CITY OF LONG BEACH STORM WATER MONITORING REPORT 2001-2002

NPDES PERMIT NO. CAS004003 (CI 8052)

JULY 2002

SUBMITTED BY

CITY OF LONG BEACH PREPARED BY

KINNETIC LABORATORIES, INC. AND SOUTHERN CALIFORNIA COASTAL WATER RESEARCH PROJECT

CITY OF LONG BEACH STORM WATER MONITORING REPORT 2001-2002

NPDES PERMIT NO. CAS004003 (CI 8052)

JULY 2002

PREPARED BY

KINNETIC LABORATORIES, INC.

AND

SOUTHERN CALIFORNIA COASTAL WATER RESEARCH PROJECT

SUBMITTED BY

City Of Long Beach

CITY OF LONG BEACH STORMWATER MONITORING REPORT 2001/2002

NPDES Permit No. CAS004003 (CI 8052)

TABLE OF CONTENTS

.i

TABLE OF CONTENTS
LIST OF FIGURES
LIST OF TABLES
LIST OF APPENDICES
ACRONYMNS AND ABBREVIATIONS LIST
1.0 EXECUTIVE SUMMARY
1.1 Background and Purpose
1.2 Summary of Results
2.0 INTRODUCTION
3.0 STUDY AREA DESCRIPTION
3.1 Regional Setting
3.1.1 Geography
3.1.2 Major Watersheds
3.1.3 Annual Rainfall and Climate
3.1.4 Population and Land Use Characteristics
4.0 MONITORING PROGRAM
4.1. Monitoring Program Objectives
4.2 Monitoring Site Descriptions
4.2.1 Basin 14: Dominguez Gap Monitoring Site
4.2.2 Basin 20: Bouton Creek Monitoring Site
4.2.3 Basin 23: Belmont Pump Station Monitoring Site
4.2.4 Basin 27: Los Cerritos Channel Monitoring Site
4.2.5 Alamitos Bay Receiving water Monitoring Site
4.5 Wolntoning Station Design and Configuration
4.4 Field Monitoring Flocedures
4.4.1 Wet weather Monitoring
4.4.1.2 Grab Sampling
442 Dry Weather Sampling
4.5 Laboratory Analyses
4.5.1 Analytical Suite and Methods
4.5.1.1 Laboratory OA/OC
4.5.2 Toxicity Testing Procedures
4.5.2.1 Water Flea Reproduction and Survival Test
4.5.2.2 Mysid Growth and Survival Test
4.5.2.3 Sea Urchin Fertilization Test
4.5.2.4 Toxicity Identification Evaluations (TIEs)
4.5.2.5 Statistical Analysis
5.0 HYDROLOGY
5.1 Precipitation during the 2001/2002 Storm Season
5.1.1 Monthly Precipitation
5.1.2 Precipitation during Monitored Events
5.2 Stormwater Runoff during Monitored Events
• • <u> </u>

6.0 CHEMISTRY RESULTS	59
6.1 Wet Weather Chemistry Results	59
6.2 Dry Weather Sampling Results	59
6.2.1 Basin 14: Dominguez Gap Monitoring Site	59
6.2.2 Basin 20: Bouton Creek Monitoring Site	60
6.2.3 Basin 23: Belmont Pump Station Monitoring Site	60
6.2.4 Basin 27: Los Cerritos Channel Monitoring Site	60
6.2.5 Basin 23: Alamitos Bay Receiving Water Monitoring Site	60
7.0 TOXICITY RESULTS	73
7.1 Wet Weather Discharge	73
7.1.1 Belmont Pump	73
7.1.2. Bouton Creek	73
7.1.3. Los Cerritos Channel	73
7.2. Receiving Water	74 ·
7.3 Toxicity Identification Evaluations (TIEs) of Stormwater	74
7.3.1 Belmont Pump Station	74
7.3.2. Bouton Creek Station	74
7.3.3 Los Cerritos Channel Station	75
7.4 Dry Weather Discharge	75
7.4.1 Belmont Pump Station	75
7.4.2 Bouton Creek	75
7.4.3 Los Cerritos Channel	75
7.4.4 Alamitos Bay Receiving Water	75
7.4.5 Dry Weather Toxicity Identification Evaluations	75
8.0 DISCUSSION	89
8.1 Wet Season Water Quality	· 89 ·
8.2 Dry Season Water Quality	92
8.2.1 Chemical Analysis of Dry Weather Samples from Mass Emission Sites	92
8.2.2 Bacteriological Data from Alamitos Bay	92
8.3 Temporal Trends of Selected Metals and Organic Compounds	94
8.4 Stormwater Toxicity	94
8.4.1 Receiving Water Toxicity	95
8.4.2 Temporal Toxicity Patterns	95
8.4.3 Comparative Sensitivity of Test Species	95
8.4.4 Relative Toxicity of Stormwater	96
8.4.5 Toxicity Characterization	96
9.0 CONCLUSIONS	133
10.0 DEFEDENCES CITED	135

10.0 REFEREN APPENDICES

ii

LIST OF FIGURES

Figure	No.	Page
3.1	Los Angeles Basin	·11
3.2	City of Long Beach	11
3.3	City of Long Beach Major Drainage Basins	- 12
4.1	Land Use of Drainage Basin #14 which Drains to the Dominguez Gap Mass Emissions Site	
4.2	Dominguez Gap Mass Emissions Site which Drains the City of Long Beach Drainage Basin #14	31
43	Dominguez Gan Pump Station Monitoring Site	32
4.4	Land Use of Drainage Basin #20, which Drains to the Bouton Creek Mass	. 22
	Emissions Site	3.1
4.5	Bouton Creek Mass Emissions Site and City of Long Beach Drainage Basin #20	25
4.0	Bouton Creek Monitoring Site	. 55
4./	Mass Emissions Site	3 6
4.8	Belmont Pump Station Mass Emissions Site and City of Long Beach Drainage Basin #23	37
4.9	Belmont Pump Station Monitoring Site	38
4.10	Land Use of Drainage Basin #27, which Drains to the Los Cerritos Channel	30
4.11	Los Cerritos Channel Mass Emissions Site and City of Long Beach Drainage Basin #27	40
1 12	Los Cerritos Channel Monitoring Site	41
4.12	Lond Use of Drainage Basin #24, which Drains to Alamitos Bay	42
4.13	Alomitos Bay Basaiving Water Site and City of Long Beach Drainage Basin #24	43
4 15	Alamitos Bay Receiving Water Monitoring Site	44
4.15	Tunical KLASS Stormwater Monitoring Station	45
5.1	Monthly Rainfall Totals for the 2001/2002 Wet Weather Season and Normal	
	Rainfall at Long Beach Daugherty Airfield	52
5.2	Belmont Pump Station-Event 1 (12 November, 2001)	53
5.3	Bouton Creek-Event 1 (12-13 November, 2001)	54
5.4	Los Cerritos Channel-Event 1 (12 November, 2001)	55
5.5	Belmont Pump Station-Event 2 (24 November, 2001)	56
5.6	Bouton Creek-Event 2 (24-25 November, 2001)	57
5.7	Los Cerritos Channel-Event 2 (24 November, 2001)	58
7.1	Toxicity Dose Response Plots for Stormwater Samples Collected from the Belmont Pump Station	81
7.2	Toxicity Dose Response Plots for Stormwater Samples Collected from Bouton	01
	Creek	02
1.3.	Cerritos Channel	83
7.4	Summary of Phase I TIE Analyses on Stormwater Samples from the Belmont	84
75	r unip Stanton Summary of Phase I TIF Analyses on the November 24 Stormwater Sample from	0-
	the Bouton Creek Station	85

Figure No.

Figure	e No.	Page
7.6	Summary of Phase I TIE Analyses on Stormwater Samples from the Los Cerritos Channel Station	86
7.7	Summary of Phase I TIE Analyses on the May 9 Dry Weather Sample from the Los Ceritos Channel Station	87
8.1	Location of City of Long Beach Department of Health and Human Service's Microbiological Monitoring Sites	112
8.2	Bacterial Time Series for City of Long Beach Alamitos Bay Bacteria Station B14 (Bayshore Float)	113
8.3	Bacterial Time Series for City of Long Beach Alamitos Bay Bacteria Station B29 (Bayshore and First)	114
8.4	Bacterial Time Series for City of Long Beach Alamitos Bay Bacteria Station B67 (Bayshore and Second Street Bridge)	115
8.5	Bacterial Time Series for City of Long Beach Rowing Association Bacteria Station B28 (Los Cerritos Channel and Marine Stadium)	116
8.6	Bacterial Time Series for City of Long Beach Los Cerritos Channel Bacteria Station B27 (Los Cerritos Channel and Pacific Coast Highway)	117
8.7	Belmont Pump Chemistry Results: a) Load (Total and Dissolved); b) Load	118
0.0	(Dissolved); c) Zinc	119
8.9	Belmont Pump Chemistry Results: a) Chlorpyritos; b) Diazinon	120
8.10 8.11	Bouton Creek Chemistry Results: a) Cadmium; b) Copper; c) Nickel Bouton Creek Chemistry Results: a) Lead (Total and Dissolved); b) Lead	121
8 12	(Dissolved); c) Zinc Bouton Creek Chemistry Results: a) Chlornyrifos: h) Diazinon	122
8.12 8.13 8.14	Los Cerritos Channel Chemistry Results: a) Cadmium; b) Copper; c) Nickel Los Cerritos Channel Chemistry Results: a) Lead (Total and Dissolved); b) Lead	123
	(Dissolved); c) Zinc	125
8.15	Los Cerritos Channel Chemistry Results: a) Chlorpyrifos; b) Diazinon	126
8.16 8.17	Dominigues Pump Chemistry Results: a) Cadmium; b) Copper; c) Nickel Dominigues Pump Chemistry Results: a) Lead (Total and Dissolved); b) Lead	127
0.10	(Dissolved); c) Zinc	128
8.18	Dominigues Pump Chemistry Results: a) Chlorpyritos; b) Diazinon	129
8.19	Comparison of Measured (Total) Toxic Units for the Sea Urchin Fertilization Test and Toxic Units Predicted from the Dissolved Concentrations of Conner and	130
8.21	Zinc in the Test Samples Comparison of Measured (Total) Toxic Units for the Water Flea Survival Test	131
	and Toxic Units Predicted from the Concentrations of Chlorpyrifos, Diazinon, and Dissolved Zinc in the Test Samples	132

iv

LIST OF TABLES

Table	? No.	Page
3.1	Total Area and Land Use for City of Long Beach Watersheds	13
4.1	Location Coordinates of Monitoring Stations for the City of Long Beach	
	Stormwater Monitoring Program	25
4.2	Analytical Methods, Holding Times, and Reporting Limits	26
5.1	Rainfall For Monitored Events During the 2001/2002 Wet-Weather Season	49
5.2	Flow for Monitored Events During the 2001/2002 Wet-Weather Season	50
5.3	Cummulative Descriptive Statistics for Rainfall and Flow Data for all Monitored Events (2000-2002)	51
6.1	Monitored Storm Events, 2001/2002	61
6.2	Stormwater Chemistry Results: City of Long Beach Stormwater Monitoring	
	Project	62
6.3	Monitored Dry Weather Events, 1999-2002	67
6.4	Dry and Wet Weather Bacteria Results for Alamitos Bay Receiving Waters	
	(2001/2002)	67
6.5	Field Measurements for Bouton Creek, Belmont Pump, and Los Cerritos	
	Channel, Dry Weather Season (2001/2002)	67
6.6	Dry Weather Chemistry Results: City of Long Beach Storm Monitoring Project	68
7.1	Toxicity of Wet Weather Samples Collected from the City of Long Beach	
	Belmont Pump Station During the 2001/2002 Monitoring Season	76
7.2	Toxicity of Wet Weather Samples Collected from the City of Long Beach	
	Bouton Creek Station During the 2001/2002 Monitoring Season	77
7.3	Toxicity of Wet Weather Samples Collected from the City of Long Beach Los	
	Cerritos Channel Station During the 2001/2002 Monitoring Season	78
7.4	Toxicity of Receiving Water Samples Collected from Alamitos Bay During the	
	2001/2002 Storm Season	- 78
7.5	Summary of TIE Activities	79
7.6	Toxicity of Dry Weather Samples from the City of Long Beach	79
7.7	Toxicity of Receiving Water Samples Collected from Alamitos Bay During the	
	2001/2002 Storm Season	. 80
8.1	Summary of Beneficial Uses for Receiving Water Bodies Associated with Each	
	Monitoring Location	. 98
8.2	Summary of Applicable Water Quality Benchmarks and Receiving Water	
	Quality Criteria	99
8.3	Stormwater Monitoring Chemistry Statistics for Each Watershed	104
8.4	Number of Measurements of Microbiological Indicator Organisms and Percent of	
	Samples Exceeding Ocean Plan and AB411 Reference Values during Extended	
	Dry Weather Periods from 1997 through 2001	109
8.5	Summary of Toxicity Characteristics of Stormwater from Various Southern	
	California Watersheds	110
8.6	Summary of TIE Results for Each Sample	110
8.7	Nonparametric Spearman Correlation Coefficients Showing the Relationship	
	Between Change in Chemical Concentration and Toxic Units for the Sea Urchin	
	and Water Flea Toxicity Tests	111

LIST OF APPENDICES

vi

Appendix A - Quality Assurance/Quality Control Assessment

Appendix B - Field Data Sheets

B.1 Wet Weather

B.2 Dry Weather

Appendix C - Chains of Custody

- C.1 Wet Weather
- C 2 Dry Weather

Appendix D - Toxicity Results

D.1 Wet Weather

D.2 Dry Weather

Appendix E - Chemistry Results

- E.1 Wet Weather
- E.2 Dry Weather

Appendix F - August 2001 Dry Weather Addendum

ACRONYMNS AND ABBREVIATIONS LIST

ASTM - American Society for Testing and Materials

BHC - Benzene hexachloride

BMP - Best Management Practice

BOD-Biological Oxygen Demand

CCC - Criterion Continuous Concentration

CD - Compact Disk

CFU - Colony Forming Units

CMC - Criterion Maximum Concentration

COD - Chemical Oxygen Demand

CTR - California Toxics Rule

CV - Coefficient of Variance

2,4 D - 2,4-dichlorophenoxy

2,4 DB - (2,4-dichlorophenoxy) butanoic acid

DDD - dichloro (p-chlorophenyl)ethane

DDE - dichloro (p-chlorophenyl)ethylene

DDT - dichlorodiphenyl trichloroethane

DF - dilution factor

DI - Deionized

DL - Detection Limit (considered the same as RL)

DO - Dissolved Oxygen

 EC_{50} - Concentration causing effects to 50% of the test population

EDTA - ethylene diamine triacetic acid

EMC- Event mean concentration

GIS - Geographic Information System

IC25 - Concentration causing 25% inhibition in growth or reproduction

IC50 - Concentration causing 50% inhibition in growth or reproduction

ICP-MS - Inductively Coupled Plasma-Mass Spectrometry

ID - Identifier

ID - Insufficient Data

KLASS - Kinnetic Laboratories Automated Sampling System

KLI - Kinnetic Laboratories, Inc.

LC₅₀ - Bioassay concentration that produces 50% lethality

LDPE - Low Density Polyethylene

LOEC - Lowest Observed Effect Concentration

LPC - Limiting Permissible Concentration

MBAS - methylene-blue-active substances

MCPA - 2-methyl-4-chloro-phenoxy acetic acid

MCPP - 2-(4-chloro-2-methylphenoxy) propanoic acid

ML – Minimum level as defined in State Implementation Plan

MPN- Most Probable Number

MS4 - Multiple Separate Storm Sewer System

MTBE- Methyl Tertiary Butyl Ether

NCDC-National Climate Data Center

NPDES –National Pollutant Discharge Elimination System

NOEC - No observed effect concentration

NTS - Not to Scale

NTU - nephelometric turbidity units

NURP- Nationwide Urban Runoff Program

PAH - Polynuclear Aromatic Hydrocarbons

PCB - Polychlorinated bi-phenyls

PDF - Portable Document Format

ppb - Parts per Billion

O - Flow

OA/OC - Quality Assurance/Quality Control

RBF- RBF Consultants

RMP - Regional Monitoring Program

RL- Reporting Limit (considered the same as DL)

RPD-Relative Percent Difference

SAP - Sampling and Analysis Plan

SCCWRP - Southern California Coastal Water Research Project

sf- Square Feet

SIP – State Implementation Plan

SM- Standard Methods for the Examination of Water and Wastewater

SOP - Standard Operating Procedure

SRM - Standard Reference Material

STS - sodium tetradecyl sulfate

SV - Semi-Volatile Compound

2, 4, 5-TP - 2-(2,4,5-trichlorophenoxy) propanoic acid

2, 4, 5-T - 2,4,5-trichlorophenoxy

TBD - To Be Determined

TDS – Total Dissolved Solids

TIE – Toxicity Identification Evaluation

TKN- Total Kjeldahl Nitrogen

TOC - Total Organic Carbons

2, 4, 5-TP - 2-(2,4,5-trichlorophenoxy) propanoic acid

TPH - total petroleum hydrocarbons

TRPH - Total Recoverable Petroleum Hydrocarbons

TSI - ToxScan, Inc.

TSS -- Total Suspended Solids

TTLC - Total Threshold Limit Concentration

TU - Toxicity Unit

TUc – Chronic Toxicity Unit

USEPA - U.S. Environmental Protection Agency

WQO - Water Quality Objective

WQS - Water Quality Standard

CITY OF LONG BEACH STORMWATER MONITORING REPORT 2001/2002

NPDES Permit No. CAS004003 (CI 8052)

1.0 EXECUTIVE SUMMARY

1.1 Background and Purpose

The City of Long Beach is required to conduct a water quality monitoring program for stormwater and dry weather discharges through the City's municipal separate storm sewer system (MS4). The water quality monitoring program beginning in the 1999/2000 wet weather season under terms of Order No. 99-060 National Pollutant Discharge Elimination Systems Municipal Permit No. CAS004003 (CI 8052).

The monitoring program calls for monitoring mass emissions and toxicity at three representative mass emission sites during the first wet season and four sites for subsequent wet seasons. Four wet weather storm events were to be monitored annually. Monitoring of one receiving water site (Alamitos Bay) was also required for each of these four wet weather storm events. In addition, dry weather inspections and the collection and analysis of dry weather discharges were required at each of these monitoring sites over two different 24-hour periods during each dry season. Water samples collected at the monitoring sites during each time period were to be analyzed for all parameters specified in the permit and tested for toxicity. Additionally, the program called for monitoring the receiving water body site (Alamitos Bay) for bacteria and toxicity to provide water quality information during both the wet and dry seasons, and on the effectiveness of a dry-weather diversion.

Monitoring sites specified in the permit are as follows:

- Basin 14: Dominguez Gap Pump Station Monitoring Site
- Basin 20: Bouton Creek Monitoring Site
- Basin 23: Belmont Pump Station Monitoring Site
- Basin 27: Los Cerritos Channel Monitoring Site (Second Year)
- Alamitos Bay Receiving Water Monitoring Site

During the first 1999/2000 wet weather season, start-up delays associated with permitting for placement of stormwater monitoring equipment in the Los Angeles County Flood Control District facilities prevented the wet weather monitoring from being carried out. Instead, a special research study on Parking Lot Runoff was carried out with the permission of the Regional Water Quality Control Board staff. In addition, the required dry weather monitoring was carried out for this first year. The first annual report (Kinnetic Laboratories, Inc., 2000) covered the first season dry-weather monitoring events performed in June of 2000 as well as one additional receiving water sampling in April 2000. The second annual report (Kinnetic Laboratories, Inc., 2001) covered a full season of wet season and dry season monitoring. This report also presented and interpreted the data obtained by the program up to that point in time. In addition to the dry weather sampling, four wet weather events were monitored at each of the monitoring sites, with the exception of the Dominguez Gap Pump Station where rainfall was insufficient, causing a discharge for only three events.

The purpose of this present report is to submit the results of the City of Long Beach's stormwater monitoring program for the third year, 2001/2002. Kinnetic Laboratories, Inc. conducted this monitoring program as Prime Contractor to the City of Long Beach. Analytical laboratory services were provided by

ToxScan, Inc. supplemented by other participating laboratories as necessary. Toxicity studies, including Toxicity Identification Evaluations (TIEs) were also conducted by ToxScan, Inc. Interpretation of the toxicity and TIE data was performed by the Southern California Coastal Water Research Project (SCCWRP) as a subcontractor to Kinnetic Laboratories. In the previous year, SCCWRP staff had performed the marine toxicity tests but, due to laboratory loads, these tests were performed by ToxScan this year.

1.2 Summary of Results

Rainfall and Sampling Events

All monitoring stations were fully operational at the start of the 2001/2002 wet weather season and precipitation and discharge were continuously monitored throughout the season. Record low rainfall occurred during this 2001/2002 wet season. Furthermore, most of this rain occurred before January. These factors limited the number of successful stormwater monitoring events captured during the year in spite of numerous false event attempts. Precipitation during the 2001/2002 water year was 84% below normal in Long Beach, amounting to only 1.99 inches of rain recorded by the National Weather Service climate station at Long Beach Airport, compared to a normal year of 12.27 inches and 13.32 inches last year.

Importantly, however, the first two storm events of the 2001/2002 season were captured at three of the stations (Belmont Pump Station, Los Cerritos Creek, and Bouton Creek), though rainfall was insufficient to cause a discharge at the Dominguez Gap Pump Station. Both were relatively small events characterized by brief, intense periods of scattered shower activity. Total rainfall during each event at the three stations ranged between 0.23 to 0.39 inches which did represent a significant percentage of the total rainfall for the season.

Dry weather inspections/monitoring events were obtained in August, 2001 and in May 2002 for the three mass-emission sites, Dominguez Gap Pump Station, Bouton Creek, and the Belmont Pump Station, as well as for Alamitos Bay. Again, the Dominguez Pump Station inflow was dry during these inspections. An additional dry weather event will be carried out at all of these sites later this summer (August, 2002).

The results of the City of Long Beach's stormwater monitoring program may be briefly summarized as follows based upon the data for the monitored events available at this time for the program.

Chemical and Bacterial Results

- Currently, numerical standards do not exist for stormwater discharges. However, water quality criteria or objectives may provide reference points for assessing the relative importance of various stormwater contaminants, though specific receiving water studies are necessary to quantify the presence and magnitude of any actual water quality impacts.
- For reference only, provisional water quality benchmarks are developed and presented herein based upon work in the Central Valley Regional Water Quality Control Board (Marshack, 2000) and draft benchmarks under development as part of Project Clean Water in San Diego County.
- Event Mean Concentrations (EMCs) calculated for contaminants in Long Beach stormwater discharges were compared with the water quality benchmarks appropriate to the designated beneficial uses of the Long Beach receiving waters.

Oil and grease (O&G) exceeded by 2 to 2.5 times benchmark values based upon USEPA's Stormwater Multisector General Permit for Industrial Activities (O&G; 15, mg/l) for the Belmont Pump Station and the Los Cerritos Channel.

Total suspended solids (TSS) in the Long Beach wet weather discharges exceeded by 5 to 10 times the draft benchmarks (TSS; 60-100 mg/l) based upon the median EMC from the National Urban Runoff Program (USEPA, 1983b).

Concentrations of bacteria (total coliform, fecal coliform, and enterococcus) in the Long Beach stormwater discharges were high compared to benchmark values based upon receiving water criteria, as is common for all urban runoff. Mean EMCs for fecal coliform were highest at the Belmont Pump Station where stormwater is discharged directly to Alamitos Bay. Mean values in the Long Beach stormwater discharges are three orders of magnitude greater than the benchmark values. Other studies have shown however that such exceedances are not limited to urban stormwater sources but are also measured from undeveloped surrounding land.

For the Alamitos Bay receiving water, samples from this study for all three years and from the City of Long Beach Department of Health and Human Services monitoring data were compared with historical rainfall records from the Long Beach Airport. Microbiological data from the City's stormwater program demonstrate relatively low levels of total coliform, fecal coliform, and fecal streptococcus during all dry weather periods. Based upon dry weather data obtained before a dry season interceptor was instatalled in Basin 24 as compared to dry season data after that time, it is not apparent that the interceptor has had any discernable impact on the bacterial concentrations in Alamitos Bay during the extended dry weather during the summer of 2000. Tests conducted during wet weather periods resulted in levels of each bacterial component that were one to two orders of magnitude higher than during summer dry weather periods.

Benchmark values used for trace metals were mostly based upon Criteria Maximum Concentrations (CMC) values form the California Toxics Rule (USEPA, 2000). Only two metals were found to exceed benchmark values in the Long Beach stormwater discharges, and in both cases, only the estuarine/marine benchmarks were exceeded. The mean EMC for copper at the Belmont Pump Station was approximately three times the benchmark value for discharges to enclosed bays and estuaries. Mean copper EMCs for discharges to inland surface waters were below the benchmark value of 13 ug/l. The mean EMC for dissolved zinc at the Belmont Pump Station was 98 ug/l, slightly exceeding the enclosed bay and estuary benchmark value of 90 ug/l. Mean EMCs for dissolved zinc at both Bouton Creek and Los Cerritos were 78-84 ug./, which was approximately 2/3 of the inland surface water benchmark.

Benchmark values for organic compounds for both saltwater and freshwater were based upon recent assessments conducted by the California Department of Fish and Game (Seipmann and Finlayson, 2002). Diazinon benchmarks are routinely exceeded in discharges from the Belmont Pump, Bouton Creek, and the Los Cerritos Channel. Mean EMCs for the two monitoring sites that discharge to inland surface waters were roughly four to five times higher than the proposed benchmark, while discharges from the Belmont Pump station was an order of magnitude greater than the marine/estuarine benchmark. Chlorpyrifos, another organophosphate pesticide, was found in significant concentration in water from the second storm event in the Los Cerritos Channel, approximately one order of magnitude greater than the recently updated California Department of Fish and Game benchmark. Other organic compounds are rarely detected in the stormwater samples, and when detected, are often very near reporting limits. Glyphosate, which was detected in runoff the previous year was not detected in runoff from any of the sites during

the 2001/2002 season. Low levels of two organochlorine pesticides DDT and aldrin were present in a few samples during the past monitoring year. Phthalate compounds are common in the stormwater samples but are present at relatively low levels. The highest concentration reported for a phthalate compound (bis(2)ethylhexylphthalate) this season was 10 ug/l. Both diazinon and chlorpyrifos are undergoing changes in registration due to the high toxicities as well as persistent occurrences in runoff, and their uses may be curtailed or phased out.

Noteworthy findings from the dry weather sampling are as follows:

- Chemical results generally did not tend to vary greatly between sites or sampling dates, and with a few exceptions, contaminant concentrations were consistent with previous results and no parameters stood out as particularly high.
- Diazinon was the only organic contaminant routinely detected in the dry weather discharges this year due to lower detection limits. The herbicide 2, 4-D, was absent from all sites in the fall survey but was present in all samples from the May survey. Several phthalate compounds were detected in the August 2001 surveys but were below detection limits in the May 2002 surveys.
- Dry weather discharges were typically low in suspended solids and total metals, but dissolved metals were more consistent with the expected dissolved/total ratios than those measured during wet weather events. Dissolved metals occurred at levels similar to those measured during the winter storm events. Increased hardness during the dry weather conditions tends to mitigate potential toxicity.
- \circ Elevated pH levels are common in excess of 9.0 probably due to high benthic algal production resulting in low levels of CO₂ and concurrent high levels of dissolved oxygen and lower alkalinity.
- Bouton Creek dry weather discharge shows higher specific conductivities, COD, chloride, and TDS as saltwater continues to drain form the algal turf well after low tide, along with low dry weather flows.
- Dry level flows continue to show moderately high levels of bacteria including total and fecal coliform as well as enterococci, with total and fecal coliform above benchmark levels. The effects of these flows are not typically evident in receiving water as demonstrated both by concurrent measurements form Alamitos Bay and surveys conducted by the City's Department of Health as discussed in this report.
- Discharges to and from the Dominguez Gap Pump Station continue to be dry during the dry weather season.

Toxicity Results

- Toxicity was detected for each of the three stations sampled this year for each of the two wet weather storm events, which was consistent with the results from last year's monitoring. The toxicity measured was greater this year, possibly because these were the first flush storms of the year, in contrast to the later storms monitored last year. The frequency and magnitude of stormwater toxicity from the Long Beach stations is similar to stormwater samples from other southern California watersheds, with Chollas Creek (San Diego) and Ballona Creek (Santa Monica) most similar to the Long Beach study, as these samples were obtained from smaller highly urbanized watersheds relative to the Los Angeles River and San Gabriel River.
- Consistent with last year's results, toxicity was measured in all of the dry weather samples, but was again less than that measured in the wet weather samples. These results are indicative of significant differences in the composition of stormwater and dry weather discharge form the City of Long Beach.

- No significant toxicity was present in any of the Alamitos Bay receiving water samples as was true last year. These results are consistent with three dry weather samples collected from the same site in 2000. Salinity measurements indicated that the wet weather receiving water samples contained about 2 % or less fresh water. The lack of toxicity in the Alamitos Bay samples is consistent with the results of the wet weather discharge samples, which usually had NOEC values greater than 5-10%.
- The modified TIE trigger criteria instituted this year facilitated a successful TIE testing program, with 12 wet weather and 2 dry weather TIEs attempted that yielded useful information on 10 samples. The results of this year were consistent within each species and similar to the data obtained from the previous year.
- All TIEs conducted using the water flea indicated that organophosphate pesticides were the most likely category of toxic constituents.
- The two-year toxicity data also implicated dissolved metals, particularly zinc and copper as causes of stormwater toxicity. These conclusions are supported by the TIE results, by correlations of toxicity with chemical constituents, and by calculations of predicted toxicity based upon measured zinc and copper concentrations in the stormwater.

2.0 INTRODUCTION

The City of Long Beach received an NPDES Permit issued by the California Regional Water Quality Control Board, Los Angeles Region on 30 June 1999 (Order No 99-060, NPDES No. CAS004003, (CI 8052)). This order defines Waste Discharge Requirements for Municipal Stormwater and Urban Runoff discharges within the City of Long Beach. Specifically, the permit regulates discharges of stormwater and urban runoff from municipal separate storm sewer systems (MS4s), also called storm drain systems, into receiving waters of the Los Angeles Basin.

The Regional Board modified the permit by letter on October 24, 2001 based upon review of the second year report and concurrent modifications being negotiated on the Los Angeles County stormwater permit. Permit modifications consisted of three primary elements. The first modification was an adjustment to the list of constituents and the required reporting limits for consistency with Minimum Levels (MLs) listed in the State's *Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays and Estuaries of California* (2000). The second change addressed the requirements for triggering TIEs and a reduction in toxicity testing requirements for the mysid, *Americamysis.* TIE triggers were changed to enhance opportunities for defining toxicity that might be related to first flush or other early season events. The final change was a requirement to compare stormwater quality data to water quality criteria applicable to specific beneficial uses in each receiving water body.

The City of Long Beach serves a population of about 462,000 people in an area of approximately 50 square miles. The discharges from the MS4 system consist of surface runoff (non-stormwater and stormwater) from various land uses in the hydrologic drainage basins within the City. Approximately 44% of the land area discharges to the Los Angeles River, 7% to the San Gabriel River, and the remaining 49% drains directly to Long Beach Harbor and San Pedro Bay (City of Long Beach Municipal Stormwater Permit, 1999). The quality and quantity of these discharges vary considerably and are affected by the hydrology, geology, and land use characteristics of the watersheds; seasonal weather patterns; and frequency and duration of storm events. Impairments or threatened impairments of beneficial uses of water bodies in Long Beach include Alamitos Bay, Los Angeles River, El Dorado Lake, Los Angeles River Reach 1 and Reach 2, San Gabriel River Estuary, San Gabriel River Reach 1, Colorado Lagoon, and Los Cerritos Channel. These areas also include coastal shorelines, including Alamitos Bay Beaches, Belmont shore Beach, Bluff Park Beach, and Long Beach Shore.

The NPDES permit requires the City of Long Beach to prepare, maintain, and update if necessary a monitoring plan. The specified monitoring plan requires the City to monitor three discharge sites (Year 1) and four discharge sites (Years 2 through 5) draining representative urban watersheds (mass emission sites) during the first two years of the monitoring program. Flow, chemical analysis of water quality, and toxicity are to be monitored at each of these sites for four representative storm events each year. During the dry season, inspections and monitoring of these same discharge sites are to be carried out, with the same water quality characterization and toxicity tests to be run. In addition, one receiving water body (Alamitos Bay) is to be monitored for bacteria and toxicity during both the wet and the dry seasons and the effect of a dry weather diversion documented. In years three through five of the permit period, the City was also expected to participate in a "fair share" study of receiving waters in the Los Angeles River and San Gabriel River watersheds. The Regional Board has verbally indicated that this effort is being eliminated or delayed.

The purpose of this present report is to submit the results of the City of Long Beach's stormwater monitoring program for the third year, 2001/2002.

3.0 STUDY AREA DESCRIPTION

The four sites for mass emissions monitoring were originally selected by the City of Long Beach with the assistance of the Southern California Coastal Water Research Project (SCCWRP), with input from the environmental community, the Los Angeles County Department of Public Works and with the approval of the Regional Water Quality Control Board. These sites were then specified in the NPDES permit after an analysis of the drainage basins and receiving waters. They were selected to be representative of the stormwater discharges from the City's storm drain system, as well as to be practical sites to carry out stormwater and dry weather monitoring. An additional site in Alamitos Bay was also selected as representative of receiving waters and for evaluation of the effectiveness of a dry weather diversion.

3.1 **Regional Setting**

3.1.1 Geography

The City of Long Beach is located in the center and southern part of the Los Angeles Basin (Figure 3.1) and is part of the highly urbanized Los Angeles region. In addition to residential and other uses, the City also encompasses heavy industrial and commercial areas and includes a major port facility, one of the largest in the United States. The City's waterfront is protected from the open Pacific Ocean by the extensive rock dikes encircling the outer harbor area of the Port of Los Angeles/Port of Long Beach complex. The waterfront includes port facilities along with a downtown commercial/residential area that includes small boat marinas, recreational areas, and convention facilities. Topography within the City boundaries can be generally characterized as low relief, with Signal Hill being the most prominent topographic feature (Figure 3.2).

3.1.2 Major Watersheds

Major water bodies receiving stormwater discharges from the City of Long Beach include the Los Angeles River located near the western boundary of the City, the San Gabriel River located near the eastern boundary, and the outer Harbor of the Los Angeles/Long Beach area. The City of Long Beach has fifteen pump stations that discharge into the Los Angeles River, and one pump station that discharges into the San Gabriel River. Receiving water sub-areas of importance include the extensive Alamitos Bay, heavily developed for marina and recreational uses, and the inner harbor areas of the City, heavily developed as port facilities. Other receiving water sub-areas include the Los Angeles River, El Dorado Lake, Los Angeles River Reach 1 and Reach 2, San Gabriel River Estuary, San Gabriel River Reach 1, Colorado Lagoon, and Los Cerritos Channel. These areas also include coastal shorelines, including Alamitos Bay Beaches, Belmont shore Beach, Bluff Park Beach, and Long Beach Shore. The drainage from the City is characterized by major creeks or storm channels, usually diked and/or concrete lined such as the Los Cerritos Channel that originates in Long Beach, flows near the eastern City boundary, and discharges into the Marine Stadium and then into Alamitos Bay. Other such regional drains include:

- Coyote Creek, which passes through a small portion of Long Beach before it discharges to the San Gabriel River;
- Heather Channel and Los Cerritos Line E that both enter Long Beach from the City of Lakewood and discharge into the Los Cerritos Channel; and the
- Artesia-Norwalk Drain that enters Long Beach from Hawaiian Gardens and discharges into Coyote Creek.

The City of Long Beach is divided into 30 watersheds as shown in Figure 3.3. Data presently in the City of Long Beach GIS database on total areas and specific land use categories for each basin are given in

Table 3.1 (City of Long Beach 2001). Specific watersheds selected by the City of Long Beach for this present stormwater monitoring program are described in more detail in the following section.

3.1.3 Annual Rainfall and Climate

The City of Long Beach is located in the semi-arid Southern California coastal area and receives significant rainfall on a seasonal basis. The rain season generally extends from October through April, with the heavier rains more likely in the months of November through March (see Figure 5.1 for average rainfall by month and seasonal total rainfall as measured at the Long Beach Airport). Total average annual rainfall at the Long Beach Airport is 12 inches per year.

The City lies in the Los Angeles Plain, which is south of the Santa Monica and San Gabriel Mountains and west of the San Jose and the Puente Hills. The Los Angeles River is the largest stream on the plain and it drains the San Fernando Valley and much of the San Gabriel Mountains. Most of the streams are dry during the summer and there are no lakes or ponds, other than temporary ponding behind dunes (Miles & Goudy, 1998). The climate is mild, with a 30-year average temperature of 23.4 °C (74.1°F) at the Long Beach Daugherty Airport (NCDC, 2000).

3.1.4 **Population and Land Use Characteristics**

The population of the City of Long Beach totaled 461,522 residents during the year 2000 (U.S. Census Bureau, 2000). The total population of the County of Los Angeles, in which it resides, was 9,519,338. The independent city of Signal Hill, located on a promontory, is surrounded by the City of Long Beach. Signal Hill's population numbered 9,333 in the year 2000 and it contributes runoff to drainage basins 6, 7, 8, 9 and 18.

The City of Long Beach has a total area of 26,616 acres. Of that total 16,926 acres (64%) are classified as residential, 4,784 acres (18%) as commercial, 2,269 acres (8.5%) as industrial, 1,846 (7%) as institutional, and 786 acres (3%) as open space (City of Long Beach, 1999). The drainage basins sampled for the stormwater monitoring study follow this general pattern of land use.

Figure 3.1. Los Angeles Basin. (Source: 3-D TopoQuads Copyright 1999 DelLorme, Yarmouth, ME 04096).

Figure 3.2. City of Long Beach. (Source: 3-D TopoQuads Copyright 1999 DelLorme, Yarmouth, ME 04096).

Major Drainage Basins and Monitoring Sites

Figure 3.3. City of Long Beach Major Drainage Basins (Source: City of Long Beach, Department of Technology Services) and City of Long Beach Stormwater Monitoring Sites.

Drainage Basin	Drainage Pattern	Sub- basins	Total Acres	Residential Acres	Commercial Acres	Industrial Acres	Institutional Acres	Open Space Acres
1	N to S	4	456	393	44	0	. 7	12
2	E to W	1	1,276	905	287	22	59	3
3	E to W	3	1,083	367	642	7	58	. 9
4	E to W	2	810	426	176	140	56	12
5	E to W	1	546	434	97	0	13	2
6	S & SE	1	695	475	125	0	73	17
7	to center	1 ·	1,029	858	89	11	53	18
8	E to W	1	248	163	27	58	. 0	0
9	SW & NW	1	399	295	91	0.	12	1
10	S & E	3	416	16	49	351 [.]	0	0
11	S & E	1	424	338	64	3	18	1
12	S & E	1	719	556	98 · ·	9	41	15
13	S & E	1	84	0	7	77	0	0
14	S & W	2	3,374	2,445	392	148	273	116
15	S & W	1	958	569	167	197	25	0
16	N to S	1	194	113	61	8 -	5	7
17	S & E	1 -	317	244	68	0	5	· 0
18	Е	1	1,814	804	262	729	19	0
19	Е	20 ·	3,898	2,475	610	439 ·	228	146
20	S & E	1	2,259	1,215	412	70	492	70
21	S & E	3	1,172	773	125	0	55	219
22	variable	9	520	38	428	. 0	54	0
23	S	1	213	110	85	0	14	4
24	SE & NW	1	281	188	30	0	0	63
25	W & E	2	90	70	9 ·	0	4	7
26	S & W	3	355	304	22	0	29	0
27	E & S	9	1,083	825	109	0	143	6
28	S & E	1	630	386	179	0	65	0
29	S	8	727	633	10	0	26	58
30	SW(6) & SE(1)	7	546	508	19	0	19	0
		Total Acres	26,616	16,926	4,784	2,269	1,846	786

 Table 3.1.
 Total Areas and Land Use for City of Long Beach Watersheds.

4.0 MONITORING PROGRAM

4.1. Monitoring Program Objectives

The stated long-term objectives of the stormwater monitoring program (Part 3, II, A(1-6)) are as follows:

- 1. Estimate annual mass emissions of pollutants discharged to surface waters through the MS4;
- 2. Evaluate water column and sediment toxicity in receiving waters;
- 3. Evaluate impact of stormwater/urban runoff on biological species in receiving waters;
- 4. Determine and prioritize pollutants of concern in stormwater;
- 5. Identify pollutant sources on the basis of flow sampling, facility inspections, and ICID investigations; and
- 6. Evaluate BMP effectiveness.

The emphasis during the first two years of monitoring efforts has been directed towards characterizing the chemical and toxicological characteristics of discharges from the city's MS4 during both storm events and dry weather periods to develop the data needed to address the first five objectives listed above. In addition, a start on BMP investigations through the special Parking Lot Study was implemented during the first full year of monitoring. Specific objectives of this year's work included the following:

- 1. Obtain monitoring data from four (4) storm events for each mass emission station during the 2001/2002 storm season along with corresponding receiving water sampling at the Alamitos Bay receiving water station.
- 2. Carry out dry weather inspections and obtain samples of dry weather flow at each of the four mass emission stations and the receiving water station. Perform this dry weather work twice during the dry season that extends from May through October.
- 3. Perform chemical analyses for the specified suite of analytes at the appropriate detection limits for all stormwater samples collected.
- 4. Perform toxicity testing of the stormwater samples collected, and Toxicity Identification Evaluations (TIEs) if warranted by the toxicity results at a given site.
- 5. Report the above results and evaluate the monitoring data with respect to receiving water quality criteria.

