2
	Dibenz(A,H)anthracene (ug/L)	0.5	<0.5	<0.5	<0.5		· ·	<0.5	<0.5	<0.5	<0.5
	Fluoranthene (ug/L)	0.2	<0.2	<0.2	<0.2	•	<u> </u>	<0.2	<0.2	<0.2	<0.2
	Fluorene (ug/L)	1	<1	<1	<1	•		<1	<1	<1	<1
	Indeno(1,2,3-C,D)pyrene (ug/L)	0.2	<0.2	<0.2	<0.2	<u> </u>	-	<0.2	<0.2	<0.2	<0.2
	Naphtalene (ug/L)	5	<5	<5	<5	<u> </u>	-	<5	<5	<5	<5
	Phenathrene (ug/L)	1	<1	<1	<1	<u> </u>	-	<1	<1	<1	<1
•	Pyrene (ug/L)	0.2	<0.2	<0.2	<0.2	-		<0.2	<0.2	<0.2	<0.2

FD = Field Duplicate, EB = Equipment Blank

- = Samples were not collected from Sampling Locations A, D and E due to no flow.

* = Field tests not run due to lack of sample

PQL = Practical Quantitation Limit

Remark:

Duplicate sample for Sampling Location B was designated as Sample Location H

.

\$

Appendix C

Sediment Characterization Data

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498 Submitted to: Parsons Engineering Science Attention: Devin Thor 100 W. Walnut Street Pasadena CA 91124 Tel: (626) 585-6000 Fax: (626) 440-6200

APCL Analytical Report

Service ID #: 801-013584 Collected by: Collected on: 05/14-15/01 Received: 05/16/01 Extracted: 05/17-18/01 Tested: 05/17-25/01 Reported: 05/30/01

Sample Description: Soil from KMHRP Project Description:

Analysis of Soil Samples

		•			Analysis Res	ult ,
Component Analyzed	Method	Unit	PQL	LT6	LT1-W,C.F.	LT2-W,C,E
			_	01-03584-1	01-03584-(2 to 4)	01-03584-(5 to 7)
CARBON, TOTAL ORGANIC (TOC)	415.1	mg/kg	100	-	10,400	4,620
CHROMIUM (VI)	7196	mg/kg	0.05	< 0.05	< 0.05	< 0.05
TTLC 17 METALS						
Dilution Factor				1	1	3
ANTIMONY	SW6010B	mg/kg	5	0.15J	0.33J	0.22J
ARSENIC	SW6010B	mg/kg	0.3	2.2	2.9	3.2
BARIUM	SW6010B	mg/kg	1	127	186	168
BERYLLIUM	SW6010B	mg/kg	0.2	< 0.2	< 0.2	< 0.2
CADMIUM	SW6010B	mg/kg	0.2	0.72	1.6	1.6
CHROMIUM	SW6010B	mg/kg	0.5	24.1	29.1	28.2
COBALT	SW6010B	mg/kg	0.5	4.7	6.2	5.2
COPPER	SW6010B	mg/kg	0.5	16.1	28.9	-29.0 -
LEAD	SW6010B	mg/kg	0.3	15.5	34.0	61.7
MERCURY	SW7471A	mg/kg	0.2	0.056J	0.10J	0.10J
MOLYBDENUM	SW6010B	mg/kg	0.2	< 0.2	1.5	1.6
NICKEL	SW6010B	mg/kg	0.3	18.3	27.9	26.5
SELENIUM	SW6010B	mg/kg	0.5	0.29J	0.99	0.93
SILVER	SW6010B	mg/kg	0.5	< 0.5	< 0.5	< 0.5
THALLIUM	SW6010B		0.5	< 0.5	< 0.5	< 0.5
VANADIUM	SW6010B	mg/kg	0.5	40.8	46.8	41.3
ZINC	SW6010B	mg/kg	0.5	49.3	130	141
Dilution Factor				1	5	5
PHC AS DIESEL FUEL	M8015E	mg/kg	10	17	140	120
Dilution Factor				1	5	5
MOTOR OILS	M8015E	mg/kg	10	33	320	250

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

...

					Analysis Resu	
Component Analyzed	Method	Unit	PQL	LT6	LT1-W,C,E	LT2-W,C,E
				01-03584-1	01-03584-(2 to 4)	01-03584-(5 to 7)
VOLATILE ORGANICS			<u> </u>			
Dilution Factor				1	1	Ţ
ACETONE	SW8260B	µg/kg	100	39J	49J	52J
BENZENE	SW8260B	µg/kg	5	< 5	< 5	< 5
BROMOBENZENE	SW8260B	μg/kg	5	< 5	< 5	< 5
BROMOCHLOROMETHANE	SW8260B	µg/kg	5	< 5	. < 5	< 5
BROMODICHLOROMETHANE	SW8260B	µg/kg	5	< 5	< 5	< 5
BROMOFORM	SW8260B	$\mu g/kg$	5	< 3	< 5	< 5
2-BUTANONE	SW8260B	$\mu g/kg$	100	< 100	< 100	< 100
N-BUTYLBENZENE	SW8260B	µg/kg	5	< 5	< 5	< 5
SEC-BUTYLBENZENE	SW8260B	$\mu g/kg$	5	< 5	< 5	< 5
T-BUTYLBENZENE	SW8260B	µg/kg	5	< 5	< 5	< 5
CARBON DISULFIDE	SW8260B	µg/kg	5	< 5	< 5	3.)
CARBON TETRACHLORIDE	SW8260B	μg/kg	5	< 5	< 5	< 5
CHLOROBENZENE	SW8260B	μg/kg	5	< 5	< 5	< 5
DIBROMOCHLOROMETHANE	SW8260B	"g/kg	5	< 5	< 5	< 5
CHLOROETHANE	SW8260B	"g/kg	5	< 5	< 5	< 5
2-CHLOROETHYL VINYL ETHER	SW8260B	µg/kg	50	< 50	< 50	< 50
CHLOROFORM	SW8260B	$\mu g/kg$	5	0.7J	1 J	1J
1-CHLOROHEXANE	SW8260B	µg/kg	5	< 5	< 5	< 5
CHLOROMETHANE	SW8260B	μg/kg	5	< 5	< 5	< 5
2-CHLOROTOLUENE	SW8260B	µg/kg	5	< 5	< 5	<5
4-CHLOROTOLUENE	SW8260B	µg/kg	5	< 5	<5	≮5
1,2-DIBROMO-3-CHLOROPROPANE	SW8260B	μg/kg	5	< 5 -	~5	
1,2-DIBROMOETHANE	SW8260]}	$\mu g/kg$	5	< 5	< 5	< 5
DIBROMOMETHANE	SW8260B	µg/kg	5	< 5	< 5	e 5
1.2-DICHLOROBENZENE	SW8260B	$\mu g/kg$	5	< 5	< 5	<5
1,3-DICHLOROBENZENE	SW8260B	µg/kg	5	< 5	< 5	<1
1.4-DICHLOROBENZENE	SW8260B	μg/kg	5	∢5	< 5	25
DICHLORODIFLUOROMETHANE	SW8260B	µg/kg	5	< 5	< 5	- 73
1,1-DICHLOROETHANE	SW8260B	μg/kg	5 ·	< 5	< 5	< 5
1.2-DICHLOROETHANE	SW8260B	µg/kg	5	< 5	< 5	15
1.1-DICHLOROETHENE	SW8260B	"g/kg	5	< 5	< 5	15
CIS-1,2-DICHLOROETHENE	SW8260B	μg/kg	5	< 5	. < 5	× 5
T'RANS-1,2-DICHLOROETHENE	SW8260B	μg/kg	5	< 5	< 5	+ 5j
1.2-DICHLOROPROPANE	SW8260B	µg/kg	5	< 3	< 5	<.5
1,3-DICHLOROPROPANE	SW8260B	µg/kg	5	< 5	< 5	15
2.2-DICHLOROPROPANE	SW8260B	µg/kg	5	< 5	< 5	- 5
1.1-DICHLOROPROPENE	SW8260B	μg/kg	5	< 5	< 5	- 5
CIS-1,3-DICHLOROPROPENE	S₩8260B	"g/kg	5	< 5	< 5	- 5
TRANS-1,3-DICHLOROPROPENE	SW8260B	µg/kg	5	< 5	< 5	e 5,

CADHS ELAP No.: 1431

CI-1440 D003 N C1-3584 1

Page: 2

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Result			
Component Analyzed	Method	Unit	PQL	LT6 01-03584-1	LT1-W,C,E	LT2-W,C,E 01-03584-(5 to 7)		
ETHYLBENZENE	SW8260B	μg/kg	5	< 5	< 5	< 5		
HEXACHLOROBUTADIENE	SW8260B	μg/kg	5	< 5	< 5	< 5		
2-HEXANONE	SW8260B	µg/kg	50	< 50	< 50	< 50		
ISOPROPYLBENZENE (CUMENE)	SW8260B	µg/kg	5	< 5	< 5	< 5		
P-CYMENE (P-ISOPROPYLTOLUENE)	SW8260B	μg/kg	5	< 5	< 5	< 5		
METHYLENÈ CHLORIDE	SW8260B	µg/kg	5	2J	< 5	2.]		
4-METHYL-2-PENTANONE	SW8260B	μg/kg	50	< 50	< 50	< 50		
NAPHTHALENE	SW8260B	µg/kg	5	< 5	0.5J	< 5		
N-PROPYLBENZENE	SW8260B	µg/kg	5	< 3	< 5	< 5		
STYRENE	SW8260B	µg/kg	5	< 5	< 5	< 5		
1,1,1,2-TETRACHLOROETHANE	SW8260B	µg/kg	5	< 3	< 5	< 5		
1,1,2,2-TETRACHLOROETHANE	SW8260B	$\mu g/kg$	5	< 5	< 5	< 5		
TETRACHLOROETHENE(PCE)	SW8260B	$\mu g/kg$	5	< 5	< 5	< 5		
TOLUENE	SW8260B	µg/kg	5	< 5	< 5	< 5		
1,2,3-TRICHLOROBENZENE	SW8260B	μg/kg	5	< 5	< 5	< 5		
1,2,4-TRICHLOROBENZENE	SW8260B	µg/kg	5	< 5	< 5	< 5		
1,1,1-TRICHLOROETHANE	SW8260B	$\mu g/kg$	5	< 5	< 5	× 5		
1,1,2-TRICHLOROETHANE	SW8260B	$\mu g/kg$	5	< 3	< 5	< 5		
TRICHLOROETHENE (TCE)	SW8260B	$\mu g/kg$	5	< 5	< 5	× 5		
TRICHLOROFLUOROMETHANE	SW8260B	μg/kg	5	< 5	< 5	< 5		
1,2,3-TRICHLOROPROPANE	SW8260B		3.1	< 3.1	< 3.1	<3.1		
1,2,4-TRIMETHYLBENZENE	SW8260B	μg/kg	5	< 5	< 5	< 5		
1,3,5-TRIMETHYLBENZENE	SW8260B	μg/kg	5	< 5	< 5	< 5		
VINYL ACETATE	SW8260B	µg/kg	5	< 5	< 5	< 5		
VINYL CHLORIDE	SW8260B	$\mu g/kg$		< 5	< 5	< 5		
O-XYLENE	SW8260B	μg/kg	5	<5.	< 5	< 5		
M,P-XYLENE	SW8260B	μg/kg	5	< 5	< 5	< 5		
SEMI-VOC	0	μο/ο	-					
Dilution Factor				1	2	2		
ACENAPHTHENE	SW8270C	µg/kg	500	< 500	< 1000	< 1000		
ACENAPHTHYLENE	SW8270C		500	< 500	< 1000	< 1000		
ANTHRACENE	SW8270C		500	< 500	< 1000	< 1000		
BENZO(A)ANTHRACENE	SW8270C			< 500	< 1000	< 1000		
BENZO(A)PYRENE	SW8270C			< 62	< 120	< 120		
BENZO(B)FLUORANTHENE	SW8270C	μg/kg		< 500	<1000	< 1000		
BENZO(G,H,I)PERYLENE	SW8270C	μg/kg		< 500	< 1000	< 1000		
BENZO(K)FLUORANTHENE	SW8270C			< 500	< 1000	< 1000		
BENZOIC ACID	SW8270C				< 5000	< 5000		
BENZYL ALCOHOL	SW8270C				< 2000	< 2000		
BIS(2-CHLOROETHOXY) METHANE	SW8270C	·		< 500	<1000	< 1000		
BIS(2-CHLOROETHYL) ETHER	SW8270C			< 210	< 420	< 120		
BIS(2-CHLOROISOPROPYL) ETHER	SW8270C		·	< 500	< 1000	< 1000		
BIS(2-ETHYLHEXYL) PHTHALATE	SW8270C			< 500	570J	2803		
4-BROMOPHENYI, PHENYL ETHER	SW8270C			< 500	< 1000	< 1000		
	SW8270C				< 1000	< 1000		
BENZYL BUTYL PHTHALATE 4-CHLORO-3-METHYLPHENOL	SW8270C				< 2000	< 2000		
	SW8270C				< 2000			
4-CHLOROANILINE	344.07100	μ6/ ×Ε	5 1000) <1000	× 2000	< 2000		

APCL Analytical Report

*** .*

- 187

13760 Magnolia Ave. Chino CA 91730 Tel: (909) 590-1828 Fax: (909) 590-1498

Component Analyzed 2-CHLORONAPHTHALENE 2-CHLOROPHENOL	Method	Unit	PQL	LT6	LT1-W,C,E	1000 HILO D
			-	DIG		LT2-W,C,E
				01-03584-1	01-03584-(2 to 4)	01-03584-(5 to 7)
2-CHLOROPHENOL	SW8270C	µg/kg	500	< 500	< 1000	< 1000
	SW8270C	μg/kg	500	< 500	< 1000	< 1000
4-CHLOROPHENYL PHENYL ETHER	SW8270C	$\mu g/kg$	500	< 500	< 1000	< 1000
CHRYSENE	SW8270C	$\mu g/kg$	500	< 500	< 1000	< 1000
DI-N-BUTYL PHTHALATE	SW8270C	$\mu g/kg$	500	< 500	< 1000	< 1000
DI-N-OCTYLPHTHALATE	SW8270C	µg/kg	500	< 500	< 1000	< 1000
DIBENZ(A,H)ANTHRACENE	SW8270C	$\mu g/kg$	500	< 500	< 1000	< 1000
DIBENZOFURAN	SW8270C	µg/kg	500	< 500	< 1000	< 1000
1,2-DICHLOROBENZENE	SW8270C	$\mu g/kg$	500	< 500	< 1000	< 1000
1,3-DICHLOROBENZENE	SW8270C	μg/kg	500	< 300	< 1000	< 1000
~1.4-DICHLOROBENZENE	SW8270C	μg/kg	500	< 500	< 1000	< 1000
3,3'-DICHLOROBENZIDINE	SW8270C	$\mu g/kg$	1000	< 1000	< 2000	< 2000
2,4-DICHLOROPHENOL	SW8270C	µ6/kg	500	< 300	< 1000	< 1000
DIETHYL PHTHALATE	SW8270C	$\mu g/kg$	500	< 500	< 1000	< 1000
DIMETHYL PHTHALATE	SW8270C	μg/kg	500	< 500	< 1000	< 1000
2,4-DIMETHYLPHENOL	SW8270C	$\mu g/kg$	500	< 300	< 1000	< 1000
4,6-DINITRO-2-METHYLPHENOL	SW8270C	μg/kg	2500	< 2500	< 5000	< 5000
2,4-DINITROPHENOL	SW8270C	$\mu g/kg$	2500	< 2500	< 5000	< 5000
2,4-DINITROTOLUENE	SW8270C	$\mu g/kg$	500	< 500	< 1000	< 1000
2,6-DINITROTOLUENE	SW8270C	$\mu g/kg$	500	< 500	< 1000	< 1000
FLUORANTHENE	SW8270C	$\mu g/kg$	500	< 500	< 1000	< 1000
FLUORENE	SW8270C	μg/kg	500	< 500	< 1000	< 1000
HEXACHLOROBENZENE	SW8270C	$\mu g/kg$	300	< 300	< 600	< 600
HEXACHLOROBUTADIENE	SW8270C	$\mu g/kg$	500	< 500	< 1000	< 1000
HEXACHLOROCYCLOPENTADIENE	SW8270C	$\mu g/kg$	500	< 500	< 1000	< 1000
HEXACHLOROETHANE	SW8270C	μg/kg	500	< 500	< 1000	< 1000
INDENO(1.2,3-C,D)PYRENE	SW8270C	µg/kg	500	< 500 - 5		< 1000
ISOPHORONE	SW8270C	μg/kg	500	< 500	< 1000	< 1000
2-METHYLNAPHTHALENE	SW8270C	μg/kg	500	< 500	< 1000	< 1000
4-METHYL! HENOL (P-CRESOL)	SW8270C	$\mu g/kg$	500	< 500	< 1000	< 1000
2-METHYLPHENOL (O-CRESOL)	SW8270C	μg/kg	500	< 500	< 1000	< 1000
NAPHTHALENE	SW8270C	μg/kg	500	< 500	< 1000	< 1000
2-NITROANILINE	SW8270C	$\mu g/kg$		< 2500	< 5000	< 5000
3-NITROANILINE	SW8270C	μg/kg		< 2500	< 5000	< 5000
4-NITROANILINE	SW8270C	μg/kg		< 2500	< 5000	< 5000
NITROBENZENE	SW8270C	μg/kg	500	< 500	< 1000	< 1000
2-NITROPHENOL	SW8270C	μ8/~8 μg/kg		< 500	< 1000	< 1000
4-NITROPHENOL	SW8270C	μ8/*8 μ8/kg	2500	< 2500	< 5000	< 5000
N-NITROSODI-N-PROPYLAMINE	SW8270C	μg/kg		< 69	< 140	< 140
N-NITROSODIPHENYLAMINE	SW8270C	μ8/*6 μ8/*g		< 500	< 1000	< 1000
PENTACHLOROPHENOL	SW8270C	μg/kg		< 2500	< 5000	< 5000
PHENANTHRENE	SW8270C	μ <i>6/*6</i> μg/kg		< 300	< 1000	< 1/00
PHENOL	SW8270C	μ6/*6 μg/kg		< 300	< 1000	< 1000
PYRENE	SW8270C	μ6/∿6 μg/kg		< 500	< 1000	< 1000
1.2.4-TRICHLOROBENZENE	SW8270C			< 500	< 1000	< 1000
2,4,5-TRICHLOROPHENOL	SW8270C			< 500 < 500	, < 1000	
2,4,5-TRICHLOROPHENOL	SW8270C			< 500	< 1000	< 1600 < 1600 +

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

				Analysis Result				
Component Analyzed	Method	Unit	PQL	LT6 01-03584-1	LT1-W,C,E 01-03584-(2 to 4)	LT2-W,C,E 01-03584-(5 to 7)		
ORGANOCHLORINE PESTICIDE	 S			· · · · · · · · · · · · · · · · · · ·		······································		
Dilution Factor				1	1	1		
ALDRIN .	SW8081A	µg/kg	1	< 1	< 1	< 1		
BETA BHC	SW8081A	μg/kg	1	< 1	<1	< 1		
ALPHA BHC	SW8081A	μg/kg	1	< 1	< 1	< 1		
DELTA BHC	SW8081A	μg/kg	1	i >	< 1	< 1		
GAMMA BHC (LINDANE)	SW8081A	µg/kg	1	< 1	<1	< 1		
ALPHA-CHLORDANE	SW8081A	µg/kg	1	< 1	2.4	0.4J		
GAMMA-CHLORDANE	SW8081A	µg/kg	1	< 1	3.4	1		
P,P'-DDD		μg/kg	2	< 2	< 2	< 2		
P,P'-DDE	SW8081A	µg/kg	2	0.8J	5.8	4.4		
~P;P'-DDT	SW8081A	µg/kg	2	< 2	< 2	< 2		
DIELDRIN	SW8081A	µg/kg	2	< 2	< 2	< 2.		
ALPHA ENDOSULFAN	SW 8081 A	µg/kg	1	< 1	< 1	< 1		
BETA ENDOSULFAN	SW8081A	µg/kg	2	< 2	< 2	< 2		
ENDOSULFAN SULFATE		µg/kg	5	< 5	< 5	< 5		
ENDRIN	SW8081A	μg/kg	2	< 2	< 2	< 2		
ENDRIN ALDEHYDE	SW8081A	µg/kg	2	< 2	. < 2	< 2		
ENDRIN KETONE	SW'8081A	μg/kg	2	< 2	· <2	< 2		
HEPTACHLOR	SW8081A	μg/kg	1	< 1	< 1	· <1		
HEPTACHLOR EPOXIDE	SW8081A	μg/kg	1	<1	< 1	< 1		
METHOXYCHLOR	SW8081A	µg/kg	10	< 10	< 10	< 10		
TOXAPHENE	SW8081A	µg/kg	100	< 100	< 100	< 100		
PCBS					i.			
Dilution Factor				I		1. I.		
PCB-1016 (AROCHLOR 1016)	SW8082	μg/kg	50	< 50	< 50	< 50		
PCB-1221 (AROCHLOR 1221)	SW8082	µg/kg	100	< 100	< 100	< 100		
PCB-1232 (AROCHLOR 1232)	SW8082	µg/kg	50	< 50	< 50	< 50		
PCB-1242 (AROCHLOR 1242)	SW 8082	$\mu g/kg$	50	< 50	< 50	< 50		
PCB-1248 (AROCHLOR 1248)	SW8082	µg/kg	50	< 50	< 50	< 50		
PCB-1254 (AROCHLOR 1254)	SW8082	"g/kg	25	< 25	< 25	< 25		
PCB-1260 (AROCHLOR 1260)	SW8082	μ g/k g	25	6J	34	30		
Dilution Factor		,		1	1	1		
TRIBUTYL TIN	NOAA	µg/kg	10	< 10	< 10	< 10		
					Analysis Res			
Component Analyzed	Method	d Unit	PQL	LT3-W,C, 01-03584-(08 t	E LT4-W,C,E	LT5-W,C,E 13) 01-03584-'14 to 16)		
CARBON, TOTAL ORGANIC (' CHROMIUM (VI)	roc) 415.1 7196	mg/kg mg/kg		6,420 < 0.05	2, 3 10 < 0.05	2.000		