4.2 Monitoring Site Descriptions

4.2.1 Basin 14: Dominguez Gap Monitoring Site

A sampling station located at the Dominguez Gap Pump Station is intended to monitor Basin 14 that covers 3,374 acres. Land use in this basin is 72% residential, 12% commercial, 8% institutional, 4% industrial, and 4% open space (Figure 4.1). The basin is located in the northwestern portion of Long Beach just east of the Los Angeles River and is bounded on the north, south, east, and west by Artesia Boulevard, Roosevelt Road, the railroad, and the Los Angeles River respectively (City of Long Beach, 2001). The location of the Dominguez Gap Pump Station is shown in Figure 4.2 with the coordinates given in Table 4.1. Photographs of the site are shown in Figure 4.3.

Normally in the summer, the retention basin located adjacent to the pump station would be dry according to the Flood Maintenance Division of the Los Angeles County of Public Works. However, current practice is to have the pumps locked off for the summer with water diverted into the retention basin from the Los Angeles River to recharge the groundwater aquifer and to study the feasibility of a wetland habitat in the area. During winter storms, the retention basin fills from stormwater discharge, which then

infiltrates into the groundwater. During intense rains, when the retention basin fills to a specified level, the pump station pumps the water over the levee and discharges it into the Los Angeles River.

The stormwater monitoring equipment is located within the Dominguez Gap Pump Station. The automatic sampler utilized a peristaltic pump to collect water from the pump station's sump. The sampler was activated at the same set point (sump elevation) that activated the main discharge pumps, thus obtaining water samples during discharge to the Los Angeles River. Sump elevation was determined with a pressure transducer. Flow rates were determined from the individual pump curves of each pump, and total volume discharged was obtained by integrating this data over the period of time each pump discharged.

4.2.2 Basin 20: Bouton Creek Monitoring Site

This site collects water from Basin 20 covering 2,259 acres. Basin 20 is 54% residential, 22% institutional, 18% commercial, 3% industrial, and 3% open space (Figure 4.4). This basin is located in the east central portion of the City and is bounded on the north, south, east, and west by Spring Street, 8th Avenue, the Los Cerritos Channel and Redondo Avenue, respectively. The sampling station is located a short way upstream from the point of discharge into Los Cerritos Channel, along side of the Alamitos Maintenance Yard of the Los Angeles County Public Works Department. The location of the sampling station is shown in Figure 4.5 and Table 4.1. Photographs of the site are shown in Figure 4.6.

At the sampling station, Bouton Creek is a 35 ft wide, 8.5 ft deep open concrete box channel. The elevation of the channel bed is approximately one inch lower at the side than the center. About a quarter of a mile to the southeast, Bouton Creek flows into Los Cerritos Channel. Based on numerous observations of conductivity at various tides, this site has saltwater influence at tide levels above three feet. The automatic sampling equipment was therefore configured and programmed to measure discharge flow and to obtain flow composited samples of the freshwater discharge down the creek, avoiding the tidal contributions by using real-time conductivity sensors. A velocity sensor was mounted on the invert of the box channel near the center of flow. Two conductivity sensors were mounted on the wall of the channel near the bottom and 2 feet above the bottom. A third conductivity sensor and the sample intake were mounted on a floating arm that kept them near the surface. In practice, the horizontal boundary between brackish tidal water and fresh stormwater was found to be fairly sharp, allowing good separation for sampling and volume measurements of the stormwater discharge.

4.2.3 Basin 23: Belmont Pump Station Monitoring Site

This site collects water from Basin 23 that covers 213 acres. Land use in the basin is 52% residential, 40% commercial, 0% industrial, 6% institutional, and 2% open space (Figure 4.7). This basin is located in the southeastern portion of the City and is bounded on the north, south, east, and west by Colorado Street, Division Street, Ultimo Avenue and Belmont Avenue respectively. The Belmont Pump Station is located at 222 Claremont Avenue as shown in Figure 4.8 with coordinates given in Table 4.1. Photographs of this site are shown in Figure 4.9.

Water enters the forebay of the facility via a nine-foot diameter underground storm pipe. A trash rack catches debris before water drops four feet into the sump area. A single sump pump typically comes on and discharges about two feet of water from the sump area every evening at around 2300 hours. Four main pumps are available to remove water during storm events. Water from these pumps is discharged into Alamitos Bay.

The stormwater monitoring equipment was located outside the pump station but on the grounds of the pump station inside a steel utility box. The sensors and sampling hose were installed inside the pump station sump adjacent to the large discharge pumps. The automatic sampler utilized a peristaltic pump to sample from the sump. The sampler was activated at the same set point (sump elevation) that activated the discharge pumps, thus obtaining water samples during the discharge to Alamitos Bay. Sump elevation was determined with a pressure transducer. Flow rates were determined from the individual pump curves of each pump, and total volume discharged (obtained by integrating this data over the period of time each pump discharged).

4.2.4 Basin 27: Los Cerritos Channel Monitoring Site

Basin 27 is 1,083 acres and land use is 76% residential, 10% commercial, 13% institutional, and 1% open space (Figure 4.10). It is located in the east central portion of Long Beach and is bound on the north, south, east, and west by Spring Street, Rendina Street, the San Gabriel River, and Bellflower Boulevard, respectively.

The drainage pattern is to the east and south on the west side of the Los Cerritos Channel and to the west and south on the east side. There are eight major storm drain systems with a total of three major storm drain lines contributing runoff. All eight major systems discharge into the Los Cerritos Channel.

The stormwater monitoring station was installed in a steel utility box located on the west side of the channel south of Stearns Street. The site location and coordinates are shown in Figure 4.11 and in Table 4.1. Photographs of the site are shown in Figure 4.12. Flow sensors and sampling tubing was installed on the bottom of the large concrete lined channel. This sampling site is above tidewater on Los Cerritos Channel. Flow rates based upon flow velocity and channel dimensions are used to control the composite sampler, and to calculate total flow at the end of the storm event.

4.2.5 Alamitos Bay Receiving Water Monitoring Site

Alamitos Bay, located along the southeastern shoreline of Long Beach, is an extensive inshore estuarine area opening to the waters of the Outer Harbor. It supports extensive marina and recreational uses as well as residential/commercial uses in nearby areas. It also receives stormwater runoff from the Los Cerritos Channel and local drainage basins.

The Bayshore Aquatic Park on the southwestern shore of Alamitos Bay was selected and designated in the permit to be the receiving water site for this stormwater monitoring study. This site is downstream of the monitoring sites for Basins 20 and 23 but also receives stormwater from other basins as well. The monitoring site selected was at the end of a floating wharf located approximately 41 meters 188 degrees true north of the Alamitos Bay Pump Station outfall (Figure 3.3, Table 4.1). The end of the outfall pipe to Alamitos Bay is elevated above the surface of the water of the Bay. Grab samples were taken at the end of the dock during an in-coming tide for bacteria and toxicity only.

The Alamitos Bay Pump Station discharges stormwater from Basin 24 (Figure 4.13). Basin 24 consists of 281 acres located along the south shore of Alamitos Bay and westward along the shore of the Outer Harbor. Land use in Basin 24 consists of 67% residential, 11% commercial, and 22% open space with no industrial or institutional land use (Figure 4.13). The site location and coordinates are shown in Figure 4.14 and in Table 4.1. Photographs of the site are shown in Figure 4.15. A dry-weather storm drain diversion project was constructed in the fall of 1999 for Basin 24. This diversion was activated May 1, 2000 to divert dry weather flows to the sanitary system. The results from monitoring this site were also intended to help in the assessment of the effectiveness of this dry weather diversion.

4.3 Monitoring Station Design and Configuration

Each of the four land use stations monitored in Long Beach were equipped with a Kinnetic Laboratories Automatic Sampling System (KLASS). Figure 4.16 illustrates the configuration of a typical KLASS. This system consists of several commercially available components that Kinnetic Laboratories has integrated and programmed into an efficient flow-based stormwater compositing sampler. The receiving water site was not equipped with a KLASS.

The integral components of this system consist of an acoustic Doppler flow meter or a pressure transducer, a data logger/controller module, cellular or landline telecommunications equipment, a rain gauge, and a peristaltic sampler. The system installed at Bouton Creek also incorporated several conductivity cells for distinguishing tidal flow from fresh water runoff.

The equipment was installed with intakes and sensors securely mounted, tubing and wires in conduits, and all above ground instruments protected within a security enclosure. Section 4.2 described how the equipment was placed at each station.

All materials used in the collection and handling of stormwater samples met strict criteria in order to prevent any form of contamination of the sample. These materials must allow both inorganic and organic trace toxicant analyses from the same sampler and composite bottle. Only the highest grade of borosilicate glass is suitable for both trace metal and organic analyses from the same composite sample bottle. Sample hoses were Teflon[®].

All bottles and hoses were cleaned according to EPA-approved protocols consistent with approved methodology for analysis of stormwater samples (USEPA, 1983a). These bottles and hoses were then evaluated through a blanking process to verify that the hoses and composite bottles were contamination-free and appropriately cleaned for analyses of both inorganic and organic constituents.

4.4 Field Monitoring Procedures

4.4.1 Wet Weather Monitoring

4.4.1.1 Composite Sample Collection

A priority objective of the storm monitoring is to maximize the percent storm capture of the composite sample, while ensuring that the composite bottle collects enough water to support all the required analyses. This study required volumes of up to 70 liters of sample from each of the four land use sites to meet these analytical needs.

All aspects of the sampling events were continuously tracked from an office command and control center (Storm Control) located at our Santa Cruz laboratory. The status of each station is monitored through telecommunication links to each site. Station data were downloaded, and the stations were controlled and reprogrammed remotely. Weather information, including Doppler displays of rainfall for each area being monitored were also available on screen at the Storm Control center. In addition, Storm Control is in contact by cellular phone with the field crews.

When a storm is likely, all stations are made ready to sample. This preparation included entering the correct volume of runoff required for each sample aliquot ("Volume to Sample"), setting the automatic sampler and the data logger to sampling mode, pre-icing the composite sample bottle, and performing a general equipment inspection. A brief physical inspection of the equipment was made (if possible) to make certain that there were no obvious problems such as broken conduit, a kinked hose, or debris.

Once a storm event ended, the stations were shut down either on site or remotely by Storm Control. The station was left ready for the next storm event in case there was insufficient time for a maintenance visit between storms. Data were retrieved remotely via telecommunications from the data logger on a daily basis throughout the wet weather season.

All water samples were kept chilled (4°C) and were transferred to the analytical laboratories within holding times. Prior to sample shipping, sub-sampling from the composite container into sample containers was accomplished using protocol cleaned Teflon and silicone sub-sampling hoses and a peristaltic pump. Using a large magnetic stirrer, all composite water was first mixed together thoroughly and then continuously mixed while the sub-sampling took place. All sub-sampling took place at a staging area near Long Beach. Documentation accompanying samples to the laboratories included Chain of Custody forms, and Analysis Request forms (complete with detection limits).

4.4.1.2 Grab Sampling

During each storm event, grab samples for oil and grease, total recoverable petroleum hydrocarbons (TRPH), total and fecal coliform, enterococcus, and methyl tertiary butyl ether (MTBE) were collected. The timing of grab sampling efforts was often driven by the short holding times for the bacterial analyses. The ability to deliver samples to the microbiological laboratory within the 6-hour holding time was always a major consideration.

Except at the pump stations, all grab samples were taken near the center of flow as possible or at least in an area of sufficient velocity to ensure good mixing. At the Dominguez Gap sampling site, grabs were taken from the sump. At the Belmont pump station, grabs were taken at the point of discharge for the pumps. Some sites required the use of a pole to obtain the samples. Poles used were fitted with special bottle holders to secure the sampling containers. Care was taken not to overfill the sample containers as some of the containers contained preservative. For the MTBE samples, care was taken to assure that no air bubbles were trapped in the sample vial.

4.4.2 Dry Weather Sampling

The Citiy's NPDES Permit calls for two dry weather inspections and sampling events to be carried out during the summer dry weather period at each of the four mass emission stations as well as samples to be taken at the Alamitos Bay receiving water site.

Inspections at each site included whether water was present and whether this water was flowing or just ponded. At sites that were found not to have flowing water, inspections were done in the upstream drains to verify that flow was not occurring into the site. This situation was encountered again this year at the Dominguez Gap Pump station where remnants of water were still ponded in the basin in front of the pump station, but the storm drain discharges into this basin were dry.

When flowing water was present at one of these mass emission sites, then water quality measurements, flow estimates, and water samples were taken along with observations of site conditions. Flowing water was present and all measurements were taken at Bouton Creek, the Belmont Pump Station, and at Los

Cerritos Channel. Temperature and conductivity were measured with an Orion Model 140 meter, pH with an Orion Model 250 meter, and oxygen was measured with an Orion Model 840 meter.

Water samples were collected at the Belmont Pump Station and the Los Cerritos Channel Station by use of an automatic peristaltic pump sampler that collected aliquots every half hour for a 24-hour period. For the Bouton Creek Station where tidal influences are present, a similar sample was collected over a 2-4 hour period of low tide in order to sample just the fresh water discharge down the creek. Additional grab samples were taken just after the time-composited samples for MTBE, TPH, and bacteria. All samples were chilled to 4 $^{\circ}$ C and transported to the appropriate laboratory for analysis.

4.5 Laboratory Analyses

The water quality constituents selected for this program were established based upon the requirements of the City of Long Beach NPDES permit for stormwater discharges. Analytical methods are based upon approved USEPA methodology. Substantial changes were made to the analytical suite and certain detection limits based upon extensive discussions with Regional Board staff. The most significant changes were elimination of many of the herbicides, carbamate and urea pesticides that were below reporting limits in both this and the Los Angeles County monitoring efforts. Other significant changes included reduction of reporting limits for metals, organophosphates, chlorinated pesticides and semivolatile organic compounds. The following sections detail laboratory methods for chemical and biological testing.

4.5.1 Analytical Suite and Methods

Conventional, bacteriological, and chemical constituents selected for inclusion in this stormwater quality program are presented in Table 4.2. Analytical method numbers, holding times, and reporting limits are also indicated for each analysis.

4.5.1.1 Laboratory QA/QC

Quality Assurance/ Quality Control (QA/QC) activities associated with laboratory analyses are detailed in Appendix A.

The laboratory QA/QC activities provide information needed to assess potential laboratory contamination, analytical precision and accuracy, and representativeness. Analytical quality assurance for this program included the following:

- Employing analytical chemists trained in the procedures to be followed.
- Adherence to documented procedures, USEPA methods and written SOPs.
- Calibration of analytical instruments.
- Use of quality control samples, internal standards, surrogates and SRMs.
- Complete documentation of sample tracking and analysis.

Internal laboratory quality control checks included the use of internal standards, method blanks, matrix spike/spike duplicates, duplicates, laboratory control spikes and Standard Reference Materials (SRMs).

Data validation was performed in accordance with the National Functional Guidelines for Organic Data Review (EPA540/R-94/012), Inorganic Data Review (EPA540/R-94/013), and Guidance on the Documentation and Evaluation of Trace Metals Data Collected for the Clean Water Act Compliance Monitoring (EPA/821/B/95/002).

4.5.2 Toxicity Testing Procedures

Upon receipt in the laboratory, stormwater discharge and receiving water samples were stored at 4 °C, in the dark until used in toxicity testing. Toxicity testing commenced within 72 hours of sample collection for most samples. The relative toxicity of each discharge sample was evaluated using three chronic test methods: the water flea (*Ceriodaphnia dubia*) reproduction and survival test (freshwater), the purple sea urchin (*Strongylocentrotus purpuratus*) fertilization test (marine), and the mysid (*Americamysis bahia*) growth and survival test (marine). Each of the methods is recommended by the USEPA for the measurement of effluent and receiving water toxicity. Samples of marine receiving water from Alamitos Bay were tested with the two marine species only. Water samples were diluted with laboratory water to produce a concentration series using procedures specific to each test method.

4.5.2.1 Water Flea Reproduction and Survival Test

Toxicity tests using the water flea, *Ceriodaphnia dubia*, were conducted in accordance with methods recommended by USEPA (1994a). The test procedure consisted of exposing 10 *C. dubia* neonates (less than 24 hours old) to the samples for six days. One animal was placed in each of 10 individual polystyrene cups containing approximately 20 mL of test solution. The test temperature was 25 ± 1 °C and the photoperiod was 16 hours light: 8 hours dark. Daily water changes were accomplished by transferring each individual to a fresh cup of test solution; water quality measurements and observations of survival and reproduction (number of offspring) were made at this time also. Prior to transfer, each cup was inoculated with food (100 µL of a 3:1 mixture of *Selenastrum* culture, density approximately 3.5 x 10^8 cells/mL, and *Ceriodaphnia* chow).

The test organisms were obtained from in-house cultures that were established from broodstock obtained from USEPA (Duluth, MN). The laboratory water used for cultures, controls, and preparation of sample dilutions was synthetic moderately hard freshwater, prepared with deionized water and reagent chemicals. Test samples were poured through a 60 μ m Nitex screen in order to remove indigenous organisms prior to preparation of the test concentrations. Serial dilutions of the test sample were prepared, resulting in test concentrations of 100, 50, 25, 12, and 6 %.

The quality assurance program for this test consisted of three components. First, a control sample (laboratory water) was included in all tests in order to document the health of the test organisms. Second, a reference toxicant test consisting of a concentration series of potassium chloride (KCl) was conducted with each batch of samples to evaluate test sensitivity and precision. Third, the results were compared to established performance criteria for control survival, reproduction, reference toxicant sensitivity, sample storage, and test conditions. Any deviations from the performance criteria were noted in the laboratory records and prompted corrective action, ranging from a repeat of the test to adjustment of laboratory equipment.

4.5.2.2 Mysid Growth and Survival Test

Samples of wet weather discharge and receiving water were assessed for chronic toxicity using the marine mysid, *Americamysis bahia* (formerly named *Mysidopsis bahia*). Test procedures followed the guidelines established by USEPA (1994b). The procedure consisted of a seven-day exposure of juvenile (7 day old) mysids to the samples. Eight replicate test chambers (250 mL beakers), each containing five mysids, were tested for each concentration. The beakers contained 150 mL of test solution, which was changed daily. The test temperature was 26 ± 1 °C and the photoperiod was 16 hours light: 8 hours dark. Water quality and mysid survival measurements were recorded during each water change. Mysids were fed a

standardized amount of newly hatched brine shrimp twice daily. At the end of the test, the surviving animals were dried and weighed to the nearest 0.001 mg to determine effects on growth.

The discharge water samples were adjusted to a salinity of 30 g/kg before testing. This was accomplished by adding a sea salt mixture (TropicMarinTM) to the samples. The addition of sea salts was carried out the day before a test was initiated. The receiving water samples from Alamitos Bay had salinities greater than 30 g/kg and were tested without adjustment of the salinity. The salinity-adjusted samples were then diluted with seawater to produce test concentrations of 100, 50, 25, 12, and 6%. The test organisms were lab-reared *A. bahia* that were purchased from a commercial supplier. For most of the tests, the animals were received the day before the test started and were acclimated to the test temperature and salinity overnight.

Negative control (1.0 μ m and activated carbon filtered natural seawater from ToxScan's Marine Bioassay facility at Long Marine Laboratory in Santa Cruz was diluted to 30 g/kg with deionized water) and sea salt control samples (deionized water mixed with sea salts) were included in each test series for quality control purposes. In addition, a reference toxicant test was included with each batch of test samples. Each reference toxicant test consisted of a concentration series of copper chloride with eight replicates tested per concentration. The median lethal concentration (LC50) was calculated from the data and compared to control limits based upon the cumulative mean and two standard deviations from recent experiments. Control and water quality data were also compared to established performance objectives; any deviations from these were noted and corrected, if possible.

4.5.2.3 Sea Urchin Fertilization Test

All discharge and receiving water samples of stormwater were also evaluated for toxicity using the purple sea urchin fertilization test (USEPA 1995b). This test measures toxic effects on sea urchin sperm, which are expressed as a reduction in their ability to fertilize eggs. The test consisted of a 20-minute exposure of sperm to the samples. Eggs were then added and given 20 minutes for fertilization to occur. The eggs were then preserved and examined later with a microscope to assess the percentage of successful fertilization. Toxic effects are expressed as a reduction in fertilization percentage. Purple sea urchins (*Strongylocentrotus purpuratus*) used in the tests were supplied by U.C. Davis – Granite Canyon. The tests were conducted in glass shell vials containing 10 mL of solution at a temperature of 15 ± 1 °C. Five replicates were tested at each sample concentration.

All samples were adjusted to a salinity of 33.5 g/kg for the fertilization test. Previous experience has determined that many sea salt mixes are toxic to sea urchin sperm. Therefore, the salinity for the urchin test was adjusted by the addition of hypersaline brine. The brine was prepared by freezing and partially thawing seawater. Since the addition of brine dilutes the sample, the highest stormwater concentration that could be tested for the sperm cell test was 50%. The adjusted samples were diluted with seawater to produce test concentrations of 50, 25, 12, 6, and 3%.

Seawater control (1.0 μ m filtered natural seawater from ToxScan's Long Marine Laboratory facility) and brine control samples (50% deionized water and 50% brine) were included in each test series for quality control purposes. Water quality parameters (temperature, dissolved oxygen, pH, ammonia, and salinity) were measured on the test samples to ensure that the experimental conditions were within desired ranges and did not create unintended stress on the test organisms. In addition, a reference toxicant test was included with each stormwater test series in order to document intralaboratory variability. Each reference toxicant test consisted of a concentration series of copper sulfate with four replicates tested per concentration. The median effective concentration (EC50) was estimated from the data and compared to control limits based upon the cumulative mean and two standard deviations of recent experiments.

4.5.2.4 Toxicity Identification Evaluations (TIEs)

Phase I TIEs were conducted on selected runoff samples from stations that exhibited substantial (≥ 2 TU_{ec}) toxicity, in order to determine the characteristics of the toxicants present. Each sample was subjected to treatments designed to selectively remove or neutralize classes of compounds (e.g., metals, nonpolar organics) and thus the toxicity that may be associated with them. Treated samples were then tested to determine the change in toxicity using the sea urchin fertilization test.

Four or five treatments were applied to each sample. These treatments were: particle removal, trace metal chelation, nonpolar organic extraction, organophosphate (OP) deactivation (except urchins) and chemical reduction. With the exception of the organics extraction, each treatment was applied independently on a salinity-adjusted sample. A control sample (lab dilution water) was included with each type of treatment to verify that the manipulation itself was not causing toxicity. If the TIE was not conducted concurrently with the initial testing of a sample, then a reduced set of concentrations of untreated sample was tested at the time of the TIE to determine the baseline toxicity and control for changes in toxicity due to sample storage.

Ethylene diamine tetraacetic acid (EDTA), a chelator of metals, was added to a concentration of 60 mg/L to the marine test samples. EDTA additions to the *Ceriodaphnia* samples were based upon sample hardness (USEPA 1991). Sodium thiosulfate (STS), a treatment that reduces oxidants such as chlorine and also decreases the toxicity of some metals was added to a concentration of 50 mg/L to separate portions of each marine sample. STS additions to the *Ceriodaphnia* samples were at 500, 250 and 125 mg/L. The EDTA and sodium thiosulfate treatments were given at least one hour to interact with the sample prior to the start of toxicity testing. Pipernyl butoxide, which inhibits activation of OP pesticides was added to a concentration of 100 mg/L for mysids and at three concentrations (125, 250 and 500 mg/L) for *Ceriodaphnia*.

Samples were centrifuged for 30 min at 3000 X g to remove particle-borne contaminants and tested for toxicity. A portion of the centrifuged sample was also passed through a 360 mg Sep-Pak[™] C-18 solid phase extraction column in order to remove nonpolar organic compounds. C-18 columns have also been found to remove some metals from aqueous solutions.

4.5.2.5 Statistical Analysis

The toxicity test results were normalized to the control response in order to facilitate comparisons of toxicity between experiments. Normalization was accomplished by expressing the test responses as a percentage of the control value. Four statistical parameters (NOEC, LOEC, median effect, and TUc) were calculated to describe the magnitude of stormwater toxicity. The NOEC (highest test concentration not producing a statistically significant reduction in fertilization or survival) and LOEC (lowest test concentration producing a statistically significant reduction in fertilization or survival) were calculated by comparing the response at each concentration to the dilution water control. Various statistical tests were used to make this comparison, depending upon the characteristics of the data. Water flea survival and reproduction data were usually tested against the control using Fisher's Exact and Steel's Many-One Rank test, respectively. Sea urchin fertilization and mysid survival data were evaluated for significant differences using Dunnett's multiple comparison test, provided that the data met criteria for homogeneity of variance and normal distribution. Data that did not meet these criteria were analyzed by the non-parametric Steel's Many-One Rank or Wilcoxon's tests.

Measures of median effect for each test were calculated as the LC50 (concentration producing a 50% reduction in survival) for mysid and water flea survival, the EC50 (concentration effective on 50% of

eggs) for sea urchin fertilization, or the IC50 (concentration inhibitory to 50% of individuals) for water flea reproduction and IC25 for mysid growth. The LC50 or EC50 was calculated using either probit analysis or the trimmed Spearman-Karber method. The IC25 and IC50 were calculated using linear interpolation analysis. All procedures for calculation of median effects followed USEPA guidelines.

The toxicity results were also expressed as chronic Toxic Units (TUc). This statistic was calculated as: 100/NOEC. Increased values of toxic units indicate relatively greater toxicity, whereas greater toxicity for the NOEC, LOEC, and median effect statistics is indicated by a lower value.

Comparisons of chemical or physical parameters with toxicity results were made using the nonparametric Spearman rank order correlation.

	State Plane Coordinates: Zone 5		North American Datum (NAD) 83	
Station Name	Northing (ft)	Easting (ft)	Latitude	Longitude
Belmont Pump	1734834.9	6522091.2	33° 45' 36.6"N.	118° 07' 48.7"W
Bouton Creek	1741960.5	6529305.2	33° 46' 44.3''N	118° 06' 23.4"W
Los Cerritos	1747935.9	6530153.2	33° 47' 43.3''N	118° 06'13.4"W
Channel				,
Dominguez Gap	1764025.0	6500042.5	33° 50' 22.1"N	118° 12' 10.5"W
Alamitos Bay	1732942.2	6521892.8	33° 45' 15.0"N	118° 07' 52.0"W
(Floating Dock)				
Alamitos Bay (Dry-	1732807.4	6521874.4	33° 45' 13.7"N	118° 07' 54.2"W
Weather Outfall)				

Table 4.1	Location Coordinates of Monitoring Stations for	r the City of Long Beach Stormwater
	Monitoring Program.	

Analyte and Reporting Unit	EPA Method Number	Holding Time	Target Reporting Limit
	,		
CONVENTIONAL PARAMETERS			
Oil and Grease (mg/L)	1664	28 days	5.0
Total Phenols (mg/L)	420.1	28 days	0.1
Cyanide (µg/L)	335.2	14 days	0.005
pH (units)	150.1	ASAP	0 - 14
Dissolved Phosphorus (mg/L)	365.3	48 hours	0.05
Total Phosphorus (mg/L)	365.3	28 days	0.05
Turbidity (NTU)	180.1	48 hours	0.1
Total Suspended Solids (mg/L)	160.2	7 days	1.0
Total Dissolved Solids (mg/L)	160.1	7 days	1.0
Volatile Suspended Solids (mg/L)	160.4	7 days	2.0
Total Organic Carbon (mg/L)	415.1	28 days	1.0
Total Recoverable Petroleum Hydrocarbon (mg/L)	1664	28 days	5.0
Biochemical Oxygen Demand (mg/L)	405.1	48 hours	2.0
Chemical Oxygen Demand (mg/L)	410.1	28 days	10
l otal Ammonia-Nitrogen (mg/L)	350.2	28 days	0.1
lotal Kjeldani Nitrogen (mg/L)	301.5	28 days	0.1
Nitrite Nitrogen (mg/L)	300.0	48 nours	0.1
Nitrate Nitrogen (mg/L) $(m - T)$	210.1	48 hours	0.1
Alkalinity, as CaCO3 (mg/L)	310.1	48 nours	2.0
Specific Conductance (umnos/cm)	120.1	48 nours	1.0
I otal Hardness (mg/L)	130.2	180 days	2.0
MBAS (mg/L)	425.1	48 hours	0.5
Chioride (mg/L)	300.0	48 nours	2.0
Fluoride (mg/L) Mathail tertians butul other (MTDE) (u.g.(L)	200.0	48 nours	0.1
Memyr ternary butyr ether (MTBE) (µg/L)	8020A	14 days	1.0
BACTERIA (MPN/100ml)			
Total Coliform	SM 9221B	6 hours	<20
Fecal Coliform	SM 9221B	6 hours	<20
Enterococcus	SM 9230C	6 hours	<20
TOTAL AND DISSOLVED METALS (µg/L) ¹			
Aluminum	200.8	180 days	100
Antimony	200.8	180 days	0.5
Arsenic	200.8	180 days	1.0
Bervllium	200.8	180 days	0.5
Cadmium	200.8	180 days	0.25
Chromium	200.8	180 days	0.5
Copper	200.8	180 days	0.5
Hexavalent Chromium (total)	SM 3500D	24 hours	5.0
Iron	236.1	180 days	100
Lead	200.8	180 days	0.5
Mercury	245.1	28 days	0.5
Nickel	200.8	180 days	1.0
Selenium	200.8	180 days	1.0
Silver	200.8	180 days	0.25
Thallium	200.8	180 days	1.0
Zinc	200.8	180 davs	1.0

Table 4.2. Analytical Methods, Holding Times, and Reporting Limits.

1. Samples to be analyzed for dissolved metals are to be filtered within 48 hours.

Analyte and Reporting Unit	EPA Method Number	Holding Time	Target Reporting Limit
CHLORINATED PESTICIDES (µg/L)		· ·	
Aldrin	8081A	7 days	0.005
alpha-BHC	8081A	7 days	0.01
beta-BHC	8081A	7 days	0.005
delta-BHC	8081A	7 days	0.005
gamma-BHC (lindane)	8081A	7 days	0.02
alpha-Chlordane	8081A	7 days	0.1
gamma-Chlordane	8081A	7 days	0.1
4,4'-DDD	8081A	7 days	0.05
4,4'-DDE	8081A	, 7 days	0.05
4,4'-DDT	8081A	7 days	0.01
Dieldrin	8081A	7 days	0.01
Endosulfan I	8081A	7 days	0.02
Endosulfan II	8081A	7 days	0.01
Endosulfan sulfate	8081A	7 days	0.05
Endrin	8081A	7 days	0.01
Endrin Aldehyde	. 8081A	7 days	0.01
Heptachlor	8081A	7 days	0.01
Heptachlor Epoxide	8081A	. 7 days	0.01
Toxaphene	8081A	7 days	0.5
Total PCBs	8081A	7 days	1.0
AROCLORS (µg/L)			. ,
Aroclor-1016	8081A	7 days	0.5
Aroclor-1221	8081A	7 days	0.5
Aroclor-1232	8081A	7 days	0.5
Aroclor-1242	8081A	7 days	0.5
Aroclor-1248	8081A	7 days	0.5
Aroclor-1254	8081A	7 days	0.5
Aroclor-1260	8081A	7 days	0.5
ORGANOPHOSPHATE PESTICIDES (ug/L)			· · ·
Diazinon	8141A	7 days	0.01
Chlorpyrifos (Dursban)	8141A	7 days	0.5
Malathion	8141A	7 days	1.0
Prometryn	8141A	7 days	2.0
Atrazine	8141A	7 days	2.0
Simazine	8141A	· 7 days	2.0
Cyanazine	8141A	7 days	2.0
HERBICIDES (µg/L)			
2,4-D	8151A	7 days	1.0
2,4,5-TP-Silvex	8151A	7 days	5.0
Glyphosate	547	7 days	5.0

Table 4.2. Analytical Methods, Holding Times, and Reporting Limits. (continued)

Analyte and Reporting Unit	EPA Method Number	Holding Time	Target Reporting Limit
SEMIVOLATILE ORGANIC COMPOUNDS (µg	z/L)		
Acenaphthene	625	7 days	1.0
Acenaphthylene	625	7 days	2.0
Anthracene	625	7 days	2.0
Benzidine	625	7 days	5.0
Benzo(a)anthracene	625	7 days	5.0
Benzo(b)fluoranthene	625	7 days	10
Benzo(k)fluoranthene	625	7 days	2.0
Benzo(g,h,i)perylene	625	7 days	5.0
Benzo(a)pyrene	625	7 days	2.0
Benzyl butyl phthalate	625	7 days	10
Bis(2-chloroethyl)ether	625	7 days	1.0
Bis(2-chloroethoxy)methane	625	7 days	5.0
Bis(2-ethylbexyl)phthalate	625	7 days	5.0
Bis(2-chlorisopronyl)ether	625	7 days	2.0
4-Bromonhenyl phenyl ether	625	7 days	50
2-Chloroethyl vinyl ether	625	7 days	1.0
2-Chloronanhthalene	625	7 days	5.0
4-Chloronhenyl nhenyl ether	625	7 days	5.0
Chrysene	625	7 days	5.0
Dibenz(a h)anthracene	625	7 days	0.1
1 3-Dichlorobenzene	625	7 days	1.0
1,3-Dichlorobenzene	625	7 days	1.0
1,2-Dichlorobenzene	625	7 days	1.0
2.2 Dichlorobenzidine	625	7 days	5.0
Disthulphthalata	625	7 days	2.0
Directly iphilate	625	7 days 7 days	2.0
Dimenyiphinalate	625	7 days 7 days	2.0
	625	7 days	10
2,4-Dinitrotoluene	625	7 days	5.0
2,6-Dinitrotoluene	625	7 days	5.0
4,6 Dinitro-2-methylphenol	625	/ days	5.0
1,2-Diphenylhydrazine	625	/ days	1.0
Di-n-Octyl phthalate	625	7 days	10
Fluoranthene	625	· 7 days	0.05
Fluorene	625	7 days	0.1
Hexachlorobenzene	625	7 days	1.0
Hexachlorobutadiene	625	7 days	1.0
Hexachloro-cyclopentadiene	625	7 days	5.0
Hexachloroethane	625	7 days	1.0
Indeno[1.2.3-cd]pyrene	625	7 davs	0.05
Isophorone	625	7 days	1.0
Naphthalene	625	7 davs	0.2
Nitrohenzene	625	7 davs	1.0
N-Nitroso-dimethyl amine	625	7 days	5.0
N-Nitroso-dinhenyl amine	625	7 davs	1.0
N Missee I's second as a	()5	7 days	5.0

Table 4.2. Analytical Methods, Holding Times, and Reporting Limits. (continued)

Analyte and Reporting Unit	EPA Method Number	Holding Time	Target Reporting Limit
SEMIVOLATILE ORGANIC COMPOUN	DS (µg/L) (continued)		·
Phenanthrene	625	7 days	0.05
Pyrene	625	7 days	0.05
1,2,4-Trichlorobenzene	625	7 days	1.0
4-Chloro-3-methylphenol	625	7 days	1.0
2-Chlorophenol	625	7 days	2.0
2,4-Dichlorophenol	625	7 days	1.0
2,4-Dimethylphenol	625	7 days	2.0
2,4-Dinitrophenol	625	7 days	5.0
2-Nitrophenol	625	7 days	10
4-Nitrophenol	625	7 days	5.0
Pentachlorophenol	625	7 days	2.0
Phenol	625	7 days	1.0
2,4,6-Trichlorophenol	625	7 days	10

Table 4.2. Analytical Methods, Holding Times, and Reporting Limits. (continued)

SM = Method number from *Standard Methods for the Examination of Water and Wastewater* (APHA 1995). 1. Samples must be filtered within 48 hours.

Figure 4.1. Land Use of Drainage Basin #14, which Drains to the Dominguez Gap Mass Emissions Site (Source: City of Long Beach Department of Technology Services, last update 12/20/00).

Figure 4.2. Dominguez Gap Mass Emissions Site and the City of Long Beach Drainage Basin #14 (Source: City of Long Beach, Department of Technology Services, last updated 1/9/00).

Land Use of Drainage Basin 20

Sec. 1

Figure 4.4. Land Use of Drainage Basin #20, which drains to the Bouton Creek Mass Emissions Site (Source: City of Long Beach, Department of Technology Services, last updated 12/20/00).

Bouton Creek Site Drainage Basin

Figure 4.5.

Bouton Creek Mass Emissions Site and City of Long Beach Drainage Basin #20. (Source: City of Long Beach, Department of Technology Services, last updated 1/9/00).

Figure 4.6 Bouton Creek Monitoring Site – Channel and Monitoring Equipment

Figure 4.7. Land Use of Drainage Basin #23, which Drains to the Belmont Pump Station Mass Emissions Site (Source: City of Long Beach, Department of Technology Services, last updated 12/20/00)

Belmont Pump Station Drainage Basin

Figure 4.8.

Belmont Pump Station Mass Emissions Site and City of Long Beach Drainage Basin #23 (Source: City of Long Beach, Department of Technology Services, last updated 1/9/00).

Figure 4.9Belmont Pump Station Monitoring Site – Pump Station Outfall and
Monitoring Equipment

Figure 4.10. Land Use of Drainage Basin #27, which Drains to the Los Cerritos Channel Monitoring Site (Source: City of Long Beach, Department of Technology Services, last update 12/20/00).

• 5

Figure 4.11. Los Cerritos Channel Mass Emissions Site and City of Long Beach Drainage Basin #27 (Source: City of Long Beach, Department of Technology Services, last updated 1/9/00).

Figure 4.12 Los Cerritos Channel Monitoring Site – Channel and Monitoring Equipment

Land Use of Drainage Basin 24

Figure 4.13. Land Use of Drainage Basin #24 which Drains to Alamitos Bay (Source: City of Long Beach, Department of Technology Services, last updated 12/20/00).

Alamitos Bay Site Drainage Basin

Figure 4.14.

Alamitos Bay Receiving Water Site and City of Long Beach Drainage Basin #24 (Source: City of Long Beach, Department of Technology Services, last updated 1/9/00).

Figure 4.15 Alamitos Bay Receiving Water Monitoring Site – Sampling Site and Closeup of Outfall

THIS PA

THIS PAGE INTENTIONALLY LEFT BLANK

. .

. . .

.

-

5.0 HYDROLOGY

All Long Beach monitoring stations were fully operational at the start of the 2001/2002 wet weather season. Precipitation and discharge were continuously monitored throughout the season. The first two major storm events of the season were captured at three of the stations including the Belmont Pump Station, Los Cerritos Creek and Bouton Creek. Neither event was sufficient to produce a discharge at the Dominguez Gap Pump Station. Due to the rapid capture of these two events, a decision was made to delay further sampling until later in the season to assure adequate temporal coverage. This decision was also intended to allow for a greater probability of getting conditions that would produce runoff at the Dominguez Gap Pump Station. Unexpected drought conditions throughout the early months of 2002 prevented collection of further stormwater runoff inspite of numerous false-event attempts.

5.1 Precipitation during the 2001/2002 Storm Season

Precipitation during the 2001/2002 water year was far below normal in Long Beach according to the National Weather Service climate station at Long Beach Airport (Figure 5.1). During the prior season, a total of 13.32 inches of rain was recorded at the Long Beach Airport from October, 2000 and April, 2001. This season, only 1.99 inches of rainfall was recorded at the airport during this time period. This level of rainfall was only 16 percent of historical average seasonal rainfall. Normal precipitation for October through April at the Long Beach Airport is 12.27 inches.

Rainfall was relatively uniform at each of the monitoring stations with seasonal totals ranging from 2.99 inches at the Dominguez Pump Station to 3.86 inches at the Los Cerritos stormwater monitoring site.

5.1.1 Monthly Precipitation

January and February are characteristically the wettest months of the storm season (Figure 5.1) in Long Beach. Normal rainfall during these two months averages nearly six inches and typically represents half of the season's total precipitation. During January and February 2002, total rainfall was only 0.32 inches, accounting for only 16 percent of total rainfall for the season. Between 70 and 80 percent of the wet season rainfall occurred in November and December of 2001.

5.1.2 **Precipitation during Monitored Events**

Precipitation during each storm event was characterized by total rainfall, duration of rainfall, maximum intensity, days since last rainfall, and the magnitude of the event immediately preceding the monitored storm event (antecedent rainfall). Precipitation characteristics for each event are summarized in Table 5.1. Cumulative descriptive statistics for each monitoring station are presented in Table 5.3. Cumulative rainfall and intensity are summarized graphically for each monitored event at each station in Figures 5.2 through 5.7.

The two events monitored during the 2001/2002 wet weather season were the first and second events of the year. Both were relatively small events characterized by brief, intense periods of scattered shower activity. Total rainfall for the first event ranged from 0.23 to 0.39 inches. The second event yielded 0.33 to 0.39 inches of rain. The majority of rain fell during very short time periods as indicated by intensities of approximately one inch per hour occurring during each storm. Rainfall characteristics were, however, quite variable among sites. Rainfall at the Bouton Creek site was characterized by light rainfall during extended time periods during both events.

5.2 Stormwater Runoff during Monitored Events

Monitoring was designed to isolate rainfall events and the runoff created by those events. Table 5.2 summarizes flow characteristics among monitored events at each station. Table 5.3 provides descriptive statistics for all monitored events since initiation of the monitoring program. This information complements Event Mean Concentration (EMC) statistics for each monitored analyte at these sites. Figures 5.2 through 5.7 graphically depict flow during each monitored event at each station in response to rainfall. These figures also show how the aliquoting of each composite sample was conducted.

Runoff duration at the Belmont Pump Station was very brief during both events. Discharges from the pump station lasted between 15 and 45 minutes. Runoff duration at the two other sites with larger drainages occurred over extended time periods ranging from roughly 10 to 17 hours. Flow duration was typically greatest at Bouton Creek due to tidal effects. During incoming tides, low flows are backed up and held back by the tide. As the tide recedes, stormwater is detected at the station and sampling continues. This effect was most notable during the first event (Figure 5.3).

The percent storm captures (percentage of the total storm event volume effectively represented by the flow-weighted composite sample) were less than optimal in several cases. The intensity of rainfall combined with conservative sampling rates caused bottles to fill rapidly before crews could get to the sites to change bottles and settings. In all cases the rising limb of the hydrograph and periods of high flow were well represented by the samples.

	Start F	Start Rain		Rain					
Site/Event	Date	Time	Date	Time	Duration Rain (hrs:mins)	Total Rain (inches)	Max Intensity (Inches/hr)	Antecedent Rain (days)	Antecedent Rain (inches)
EVENT 1									
Belmont Pump Station	11/12/01	17:50	11/12/01	19:00	1:10:00	0.23	0.6	1.24	0.03
Bouton Creek	11/12/01	18:00	11/13/01	9:40	15:40:00	0.28	0.12	1.17	0.02
Los Cerritos Creek	11/12/01	17:55	11/13/01	0:00	6:05:00	0.39	1.2	8.2	0.03
Dominguez Gap Pump Station	· NA		. ·						
EVENT 2	•				•		• •		
Belmont Pump Station	11/24/01	13:45	11/24/01	16:35	2:50:00	0.33	0.96	11.8	0.23
Bouton Creek	11/24/01	13:15	11/25/01	5:40	16:25:00	0.36	0.12	10.7	0.28
Los Cerritos Creek	11/24/01	13:25	11/24/01	16:40	3:15:00	0.39	0.96	11.6	0.39
Dominguez Gap Pump Station	NA								

Table 5.1. Rainfall for Monitored Events during the 2001/2002 Wet-Weather Season

NA = Not Available, no events occurred at the Dominguez Gap Pump Station

	Start Flow		End F	End Flow						
Site/Event	Date	Time	Date	Time	Duration Flow (hrs:mins)	Total Flow (kilo-cubic feet)	No. of Sample Aliquots Collected	Peak Flow (cfs)	% Capture	Peak Capture
					-	•				,
EVENT 1										
Belmont Pump Station	11/12/01	18:35	11/12/01	18:50	0:15	42.6	3	66	100	Y
Bouton Creek	11/12/01	18:35	11/13/01	11:40	17:05	608	28	162.5	60.2	Y
Los Cerritos Creek	11/12/01	17:55	11/13/01	3:35	9:40	2857	46	487.6	51.7	N
Dominguez Gap Pump Station		·								
EVENT 2										
Belmont Pump Station	11/24/01	14:50	11/24/01	15:35	0:45	90.1	6	66	93.4	Y
Bouton Creek	11/24/01	13:25	11/25/01	3:30	14:05	1066	51	161.2	79.5	Y
Los Cerritos Creek	11/24/01	14:05	11/25/01	1:00	10:55	7072	95	1378	90.3	Y
Dominguez Gap Pump Station										

Table 5.2. Flow for Monitored Events during the 2001/2002 Wet-Weather Season

Table 5.3. Cumulative Descriptive Statistics for Rainfall and Flow Data for All Monitored Events (2000-2002)

Site / Parameter					Standard	1st		3rd
·····	n	Min	Max	Mean	Deviation	Quartile	Median	Quartile
BELMONT PUMP ST.					· · ·			
Duration Flow (days)	6	0.01	1.8	0.5	0.7	0.0	0.1	0.6
Total Storm Vol. (kcf)	6	43	331	112	109	55	79	90
Duration Rain (days)	7	0.05	1.17	0.41	0.43	0.11	0.15	0.64
Total Rain (in)	7	0.23	0.93	0.46	0.27	0.26	0.33	0.60
Max Intensity (in/hr)	7	0.24	1.20	0.65	0.37	0.36	0.60	0.90
Antecedent Dry (days)	7	1.1	28.0	9.6	9.7	1.5	9.4	12.8
Antecedent Rain (in)	7	0.03	2.39	0.56	0.84	0.14	0.23	0.49
BOUTON CREEK			: *			19 19 - 20	•	
Duration Flow (days)	6	0.6	2.7	1.4	0.8	0.8	1.3	1.8
Total Storm Vol. (kcf)	6	608	2755	1252	818	695	962	1453
Duration Rain (days)	6	0.6	2.5	1.2	0.8	0.6	0.7	1.7
Total Rain (in)	6	0.28	0:89	0.50	0.25	0.35	0.37	0.65
Max Intensity (in/hr)	6	0.12	1.20	0.46	0.40	0.18	0.42	0.48
Antecedent Dry (days)	5	1.2	28.0	12.6	9.9	8.7	10.7	14.3
Antecedent Rain (in)	5	0.02	3.05	0.86	1.25	0.22	0.28	0.74
LOS CERRITOS CHAN	INEL							;
Duration Flow (days)	6	0.4	0.7	0.5	0.1	0.4	0.5	0.6
Total Storm Vol. (kcf)	7	1582	7072	3557	1884	2303	2857	4391
Duration Rain (days)	6	1.0	0.5	0.3	0.2	0.2	0.3	0.5
Total Rain (in)	. 7	0.19	0.60	0.35	0.13	0.27	0.33	0.39
Max Intensity (in/hr)	. 7	0.36	1.20	0.70	0.31	0.48	0.60	0.90
Antecedent Dry (days)	7	1.8	28.0	11.6	8.7	5.9	11.6	13.9
Antecedent Rain (in)	7.	0.03	0.60	0.24	0.21	0.11	0.13	0.36
DOMINGUEZ GAP PU	MP S	Г.	•					· .
Duration Flow (days)	3	0.1	1.7	0.7	0.9	0.2	0.3	1.0
Total Storm Vol. (kcf)	3	812	7528	3903	3390	2091	3370	5449
Duration Rain (days)	4	0.7	2.9	1.6	· , 1.1·	0.8	1.4	2.2
Total Rain (in)	4	0.39	2.68	1.43	1.14	0.51	1.33	2.25
Max Intensity (in/hr)	4	0.24	0.84	0.45	0.27	0.33	0.36	0.48
Antecedent Dry (days)	4	1.8	13.9	7.5	5.2	4.4	7.1	10.2
Antecedent Rain (in)	<u>4</u> ·	0.27	3.50	1.66	1.59	0.36	1.44	2.74

Figure 5.1 Monthly Rainfall Totals for the 2001/2002 Wet Weather Season and Normal Rainfall at Long Beach Daugherty Air Field.

	Belmont Pump	Bouton Creek	Los Cerritos Creek	Dominguez Gap	Long Beach Airport	Long Beach Airport-Normal
October	0.02	0.00	0.00	0.00	0.00	0.40
November	1.01	1.10	1.40	1.02	1.02	1.12
December	1.12	1.24	1.52	1.13	0.59	1.76
January	0.41	0.49	0:46	0.29	0.25	2.95
February	0.24	0.20	0.14	0.19	0.07	3.01
March	0.17	0.19	0.23	0.22	0.05	2.43
April	0.13	0.11	0.11	0.14	0.00	0.60
Season Totals	3.10	3.33	3.86	2.99	1.98	12.27

Figure 5.2. Belmont Pump Station – Event 1 (12 November, 2001)

Figure 5.3.

Figure 5.4.

Los Cerritos Channel – Event 1 (12 November, 2001)

Figure 5.5.

Belmont Pump Station – Event 2 (24 November, 2001)

Bouton Creek – Event 2 (24-25 November, 2001) Figure 5.6.

57

;

Figure 5.7. Los Cerritos Channel – Event 2 (24 November, 2001)

6.0 CHEMISTRY RESULTS

6.1 Wet Weather Chemistry Results

Due to drought conditions in the study area, only two events were successfully sampled at each of three sites. However, these events represented seasonal first flush at the monitoring sites. These seasonal first flush events were not captured during the previous year as the instrumentation was not in place until January of that year. No discharges occurred from the Dominguez Gap pump station during this entire year. The events that were monitored at each site, successfully sampled, and sent to the laboratories for analysis are summarized in Table 6.1.

For each of these monitored events, all chemical constituents summarized in Table 4.2 above were analyzed in the resulting samples for all stations. Receiving waters were also sampled during these two wet weather events. Samples were analyzed for toxicity and bacteria.

Composite samples collected during these storm events were also tested for toxicity with three species, the water flea (freshwater crustacean), mysid (marine crustacean), and sea urchin (marine).

The results of the chemical analysis of these composite and grab stormwater samples are summarized in Table 6.2. Bacterial results for the Alamitos Bay receiving water site are summarized in Table 6.4. Toxicity results for the composite samples and the receiving water samples from these monitored events are given in Section 7 below.

6.2 Dry Weather Sampling Results

The City's NPDES Permit calls for two dry weather inspections and sampling events to be carried out during the summer dry weather period at each of the four mass emission stations as well as samples to be taken at the Alamitos Bay receiving water site. During the 1999/2000 year, the two dry weather inspections/sampling events were done in late June so that the results could be reported in the annual report due 15 July 2000. For the second year, the first of these dry weather inspections/samplings was done at all sites in June 2001 and the results are reported in this annual report. However, it was decided that it would be better to do the second sampling event later in the summer such that dry weather surveys bracketed the storm season. This event was conducted on 16 August 2001 and the results are reported as an addendum that is included as Appendix F of this annual report. Data from the August 2001 (Dry Weather Event 5) survey are included in the data tables for comparison purposes. The dry weather events 5 and 6 conducted during the past monitoring season are shaded. Microbiological data from Alamitos Bay are summarized in Table 6.4. Field water quality measurements associated with the 2001/2002 dry weather surveys are presented in Tables 6.5. The results of chemical analysis of the both the August 2001 and May 2002 dry weather surveys are presented in Table 6.6.

6.2.1 Basin 14: Dominguez Gap Monitoring Site

An inspection for dry weather flow was conducted at the Dominguez Gap Pump Station on 7 May 2002. No dry weather flow was observed. The basin in front of the pump house had standing water in it but field crews were unable to reach the water to measure the depth. The source of this ponded water was not determined due to the lack of current flow from any source. The concrete lined channel that extends east from, and discharges into, the basin had small, isolated pools of standing water, but there was no flow. The construction activity that took place on the railroad bridge just north of the pump house is completed. The earth dam that was placed across the basin just north of the pump house to provide convenient vehicle access to the eastside of the swale has been removed. There was no flow from the north part of

the basin observed. It is apparent that water from the Los Angeles River was not being diverted into the swale for ground water recharge as was observed in 2001.

6.2.2 Basin 20: Bouton Creek Monitoring Site

Bouton Creek was sampled on 14 May 2002 from 6:00 a.m. to 8:00 a.m. This time corresponded to a period of low tide when the flow in the creek was not impeded by seawater backing into the creek. The tide levels at this time were between negative 0.21 and plus 1.0 feet in the Long Beach area. This assured that the flow was fresh water flowing downstream in the creek and that that saline tidal water did not commingle with the dry weather discharge of fresh water.

Every 20 minutes during the two-hour period, a 2.86-liter aliquot of water was pumped from the creek using the automatic sampler installed at the site. An aliquot was deposited into each of four 20-liter borosilicate glass bottles. At the conclusion of the sampling, grab samples for MTBE, TPH and bacteria were collected. All samples were chilled to 4° C, and transported to the appropriate laboratory for analysis. Conductivity and pH measurements were also taken at this time and these field measurements are summarized in Table 6.5.

6.2.3 Basin 23: Belmont Pump Station Monitoring Site

Time weighted composite sampling was conducted over a 24 hour period starting on 8 May 2002 and ending on 9 May 2002. Samples were collected from the sump using the automated sampler installed outside of the pump house. Samples were collected into three 20-liter bottles. Every half-hour for the 24 hours, an aliquot of approximately 1.25 liters of water was pumped from the sump into a 20-liter bottle. The bottles were changed every eight hours and chilled to 4°C with ice during sampling and transportation. Following completion of the sampling, the three bottles of water were combined into a composite. Upon completion of the 24-hour sampling, on 9 May 2002, at 7:15 a.m., grab samples for MTBE, TPH and bacteria were manually collected from the sump. All samples were chilled to 4° C and transported to the appropriate laboratory for analysis.

6.2.4 Basin 27: Los Cerritos Channel Monitoring Site

Time weighted sampling was conducted over a 24-hour period of the water flowing through the channel. Sampling was started on 8 May 2002 and completed on 9 May 2002. Samples were taken from the middle of the channel using the automated sampler installed on the bank of the channel. The dry weather flow is a narrow stream approximately 22 feet wide and 1.5 inches deep located in the middle of the channel. To reach the water, the sampling hose that is used for sampling stormwater was extended an additional 33 feet. Samples were collected into three 20-liter bottles. Every half-hour for 24 hours, an aliquot of approximately 1.25 liters of water was pumped into a 20-liter bottle. The bottles were changed every eight hours and chilled to 4°C with ice during sampling and transportation. Following completion of the sampling, the three bottles of water were combined into a composite sample. After completion of the 24-hour sampling, on May 9 at 4:55 a.m., grab samples were manually collected for MTBE, TPH and bacteria. All samples were chilled to 4°C and transported to the appropriate laboratory for analysis.

6.2.5 Basin 23: Alamitos Bay Receiving Water Monitoring Site

Samples of water were collected at the Alamitos Bay Receiving Water Site occupied during the wet season in the vicinity of the pump station outfall from Basin 24. The samples were collected from the end of the swimming dock just north of the outfall. Sampling was done on the morning of May 9, 2002 at 5:10 a.m. The outfall has a low-flow diverter that prevents dry weather flow from being discharged into

the Bay. Samples for toxicity testing were collected in 1-gallon amber glass bottles by dipping them approximately one foot below the surface. In addition, grab-samples for bacteria were also collected from the same site. All samples were cooled to 4° C and transported to the appropriate laboratories for analysis. Results of the bacterial analyses for these dry weather samples are summarized in Table 6.4.

Table 6.1.

Monitored Storm Events, 2001/2002

Station	Event 1 12 Nov '01	Event 2 24 Nov '01
Bouton Creek	X	X
Belmont Pump	X	· X
Los Cerritos Channel	X	X
Dominguez Gap	NF	NF

NF = No Flow as the Pump Station did not discharge to the Los Angeles River.

ANALYTE	Belmont Pump 1	Belmont Pump 1FD	Belmont Pump 2	Bouton Creek 1	Bouton Creek 2	Los Cerritos Channel 1	[\] Los Cerritos Channel 1FD	Los Cerritos Channel 2	Los Cerritos Channel .2FD	Alamitos Bay 1	Alamitos Bay 2
	12 Nov '01	12 Nov '01	24 Nov '01	13 Nov '01	24 Nov '01	12 Nov '01	12 Nov '01	24 Nov '01	24 Nov '01	12 Nov '01	24 Nov '01
CONVENTIONALS								•			
BOD5 (mg/L)	24	22	22J	31	19J	49	-	16J	23J	-	÷ -
COD (mg/L)	94	110	68	120	68	95	-	48	46	·	•
TOC (mg/L)	49J	57	22	52J	32	<u>58</u> J	<u> </u>	21	22	-	-
EC (umhos/cm)	460	470	150	710	180	180		96	95 [.]		-
Hardness (mg/L)	100	92	37	100	46	68	-	27	39	-	-
Alkalinity (mg/L)	71	78	21	33	22	120	-	17	17	-	-
pH (units)	7.8	7.4	7.2	7.3	7.3	7.4	-	7.4	7.4	-	
Cyanide (ug/L)	5U	5U	5U	5U	5U	5∪	-	5U	5U		-
Chloride (mg/L)	72J	63J	20J	170J	26J	<u>52</u> J	-	6.7J	6.2J	-	-
Fluoride (mg/L)	0.86J	0.90J	0.32J	1.3J	0.41J	0.66J	•	0.30J	0.28J	-	· -
TKN (mg/L)	8.1	8.9	3.4	9.2	4.2	21	-	4.4	3.1	- *	-
Ammonia-N (mg/L)	1.1	1.1	0.73	1.2	0.88	1.5	-	0.69	0.67	-	<u> </u>
Nitrite N (mg/L)	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	-	0.2U	0.2U	-	-
· Nitrate N (mg/L)	2.9	2.9	1.5	3.0	1.6	2.5	-	1.2	1.2	-	
Total Nitrogen	11.1	11.9	5	12.3	5.9	23.6	-	5.7	4.4	-	-
Total P (mg/L)	2.10	2.20	0.990	1.70	0.800	6.20	-	1.40	0.710	-	-
Diss. P (mg/L)	0.510	0.490	0.590	0.380	0.380	0.470	-	0.320	0.310	['] -	-
MBAS (mg/L)	0.20	0.24	0.14	0.18	0.17	0.16	<u> </u>	0.18	0.16	-	• •
MTBE (ug/L)	0.5U	0.5U	1.0U	0.5U	1.0U	0.5U	-	1.0U	1.0U	-	- • .
Tot. Phenols (mg/L)	~ 0.1UJ	0.1UJ	0.1U	. 0.1UJ	0.1U ·	0.1UJ	` -	0.1U	0.1U	-	-
Oil&Grease (mg/L)	7.4	-	5.0U	5.0U	5.0U	7.4	29	5.0U	5.0U	-	- `
TRPH (mg/L)	5U	10	5U	5U	5U	5U	-	5U	5U	-	
TSS (mg/L)	620	580	220	380	200	-1700	-	200	250	-	• . · ·
TDS (mg/L)	280	300	120	470	150	140	<u> </u>	56	88	-	•.
Turbidity (NTU)	230	210	92	120	76	290 ·	•	78	70	· - ^	-
TVS (mg/L)	R ¹	R'	. R ¹	· R'	R	R'	-	· R'	R	•-	-
BACTERIA (mpn/100)ml)										
Fecal Coliform	50000J	-	>160000J	50000J	>160000J	50000J	30000J	50000J	· 90000J	3000J	800J
Fecal Enterococci	13600	-	10160	8420	18480	13210	11020	7520	10240	820	720
Total Coliform	>160000J	-	>160000J	<u>>160000J</u>	>160000J	>160000J	>160000J	>160000J	>160000J	3000J	1300J

Stormwater Chemistry Results: City of Long Beach Storm Monitoring Project. Table 6.2. (Page 1 of 5)

 Bolded
 values indicate results that were greater than the reporting detection limit.

 R¹
 Indicates data were not valid. Data were rejected.

 Analyte not tested

 FD
 Field Duplicate

												- ·
ANALYTE	Belmont Pump 1	Belmont Pump? IFD	Belmont Pump 2	Bouton Creek 1	Bouton Creek 2	Los Cerritos Channel 1	Los Certitos Channel	Los Cerritos Channel 2	Los Cefeitos Channel 2ED	Alamitos Bay 1	Alamitos Bay 2	
	12 Nov '01	12 Nov '01	24 Nov '01	13 Nov '01	24 Nov '01	12 Nov '01	12.Nov:01	24 Nov '01	24 Nov*01	12 Nov '01	24 Nov '01	
TOTAL MET	ALS (ug/L)						2		5		_	
Aluminum 7	4200	4000	(1600)	2600	1400	(4800)		(1400	14000	. 6	26	1 ms/1
Antiinony	. 002.3	2:6	1.6J	4.4	5.4J	5.1	5	·2.2J	2.95	-	-	
Arsenic	4.8	4:7	3.0	3.4	2.5	9.7		2.9	3.	-	· - ·	
Beryllium	0.50U	0;50U	0.50U	0.50U	0.50U	0.50U		0.50U	0.50U	-	-	
Cadmium	2.80	2.70	1.30	1.80	1.30	.(5:50)	<u>.</u>	1.60	1.70	-	<u>-</u> ,	
Chromium	12	15	3.1	9.6	3.5	25		2.8	3.1	• •	-	
Hex				210								•
Chromium	0.02U	0.02U	0.02Ù	0.02U	0.02U	0.02U		0.02U	0.02U	-	-	·
Copper	120	120	53	83	41	9,0	-	36	40	-	-	Liste
Iron	5000	5500	360J	3100	1700J	11000	-	1900J	1900J	° -	-	
Mercury	0.20U	0.20U	0.20U	0.20U	0.20U ·	0.20U	<u> </u>	. 0.20U	0.20U	-		
Nickel	25	23	9.9	16	9.3	28	-	8.8	9.0		· .	
Lead	150	190	59	88	45	370	-	43	46	-		Cister and
Selenium	1.0U	1.0U	1.0U	1.2	1.8	1.00		1.00	2.0	-	·-	
Silver	0.25U	0.25U	0.25U	0.76	0.25U	* 0.25U	·-	0.25U	0.25U	-		
Thallium	1.00	1.0U	1.0U	1.0U	1.0U	1.00		1.00	1.00	-	- ·	1. A.
Zinc	830	820	720	710	760	1500	<u> </u>	770	780		-	. 51312
DISSOLVED	METALS (u	ig/L)										
Aluminum	53	46	25	48	64	210	-	110	110		-	
Antimony	2.5	2.2	1.3	1.7	1.3	2.1	-	1.0	0.98	-	-	
Arsenic	1.9	1.8	1.2	1.3	1.1	1.9		1.2	1.1		-	-
Beryllium	0.50U	0.50U	0.50U	0.50U	0.50U	0:50U		0.50U	0.50U	-	-	
Cadmium	0.28 ,	0.28	0.25U	0.25U	0.25U	0.25U	-	0.25U	0.250		-	
<u>Chromium</u>	1.0	0.91	0.50U	1.2U	0.69	1.3	•	0.79	0.71	-	-	-
Copper	9.5	· 9.3	6.8	10	10	7.4	-	7.9	7.4	-	-	
Iron	50U	50U	360	50U	300	94	-	110	160	-	-	
Mercury	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U		0.20U	0.20U	-	-	-
Nickel	8.7	8.5	3.7	6.4	4.1	6.3	•	3.3U	3.0U	-	-	
Lead	2.7	2.5	1.7	3.6	2.7	3,1	-	1.7	1.6	-	-	
Selenium	1.0U	<u>. 1.0U</u>	1.0U	1.0U	1.4	1.0U	-	1.00	1.0U	-		
Silver	0.25U	0.25U	0.25U	0.25U	0.25U	0.25U	-	0.25U	0.25U	-	- '	
Thallium	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	-	1.0U	1.0U	•· .	-	
Zinc	49	48	44	91	72	48	-	78	65	-		

Stormwater Chemistry Results: City of Long Beach Storm Monitoring Project. (Page 2 of 5) Table 6.2.

 Bolded
 values indicate results that were greater than the reporting detection limit.

 R¹
 Indicates data were not valid. Data were rejected.

 Analyte not tested.

 FD
 Field Duplicate

	Belmont	Belmont	Belmont	Bouton	Bouton	Los Cérritos	Los Cerritos	Los Cerritos	Los Cerritos	Alamitos	Alamitos
ANALYTE	Pump 1	Pump 1FD	Pump 2	Creek 1	Creek 2	Channel	Channel	Channel 2	Channel	Bay 1	Bay 2
	12 Nov '01	12 Nov '01	24 Nov '01	13 Nov '0	124 Nov [.] '01	12 Nov '01	12 Nov '01	24 Nov '01	24 Nov '01	12 Nov '01	24 Nov '01
CHLORINATED PE	STICIDES	(ug/L)									
4,4'-DDD	0.05U	ີ 0.05U	0.05U	0.05U	0.05U	0.05U	-	0.05U	0.05U	-	-
4,4'-DDE	0.05U	0.05U	0.05U	0.05U	0.05U	0.05U	<u> </u>	0.05U	0.05U	-	-
4,4'-DDT	0.01U	0.01U	0.04	0.01U	0.05	0.01U	-	0.01U	0.01U	-	-
Aldrin	0.005U	0.005U	0.066	0.005U	0.042	0.005U	•	0.071	0.079	-	-
alpha-BHC	0.05U	0.05U	0.05U	0.05U	0.07	0.05U	-	0.05U	0.05U	-	-
alpha-Chlordane	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U		0.5U	0.5U	-	· -
alpha-Endosulfan	0.05U	0.05U	0.05U	0.05U	0.05U	0.05U	-	0.05U	0.05U	-	-
beta-BHC	0.05U	0.05U	0.05U	0.05U	0.05U	0.05U	-	0.05U	0.05U		-
beta-Endosulfan	0.05U	0.05U	0.05U	0.05U	0.05U	0.05U	-	0.05U	0.05U	-	
Delta-BHC	0.05U	0.05U	0.05U	0.05U	0.05U	0.05U	-	0.05U	0.05U	÷	
Endosulfan Sulfate	0.05U	0.05U	0.05U	0.05U	0.05U	0.05U	-	0.05U	0.05U ⁺	· -	-
Endrin	0.01U	0.01U	0.01U	0.01U	0.01U	0.01U	-	0.01U	0.01U	-	-
Endrin Aldehyde	0.01U	0.01U	0.01U	0.01U	0.01U	0.01U		0.01U	0.01U	-	•
gamma-BHC											
(lindane)	0.05U	0.05U	0.05U	0.05U	0.05U	0.05U	-	0.05U	0.05U	-	-
gamma-Chlordane	0.5U	0.5U	0.5U	0.5U	0.5U	<u>0.5U</u>	-	0.5U	0.5U	-	
Heptachlor	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	-	0.012	0.011	-	
Heptachlor Epoxide	0.01U	0.01U	0.01U	-0.01U	0.01U	0.01U	-	0.01U	0.01U	-	•
Total PCBs	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	-	1.00	1.0U	<u> </u>	-
Toxaphene	<u>1U</u>	10	1U	10	1U	<u>1</u> U	-	10	1U	-	
AROCLORS (ug/L)											
Arochlor 1016	IU	10	IU	10	10	10	-	10	IU		-
Arochlor 1221	10	10	10	10	10	10	-	10	10	- •	-
Arochlor 1232	10	10	10	10	10	10		. 10	.10	-	-
Arochlor 1242	10	10	10	10	10	1U -	-	10	10	-	-
Arochlor 1248	10	10	10	. 10	10	10	-	10	10	•	-
Arochlor 1254	10	10	10	10	10	10		10	. 10		
Arochlor 1260	10	10	10	10	10	10		10	10		•
ORGANOPHOSPHA	TE PESTIC	CIDES (ug/l	.)								
Atrazine	10	10	10	10	10	10	-	10	10	-	-
Dursban(chlorpyrifos)	0.13	0.07	0.050	0.17	0.050	0.050	-	0.28	0.31	-	-
Cyanazine	10	10	10	10	10	10	-	10	10	<u> </u>	<u> </u>
Diazinon	3.0	2.4	0.92	0.43	0.42	0.010	-	0.41	0.35	-	- '
Malathion	1.1	1.3	1.4	1.00	1.00	1.00	-	1.00	1.00	•	-
Prometryn	10		. 10	10	10	10		10			<u> </u>
Simazine	10	10	10	10	10	10	-	10	10	•	•

Stormwater Chemistry Results: City of Long Beach Storm Monitoring Project. (Page 3 of 5) Table 6.2.

 Bolded
 values indicate results that were greater than the reporting detection limit.

 R'
 Indicates data were not valid. Data were rejected.

 Analyte not tested.

 FD
 Field Duplicate

Table 6.2.

Stormwater Chemistry Results: City of Long Beach Storm Monitoring Project. (Page 4 of 5)

ANALYTE	Belmont Pump 1	Belmont Pump 1FD	Belmont Pump 2	Bouton Creek 1	Bouton Creek 2	Los Cerritos Channel	Los Cerritos Channel	Los` Cerritos Channel	Los Cerritos Channel	Alamitos Bay 1	Alamitos Bay 2
	12 Nov 101	12 Nov '01	24 Nov '01	13 Nov 101	24 Nov '01	1 12 Nov '01	1FD	2 34 Nov '01	2FD	12 Nov '01	24 Nov '01
	12 1107 01	12 NOV 01	24 1107 01	13 100 01	24 NOV 01	12 100 01	12 1107 01	24 1107 01	24 1107 01	121100 01	24 1109 01
2.4.5.TP (Silver)	0.511	0.511	0.511	0.511	0.511	0.511	_	0.511	0.511	_	
2 4-D	4111	4111	1111	411	1111	400	-	1111	1111	_	
Glyphosate	50	50	5UJ	50	5UI	50	_ · ·	5UJ	501	-	-
SEMIVOLATILES (ug/L)											
1.2.4-Trichlorobenzene	1U	111	111	10	111	10	-	10	10.1	_'	-
1.2-Dichlorobenzene	10	iu	10	10	iŬ	10	-	iU .	iŪ	. .	-
1.2-Diphenylhydrazine	IU	10	10	10	10	10	. ·	· 10	1U	-	<u> </u>
1.3-Dichlorobenzene	10	10	10	10	10	10	-	1U	10	-	
1,4-Dichlorobenzene	10	iŬ	IU.	1U [.]	ĩŪ	1U -	· _	1U	- 1U		- ·
2,4,6-Trichlorophenol	10	10	1U	IU	1Ú .	10	ŕ.	1U'	10	•	- `
2.4-Dichlorophenol	211	2[]	211	2[]	211	211	-	211	211	-	•
2.4-Dimethylphenol	10	10	20	10	20	10	-	20	20	-	-
2,4-Dinitrophenol	5.0U	5.0U	5.0U	5.0U	5.2	5.0U	-	5.5	7.1	- '	-
2.4-Dinitrotoluene	· 1U	1U	1U	1U	1U	1U	-	1U	IU	-	
2.6-Dinitrotoluene	10	10	iŭ	10	iŬ	iŬ	-	10	iŭ	1 <u>-</u> 1	-
2-Chloroethylvinyl ether	•	• •		-		-	-	-	-		
2-Chloronaphthalene	1U	· IU	10	10	10	IU	-	10	IU	•	-
2-Chlorophenol	2U	2U	2U	2U	2U	2U	-	2U	2U	-	- `
2-Nitrophenol	1U	1U	2U	IU	2U	- IU	-	· 2U	2U	-	
3,3'-Dichlorobenzidine	10 +	10	2U	1U	2U	10	-	2U	2U	-	
4,6 Dinitro-2-methylphenol	2U	2U	5U	2U	5U	2U		5U	5U	-	-
4-Bromophenyl Phenyl Ether	10	10	10	10	10	10		10	10	•	-
4-Chloro-3-methylphenol	1U	1U .	10	1U	· 1U	10	-	IU	1U _	-	-
4-Chlorophenyl Phenyl Ether	1U	10	10	1U	1U	10	•	JU	1U	-	-
4-Nitrophenol	1.5	1.8	5.0U	1.9	6.6	1.0U		5.9	6.3		<u> </u>
Acenaphthene .	1U	1U	1U -	ÌU	1U	1U	-	1U	1U .	· -	- '
Acenaphthylene	ĮŪ	10	10	. 1U	1U	1U '	-	1U	. IU	-	-
Anthracene	IU	10	- 1U	. IU	1U -	10	-	10	- IU	-	•
Benzidine	10	10	10	iU	1U	10	-	1U	1U	-	•
Benzo(a)Anthracene	IU	1U	1U	1U	1U	1U	-	. 10	1U	•	- `
Benzo(a)Pyrene	1U	1U	. 2U	1U	2U -	1U		20	2U	-	<u> </u>

Bolded values indicate results that were greater than the reporting detection limit. R¹ Indicates data were not valid. Data were rejected.

Analyte not tested.
Referent (Pelment) Los Los Los	
ANALYTE Belmont Button Pump Pump Creek 1 Creek 2 Channel Chann	Alamitos Bay 2
12-Nov_01 12 Nov_01-24 Nov '01 13 Nov '01 24 Nov '01 12 Nov '01 12 Nov '01 24 Nov '01 24 Nov '01 12 Nov '01 12 Nov '01 12 Nov '01 12 Nov '01	24 Nov '01
SEMI-VOLATILES (ug/L)	
Benzo(b)Fluoranthene $10 10 10 / 10 10 10 10 - 10 10 10 - 10 10 - 10 10 - 10 10 - 10 $	-
Benzo(ghi)Perylene $1U$ 1U 2U $1U$ 2U 1U - 2U 2U -	•
Benzo(k)Fluoranthene \IU IU IU / IU IU IU IU - IU / Leb -	-
Bis(2-chloroethoxy)Methane 2U 2U 10U/ 2U 10U 2U - 10U 10U -	-
Bis(2-chloroethyl)Ether $1U$ $1U$ $10U$ $1U$ $10U$ $1U$ $10U$ $10U$ $10U$ $10U$ $10U$	-
Bis(2-chloroisopropyl)Ether 10^{-20}	-
Bis(2-Ethylhexyl)Phthalate 1.0V 1.0U 8:0 1.0U 10 1.0U 8:8 9.4 1.0U	<u>A.</u>
Butytherazyl Phthalate 101 101 101 17 101 17 101 17 12 12 13	Д.
	e .
	_
Diethyl Phthalate $111 - 111 - 411 $	-
Dimethyl Phthalate IIU IU IU IU IU IU IU IU IU	-
Di-n-Buyl Phthalate 2.4 1.6 4.011 1.3111 4.011 2.3 $- 4.011$ 4.011	
Di-n-Ocivi Phthalate $100 17 1145 1.00 - 4.4 4/5 -$	-
Fluggaphene IU MI IU IU IU IU - IU IV -	<u>.</u>
Hexachlorobenzene U ΛU U U U U U U U U U	-
Hexachlorobutadiene 111 / 111 211 111 211 111 - 211 211 -	•
Hexachlorocyclopentadiene $1U / 1U 2U 1U 2U 1U - 2U 2U' $	-
Herachloroethane $111/111/211/111/211/111/211/111/211/111/211/111/211/111/211/111/211/111/211$	
	_
Isophorae 10/10/20/10/20/20/20/20/20/20/20/20/20/20/20/20/20	<u>,</u>
Naphthalene 10/10/10/10/10/10/10/10/10/10/10/10/10/1	
	-
N.Nitrosodimethylamine	-
N.Nitrosodin-Ponylamine StI SII 10/1 SU 10/1 SU - 10/1 10/1	
N-Nitrosodintenvlamine 10 10 21 11 21 11 21 11 21 21	_
Pentachlorophenol 101 15 83 101 500 100 500 500 500	-
Phenatthree //III /III /III /III /III /III /III	
Phenol // /U 1U 2.00U 1U 2.00U 5.7 - 2.001 2.00U	-

Stormwater Chemistry Results: City of Long Beach Storm Monitoring Project. Table 6.2 (Page 5 of 5)

Bolded values indicate results that were greater than the reporting detection limit. R¹ Indicates data were not valid. Data were rejected.

Analyte not tested.

2.24

Station	Event 1 10 Apr. '00	Event 2 21 Jun. '00	Event 3 29 Jun. '00	Event 4 5 Jun.'01	Event 5 16 Aug 01	Event 6 9,14 May 02
Bouton Creek		·	v	×		Y
Belmont Pump		×	×	x	×	x
Los Cerritos Channel				x	×	x
Dominguez Gap		X ¹	X ¹	X ¹	X'	X1
Alamitos Bay	X	x	х	X	X	X

Table 6.3.Monitored Dry Weather Events, 1999-2002

1 Intake to basin was observed to be dry. Therefore, no samples were collected.

Shading indicates 2001/2002 Dry Weather Surveys included in this report. Data from Event 5 reported in earlier letter report that is included as Appendix F. Summary data from this event are included in the data tables.

Table 6.4. Dry and Wet Weather Bacteria Results for Alamitos Bay Receiving Waters (2001/2002)

Date	16 Aug '01 ²	12 Nov '01 ¹	24 Nov '01 ¹	9 May '02 ²
Total Coliform	11	3000J	1300J	. 240
'Fecal Coliform	4	3000J	800J ·	7
Fecal Enterococci	1.0U ³	820	720	10

1. Wet weather sampling event. Data also included in Table 6.3 for comparison with stormwater monitoring sites.

2. Dry weather sampling event.

3. Fecal Streptococci was measured during the 16 Aug 2001 survey. Analytical requirements were changed to enterococci for all subsequent events.

Table 6.5. Field Measurements for Bouton Creek, Belmont Pump, and Los Cerritos Channel, Dry Weather Season (2001/2002).

	Bouton	Creek	Belmon	t Pump	Los Co	erritos
Date	8/16/01	5/14/02	8/16/01	5/9/02	8/16/01	5/9/02
Time	<u> </u>	07:30	06:40	. 07:20	05:35	05:00
Temperature (⁰ C)	20.8	17.0	21.8	16.1	19.9	13.9
рН	8.15	8.41	8.45	8.39	8.17	8.72
Conductivity (mmho/cm)	7.17	9.57	2.63	2.21	0.84	0.66
Flow (cfs)	1.481	0.15 ³	00864	1.824	3.55 ¹	2.75 ¹
Dissolved Oxygen (mg/L)	2.27 ²	. 9	5.17	11	2.77	9

1. Flow was determined by measuring the depth and width of the water channel, as well as the velocity of a floating object in the water.

2. Value based on 100% saturation conditions, measured temperature and salinity values.

3. The flow rate was determined with the KLASS flow meter installed at the station.

4. The flow rate was determined by observing changes in water level in the sump area over a 24-hour period.

ANALYTE	Belmont Pump	Los Cerritos Channel	Bouton Creek	Bouton Creek FD	Alamitos Bay	Alamitos Bay	Belmont Pump	Los Cerritos Channel	Bouton Creek	Bouton Creek FD
	16 Aug '01	16 Aug '01	16 Aug '01	16 Aug '01	16 Aug '01	9 May '02	9 May '02	9 May '02	14 May '02	14 May '02
CONVENTIONALS	•		• –							-
Biochemical Oxygen Demand (mg/L)	5.0U	27J	26J	21 J	. -	-	10U	18	10U	· 10U
Chemical Oxygen Demand (mg/L)	180	210	100	760	-		220	100	440	390
Total Organic Carbon (mg/L)	11U	13U	15U	12U	-	-	8	24	18	20
Specific Conductance (umhos/cm)	2800	840	7800	7700	-		2700	650	12000	12000
Total Hardness (mg/L)	350	170	890	910	- '	-	330	130	1300	1300
Alkalinity, as CaCO3 (mg/L)	440	150	, 140	140	- ·	· _	380	120	170	170
pH (units)	8.4	8.6	7.8	8.0	-	-	8.41	9.66	7.71	7.72
Cyanide (ug/L)	5.0U	5.0U	5.0U	5.0U	-	-	5UJ	5UJ .	5UJ	5UJ
Chloride (mg/L)	560	120	2500	2700	-	-	570	83	4200	4000
Fluoride (mg/L)	1.6	0.69	0.9	0.91	-		1.7	0.76	1.7	1.4
Total Kjeldahl Nitrogen (mg/L)	0.90	1.8	4.1	1.8		-	0.89J	1.8J	1.5	1.7
Total Ammonia-Nitrogen (mg/L)	0.13	0.58	0.11	0.23		-	0.11	0.15	·· 0.1U .	0.IU
Nitrite Nitrogen (mg/L)	0.2U	0.2U	0.2U	0.2U	. -	_	0.2U	0.1U	1U	10
Nitrate Nitrogen (mg/L)	1.3	0.068	0.01U	0.01U	-	-	1.2	0.1U	1 U	IU
Total Nitrogen	2.3	2.0	4.2	1.9	-	-	2.19	. 2	2.6	2.8
Total Phosphorus (mg/L)	0.86	0.12	0.36	0.11	-	-	0.86	0.17	0.11	- 0.13
Dissolved Phosphorus (mg/L)	0.87	0.046	0.025	0.029	-	-	0.96	0.046	0.031	0.031
MBAS (mg/L)	0.046	0.054	0.064	0.040	-		0.037	0.02U	0.037	0.033
MTBE (ug/L)	1.0U	1.0U`	1.0U	1.0U	-	-	1U	IU	0.5U	0,5U
Total Phénols (mg/L)	0.1U	0.1U	0.1U	0.1U	-	-	0.1UJ	0.1UJ	0.1UJ	0.1UJ
Oil & Grease (mg/L)	5.0U	- '	5.0U	5.QU	-		5U	5U	5U [°]	5U -
TRPH (mg/L)	5.0U	. •5.0U	5.0U	5.0U	-	-	5 <mark>U</mark>	5U	5U	5U
Total Suspended Solids (mg/L)	1.0U	58	10	10	-	-	2.	2	1U	1U
Total Dissolved Solids (mg/L)	1800	600	5100	5100	-	-	1600	430	7400	7400
Turbidity (NTU)	11	36	10	9.2		-	1.8	4.9	2.5	2.6
Total Volatile Solids (mg/L)	1. 0 U	1.0U	1.0U	1.0U		-	R ¹	R ¹	\mathbf{R}^{1}	R ¹
BACTERIA (mpn/100ml)										
Fecal Coliform	2,300	2300	230 ·	2300	4	7	2400	1100	170	300
Fecal Enterococci	-	-	-	-	-	10	1760	. 910	1720	910
Total Coliform	8,000	30,000	3,000	2300	11	240	90000	3000	17000	5000
Bolded values indicate results that were R ¹ Indicates data were not	greater than the valid. Data were	reporting detectio rejected.	n limit.							

Dry Weather Chemistry Results: City of Long Beach Storm Monitoring Project. (Page 1 of 5) Table 6.6.

4 a g g - 4 r

Indicates data were not valid. Data were rejected. Analyte not tested Field Duplicate

. .