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

Component Analyzed	Method	Unit	PQL	LT3-W,C,E 01-03584-(08 to 10)	Analysis Result LT4-W,C,E 01-03584-(11 to 13)	LT5-W,C,E 01-03584-(14 to 16)
TTLC 17 METALS					· · · · · · · · · · · · · · · · · · ·	
Dilution Factor				1	. 1	1
ANTIMONY	SW6010B	mg/kg	5	0.48]	< 5	< 5
ARSENIC	SW6010B	mg/kg	0.3	2.7	2.8	3.0
BARIUM	SW6010B	mg/kg	1	151	141	163
BERYLLIUM	SW6010B		0.2	< 0.2	< 0.2	< 0.2
CADMIUM	SW6010B	mg/kg	0.2	1.3	0.73	0.59
CHROMIUM	SW6010B	mg/kg	0.5	25.8	22.4	22.3
COBALT	SW6010B	mg/kg	0.5	5.2	5.8	5.9
COPPER	SW6010B	mg/kg	0.5	26.9	30.8	18.7
LEAD	SW6010B	mg/kg	0.3	32.0	23.1	22.9
MERCURY	SW7471A	mg/kg	0.2	0.078J	0.060J	0.0493
MOLYBDENUM	SW6010B	mg/kg	0.2	1.3	0.082J	< 9.2
NICKEL	SW6010B	mg/kg	0.3	21.9	21.2	15.6
SELENIUM	SW6010B	mg/kg	0.5	0.52	0.53	0.71
SILVER	SW6010B	mg/kg	0.5	< 0.5	< 0.5	< 9.5
THALLIUM	SW6010B	mg/kg	0.5	< 0.5	< 0.5	< 5.5
VANADIUM	SW6010B	mg/kg	0.5	42.0	38.3	35.2
ZINC	SW6010B	mg/kg	0.5	119	70.7	57.1
Dilution Factor		•		1	1	1
PHC AS DIESEL FUEL	M8015E	mg/kg	10	74	35	43
Dilution Factor				1	1	
MOTOR OILS	M8015E	mg/kg	10	180	94	91
VOLATILE ORGANICS						
Dilution Factor				1	1	:
ACETONE	SW8260B	µg/kg	100	50J	58J	433
BENZENE	SW8260B	μg/kg	5	< 5 ·· ;	<pre>// <51_^^</pre>	
BROMOBENZENE	SW8260B	μg/kg	5	< 5	< 5	
BROMOCHLOROMETHANE	SW8260B	μg/kg	5	< 5	< 5	~ 5
BROMODICHLOROMETHANE	SW8260B	μg/kg	5	< 5	< 5	- 1
BROMOFORM	SW8260B	μg/kg	5	< 5	< 5	- 5
2-BUTANONE	SW8260B	µg/kg	100	< 100	< 100	- 140
N-BUTYLBENZENE	SW8260B	µg/kg	5	< 5	< 5	- ;
SEC-BUTYLBENZENE	SW8260B	µg/kg	5	23	< 5	- 5
T-BUTYLBENZENE	SW8260B	µg/kg	5	< 5	< 5	- 5
CARBON DISULFIDE	SW8260B	μg/kg	5	3J	1]	ź.J
CARBON TETRACHLORIDE	SW8260B		5	< 5	< 5	- 5
CHLOROBENZENE	SW8260B		5	< 5	< 5	- 5
DIBROMOCHLOROMETHANE	SW8260B		5	< 5	< 5	- 5
CHLOROETHANE	SW8260B		5	< 5	< 5	- 5
2-CHLOROETHYL VINYL ETHER			50	< 50	< 50	~ 50
CHLOROFORM	SW8260B		5	0.8J	0.9J	0.81
1-CHLOROHEXANE	SW8260B		5	< 3	< 5	
CHLOROMETHANE	SW8260B		5	< 5	< 5	
2-CHLOROTOLUENE	SW8260B		5	< 5	< 3	- 5

1

()

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

omponent Analyzed	Method	Unit	PQL	LT3-W,C,E 01-03584-(08 to 10)	Analysis Result LT4-W,C,E 01-03584-(11 to 13)	LT5-W,C,E 01-03584-(14 to 1
4-CHLOROTOLUENE	SW8260B	μg/kg	5	< 5	< 5	< 5
1,2-DIBROMO-3-CHLOROPROPANE	SW8260B	µg/kg	5	< 5	< 5	< 5
1,2-DIBROMOETHANE	SW8260B	µg/kg	5	< 5	< 5	< 5
DIBROMOMETHANE	SW8260B	$\mu g/kg$	5	< 5	< 5	< 5
1,2-DICHLOROBENZENE	SW8260B	"g/kg	5	< 5	< 5	< 5
1,3-DICHLOROBENZENE	SW8260B	$\mu g/kg$	5	< 5	< 5	< 5
1,4-DICHLOROBENZENE	SW8260B	μg/kg	5	< 5	< 5	< 5
DICHLORODIFLUOROMETHANE	SW8260B	μg/kg	5	< 5	< 5	, < 5
1,1-DICHLOROETHANE	SW8260B	µg/kg	5	< 3	< 5	< 5
1,2-DICHLOROETHANE	SW8260B	μg/kg	5	< 5.	< 5	< 5
I, 1-DICHLOROETHENE	SW8260B	μg/kg	5	< 5	< 5	< 5
CIS-1,2-DICHLOROETHENE	SW8260B	$\mu g/kg$	5	< 5	< 5	< 5
TRANS-1,2-DICHLOROETHENE	SW8260B	$\mu g/kg$	5	< 5	< 5	< 5
1,2-DICHLOROPROPANE	SW8260B	μg/kg	5	< 5	< 5	< 5
.3-DICILOROPROPANE	SW8260B	$\mu g/kg$	5	< 3	< 5	. < 2
2.2-DICHLOROPROPANE	SW8260B	$\mu g/kg$	5	< 5	< 5	< 5
I,1-DICHLOROPROPENE	SW8260B	µg/kg	5	< 5	< 3	< 5
CIS-1,3-DICHLOROPROPENE	SW8260B	$\mu g/kg$	5	< 5	< 3	< 5
FRANS-1,3-DICHLOROPROPENE	SW8260B		5	< 5	< 5	< 5
ETHYLBENZENE	SW8260B	1-4-1-4	5	< 5	< 5	< 5
HEXACIILOROBUTADIENE	SW8260B	,-0, 0	5	< 3	< 5	< 5
2-HEXANONE	SW8260B	1.0	50	< 50	< 50	< 50
ISOPROPYLBENZENE (CUMENE)	SW8260B		5	24	< 5	< 5
P-CYMENE (P-ISOPROPYLTOLUENE)		1.01	5	< 5	< 5	< 5
METHYLENE CHLORIDE	SW8260B		5	< 5	. 21 -	. <5
4-METHYL-2-PENTANONE	SW8260B		50	< 30	< 50	< 50
NAPHTHALENE	SW8260B		5	< 5	< 5	< 5
N-PROPYLBENZENE	SW8260B	μg/kg	5	< 5	< 5	< 5
STYRENE	SW8260B	•	5	< 5	< 5	< 5
1.1,1,2-TETRACHLOROETHANE	SW8260B	μg/kg	5	< 5	< 5	< 5
1.1.2,2-TETRACHLOROETHANE	SW8260B	µg/kg	5	< 5	< 5	< 5
TETRACHLOROETHENE(PCE)	SW8260B	µg/kg	5	< 5	< 5	< 5
TOLUENE	SW8260B		5	< 5	< 5	< 5
1.2,3-TRICHLOROBENZENE	SW8260B		5	< 5	< 5	< 5
1.2,4-TRICHLOROBENZENE	SW8260B		5	< 5	< 5	< 5
1,1,1-TRICHLOROETHANE	SW8260B		5	< 5	< 5	< 5
1.1,2-TRICHLOROETHANE	SW8260B			< 5	< 5	< 5
TRICHLOROETHENE (TCE)	SW8260B			< 5	< 5	· < 5
TRICHLOROFLUOROMETHANE	SW8260B			< 5	< 5	< 5
1.2,3-TRICHLOROPROPANE	SW8260B			< 3.1	< 3.1	< 3.1
1.2,4-TRIMETHYLBENZENE	SW8260B			< 5	< 5	< 5
1.3,5-TRIMETHYLBENZENE	SW8260B	•		< 5	< 5	< 5
VINYL ACETATE	SW8260E			< 5	< 5	< 5
VINYL CHLORIDE	SW8260E			. <5	< 5	< 5
O-XYLENE	SW8260E			< 5	< 5	< 5
M.P-XYLENE	SW8260E			< 5	< 5	< 5

- 12:

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

Component Analyzed	Method	Unit	PQL	LT3-W,C,E 01-03584-(08 to 10)	Analysis Result LT4-W,C,E 01-03584-(11 to 13)	LT5-W,C,E 01-03584-(14 to 16
EMI-VOC			<u> </u>	· · · · · ·		
Dilution Factor				2	2	1
ACENAPHTHENE .	SW8270C	$\mu g/kg$	500	<1000	< 1000	< 500
ACENAPHTHYLENE	SW8270C	$\mu g/kg$	500	<1000	< 1000	< 500
ANTHRACENE	SW8270C	μg/kg	500	< 1000	< 1000	< 500
BENZO(A)ANTHRACENE	SW8270C	µg/kg	500	< 1000	< 1000	< 500
BENZO(A)PYRENE	SW8270C	µg/kg	62	< 120	< 120	< 62
BENZO(B)FLUORANTHENE	SW8270C	"g/kg	500	< 1000	< 1000	< 500
BENZO(G,H,I)PERYLENE	SW8270C	µg/kg	500	< 1000	< 1000	< 500
BENZO(K)FLUORANTHENE	SW8270C	$\mu g/kg$	500	< 1000	< 1000	< 500
BENZOIC ACID	SW8270C	μg/kg	2500	< 5000	< 5000	< 2500
BENZYL ALCOHOL	SW8270C	$\mu g/kg$	1000	< 2000	< 2000	< 1000
BIS(2-CHLOROETHOXY) METHANE	SW8270C	μg/kg	500	< 1000	< 1000	< 500
BIS(2-CHLOROETHYL) ETHER	SW8270C	µg/kg	210	< 420	< 420	< 210
BIS(2-CHLOROISOPROPYL) ETHER	SW8270C	µg/kg	500	< 1000	< 1000	< 500
BIS(2-ETHYLHEXYL) PHTHALATE	SW8270C	µg/kg	500	500J	130J	< 500
4-BROMOPHENYL PHENYL ETHER	SW8270C	μg/kg	500	< 1000	< 1000	< 500
BENZYL BUTYL PHTHALATE	SW8270C	μg/kg	580	< 1000	< 1000	< 500
4-CHLORO-3-METHYLPHENOL	SW8270C	$\mu g/kg$	1000	< 2000	< 2000	< 1000
4-CHLOROANILINE	SW8270C	μg/kg		< 2000	< 2000	< 1000
2-CHLORONAPHTHALENE	SW8270C	μg/kg		<1000	< 1000	< 500
2-CHLOROPHENOL	SW8270C	$\mu g/kg$	500	< 1000	< 1000	< 500
4-CHLOROPHENYL PHENYL ETHER		μg/kg	500	<1000	< 1000	< 500
CHRYSENE	SW8270C	$\mu g/kg$	500	<1000	< 1000	< 500
DI-N-BUTYL PHTHALATE	SW8270C	μg/kg	500	<1000	~ <1000	< 700
DI-N-OCTYLPHTHALATE	SW8270C	μg/kg	500	< 1000	< 1000	< 500
DIBENZ(A,H)ANTHRACENE	SW8270C	μg/kg		< 1000	< 1000	< 500
DIBENZOFURAN	SW8270C	μ <u></u> g/kg	500	< 1000	< 1000	< 500
J,2-DICHLOROBENZENE	SW8270C	μ6/*6 μg/kg	500	< 1000	< 1000	< 500
1,3-DICHLOROBENZENE	SW8270C	µ6/∿6 µg/kg	500	< 1000	< 1000	
1,4-DICHLOROBENZENE	SW8270C	µб/№б µg/kg		< 1000	< 1000	< 500 < 500
3,3'-DICHLOROBENZIDINE	SW8270C	µ6/№6 µg/kg		< 2000	< 2000	< 1000
2,4-DICHLOROPHENOL	SW8270C	μ6/*6 μg/kg	500	<1000	< 1000	< 500
DIETHYL PHTHALATE					< 1000	
DIMETHYL PHTHALATE	SW8270C SW8270C			<1000 <1000	< 1000	< 500
2,4-DIMETHYLPHENOL	SW8270C				< 1000	< 500
4,6-DINITRO-2-METHYLPHENOL	SW8270C			< 1000		< 500
				< 5000	< 5000	< 2500
2,4-DINITROPHENOL	SW8270C			< 5000	< 5000	< 2500
2,4-DINITROTOLUENE	SW8270C			< 1000	< 1000	< 500
2,6-DINITROTOLUENE	SW8270C			< 1000	< 1000	< 500
FLUORANTHENE	SW8270C			< 1000	< 1000	< 500
FLUORENE	SW8270C			< 1000	< 1000	< 500
HEXACHLOROBENZENE IIEXACHLOROBUTADIENE	SW8270C SW8270C			< 600	< 600	< 300
	- SVXX770C		500	< 1000	< 1000	< 500

CADHS ELAP No.: 1431

CI-1440 D003 N 01-3584 ; Page: 8

I

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

Component Analyzed	Method	Unit	PQL	LT3-W,C,E 01-03584-(08 to 10)	Analysis Result LT4-W,C,E 01-03584-(11 to 13)	LT5-W,C,E 01-03584-(14 to 16)
HEXACHLOROETHANE	SW8270C	µg/kg	500	< 1000	< 1000	< 500
INDENO(1,2,3-C,D)PYRENE	SW8270C	µg/kg	500	< 1000	< 1000	< 500
ISOPHORONE .	SW8270C	µg/kg	500	< 1000	< 1000	< 500
2-METHYLNAPHTHALENE	SW8270C	µg/kg	500	< 1000	< 1000	< 500
4-METHYLPHENOL (P-CRESOL)	SW8270C	µg/kg	500	< 1000	< 1000	< 500
2-METHYLPHENOL (O-CRESOL)	SW8270C	$\mu g/kg$	500	< 1000	< 1000	< 500
NAPHTHALENE	SW8270C	μg/kg	500	< 1000	< 1000	n kāQu
2-NITROANILINE	SW8270C	μg/kg	2500	< 5000	< 5000	< 2500
3-NITROANILINE	SW8270C	µg/kg	2500	< 5000	< 3000	< 2500
4-NITROANILINE	SW8270C	µg/kg	2500	< 5000	< 5000	~ 2500
NITROBENZENE	SW8270C	μg/kg	500	< 1000	< 1000	< 500
2-NITROPHENOL	SW8270C	μg/kg	500	< 1000	< 1000	< 500
4-NITROPHENOL	SW8270C	μg/kg	2500	< 5000	< 5000	< 2500
N-NITROSODI-N-PROPYLAMINE	SW8270C	$\mu g/kg$	69	< 140	< 140	< 69
N-NITROSODIPHENYLAMINE	SW8270C	µg/kg	500	< 1000	< 1000	< 500
PENTACHLOROPHENOL	SW8270C	μg/kg	2500	< 5000	< 5000	< 2500
PHENANTHRENE	SW8270C	μg/kg	500	< 1000	< 1000	< 500
PHENOL	SW8270C	μg/kg	500	< 1000	< 1000	< 500
PYRENE	SW8270C	μg/kg	500	< 1000	< 1000	< 500
1,2,4-TRICHLOROBENZENE	SW8270C	µg/kg	500	< 1000	< 1000	< 500
2,4,5-TRICHLOROPHENOL	SW8270C	$\mu g/kg$	500	< 1000	< 1000	< 500
2,4,6-TRICHLOROPHENOL	SW8270C	μg/kg	500	< 1000	< 1000	< 500
ORGANOCHLORINE PESTICIDES		μ0/ ··Ο				
Dilution Factor				1	5	. 1
ALDRIN	SW8081A	μg/kg	1	<1	<pre></pre>	· • .
BETA BHC	SW8081A	µ8/~8 µg/kg		<1	< 5	-1
ALPHA BHC	SW8081A	μg/kg		<1	< 5	<1
DELTA BHC	SW8081A	μα/~α μg/kg	1	< 1	< 5	~1
GAMMA BHC (LINDANE)	SW8081A	μg/kg		< 1	< 5	-1
ALPHA-CHLORDANE	SW8081A	μ _β /kg		1]	4J))
GAMMA-CHLORDANE	SW8081A	μ6/∿6 μg/kg		1	3.1	2
P,P'-DDD	SW8081A			< 2	< 10	< 2
P,P'-DDE	SW8081A	,		2J	< 10	2
P,P'-DDT	SW8081A			< 2	< 10	
DIELDRIN	SW8081A			< 2	< 10	- 2
ALPHA ENDOSULFAN	SW8081A			< 1	< 5	- 1
BETA ENDOSULFAN	SW8081A			< 2	< 10	- 2
ENDOSULFAN SULFATE	SW8081A			< 2	< 25	- <u>-</u>
	SW8081A			<2	< 10	
ENDRIN		, _, _		<2	< 10	-2
ENDRIN ALDEHYDE	SW8081A			<2		
ENDRIN KETONE	SW8081A				< 10	- 2
HEPTACHLOR	SW8081A			<1	< 5	~ 1
HEPTACHLOR EPOXIDE	SW8081A			< 1	< 5	- 1
METHOXYCIILOR	SW8081A	,		< 10	< 50	- 10
TOXAPHENE	SW8081A	∟µg/kį	g 100	< 100	< 500	< 100

APCL Analytical Report

13760 Magnolia Avc. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Component Analyzed	Method	Unit	PQL	LT3-W 01-03584-(1		Analysis Result LT4-W,C,E 01-03584-(11 to 13)	LT5-W,C,E 01-03584-(14 to 16)	
PCBS								
Dilution Factor				1		1	i	
PCB-1016 (AROCHLOR 1016)	SW8082	µg/kg	50	< 5	0	< 50	< 50	
PCB-1221 (AROCHLOR 1221)	SW8082	µg/kg	100	< 10	0	< 100	< 100	
PCB-1232 (AROCHLOR 1232)	SW8082	µg/kg	50	< 5	0	< 50	< 20	
PCB-1242 (AROCHLOR 1242)	SW8082	µg/kg	50	< 5		< 50	< 50	
PCB-1248 (AROCHLOR 1248)	SW8082	µg/kg	50	< 5	0	< 50	< 50	
PCB-1254 (AROCHLOR 1254)	SW8082	µg/kg	25	< 2		< 25	< 25	
PCB-1260 (AROCHLOR 1260)	SW8082	µg/kg	25	7J		5J	6.1	
Dilution Factor				1		1	1	
TRIBUTYL TIN	NOAA	µg/kg	10	< 1	0	< 10	< 10	
<u></u>								
~ · · · ·				•• •	nor		s Result	
Component Analyzed		Metl	100	Unit	PQL	M1-W,E 01-03584-(17 to 18	OF1) 01-03564-19	
CARBON, TOTAL ORGANIC	C (TOC)	415	.1	mg/kg	100	6,530	- -	
CHROMIUM (VI)		719	96	mg/kg	0.05	< 0.05	< 1,05	
TTLC 17 METALS								
Dilution Factor						1	, 1	
ANTIMONY		SW60		mg/kg	5	0.21J	0.54J	
ARSENIC		SW60		mg/kg	0.3	4.6	も.5	
BARIUM		SW60		m g/kg	1	308	345	
BERYLLIUM		SW60		mg/kg	0.2	<0.2	× 0.2	
CADMIUM		SW60	10B	mg/kg	0.2	1.7	1.5	
CHROMIUM		SW/60	10B	mg/kg	0.5	47.6	45.2	
COBALT		SW60		mg/kg	0.5	9.1	5 T	
COPPER		SW'60	10B	mg/kg	0.5	55.3	63.5	
1.EAD		SW60	10B	mg/kg	0.3	112	170	
MERCURY		SW74	171A	mg/kg	0.2	Ó.19J	0.23	
MOLYBDENUM		SW60	10B	mg/kg	0.2	< 0.2	3.5	
NICKEL		SW60	10B	mg/kg	0.3	37.0	51.5	
SELENIUM		SW60	010B	ing/kg	0.5	0.46J	j.7	
SILVER		SW60		mg/kg	0.5	< 0.5	- 9.5	
THALLIUM		SW60		mg/kg	0.5	< 0.5	- 19,5	
VANADIUM		SW60	010B	mg/kg	0.5	77.2	62.1	
ZINC		SW60	010B	mg/kg	0.5		\$20	
Dilution Factor						1	5	
PHC AS DIESEL FUEL		M80	15E	mg/kg	10	51	.	
Dilution Factor						1	•	
MOTOR OILS		M80	15E	mg/kg	10	140	2.30	

CI-1440 D003 N 01-3584 1 Page 10

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

		<u> </u>		Analysis I	Result	
Component Analyzed	Method	Unit	PQL	M1-W,È	OF1	
				01-03584-(17 to 18)	01-03584-19	
VOLATILE ORGANICS						
Dilution Factor				1	1	
ACETONE	SW8260B	µg/kg	100	72J	25J	
BENZENE	SW8260B	μg/kg	5	< 5	< 5	
BROMOBENZENE	SW8260B	µg/kg	5	< 5	< 5	
BROMOCHLOROMETHANE	SW8260B	μg/kg	5	< 5	< 5	
BROMODICHLOROMETHANE	SW8260B	μg/kg	5	< 5	< 5	
BROMOFORM	SW8260B	µg/kg	5	< 5	< 5	
2-BUTANONE	SW8260B	μg/kg	100	< 100	< 100	
N-BUTYLBENZENE	SW8260B	μg/kg	5	< 5	< 5	
SEC-BUTYLBENZENE	SW8260B	µg/kg	5	< 5	< 5	
T-BUTYLBENZENE	SW8260B	µg/kg	5	< 5	< 5	
CARBON DISULFIDE	SW8260B	µg/kg	5	1J	< 5	
CARBON TETRACHLORIDE	SW8260B	µg/kg	5	< 5	< 5	
CHLOROBENZENE	SW8260B	$\mu g/kg$	5	< 5	< 5	
DIBROMOCHLOROMETHANE	SW8260B	μg/kg	5	< 5	< 5	
CHLOROETHANE	SW8260B	μg/kg	5	< 5	< 5	
2-CHLOROETHYL VINYL ETHER	SW8260B	µg/kg	50	< 50	< 50	
CHLOROFORM	SW8260B	µg/kg	5	0.7J	0.7J	
1-CHLOROHEXANE	SW8260B	μg/kg	5	< 5	< 5	
CHLOROMETHANE	SW8260B	µg/kg	5	< 5	< 5	
2-CHLOROTOLUENE	SW8260B	µg/kg	5	< 5	< 5	
4-CHLOROTOLUENE	SW8260B	µg/kg	5 ;	< <u>5</u> -	< 5	
1,2-DIBROMO-3-CHLOROPROPANE	SW8260B	µg/kg	5	< 5	< 5	•-
1,2-DIBROMOETHANE	SW8260B	µg/kg	5	< 5	~ 5	
DIBROMOMETHANE	SW8260B	µg/kg	5	< 5	× 5	
1,2-DICHLOROBENZENE	SW8260B	µg/kg	5	< 5	- 5	
1,3-DICHLOROBENZENE	SW8260B	$\mu g/kg$	5	< 5	- 5	
1,4-DICHLOROBENZENE	SW8260B	µg/kg	5	< 5	- 5	
DICHLORODIFLUOROMETHANE	SW8260B	μg/kg	5	< 5	- 5	
1,1-DICHLOROETHANE	SW8260B	µg/kg	5	< 5	× 5	
1,2-DICHLOROETHANE	SW8260B	µg/kg	5	< 5	- 5	
1,1-DICHLOROETHENE	SW8260B	$\mu g/kg$	5	< 5	- 5	
CIS-1,2-DICHLOROETHENE	SW8260B	µg/kg	5	< 5	1.5	
TRANS-1,2-DICHLOROETHENE	SW8260B	µg/kg	5	< 5	< 5	
1,2-DICHLOROPROPANE	SW8260B	µg/kg	5	< 5	× 5	
1.3-DICHLOROPROPANE	SW8260B	µg/kg	ō	< 5	r 5	
2,2-DICHLOROPROPANE	SW/8260B	$\mu g/kg$	5	< 5 < 5	4.5	
1,1-DICILLOROPROPENE	SW8260B	µg/kg	5	< 5	× 5	
CIS-1,3-DICHLOROPROPENE	SW8260B	μg/kg	5	< 5	r,5	
TRANS-1,3-DICHLOROPROPENE	SW8260B	$\mu g/kg$	5	< 5	×5	

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

Component Analyzed	Method	Unit	PQL .	Analysis H M1-W,E 01-03584-(17 to 18)	Result OF1 01-03584-19	
ETHYLBENZENE	SW8260B	µg/kg	5	< 5	< 5	-
HEXACHLOROBUTADIENE	SW8260B	μg/kg	5	< 5	< 5	
2-HEXANONE	SW8260B	μg/kg	50	< 50	< 50	
ISOPROPYLBENZENE (CUMENE)	SW8260B	μg/kg	5	< 5	< 5	
P-CYMENE (P-ISOPROPYLTOLUENE)	SW8260B	μg/kg	5	< 5	4.]	
METHYLENE CHLORIDE	SW8260B	μg/kg	5	< 5	< 5	
4-METHYL-2-PENTANONE	SW8260B	µg/kg	50	< 50	< 50	
NAPHTHALENE	SW8260B	μg/kg	5	< 5	£ 5	
N-PROPYLBENZENE	SW8260B	μg/kg	5	< 5	< 5	
STYRENE	SW8260B	µg/kg	5	< 5	< 5	
1,1,1,2-TETRACHLOROETHANE	SW8260B	μg/kg	5	< 5	< 5	
1,1,2,2-TETRACHLOROETHANE	SW8260B	μg/kg	5	< 5	< 5	
TETRACHLOROETHENE(PCE)	SW8260B	μg/kg	5	< 5	< 5	
TOLUENE	SW8260B	μg/kg	5	< 5	< 5	
1,2,3-TRICHLOROBENZENE	SW8260B	μ σ/kg	5	< 5	< 5	
1,2,4-TRICHLOROBENZENE	SW8260B	μ6/*6 μg/kg	5	< 5	< 5	
1,1,1-TRICHLOROETHANE	SW8260B	μ6/ 86 μ6/ kg	5	< 5		
1,1,2-TRICHLOROETHANE	SW8260B	μ 5/ ^5	5	< 5	< 5	
TRICHLOROETHENE (TCE)	SW8260B	µg/kg	5		< 5	
		µg/kg		< 5	< 5	
TRICHLOROFLUOROMETHANE	SW8260B	µg/kg	5	. < 5	< 5	
1,2,3-TRICHLOROPROPANE	SW8260B	μg/kg	3.1	< 3.1	< 3.1	
1,2,4-TRIMETHYLBENZENE	SW8260B	µg/kg	5	< 5	< 5	
1,3,5-TRIMETHYLBENZENE	SW8260B	µg/kg	5	< 5	÷5	
VINYL ACETATE	SW8260B	µg/kg	5	< 5	< 5	
VINYL CHLORIDE	SW8260B	µg/kg	5	< 5	< 5	
O-XYLENE	SW8260B	$\mu g/kg$	5	< 5	< 5	
M,P-XYLENE	SW8260B	µg/kg	5	₹5	< 5	· • • • • •
EMI-VOC			• • •		• •	••
Dilution Factor	<u></u>			1	2	
ACENAPITHENE	SW8270C	µg/kg	500	< 500	< 1000	
ACENAPHTHYLENE	SW8270C	µg/kg	500	< 300	< 1000	
ANTHRACENE	SW8270C	µg/kg	500	< 500	< 1000	
BENZO(A)ANTHRACENE	SW8270C	µg/kg	500	< 500	~ 1000	
BENZO(A)PYRENE	SW8270C	μ g/ kg	62	< 62	~ 120	
BENZO(B)FLUORANTHENE	SW8270C	µg/kg	500	< 500	140.)	
BENZO(G,H,I)PERYLENE	SW8270C	µg/kg	500	< 500	< 1000	
BENZO(K)FLUORANTHENE	SW8270C	µg/kg	500	< 500	170J	
BENZOIC ACID	SW8270C	µg/kg	2500	< 2500	< 5000	
BENZYL ALCOHOL	SW8270C	µg/kg	1000	< 1000	< 2000	
BIS(2-CIILOROETHOXY) METHANE	SW8270C	µg/kg	500	< 500	< 1000	
BIS(2-CHLOROETHYL) ETHER	SW8270C	$\mu g/kg$	210	< 210	- 120	
BIS(2-CHLOROISOPROPYL) ETHER	SW8270C	$\mu g/kg$	500	< 500	< 1000	
BIS(2-ETHYLHEXYL) PHTHALATE	SW8270C	μg/kg	500	< 500	420.1	
4-BROMOPHENYL PHENYL ETHER	SW8270C	μg/kg	500	< 500	~ 1000	
BENZYL BUTYL PHTHALATE	S\V8270C	$\mu g/kg$	500	< 500	140.J	
4-CHLORO-3-METHYLPHENOL	SW8270C	μ g /kg	1000	< 1000	- 2000	
4-ONDORO-S-MEINIERDENOD						

CADHS ELAP No.: 1431

٠,

Ξ.