-

FD

ANALYTE	Belmont Pump	Los Cerritos Channel	Bouton Creek	Bouton Creek FD	Alamitos Bay	Alamitos Bay	Belmont Pump	Los Cerritos Channel	Bouton Creek	Bouton Creek FD
·	16 Aug '01	16 Aug '01	16 Aug '01	16 Aug '01	16 Aug '01	9 May '02	9 May '02	9 May '02	14 May '02	14 May '02
TOTAL METALS (ug/L)										
Aluminum	140	97	84	88	-	-	31	25	39	29
'Antimony		-	-	-	-	-	0.6	3.7	1.1	1
Arsenic	3.9U	1.2U	1.8U	1.6U	-	-	3.3	7	0.5U	0.5U
Beryllium	0.50U	0.50U	0.50U	0.50U	-	-	0.5U	0.5U	0.5U	0.5U
Cadmium	0.25U	0.57	0.25U	0.25U	-	- '	0.25U	0.36	0.25U	0.25U
Chromium	2.5	1.5	2.4	2.4		· _	51	15	41	36
Hexavalent Chromium	4.91J	6.20	4.91J	5.43	-	-	0.02U	0.02U	0.02U	0.02U
Copper	4.8U	. 17	15	16	-	-	5.4	22	11	10 .
Iron	330	320	220	220		· _	<u>1</u> 00J	50UJ	310J	280J
Mercury	0.20U	3.5	0.20U	0.20U	-		0.2U	0.2U	· 0.2U	0.2U
Nickel	5.6	7.5	5.0	5.2		-	2.6	3.5	6.3	5.6
Lead .	0.99	3.5	3	3.5	-	° - ·	0.68	0.78	1.7	1.6
Selenium	-	-	-	<u> </u>	-		2.5	2.2	4.7	2.7
Silver	-		-	-	-		0.25U	0.62	0.56	0.25U
Thallium	-	-	-	-	-	- >	1U	1U	IU	IU
Zinc	13	43	21	23	-	-	19	17	41	39
DISSOLVED METALS (ug/L)										
Aluminum	140	88	80	75	. _	-	25U	25U	25U	25U
Antimony	-	-	-	-	-	-	0.5U	1.2	0.7	0.7
Arsenic	3.9U	1.1U	1.5U	1.6U	· -	-	2.3	4.7	0.5U	0.5U
Beryllium	0.5U	0.5U	0.5U	0.5U	· -	- ·	0.5U	0.5U	0.5U	0.5U
Cadmium	0.25U	0.5	0.25U	0.25U		-	0.25U	0.25U	0.25U	0.25U
Chromium	2.4	1.3	2.4	2.1	-	-	39	8.8	22	22
Copper	4.8	16	15	14	-	-	3.8	16	6.7	6.7
Iron	50	40	60	70	· -	. .	110	50U	210	220
Mercury	0.2U	0.2U	0.2U	0.2U	-	-	0.2U	0.2U	0.2U	0.2U
Nickel	5.4	7.2	4.9	5.1	-	-	1.6	2.5	3.9	3.8
Lead	0.97	3.2	2.9	3	-	-	0.5U	0.5U	0.5U	0.5U
Selenium	-	-	-	-	- `	<u> </u>	1.9	1.1	4.2	<u>1U</u>
Silver		-	-	-	- '	- ·	0.25U	0.25U	0.25U	0.25U
Thallium		-	-	-	-	· -	1U	1U	IU	1U
Zinc	13	39	- 21	20	-	-	12	9.3	23	26

 Table 6.6. Dry Weather Chemistry Results: City of Long Beach Storm Monitoring Project. (Page 2 of 5)

Bolded values indicate results that were greater than the reporting detection limit. R^1 Indicates data were not valid. Data were rejected.

eth i

Analyte not tested -

FD Field Duplicate.

ANALYTE	Belmont Pump	Los Cerritos Channel	Bouton Creek	Bouton Creek FD	Alamitos Bay	Alamitos Bay	Belmont Pump	Los Cerritos Channel	Bouton Creek	Bouton Creek FD
• •••••••••••••••••••••••••••••••••••	16 Aug '01	16 Aug '01	16 Aug '01	16 Aug '01	16 Aug '01	9 May '02	9 May '02	9 May '02	14 May '02	14 May '02
CHLORINATED PESTICIDES (ug/	L)				-					
4,4'-DDD	0.5U	0.05U	0.05U ·	0.05U	-	-	0.05U	0.05U	0.05U	0.05U
4,4'-DDE	0.05U	0.05U	0.05U	0.05U	-	-	0.05U	0.05U	0.05U	0.05U
4,4'-DDT	0.05U	0.01U	0.01U	0.01U	-	-	0.01U	0.01U	0.01U	0.01U
Aldrin	0.005U	0.005U	0.005U	0.005U	-	-	0.005U	0.005U	0.005U	0.005U
alpha-BHC	0.05U	0.05U	0.05U	0.05U	-	-	0.01U	0.01U	0.01U	0.01U
_alpha-Chlordane	0.5U	0.5U	0.5U	0.5U	-	-	0.1U	0.1U	0.1U	0.1U ·
alpha-Endosulfan	0.05U	0.05U	0.05U	0.05U	-	-	0.02U	0.02U	0.02U	0.02U
beta-BHC	0.05U	0.05U	0.05U	0.05U	-	-	0.005U	0.005U	0.005U	0.005U
beta-Endosulfan	0.05U	0.05U	0.05U	0.05U	-	-	0.01U	0.01U	0.01U	0.01U
delta-BHC	0.05U	0.05U	0.05U	0.05U	-	-	0.005U	0.005U	0.019	0.021
Endosulfan Sulfate	0.05U	0.05U	0.05U	0.05U	-	-	0.05U	0.05U	0.05U	0.05U
Endrin	0.01U	0.01U	0.01U	0.01U	-	-	0.01U	0.01U	0.01U	0.01U
Endrin Aldehyde	0.01U	0.01U	0.01U	0.01U	-	-	0.01U	0.01U	0.01U	0.01U
gamma-BHC (lindane)	0.05U	0.05U	0.05U	0.05U		-	0.01U	0.01U	0.01U	0.01U
gamma-Chlordane	0.5U	0.5U	0.5U	0.5U	-		0.02U	0.02U	0.02U	0.02U
Heptachlor	0.01U	0.01U	0.01U	0.01U	_	-	0.1U	0.1U	0.1U	0.1U
Heptachlor Epoxide	0.01U	0.01U	0.01U	0.01U	-		0.01U	0.01U	0.01U	0.01U
Total PCBs	1.0U	1.0U	1.0U	1.0U	· _	-	0.01U	0.01U	0.01U	0.01U
Toxaphene	0.5U	0.5U	0.5U	0.5U	-	-	0.5U	0.5U	0.5U	0.5U
AROCLORS (ug/L)			•							
Arochlor 1016	1.0U	1.0U	1.0U	1.0U	-	. -	0.5U	0.5U	0.5U	0.5U
Arochlor 1221	1.0U	1.0U	1.0U	1.0U	-	-	0.5U	0.5U	0.5U	0.5U
Arochlor 1232	1.0U	1.0U	1.0U	1.0U	· _	-	0.5U	0.5U	0.5U	0.5U
Arochlor 1242	1.0U	1.0U	1.0U	1.0U	-	-	0.5U	0.5U	0.5U	0.5U
Arochlor 1248	1.0U	1.0U	1.0U	1.0U	-	-	0.5U	0.5U	0.5U	0.5U
Arochlor 1254	1.0U	1.0U	1.0U	1.0U	-	-	0.5U	0.5U	0.5U	0.5U
Arochlor 1260	1.0U	1.0U	1.0U	1.0U	_	-	0.5U	0.5U	0.5U	0.5U
Atrazine	1.0U	1.0U	1.0U	1.0U	-	-	2U	2U	2U	2U
Dursban (chlorpyrifos)	0.05U	0.05U	0.05U	0.05U	-	-	0.05U	0.05U	0.05U	0.05U
Cyanazine	1.0U	1.0U	1.0U	1.0U	-	-	2Ú	2U	2U	2U
Diazinon	0.22	0.096	0.15	0.15	-	-	0.12	0.32	0.33	0.34
Malathion	0.1U	0.1U	0.1U	0.1U	-	-	IU	1U	IU	IU
Prometryn	1.0U	1.0U	1.0U	1.0U	-	-	2U	2U	2U	2U
Simazine	1.0U	1.0U	1.0U	1.0U	• -	-	2U	2U	2U	2U

Table 6.6. Dry Weather Chemistry Results: City of Long Beach Storm Monitoring Project. (Page 3 of 5)

Analyte not tested

FD Field Duplicate.

6643 31

1 4 1 4 4

	Belmont	Los Cerritos	Bouton	Bouton	Alamitos	Alamitos	Belmont	Los Cerritos	Bouton	Bouton
ANALYIL	Pump	Channel 16 Aug (01	Creek	Creek FD	Вау 16 Анд (01	<u>вау</u> О Мау 102	Q May 102	<u> </u>	<u>Creek</u>	L reek FD
	10 Aug_01	IU Aug UI	TO Aug OI	10 Aug UI	TO Aug OI	3 WIAY 02	- 7 May_02	Finay 02	14 IVIAY UZ	17 May 02
DEKDICIDES (Ug/L)	0.511	0.511	0.511	0.511			0.511	0.511	0.511	0.511
2,4,5-1P (Silvex)	0.50	0.50	0.50	0.50	-		0.30	0.50	0.00	0.30
2,4-D Chumbasata	511	50	50	5.011	-	-	5111	5.5	5111	5
	30			5.00			505	503		
SEMI-VOLATILES (ug/L)	0.511	0.611	0.511	0.511	. *		111		in	111
1,2,4-1 richlorobenzene	0.50	0.50	0.50	0.50	-	-	10	· IU	10	10
1,2-Dichlorobenzene	0.50	0.50	0.50	0.50		-	10	10	10	10
1,2-Diphenylhydrazine	3.00	3.00	0.50	3.00	-	-	10	10	10	10
1,3-Dichlorobenzene	0.5U	0.5U	0.5U	. 0.5U	-		10	10	. 10	10
1,4-Dichlorobenzene	0.5Ų	0.5U	0.5U	0.5U	-	-	IU	1U .	1U	IU
2,4,6-Trichlorophenol	1.0U	1.0U	1.0U	1.0U	-	-	1U	1U	1U	1U
2,4-Dichlorophenol	2.0U	2.0U	2.0U	2.0U	-	-	2U	2U	2U '	2U
2,4-Dimethylphenol	2.0U	2.0U	2.0U	2.0U	-	-	1U	1U	. IU	1U
2,4-Dinitrophenol	3.0U	3.0U	3.0U	3.0U	· ·-		5U	5U .	5U	5U
2,4-Dinitrotoluene	0.5U	0.5U	0.5U	0.5U	· _	- -	IU	1U	IU	IU
2,6-Dinitrotoluene	0.5U	0.5U	0.5U	0.5U	-	-	1U	1 U	1U	. IU [*]
2-Chloroethylvinyl ether	÷ .	- ·	-	-	-		-	-		
2-Chloronaphthalene	-	_	_	· -	-	-	· 1U	1U	1U	1U
2-Chlorophenol	2.0U	2.0U	2.0U	2.0U	-	-	2U	2U	2U	2U
2-Nitrophenol	3.0U	3.0U	3.0U	3.0U	-	-	IU ·	1U	- 1U	1U
3.3'-Dichlorobenzidine	3.0U	3.0U	3.0U	3.0U	-	-	1U	1U	1U	10
4.6 Dinitro-2-methylphenol	3.0U	3.0U	3.0U	3.0U	-	- ~	2U	2U	2U	2U
4-Bromophenyl Phenyl Ether	1.0U	1.0U	1.0U	1.0U	-	· -	1U	1U	1U	1U
4-Chloro-3-methylphenol	3.0U	3.0U	3.0U	3.0U	-	-	1U	1U	1U	·1U
4-Chlorophenyl Phenyl Ether	1.0U	1.0U	1.0U	1.0U	-		1U	1 U	iŪ	IU .
4-Nitrophenol	3.0U	3.0U	3.0U	3.0U		-	IU	1U	IU	1U
Acenaphthene	0.5U	0.5U	0.5U	` 0.5U	-		1U	1U	1U	1U
Acenaphthylene	0.2U	0.2U	0.2U	0.2U	-	÷.,	1U	IU	1U	· 1U
Anthracene	0.5U	0.5U	0.5U	0.5U	-	-	1U	1U .	1U	1U -
Benzidine	3.0U	3.0U	3.0U ·	3.0U	-		1U	· 1U	1U	10
Benzo(a)Anthracene	1.0U	1.0U	1.0U	1.0U	-	· _ ·	IU	1U	IU	, IU
Benzo(a)Pvrene	1. 0 U	1.0U	1.0U	1.0U	-	-	1U	IU	1U .	IU
Benzo(b)Fluoranthene	1.0U	1.0U	1.0U	1.0U		-	IU	1U	IU	10
Benzo(ghi)Pervlene		-	•		-	· _	IŪ	1U .	IU	1U
Benzo(k)Fluoranthene	1.0U	1.0U	1.0U	1.0U	-	-	IU	1U	IU	1U

Dry Weather Chemistry Results: City of Long Beach Storm Monitoring Project. (Page 4 of 5) Table 6.6.

Bolded values indicate results that were greater than the reporting detection limit. R^1 Indicates data were not valid. Data were rejected.

Analyte not tested -

FD Field Duplicate.

ANALYTE	Belmont Pump	Los Cerritos Channel	Bouton Creek	Bouton Creek FD	Alamitos Bay	Alamitos Bay	Belmont Pump	Los Cerritos Channel	Bouton Creek	Bouton Creek FD
	16 Aug '01	16 Aug '01	16 Aug '01	16 Aug '01	16 Aug '01	9 May '02	9 May '02	9 May '02	14 May '02	14 May '02
SEMIVOLATILES (ug/L)										
Bis(2-chloroethoxy)Methane	1.0U	1.0U	1.0U	1.0U		÷	2U	2U	2U	2U
Bis(2-chloroethyl)Ether	1.0U	1.0U	1.0U	1.0U	-	-	1U	IU	IU	· IU
Bis(2-chloroisopropyl)Ether	1.0U	1.0U	1.0U	1.0U	-		1U	IU	1U	<u>1U</u>
Bis(2-Ethylhexyl)Phthalate	3.1	15.8	8.9	10.7	-		10	1U		1U
Butylbenzyl Phthalate		-	-	-	-	-	IU	IU	1U	IU
Chrysene	1.0U	1.0U	1.0U	1.0U	-	-	1U	'IU	1U	IU
Dibenzo(a,h)Anthracene	-			-	_	-	0.1U	0.1U	0.2U	0.2U
Dieldrin	0.01U	0.01U	0.01U	0.01U	-	-	1U	1U	IU	1U
Diethyl Phthalate	0.5U	0.8	0.9	0.5U	-	-	1U	IU	. IU _	IU
Dimethyl Phthalate	0.5U	0.5U	0.5U	0.5U	_	-	1U	10	10	· 1U
Di-n-Butyl Phthalate	3.0U	6.0	3.0U	3.1		· _	1U	iU	1U	IÙ
Di-n-Octyl Phthalate	3.0U	3.0U	3.8	3.1	-	-	0.05U	0.05U	0.05U	0.05U
Fluoranthene	1.0U	1.0U	1.0U	1.0U	-		0.1U	0.1U	• 0.1U	0.1U
Fluorene	1.0U	1. 0 U	1.0U	1.0Ų	-	-	1U	IU	1Ú	IU
Hexachlorobenzene	0.5U	0.5U	0.5U	0.5Ú	-	-	1U	IU	1U	1U
Hexachlorobutadiene	1.0U	1.0U	1.0U	1.0U	-	-	1U	IU	. 1U	10
Hexachlorocyclopentadiene	3.0U	3.0U	3.ÓU	3.0U	-	-	1U	IU	1U	1U
Hexachloroethane	1.0U	1.0U	1.0U	1.0U	-		1U	IU	1U	10
Indeno(1,2,3-c,d)Pyrene	1.0U ·	1.0U	1.0U	1.0U	-	-	0.05U	0.05U	0.2U	0.2U
Isophorone	0.5U	• 0.5U	0.5U	0.5U	-	-	.1U	1U	1U	1U
Naphthalene	0.5U -	0.5U	0.5U	0.5U		_	0.2U	0.2U	0.2U	0.2U
Nitrobenzene	0.5U	0.5U	0.5U	0.5U	-	-	IU	IU	IU	U
N-Nitrosodimethylamine	3. 0 U	3.0U	3.0U	3.0U	_ ·	-	1U	IU	IU	IU
N-Nitrosodi-n-Propylamine	1.0U	1.0U	1.0U	1.0U		- ,	5Ŭ	5U	5U	5U
N-Nitrosodiphenylamine	3. 0U	3.0U	3.0U	3.0U	-	-	IU	IU	1U	· 1U
Pentachlorophenol	2.0U	3.0U	2.0U	2.0U	-	-	1U -	IU	1U	1U
Phenanthrene	0.5U	0.5U	0:5U	0.5U	-	-	0.05U	0.05U	0.05U	0.05U
Pyrene	0.5U	0.5U	0.5U	0.5U	-	-	0.1U	0.1U	0.1U	0.1U
Phenol	1.0U	1.0U	1.0U	1.0U	-	-	0.05U	0.05U	0.05U	0.05U

Table 6.6. Dry Weather Chemistry Results: City of Long Beach Storm Monitoring Project. (Page 5 of 5)

Bolded values indicate results that were greater than the reporting detection limit.

4.4.4.5

R¹ Indicates data were not valid. Data were rejected.

- Analyte not tested

FD Field Duplicate.

.

7.0 TOXICITY RESULTS

Toxicity tests were conducted on subsamples of the composites collected for chemical analysis. Wet weather samples were collected from two storm events: November 12-13, 2001 and November 24, 2001. Dry weather sampling occurred on May 9, 2002, with a resampling of one station on May 24, 2002.

7.1 Wet Weather Discharge

7.1.1 Belmont Pump

Composite samples were collected from the Belmont pump station during separate storm events and were tested with three species, the water flea (freshwater crustacean), mysid (marine crustacean), and sea urchin (marine echinoderm). The first sample collected from this station this year was on November 12, 2001. This sample caused toxic effects to all three test species (Table 7.1), with the fertilization test being the most sensitive (Figure 7.1). Both the water flea survival and reproduction endpoints showed the presence of toxicity (Table 7.1), with the survival endpoint slightly more sensitive (Figure 7.1). Mysid survival, but not growth, was adversely affected by the sample.

The second sample was collected on November 24, 2001 and produced toxic responses in all three species. Again, the sea urchin fertilization test was the most sensitive indicator of toxicity with a 27.1% sample calculated to cause a 50% reduction in fertilization (Table 7.1). Significant reductions in water flea survival and reproduction were found at the 12% and 25% concentrations. Mysid survival and growth was significantly reduced at the 100% concentration. Water flea survival showed a greater degree of response than did the reproduction endpoint (Figure 7.1).

7.1.2. Bouton Creek

The first sample from the Bouton Creek station was collected on November 13, 2001. Toxicity to this sample was detected by all three test species (Table 7.2). Sea urchin egg fertilization was again the most sensitive test method, with 32 TUc (Figure 7.2).

The second Bouton Creek sample was collected on November 24, 2001 and caused a toxic response to both sea urchins and water fleas (Table 7.2 and Figure 7.2). The mysid test was not applied to this sample, in accordance with a modification to the monitoring plan approved by the LA Regional Water Quality Control Board.

7.1.3. Los Cerritos Channel

The first sample from the Los Cerritos Channel station was collected on November 12, 2001. This sample caused a toxic response to all three test species (Table 7.3 and Figure 7.3). The second Los Cerritos Channel sample was collected on November 24, 2001 and elicited a toxic response from the water flea survival and reproduction and sea urchin fertilization tests. The NOEC for the sea urchin test was 3% (Table 7.3) and much lower than the NOEC for the water flea test, indicating that the stormwater sample was approximately four times more toxic to the sea urchin than to the water flea. The mysid test was not used to test the second sample.

7.2. Receiving Water

Two grab samples of receiving water from Alamitos Bay were collected during storm events on November 12 and 24, 2001 (Table 7.4). Each sample was tested for toxicity to mysids and sea urchins. Since these samples were saline, the water flea test was not conducted. None of the samples caused toxic effects to mysid survival, mysid growth or sea urchin fertilization.

7.3 Toxicity Identification Evaluations (TIEs) of Stormwater

The trigger for performing a TIE was modified prior to the 2001/2002 wet season. A TIE was initiated when a LC50 of $\leq 100\%$ (equivalent to ≥ 1 acute TU) was obtained for the water flea or mysid test, or an EC50 of $\leq 50\%$ (≥ 2 acute TU) was obtained for the sea urchin fertilization test. This TIE trigger was exceeded 12 times among the tests conducted on the two wet weather samples (Table 7.5). Each of the three species had at least one exceedance of the TIE trigger.

For the first wet weather sampling event, TIEs were initiated on samples from all three sites for the water flea test, on the Belmont pump station sample for the mysid test, and on the Bouton Creek sample for the sea urchin test. A reduction in toxicity relative to the initial test result was obtained for both TIEs of the Bouton Creek sample, resulting in a baseline toxicity of less than 2 TU, which prompted termination of these TIEs. The TIE trigger was exceeded in all tests conducted with samples from the second storm event monitored (November 24, 2001). The TIE of the Bouton Creek sample with the water flea was again terminated due to a loss of toxicity in the baseline test results.

7.3.1 Belmont Pump Station

The results of the TIEs on samples from the Belmont pump station are summarized in Figure 7.4. Extraction of the November 12 sample using a C-18 column was highly effective in reducing toxicity in both the water flea and mysid tests. PBO treatment also eliminated the toxicity to the water flea. Increased toxicity was present in the blanks for the PBO, EDTA, and STS treatments used with the mysid test, and in the STS treatment with the water flea. The increase in toxicity of the Belmont pump sample obtained for these treatments (Figure 7.4) is an artifact of this toxicity and confounds the interpretation of this portion of the results. The consistent effectiveness of the C-18 treatment and elimination of toxicity obtained with the PBO treatment in the water flea tests suggest that a nonpolar organic, probably an organophosphate (OP) pesticide is a likely toxicant of concern in this sample.

Three TIEs were conducted on the November 24 Belmont Pump sample and the results yielded three distinct patterns of response. The water flea test results were similar to those obtained with the November 12 sample; toxicity was eliminated with the C-18 and PBO treatments, which suggested OP pesticide toxicity. The mysid TIE also indicated the presence of a nonpolar organic toxicant, but toxicity was increased following addition of PBO. This result suggests that the mysids were not responding to the toxic effects of OP pesticides. The addition of EDTA in the TIE using the sea urchin test eliminated all toxicity (Figure 7.4), indicating that a divalent metal was the likely toxicant to this species.

7.3.2. Bouton Creek Station

One TIE on stormwater from Bouton Creek was conducted; the November 24 sample was tested using the sea urchin fertilization test (Table 7.5). The TIE results obtained for this sample were similar to the results of the Belmont Pump tests using the sea urchin test, addition of EDTA eliminated the toxicity of the sample. Addition of STS, centrifugation, and extraction using a C-18 column did not have a substantial impact on the toxicity of this sample.

7.3.3 Los Cerritos Channel Station

TIEs were conducted on both stormwater samples from the Los Cerritos Channel. The November 12 and 24 samples were tested using the water flea and the results were similar to those obtained for the Belmont Pump station (Figure 7.6). Extraction using C-18 and addition of PBO eliminated the toxicity of both of the Los Cerritos Channel samples, again indicating the presence of OP pesticide toxicity. An indication of other types of toxicants was also present in these samples, however. EDTA was partially effective in reducing toxicity in the November 12 sample (suggesting metal toxicants) and centrifugation of the November 24 sample eliminated the toxicity, which indicated that the toxicants were associated with particles.

7.4 Dry Weather Discharge

Toxicity tests were conducted on samples from one sampling event on May 9, 2002. The Bouton Creek sample contained 13 g/kg salinity, which was more than the tolerance limit of the water flea. Bouton Creek was resampled on May 14 and a sample with an acceptable salinity of 7 g/kg was obtained and used for toxicity testing.

7.4.1 Belmont Pump Station

The Belmont Pump sample was not toxic to the water flea (Table 7.6). A significant amount of toxicity was detected with the sea urchin fertilization test, however. The Belmont Pump sample contained 4 TUc when assessed using the sea urchin test.

7.4.2 Bouton Creek

The Bouton Creek sample contained significant toxicity to the water flea (Table 7.6). Survival was significantly reduced at the 50% exposure concentration, and water flea reproduction was significantly inhibited by exposure to 12% of the Bouton Creek sample.

7.4.3 Los Cerritos Channel

The Los Cerritos dry weather sample was not toxic to the water flea. However, this sample produced significant toxicity to sea urchin sperm (Figure 7.7 and Table 7.6).

7.4.4 Alamitos Bay Receiving Water

The Alamitos Bay dry weather surface water sample did not contain any detectable toxicity (Table 7.7). This sample was evaluated for toxicity using only the sea urchin fertilization test.

7.4.5 Dry Weather Toxicity Identification Evaluations

Sea urchin TIEs were initiated on dry weather samples from the Belmont Pump and Los Cerritos stations. The Belmont TIE was terminated due to a loss of toxicity in the baseline test. Sufficient baseline toxicity was present in the Los Cerritos sample to complete the TIE, however. The toxicity of the Los Cerritos sample was eliminated by addition of EDTA (Figure 7.7). A partial reduction of toxicity was produced by extraction using C-18 and the remaining treatments did not alter the toxicity of the sample. The pattern of response of the sea urchin sperm to the TIE treatments is consistent with the presence of toxic concentrations of divalent trace metals.

Table 7.1.Toxicity of Wet Weather Samples Collected from the City of Long Beach Belmont
Pump Station during the 2001/2002 Monitoring Season. Test results indicating
toxicity are shown in bold type. The mysid tests were conducted using 100% sample
only.

		Te	Test Response (% sample)						
Date	lest	NOEC ^a	LOEC ^b	Median Response ^c	I UC"				
11/12/2001	Water Flea Survival	<6	6	3.9	>16				
11/12/2001	Water Flea Reproduction	6	12	8.0	16				
11/12/2001	Mysid Survival	≤50	≤100	na ^c	≥2				
11/12/2001	Mysid Growth	nm ^f	nm	na	na				
11/12/2001	Sea Urchin Fertilization	3	6	>50	32				
11/24/2001	Water Flea Survival	6	12	10.2	16				
11/24/2001	Water Flea Reproduction	12	25	15.7	8				
11/24/2001	Mysid Survival	≤50	≤100	na	,≥2				
11/24/2001	Mysid Growth	≤50	≤100	na	≥2				
11/24/2001	Sea Urchin Fertilization	3	6	27.1	32				

^a No Observed Effect Concentration: the highest concentration with a test response not significantly different from the control.

^b Lowest Observed Effect Concentration: the lowest concentration producing a test response that was significantly different from the control.

^c Concentration causing 50% mortality to mysids or water fleas (LC50), 50% inhibition in water flea reproduction (IC50) or 50% reduction in sea urchin fertilization (EC50).

^d Chronic toxicity units = 100/NOEC.

^e Not applicable.

Not measured due to lack of survivors.

Table 7.2.	Toxicity of Wet Weather Samples Collected from the City of Long Beach Bouton
	Creek Station during the 2001/2002 Monitoring Season. Test results indicating
•	toxicity are shown in hold type. The mysid test was conducted using 100% sample only.

D - 4 -		Test Response (% sample)						
Date	lest	NQEC ^a	LOEC ^b	Median Response ^c	TUC			
11/13/2001	Water Flea Survival	25	50	36.1	4			
11/13/2001	Water Flea Reproduction	25	50	42.2	4			
11/13/2001	Mysid Survival	≤50	≤100	na ^c / s	≥2			
11/13/2001	Mysid Growth	≤50	≤100	na / m	, ≥2			
11/13/2001	Sea Urchin Fertilization	3	6	47.0	32			
11/24/2001	Water Flea Survival	50	100	64.3	2			
11/24/2001	Water Flea Reproduction	50	100	70.1	2			
11/24/2001	Mysid Survival	na	na	na 🔪	na			
11/24/2001	Mysid Growth	na	na	na /	na			
11/24/2001	Sea Urchin Fertilization	. 3	6	38.4	32			

^a No Observed Effect Concentration: the highest concentration with a test response not significantly different from the control.

² Lowest Observed Effect Concentration: the lowest concentration producing a test response that was significantly different from the control.

Concentration causing 50% mortality to mysids or water fleas (LC50), 50% inhibition in water flea reproduction (IC50) or 50% reduction in sea urchin fertilization (EC50).

Chronic toxicity units = 100/NOEC.

Not applicable.

10000

75 20 HOEL) 0% LOG-509 NOEL

25%

Table 7.3.Toxicity of Wet Weather Samples Collected from the City of Long Beach Los
Cerritos Channel Station during the 2001/2002 Monitoring Season. Test results
indicating toxicity are shown in bold type. The mysid test was conducted using 100%
sample only.

		Test Response (% sample)								
Date	Test	NOEC ^a	LOEC ^b	Median Response ^c	TUcd					
11/12/2001	Water Flea Survival	12	25	21.4	8					
11/12/2001	Water Flea Reproduction	12	25	19.9	8					
11/12/2001	Mysid Survival	≤50	≤100	na ^e	≥2					
11/12/2001	Mysid Growth	≤50	≤100 [°]	Na	≥2					
11/12/2001	Sea Urchin Fertilization	<3	3	>50	>32					
11/24/2001	Water Flea Survival	12	50	18.8	8					
11/24/2001	Water Flea Reproduction	12	50	19.3	8					
11/24/2001	Mysid Survival	na	na	Na	na					
11/24/2001	Mysid Growth	na	na	Na	na					
11/24/2001	Sea Urchin Fertilization	3	6	26.5	32					

No Observed Effect Concentration: the highest concentration with a test response not significantly different from the control.

^b Lowest Observed Effect Concentration: the lowest concentration producing a test response that was significantly different from the control.

^c Concentration causing 50% mortality to mysids or water fleas (LC50), 50% inhibition in water flea reproduction (IC50) or 50% reduction in sea urchin fertilization (EC50).

^d Chronic toxicity units = 100/NOEC.

• Not applicable.

a

Table 7.4.	Toxicity of Receiving Water Samples Collected from Alamitos Bay during	; the
	2001/2002 Storm Season. Water flea tests were not conducted on these samples.	

Date	Test	Estimated % Runoff	NOEC ^a	TUc ^b	
11/12/2001	Mysid Survival	2	Nontoxic	. <1	
11/12/2001	Mysid Growth	2	Nontoxic	<1	
11/12/2001	Sea Urchin	2	Nontoxic	<1	
11/24/2001	Mysid Survival	. 1.	Nontoxic	<1	
11/24/2001	Mysid Growth	1	Nontoxic	· <1	
11/24/2001	Sea Urchin	1	Nontoxic	<1	

No Observed Effect Concentration: the highest concentration with a test response not significantly different from the control.

Chronic toxicity units = 100/NOEC. These values are estimated since the NOEC was not determined through analysis of a dilution series.

Table 7.5.Summary of TIE Activities. Acute Toxic Units for the initial (TU-1) and TIE baseline
(TU-B) tests are shown (96 hr exposure time for water flea and mysid tests), along with
the TIE-related action taken. TIEs were aborted when the baseline TU value was less
than 2.0.

· ,		, 1	Water F	lea		Mysid			Sea Urchin				
Date	Test	TU-I	TUB	Action	TU-I	TU-B	Action	TU-I	TU-B	Action			
11/12	Belmont	10.7	12	TIE	>1	3.4	TIE	<2	na	none			
11/13	Bouton	1.4	1.2	abort	1	na	none	2.1	1.3	abort			
11/12	Los Cerritos	2.8	3.3	TIE	<1	na	none	. <2	na	none			
11/24	Belmont	9.8	3.5	TIE	>1	1.7	TIE	3.7	4.8	TIE			
. 11/24	Bouton	1.6	<1	abort	na	na	none	2.6	6.1	TIE			
11/24	Los Cerritos	5.3	- 3.3	TIE	na	na		3.8	6.2	TIE			

Table 7.6.

. Toxicity of Dry Weather Samples from the City of Long Beach. Test results indicating toxicity are shown in bold type.

· .			Test	Response (%	6 sample)	
Station	Date	Test	NOEC ^a	LOEC ^b	Median Response ^c	TUcd
Belmont	5/9/2002	Water Flea Survival	<u>≥</u> 100	>100	>100	<u>≤</u> 1
Belmont	5/9/2002	Water Flea Reproduction	<u>≥100</u>	>100	>100	<u>≤</u> 1
Belmont	5/9/2002	Sea Urchin Fertilization	25	50	47.6	4
Bouton	5/14/2002	Water Flea Survival ^e	25	50	37.5	4
Bouton	5/14/2002	Water Flea Reproduction ^e	6	12	29.6	16
Bouton.	5/14/2002	Sea Urchin Fertilization	<u>≥</u> 50	>50	>50	≤2
Los Cerritos	5/9/2002	Water Flea Survival	<u>≥</u> 100	>100	>100	<u><</u> 1
Los Cerritos	5/9/2002	Water Flea Reproduction	<u>≥</u> 100	>100	>100	<u>≤</u> 1
Los Cerritos	5/9/2002	Sea Urchin Fertilization	12	25	31.8	8

No Observed Effect Concentration: the highest concentration with a test response not significantly different from the control.

Lowest Observed Effect Concentration: the lowest concentration producing a test response that was significantly different from the control.

Concentration causing 50% mortality to mysids or water fleas (LC50), 50% inhibition in water flea reproduction (IC50), or 50% reduction in sea urchin fertilization or mysid growth (EC50).

¹ Chronic Toxicity Units = 100/NOEC.

The conductivity of this sample was believed to exceed the osmotic tolerance of the water flea.

Table 7.7Toxicity of the Receiving Water Sample Collected from Alamitos Bay during the
2001/2002 Storm Season.

Date	Test	NOEC ^a	TUc ^b
5/9/2002	Sea Urchin	Nontoxic	≤1

^a No Observed Effect Concentration: the highest concentration with a test response not significantly different from the control.

^b Chronic toxicity units = 100/NOEC. These values are estimated since the NOEC was not determined through analysis of a dilution series.

Figure 7.1. Toxicity Dose Response Plots for Stormwater Samples Collected from the Belmont Pump Station.

Figure 7.2. Toxicity Dose Response Plots for Stormwater Samples Collected from Bouton Creek.

Cerritos Channel (November 12, 2001)

Cerritos Channel (November 24, 2001)

Figure 7.3. Toxicity Dose Response Plots for Stormwater Samples Collected from the Los Cerritos Channel.

4. Summary of Phase I TIE Analyses on Stormwater Samples from the Belmont Pump Station.

Figure 7.5. Summary of Phase I TIE Analyses on the November 24 Stormwater Sample from the Bouton Creek Station.

Figure 7.6. Summary

Figure 7.7. Summary of Phase I TIE Analyses on the May 9 Dry Weather Sample from the Los Cerritos Channel Station.

8.0 **DISCUSSION**

Water quality criteria or objectives may provide valuable reference points for assessing the relative importance of various stormwater contaminants. Selection of appropriate water quality objectives for comparative purposes is dependent upon designated beneficial uses for each receiving water body. Since the designated beneficial uses for each receiving water body are the driving force in selection of the water quality objectives, beneficial uses were first summarized for each water body (Table 8.1).

Based upon beneficial uses, the receiving water bodies generally fell into two groups. Bouton Creek, Los Cerritos Channel, and the Dominguez Gap Pump Station are all located within Hydrological Unit (HU) 405.15. Principal beneficial uses for receiving water bodies at these locations include potential municipal and domestic water supply (MUN), potential or existing water contact recreation (REC1), intermittent or existing non-contact water recreation (REC2), intermittent or existing water bodies associated with the Dominguez Pump Station are designated as existing ground water recharge (GWR) and potential industrial service supply (IND).

The second group includes water bodies receiving discharge from the Belmont Pump Station and Alamitos Bay. These sites are both within HU 405.12. These receiving water bodies are both marine and estuarine in character. Beneficial uses include commercial and sport fishing (COMM), estuarine habitat (EST), industrial service supply (IND), marine habitat (MAR), rare, threatened or endangered species (RARE), contact (REC1) and non-contact recreation (REC2), shellfish harvesting (SHELL), wetland habitat (WET), and wildlife habitat (WILD).

Currently, numerical standards do not exist for stormwater discharges. Table 8.2 provides a summary of various water quality criteria for each measured constituent, proposed benchmarks for use as reference points to interpret stormwater and dry weather discharges, and the 2001/2002 laboratory method detection limits for each constituent. These benchmarks are intended to serve as a tool for interpreting the stormwater quality data and assuring that beneficial uses are not impacted. Exceedances of these receiving water quality benchmarks do not necessarily indicate impairment. Other factors such as dilution, duration and transformation in the receiving waters must also be considered.

Development of the benchmarks was based upon Marshack (2000) and also upon draft benchmarks under development as part of Project Clean Water in San Diego County (San Diego, Project Clean Water 2001). Averaging intervals for the various water quality objectives were important considerations in selection of benchmarks. Appropriate water quality goals for use as benchmarks for discharges from Bouton Creek, Los Cerritos Channel and the Dominguez Gap Pump Station are listed as Inland Surface Water Discharges. Proposed water quality goals for the Belmont Pump Station and Alamitos Bay sites are listed as Enclosed Bay and Estuary Discharges. In using these benchmarks, it is important that the source of the specific criterion is considered. For instance, metals concentrations derived from California Toxics Rule (CTR) freshwater criteria for protection of aquatic life are based upon dissolved concentrations and are often a function of hardness. Values listed are based upon a default hardness of 100 mg/L. In addition, saltwater objectives listed for metals under the CTR are based upon dissolved concentrations while those listed under the California Ocean Plan are based upon total recoverable measurements. The source of each particular benchmark is identified in columns to the right of the proposed benchmark/water quality goals or, in some cases, in footnotes.

8.1 Wet Season Water Quality

Stormwater quality data from the four mass emission sites in Long Beach were grouped to provide an initial characterization of discharges from the City (Table 8.3). Descriptive statistics were based upon

detected values and the assumption that all data are log normally distributed. Most stormwater investigations conducted since the initial Nationwide Urban Runoff Program (NURP) (EPA 1983b) studies have found that the majority of constituents in stormwater tend to be log normally distributed. As the City of Long Beach database expands, the distribution of these data will be tested to determine if transformations are necessary for statistical comparisons and methods will be applied to incorporate censored (below detection limit) data where appropriate.

The mean EMCs from the combined data from all Long Beach mass emission sites are developed and presented in Table 3. A simple, tabulated comparison of these mean EMCs is not possible because of the multiple benchmark sources, and intended purposes of these benchmarks. Rather comparisons are made in the text that follows.

Among the conventional pollutants, oil and grease, total suspended solids (TSS), and bacteria were the only constituents that exceeded the proposed stormwater benchmark values. Water samples to be analyzed for oil and grease are taken as grab samples and therefore only provide an instantaneous measurement of the discharges. In addition, oil and grease are typically not well mixed in the stormwater samples. An exception may be samples taken at the Belmont Pump Station during events sampled this year. Grab samples were taken at the discharge point in extremely turbulent water. The proposed benchmark for oil and grease was 15 mg/L based upon the median Stormwater Effluent Limitation Guidelines in USEPA's Stormwater Multi-Sector General Permit for Industrial Activities. Oil and grease was detected above the reporting limit of 5 mg/L in about one third of the samples taken at both the Belmont Pump Station and in the Los Cerritos Channel. When detected, the mean concentration of oil and grease at these two sites was 2 to 2.5 times the benchmark values. Benchmark values for TSS were based upon the 2001 Ocean Plan Instantaneous Maximum of 60 mg/L is applied to enclosed bays and estuaries, and the median EMC of 100 mg/L for TSS from the National Urban Runoff Program (NURP) for inland surface waters. The mean TSS EMC for the Belmont Pump Station Discharge is 602 mg/L or roughly 10 times the proposed benchmark. The mean TSS EMCs for Bouton Creek and the Los Cerritos Channel ranged from 476 to 516 mg/L or roughly five times the benchmark for inland waters. The impacts of excursions above these candidate benchmarks and the appropriateness of the benchmarks are The proposed benchmark for TSS discharges to inland waters is inherently difficult to assess. conservative since we are comparing log-normal means to medians. Use of the NURP median value was simply based upon maintenance of consistency with draft reference values currently being considered for San Diego County.

Concentrations of bacteria in stormwater runoff routinely exceed proposed benchmark levels. Mean EMCs for fecal coliform are highest at the Belmont Pump Station where the stormwater is discharged directly to Alamitos Bay. Mean values are three orders of magnitude greater than the benchmark values that were based upon receiving water limits. Elevation of bacteria in stormwater discharges may not be completely controllable. A number of studies have indicated that high levels of bacteria are present in discharges from areas that are relatively unimpacted by urban activities. Work conducted in San Diego (Kinnetic Laboratories, Inc. 1995a) and in Santa Cruz (Kinnetic Laboratories, Inc. 1995b) demonstrated comparable bacterial concentrations in runoff from both chaparral and highly urbanized catchments.

Benchmark values used for trace metals are mostly based upon Criteria Maximum Concentrations (CMC) from the California Toxics Rule (USEPA 2000). These values are for the dissolved fraction and are often a function of hardness. When criteria were a function of hardness, a default value of 100 mg/L was used for tabulated benchmark values in Table 8.2. The CMC was selected as the appropriate benchmark value since stormwater impacts are generally of short duration. Use of the CMC is also consistent with the San Diego Project Clean Water draft benchmarks. Derivation of beryllium and total chromium benchmark values differed from the other metals. The benchmark value for beryllium in bays and estuaries is based upon the 2001 Ocean Plan. The value of $0.033 \mu g/L$ is based upon 30-day average exposures to

organisms when consumption may result in cancer risk to humans. This is evaluated analytically by meeting the established minimum level (ML) of 0.5 μ g/L. All beryllium measurements were below the laboratory ML of 0.5 μ g/L. Total chromium benchmarks are derived from the instantaneous maximum (20 μ g/L) from the 2001 Ocean Plan inland and drinking water standards. Both are based upon total recoverable measurements. Mean EMCs for total chromium at each site were below the benchmark at all sites.

Only two metals were found to exceed benchmark values. Mean site EMCs for copper and zinc exceeded benchmark values at some sites. In both cases, only the estuarine/marine benchmarks were exceeded. The mean EMC for copper at the Belmont Pump Station was approximately three times the benchmark value for discharges to enclosed bays and estuaries. Mean copper EMCs for discharges to inland surface waters were below the benchmark value of 13 μ g/L. The mean EMC for discolved zinc at the Belmont Pump Station was 98 μ g/L, slightly exceeding the enclosed bay and estuary benchmark value of 90 μ g/L. Mean EMCs for dissolved zinc at both Bouton Creek and Los Cerritos were 78-84 μ g/L, which was approximately 2/3 of the inland surface water benchmark.

Organic compounds were rarely detected in the stormwater samples. When detected, these compounds were often very near reporting limits. Exceptions included occasional occurrences of bis(2-ethylhexyl) phthalate at levels of up to $35 \mu g/L$ during the first monitoring season and up to $10 \mu g/L$ this past season. Diazinon was detected at concentrations as high as $3.0 \mu g/L$ this season. Diazinon benchmarks are routinely exceeded in discharges from the Belmont Pump, Bouton Creek, and the Los Cerritos Channel. Benchmark values for both saltwater and freshwater were based upon recent assessments conducted by the California Department of Fish and Game (Seipmann and Finlayson 2002). Mean EMCs for the two monitoring sites that discharge to inland surface waters were roughly four to five times higher than the proposed benchmark. Discharge from the Belmont Pump station had a site mean EMC that was an order of magnitude greater than the benchmark. Chlorpyrifos, another organophosphate pesticide, was found in significant concentrations in water from the second storm event in the Los Cerritos Channel. Measured concentrations of chlorpyrifos in this sample were approximately one order of magnitude greater than the recently updated California Department of Fish and Game CMC (Seipmann and Finlayson 2002).

Most other organic compounds are rarely detected or are typically near minimum levels (MLs). Glyphosate, which was detected in runoff the previous year was not detected in runoff from any of the sites during the 2001/2002 season. Low levels of two organochlorine pesticides, DDT and aldrin, were present in a few samples during the 2001/2002 monitoring year.

Both diazinon and chlorpyrifos are undergoing changes in registration due to the high toxicity of diazinon and chlorpyrifos as well as persistent occurances in runoff. EPA and the registrants have agreed to phase out use of diazinon for outdoor residential lawn and garden uses (EPA 2001). The agreement virtually ends sales of diazinon for residential lawn care by 2003. Residential uses of chlorpyrifos (EPA 2000) are also being phased out. Thus, threats to aquatic life posed by these two compounds should be expected to decline over the next ten years. It is expected that household stockpiles of these pesticides will continue to used for several years after these chemicals are no longer available for residential use. It is possible, however, that educational/informational programs may help to reduce these stockpiles and prevent further use.

8.2 Dry Season Water Quality

8.2.1 Chemical Analysis of Dry Weather Samples from Mass Emission Sites

As in the previous year, chemical results generally did not tend to vary greatly between sites or sampling dates (Table 6.6). With a few exceptions, contaminant concentrations were consistent with previous results and no parameters stood out as particularly high. Several phthalate compounds were detected in samples from the August 2001 survey but were below detection limits in the May 2002 surveys. The herbicide, 2,4-D, was absent from all sites in the fall survey but was present in all samples from the May survey. Diazinon was the only organic contaminant routinely detected in the dry weather discharges. This was not true in previous years due to higher detection limits.

Dry weather discharges were typically low in suspended solids and total metals. The relationships between dissolved and total metals were more consistent with expected dissolved/total ratios than those measured during wet weather events. With a few exceptions, dissolved metals occur at levels similar to those measured during the winter storm events (Tables 6.2 and 6.6). The primary difference between the wet and dry weather concentrations of dissolved trace metals is the increased hardness which tends to mitigate potential toxicity.

Elevated pH levels have been common during dry weather sampling efforts (Kinnetic Laboratories, Inc. /SCCWRP 2001). These mostly occur in open channel sites such as Bouton Creek and the Los Cerritos Channel. It is not unusual to see pH levels in excess of 9.0. This past year, a pH of 9.66 was measured in samples taken from Los Cerritos Channel. Occurrences of elevated pH in these channels is likely due to high benthic algal production resulting in low levels of CO₂. Concurrent high levels of dissolved oxygen would tend to further support algal production as the cause of the elevated pH. In addition, alkalinity also tends to be lowest at sites where high pH values were encountered.

Despite efforts to isolate dry weather flows in Bouton Creek, the very low flows and large surface area of the channel tend to result in higher specific conductivities, COD, chloride and TDS. Saltwater continues to drain from the algal turf well after the water level is below the sampling point. In addition dry weather flows are not substantial enough to drive the saltwater out of the channel. Despite these problems, movement of the sampling point to a location further up the channel would result in the loss of potential flow from numerous drains that enter along the channel.

Dry weather flows continue to show moderately high levels of bacteria including total and fecal coliform as well as enterococci (Table 6.6). All total and fecal coliform measurements were above benchmark levels except for one field duplicate for fecal coliform at Bouton Creek. The effects of these discharges, however, are not typically evident in receiving waters as demonstrated both by concurrent measurements from Alamitos Bay and surveys conducted by the City's Department of Health discussed in the following section.

8.2.2 Bacteriological Data from Alamitos Bay

Microbiological contamination in Alamitos Bay has been a major concern during summer months when bathers are utilizing local beaches. Due to these concerns, a low flow diversion for Drainage Basin 24 to prevent dry weather flows from entering the Bay from this Drainage Basin. The low-flow diversion was activated on May 1, 2000. Prior to activation of the diversion, dry weather flows were discharged at the Bayshore Aquatic Park on the southwestern shoreline of Alamitos Bay. This stormwater monitoring program has now sampled total coliform, fecal coliform, fecal streptococcus/enterococcus in Alamitos Bay near the discharge point for Basin 24 once prior to activation of the dry weather intercept and five

times during dry weather periods subsequent to activation of the low-flow intercept. Due to the limited temporal and spatial extent microbiological information associated with this program, alternative data sources were investigated to assist in evaluation of the effectiveness of the diversion. Data from the ongoing microbiological monitoring being conducted by the City of Long Beach Department of Health and Human Services was obtained during the previous year. This data set was updated with additional data from June 2001 through June 2002 provide additional post-implementation data.

The City of Long Beach Department of Health and Human Services (Ms. Mae Nikaido) provided updates of microbiological data from monitoring conducted in and near Alamitos Bay since 1997. Historical data exist for total coliform, fecal coliform (or *Escherichia coli*) and enterococcus at five locations. In January 2000, the Department of Health and Human Services switched from using fecal coliform to use of *E. coli* as a surrogate from fecal coliform. In June 2001, the Department abandoned use of *E. coli* and returned to use of fecal coliform. The length of data records varies among the sites but the most complete survey records start in March 1999. The monitoring sites are shown in Figure 8.1 and are listed below starting from sites within Los Cerritos Creek and proceeding towards the entrance of the Bay:

- B27 Los Cerritos Creek by Golden Sail (Near mouth of Los Cerritos Cr.)
- B28 Long Beach Rowing Association (Near Los Cerritos Cr. and Marine Station)
- B67 Bayshore and Second St. Bridge (Near outlet of Belmont site)
- B29 First and Bayshore (Nearest our Station -end of East First Street and Bayshore Ave.)
- B14 Bayshore Float (Out close to Mouth, North of spit of E. Bayshore Walk)

The B29 monitoring site is located at the Bayshore Aquatic Park a short distance from the Alamitos Bay receiving water site monitored as part of the City's stormwater program.

Department of Health and Human Services monitoring data were compared with historical rainfall records from the Long Beach Airport. Microbiological data from extended dry weather conditions occurring between late spring and early fall of each year were extracted from the data set and available data are identified in Table 8.4. This summary identifies the dry weather period for each year, the total number of measurements taken during each dry weather period and the percentage of measurements exceeding Ocean Plan and AB411 reference values. The frequency of exceedances of the Ocean Plan reference value refers to single measurements that exceed the standard for 30-day averages. It was used only as a benchmark. None of the data indicated presence of sustained levels that would violate Ocean Plan Standards. For visual inspection of these data, time-series plots are provided for each site for total coliform, fecal coliform and enterococcus (Figures 8.2 through 8.6).

General trends remained similar to those observed in previous years (Kinnetic Laboratories, Inc./SCCWRP, 2001). Concentrations of bacteria are consistently lower at the lower Alamitos Bay sites B27 and B28 in comparison to other sites. Concentrations of fecal coliform most frequently exceed reference levels at the B67 and B29 monitoring sites. Enterococcus bacteria were only tested at the three sites closest to the ocean during the 1999, 2000, and 2001 dry weather seasons. During the 1999 dry weather season, reference levels were most commonly exceeded at the B67 monitoring site. During both the 2000 and 2001 dry weather seasons, excursions above reference levels were most common near the mouth of Alamitos Bay at the B14 monitoring site. Overall, the frequency of dry weather exceedance of the enterococcus standards was lower in 2001 compared to dry weather monitoring conducted in 2000. Fewer single measurements exceeded the 30-day average Ocean Plan limit of 35 mpn/100 ml and none exceeded the AB411 Instantaneous Limits.

Microbiological data from the City's stormwater program demonstrate relatively low levels of total coliform, fecal coliform, and enterococcus during all dry weather periods including the pre-

implementation survey and each of the five post-implementation dry weather surveys. Tests conducted during wet weather periods resulted in levels of each bacterial component that were one to two orders of magnitude higher that during summer dry weather periods.

As noted in the previous year, monitoring data continue to show no apparent changes in the bacterial concentrations in Alamitos Bay during the summer that can be related to activation of the dry weather interceptor in Basin 24 in May 2000.

8.3 Temporal Trends of Selected Metals and Organic Compounds

Temporal trends were examined for selected trace metals and organic compounds that are often high in storm drain discharges or suspected to be primary sources of toxicity (Figures 8.7 through 8.18). Trace metals include cadmium, copper, nickel, lead, and zinc. Temporal trends of two organophosphate pesticides, chlorpyrifos and diazinon, were also examined. Figures 8.7 through 8.18 include both wet weather and dry weather monitoring data from each of the four sites. Dry weather sampling periods are delineated by the shaded areas. Due to the typically large differences between total lead and dissolved lead concentrations, especially during storm events, a separate graphic is included to examine temporal trends for dissolved lead.

During the 2000/2001 monitoring season, sampling was started well into the storm season. Sampling conducted this year produced the first results from a first flush event. The relatively small first flush event yielded the highest concentrations of total cadmium, copper, nickel, lead and zinc encountered in the first two years of stormwater monitoring. Despite the increases in total metals, concentrations of dissolved metals remained comparable to those reported during other storm events. During dry weather periods, most total metal concentrations tend to be both lower and more comparable to dissolved metal concentrations. Nickel is an exception. Based upon the current database, nickel concentrations during dry weather events have tended to be highly variable. During the summer 2001 dry weather surveys, both dissolved and total nickel concentrations were often as high or higher than concentrations measured during storm events. The occurrence of elevated levels of nickel in dry weather flows appears to have been limited to the summer of 2001, but it is premature to conclude that this was an isolated occurrence.

Temporal trends for diazinon and chlorpyrifos are obscured by higher detection limits utilized during the first year of the program. Diazinon occurs in both wet weather and dry weather flows at relatively high levels. Highest concentrations have been found in discharges from the Belmont Pump station but discharge volumes have typically been low at this site. Chlorpyrifos was not detected during the first year but it is likely that this was due to high reporting limits. Thus far, detectable quantities of chlorpyrifos have been limited to stormwater discharges. As noted earlier, both these pesticides are currently being phased out for common residential uses. This process is expected to result in significant reductions of the mass discharge of these two pesticides in association with both wet and dry season flows.

8.4 Stormwater Toxicity

A total of six wet weather samples were analyzed for toxicity during the monitoring period. Each sample produced similar results in that toxicity was observed in all of the test species. The sea urchin test was the most sensitive toxicity test method. The toxicity of the two wet weather samples analyzed during the monitoring period was substantially greater than that measured during the previous monitoring period (Figure 8.19). The two samples from each of the three locations contained greater toxicity to sea urchins than any Long Beach sample tested previously.

The samples of dry weather discharge collected in May 2002 were toxic, but the magnitude of toxicity was less than most of the stormwater samples analyzed during 2001 (Figure 8.19). These data are

consistent with the results of dry weather samples analyzed during the 2000/2001 monitoring period and indicate that there are significant differences in the composition of stormwater and dry weather discharge from the City of Long Beach.

8.4.1 Receiving Water Toxicity

No significant toxicity was present in the two Alamitos Bay receiving water samples collected and tested during wet weather. These results are consistent with the results of wet weather and dry weather bay samples analyzed during the previous monitoring period. Salinity measurements indicated that the wet weather receiving water samples contained less than 5% freshwater. The lack of toxicity in the Alamitos Bay samples is consistent with the results of the wet weather discharge samples, which usually had LOEC values of greater than 5%.

The results of the receiving water sample analyses should not be used to describe water quality throughout Alamitos Bay. Test samples were collected from only one location in the bay and the results may therefore not be representative of other locations in Alamitos Bay, especially those areas located near major stormwater discharges.

8.4.2 Temporal Toxicity Patterns

The small number of storms sampled during the monitoring period (2), and the brief separation in time between them (<2 weeks) does not allow for the evaluation of temporal trends among the data. All samples from these two storms were more toxic than any sample collected during the 2000/2001 monitoring period, however. The samples collected in November 2001 represented the first significant storms of the season, whereas the samples from February-April 2001 were collected after approximately 30% of the season's rainfall had already occurred.

The toxicity data from the 2000/2001 and 2001/2002 monitoring periods suggest that seasonal flushing may be an important factor affecting the variability in stormwater toxicity. In previous studies, it was found that early season storm water runoff from Ballona Creek (Los Angeles County) was more toxic than samples obtained later in the season (Bay *et al.* 1999).

8.4.3 Comparative Sensitivity of Test Species

For five of six samples, the sea urchin fertilization test was the most sensitive toxicity test method. The water flea survival/reproduction test was the most sensitive method for the November 24 sample from Bouton Creek. The relative sensitivity of the mysid toxicity test could not be evaluated for this monitoring period because only the 100% stormwater concentration was tested, which prevented estimation of a precise value for the EC50 or NOEC. Mysid survival and growth in 100% stormwater generally indicated less toxicity than the sea urchin or water flea results for similar sample concentrations, indicating that the mysid test was the least sensitive of the three methods. This same pattern of sensitivity (sea urchin > water flea > mysid) was also observed during the 2000/2001 monitoring program and in a study of urban stormwater toxicity in San Diego (Southern California Coastal Water Research Project 1999).

8.4.4 Relative Toxicity of Stormwater

The frequency and magnitude of stormwater toxicity from the Long Beach stations is similar to stormwater samples from other southern California watersheds (Table 8.5). Results from the Chollas Creek and Ballona Creek studies are probably most similar to the Long Beach study, as these samples were obtained from smaller highly urbanized watersheds, relative to the samples from the L.A. River and San Gabriel River. As with the Long Beach samples, toxicity in other watersheds is variable among storms, and stormwater toxicity is usually detected using the sea urchin fertilization test.

8.4.5 Toxicity Characterization

The TIE testing program for this monitoring period was quite successful. Phase I TIEs were attempted on 12 wet weather and 2 dry weather samples and they yielded useful information for 10 samples. The remaining TIEs were not useful due to the loss of toxicity with time in the laboratory.

The results of the 2001/2002 TIE analyses were consistent within each species and similar to the data obtained from the previous year (Table 8.6). All of the TIEs conducted using the water flea indicated that organophosphate pesticides was the most likely category of toxic constituents. This conclusion is supported by the effectiveness of the C-18 and PBO treatments for reducing toxicity to the water flea. Other monitoring programs in California have obtained similar Phase I TIE results and subsequent studies have verified that OP pesticides are frequently the cause of urban stormwater toxicity to this species.

The sea urchin TIE results consistently identified EDTA as the most effective treatment for removing toxicity. EDTA is effective at chelating divalent metals, such as copper, cadmium and zinc, thus rendering them biologically unavailable. Studies in other watersheds have also found EDTA to be successful at removing toxicity from runoff (Jirik *et al.* 1998, Schiff *et al.* 2001). In these studies, copper and zinc were found to be the specific metals most likely causing toxicity. Solid phase extraction using C-18 was partially effective at removing toxicity to sea urchins from most of the Long Beach samples tested. This treatment is intended to remove non-polar organic contaminants from the sample. However, C-18 treatment has also been shown to remove significant amounts of toxicity associated with copper and zinc from the sample (Schiff *et al.* 2001). Since both solid phase extraction and EDTA were highly effective in these samples, it is likely that divalent metals, rather than organics, caused the observed toxicity. The other possibility is that both metals and non-polar organics are present and acting in a synergistic manner so that the removal of one effectively eliminates most of the toxicity in the sample. Additional tests are necessary to confirm the unlikely presence of such a synergistic effect.

The removal of particles by centrifugation was effective in partially reducing toxicity in only one sample. Previous studies have also found particle removal to be an ineffective method for the removal of toxicity from stormwater (Bay *et al.* 1999). However, particles may contribute to the chemical-associated toxicity of stormwater from the desorption of bound contaminants into the water. A previous study found that urban stormwater particles released toxic quantities of unidentified materials into clean seawater in less than 24 hours (Noblet *et al.* 2001).

Correlation analysis of the toxicity and chemistry data provides an additional test of the association between stormwater toxicity and chemical contamination. Insufficient data were available to conduct correlation analyses using just the data from the 2001/2002 monitoring period. Instead, the data from both years of monitoring were pooled for the correlation analyses, except for tests using diazinon and chlorpyrifos, which were not detected in the first year of monitoring. The correlation analyses confirm the results from the first year of study: that the toxic responses measured in this study are related to the chemical composition of the stormwater samples. The toxic responses of sea urchins or water fleas were significantly correlated with increased concentrations of several stormwater constituents, including dissolved metals, TSS and TOC (Table 8.7). Dissolved zinc was the only constituent that was significantly correlated with toxicity to both species, this metal also showed the strongest correlation with reduced sea urchin fertilization. Increased copper was the only other constituent that was significantly correlated with sea urchin fertilization; these results differed from those obtained using only the first year's monitoring data, which obtained significant correlations with dissolved cadmium and chromium.

A larger number of constituents were significantly correlated with toxicity to the water flea, including TSS, TOC, and dissolved metals including Cd, Cr, Pb, Ni, and Zn (Table 8.7). Increased concentrations of the OP pesticides chlorpyrifos and diazinon had moderate correlations with water flea toxicity (r=0.54), but the association was not statistically significant due to the small number of data points available.

The presence of significant correlations between toxicity and selected chemicals supports the TIE results and provides information to help identify key constituents of concern, but the statistical results do not prove that those constituents are the cause of toxicity. The true cause of toxicity may be another (possibly unmeasured) constituent that has a similar pattern of occurrence in the samples. A third method, comparing the measured and predicted toxic units of the samples was used to assess the importance of zinc, copper, and pesticides as a cause of the toxicity of Long Beach stormwater. The predicted toxicity of the sample was calculated from the measured concentrations of the chemical constituents and the corresponding EC50 or LC50. This toxic unit comparison showed that five of six stormwater samples contained sufficient dissolved zinc and copper to account for nearly all of the toxicity measured (Figure 8.20). These results were similar to those obtained for the first year's monitoring data.

Comparison of the measured and predicted toxic units for the water flea tests (Figure 8.21) showed a different pattern from that obtained for the sea urchin tests. The toxicity of two of the five samples containing substantial toxicity could be accounted for by the measured concentrations of diazinon and chlorpyrifos. Zinc was estimated to contribute ≤ 1 toxic unit and copper contributed even less toxicity to the samples (data not shown). The measured concentrations of op pesticides, zinc and copper accounted for less than 50% of the toxicity of both November 2001 Belmont Pump samples and one Los Cerritos Channel sample, suggesting that additional unmeasured toxicants are present. Alternatively, the undetected poor recovery of chemical analytes or losses during storage may have reduced the measured concentrations of some constituents and resulted in low predicted toxicity values.

DISCHARGE LOCATION	HYDRO. UNIT	СОММ	EST	GWR	IND	MAR	MUN	NAV	RARE	REC1	REC2	SHELL	WARM	WET	WILD
Bouton Creek	405.15						Р			P	I		I		E
Los Cerritos Channel	405.15						Р			Р	I		I		E
Dominguez Gap Pump Sta.	405. 15	•		E	Р		Р			E	Е		Е		Р
Belmont Pump Sta.	405.12	E	Е		Е	Е		Е	Е	E	Е	E		Е	Е
Alamitos Bay	405.12	E	E		E	E		Е	E	Е	Е	E		Е	Е

Table 8.1. Summary of Beneficial Uses for Receiving Water Bodies Associated with each Monitoring Location¹

 Source: California Regional Water Quality Control Board, Los Angeles Region. 1994. Water Quality Control Plan, Los Angeles Region, Basin Plan for the Coastal Watersheds of Los Angeles and Ventura Counties. P=Potential, E=Existing, and I=Intermittent

Commercial and Sport Fishing (COMM):Uses of water for commercial or recreational collection of fish, shellfish, or other organisms including, but not limited to, uses involving organisms
intended for human consumption or bait purposes.Estuarine Habitat (EST):Uses of water that support estuarine ecosystems including, but not limited to, preservation or enhancement of estuarine habitats, vegetation, fish, shellfish,
or wildlife (e.g., estuarine mammals, waterfowl, shorebirds).Ground Water Recharge (GWR):Uses of water for natural or artificial recharge of ground water for purposes of future extraction, maintenance of water quality, or halting of saltwater
intrusion into freshwater aquifers.

Industrial Service Supply (IND): Uses of water for industrial activities that do not depend primarily on water quality including, but not limited to, mining, cooling water supply, hydraulic conveyance, gravel washing, fire protection, or oil well re-pressurization.

Marine Habitat (MAR): Uses of water that support marine ecosystems including, but not limited to, preservation or enhancement of marine habitats, vegetation, such as kelp, fish, shellfish, or wildlife (e.g., marine mammals, shorebirds).

Municipal and Domestic Supply (MUN): Uses of water for community, military, or individual water supply systems including, but not limited to, drinking water.

Navigation (NAV): Uses of water for shipping, travel, or other transportation by private, military, or commercial vessels.

Rare, Threatened, orUses of water that support habitats necessary, at least in part, for the survival and successful maintenance of plant or animal species established under stateEndangered Species (RARE):or federal law as rare, threatened, or endangered.

Water Contact Recreation (REC-1): Uses of water for recreational activities involving body contact with water, where ingestion of water is reasonably possible. These uses include, but are not limited to, swimming, wading, water-skiing, skin and scuba diving, surfing, white water activities, fishing, or use of natural hot springs.

Non-contact Water Recreation (REC-2): Uses of water for recreational activities involving proximity to water, but not normally involving body contact with water, where ingestion of water is reasonably possible. These uses include, but are not limited to, picnicking, sun bathing, hiking, beachcombing, camping, boating, tide pool and marine life study, hunting, sightseeing, or aesthetic enjoyment in conjunction with the above activities.

Shellfish Harvesting (SHELL): Uses of water that support habitats suitable for the collection of filter-feeding shellfish (e.g., clams, oysters, and mussels) for human consumption, commercial, or sports purposes.

Warm Freshwater Habitat (WARM): Uses of water that support warm water ecosystems including, but not limited to, preservation or enhancement of aquatic habitats, vegetation, fish, or wildlife, including invertebrates.

Wetland Habitat (WET):

Uses if water that support wetland ecosystems including, but not limited to, preservation or enhancement of wetland habitats, vegetation, fish, shellfish, or wildlife, and other unique wetland functions which enhance water quality, such as providing flood and erosion control, stream bank stabilization, and filtration and purification of naturally occurring contaminants.

Wildlife Habitat (WILD):

Uses of water that support terrestrial ecosystems including, but not limited to, preservation and enhancement of terrestrial habitats, vegetation, wildlife (e.g., Mammals, birds, reptiles, amphibians, invertebrates), or wildlife water and food sources.

υ.

Table 8.2.

Summary of Applicable Water Quality Benchmarks and Receiving Water Quality Criteria (Page 1 of 5)

· · · · · · · · · · · · · · · · · · ·		-	" <u> </u>	[W	/ater Quality (Criteria					. · ·
•		Bencl	hmarks	California 7	Foxics Rule	California (Ocean Plan (2)	USEPA	Ambient teria	USEPA IRIS	California	USEPA		Lab.
Analytes	Units	Enclosed Bay & Estuary Discharge (Saltwater)	Inland Surface Water Discharge (Freshwater)	Saltwater (1A)	Fresbwater (1B)	Saltwater Aquatic Life Protection	Consumption of Aquatic Organisms Only	Saltwater Aquatic Life Protection (3A)	Freshwater Aquatic Life Protection (3A)	Reference Dose as a Drinking Water Level (4)	Drinking Water Standard (5)	Drinking Water Standard (6)	Basin Plan (7)	ML
BOD5	mg/L	30(4)	30(4)											2
COD	mg/L	120(9)	120(9)						•					20-900
Total Organic Carbon	mg/L					· .								1
Specific Conductance	umho/cm	-	900				·		· ·	·			L	1
Total Hardness	mg/L										-	<u> </u>		2
Alkalinity	mg/L					· ·	·				l	· · · · ·		2
РН	units	6.0-9.0	6.0-9.0				6.0-9.0	6.0-8.5	6.0-9.0		<u> </u>	l		0-14
Cyanide	mg/L	0.001(1H)	0.022(1H)	0.001(1H)	0.022(1H)	0.004(DM)		1	22	0.14	0.2	0.2	0.2	0.005
Chloride	mg/L		150						860(1)				150	2
Fluoride	mg/L		0.42							4.2	2	4 .	<u> </u>	0.1
Total Kjeldahl Nitrogen	mg/L					<u> </u>						· · · · ·		0.1
Total Ammonia - Nitrogen	mg/L	6(IM)	12.1			6(IM)		0.233(1H)	12.1		<u> </u>	<u> </u>		0.1
Nitrite	mg/L	0.7	. 0.7							0.7	1	1 .	1	0.1
Nitrate	mg/L		10			Į				11	10	10	10	0.1
Total Phosphorus	mg/L		0.5							0.00014	0.5	0.5		0.05
Dissolved Phosphorus	mg/L		÷	:	[[. <u>.</u>	0.00014			L	0.05
MBAS	mg/L	0.5	0.5			· ·				·	0.5		L	0.5
MTBE	mg/L	0.013	0.013			· ·	•				0.013		L	0.001
Total Phenols	μg/L	4,600,000	4,600,000	4,600,000	4,600,000	120(DM)			2560	4200			L	0.1
Oil & Grease	mg/L	15 (12)	15(12)				75(IM)				· · ·	ļ		5
ТРН	mg/L	0.02	0.02							·	· · · ·	· ·	L	5
Total Suspended Solids	mg/L	60(IM)	100(13)		•	60(IM)						· · · · · · · · · · · · · · · · · · ·		2
Total Dissolved Solids	mg/L					L		·	·		<u> </u>		<u> </u>	2
Volatile Suspended Solids	mg/L							· · · · · · · · · · · · · · · · · · ·				l	┣────	2
Turbidity	NTU	225				225	L					1		0.1
Fecal Coliform	mpn/100ml	200(30D)	200(30D)	L		ļ	200(30D)		·		l		200(30D)	<20
Total Coliform	mpn/100ml	1000,70(30D)	1000(30D)	L		ļ	1000(30D)					Į	<u>70(30D)</u>	<20
Enterococcus	mpn/100m1	35(30D)	104(IM)(14)	L		·	35(30D)					· ·	<u> </u>	<20
Aluminum	μ g/L	750(1H)	750(1H)			I		<u> </u>	750(1H)		1000	<u> </u>	1000	100
Antimony	μg/L	1200	2.8	4300	4300		1200		1600	2.8	6	6	6	0.5
Arsenic	μg/L	69(1H)	340(1H), 2.1	69(1H)	340(1H)	32(DM)			•	2.1	•50	50	50	1
Beryllium*	μg/L	0.033					0.033		5.3	14	4	4	4	0.5
Cadmium	µg/L	44(1H)	4.6(1H)	44(1H)	4.6(1H)	4(DM)	10(IM)			3.5	5	5	5	0.25
Chromium (total)	μα/L	20(IM)	50		1	20(IM)					50	100	50	0.5
Copper	μα/L	4.8(1H)	13(1H)	4.8(1H)	13(1H)	12(DM)					1300	1300		0.5
Hex. Chromium	uo/L	1111/11/11	16.3(1H)		16.3(1H)	8(DM)				21			1	5

÷

····· · · · · · · · · · · · · · · · ·														
		Banal	hmarke				v	Vater Quality O	Criteria					
		Belle		California T	oxics Rule	California (Ocean Plan (2)	USEPA A Crite	Ambient eria	USEPA IRIS	California	USEPA		Lab.
Analytes	Units	Enclosed Bay & Estuary Discharge (Saltwater)	Inland Surface Water Discharge (Freshwater)	Saltwater (1A)	Freshwater (1B)	Saltwater Aquatic Life Protection	Consumption of Aquatic Organisms Only	Saltwater Aquatic Life Protection (3A)	Freshwater Aquatic Life Protection (3A)	Reference Dose as a Drinking Water Level (4)	Drinking Water Standard (5)	Drinking Water Standard (6)	Basin Plan (7)	ML
Iron	μg/L													100
Lead	μg/L	210(1H)	65(1H)	210(1H)	65(1H)	8(DM)					15	15		0.5
Mercury	μg/L	2.1(1H)	1.6(1H)	2.1(1H)	1.6(1H)	0.16(DM)					2	2	2	0.5
Nickel	μg/L	74(1H)	470(1H)	74(1H)	470(1H)	20(DM)				100	100		100	1
Selenium	μg/L	290(1H)	20(1H)	290(1H)	20(1H)	60(DM)				35	50	50	50	1.
Silver	μg/L	1.9(1H)	3.4(1H)	1.9(1H)	3.4(1H)	2.8(DM)				35				0.25
Thallium	μg/L	6.3	6.3	6.3	6.3		2		40	0.6	2	2	2	1
Zinc	μg/L	90(1H)	120(1H)	90(1H)	120(1H)	80(DM)		•		2100				1 1
2-Chlorophenol	μg/L	400	400	400	400		10(IM)			35	I		·	2
2,4-Dichlorophenol	μg/L	790	790	790	790		10(IM)		365	21				1
2,4-Dimethylphenol	μg/L	2300	2300	2300	2300		300(IM)				•			2
2,4-Dinitrophenol	μg/L	14,000	14,000	14,000	14,000		4							5
2-Nitrophenol	΄ μg/L	4850	230				300(IM)	4850	230					10
4-Nitrophenol	μg/L	4850	230	,			300(IM)	4850	230					5.
4-Chloro-3-methylphenol	μg/L	10(IM)	30 -	· · · ·	[10(IM)	-	30	•				1.
Pentachlorophenol	μg/L	13(1H)	19(1H)	13(1H)	19(1H)					6				2
Phenol	μg/L	4,600,000	4,600,000	4,600,000	4,600,000	120(DM)			2560	4200				1.
2,4,6-Trichlorophenol	μg/L	6,5	6.5	6.5	6.5	_	10(IM)							10
Acenaphthene	μg/L	2700	2700	2700	2700			970		420				1.
Acenaphthylene*	μg/L	300	300	·			0.0088	300						2
Anthracene*	μg/L	110,000	110,000	110,000	110,000		0.0088			2100				2
Benzidine*	μg/L	0.00054	0.00054	0.00054	0.00054		0.000069	·						5
1,2 Benzanthracene*	μg/L	0.049	0.049	0.049	0.049		0.0088					0.1		5
Benzo(a)pyrene*	μg/L	0.049	0.049	0.049	0.049		0.0088				0.2	0.2	0.2	2
Benzo(g,h,i)perylene*	μg/L	0.0088	0.0088				0.0088	· ·						5
3,4 Benzofluoranthene*	μg/L				Γ		0.0088							10
Benzo(k)fluoranthene*	μg/L	0.049	0.049	0.049	0.049		0.0088							2 .
Bis(2-Chloroethoxyl)methane	μ g/L	4.4					4.4			,		I		5
Bis(2-Chloroisopropyl)ether	μg/L	170,000	170,000	170,000	170,000		1200		122	280				2
Bis(2-Chloroethyl) ether*	μg/L	1.4	1.4	1.4	1.4		0.045		122					1
Bis(2-Ethylhexl) phthalate*	μg/L	5.9	5.9	5.9	5.9		3.5							5
4-Bromophenyl phenyl ether	μg/L	360	360			ŀ	I		360					5
Butyl benzyl phthalate	μg/L	5200	5200	5200	5200	1	1	2,944	940	140				10
2-Chloroethyl vinyl ether	μg/L			· · ·	1		1		1 .		<u> </u>	· ·		1
2-Chloronaphthalene	ua/L	4300	4300					7.5	1	560		1	1	` 10
4-Chlorophenyl phenyl ether	ug/L	·	1	1				1	1		1	1	1	5
Chrysene*	μg/L	0.049	0.049	0.049	0.049	1	0.0088	1						5

 Table 8.2
 Summary of Applicable Water Quality Benchmarks and Receiving Water Quality Criteria (Page 2 of 5). (continued)

Table 8.2

Summary of Applicable Water Quality Benchmarks and Receiving Water Quality Criteria (Page 3 of 5). (continued)

· · · · · ·				•	• .			Water Quality	Criteria	· · · · ·				· · .
		Benc	hmarks	California T	oxics Rule	California (Ocean Plan (2)	USEPA A Crite	mbient eria	USEPA IRIS	California	USEPA		Lab.
Analytes	Units	Enclosed Bay & Estuary Discharge (Saltwater)	Inland Surface Water Discharge (Freshwater)	Saltwater (1A)	Freshwater (1B)	Saltwater Aquatic Life Protection	Consumption of Aquatic Organisms Only	Saltwater Aquatic Life Protection (3A)	Freshwater Aquatic Life Protection (3A)	Reference Dose as a Drinking Water Level (4)	Drinking Water Standard (5)	Drinking Water Standard (6)	Basin Plan (7)	ML
Dibenzo(a,h)-anthracene	μg/L	0.049	0.049	0.049	0.049	•	0.0088						•	0.1
1,3-Dichlorobenzene	μg/L	2600	2600	2600	2600		5100	129	763					1
1,4-Dichlorobenzene*	μg/L	2600	2600	2600	2600		18	129	763		5	75	5	1
1,2-Dichlorobenzene	μg/L	17,000	17,000	17,000	17,000		5100	129	763	630	600	600	600	1
3,3-Dichlorobenzidine*	μg/L	0.077	0.077	0.077	0.077		0.0081					·· ·		5
Diethylphthalate	µg/L	120,000	120,000	120,000	120,000		33,000	2944	940	5600				2
Dimethylphthalate	μg/L	2,900,000	2,900,000	2,900,000	2,900,000		820,000	2944	940		· ·			2
di-n-Butyl phthalate	μg/L	12,000	12,000	12,000	12,000		3500	2944	940	700			<u> `-</u>	10
2,4-Dinitrotoluene*	μg/L	9.1	9.1	9.1	9.1		2.6		. 230	14		1		5
2,6-Dinitrotoluene	μg/L							•		· · · · · ·				5
4,6-Dinitro-2-methylphenol	μg/L	765	765	765	765		220							5
1,2-Diphenylhydrazine*	μg/L	0.54	0.54	0.54	0.54		0.16					·	· .	1
di-n-Octyl phthalate	μg/L	2944	940					2944	940					10 ·
Fluoranthene	, μg/L	370	370	370	370		15	16		280				0.05
Fluorene	μg/L	14,000	14,000	14,000	14,000		0.0088		· ·	280				0.1
Hexachlorobenzene*	μg/L	0.00077	0.00077	0.00077	0.00077		0.00021				1	_1	1	1
Hexachlorobutadiene*	μg/L	50	50	50	50		14	32	9.3 :				•	1
Hexachloro-cyclopentadiene	μg/L	17,000	17,000	17,000	17,000		58	.7	5.2	42 -	50.	50	50	5
Hexachloroethane*	μg/L	8.9 ·	8.9	8.9	8.9		2.5		540	0.7				1
Indeno(1,2,3-cd)pyrene*	μg/L	0.049	0.049	0.049	0.049		0.0088							0.05
Isophorone*	μg/L	600	600	600	600		730			170	1		1	· 1
Naphthalene	μg/L	2350	2300					2350	2300	14				0.2
Nitrobenzene	μg/L	1900	1900	1900	1900	·	4.9			3.5			•	1
N-Nitroso-dimethyl amine*	μg/L	8.1	8.1	8.1	8.1	-	7.3				1			5
N-Nitroso-diphenyl amine*	μg/L	16	16	16	16		2.5							1
N-Nitroso-di-n-propylamine*	μg/L	1.4	1.4	1.4	1.4		0.38							5
Phenanthrene*	μg/L	0.0088	0.0088				0.0088							0.05
Pyrene*	μg/L	10	10	11,000	11,000		0.0088			210				0.05
1,2,4-Trichlorobenzene	μg/L	129	70					129	•	70	70	70		- 1
4,4'-DDD*	μg/L	0.00083	0.00083	0.00083	0.00083		0.00017							0.05
4,4'-DDE*	μg/L	0.00059	0.00059	0.00059	0.00059		0.00017							0.05
4,4'-DDT*	μg/L	0.13(IM)	1.1(IM)	0.13(IM)	1.1(IM)		0.00017	0.13(IM)	1.1(IM)	3.5				0.01
Aldrin*	μg/L	1.3(IM)	3(IM)	1.3(IM)	3(IM)		0.000022	1.3	3	•				0.005
alpha-BHC	μg/L	0.013	0.013	0.013	0.013	0.008(DM)								0.01
alpha-chlordane*	μg/L	0.09(IM)	2.4	0.09(IM)	2.4(IM)		0.000023	0.09	2.4	0.42	0.1	2	1	0.1
beta-BHC	μg/L	0.046	0.046	0.046	0.046	0.008(DM)		1		•				0.005
delta-BHC ,	μg/L	0.008(DM)	0.008(DM)		. •	0.008(DM)	1			•				0.005
gamma-BHC (lindane)	μg/L	0.16(IM)	0.95(1H)	0.16(IM)	0.95(1H)	0.008(DM)		0.16(IM)	0.95(IM)	0.2		1	1	0.02
gamma-chlordane*	μg/L	0.09(IM)	2.4	0.09(IM)	2.4(IM)	· .	0.000023	0.09	2.4	0.42	0.1	2	_	0.1

- -

		1		1										
•		Benc	hmarke					Water Quality C	Criteria					
Analytes	Unite		· ·	California 7	foxics Rule	California (Ocean Plan (2)	USEPA A Crite	mbient ria	USEPA IRIS	California	USERA		Lab
	·	Enclosed Bay & Estuary Discharge (Saltwater)	Inland Surface Water Discharge (Freshwater)	Saltwater (1A)	Freshwater (1B)	Saltwater Aquatic Life Protection	Consumption of Aquatic Organisms Only	Saltwater Aquatic Life Protection (3A)	Freshwater Aquatic Life Protection (3A)	Reference Dose as a Drinking Water Level (4)	Drinking Water Standard (5)	USEPA Drinking Water Standard (6)	Basin Plan (7)	ML
Dieldrin*	μg/L	0.71(IM)	0.24(1H)	0.71(IM)	0.24(1H)		0.00004	0.71(IM)	0.024(1H)			<u> </u>	· · ·	0.01
alpha-Endosulfan	μ g/L	0.034(IM)	0.22(IM)	0.034(IM)	0.22(IM)	0.018(DM)		0.034(IM)	0.22(IM)	42				0.01
beta-Endosulfan	μ g/L	0.034(IM)	0.22(IM)	0.034(IM)	0.22(IM)	0.018(DM)		0.034(IM)	0.22(IM)	42		<u> </u>		0.02
Endosulfan sulfate	μg/L	240	240	240	240	0.018(DM)			0.22(11.1)	- 12		<u> </u>		0.01
Endrin	μg/L	0.037(IM)	0.086(1H)	0.037(IM)	0.086(1H)	0.004(DM)		0.037(IM)	0.086(1H)	2	2			0.05
Endrin aldehyde	μ g/L	0.0018	0.0018		,			0.037(114)	0.000(111)	<u>_</u>	. 2		2 .	0.01
Heptachlor*	μg/L	0.053(IM)	0.52(IM)	0.053(IM)	0.52(IM)	· · · · · · · · · · · ·	0.00005	0.053(IM)	0.52(IM)		0.01	- 0.4	0.01	0.01
Heptachlor Epoxide*	μg/L	0.053(IM)	0.52(IM)	0.053(IM)	0.52(IM)		0.00002	0.053(IM)	0.52(IM)		0.01	0.4	0.01	0.01
Toxaphene*	μg/L	0.21(1H)	0.73(1H)	0.21(1H)	0.73(1H)		0.00021	0.055(IM)	0.32(111)		2	0.2	0.01	0.01
Aroclor-1016*	μg/L	0.127	0.127				0.000019	0.21(11)	0.75(11)		3	3	3	0.5
Aroclor-1221*	μg/L	100	100				0.000019			_				0.5
Aroclor-1232*	μg/L	0.318	0.318	•			0.000019							0.5
Aroclor-1242*	μg/L	0.20	0.20				0.000019							0.5
Aroclor-1248*	μg/L	2.54	2.54				0.000019		,					0.5
Aroclor-1254*	μα/L	100	100				0.000019							0.5
Aroclor-1260*	μα/L	0.477	0.477				0.000019	· ·						0.5
Chlorpyrifos	μα/L	0.02(10)	0.0200	· · · · · · · · · · · · · · · · · · ·			0.000019	0.0056	0.041				· ·	0.5
Diazinon	μg/L		0.08(10)					0.0050	0.041	21		<u> </u>		0.05
Prometryn	μα/L													0.01
Atrazine	ua/L		3.0											2
Simazine	ug/L		3.5							25	3	3	• 3	2
Cyanazine	μq/L									3.3	4.	4	4	2
Malathion	μα/L		0.1					0.1	0.1	140				2
Glyphosate	 μα/L		700		5			0.1	0.1	140	700			1
2,4-D	ug/L		70		1						700	/00	700	5
2,4,5-TP (Silvex)	ua/L		50								/0	70	70	0.02
			- •						1	2.5	50	1 50	1 50 1	0.2

Table 8.2 Summary of Applicable Water Quality Benchmarks and Receiving Water Quality Criteria (Page 4 of 5). (continued)
Table 8.2 Summary of Applicable Water Quality Benchmarks and Receiving Water Quality Criteria (Page 5 of 5). (continued)

Footnotes

Table is based upon the California Regional Water Quality Control Board, Central Region's "Compilation of Water Quality Goals" (Marshack 2000) and draft analytical benchmarks being developed by San Diego's Project Clean Water, Science and Technology, Technical Advisory Committee.