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

<u></u>				Analysis F	lesult .
Component Analyzed	Method	Unit	PQL	MI-W,E	OF1
			• •	01-03584-(17 to 18)	01-03584-19
2-CHLORONAPHTHALENE	SW8270C	μg/kg	500	< 500	< 1000
2-CHLOROPHENOL	SW8270C	μg/kg	500	< 500	<1000
4-CHLOROPHENYL PHENYL ETHER	SW8270C	μg/kg	500	< 500	<1000
CHRYSENE	SW8270C	µg/kg	500	< \$00	90J
DI-N-BUTYL PHTHALATE	SW8270C	µg/kg	500	< 500	< 1000
DI-N-OCTYLPHTHALATE	SW8270C	µg/kg	500	< 500	< 1000
DIBENZ(A,H)ANTHRACENE	SW8270C	µg/kg	500	< 500	< 1000
DIBENZOFURAN	SW8270C	µg/kg	500	< 300	< 1000
1,2-DICHLOROBENZENE	SW8270C	µg/kg	500	< 500	< 1000
1,3-DICHLOROBENZENE	SW8270C	µg/kg	500	< 500	< 1000
1,4-DICHLOROBENZENE	SW8270C	µg/kg	500	< 500	< 1000
3,3'-DICHLOROBENZIDINE	SW8270C	µg/kg	1000	< 1000	< 2000
2,4-DICHLOROPHENOL	SW8270C	µg/kg	500	< 500	< 1000
DIETHYL PHTHALATE	SW8270C	µg/kg	500	< 500	< 1000
DIMETHYL PHTHALATE	SW8270C	µg/kg	500	< 300	< 1000
2,4-DIMETHYLPHENOL	SW8270C	µg/kg	500	< 300	< 1000
4,6-DINITRO-2-METHYLPHENOL	SW8270C	µg/kg	2500	< 2500	< 5000
2,4-DINITROPHENOL	SW8270C	µg/kg	2500	< 2500	< 5000
2,4-DINITROTOLUENE	SW8270C	µg/kg	500	< 500	< 1000
2,6-DINITROTOLUENE	SW8270C	µg/kg	500	< 500	< 1000
FLUORANTHENE	SW8270C	µg/kg	500	< 500	140J
FLUORENE	SW8270C	μg/kg	500	< 500	< 11000
HEXACHLOROBENZENE	SW8270C	µg/kg	300	< 300	< 600
HEXACHLOROBUTADIENE	SW8270C	µg/kg	500	< 500	< 1000
HEXACHLOROCYCLOPENTADIENE	SW8270C	µg/kg	500	< 500	< 1000
HEXACHLOROETHANE	SW8270C	μg/kg	500	< 500	< 1000
INDENO(1,2,3-C,D)PYRENE	SW8270C	μg/kg	500	< 500	<1000
ISOPHORONE	SW8270C	µg/kg	500	< 500	< 1000
2-METHYLNAPHTHALENE	SW8270C	µg/kg	500	< 500	< 1000
4-METHYLPHENOL (P-CRESOL)	SW8270C	μg/kg	500 500	< 500	< 1000
2-METHYLPHENOL (O-CRESOL)	SW8270C	µg/kg	500	< 500 < 500	< 1000
NAPHTHALENE	SW8270C	μg/kg	2500	< 2500	< 1000
2-NITROANILINE	SW8270C	µg/kg	2500	< 2500	< 5000
3-NITROANILINE	SW8270C	μg/kg μg/kg	2500	< 2500	< 5000 < 5000
4-NITROANILINE	SW8270C SW8270C	μ6/*6 μg/kg	500	< 500	< 1000
NITROBENZENE	SW8270C SW8270C		500	< 500	< 1000
2-NITROPHENOL	SW8270C	μg/kg μg/kg	2500	< 2500	< 5000
4-NITROPHENOL	SW8270C	μ6/*6 μβ/kg	69	< 69	< 140
N-NITROSODI-N-PROPYLAMINE	SW8270C	µб/№Б µg/kg	500	< 300	< 1000
N-NITROSODIPHENYLAMINE	SW8270C	μα/*s μα/kg	2500	< 2500	< 5000
PENTACHLOROPHENOL PHENANTHRENE	SW8270C	μ6/*6 μg/kg	500	< 300	< 1000
PHENOL	SW8270C	μ6/№6 μg/kg	500	< 500	< 1000
PYRENE	SW8270C	μα/*s μα/kg	500	< 500	130J
1,2,4-TRICHLOROBENZENE	SW8270C	μ6/*6 μg/kg	500	< 500	< 1000
2,4,5-TRICHLOROPHENOL	SW8270C	$\mu g/kg$	500	< 500	< 1000
2,4,6-TRICHLOROPHENOL	SW8270C	μ8/48 μ8/kg	500	< 500	< 1000

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

t	
	· .
	5.5
	· · · ·

· · · · · · · · · · · · · · · · · · ·				Analysis F		
Component Analyzed	Method	Unit	PQL	M1-W,E	OF1	
				01-03584-(17 to 18)	01-03584-19	
ORGANOCHLORINE PESTICIDES				_	· · · · · · · · · · · · · · · · · · ·	
Dilution Factor				. 1	1	
ALDRIN	SW8081A	$\mu g/kg$	1	<1	< 1	
BETA BHC	SW8081A	µg/kg	1	<1	< 1	
ALPHA BHC	SW8081A	μg/kg	1	< 1	< 1.	
DELTA BHC	SW8081A	µg/kg	1	<1	2.0	
GAMMA BHC (LINDANE)	SW8081A	µg/kg	1	<1	< 1	
ALPHA-CHLORDANE	SW8081A	µg/kg	1	4.4	12	
GAMMA-CHLORDANE	SW8081A	$\mu g/kg$	1	5.2	26	
P,P'-DDD	SW8081A	µg/kg	2	< 2	<2	
P,P'-DDE	SW8081A	µg/kg	2	1J	2	
P,P'-DDT	SW8081A	μg/kg	2	< 2	4.9	
DIELDRIN	SW8081A	$\mu g/kg$	2	< 2	2J	
ALPHA ENDOSULFAN	SW8081A	$\mu g/kg$	1	<1	< 1	
BETA ENDOSULFAN	SW8081A	µg/kg	2	< 2	< 2	
ENDOSULFAN SULFATE	SW8081A	µg/kg	5	< 5	< 5	
ENDRIN	SW8081A	µg/kg	2	< 2	<2	
ENDRIN ALDEHYDE	SW8081A	µg/kg	2	< 2	< 2	
ENDRIN KETONE	SW8081A	μg/kg	2	< 2	< 2	
HEPTACHLOR	SW8081A	μg/kg	1	< 1	< 1	
HEPTACHLOR EPOXIDE	SW8081A	$\mu g/kg$	1	<1	< 1	
METHOXYCHLOR	SW8081A	µg/kg	10	< 10	<10	
TOXAPHENE	SW8081A	µg/kg	100	< 100	< 100	
PCBS						
Dilution Factor				1	1	
PCB-1016 (AROCHLOR 1016)	SW8082	µg/kg	50	< 50	< 50	
PCB-1221 (AROCHLOR 1221)	SW8082	µg/kg	100 •	<100	< 100	س ر
PCB-1232 (AROCIILOR 1232)	SW8082	$\mu g/kg$	50 ·	< 50	₹50	· '
PCB-1242 (AROCHLOR 1242)	SW8082	μg/kg	50	< 50	< 50	
PCB-1245 (AROCHLOR 1248)	SW8082	μg/kg	50	< 50	< 50	
PCB-1254 (AROCHLOR 1254)	SW8082	µg/kg	25	< 25	< 25	
PCB-1260 (AROCHLOR 1260)	SW8082	μg/kg	25	20J (a)	18J ^(a)	
Dilution Factor		200 0		1	. 1	
TRIBUTYL TIN	NOAA	µg/kg	10	< 10	< 10	

PQL: Practical Quantitation Limit. MDL: Method Detection Limit. N.D.: Not Detected or less than the practical quantitation limit. CRDL: Contract Required Detection Limit "-": Analysis is not required.

J: Reported between PQL and MDL.

† All results are reported on dry basis for soil samples.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

(a) Result estimated due to interference from Pesticides.

tfully submi E Laboratory Director Applied P & Ch Laboratory

13760 Magnolla Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498 Submitted to: Parsons Engineering Science Attention: Devin Thor 100 W. Walnut Street Pasadena CA 91124 Tel: (626)585-6000 Fax: (626)440-6200

APCL Analytical Report

Service ID #: 801-013585 Received: 05/16/01 Collected by: Extracted: XXXXXX Collected on: 05/14-15/01 Tested: N/A Reported: 06/26/01 Sample Description: Soil from KMRHP Project Description:

Analysis of Soil Samples

DIOXINS AND FU	RANS (b)				••			
Component Analyzed		Method	Unit	PQL		Analys `1-W,C,E 3585-(1 to 3)		llt T4-W,C,E 5585-(10 to 12)
PARTICLE SIZE (°)	ASTM-D422	ft ³ /day		<u> </u>				<u></u>
Component Analyzed	Method	Unit	PQL	LT4-W,C,E 01-03585-(10 :c		Analysis Res LT5-W,C,E D1-03585-(13 (0	3	M1-W,E 1-03585-(16 to 17)
PARTICLE SIZE (a)	ASTM-D422	ft ³ /day					<u>.</u>	
Component Analyzed	Method	Unit	PQL	LT1-W,C, 01-03585-(1 (Analysis Re LT2-W,C,I 01-03585-(4 to	E	LT3-W,C,E 01-03585-(7 to 9)

PQL: Practical Quantitation Limit. MDL: Method Detection Li N.D.: Not Detected or less than the practical quantitation limit. CRDL: Contract Required Detection Limit "-": Analysis is not required.

J: Reported between PQL and MDL.

† All results are reported on dry basis for soil samples.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

(a) Subcontracted to PTS labs.

(b) Subcontracted to Triangle Labs.

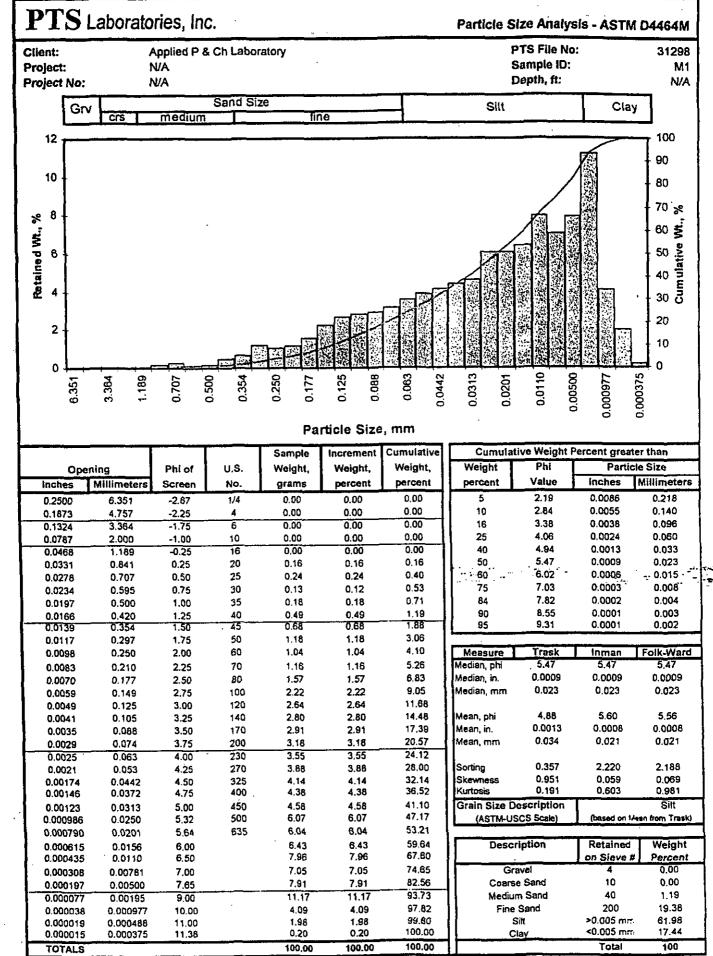
Respectfully submit mînic Lau

Laboratory Director Applied P & Ch Laboratory

CADHS ELAP No.: 1431

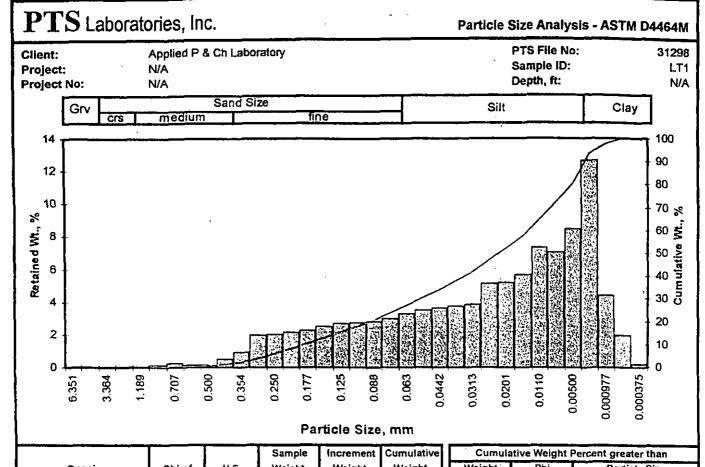
PARTICLE SIZE SUMMARY

(METHODOLOGY: ASTM D4464M)