(1) USEPA Recommended Ambient Water Quality Criteria - Acute (Instantaneous Maximum or 1 - Hour Average Maximum) Concentration, Freshwater Aquatic Life Protection.

(IA,1B) Numeric Criteria for Priority Toxic Pollutants for the State of California; California Toxics Rule, USEPA, 60 Federal Register (FR) 31681-31719, May 18, 2000. Values are "30-day Average Concentration for Human Health Protection (consumption of aquatic organisms only for both Saltwater & Freshwater)," unless indicated for (IM) for (Instantaneous Maximum or (1-H) for 1-Hour Average Maximum Concentration for Saltwater or Freshwater Aquatic Life Protection). The Policy for Implementation of Toxic Standards for Inland Surface Waters, Enclosed Bays and Estuaries of California (Phase 1 of the Inland Surface Water Plan and the Enclosed Bays and Estuaries Plan) was adopted by the State Water Resources Control Board on March 2, 2000 and effective on May 18, 2000.

(2) Water Quality Control Plan for Ocean Waters of California (California Ocean Plan), California State Water Resources Control Board, adopted on November 16, 2000 and became effective on December 3, 2001. Values are 30-day Average Concentration for Human Health Protection (consumption of aquatic organisms only), unless indicated (IM) for (Instantaneous Maximum Concentration or (DM) for Daily Maximum Concentration).

(3) Secondary Treatment Regulations – 40 CFR 133.

(3A,3B) USEPA National Recommended Ambient Water Quality Criteria - Saltwater or Freshwater Aquatic Life Protection, Ambient Water Quality Criteria, various dates. Values are "Lowest Observed Effect Level (LOEL) concentrations for Chronic (24-Hour or 4 day Average) Concentration, Saltwater and Freshwater Aquatic Life Protection.

(4) USEPA Integrated Risk Information System (IRIS) Reference Dose (RfD) as a Drinking Water Level.

(5) Drinking Water Standards, Maximum Contaminant Levels - California (California Department of Health Services), California Code Regulations (CCR), Title 22, Division 4, Chapter 15, Domestic Water Quality and Monitoring.

(6) Drinking Water Standards, Maximum Contaminant Levels - Federal (USEPA), 40 Code of Federal Regulations (CFR) Parts 141 and 143.

(7) Los Angeles Regional Water Quality Control Board Basin Plan Water Quality Objectives.

(8) USEPA Recommended Ambient Water Quality Criteria – Human Health Protection (consumption of water and organisms).

(9) Factor of 4 times Biochemical Oxygen Demand (BOD - 5day) concentration - North Carolina benchmark.

(10) Freshwater Final Acute Values (FAV) California Department of Fish and Game, Water Quality Criteria for Diazinon and Chlorpyrifos (April 26, 2002).

(11) USEPA Recommended Ambient Water Quality Criteria - Lowest Observed Effect Level (LOEL) Concentration for Acute Toxicity, Freshwater Aquatic Life Protection.

(12) Median concentration of Stormwater Effluent Limitation Guideline – 40 CFR Part 419.

(13) National Urban Runoff Program (NURP) median concentration.

(14) AB411 Instantaneous Max

Carcinogen

		Be	lmont Pu	mp [´]			B	outon Cree				Los C	erritos Cl	nannel	•
ANALYTE	No. of	Percent		-		No. of	Percent				No. of	Percent			
·	Samples	Detect	Mean	Median	CV	Samples	Detect	Mean	Median	CV	Samples	Detect	Mean	Median	CV
CONVENTIONALS			-		_										
BOD5 (mg/L)	7	71	21	21	0.13	6 ·	100	20	16	0.48	8	100	24	19	0.54
COD (mg/L)	.7	100	96	81	0.44	6	100	105	88	0.45	8	100	136	100	0.60
Total Organic Carbon (mg/L)	·7	100	49	17	1.35	6	100	37	20	0.93	8	100	29	21	0.63
Conductance (umhos/cm)	7	100	405	299	0.60	6	100	- 534	306	0.86	8	100	122	105	0.38
Total Hardness (mg/L)	7	100	126	97	0.55	6	100	125	74	0.84	8	100	70	49	0.66
Alkalinity, as CaCO3 (mg/L)	7	100	59	45	0.57	6	100	26	24	0.25	8	100	40	26	0.74
PH (units)	7	100	7.3	7.3	0.05	6	100	7.0	7.0	0.08	8	100	7.2	7.2	0.03
Cyanide (ug/L)	7	0	. ID	ĪD	ID	6	0	ID	ID	ID	8	0	ID	ID	ID
Chloride (mg/L)	7	100	73	48	0.73	6.	100	143	66	1.08	8	100	17	9.3	0.94
Fluoride (mg/L)	7	100	0.57	0.30	0.94	6.	83	0.68	0.34	1:01	8	75	0.34	0.28	0.49
Total Kjeldahl Nitrogen (mg/L)	. 7	100	6.2	3.1	1.01	· 6	100	5.0 /	2.7	0.93	8	100	7.1	4.0	0.86
Total Ammonia-Nitrogen (mg/L)	7	100	0.92	0.70	0.56	6	100	0.97	0.71	0.60	. 8	100	0.90	0.78	0.40
Nitrite Nitrogen (mg/L)	7	0	ID	ID	ID _	6	0	ID	ID ·	ID	8	0	ID	ID	ID
Nitrate Nitrogen (mg/L)	· 7	100	2.7	1.0	1.29	6	100	1.8	0.90	1.01	8	100	1.4	0.95	0.68
Total Phosphorus (mg/L)	7	100	1.4	0.77	0.91	6	100	0.89	0.47	0.95	8	100	1.9	0.99	0.95
Dissolved Phosphorus (mg/L)	7	100	0.40	0.30	0.57	6	100	0.29	0.13	1.09	· 8	100	0.27	0.19	0.63
MBAS (mg/L)	7	100	0.18	0.13	0.60	6	100	0.23	0.19	0.51	8	100	0.17	0.11	0.73
MTBE (ug/L)	6	0	ID -	ID	ID	6	33	1.3	1.3	0.11	8	13	ID	ID	<u>ID</u>
Total Phenols (mg/L)	7	0	ID	ID	ID	6	0	ID	· ID	ID	8	. 0'	ID	ID	ID
Oil & Grease (mg/L)	6	33	37	14	1.24	6	0	ID	ID	ID	9	33	22	12	0.89
TRPH (mg/L)	6	17	<u> </u>	ID	ID	· 6	0	ID	ID	ID	8	0	ID	<u>ID</u>	<u>ID</u>
Total Suspended Solids (mg/L)	7	100	602	135	1.86	6	100	476	105	1.88	8	100	516	303	0.84
Total Dissolved Solids (mg/L)	7	100	251	191	0.56	6	100	344	199	0.85	8	100	106	90	0.41
Turbidity (NTU)		100	167	73	1.14	6	100	88	69	0.53	8	100	183	- 137	0.58
BACTERIA (mpn/100ml)															
Fecal Coliform	5	80	658,331	24,868	5.05	6	83	32,324	11,518	1.34	9	100	67,000	28,217	1.17
Total Coliform	5	40	259,109	53,478	1.96	6	67	64,167	34,736	0.92	9	56	189,575	120,346	0.76

Table 8.3.Stormwater Monitoring Chemistry Statistics for Each Watershed. (Page 1 of 5)

		Bel	mont [.] Pu	imp			·]	Bouton C	reek			Los	Cerritos	Channel	
ANALYTE	No. of	Percent		-		No. of	Percent				No. of	Percent			
	Samples	Detect	Mean	Median	CV	Samples	Detect	Mean	Median	CV	Samples	Detect	Mean	Median	CV
TOTAL METALS (ug/L)					-										/
Aluminum	7	100	. 3215	1187	1.31	6	100	1697	934	0.90	8	100	2768	1850	0.70
Arsenic	7	100	3.2	2.5	0.53	6	100	2.6	2.08	0.52	8	88	4.9	4.1	0.45
Beryllium	7	0	ID	ID	ID	6	0	ID	ID	. ID	8	0	ID	ÍD	ID T
Cadmium	7	71	2.1	1.5	0.62	6	67	1.3	1.0	0.49	8	100	2.6	, 1.9	0.63
Chromium	7.	. 100	8.9	4.6	0.96	6	100	5.3	3.6	0.67	8	100	10	6.0	0.82
Hexavalent Chromium (mg/L)	7	0	ID	ID	ID	6	0	ID	ID	ID	8	0	ĪD	ID	ID
Copper	7	100	93	57	0.79	6	100	45	28	0.77	8	100	44	38	0.39
Iron	7	100	4251	1213	1.58	6	100	1732	1217	0.65	8	100	5473	2876	0.95
Mercury	7	0	ID	ID	ID	6	33	0.39	0.34	0.36	8	13	· ID	ID	ID.
Nickel	• 7	- 100	21	. 9.6	1.08	6	100	9.3	6.3	0.69	8	100	13	11	0.45
Lead	7 .	100	129	49	1.27	6	100	. 64	26	1.19	8	100	105	57	0.91
Zinc	7	100	731	369	0.99	6	100	592	248	1.18	8.	100	842	544	0.74
DISSOLVED METALS (ug/	L)														*
Aluminum	7	. 71	. 109	. 61	0.89	6	67	103	77	0.59	8.	88 .	182	136	0.58
Arsenic	7	100	1.4	. 1.3	0.33	6	100	1.1	1.1	0.17	8	88	1.4	1.3	0.21
Beryllium	- 7	• 0	ID	ID [†]	ID	6	0	ID	ID	ID	8	0	ID	D	ID
Cadmium	7	43	0.29	0.29	0.04	6	ID	ID	ID	ID	8	25	0.54	0.34	0.77 -
Chromium	7	71	1.3	1:2	0.29	6	33	1.9	1.1	, 0.82	8	88	1.3	1.2	0.34
Copper	· 7	100	14	11	0.58	6.	100	· 10	9.3	0.30	8	100	10	8.5	0.42
Iron	7	71	273	105	1.26	6	83	307	145	1.06	8	88	306	169	0.90
Mercury	7	0	ID	ID.	ID	6	.0.	ID	ID	ID ¹	8	0	ID	ID	ID 1
Nickel	7 '	100	6.4	4.0	0.77	6	100	3.9	2.8	0.63	8	100	4.2	3.4	0.50
Lead	7	86	2.1	1.9	0.30	· 6	100	2.6	2.2	0.46	- 8	75	1.8	1.6	0.40
Zinc	7.	100	98	65	0.71	6	100	84	63	0.57	8	100	78	67	0.41
CHLORINATED PESTICID	ES (ug/L)			.1						•		• •			
4.4'-DDD	7 ′	0	ID	ID	ID	6	0	ID	ID	. ID	8	0	ID	ID	ID
4,4'-DDE	7	0	ID	ID	ID	6	0	ID	ID	ID	8	0	ID [*]	ID	D T
4,4'-DDT	7	14	ID	· ID	IĎ	6	ID	ID	ID	ID	8	0	ID	ID	ID · · ·
Aldrin	7	14	ID	ID	ID	6	ID	ID	ID	ID	8	25	0.08	0.07	0.08
Alpha-BHC	7	14	· ID	· ID	ID	6	ID.	ID	ID	ID	8	13	ID	ID	ID
Alpha-Chlordane	7	0	ID	ID.	ID	6	0	ID	ID	ID	8	0	ID	ID	ID
beta-BHC	7	0	ID	. ID	ID	6	0	ID	ID	.ID	8	13	ID	ID	ID-
Delta-BHC	7	0	ID	ID ·	ID	6	0	ID	ID	ID	8	0	ID	ID	ID
Dieldrin	7	0	ID	ID	ID	6	0	· ID	ID	ID	8	· 13	ID	ID	ID

Table 8.3.Stormwater Monitoring Chemistry Statistics for Each Watershed. (Page 2 of 5)

	Belmont Pump							Bouton (Creek			Los Co	erritos C	hannel	
ANALYTE	No. of	Percent				No. of	Percent				No. of	Percent			
	Samples	Detect	Mean	Median	CV	Samples	Detect	Mean	Median	CV	Samples	Detect	Mean	Median	CV
CHLORINATED PESTI	CIDES (ug/L)) (continu	ed)												
Endosulfan Sulfate	. 7	0	ID	ID	ID	6	0	ID	ID	ID	8	0	ID	ID	D
Endrin	7	0	ID ⁺	ID	ID	6	0	ID	ID	ID	8	0	ID	ID	ID
Endrin Aldehyde	7	0	ID	ID	ID	6	0	ID	ID	ID	8	0	ID	ID	D
gamma-BHC (lindane)	7	0	ID	ID	ID	6	0	ID	ID	ID	8	0	ID	ID	ID
gamma-Chlordane	·7	. 0	ID	ID	ID	6	0	ID	ID	ID	8	0	ID	ID	ID
Heptachlor	7	0.	ID	ID	ID	6	.0	ID	ID	ID	8	25	0.01	0.01	0.06
Heptachlor Epoxide	7	0	ID	ID	ID ·	6	0	ID	ID	ID	8	0	ID	ID	ĪD
Total PCBs	7`	0	ID	ID	ID	6	0	ID	ID	ID	8	0	ID	ID	ID
Toxaphene	7	0	. ID	ID	ID	6	0	ID	ID	ĪD	8	0	ID	ID	ID
AROCLORS (ug/L)								_							
Arochlor 1016	7	0	. ID	ID	ID	6	0	ID	ID	ID	8	0	ID	ID	ID
Arochlor 1221	· 7	0	ID	ID	ID	6	0	ID	ID	ID	8	. 0	ID	ID	ID
Arochlor 1232	7	0	ID	ID	ID	6	0	ID	ID	ID	8	0	ID	ID ⁴	ID
Arochlor 1242	7	0	ID	ID	ID	6	0	ID	ID	ID	8	0	ID	ID	ID
Arochlor 1248	7	0	ID	ID	ID .	6	0	ID	ID	ID	8	0	ID	ID	ID
Arochlor 1254	7	0	ID	ID	ID	6	0	ID	ID	. ID	8	0	ID	ID .	ID
Arochlor 1260	7	0	ID	ID	ID	6	0	ID	ID	ID	8	0	ID	ID	ID
ORGANOPHOSPHATE	PESTICIDE	S (ug/L)													
Atrazine	7	0	ID	ID	ID	6	0	ID	ID	ID	8	0	ID	ID	ID
Dursban (chlorpyrifos)	- 7	29	0.12	0.10	0.46	6	ID	ID	· ID	_ ID	8	25	0.30	0.29	0.07
Cyanazine	7	0	ID	D	ID	6	0	ID	ID	ID	8	. 0	ID	ID	ID
Diazinon	7	43	2.8	1.9	0.70	6	33	0.43	0.42	0.02	8	38	0.35	0.31	0.36
Malathion	7	43	1.3	1.3	0.12	6	0	ID	ID	ID	8	13	ID	ID	ID
Prometryn	7	0	ID	ID	ID	6	0	ID	ID	ID	8	0	ID	ID	ID
Simazine	7	0	ID	ID	ID	6	ID	ID	ID	ID	8	13	ID	ID	ID
HERBICIDES (ug/L)														-	
2,4,5-TP (Silvex)	• 7	0 ·	ID	ID	ID	6	0	ID	ID	ID	8	13	ID	ID	ID
2,4-D	7	0	ID	ID	ID	6	0	ID	ID	ID	8	0	ID	ID	ID
Glyphosate	7	29	13	11	0.44	6	ID	ID	ID	ID	8	38	106	24	1.86

Table 8.3. Stormwater Monitoring Chemistry Statistics for Each Watershed. (Page 3 of 5)

	Belmont Pump						_	Bouton C	Creek			Los Cer	ritos Ch	annel	
ANALYTE	No. of	Percent				No. of	Percent	÷.,			No. of	Percent			
	Samples	Detect	Mean	Median	CV	Samples	Detect	Mean	Median	CV	Samples	Detect	Mean	Median	<u> </u>
SEMIVOLATILE ORGANIC	CS (ug/L)														
1,2,4-Trichlorobenzene	7	0	ID	ID	ID	6	0	ID	ID	ID	8	0	ID	ID	ID
1,2-Dichlorobenzene	7 ·	0 /	ID	ID	ID	6	0	ID	ID	ID	. 8	0	' ID	ID	ID^{-1}
1,2-Diphenylhydrazine	7	0	ID	ID	· ID	6	0	ID	ID	ID	8	0	_ ID	ID	ID
1,3-Dichlorobenzene	7	0	ID	ID	ID	6.	0	ID	ID	ID	8	0	ID	ID .	ID
1,4-Dichlorobenzene	7	0	ID	ID	ID	6	0	ID	ID	ID	8	0	ID	ID	ID
2,4,6-Trichlorophenol	7	0 .	ID	ID	ID	6	0	ID	ID	ID	8	0	ID	ID	ID
2,4-Dichlorophenol	7	0	ID	ID	ID	6	0	ID	D	ID	8	0	ID	ID	ID
2,4-Dimethylphenol	7	0	ID	ID	ID	6.	0	ID	ID	ID	8	0	ID	ID	ID
2,4-Dinitrophenol	7	0	ID	ID	ID	6	ID	ID	ID	ID	8	25	6.5	6.3	0.18
2,4-Dinitrotoluene	7	0	ID	ID	ID	6	0	ID	· ID	ID	8	0	ID	ID	ID
2,6-Dinitrotoluene	7	0	ID	ID	ID	6	0	ID	ID	ID	8	0	ID	ID	. ID
2-Chloronaphthalene	. 7	0	ID	ID	ID ·	6	0	ID	ID	ID	8	0	ID	ID	ID
2-Chlorophenol	7	0	ID	ID	ID	6	0.	ID	ID	ID	8	· 0	ID	ID	ID
2-Nitrophenol	7	0	ID	ID	ID	6	0	ID	ID	ID	8	. 0	ID	ID	ID
3,3'-Dichlorobenzidine	77	0	ID	ID	ID	6	0	ID	ID	ID	8 .	0	ID	ID	ID
4-Bromophenyl Phenyl Ether	7	0	ID	ID	ID	6.	0	ID	ID .	ID	8	0	ID ·	ID	ID .
4-Chloro-3-Methylphenol	7	- 0	ID	ID	ID	6.	0	ID	ID	ID	8	0	ID	ID	· ID
4-Chlorophenyl Phenyl Ether	· 7 ·	0	ID	ID	<u>ID</u>	6	0	ID	<u> </u>	ID	8	0	ID	ID	ID
4-Nitrophenol	7	29	1.7	1.6	0.13	6	33	7.7	3.5	1.08	8	25	6.1	6.1	0.05
Acenaphthene	7	0	ID	ID	ID	6	0	ID	ID	' ID	8	0	ID	ID	ID
Anthracene	7	0	D	ID	ID	6	0	ID	ID	ID	8	0	D	<u>ID</u>	ID
Benzidine	7	0	ID	ID	ID	6	0	ID	ID	ID	8	0	ID	ID	ID
Benzo(a)Anthracene	7	0	ID	ID	ID	6	0	ID	ID	ID	8	0	ID	ID	ID
Benzo(a)Pyrene	7	0 .	ID	ID	ID	6	0	ID	ID	ID	8	0	ID	ID	ID
Benzo(b)Fluoranthene	7	0.	ID	ID	' ID	6	0	ID	łD	ID	8	0	ID	ID	ID
Benzo(k)Fluoranthene	7 ·	0	ID	ID	ID	6	0	ID	ID	ID	8	0	. ID	ID	ID
Bis(2-chloroethoxy)Methane	7	0	ID	ID	ID .	6	0 ·	ID ·	ID	ID	8	0	ID	ID	ID
Bis(2-chloroethyl)Ether	7	0	ID	ID	ID	6	0.	ID	ID	ID	8	0	ID	ID	ID
Bis(2-Ethylhexyl)Phthalate	7	71	13	12	0.29	6	83	32	11	1.40	8	75	23	17	0.57
Chrysene	7	0	ID	ID	ID	6	0	ID	ID	ID	8	0	ID	ID	ID
Dibenzo(a,h)Anthracene	7	0	ID	ID	ID	6	0	ID	D	ID	8	0	ID	ID	ID
Diethyl Phthalate	7	0	ID	ID	ID	6	0	ID	ID	ID .	8	0	· ID	ID	ID
Dimethyl Phthalate	7	0	ID	ID	ID	6	0	ID	ID	ID	8	0	ID	_ID	ID
Di-n-Butyl Phthalate	7	29	2.13	1.96	0.29	6	ID	ID	ID	ID	8	13	ID	ID	ID
Di-n-Octyl Phthalate	. 7	14	ID	ID	ID	6	33	6.0	2.2	1.30	8	25	4.4	4.4	0.02
Fluoranthene	7	0	ID	ID	ID .	6	0	ID	ID	ID	8	0.	ID	_ ID	ID

Table 8.3.Stormwater Monitoring Chemistry Statistics for Each Watershed. (Page 4 of 5)

		Be	lmont Pı	ımp			1	Bouton C	reek			Los Cerr	itos Ch	annel	
ANALYIE	No. of	Percent			C 11	No. of	Percent		7. 11	CU	No. of	Percent			<u>a</u>
	Samples	Detect	Mean	Median	<u> </u>	Samples	Detect	Mean	Median	<u> </u>	Samples	Detect	Mean	Median	<u></u>
SEMIVOLATILE ORGANI	CS (ug/L) ((continue	d)			1									
Fluorene	7	0	ID	ID	ID	6	0	ID	ID	ID	8	0	ID	ID	ID
Hexachlorobenzene	7	0	ID	ID	ID	6	0	ID	ID	ID	8	0	ID	ID	ID
Hexachlorobutadiene	7	0	ID	ID	ID	6	0	ID	ID	ID	8	0	ID	ID	ID
Hexachlorocyclopentadiene	7	0	ĪD	ID	ID	6	0	ID	ID	ID	8	0	ID	ID	D
Hexachloroethane	. 7	0	ID	ID	ID	6	0	ID	ID	ID	8	0	ID	ID	ID
Indeno(1,2,3-c,d)Pyrene	· 7	0	ID	ID	ID	6	0	ID	ID	ID	8	0	ID ·	ID	ID
Isophorone	7·	0	ĪD	ID	ID	6	0	ID	ID	ID	8	0	ID	ID	ID
Naphthalene	7	0	ID	ID	ID	6	0	ID	ID	, ID	8	0	ID	ID	ID [·]
Nitrobenzene	7	0	ID	ID	ID	6	0	ID	ID	ID	8,	0	ID	ID	ID
N-Nitrosodi-n-Propylamine	7	0	ID	ID	D –	6	0	ID	D	ID	8	0	ID	ID	ID
N-Nitrosodiphenylamine	7	0	ID	ID	ID	6	0	ID	ID	ID	8	0.	ID	ID	· ID
Pentachlorophenol	7	29	15	3.5	1.82	6	0	ID	ID	ID	8	0	ID	ID	ID
Phenanthrene	7	0.	ĪD	ID	ID	6	0	ĪD	ID	ID	8	0	ID	ID	ID
Pyrene	7	0	ID	ID	ID	6	0	ID	ID	ID	8	0	ID	ID	ID
Phenol	7	0	ID	ID	ID	6	0	ID	ID	ID	8	13	ID	ID	ID

Table 8.3.Stormwater Monitoring Chemistry Statistics for Each Watershed. (Page 5 of 5)

	M	ay 1-Sep 1	5, 1997	N	lay 16-No	v 1, 1998	J	un 15-No	v 5,1999	A	pr 20-Oct	10, 2000	Ap	r 24-Nov	12, 2001
· · · ·	n¹	- OP (%) ²	AB411 (%) ³	n	OP (%)	AB411 (%)									
Total Coliform									· · · ·			• •			
B27	4	0	0	6	0	0	5	0	0	6	0	0	5	0	0
B28	5	0	0	6	0	0	5	0	0	6	0	· 0	7	0	́ 0
B67							22	9	0	24	8	0	29	3	0
B29							22	0	0	25	8	4	30	3	3
B14	9	• 0	0	11	0	0	21	0	0	22	5	0	30	10	0
Fecal Coliform or E. coli ⁴															
B27				1	-		5	· 0	0	6	0	0	5	0	0
B28							5	0	0.	6	0	0	7	0	0
B67							22	5	0	26	12	4	29	0	0
B29							22	0 '	0	25	12	4	30	3	0
B14							21	0	0	25	4	. 0	30	0 .	0
Enterococcus										1					•
B27	4	0													
B28	3	0	•												
B67							24	21	· 17 ·	27	7	7	29	7	0
B29						· · · ·	20	0	0	26	12	0	30	10	0
B14						•	22	5	5	25	44	24	30	13	0

Table 8.4Number of Measurements of Microbiological Indicator Organisms and Percent of Samples Exceeding Ocean Plan and
AB411 Reference Values during Extended Dry Weather Periods from 1997 through 2001.

1. n=number of measurements during time period

2. OP= Ocean Plan 30-day average

Total Coliforms: 1000 per 100 ml

Fecal Coliforms: 200 per 100 ml

Enterococcus: 35 per 100 ml

3. AB411=Assembly Bill 411 Single Sample Criteria

Total Coliforms: 10,000 per 100 ml

Total Coliforms: 1000 per 100 ml if ratio of fecal to total coliforms is greater than 0.1

Fecal Coliforms: 400 per 100 ml Enterococcus: 104 per 100 ml

4. Escherichia coli was used as surrogate for fecal coliform from January 2000 through June 12, 2001. Since a correction factor was not available, E. coli measurements were compared directly with Fecal Coliform criteria.

Table 8.5.Summary of Toxicity Characteristics of Stormwater from Various Southern
California Watersheds. Test Types: SF = sea urchin fertilization, MS = mysid
survival/growth, DS = daphnid survival/reproduction.

Location	Date	Test Type	Number of Samples	%Toxic	TUc
Long Beach	2001	SF	22	86	≤2-32
Long Beach	2001	MS	20	55	1-16
Long Beach	2001	DS	22	77	1->16
Los Angeles River	1997-99	SF	4	100	4-8
San Gabriel River	1997-99	SF	4	50	≤2-4
Ballona Creek	1996-97	SF	13	85	. ≤4-32
Chollas Creek	1999-2000	SF	5	100	8-32
Chollas Creek	1999	MS	3	0	· 1.
Chollas Creek	1999	DS	3	67	1-2

Table 8.6.Summary of TIE Results for Each Sample. The primary toxicant category indicates
the chemical class most strongly indicated by the results. The secondary category
indicates the chemical class indicated from partially effective TIE treatments.

Date	Station	Wate	er Flea	M	ysid	Sea	Urchin
		Primary Category ^a	Secondary Category ^a	Primary Category	Secondary Category	Primary Category	Secondary Category
2/23/01	Cerritos					METAL	PARTICLE
4/7/01 4/7/01	Belmont Cerritos					METAL METAL	NPO NPO
11/12/01 11/13/01	Belmont Bouton	ОР	METAL	NPO			
11/12/01	Cerritos	ОР	METAL				
11/24/01 11/24/01	Belmont Bouton	OP		NPO		METAL METAL	
11/24/01	Cerritos	OP	PARTICLE			METAL	
5/9/02	Cerritos					METAL	

^a OP = organophosphate pesticide, METAL = divalent trace metal, NPO = unspecified nonpolar organic, PARTICLE = toxicity associated with particulate fraction of sample.

Table 8.7.

Nonparametric Spearman Correlation Coefficients showing the Relationship between Change in Chemical Concentration and Toxic Units for the Sea Urchin and Water Flea Toxicity Tests. Toxic units are based on the EC50 (sea urchin fertilization, water flea reproduction) or LC50 (water flea survival). Values in bold are statistically significant at $p \le 0.05$ (*) or $p \le 0.01$ (**). N=22 for all constituents except for chlorpyrifos and diazinon, where n=6.

		Sea Urchin	W	ater Flea
Con	stituent	Fertilization	Survival	Reproduction
·	· ·	TUa	TUa	TUa
TSS		-0.18	0.55**	0.60**
TDS .		-0.18	0.35	0.33
TOC		0.05	0.79**	0.79**
Cadmium	Dissolved	0.24	0.78**	0.77**
Chromium	Dissolved	0.22	0.49*	0.42
Copper	Dissolved	0.46*	0.23	0.08
Lead	Dissolved	0.12	0.42*	0.36
Nickel	Dissolved	0.22	0.86**	0.79**
Zinc	Dissolved	0.54**	0.59**	0.49*
Chlorpyrifos	· ·	0.28	0.15	0.15
Diazinon	÷	-0.12	0.54	0.54

111 .

Historical Bacteria Study Sites

Figure 8.2. Bacterial Time Series for City of Long Beach Alamitos Bay Bacteria Station B14 (Bayshore Float).

Figure 8.4.

Bacterial Time Series for City of Long Beach Alamitos Bay Bacteria Station B67 (Bayshore and Second Street Bridge).

Figure 8.5. Bacterial Time Series for City of Long Beach Rowing Association Bacteria Station B28 (Los Cerritos Channel and Marine Stadium).

Sector M.

Figure 8.6. Bacterial Time Series for City of Long Beach Los Cerritos Channel Bacteria Station B27 (Los Cerritos Channel and Pacific Coast Highway).

Belmont Pump Chemistry Results: a) Cadmium; b) Copper; c) Nickel.

Belmont Pump Chemistry Results: a) Lead (Total and Dissolved); b) Lead (Dissolved); c) Zinc.

Belmont Pump Chemistry Results: a) Chlorpyrifos; b) Diazinon.

Figure 8.11 Bouton Creek Chemistry Results: a) Lead (Total and Dissolved); b) Lead (Dissolved); c) Zinc.

Figure 8.12

Bouton Creek Chemistry Results: a) Chlorpyrifos; b) Diazinon.

Figure 8.14 Los Cerritos Channel Chemistry Results: a) Lead (Total and Dissolved); b) Lead (Dissolved); c) Zinc.

Figure 8.15

Los Cerritos Channel Chemistry Results: a) Chlorpyrifos; b) Diazinon.

Figure 8.16 Dominguez Pump Chemistry Results: a) Cadmium; b) Copper; c) Nickel.

Figure 8.17 Dominguez Pump Chemistry Results: a) Lead (Total and Dissolved); b) Lead (Dissolved); c) Zinc.

Figure 8.18

Dominguez Pump Chemistry Results: a) Chlorpyrifos; b) Diazinon.

Figure 8.20. Comparison of Measured (Total) Toxic Units for the Sea Urchin Fertilization Test and Toxic Units Predicted from the Dissolved Concentrations of Copper and Zinc in the Test Samples. Measured toxic units are based on the EC50 (100/EC50). A value of 1 toxic unit was assigned to low/nontoxic samples having an estimated EC50 of >100%.

Figure 8.21. Comparison of Measured (Total) Toxic Units for the Water Flea Survival Test and Toxic Units Predicted from the Concentrations of Chlorpyrifos, Diazinon, and Dissolved Zinc in the Test Samples. Measured toxic units are based on the EC50 (100/EC50). A value of 1 toxic unit was assigned to low/nontoxic samples having an estimated EC50 of >100%.

9.0 CONCLUSIONS

Stormwater and dry weather monitoring has been carried out for the City of Long Beach at four mass emission stations and one receiving water station as specified in the NPDES permit. Twenty-one wet weather station events have been monitored along with twenty dry weather inspections/monitoring efforts. This program involved a coordinated chemical analysis and toxicity testing (marine and freshwater) approach.

Exceedances of provisional benchmark values have been identified for some metals, primarily zinc and copper, and for diazinon and chlorpyrifos (organophosphate pesticides). Stormwater discharges have consistently shown measured toxicity to freshwater and marine test species, but the one receiving water site (lower Alamitos Bay) does not show measured toxicity, consistent with indicated dilution. Bacterial levels in the wet weather discharges are 2 to 3 orders of magnitude above receiving water criteria and dry weather discharges also exceed criteria. Data from Alamitos Bay receiving waters and from the City of Long Beach Department of Health and Human Services show that the Bay bacterial values are elevated during rain events, but are at relatively low values during dry weather periods.

Toxicity Identification Evaluations (TIEs) implicate organophosphate pesticides (diazinon and chlorpyrifos) in causing toxicity to the freshwater water flea. In addition, dissolved metals, primarily zinc and perhaps copper, are implicated in the toxicity to the purple sea urchin (marine).

Proposed storm water monitoring program refinements/recommendations at this point in the program include the following:

- The Dominguez Gap Pump Station discharges infrequently to the Los Angeles River, only during periods of large and intense rains (3 events captured to date). Dry weather flows at this station are non-existent. It is recommended that the monitoring efforts and resources be directed elsewhere in the program.
- Additional TIE work needs to be conducted to verify the preliminary results on the causes of toxicity in Long Beach stormwater and dry weather flows.
- Considerations should be given to further receiving water sampling to measure chemical and toxicity impacts in the receiving waters. Establishing two receiving water stations in upper Alamitos Bay may help to evaluate if receiving water quality criteria are being impacted by stormwater discharges. This may be achieved by relocating the current lower Alamitos Bay receiving water site and redirecting resources currently expended at the Dominquez Gap site to establishment of a second receiving water location in upper Alamitos Bay.

10.0 REFERENCES CITED

- APHA [American Public Health Association]. 1995. Standard Methods for the Examination of Water and Waste Water. (19th edition) Eaton, A.D., L.S. Clesceri, and A.E. Greenberg (Eds.). American Public Health Association, Washington, D.C.
- Bay, S., B.H. Jones, and K. Schiff. 1999. Study of the Impact of Stormwater Discharge on Santa Monica Bay. Executive Summary. Sea Grant Program, University of Southern California. Los Angeles.
- California Regional Water Quality Control Board, Los Angeles Region. 1994. Water Quality Control Plan, Los Angeles Region, Basin Plan for the Coastal Watersheds of Los Angeles and Ventura Counties.
- California Regional Water Quality Control Board, Los Angeles Region. 1999. Waste Discharge Requirements for Municipal Stormwater and Urban Runoff Discharges within the City of Long Beach. Order No. 99-060 National Pollutant Discharge Elimination Systems Municipal Permit No. CAS004003 (CI 8052), June 30, 1999.
- California Water Quality Control Board. 2000. Policy for Implementation of Toxic Standards for Inland Surface Waters, Enclosed Bays, and Estuaries in California (SIP).
- City of Long Beach, 1999. City of Long Beach Stormwater Management Program. Section 3. Geographic Characteristics.

City of Long Beach, 2001. City of Long Beach GIS Database. Dept. of Technology, Long Beach, CA.

- Jirik, A.W., S.M. Bay, D.J. Greenstein, A. Zellers, and S.L. Lau. 1998. Application of TIEs in Studies of Urban Stormwater Impacts on Marine Organisms. Pp. 284-298 in: E. E. Little, A. J. DeLonay and B. M. Greenberg Environmental Toxicology and Risk Assessment: Seventh Volume, ASTM STP 1333. American Society for Testing and Materials.
- Kinnetic Laboratories, Inc. 1995a. Mission Bay Bacterial Contamination Study. Prepared for the City of San Diego.
- Kinnetic Laboratories, Inc. 1995b. Storm Water Monitoring of Bacterial Contamination at Neary Lagoon and Tributaries. Prepared for the City of Santa Cruz.
- Kinnetic Laboratories, Inc.and Southern California Coastal Water Research Project (SCCWRP). 2000. City of Long Beach Storm Water Monitoring Report 1999/2000. NPDES Permit No. CAS0040003 (CI 8052), July, 2000.
- Kinnetic Laboratories, Inc. and Southern California Coastal Water Research Project. 2001. City of Long Beach Storm Water Monitoring Report 2000/2001. NPDES Permit No. CAS0040003 (CI 8052), July, 2001.
- Marshack, Jon. 2000. Compilation of Water Quality Goals. California Regional Water Quality Control Board, Central Region.
- Miles, S.R. and C.B. Goudey. 1998. Ecological Subregions of California. Internet number R5-EM-TP-005 NET. Available at: http://www.r5.pswfs.gov/ecoregions. [Access Date June 6, 2001]

- National Climate Data Center, 2000. NCDC TD 9641 CLIM 81 1961-1990 NORMALS. Available at: http:// www.worldclimate.com [Access Date June, 2002].
- Noblet, J.A., S.M. Bay, M.K. Stenstrom, and I.H. Suffet. 2001. Assessment of Storm Drain Sources of Contaminants to Santa Monica Bay. Volume VI Task B. Toxicity of Suspended Solids and Sediments from Ballona Creek and Sediments from Malibu Lagoon Associated with Urban Stormwater Runoff. University of California, Los Angeles. Los Angeles.
- San Diego, Project Clean Water, 2001. Phase I Results Report, Clean Water Strategic Plan. http://www.projectleanwater.org. html/phase_1_report.html
- Schiff, K.C., S.M. Bay, and C. Stransky. 2001. Characterization of Stormwater Toxicants from an Urban Watershed to Freshwater and Marine Organisms. pp. 71-84 in: S. B. Weisberg and D. Elmore Southern California Coastal Water Research Project. Annual Report 1999/2000. Westminster. Southern California Coastal Water Research Project.
- Southern California Coastal Water Research Project. 1999. Characterization of Stormwater Toxicity from Chollas Creek, San Diego. Southern California Coastal Water Research. Westminster, CA
- State Water Resources Control Board. 2000. Policy for Implementation of Toxic Standards for Inland Surface Waters, Enclosed Bays and Estuaries of California.
- State Water Resources Control Board 2001. Water Quality Control Plan, Ocean Waters of California, California Ocean Plan
- Siepmann, S. and B. Finlayson 2002. Water Quality Criteria for Diazinon and Chlorpyrifos. California Department of Fish and Game, Pesticide Investigations Unit. April 26, 2002. Chollas Creek Diazinon TMDL, Attachment D.
- U.S. Census Bureau. 2000. State and County Quick Facts for Los Angeles County. Available at http://quickfacts.census.gov/qfd/states/06/06037.html [Accessed on 6 June 2001]
- USEPA [U.S. Environmental Protection Agency]. 1983a. Methods for the Chemical Analyses of Water and Wastes. EPA-600/4-79/020. Revised March 1983.
- USEPA [U.S. Environmental Protection Agency]. 1983b. Results of the Nationwide Urban Runoff Program. Report PB84-185537. Water Planning Division, Washington D.C.
- USEPA [U.S. Environmental Protection Agency]. 1991. Methods for Aquatic Toxicity Identification Evaluations. Phase I, Toxicity Characterization Procedures (2nd Ed.) EPA/600/6-91/003. Office of Research and Development.
- USEPA [U.S. Environmental Protection Agency]. 1994. USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review. Vol. EPA-540/R-94/012. Washington D.C.: U.S. Environmental Protection Agency Office of Emergency Response and Remedial Response.
- USEPA [U.S. Environmental Protection Agency]. 1994. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. Vol. EPA-540/R-94/013. Washington D.C.: U.S. Environmental Protection Agency Office of Emergency Response and Remedial Response.

- USEPA [U.S. Environmental Protection Agency]. 1994a. Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms (Third Edition). Vol. EPA-600/4-91/002. Cincinnati, OH: U.S. Environmental Protection Agency, National Exposure Research Laboratory:
- USEPA [U.S. Environmental Protection Agency]. 1994b. Short-Term Methods of Estimating the Chronic Toxicity of Effluents and Receiving Waters to Marine and Estuarine Organisms. Edited by D. J. Klemm, G. E. Morrison, T. J. Norberg-King, W. H. Peltier and M. A. Heber. Vol. EPA/600/4-91/003. Cincinnati, OH: Environmental Monitoring Systems Laboratory:
- USEPA [U.S. Environmental Protection Agency]. 1995a. Guidance on Documentation and Evaluation of Trace Metals Data Collected for the Clean Water Act Compliance Monitoring. Vol. EPA/821/B-95/002. Washington D.C.: U.S. Environmental Protection Agency, Office of Water, Engineering, and Analysis Division.
- USEPA [U.S. Environmental Protection Agency]. 1995b. Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms. Edited by G. A. Chapman, D. L. Denton and J. M. Lazorchak. First ed. Cincinnati, OH: Office of Research and Development.
- USEPA, [U.S. Environmental Protection Agency]. 1999. National Recommended Water Quality Criteria -Correction. EPA 822-Z-99-001. Office of Water.
- USEPA [U.S. Environmental Protection Agency]. 2000a. <u>Federal Register, Part III</u>. "California Toxics Rule: Water Quality Standards; Establishment of Numeric Criteria for Priority Toxic Pollutants for the State of California; Rule."
- USEPA [U.S. Environmental Protection Agency]. 2000b. Chlorpyrifos Revised Risk Assessment and Agreement with Registrants.
- USEPA [U.S. Environmental Protection Agency]. 2001. Diazinon Revised Risk Assessment and Agreement with Registrants.

BIOASSAY RESULTS

City of Long Beach Wet Weather Runoff Samples

Chronic Toxicity Tests:

Ceriodaphnia dubia Survival and Reproduction Americamysis bahia Survival and Growth Strongylocentrotus purpuratus Fertilization

SAMPLES RECEIVED 14 November 2001

T-19895

Prepared for: KINNETIC LABORATORIES, INC Santa Cruz, California

> Prepared by: TOXSCAN, INC. BIOASSAY DIVISION Watsonville, California

> > June 2002 .

Kinnetic Laboratories, Inc. T-19895 Page 1

Introduction

ToxScan, Inc. conducted chronic toxicity tests on three wet weather runoff samples collected by Kinnetic Laboratories, Inc. from three locations within the City of Long Beach. The time-and-flow composited samples were collected from stations at Belmont Pump, Bouton Creek and Los Cerritos Channel under KLI Task Number 585.09. In addition, a grab sample of receiving water was collected from Alamitos Bay. Sample ID's are summarized in Table 1.

The toxicity tests were conducted using one freshwater species (*Ceriodaphnia dubia*) and two species of marine organisms. The two marine species tested were *Americamysis (Mysidopsis) bahia* and *Strongylocentrotus purpuratus* which were additionally tested with the receiving water sample from Alamitos Bay. The results of the toxicity tests were used to determine triggering of Toxicity Identification Evaluations (TIE's) with each sample/species combination. Results of TIE's are reported elsewhere.

Methods

Ceriodaphnia dubia Tests

The test methods for *Ceriodaphnia* followed protocols outlined in Short Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms (EPA/600/4-91/002, July 1994)The *Ceriodaphnia dubia* tests were six days in duration, utilizing static-renewal protocols, which require daily replacement of test solutions. The bioassays were performed between 14 and 20 November 2001. The experimental design called for testing laboratory water controls to serve as evidence of laboratory quality assurance and for testing stormwater at 6.25%, 12.5%, 25%, 50% and 100% concentrations. A concurrent reference toxicant test was also performed using potassium chloride as the test chemical.

Laboratory control water was EPA moderately hard (E-pure) with 10% Perrier plus selenium. Test organisms were <24 hr old neonates derived from in-house cultures. Original broodstock was from EPA Duluth and cultured in EPA moderately hard water prepared with E-Pure water. Concentrations of runoff water were prepared daily during the test, using the laboratory control water as dilution water.

Testing was conducted with 10 individuals per treatment, each in individual plastic cups containing 20 mL of test solution. Test temperature was $25 \pm 1^{\circ}$ C and photoperiod was 16:8 L:D. Test solutions were renewed daily, concurrent with transfers, water quality measurements and assessment of survival and reproduction. At each daily transfer, new media were inoculated with food (200 µL of a 3:1 mixture of *Selenastrum* culture, density approximately 3.0 X 10^7 cells/mL and YCT). Test conditions are summarized in Appendix B, Table B-1.

Americamysis (Mysidopsis) bahia Tests
Kinnetic Laboratories, Inc. T-19895

Page 2

Test protocols for *Americamysis* are specified in Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Water to Marine and Estuarine Organisms (EPA/600/4-91/003, July 1994) The *Americamysis bahia* tests were seven days in duration, utilizing static-renewal protocols that require daily replacement of test solutions. The samples were tested at 100% concentration only. Bioassays were performed between 14 and 21 November 2001. The salinity of the runoff samples was adjusted to 30 ppt with a sea salt mixture (Forty Fathoms Bioassay Laboratory Formula), while the receiving water (Alamitos Bay) sample was tested at its ambient salinity (33 ppt). A concurrent salt control sample and a reference toxicant test were also performed, using copper sulfate as the test chemical.

Laboratory control water was natural seawater from our flow-through laboratory in Santa Cruz. Test organisms were 7-day-old juveniles purchased from Aquatic BioSystems, Fort Collins, CO. Renewal volumes of runoff and receiving waters were prepared daily during the test.

Testing was conducted with a total of 40 individuals per treatment, comprising eight replicate chambers containing five mysids. Test temperature was 26 1C and photoperiod was 16:8 light:dark. Test solutions were renewed daily concurrent with water quality measurements and assessment of survival. Each test container was fed twice daily with a standard amount of newly-hatched brine shrimp. After test termination, surviving animals were dried and weighed to determine growth. Test conditions are summarized in Appendix B, Table B-2.

Strongylocentrotus purpuratus Tests

Methods for the *Strongylocentrotus purpuratus* fertilization test are specified in Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Water to West Coast Marine and Estuarine Organisms (EPA/600/R-95/136, August, 1995). The *Strongylocentrotus purpuratus* tests were of very short duration (20 minute sperm exposure). Bioassays were performed on 15 November, 2001. Concentrated seawater brine was used to adjust the salinity of runoff samples to 33 ppt, resulting in unavoidable dilution of the test material. The Alamitos Bay sample was tested at 100% concentration only, while the runoff samples were tested at five concentrations (3.1%, 6.25%, 12.5% 25% and 50%). Concurrent brine control and reference toxicant bioassays were also performed, using copper sulfate as the test chemical.

Laboratory control water was natural seawater from our flow-through laboratory system in Santa Cruz. Gravid sea urchins were supplied to us in a cooperative exchange agreement with a University of California at Davis toxicology laboratory. A brine control was prepared from a mixture of 50% brine and 50% deionized water, and tested with each sample set. Concentrations of salinity adjusted runoff water were prepared using laboratory control water as diluent.

Testing was conducted using four replicate test containers per treatment. A pre-test was conducted to determine the minimum sperm:egg ratio necessary to achieve 95% fertilization. An appropriate volume of diluted sperm suspension was pipetted into each test tube containing test treatments. The sperm was allowed to remain in contact with the test solutions for exactly 20 minutes, whereupon a standardized number of eggs was added to each. Exactly 20 minutes were allowed for fertilization to occur, after which time formalin was added to halt fertilization and preserve eggs and embryos. Each test container was examined microscopically to determine the percentage of eggs fertilized. Test conditions are summarized in Appendix B, Table B-3.

Kinnetic Laboratories, Inc. T-19895 Page 3

RESULTS

Results of all bioassays are summarized in Table 2; and details of data and statistical analyses are contained in Toxis reports in Appendix A.

CERIODAPHNIA REPRODUCTION AND SURVIVAL data are tabulated, and results of statistical analyses are summarized and presented in Appendix A; Toxis reports 19895CD-BP (Belmont Pump), 19895CD-BC (Bouton Creek) and 19895CD-CC (Cerritos Channel).

For the Belmont Pump Station sample Fisher's Exact Test showed significantly decreased survival in all runoff water concentrations. The NOEC was <6.25% and the LOEC was 6.25%. The LC₅₀ for survival was 3.9% sample with 95% confidence limits of 3.12% and 5.21%. Reproduction data were not normally distributed, and variance was non-homogeneous. Wilcoxon's test with Bonferroni's adjustment showed significantly decreased reproduction in the 12.5% runoff water concentration. The NOEC was 6.25% and the LOEC was 12.5%. The IC₅₀ for reproduction was 7.95% sample.

For the Bouton Creek sample Fisher's Exact Test showed significantly decreased survival in the 100% and 50% runoff water samples. The NOEC for survival was 25% and the LOEC was 50%. The LC_{50} for survival was 36% with 95% confidence limits of 32.1% and 37.5%. Reproduction data were not normally distributed and variance was not homogeneous. Wilcoxon's Test with Bonferroni's adjustment showed significantly decreased reproduction in the 100% and 50% runoff water concentrations. The NOEC for reproduction was 25% and the LOEC was 50%. The IC₅₀ for reproduction was 42.2% with 95% confidence limits of 38.7% and 44.8%.

For the Los Cerritos Channel Sample Fisher's Exact Test showed significantly decreased survival in the 100%, 50% and 25% runoff water concentrations. The NOEC for survival was 12.5% and the LOEC was 25%. The LC₅₀ for survival was 21.4% with 95% confidence limits of 19.4% and 29.2%. Reproduction data were not normally distributed and variance was not homogeneous. Steel's Test showed significantly decreased reproduction in the 100%, 50% and 25% runoff water concentrations. The NOEC for reproduction was 12.5% and the LOEC was 25%. The IC₅₀ for reproduction was 19.9% sample, with 95% confidence limits of 18.8% and 22.0%.

All three tests met all protocol acceptability criteria: laboratory controls produced 100% survival (80% needed to pass) and mean reproduction in control animals was • 15 offspring.

Quality Assurance - Ceriodaphnia

A chronic reference toxicant bioassay was run concurrently with tests of the stormwater samples. The results of the *Ceriodaphnia* reference toxicant test (using KCl as the toxicant) are presented in Appendix A, Toxis[®] report 19895CD-R.

Kinnetic Laboratories, Inc. T-19895 Page 4

The LC₅₀ for survival was 0.660 g/L KCI (95% confidence limits = 0.58 - 0.75 g/L). The IC₅₀ for reproduction was 0.63 g/L KCI, with 95% confidence limits of 0.45 - 0.70 g/L. These results are within laboratory control chart limits for reproduction (0.28 - 0.63 g/L) and for survival (0.28 - 0.70 g/L), suggesting that this group of test organisms demonstrated typical sensitivity.

Environmental monitoring data for the effluent tests and those for the reference toxicant tests are presented in the Toxis[®] reports in Appendix A.

AMERICAMYSIS SURVIVAL AND GROWTH data are tabulated, and results of statistical analyses are summarized and presented in Appendix A TOXIS reports 19895MY-AB (Alamitos Bay), 19895MY-BP (Belmont Pump), 19895MY-BC (Bouton Creek) and 19895MY-CC(Los Cerritos Channel).

For the Alamitos Bay sample there were no statistically significant reductions in survival or growth in the Alamitos Bay receiving water sample vs. laboratory controls. Survival in the test sample (98%) exceeded survival in the laboratory seawater control (88%) and mean growth in receiving water was slightly greater (• • = 0.37 mg) than in laboratory control water (• \leftarrow 0.36 mg).

For the Belmont Pump Station sample Wilcoxon's Rank Sum Test with Bonferroni's adjustment showed that the sample produced significantly decreased survival when compared with either laboratory controls or brine controls. The sample produced 0% survival compared to 95% survival in the laboratory seawater control, and 100% survival in the artificial salt control. Because there were no survivors in the sample, the growth endpoint was not calculable.

For the Bouton Creek sample t-tests or Wilcoxon's Rank Sum Test showed that the sample produced significantly decreased survival and growth when compared with either laboratory controls or brine controls. The sample produced 45% survival compared to 95% and 100% survival in the two controls, with average growth of 0.21 mg versus 0.36 - 0.37 mg in the controls.

For the Los Cerritos Channel sample t-tests or Wilcoxon's Rank Sum Test showed that the sample produced significantly decreased survival and growth when compared with either laboratory controls or brine controls. The sample produced 67.5% survival compared to 95% and 100% survival in the two controls, with average growth of 0.25 mg versus 0.36 - 0.37 mg in the controls.

All four tests met test acceptability criteria: survival in laboratory controls was between 95% and 100% (need 80%) and mean weight was between 0.36 and 0.37 mg / mysid (need at least 0.20).

Quality Assurance - Americamysis

A chronic reference toxicant bioassay was run concurrently with tests of the runoff samples. The results of the *Americamysis* reference toxicant test (using copper sulfate as the toxicant) are presented in Appendix A, Toxis[®] report 19895MY-R.

Kinnetic Laboratories, Inc. T-19895 Page 5

The LC₅₀ for survival was 242 ug/L Cu (95% confidence limits = 225 - 259 ug/L). The EC₅₀ for growth was 217 ug/L Cu, with 95% confidence limits of 203 - 229 u g/L. These results are within laboratory control chart limits for growth (113 - 344 ug/L) and for survival (121 - 399 ug/L), suggesting that this group of test organisms demonstrated typical sensitivity.

Environmental monitoring data for the effluent tests and those for the reference toxicant tests are presented in the Toxis[®] reports in Appendix A.

STRONGYLOCENTROTUS FERTILIZATION data are tabulated, and results of statistical analyses are summarized in Appendix A TOXIS reports 19895SP-AB (Alamitos Bay), 19895SP-BP (Belmont Pump), 19895SP-BC (Bouton Creek) and 19895SP-CC(Los Ceritos Channel). One sample (Bouton Creek) produced a discontinuous dose response due to an anomalous response in all four replicates of the 6.25% concentration. This concentration produced virtually no fertilization, whereas all other concentrations produced between 49% and 96% fertilization. All replicates of the 6.25% concentration were excluded from statistical analyses.

For the Alamitos Bay sample the receiving water did not produce significantly reduced fertilization of sea urchin eggs compared to the laboratory seawater control exposures.

For the Belmont Pump sample a modified Dunnett's Test with two controls showed significantly reduced fertilization in the 50%, 25%, 12.5% and 6.25% concentrations. The NOEC was 3.1% sample and the LOEC was 6.25% sample. The EC₅₀ was >50% sample.

For the Bouton Creek sample a modified Dunnett's Test with two controls showed significantly reduced fertilization in the 50%, 25% and 12.5% concentrations. The NOEC was 3.1% sample and the LOEC was 12.5% sample. Note that the 6.25% concentration was not included in the statistical calculations (see above). The EC₅₀ was 47% sample.

For the Los Cerritos Channel sample the Modified Dunnett's Test with two controls indicated that every concentration of Los Cerritos Channel runoff water produced significantly decreased fertilization of sea urchin eggs. The LOEC was 3.1% and the NOEC was <3.1% sample. The EC₅₀ for fertilization was >50%.

All four tests met acceptability criterion of • 70% fertilization in the control exposures.

Quality Assurance - Strongylocentrotus.

A reference toxicant bioassay was run concurrently with the tests of the runoff and receiving water samples. The EC_{50} for copper was 31.9 ug/L, which was within the limits of our laboratory control chart. Control chart limits were 0.01 and 45.6 ug/L copper.

Environmental monitoring data for the effluent tests and those for the reference toxicant tests are presented in the Toxis[®] reports in Appendix A.

Kinnetic Laboratories, Inc. T-19895 Page 6

SUMMARY AND DISCUSSION

Two marine species and one freshwater species were used to assess toxicity of wet weather runoff water collected from three locations within the City of Long Beach. Additionally, the two marine species were tested with a sample of water collected at the receiving location at Alamitos Bay. Results were as follows:

-The water sample from the Belmont Pump Station produced measurable toxicity to all three test organisms at the maximum concentration tested. TIEs were triggered for *Ceriodaphnia* and *Americamysis*, but not for *Strongylocentrotus*.

-The water sample from Bouton Creek produced measurable toxicity to all three test species. TIEs were triggered for *Ceriodaphnia* and *Strongylocentrotus*. but not to *Americamysis*.

-The water sample from Los Cerritos Channel produced measurable toxicity to all three test species. A TIE was triggered for *Ceriodaphnia*, but not for *Americamysis* or for *Strongylocentrotus*.

-The Alamitos Bay receiving water sample did not show toxicity to either of the two marine species tested.

Bioassays performed with all three species met all quality assurance guidelines and test acceptability criteria, and the data can be viewed with full confidence. Results of TIEs are reported in a separate report.

Kinnetic Laboratories, Inc. T-19895

Page 7

Sample Date/ Time	Field Sample ID	Site Name	Lab Sample ID	Toxis ID
11/12/2001; 20:20	LB2-BP-Comp-1	Belmont Pump	T-19895 -01	19895xx-BP
11/13/2001; 11:45	LB2-BC-Comp-1	Bouton Creek	T-19895 -02	19895xx-BC
11/12/2001; 23:50	LB2-CC-Comp-1	Los Cerritos Channel	T-19895 -04	19895xx-CC
11/12/2001; 21:00	LB2-Abay-Grab-1	Alamitos Bay	T-19895 -05	19895xx-AB

Table 1. Samples received, City of Long Beach Wet Weather Runoff, 14 November 2001.

"xx": CD = Ceriodaphnia MY = Americamysis SP = Strongylocentrotus

Table 2. Bioassay Results Summary, City of Long Beach Wet Weather Runoff, 14 November 2001.

Test Operation	Test Endpoint	Belmont	Bouton	Los Cerritos	Alamitos		
l est Species		Pump	Сгеек	Channel	вау		
C. dubia- Survival	LC50	3.91% ^{TIE}	36.1% ^{TIE}	21.4% ^{TIE}	na		
	NOEC	<6.25%	25%	12.5%	na		
Reproduction	IC50	7.95%	42.2%	19.9%	na		
·	NOEC	6.25%	25%	12.5%	na		
A. bahia*- Survival	• •Percent	0.0 ^{TIE}	45.0	67.5	98.0		
	Sig < Control?	Yes	Yes	Yes	No		
Growth	• " mg	nm .	0.11	0.25	0.36		
	Sig < Control?	nc	Yes	Yes	No		
S. purpuratus-Fertilization	EC50	>50%	47% ^{TIE}	>50%	na		
	NOEC	3.1%	3.1%	<3.1%	>100%		
TIE TIE triggered na = not applicable nm = not measured (no survivors to weigh) nc = not calculable							
*Exposures to 100% sample only.							

BIOASSAY RESULTS

City of Long Beach Dry Weather Runoff Samples

Chronic Toxicity Tests:

Ceriodaphnia dubia Survival and Reproduction Strongylocentrotus purpuratus Fertilization

> SAMPLES RECEIVED: 9 May 2002 and 15 May 2002

> > T-20307 and T-20312

Prepared for: KINNETIC LABORATORIES, INC Santa Cruz, California

> Prepared by: TOXSCAN, INC. BIOASSAY DIVISION Watsonville, California

> > June 2002

City of Long Beach Dry Weather Samples May 2002

Kinnetic Laboratories, Inc. T-20307 and T-20312

Page 1,

Introduction

ToxScan, Inc. conducted chronic toxicity tests on three wet weather runoff samples collected by Kinnetic Laboratories, Inc. from three locations within the City of Long Beach. The time-and-flow composited samples were collected from stations at Belmont Pump, Bouton Creek and Los Cerritos Channel under KLI Task Number 585.06. In addition, a grab sample of receiving water was collected from Alamitos Bay. Sample ID's are summarized in Table 1.

The toxicity tests were conducted using one freshwater species (*Ceriodaphnia dubia*) and one species of marine organism (*Strongylocentrotus purpuratus*) that was additionally tested with the receiving water sample from Alamitos Bay. The mysid *Americamysis bahia* was not tested with these samples. The results of the toxicity tests were used to determine triggering of Toxicity Identification Evaluations (TIE's) with each sample/species combination. Results of TIE's are reported elsewhere.

The initial sample collected on 9 May 2002 (ToxScan ID T-20307-03) from the Bouton Creek station was moderately saline (13.1‰). This level of salinity is more than 4X the published acute LC50 for *Ceriodaphnia dubia*. Therefore, the station was resampled on 14 May 2002 (ToxScan ID T-20312-01) under more favorable tide conditions. This sample was slightly saline (7.3‰) but useable in the *Ceriodaphnia* bioassay (see Discussion).

Methods

Ceriodaphnia dubia Tests

The test methods for *Ceriodaphnia* followed protocols outlined in Short Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms (EPA/600/4-91/002, July 1994). The *Ceriodaphnia dubia* tests were six days in duration, utilizing static-renewal protocols, which require daily replacement of test solutions. The bioassays were performed between 10 and 16 May 2002 (T-20307) and 15 and 21 May (T-20312). The experimental design called for testing laboratory water controls to serve as evidence of laboratory quality assurance and for testing stormwater at 6.25%, 12.5%, 25%, 50% and 100% concentrations. A concurrent reference toxicant test was also performed using potassium chloride as the test chemical.

Laboratory control water was EPA moderately hard (E-pure) with 10% Perrier plus selenium. Test organisms were <24 hr old neonates derived from in-house cultures. Original broodstock was from EPA Duluth and cultured in EPA moderately hard water prepared with E-Pure water. Concentrations of runoff water were prepared daily during the test, using the laboratory control water as dilution water.

Testing was conducted with 10 individuals per treatment, each in individual plastic cups containing 20 mL of test solution. Test temperature was $25 \pm 1^{\circ}$ C and photoperiod was 16:8 L:D. Test solutions were renewed daily, concurrent with transfers, water quality measurements and assessment of survival and reproduction. At each daily transfer, new media were inoculated with food (200 µL of a 3:1 mixture of *Selenastrum* culture,

density approximately 3.0 X 10⁷ cells/mL and YCT). Test conditions are summarized in Appendix B, Table B-1.

Strongylocentrotus purpuratus Tests

Methods for the *Strongylocentrotus purpuratus* fertilization test are specified in Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Water to West Coast Marine and Estuarine Organisms (EPA/600/R-95/136, August, 1995). The *Strongylocentrotus purpuratus* tests are of very short duration (20 minute sperm exposure). Bioassays were performed on 10 May, 2002 (T-20307) and 16 May (T-20312). Concentrated seawater brine was used to adjust the salinity of runoff samples to 33 ppt, resulting in unavoidable dilution of the test material. The Alamitos Bay sample was tested at 100% concentration only, while the runoff samples were tested at five concentrations (3.1%, 6.25%, 12.5% 25% and 50%). Concurrent brine control and reference toxicant (CuSO4) bioassays were also performed.

Laboratory control water was natural seawater from our flow-through laboratory system in Santa Cruz. Gravid sea urchins were supplied to us in a cooperative exchange agreement with a University of California at Davis toxicology laboratory. A brine control was prepared from a mixture of 50% brine and 50% deionized water, and tested with each sample set. Concentrations of salinity adjusted sample waters were prepared using laboratory control water as diluent.

Testing was conducted using four replicate test containers per treatment. A pre-test was conducted to determine the minimum sperm:egg ratio necessary to achieve 95% fertilization. An appropriate volume of diluted sperm suspension was pipetted into each test tube containing test treatments. The sperm was allowed to remain in contact with the test solutions for exactly 20 minutes, whereupon a standardized number of eggs was added to each. Exactly 20 minutes were allowed for fertilization to occur, after which time formalin was added to halt fertilization and preserve eggs and embryos. Each test container was examined microscopically to determine the percentage of eggs fertilized. Test conditions are summarized in Appendix B, Table B-2.

RESULTS

Results of all bioassays are summarized in Table 2; and details of data and statistical analyses are contained in Toxis reports in Appendix A.

CERIODAPHNIA REPRODUCTION AND SURVIVAL data are tabulated, and results of statistical analyses are summarized and presented in Appendix A; Toxis reports 20307CD-BP (Belmont Pump), 20312CD-BC (Bouton Creek) and 20307CD-CC (Cerritos Channel).

For the Belmont Pump Station sample Fisher's Exact Test showed no significantly decreased survival in all runoff water concentrations. The NOEC was >100% and the LOEC was >100%. The LC_{50} for survival was >100% sample. Reproduction data were not normally distributed, and variance was non-homogeneous. Wilcoxon's test with Bonferroni's adjustment showed no significantly decreased reproduction in the any of the runoff water concentrations. The NOEC was >100% and the LOEC was >100%. The IC₅₀ for reproduction was also >100% sample.

City of Long Beach Dry Weather Samples May 2002

Kinnetic Laboratories, Inc. T-20307 and T-20312 Page 3

For the Bouton Creek sample Fisher's Exact Test showed significantly decreased survival in the 100% and 50% runoff water samples. The NOEC for survival was 25% and the LOEC was 50%. The LC₅₀ for survival was 37.5% with 95% confidence limits not calculable. Reproduction data were normally distributed but variance was not homogeneous. Wilcoxon's Test with Bonferroni's adjustment showed significantly decreased reproduction in the 100%, 50%, 25% and 12.5% runoff water concentrations. The NOEC for reproduction was 6.25% and the LOEC was 12.5%. The IC₅₀ for reproduction was 29.6% with 95% confidence limits of 12.0% and 33.6%.

For the Los Cerritos Channel Sample Fisher's Exact Test showed no significantly decreased survival in any of the runoff water concentrations. The NOEC for survival was >100%% and the LOEC was >100%. The LC_{50} for survival was >100%% with 95% confidence limits not calculable. Reproduction data were normally distributed but variance was not homogeneous. Steel's Test showed no significantly decreased reproduction in any of the runoff water concentrations. The NOEC for reproduction was >100% and the LOEC was >100%. The IC₅₀ for reproduction was also >100% sample.

Both tests met all protocol acceptability criteria: laboratory controls produced 100% survival (80% needed to pass) and mean reproduction in control animals was • **4**5 offspring.

Quality Assurance - Ceriodaphnia

Chronic reference toxicant bioassays were run concurrently with tests of each stormwater sample. The results of the *Ceriodaphnia* reference toxicant tests (using KCI as the toxicant) are presented in Appendix A, Toxis[®] report 20307CD-R.

The LC₅₀ for survival was 0.44 g/L KCI (95% confidence limits = 0.36 - 0.53 g/L). The IC₅₀ for reproduction was 0.42 g/L KCI, with 95% confidence limits not calculable. These results are within laboratory control chart limits for reproduction (0.29 - 0.63 g/L) and for survival (0.35 - 0.71 g/L), suggesting that this group of test organisms demonstrated typical sensitivity.

Environmental monitoring data for the effluent tests and those for the reference toxicant tests are presented in the Toxis[®] reports in Appendix A.

STRONGYLOCENTROTUS FERTILIZATION data are tabulated, and results of statistical analyses are summarized in Appendix A TOXIS reports 20307SP-AB (Alamitos Bay), 20307SP-BP (Belmont Pump), 20307SP-BC (Bouton Creek) and 20307SP-CC (Los Cerritos Channel).

For the Alamitos Bay sample the receiving water did not produce significantly reduced fertilization of sea urchin eggs compared to the laboratory seawater control exposures.

City of Long Beach Dry Weather Samples May 2002

Kinnetic Laboratories, Inc. T-20307 and T-20312 Page 4

For the Belmont Pump sample a modified Dunnett's Test with two controls showed significantly reduced fertilization in the 50% concentration only. The NOEC was 25% sample and the LOEC was 50% sample. The EC₅₀ was 47.3% sample.

For the Bouton Creek sample a modified Dunnett's Test with two controls showed no significantly reduced fertilization in any of the concentrations. The NOEC was 100% sample and the LOEC was >100% sample. The EC₅₀ was >50% sample.

For the Los Cerritos Channel sample the Modified Dunnett's Test with two controls indicated that the 50% and 25% concentrations of Los Cerritos Channel runoff water produced significantly decreased fertilization of sea urchin eggs. The NOEC was 12.5% and the LOEC was 25% sample. The EC₅₀ for fertilization was 31.8%.

All four tests met acceptability criterion of • 70% fertilization in the control exposures.

Quality Assurance - Strongylocentrotus.

A reference toxicant bioassay was run concurrently with each test of the runoff and receiving water sample (T-20307 and T-20312). The IC_{25} for copper was 12.2 and 36.1 ug/L, which was within the limits of our laboratory control chart (0.03 and 55.9 ug/L copper).

Environmental monitoring data for the effluent tests and those for the reference toxicant tests are presented in the Toxis[®] reports in Appendix A.

SUMMARY AND DISCUSSION

One marine species and one freshwater species were used to assess toxicity of wet weather runoff water collected from three locations within the City of Long Beach. Additionally, the marine species was tested with a sample of water collected at the receiving location at Alamitos Bay. Results were as follows:

-The water sample from the Belmont Pump Station produced measurable toxicity at the maximum concentration tested. A TIE was triggered for *Strongylocentrotus*.

-The water sample from Bouton Creek produced measurable toxicity to *Ceriodaphnia* survival and reproduction. However, a TIE was not triggered because approximately 2.8 TU (based on 48 hr LC50s; USEPA 1991) of the observed 3.4TU toxicity was attributable to the high salinity of the sample.

-The water sample from Los Cerritos Channel produced measurable toxicity to *Strongylocentrotus* at the two highest concentrations. A TIE was triggered for *Strongylocentrotus*.

-The Alamitos Bay receiving water sample did not show toxicity to Strongylocentrotus.

City of Long Beach Dry Weather Samples May 2002

Kinnetic Laboratories, Inc. T-20307 and T-20312 Page 5

Bioassays performed with all three species met all quality assurance guidelines and test acceptability criteria, and the data can be viewed with confidence.

The following adjustments were made during bioassay testing to maintain acceptable water quality parameters:

-For *Ceriodaphnia*:: Bouton Creek 100% sample was received at 7.2‰ salinity, equivalent to approximately 2.8TU. Sample toxicity was evaluated for TIE induction by subtracting the calculated salinity-caused toxicity from the observed sample toxicity. Los Cerritos Channel 100% sample required daily pH adjustment of the renewal waters, from pH 10.0 to pH • 9, using 0.12N HCI.

-For Strongylocentrotus: Reference toxicant control chart C.V. was >50% during these tests.

TIE results are presented in a separate report.

Reference

USEPA. 1991. Methods for aquatic toxicity identification evaluations: Phase I toxicity characterization procedures (2nd Edition). U.S. Environmental Protection Agency, Environmental Research Laboratory-Duluth Technical Report EPA/600/6-91/003, Duluth, MN. City of Long Beach Dry Weather Samples May 2002

Kinnetic Laboratories, Inc. T-20307 and T-20312 Page 6

Sample Date/ Time	Field Sample ID	Site Name	Lab Sample ID	Toxis ID
5/9/2002 05:10	LB2-Abay-Grab-3	Alamitos Bay	T-20307 -01	20307xx-AB
5/9/2002 05:45	LB2-BP-Comp-3	Belmont Pump	T-20307-02	20307xx-BP
5/9/2002 04:20	LB2-BC-Comp-3	Bouton Creek	T-20307-03	20307xx-BC
5/9/2002 06:15	LB2-CC-Comp-3	Los Cerritos Channel	T-20307-05	20307xx-CC
5/14/2002 08:00	LB2-BC-Comp-3	Bouton Creek	T-20312-01	20312xx-BC

Table 1. Samples received 10 and 15 May 2002, City of Long Beach Dry Weather Runoff,

"xx": CD = Ceriodaphnia SP = Strongylocentrotus

Table 2. Bioassay Results Summary, City of Long Beach Wet Weather Runoff, 5 and 10 May 2002.

Test Species	Test Endpoint	Belmont Pump	Bouton Creek**	Los Cerritos Channel	Alamitos Bay*		
C. dubia- Survival	LC50	>100	37.5	>100	na		
	NOEC	>100	25	>100	na		
Reproduction	IC50	>100	29.6	>100	na		
	NOEC	>100	6.25	>100	na		
S. purpuratus-Fertilization	EC50	47.6 TIE	>50	31.8 ^{TIE}	na		
	NOEC	25	>50	12.5	>100		
TIE triggered na = not applicable							
*Exposures to 100% sample only. **T-20312 resample; see text.							

CITY OF LONG BEACH DRY WEATHER ADDENDUM

NPDES PERMIT NO. CAS004003 (CI 8052)

AUGUST 2001

PREPARED BY

KINNETIC LABORATORIES, INC.

AND

SOUTHERN CALIFORNIA COASTAL WATER RESEARCH PROJECT

SUBMITTED BY

City Of Long Beach

1.0 INTRODUCTION

The City of Long Beach received an NPDES Permit issued by the California Regional Water Quality Control Board, Los Angeles Region on 30 June 1999 (Order No 99-060, NPDES No. CAS004003, (CI 8052)). This order defines Waste Discharge Requirements for Municipal Storm Water and Urban Runoff discharges within the City of Long Beach. Specifically, the permit regulates discharges of storm water and urban runoff from municipal separate storm sewer systems (MS4s), also called storm drain systems, into receiving waters of the Los Angeles Basin.

The NPDES permit requires the City of Long Beach to prepare, maintain, and update if necessary a monitoring plan. The specified monitoring plan requires the City to monitor three (Year 1) and four (Year 2) discharge sites draining representative urban watersheds (mass emission sites) during the first two years of the monitoring program. Flow, chemical analysis of water quality, and toxicity are to be monitored at each of these sites for four representative storm events each year. During the dry season, inspections and monitoring of these same discharge sites are to be carried out twice, with the same water quality characterization and toxicity tests to be run. In addition, one receiving water body (Alamitos Bay) is to be monitored for bacteria and toxicity during both the wet and the dry seasons and the effect of a dry weather diversion documented.

At the time the Year 2 report was submitted, the second dry weather sampling event was not completed. The purpose of this present report is to transmit the results of the City of Long Beach's final dry weather event for the second year, 2000-2001.

2.0 DRY WEATHER FIELD SAMPLING PROCEDURES

The NPDES Permit calls for two dry weather inspections and sampling events to be carried out during the summer dry weather period at each of the four mass emission stations as well as samples to be taken at the Alamitos Bay receiving water site. Data from the first dry weather survey was reported in the City of Long Beach's Annual NPDES Monitoring Report. The second survey was conducted on August 16, 2001.

Inspections at each site included whether water was present and whether this water was flowing or just ponded. At sites that were found not to have flowing water, inspections were done in the upstream drains to verify that flow was not occurring into the site. As in previous surveys, no dry weather discharges were evident at the Dominguez Gap Pump. Dry weather monitoring was therefore conducted at three mass emission sites and in Alamitos Bay (Table 1).

· · ·	State Plane Co	ordinates: Zone 5	North American Datum (NAD) 83		
Station Name	Northing (ft)	Easting (ft)	Latitude	Longitude	
Belmont Pump	1734834.9	6522091.2	33° 45' 36.6"N	118° 07' 48.7"W	
Bouton Creek	1741960.5	6529305.2	33° 46' 44.3"N	118° 06' 23.4"W	
Cerritos Channel	1747935.9	6530153.2	. 33° 47' 43.3"N	118° 06' 13.4"W	
Alamitos Bay	1732942.2	6521892.8	33° 45' 15.0"N	118° 07' 52.0"W	
(Floating Dock)					

 Table 1 Station Coordinates for Dry Weather Monitoring Stations.

When flowing water was present at one of these mass emission sites, then water quality measurements, flow estimates, and water samples were taken along with observations of site conditions. Flowing water was present and all measurements were taken at Bouton Creek, the Belmont Pump Station, and at Los Cerritos Channel. Temperature and conductivity were measured with an Orion Model 140 meter, pH with an Orion Model 250 meter, oxygen was measured with an Orion Model 840 meter.

Water samples were collected at the Belmont Pump Station and the Los Cerritos Channel Station by use of an automatic peristaltic pump sampler that collected aliquots every half hour for a 24-hour period. For the Bouton Creek Station where tidal influences are present, a similar sample was also collected over a 24-hour period where the tide was sufficiently low to sample just the fresh water discharge down the creek. Additional grab samples were taken just after the time-composited samples for MTBE, TPH, and bacteria. All samples were chilled to 4 ⁰C and transported to the appropriate laboratory for analysis.

3.0 LABORATORY ANALYSIS

The water quality constituents selected for this program were established based upon the requirements of the City of Long Beach NPDES permit for storm water discharges. Analytical methods are based upon approved USEPA methodology. The following sections detail laboratory methods for chemical and biological testing.

3.1 Analytical Suite and Methods

Conventional, bacteriological, and chemical constituents selected for inclusion in this storm water quality program are presented in Table 4.2 of the Annual Report. Analytical method numbers, holding times, and reporting limits are also indicated for each analysis.

3.2 Laboratory QA/QC

Quality Assurance/ Quality Control (QA/QC) activities associated with laboratory analyses are detailed in Appendix A. Appendix A was modified to incorporate QA/QC review for the entire 2000-2001 data set.

The laboratory QA/QC activities provide information needed to assess potential laboratory contamination, analytical precision and accuracy, and representativeness. Analytical quality assurance for this program included the following:

- Employing analytical chemists trained in the procedures to be followed.
- Adherence to documented procedures, USEPA methods and written SOPs.
- Calibration of analytical instruments.
- Use of quality control samples, internal standards, surrogates and SRMs.
- Complete documentation of sample tracking and analysis.

Internal laboratory quality control checks included the use of internal standards, method blanks, matrix spike/spike duplicates, duplicates, laboratory control spikes and Standard Reference Materials (SRMs).

Data validation was performed in accordance with the National Functional Guidelines for Organic Data Review (EPA540/R-94/012), Inorganic Data Review (EPA540/R-94/013), and Guidance on the Documentation and Evaluation of Trace Metals Data Collected for the Clean Water Act Compliance Monitoring (EPA/821/B/95/002).

The NPDES Permit calls for two dry weather inspections and sampling events to be carried out during the summer dry weather period at each of the four mass emission stations as well as samples to be taken at the Alamitos Bay receiving water site. During the 1999-2000 year, the two dry weather inspections/sampling events were done in late June so that the results could be reported in the annual

report due 15 July 2000. For the present year, the first of these dry weather inspections/samplings was done at all sites in June 2001 and the results are reported in this annual report. However, it was decided that it would be better to do the second sampling event later in the summer, and the results from this second event will be reported as an addendum to this annual report.

4.0 Water Quality Results

4.1 Basin 14: Dominguez Gap Monitoring Site

An inspection for dry weather flow was conducted at the Dominguez Gap Pump Station on 14 August 2001. No dry weather flow was observed. The basin in front of the pump house had approximately 1/8 inches of standing water in it. The source of this ponded water was not determined due to the lack of flow from any source. The concrete lined channel that extends east from, and discharges into, the basin had small, isolated pools of standing water, but there was no flow.

4.2 Basin 20: Bouton Creek Monitoring Site

Bouton Creek was sampled on 16 August from 0200 to 0515. This time corresponded to a period of low tide when the flow in the creek was not impeded by seawater backing into the creek. The tide levels at this time were between negative 0.05 and plus 1.0 feet in the Long Beach area. This assured that the flow was fresh water flowing downstream in the creek and that that saline tidal water did not commingle with the dry weather discharge of fresh water.

Every 30 minutes during the sampling period 2.25-liter aliquots of water were pumped from the creek using the automatic sampler installed at the site. An aliquot was deposited into each of five 20-liter borosilicate glass bottles. At the conclusion of the sampling, grab samples for MTBE, TPH, and bacteria were collected. All samples were chilled to 4° C, and transported to the appropriate laboratory for analysis. Conductivity and pH measurements were also taken at this time and these field measurements are summarized in Table 2. Results of the chemical analysis of this dry weather sample are summarized in Table 3.

4.3 Basin 23: Belmont Pump Station Monitoring Site

Time weighted composite sampling was conducted over a 24-hour period starting on 15 August 2001 at 0635 and ending on 16 August 2001 at 0535. Samples were collected from the sump using the automated sampler installed outside of the pump house. Samples were collected into four 20-liter bottles. Every half-hour for the 24 hours, an aliquot of approximately 1.67 liters of water was pumped from the sump into a 20-liter bottle. The bottles were changed every six hours and chilled to $4^{\circ}C$ with ice during sampling and transportation. Following completion of the sampling, the four bottles of water were combined into a composite, Grab samples for MTBE, TPH, and bacteria were manually collected from the sump upon completion of the 24-hour sampling on 16 August 2001 at 0640. All samples were chilled to $4^{\circ}C$ and transported to the appropriate laboratory for analysis. The field measurements are summarized in Table 2. Results of the chemical analysis of this dry weather sample are summarized in Table 3.

4.4 Basin 27: Los Cerritos Channel Monitoring Site

Time weighted sampling was conducted over a 24-hour period of the water flowing through the channel. Sampling was started on 15 August at 0610 and completed on 16 August 2001 at 0510. Samples were taken from the middle of the channel using the automated sampler installed on the bank of the channel. The dry weather flow is a narrow stream approximately 21 feet wide and 2

inches located in the middle of the channel. To reach the water, the sampling hose that is used for sampling storm water was extended an additional 33 feet. Every half-hour for 24 hours, an aliquot of approximately 1.67 liters of water was pumped into a 20-liter bottle. The bottles were change every six hours and chilled to 4°C with ice during sampling and transportation. Following completion of the sampling, the four bottles of water were combined into a composite sample. After completion of the 24-hour sampling, on 16 August, grab samples were manually collected for MTBE, TPH, and bacteria. All samples were chilled to 4° C, and transported to the appropriate laboratory for analysis. The field measurements are summarized in Table 2. Results of the chemical analysis of this dry weather sample are summarized in Table 3.

4.5 Basin 23: Alamitos Bay Receiving Water Monitoring Site

Samples of water were collected at the Alamitos Bay Receiving Water Site occupied during the wet season in the vicinity of the pump station outfall from Basin 24. The samples were collected from the end of the swimming dock just north of the outfall. Sampling was done on the morning of June 5, 2001 at 9:15 a.m. The outfall has a low-flow diverter that prevents dry weather flow from being discharged into the Bay. Samples for toxicity testing were collected in 1-gallon cubitainers by dipping them approximately one foot below the surface. In addition, grab-samples for bacteria and chemical analyses were also collected from the same site. All samples were cooled to 4° C and transported to the appropriate laboratories for analysis. Results of the bacterial analyses for these dry weather samples are summarized in Table 4.