PROJECT NAME: PROJECT NO: N/A N/A

		Description	ription Median	Particle Size Distribution, wt. percent							
· ·		USCS/ASTM	Grain Size		Sand Size			j 1		&	
Sample ID	Depth, ft.	(1)	mm	Gravel	Coarse	Medium	Fine	Silt	Clay	Clay	
M1	N/A	Silt	0.023	0.00	0.00	1.19	19.38	61.98	17.44	79.43	
LT1	N/A	Silt	0.022	0.00	0,00	1.15	22.71	56.89	19.26	76.15	
LT2	N/A	Silt	0.019	0.00	0.00	0.13	15.51	63.08	21.27	84.36	
LT3	N/A	Silt	0.015	0.00	0.00	0.01	12.93	62.89	24.17	87.06	
LT4	N/A	Silt	0.013	0.00	0.00	0.00	7.36	68.13	24.51	92.64	
LT5	N/A	Silt	0.025	0.00	0.00	2.67	11.38	70.72	15.24	85.96	

. 1

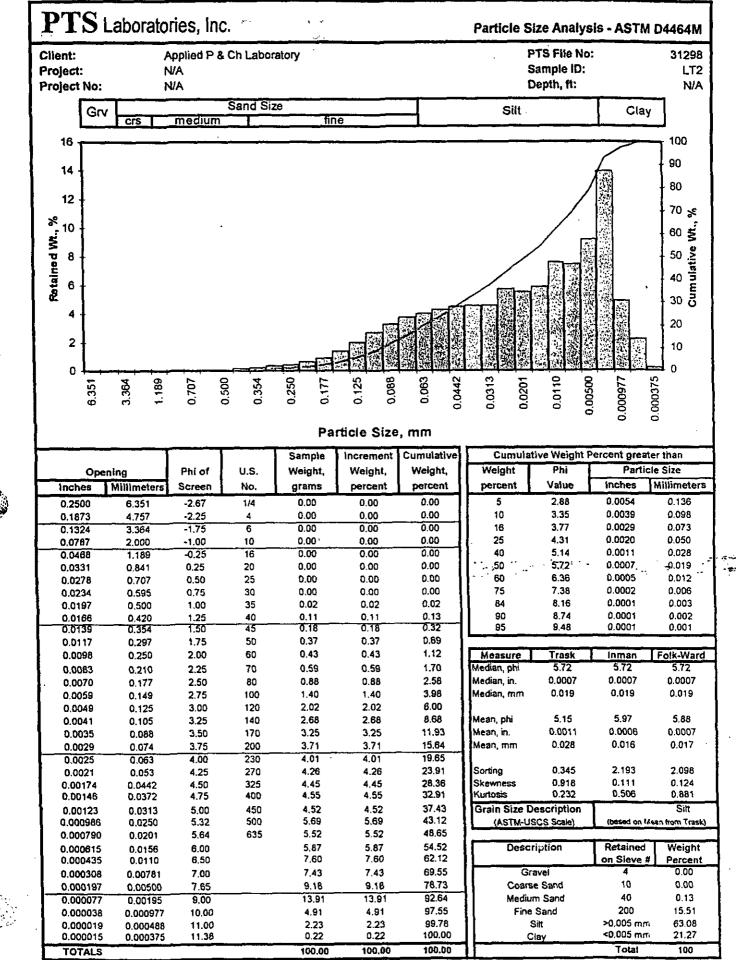

1

ų į

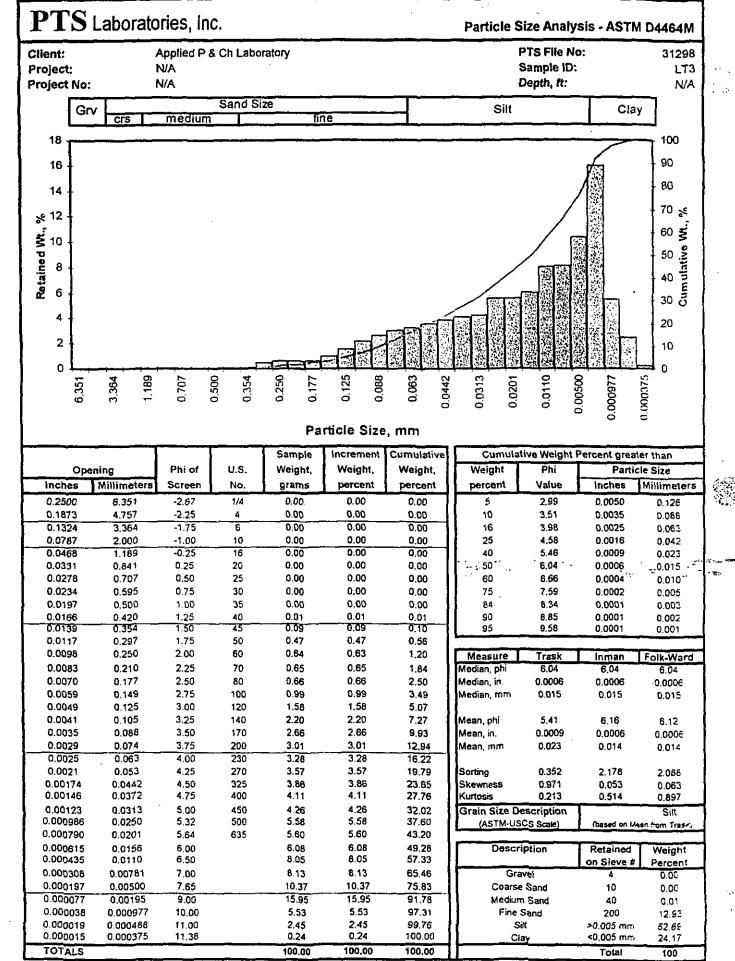
C PTS Laboratories, Inc

Fax: (562) 907-3610

				Sample	Increment	Cumulative	Cumula	tive Weight	Percent great	er than
Ope	ening .	Phi of	U.S.	Weight,	Weight,	Weight,	Weight	Phi	Partic	le Size
Inches	Millimeters	Screen	No.	grams	percent	percent	percent	Value	Inches	Millimeters
0.2500	6.351	-2.67	1/4	0.00	0.00	0.00	5	1.88	0.0107	0.272
0.1873	4.757	-2.25	4	0.00	0.00	0,00	10	2.47	0.0071	0.181
0.1324	3.364	-1.75	6	0.00	0.00	0,00	16	3.05	0.0048	0.121
0.0787	2.000	-1.00	10	0.00	0.00	0.00	25	3.84	0.0028	0.070
0.0468	1,189	-0.25	16	0.00	0.00	0.00	40	4.88	0.0013	0.034
0.0331	0.841	0.25	20	0.13	0.13	0.13	50	5.51	0.0009	0.022
0.0278	0.707	0.50	25	0.25	0.25	0.38	60	6.15	0.0006	0.014
0.0234	0.595	0.75	30	0.15	0.15	0.53	75	7.21	0.0003	0.007
0.0197	0.500	1.00	35	0.14	0.14	0.66	84	7,99	0.0002	0.004
0.0166	0,420	1.25	40	0.49	0.49	1,15	90	8.63	0.0001	0.003
0.0139	0.354	1.50	45	0.90	0.90	2.04	95	9.36	0.0001	0.002
0.0117	0.297	1.75	50	1.93	1,93	3,97				
0.0098	0.250	2.00	60	1.98	1.98	5.95	Measure	Trask	Inman	Folk-Ward
0.0083	0.210	2.25	70	2.11	2.11	8.06	Median, phi	5.51	5.51	5.51
0.0070	0.177	2.50	80	2.25	2.25	10.31	Median, in.	0.0009	0.0009	0.0009
0.0059	0.149	2.75	100	2.50	2.50	12.81	Median, mm	0.022	0.022	0.022
0.0049	0.125	3.00	120	2.64	2.64	15,45				
0.0041	0.105	3.25	140	2.69	2.69	18,14	Mean, phi	4.71	5.52	5.52
0.0035	0.088	3.50	170	2.75	2.75	20.89	Mean, in.	0.0015	0.0009	0.0009
0.0029	0.074	3.75	200	2.96	2.96	23.85	Mean, mm	0.038	0.022	0.022
0.0025	0.063	4.00	230	3.23	3.23	27.08				
0.0021	0.053	4.25	270	3.48	3,48	30,56	Sorting	0.311	2.471	2.369
0.00174	0.0442	4.50	325	3.65	3.65	34,21	Skewness	0.988	0.006	0.018
0.00146	0.0372	4.75	400	3.77	3.77	37.98	Kurtosis	0.177	0.513	0.909
0.00123	0.0313	5.00	450	3,87	3,87	41,85	Grain Size D	escription		Silt
0.000986	0.0250	5.32	500	5.11	5.11	46.96	(ASTM-US	SCS Scale)	(based on 1/4	an from Trask
0.000790	0.0201	5.64	635	5.20	5.20	52.16				
0.000615	0.0156	6.00		5.67	5.67	57,83	Descr	ription	Retained	Weight
0.000435	0.0110	6.50		7.37	7.37	65.20		•	on Sieve #	Percent
0.000308	0.00781	7.00		7.04	7.04	72.24	Gri	avel	4	0.00
0.000197	0.00500	7.65		8.50	8,50	80.74		e Sand	10	0.00
0.000077	0.00195	9.00		12.67	12.67	93,41		n Sand	40	1.15
0.000038	0.000977	10.00		4.43	4.43	97.84		Sand	200	22.71
0.000019	0.000488	11.00		1.95	1.96	99.80	s s	liit	>0.005 mm	56.89
0.000015	0.000375	11,38		0.20	0.20	100,00	CI	ay	<0.005 mm	19.26
TOTALS				100.00	100.00	100.00			Total	100
OPTSIN	boratories, Inc.			DL -	one: (562) 907	3607		•	East 151	2) 907-361

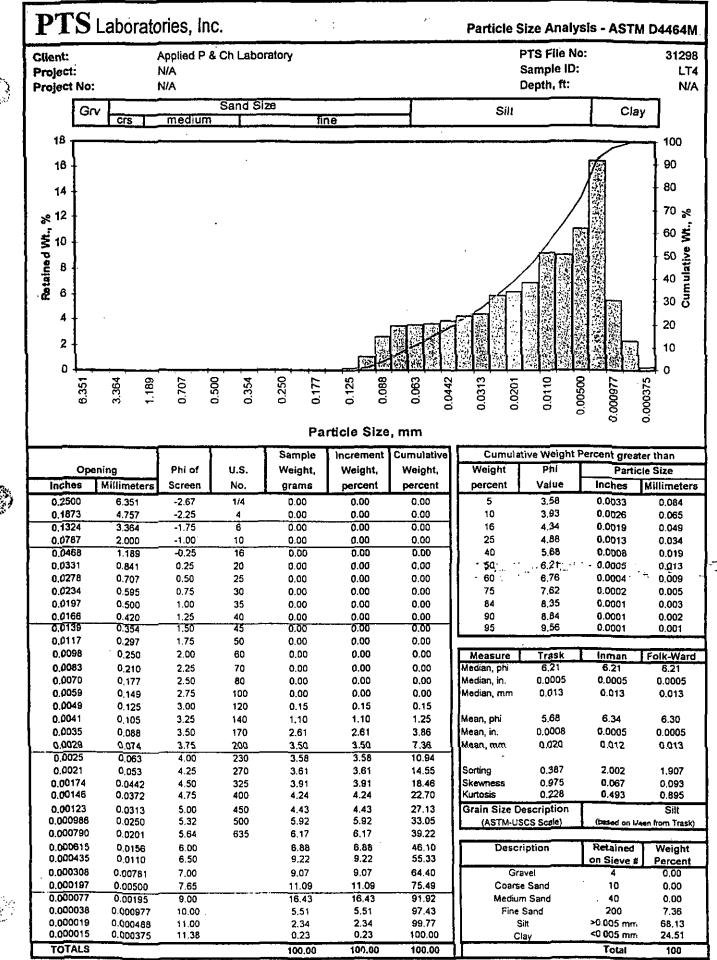

© PTS Laboratories, Inc. .

 $\left(\right)$

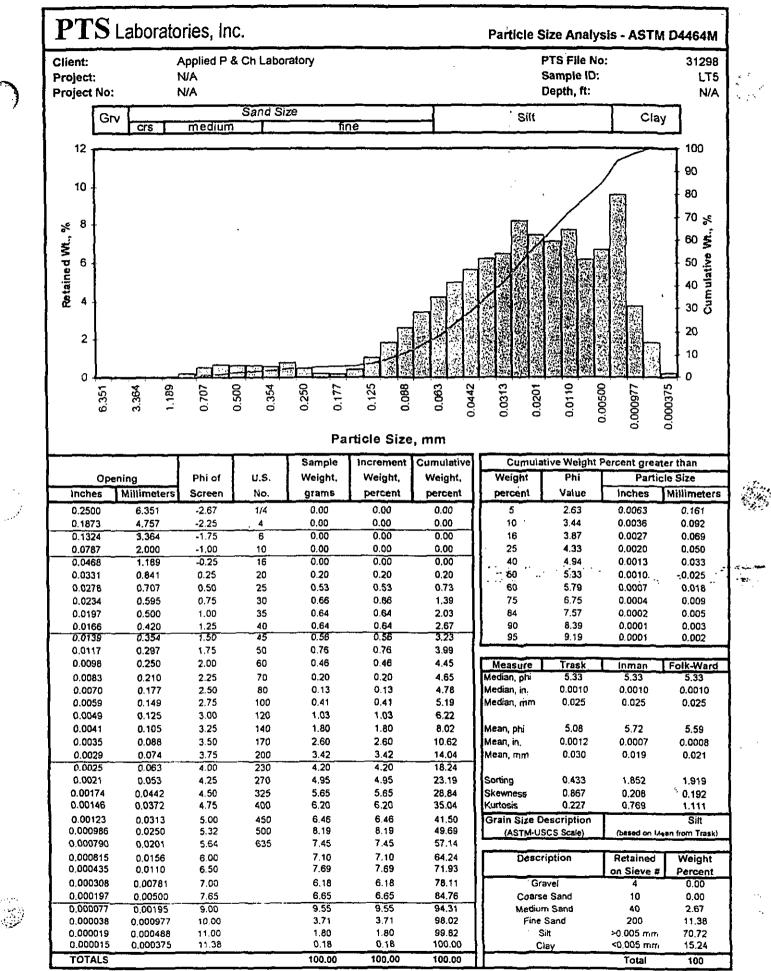

Fax: (5£2) 907-3610

ţ

Phone: (562) 907-3607


C PTS Laboratories, Inc.

O PTS Laboratories, Inc.


Fax: (582-907-3610

Phone: (562) 907-3607

O PTS Laboratories, Inc.

T:

C PTS Laboratories, Inc

Fax: (562) 907-3610

TLI Project: Client Sample:	54146 LT1			N	Aethod 8		CDD/PCI Analysis F		alysis (t S01280
Client Project: Sample Matrix: TLI ID:	n/a SOIL 292-98-1		Date Receiv Date Extract Date Analyz	ed:	05/31/200 06/06/200 06/08/200)1	ICal: Spike File: 1st CCal: End CCal:	SPI S01	52081 MIT343 12793 12807
Sample Size: Dry Weight: GC Column:	45.150 g 10.385 g DB-5		Dilution Fac Blank File: Analyst:	tor:	n/a S012795 DFS		% Moistur % Lipid: % Solids:	re: 77.0 n/a 23.0	
Analytes		Conc. (p	g/g) DL		EMPC		Ratio	RT	Flags
2,3,7,8-TCDD		1.1		-			0.82	27:37	B
1,2,3,7,8-PeCDD		2.3					1.41	31:46	11
1,2,3,4,7,8-HxCDD		3.9					1.28	34:53	1
1,2,3,6,7,8-HxCDD		9.7					1.26	34:59	
1,2,3,7,8,9-HxCDD		8.9			•		1.15	35:18	——
1,2,3,4,6,7,8-HpCDD		178	•				1.05 0.83	38:21	
1,2,3,4,6,7,8,9-OCDD		1270					0.83	42:10	
2.3,7,8-TCDF		3.2					0.77	26:57	В
1,2,3,7,8-PeCDF		ND	0.3						
2.3,4,7,8-PeCDF		2.2				•	1.48	31:27	<u>1</u>
1,2,3,4,7,8-HxCDF		3.9					1.32	34:11	J
1.2.3.6.7.8-HxCDF		3.5					1.14	34:16	1
2,3,4,6,7,8-HxCDF		3.5					1.23	34:47	J
1,2,3,7,8,9-HxCDF		ND	0.4						
1,2,3,4,6,7,8-HpCDF		29.6					1.08	37:17	
1,2,3,4,7,8,9-HpCDF 1,2,3,4,6,7,8,9-OCDF		ND 59.2	1.0			• • • •	- 0.82	42:23	

Totals	Conc. (pg/g)	Number	DL EMPC	Flags
Total TCDD	1.8	2	2.3	
Total PeCDD	4.9	3	8.0	
Total HxCDD	67.4	5	71.3	
Total HpCDD	424	2		-
Total TCDF	. 28.7	9	54.5	x
Total PeCDF	41.6	7	60.4	X
Total HxCDF	58.0	7	70.4	x
Total HpCDF	66.3	2	71.4	

Page 1 of 2

MITTLPSR v1.00, LARS 6.25 01;

Printed: 17:38 06/11/2001

TLI Project: Client Sample:	54146 LT4		1	Method		CDD/PCDI Ánalysis Fi		
Client Project: Sample Matrix: TLI ID:	n/a SOIL 292-98-2	Ī	Date Received: Date Extracted: Date Analyzed:		01	ICal: Spike File: 1st CCal: End CCal:	SF520 SPM S012 S0120	IT343 793
Sample Size: Dry Weight: GC Column:	30.820 g 10.263 g DB-5	. E	Dilution Factor Blank File: Analyst:	n/a S012795 DFS	; ;	% Moisture: % Lipid: % Solids:	: 66.7 n/a 33.3	
Analytes		Conc. (pg/g	J) DL	EMPC		Ratio	RŢ	Flags
2,3,7,8-TCDD		ND	0.3					
1,2,3,7,8-PeCDD		1.6				1.63	31:50	1
1,2,3,4,7,8-HxCDD		2.2				1.11	34:54	J
1,2,3,6,7,8-HxCDD		6.5				1.19	35:00	
1,2,3,7,8,9-HxCDD		4.6					35:20	J
1.2,3,4,6,7,8-HpCDD		91.1				1.03	38:22	<u> </u>
1.2,3,4,6,7,8,9-OCDD		616				0.83	42:10	
2,3,7,8-TCDF		EMPC		1.9				В
1,2,3,7,8-PeCDF		ND	0.4					
2.3,4,7,8-PeCDF		1.2					31:29	1
1,2,3,4,7,8-HxCDF		2.8				1.20	34:13	J
1,2,3,6,7,8-HxCDF		EMPC		1.9			.	1
2,3,4,6,7,8-HxCDF		1.9	0.6			1.18	34:48	J
1,2,3,7,8,9-HxCDF		ND	0.5			1.07	27.15	
1,2,3,4,6,7,8-HpCDF		18.3 ND	1 7			1.07	37:17	
1,2,3,4,7,8,9-HpCDF 1,2,3,4,6,7,8,9-OCDF		EMPC	1.3	29.8	· · · · · · · · ·			
Totals		Conc. (pg/g	a) Number D	L EMPC	_			Flags

		/ //windoi		nays
Total TCDD	3.2	3	· · · · · · · · · · · · · · · · · · ·	
Total PeCDD	1.6	1	7.2	
Total HxCDD	40.6	5	43.8	
Total HpCDD	213	2		
Total TCDF	15.8	7	43.1	X_
Total PeCDF	31.4	5	47.0	x
Total HxCDF	36.9	6	49.0	x
Total HpCDF	41.6	2	46.6	x
		_		··

Page 1 of 2

MITS_PSR VL00, LARS 6.25 ---

Triangle Laboratories, Inc.® 801 Capitola Drive • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491