Table 2.	Field Measurements for	Bouton Creek,	Belmont	Pump, a	and Los C	Cerritos C	hannel, .	August
	2001.				ŧ			

	Bouton Creek	Belmont Pump	Los Cerritos
Date Time	8/16/01 0515	8/16/01	8/16/01 0630
Temperature (°C)	20.8	21.6	19.9
рН	8.15	8.14	8.17
Conductivity (mS/cm)	4.17	2.66	0.84
Flow (cfs)	0.? ·	0.086	3.6
Dissolved Oxygen (mg/L)	2.27	5.17	2.77

1 Flow was determined by measuring the depth and width of the water channel, as well as the velocity of a floating object in the water.

	BELMONT PUMP	BOUTON CREEK	LOS CERRITOS CHANNEL
ANALYTE	Aug 2001	Aug 2001	Aug 2001
CONVENTIONALS			
	5 011	5.011	5.011
Total Phonois	0.10	0.111	0.111
Cvanide (ug/L)	5.00	5.00	5.00
	0 /	7 9	0.00
pri (units) Dissolved Pheenbergus (mg/L)	0.4	0.025	0.0
Total Phosphorous (mg/L)	0.87	0.025	0.040
Turbidity (NTLI)	11	10	0.12
Total Supported Solida (mg/L)	1.011	10	50
	1800	5100	600
Veletile Succeeded Celide (mg/L)	1 011	1.01	. 1 011
Tatal Organia Carbon (mg/L)	1.00	1.00	1211
Total Organic Carbon (mg/L)	. 501	150	500
Total Recoverable Petroleum Hydrocarbon (mg/L)	5.00	5.00	5.00
Biochemical Oxygen Demand (mg/L)	5.00	26J	275
Chemical Oxygen Demand (mg/L)	180	100	210
Total Ammonia-Nitrogen (mg/L)	0.13	0.11	0.58
Total Kjeldahl Nitrogen (mg/L)	0.90	4.1	, 1.8
Nitrite (mg/L)	0.20	0.20	0.20
Nitrate (mg/L)	1.3	0.010	0.068
Alkalinity (mg/L)	440	140	150
Specific Conductance (umhos/cm)	2800	7800	840
Total Hardness (mg/L)	350	890	170
MBAS (mg/L)	0.046	0.064	0.054
Chloride (mg/L)	560	2500	120
Fluoride (mg/L)	1.6	0.9	0.69
Sulfate (mg/L)	200	490	150
Methyl tertiary butyl ether (MTBE)	1.0U	1.0U	1.0U
BACTERIA (mpn/100 mL)			
Total Coliform	8,000	3,000	30,000
Fecal Coliform	2,300	230	2300
Fecal Streptococcus	2 980	1 810	4 880
	2,000		4,000
	140	· 04	.07
Aluminum	140	84	97
Arsenic	3.90	1.80	1.20
Beryllium	0.50U	0.50U	0.50U
Cadmium	0.25U	0.25U	0.57
Chromium	2.5	2.4	1.5
Copper	<u>4.8U</u>	15	17
Hexavalent Chromium	· 4.91JR	4.91JR	6.20R
Iron	330 ·	220	320
Lead	0.99	3	3.5
Mercury	0.20U	0.20U	0.20U
Nickel	5.6	5.0	7.5 ·
Zinc	13	21	43

Table 3. Summary of Chemical Analyses of Dry Weather Monitoring, August 2001.

 Table 3. Summary of Chemical Analyses of Dry Weather Monitoring, August 2001.

 (continued)

	BELMONT PUMP	BOUTON CREEK	LOS CERRITOS CHANNEL
ANALYTE	Aug 2001	Aug 2001	Aug 2001
DISSOLVED METALS (ug/L)			
Aluminum	140	80	88
Arsenic	3.9U	1.5U	1.1U
Beryllium	0.5U	0.5U	0.5U
Cadmium	0.25U	· 0.25U	0.5
Chromium	2.4	2.4	1.3
Copper	4.8	15	16
Iron	50	60	40
Lead	0.97	2.9	3.2
Mercury	, 0.2U	0.2U	0.2U
Nickel	5.4	4.9	7.2
Zinc	13	21	39
CHLORINATED PESTICIDES (µg/L)			**
Aldrin	0.005U	0.005U	0.005U
Alpha-BHC	0.05U	0.05U	0.05U
beta-BHC	0.05Ú	0.05U	0.05U
Delta-BHC	0.05U	0.05U	0.05U
gamma-BHC (lindane)	0.050	0.05U	0.05U
Alpha-Chlordane	0.5U	0.5U	0.5U
gamma-Chlordane	0.5U	0.5U	0.5U
4,4'-DDD	0.05U	0.05U	0.05U
4,4'-DDE	0.05U	··· 0.05U	0.05U
4,4'-DDT	0.01U	0.01U	0.01U
Dieldrin	0.01U	0.01U	<u>,</u> 0.01U
Endosulfan I	0.05U	0.05U	0.05U
Endosulfan II	0.050	0.05U	0.050
Endosulfan sulfate	0.050	0.050	0.050
Endrin	0.010	0.010	0.010
Endrin Aldehyde	0.010	0.010	0.010
Endrin Ketone	0.10	0.10	0.10
	0.010		0.010
	0.010	0.010	0.010
Тохарьере	0.50	0.50	0.50
Total PCRs	1 011	1 011	1 011
	1.00	1.00	1.00

福

	BELMONT PUMP	BOUTON CREEK	LOS CERRITOS CHANNEL	
ANALYTE	Aug 2001	Aug 2001	Aug 2001	
CARBAMATE & UREA PESTCIDES (µg/L)			·	
Oxamyl	100	100	100	
Methoamyl	10U	100	10U	
Fenuron	4U ¹	4U	4U .	
Monuron	4U	4U	4U -	
Propoxur	10U	· 10U	10U	
Carbofuran	. 10U	10U	10U	
Carbaryl	10U	10U ·	10U	
Flumeturon	4U	4U	4U	
Diuron	4U	4U	4U	
Propham	10U	10U	10U	
Siduron	10U	10U -	10U	
Methiocarb	100 1	10U	10U	
Linuron	4U	- 4U	4U	
Swep	4U - 1	4U	4U	
Chlorprophan	10U	10U	10U	
Brabane	10U	10U	10U	
Neburon	4U ⁻	4U	4U	
AROCLORS (µg/L)				
Aroclor-1016	_1.0U	1.0U	1.0U	
Aroclor-1221	1.0U	1.0U	1.0U ·	
Aroclor-1232	1.0U	1.0U	1.0U	
Aroclor-1242	1.0U	⁺ 1.0U	1.0U	
Aroclor-1248	· 1.0U	1.0U	1.0U	
Aroclor-1254	1.0U	1.0U	1.0U	
Aroclor-1260	1.0U	1.0U	1.0U	
ORGANOPHOSPHATE PESTICIDES (µg/L)				
Diazinon	0.22	0.15	0.096	
Dursban (chlorpyrifos)	0.05U	0:05U	0.05U	
Malathion	0.1U	0.1U	0.1U	
Prometryn	1.0U	1.0U	1.0U	
Atrazine	1.0U	1.0U	1.0U	
Simazine	1.0U	1.0U ·	1.0U	
Cyanazine	1.0U	1.0U	1.0U	
HERBICIDES (µg/L)	2			
Dalapon	2U	· 2U	2U	
Dicamba	0.5U	0.5U	0.5U	
MCPP	250U	250U	250U	
MCPA	250U	250U	250U	
Dichlorprop	1U .	1U	1U	
2,4-D	1U [.]	1U	1U	
2,4,5-TP-Silvex	0.5U	0.5U	0.5U	
2,4,5-T	0.5U	0.5U	0.5U	
2,4,5-DB	1U	1U	1U .	
Dinoseb	0.5U	0.5U	0.5U	
Bentazon	10	1U	1U	
Glyphosate	5U	- 5U	5U	

Table 3. Summary of Chemical Analyses of Dry Weather Monitoring, August 2001.(continued)

	BELMONT PUMP	BOUTON CREEK	LOS CERRITOS CHANNEL
ANALYTE	Aug 2001	Aug 2001	Aug 2001
SEMI-VOLATILES (ug/L)			
Acenandatione	0.511	0.5U	0.50
Acenaphthylene	0.00	0.20	0.20
	0.20	2 011	2.011
Acetophenone	3.00	3.00	3.00
Aniline	3.00	3.00	3.00
Animacene 4 Aminacia en al	0.50		2.011
	3.00	3.00	3.00
Benzidine	. 3.00	3.00	3.00
Benzo(a)anthracene	1.00	1.00	1.00
Benzo(b)fluoranthene	1.00	1.00	1.00
Benzo(k)fluoranthene	1.00	1.00	1.00
Benzo(a)pyrene	1.00	1.00	1.00
Benzyi butyi phthalate	3.0U	3.00	3.00
Bis(2-chloroethyl)ether	1.00	1.00	
Bis(2-chloroethoxy)methane	1.00	1.00	1.00
Bis(2-ethylhexyl)phthalate	3.1	8.9	15.8
Bis(2-chlorisopropyl)ether	1.00	1.00	1.00
4-Bromophenyl phenyl ether	1.00	1.00	1.00
4-Chloroaniline	<u>1.0U</u>	1.00	1.00
1-Chloronaphthalene	1.00	1.00	1.00
2-Chloronaphthalene	<u>1.0U</u>	1.00	1.00
4-Chlorophenyl phenyl ether	1.00	1.00	1.00
Chrysene	1.0U	1.0U	1.00
p-Dimethylaminoazobenzene	3.0U	3.00	3.00
7,12-Dimethylbenz(a)-anthracene	1.0U	1.0U	1:0U
a-,a-Dimethylphenethylamine	3.0U	3.0U	3.0U
Dibenz(a,j)acridine	3.0U	3.0U	3.0U
Dibenz(a,h)anthracene	1.0U	1.0U	1.0U
1,4-Dichlorobenzene	0.5U	0.5U	0.5U
1,3-Dichlorobenzene	0.5U	0.5U	0.5U
1,2-Dichlorobenzene	0.50	0.5U	0.5U
3,3-Dichlorobenzidine	3.0U [′]	3.0U	, 3.0U
Diethyl phthalate	0.5U	0.9	0.8
Dimethyl phthalate	0.5U	0.5U .	0.5U
Di-n-butylphthalate	3.0U	· 3.0U	6.0
2,4-Dinitrotoluene	0.5U	[•] 0.5U	0.5U
2,6-Dinitrotoluene	0.5U	0.5U	0.5U
Diphenylamine	. 3.0U	3.0U .	3.0U
1,2-Diphenylhydrazine	3.0U	3.0U	3.00
Di-n-octylphthalate	3.0U	3.8	3.0U
Ethyl methanesulfonate	3.0U	3.0U	3.0U
Endrin Ketone	1.0U	1.0U	1.0U
Fluoranthene	1.0U	1.0U	1.0U .
Fluorene	1.0U	1.0U	1.0U
Hexachlorobenzene	0.5U /	0.5U	0.5U
Hexachlorobutadiene	1.0U	1.0U	1.0U
Hexachlorocyclopentadiene	3.0U	3.0U	3.0U

 Table 3. Summary of Chemical Analyses of Dry Weather Monitoring, August 2001.

 (continued)

Table 3.	Summary o	of Chemical	Analyses	of Dry	Weather	Monitoring,	August 2001.
(continu	ed)						

	BELMONT PUMP	BOUTON CREEK	LOS CERRITOS CHANNEL
ANALYTE	Aug 2001	Aug 2001	Aug 2001
SEMI-VOLATILES (ug/L) (continued)			
Hexachloroethane	1.0U	1.0U	1.0U
Indeno[1.2.3-cd]pyrene	1.0U	1.00	1.00
Isophorone	0.50	0.5U	0.5U
3-Methylcholanthrene	. 3.0U	3.0U	3.0U
Methyl methanesulfonate	3.0U	3.0U	3.0U
Napthalene	0.5U	0.5U	0.5U
1-Naphthylamine	3.0U	3.0U	3.0U
2-Naphthylamine	3.00	3.0U	3.0U
2-Nitroaniline	3.0U	3.0U	3.0U
3-Nitroaniline	3.0U	3.0U	3.0U
4-Nitroaniline	3.0U	3.0U	3.00
Nitrobenzene	0.5U	0.50	0.5U
N-Nitrosodimethylamine	3.0U	3.0U	3.0U
N-Nitrosodiphenylamine	3.0U	3.00	3.00
N-Nitroso-di-n-propylamine	1.00	1.0U	1 00
N-Nitrosopineridine	3.011	3 011	3 011
Pentachlorobenzene	3.00	3.00	3.00
Phenacitin	3.00	3.00	3.00
Phenoothrope	0.5U	<u> </u>	0.50
2-Picoline	3.00	3.00	3.00
Pronamide	5.00	5.00	5.00
Pyrene	0.50	0.50	0.50
1 2 4 5-Tetrachlorobenzene	3.00	3.00	3.00
1.2.4-Trichlorobenzene	0.50	0.50	0.50
Renzoic Acid	5.00	5.00	5.00
Benzul Alcohol	5.00	5.00	5.00
A-Chloro-3-methylphenol	3.00	3.00	3.00
2 Chlorophonol	2 011	2 011	2 011
	2.00	2.00	2.00
2.6-Dichlorophenol	2.00	2.00	2.00
	2.00	2.00	2.00
	2.00	2.00	2.00
	3.00	3.00	3.00
	3.00	3.00	3.00
2-Metnyiphenol	3.00	3.00	3.00
4-Methylphenol	3.00	3.00	3.00
2-Nitrophenol	<u>3.0U</u>	3.0U	3.0U
4-Nitrophenol	3.0U	3.0U	3.0∪
Pentachlorophenol	2.0U	2.0U	2.0∪
Phenol	1.0U	1.0U	1.0U
2,3,4,6-Tetrachlorophenol	1.0U	1.0U	1.0U
2,4,5-Trichlorophenol	1.0U	1.0U	1.0U
2,4,6-Trichlorophenol	1.0U	1.0U	′ 1.0U

"R" Qualifier denotes rejection of associated data based upon QAQC review

"U" Qualifier denotes analyte not detected above the level of the associated value.

The associated value is either the sample quantitation limit or the sample reporting limit.

9

.

Table 4. Concentration of Bacteria in Alamitos Bay, 16 August 2001

BACTERIA (mpn/100 mL)	<u> </u>
Total Coliform	11
Fecal Coliform	4
Fecal Streptococcus	1.0U

5.0 TOXICITY RESULTS

The second set of dry weather samples for the 2000-2001 Monitoring Program were taken on August 16, 2001. Toxicity tests were performed within 48 hours of collection. Three species were tested: water flea (*Ceriodaphnia dubia*, freshwater crustacean), mysid (*Americamysis bahia*, marine crustacean), and sea urchin (*Strongylocentrotus purpuratus*, marine echinoderm).

5.1 Belmont Pump Station

No toxicity was found in any of the three tests performed (Table 5). Slight mortality was observed in both the mysid and water flea tests. However, mysid survival was greater than 90% in all concentrations and mysid weight showed no downward trend. Water flea survival for the 100% treatment was 80%. A decrease in reproduction was also observed. Neither result was significantly different from the controls. In the sea urchin test, sample fertilization values exceeded those of the controls.

5.2 Bouton Creek

Toxicity was observed in the 100% treatment of the water flea test, which had zero survival (Table 1). Reproduction was also significantly reduced in the 50% treatment. All treatments in the mysid test had \geq 95% survival and no reduction in weight was observed. Sea urchin fertilization for all treatments was \geq 98%.

5.3 Cerritos Channel

Water flea survival was significantly reduced in the 100% treatment (Table 5). The 100% and 50% treatments caused a significant reduction in water flea reproduction. No toxicity was observed in mysid survival or weight. Sea urchin fertilization for the 50% treatment was 99%, indicating no toxicity.

5.4 Alamitos Bay Receiving Water

The receiving water sample was tested at 100% using the mysid and sea urchin tests. Neither test showed toxicity (Table 6). Mysid survival was 95%; mysid weight was greater than the control. The sea urchin test had 98% fertilization.

5.5 Laboratory Quality Assurance/Quality Control Assessment

All of the tests met critical test acceptability criteria and the results were judged to be valid. Minor deviations in test procedure occurred in all tests but did not have a significant effect on the results. The QA/QC results are summarized below.

The water flea tests met protocol acceptability criteria. The reference toxicant fell within control chart limits.

The mysid tests all met acceptability criteria for survival (>80%) and weight (≥ 0.20 mg/mysid). The EC50 for the reference toxicant was within control chart limits. The temperature fell within a degree below the recommended range (25-27°C) in all of the stations. This was not seen to have an effect on the results of the test, as there was no toxicity at any station.

The sea urchin fertilization tests produced very low fertilization in the controls as well as high variability throughout the test. We retested the samples the following day and received results that passed test acceptability criteria. These samples were tested after the 36-hour holding time. The EC50 for the reference toxicant (5.5 μ g/L) fell below control chart limits (11.2-68.4 μ g/L Cu). This could indicate a sensitive batch of animals, possibly due to their being out of spawning season, or a change in water chemistry affecting metal bioavailability. All of the brine controls had poor fertilization (<70%), though none were found to be significantly different from the seawater controls. This did not seem to have an effect on test results since no toxicity was observed. Water quality data from S522 (Bouton Creek) were recorded but then misplaced. All other water quality data were recorded and indicated that all test exposure conditions were within normal limits.

6.0 DISCUSSION

The results from the August 16, 2001 dry weather sampling continue to indicate variability in the water quality and toxicity of dry weather runoff from each station. Water quality results agree with previous surveys conducted in 2000. Belmont did not produce toxicity in any species. This data, combined with two other non-toxic events, may indicate that the toxicity observed in the 6/29/00 sample is uncommon. Bouton showed toxicity in *Ceriodaphnia*, but the sample had a conductivity that exceeded the tolerance of the water flea. High conductivity is also believed to be the cause for toxicity in 6/6/01 samples. The Los Cerritos sample produced moderate toxicity in the water flea. The sample from 6/6/01 also produced toxicity but in the sea urchin instead of the water flea. This may be due to different constituents in the runoff and the varying sensitivities of the test organisms to said constituents. No toxicity was observed in the Alamitos receiving water sample. These data agree with all previous Alamitos results.

APPENDIX A

SUMMARY OF TOXICITY TEST RESULTS

Project: Long Beach Stormwater Sample Description: Dry Weather Runoff Samples Collected 8/16/01

Sample Collected: 8/16/01 Test Initiated: 8/17/01 Experiment Number: MB53 'Test Ended: 8/24/01

Test Method: Mysid survival and growth Species: *Americamysis bahia* Supervising Technician: Jeff Brown

Laboratory: SCCWRP

	· · · · · · · · · · · · · · · · · · ·		% Surv	val	·	Weigl	nt (mg/my	vsid)	
Sample Code	Sample	Mean	SD	N	Sig Diff	Mean	SD	Ν	Sig Diff
LBSW08170102	Seawater Control 30 ppt.	100	0.0	8		0.281	0.051	8	
LBSB08170102	Salt Blank 30 ppt.	93	14.9	8		0.317	0.034	8	
LBR008160104	Cerritos Channel 12.5%	100	0.0	8		0.300	0.032	8	
LBR008160104	Cerritos Channel 25%	98	7.1	8		0.315	0.041	8	
LBR008160104	Cerritos Channel 50%	98	7.1	8		0.333	0.043	8	
LBR008160104	Cerritos Channel 100%	95	9.3	8	·	0.360	0.032	8	
Survival:		-							•
NOEC: <u>></u> 100% Weight:	LC50: > 100%		·						
NOEC: ≥ 100%	IC25: > 100%								

The test met acceptability criteria for control survival (>80%) and average weight of controls (0.20 mg/mysid) and reference toxicant EC50 was within control chart limits.

Sample	pН	Dissolved Oxygen (mg/L)	Salinity (g/kg)	Temp (°C)	Ammonia (mg/L)
Corritor					
Min	7 0	25	20.2	24.2	0.3
iviin:	1.8	3.5	29.2	. 24.2	0.3
Max:	8.3	6.6	31.5	26.6	2.0
Test					
Min:	7.7	3.0	29.2	24.2	0.0
Max:	8.4	7.1	33.6	27.2	2.0

Project: Long Beach Stormwater Sample Description: Dry Weather Runoff Samples Collected 8/16/01

Sample Collected: 8/16/01 Test Initiated: 8/17/01 Experiment Number: MB53 Test Ended: 8/24/01

Test Method: Mysid survival and growth Species: *Americamysis bahia* Supervising Technician: Jeff Brown

Laboratory: SCCWRP

	• •		% Survi	val	<u> </u>	We	ight (mg/	mysic	l)
Sample Code	Sample	Mean	SD	Ν	Sig Diff	Mean	SD	N	Sig Diff
LBSW08170102	Seawater Control 30 ppt.	100	0.0	8		0.2805	0.051	8	
LBSB08170102	Salt Blank 30 ppt.	93	14.9	8		0.3170	0.034	8	· ·
LBR008160105	Belmont Pump 12.5%	100	0.0	8		0.2855	0.052	8	
LBR008160105	Belmont Pump 25%	. 95	14.1	8		0.3230	0.033	8	
LBRO08160105	Belmont Pump 50%	93	10.4	8		0.3163	0.071	8	
LBR008160105	Belmont Pump 100%	.93	10.4	8		0.3075	0.029	8	,'
Survival:									
NOEC: ≥ 100%	LC50: > 100%								
Weight:	•.	14			1 A A				
NOEC: > 100%	IC25: > 100%		·				· .		

The test met acceptability criteria for control survival (>80%) and average weight of controls (0.20 mg/mysid) and reference toxicant EC50 was within control chart limits.

ristics (range	among treatmen	ts during test):		
nH	Dissolved Oxygen (mo/L)	Salinity (g/kg)	Temp (°C)	Ammonia (mg/L)
	(119/2)	(9/19)	10110 (0)	((1)g/=)
· .				· · · ·
7.9	3.7	29.2	24.2	0.1
8.4	7.1	31.1	26.4	0.8
				·
7.7	3.0	29.2	24.2	0.0
8.4	7.1	33.6	27.2	2.0
	<u>pH</u> 7.9 8.4 7.7 8.4	ristics (range among treatmen Dissolved Oxygen pH (mg/L) 7.9 3.7 8.4 7.1 7.7 3.0 8.4 7.1	ristics (range among treatments during test): Dissolved Oxygen Salinity pH (mg/L) (g/kg) 7.9 3.7 29.2 8.4 7.1 31.1 7.7 3.0 29.2 8.4 7.1 33.6	Tistics (range among treatments during test): Dissolved Oxygen Salinity pH (mg/L) (g/kg) Temp (°C) 7.9 3.7 29.2 24.2 8.4 7.1 31.1 26.4 7.7 3.0 29.2 24.2 8.4 7.1 33.6 27.2

Project: Long Beach Stormwater

Sample Description: Dry Weather Runoff Samples Collected 8/16/01

Sample Collected: 8/16/01 Test Initiated: 8/17/01 Experiment Number: MB53 Test Ended: 8/24/01

Test Method: Mysid survival and growth Species: *Americamysis bahia* Supervising Technician: Jeff Brown

Laboratory: SCCWRP

	· · · ·		% Sur	vival		We	ight (mg/i	mysid)
Sample Code	Sample	Mean	SD	N	Sig Diff	Mean	SD	N	Sig Diff
LBSW08170102	Seawater Control 30 ppt.	100	0.0	8		0.2805	0.051	8	
LBSB08170102	Salt Blank 30 ppt.	93	14.9	8		0.3170	0.034	8	
LBR008160105	Bouton Creek 12.5%	98	7.1	8		0.3424	0.032	8	
LBR008160106	Bouton Creek 25%	95	9.3	8		0.3171	0.033	8	
LBRO08160105	Bouton Creek 50%	. 98	7.1	8		0.3226	0.034	8	
LBRO08160106	Bouton Creek 100%	95	9.3	8		0.3356	0.040	8	
LBRW08160102	Alamitos Bay 100%	95	9.3	8		0.3280	0.037	8	•
Survival:									
NOEC: ≥ 100%	LC50: > 100%					•			
Weight:									•
NOEC: ≥ 100%	IC25: > 100%								

The test met acceptability criteria for control survival (>80%) and average weight of controls (0.20 mg/mysid) and reference toxicant EC50 was within control chart limits.

Sample character	istics (range	among treatments du	ring test):		•
Sample	Ηα	Dissolved Oxygen (mg/L)	Salinity (g/kg)	Temp (°C)	Ammonia (mg/L)
	i		-		
Bouton		•	·		
Min:	7.8	3.0	29.5	24.2	0.2
Max:	8.2	7.0	30.6	26.7	1.1
Test					
Min:	7.7	3.0	29.2	24.2	0.0
Max:	8.4	7.1	33.6	27.2	2.0

Project: Long Beach Stormwater Sample Description: Copper Reference Toxicant

Sample Collected: 8/16/01 Test Initiated: 8/17/01 Experiment Number: MB54 Test Ended: 8/24/01

Test Method: Mysid survival and growth Species: *Americamysis bahia* Supervising Technician: Jeff Brown

Laboratory: SCCWRP

	· · · · · · · · · · · · · · · · · · ·		% Surv	vival		Wei	ght (mg/r	nysid	l) .
Sample Code	Sample	Mean	SD	N.	Sig Diff	Mean	SD	N	Sig Diff
LBSW08170101	30 ppt Seawater Control	95	9.3	8		0.2558	0.044	8	
LBRF08170101	100 ug/l Cu	. 88	21.2	8		0.3030	0.038	8	
LBRF08170102	200 ug/l Cu	88	10.4	8		0.2338	0.041	8	
LBRF08170103	250 ug/l Cu	55	20.7	8	*	0.2035	0.029	8	
LBRF08170104	300 ug/l Cu	. 35	14.1	8	*	0.1873	0.057	8	*
LBRF08170105	350 ug/l Cu	25	17.7	. 8	*	0.1640	0.046	7	*
Survival: NOEC: 200 ug/L	LC50: 271 ug/L						-		
Weight: NOEC: 250 ug/L	IC25: 240 ug/L			·			•		

The test met acceptability criteria for control survival (>80%) and average weight of controls (0.20 mg/mysid) and reference toxicant EC50 was within control chart limits (185.2 µg/L to 330.0 µg/L).

Sample characteristics (range among treatments during test):

Sample	рН	Dissolved Oxygen (mg/L)	Salinity (g/kg)	Temp (°C)	Ammonia (mg/L)
Ref Tox					
Min:	7.6	4.0	28.0	24.1	0.0
Max:	8.1	7.3	31.1	26.8	0.6

Project: Long Beach Stormwater

Sample Description: Belmont Pump Dry Weather and Alamitos Bay Receiving Water Collected 8/16/01

Sample Collected: 8/16/01 Test Initiated: 8/18/01 Experiment Number: S551 Test Ended: 8/18/01

Test Method: Purple Sea Urchin Fertilization Species: *Strongylocentrotus purpuratus* Supervising Technician: Darrin Greenstein

Laboratory: SCCWRP

<u> </u>		·	% Ferti	lization	
Sample Code	Sample	Mean	SD	N	Sig Diff
LBSW08180101	Seawater Control	88	8.5	5.	
LBBK08180101	Brine Control 50%	60	8.5	5	·
LBRO08160101	Belmont Pump 3%	-	-	0	
LBRO08160101	Belmont Pump 6.3%	-	-	0	
LBR008160101	Belmont Pump 12.5%	• -	-	0	
LBRO08160101	Belmont Pump 25%	95	2.5	5 -	•
LBRO08160101	Belmont Pump 50%	92	5.3	5	
LBRW08160101	Alamitos Bay 100%	. 98	1.9	5	

NOEC: ≥ 50% EC50: > 50%

The test met acceptability criteria for control fertilization (>70%). The reference toxicant EC50 fell below control chart limits (11.2 μ g/L to 68.4 μ g/L).

Sample characteristics (range among treatments during test):

pH	Salinity (g/kg)	Temp (°C)
,	· · · · · ·	
8.01	33.4	14.6
8.28	34.2	14.6
	<u>рн</u> 8.01 8.28	pH Salinity (g/kg) 8.01 33.4 8.28 34.2

Project: Long Beach Stormwater Sample Description: Bouton Creek Dry Weather Collected 8/16/01

Sample Collected: 8/16/01 _ Test Initiated: 8/18/01 Experiment Number: S552 Test Ended: 8/18/01

Laboratory: SCCWRP

Test Method: Purple Sea Urchin Fertilization Species: *Strongylocentrotus purpuratus* Supervising Technician: Darrin Greenstein

% Fertilization Sample Code Sample Mean SD Ν Sig Diff LBSW08180104 Seawater Control 78 19.8 5 27 20.6 5 LBBK08180102 Brine Control 50% Bouton Creek 3% LBR008160102 0 LBR008160102 Bouton Creek 6.3% 0 0 LBRO08160102 Bouton Creek 12.5% LBR008160102 Bouton Creek 25% 99 0.4 5 LBR008160102 Bouton Creek 50% 98 0.8 5

NOEC: <u>></u> 50%

EC50: > 50%

The test met acceptability criteria for control fertilization (>70%). The reference toxicant EC50 fell below control chart limits (11.2 μ g/L to 68.4 μ g/L).

Sample	pН	÷ .	Salinity (g/kg)	Temp (°C)
Bouton				
Min:				14.6
Max:				14.6

*Several water quality measurements for this experiment have been misplaced and are therefore not present in this table.

Project: Long Beach Stormwater Sample Description: Cerritos Channel Dry Weather Collected 8/16/01

Sample Collected: 8/16/01 Test Initiated: 8/18/01 Experiment Number: S553 Test Ended: 8/18/01

Test Method: Purple Sea Urchin Fertilization Species: *Strongylocentrotus purpuratus* Supervising Technician: Darrin Greenstein

Laboratory: SCCWRP

		% Fertilization						
Sample Code	Sample	Mean	SD	N	Sig Diff			
LBSW08180103	Seawater Control	88	12.1	5				
LBBK08180103	Brine Control 25%	-	-	0.				
LBBK08180103	Brine Control 50%	49	9.1	5				
LBRO08160103	Cerritos Channel 3.0%	-	-	0				
LBRO08160103	Cerritos Channel 6.3%	-	-	0				
LBRO08160103	Cerritos Channel 12.5%	-	-	0				
LBRO08160103	Cerritos Channel 25%	99	0.4	5				
LBRÓ08160103	Cerritos Channel 50%	99	1.0	5				

NOEC: ≥ 50%

EC50: > 50%

The test met acceptability criteria for control fertilization (>70%). The reference toxicant EC50 fell below control chart limits (11.2 μ g/L to 68.4 μ g/L).

Sample characteristics (range among treatments during test):

Sample	рН	Salinity (g/kg)	Temp (°C)
Cerritos			. •
Min:	8.06	33.7	14.6
Max:	8.23	33.9	14.6

Project: Long Beach Stormwater Sample Description: Copper Ref Tox

Sample Collected: 8/16/01 Test Initiated: 8/18/01

Test Method: Purple Sea Urchin Fertilization Species: *Strongylocentrotus purpuratus* Supervising Technician: Darrin Greenstein Experiment Number: S554 Test Ended: 8/18/01

Laboratory: SCCWRP

		% Fertilization						
Sample Code	Sample	Mean	SD	N	Sig Diff			
LBSW08180102	Seawater Control	76	20.8	5				
LBRT08180101	9.5 ug/l Cu	34	17.0	5				
LBRT08180102	13.9 ug/l Cu	12	9.6	5	*			
LBRT08180103	20.4 ug/l Cu	8	4.6	5	*			
LBRT08180104	30.0 ug/l Cu	1	1.3	5	*			
LBRT08180105	44.0 ug/l Cu	0	0.4	5	*			
LBRT08180106	65.0 ug/l Cu	0	0.4	5	*			

Test met acceptability criteria for control fertilization (>70%). The EC50 for the reference toxicant fell below control chart limits (11.2 µg/L to 68.4 µg/L).

NOEC: 9.5 µg/L Cu EC50: 5.5 µg/L Cu

Sample characteristics (range among treatments during test):

Sample	pH	Salinity (g/kg)	Temp (°C)
Copper Ref	• • • • • • • • • • • • • • • • • • • •		
Min:	8.04	33.4	14.6
/ Max:	8.07	33.8	14.6

Project: Long Beach Stormwater

Sample Description: Dry Weather Runoff Samples Collected 8/16/01

Sample Collected: 8/16/01 Test Initiated: 8/17/01 Experiment Number: 19661CD-A1 Test Ended: 8/24/01

Test Method: Water flea survival and reproduction Species: *Ceriodaphnia dubia*

Laboratory: ToxScan, Inc.

	· · · · · · · · · · · · · · · · · · ·		% Survival				Young/Individual		
Sample Code	Sample	Mean	SD	Ν	Sig Diff	Mean	SD	N	Sig Diff
	Freshwater Control	100	0.0	10		, 30.7	9.2	10	
LBBPCerODW2	Belmont Pump 6.25%	100	0.0	10		41.4	9.0	10	
LBBPCerODW2	Belmont Pump 12.5%	100	0.0	10		42.1	8.1	10	
LBBPCerODW2	Belmont Pump 25%	100	0.0	10		43.2	9.7	10	
LBBPCerODW2	Belmont Pump 50%	100	0.0	10		34.5	7.2	10	
LBBPCerODW2	Belmont Pump 100%	80	0.4	10		25.0	4.5	10	
Survival:									
NOEC: <u>≥</u> 100%	LC50: >100%								
Reproduction:	•								
NOEC: > 100%	IC50: >100%								

Test met protocol acceptability criteria (>80% survival in controls and mean control reproduction >15 offspring). Results are within laboratory control chart limits for both survival and reproduction.

Samp	le c	harac	teristic	s (range	among	treat	tments	during	test):
	_					_				

		Dissolved	Conductivity	Hardness (mg/L)	
Sample	pН	Oxygen (mg/L)	(umho/cm)		Temp (°C)
Belmont					
Min:	7.80	7.6	285	72	23.9
Max:	8.80	8.4	3063	432	25.9

Project: Long Beach Stormwater

Sample Description: Dry Weather Runoff Samples Collected 8/16/01

Sample Collected: 8/16/01 Test Initiated: 8/17/01 Experiment Number: 19661CD-A2 Test Ended: 8/24/01

Test Method: Water flea survival and reproduction

Species: Ceriodaphnia dubia

Laboratory: ToxScan, Inc.

	:	% Survival				Young/Individual			
Sample Code	Sample	Mean	SD.	Ν	Sig Diff	Mean	SD	Ν	Sig Diff
	Freshwater Control	100	0.0	10		20.9	8.3	10	
LBBCCerODW2	Bouton Creek 6.25%	80	0.4	10		21.3	12.6	10	
LBBCCerODW2	Bouton Creek 12.5%	80	0.4	10		23.1	13.4	10	
LBBCCerODW2	Bouton Creek 25%	80	0.4	10	/	19.1	11.3	10	•
LBBCCerODW2	Bouton Creek 50%	70	0.5	10		4.3	4.9	9	*
LBBCCerODW2	Bouton Creek 100%	0	0.0	10	*				
Survival:									
NOEC: 50%	LC50: 61%								
Reproduction:									
NOEC: 25%	IC50: 38.9%								e -

Test met all protocol acceptability criteria (>80% survival in controls and mean control reproduction >15 offspring). Results are within laboratory control chart limits for both survival and reproduction.

Sample Characteristics (rand	e among trea	itments dur	rina test):
------------------------------	--------------	-------------	-------------

Sample	pH_	Dissolved Oxygen (mg/L)	Conductivity (umho/cm)	Hardness (mg/L)	Temp (°C)
Bouton			1		
Min:	7.70	7.4	285	88	23.9
Max:	8.20	8.2	8360	952	<u>2</u> 5.9
Project: Long Beach Stormwater

Sample Description: Dry Weather Runoff Samples Collected 8/16/01

Sample Collected: 8/16/01
Test Initiated: 8/17/01

Ø

Experiment Number: 19661CD-A3 Test Ended: 8/24/01

Test Method: Water flea survival and reproductionSpecies: Ceriodaphnia dubiaLaboratory: ToxScan, Inc.

	· · · · · · · · · · · · · · · · · · ·		% Sur	vival		You	ng/Indi	vidual	
Sample Code	Sample	Mean	SD	N	Sig Diff	Mean	SD	N	Sig Diff
	Freshwater Control	100	0.0	10		27.5	6.1	10	
LBCCCerODW2	Cerritos Channel 6.25%	100	0.0	10		32.2	7.4	9	
LBCCCerODW2	Cerritos Channel 12.5%	90	0.3	10		31.4	9.3	10	
LBCCCerODW2 Cerritos Channel 25%		100	0.0	10		26.1	7.4	10	
LBCCCerODW2	Cerritos Channel 50%	80	0.4	10		0.8	1.5	8	*
LBCCCerODW2	Cerritos Channel 100%	0	0.0	10	*	0.0	0.0	_10	*
Survival:						-		1	
NOEC: 50%	LC50: 64.8%	· · ·							
Reproduction:									
NOEC: 25%	IC50: 35.8%								

Test met all protocol acceptability criteria (>80% survival in controls and mean control reproduction >15 offspring). Results are within laboratory control chart limits for both survival and reproduction.

Sample characteristics (range among treatments during test):									
Sample		рН	Dissolved Oxygen (mg/L)	Conductivity (umho/cm)	Hardness (mg/L)	Temp (°C)			
Cerritos									
	Min:	7.90	7.5	291	88	23.9			
	Max:	8.50	8.1	923	. 165	25.1			

Project: Long Beach Stormwater Sample Description: KCI Reference Toxicant

Sample Collected: 8/16/01 Test Initiated: 8/15/01 Experiment Number: 19661CD-R Test Ended: 8/22/01

Test Method: Water flea survival and reproduction Species: Ceriodaphnia dubia Laborato

Laboratory: ToxScan, Inc.

			% Sur	vival	۰.	Yo	ung/Ind	lividua	1
Sample Code	Sample	Mean	SD	Ν	Sig Diff	Mean	SD	Ν	Sig Diff
	Freshwater Control	100	0.0	10	• •	20.3	6.4	10	
	0.06 g/l KCl	100	0.0	10		23.3	4.3	10	
	0.13 g/l KCl	100	0.3 `	10		22.0	4.0	10	
· · ·	0.25 g/l KCl	· . 100	0.0	10	•	23.8	3.1	10	
·.	0.50 g/l KCl	20	0.4	່ 10	. *	13.8	´ 10.0	5	
	1.00 g/l KCl	0	0.0	10	*				
Survival:			•						
NOEC: 0.25 g/l	KCI LC50: 0.41 g/l KC								
Reproduction:		•							
NOEC: ≥ 0.50 g	/I KCI IC50: 0.43 g/I K	CI			,		·	<i>.</i>	,

Test met all protocol acceptability criteria (>80% survival in controls and mean control reproduction >15 offspring). Results were within laboratory control chart limits for both survival and reproduction.

Sample characteristics (range among treatments during test):	nge among treatments during test):
--	------------------------------------

Sample	рН	Dissolved Oxygen (mg/L)	Conductivity (umho/cm)	Hardness (mg/L)	Temp (°C)
Ref Tox		· ·			
Min:	8.00	7.8	294	88	24.0
Max:	8.30	8.2	2101	100	26.1

CITY OF LONG BEACH STORM WATER MONITORING REPORT 2002-2003 NPDES PERMIT NO. CAS004003 (CI 8052)

1-36

SUBMITTED BY CITY OF LONG

LONG BEACH JULY 2003

PREPARED BY KINNETIC LABORATORIES, INC.

CITY OF LONG BEACH STORM WATER MONITORING REPORT 2002-2003

NPDES PERMIT NO. CAS004003 (CI 8052)

JULY 2003

PREPARED BY

KINNETIC LABORATORIES, INC.

AND

SOUTHERN CALIFORNIA COASTAL WATER RESEARCH PROJECT

SUBMITTED BY

City Of Long Beach

CITY OF LONG BEACH STORMWATER MONITORING REPORT 2002/2003

NPDES Permit No. CAS004003 (CI 8052)

TABLE OF CONTENTS

i iii

vii

2

7

9

9

9

9

10

10

15

15

15

15

16

16 17

17

18

18

18

19

19

20

21

21

21 22

22

23

23

24

24

37

37

37

37

38

TABLE OF CONTENTSLIST OF FIGURESLIST OF TABLESACRONYMNS AND ABBREVIATIONS LIST1.0EXECUTIVE SUMMARY

- 1.1 Background and Purpose
- 1.2 Summary of Results

2.0 INTRODUCTION

3.0 STUDY AREA DESCRIPTION

- 3.1 Regional Setting
 - 3.1.1 Geography
 - 3.1.2 Major Watersheds
 - 3.1.3 Annual Rainfall and Climate
 - 3.1.4 Population and Land Use Characteristics

4.0 MONITORING PROGRAM

- 4.1. Monitoring Program Objectives
- 4.2 Monitoring Site Descriptions
 - 4.2.1 Basin 14: Dominguez Gap Monitoring Site
 - 4.2.2 Basin 20: Bouton Creek Monitoring Site
 - 4.2.3 Basin 23: Belmont Pump Station Monitoring Site
- 4.2.4 Basin 27: Los Cerritos Channel Monitoring Site
- 4.3 Monitoring Station Design and Configuration
- 4.4 Field Monitoring Procedures
 - 4.4.1 Wet Weather Monitoring
 - 4.4.1.1 Composite Sample Collection
 - 4.4.1.2 Grab Sampling
 - 4.4.1.3 Alamitos Bay Pilot Receiving Water Study
 - 4.4.2 Dry Weather Sampling
- 4.5 Laboratory Analyses
 - 4.5.1 Analytical Suite and Methods
 - 4.5.1.1 Laboratory QA/QC
- 4.5.2 Toxicity Testing Procedures
 - 4.5.2.1 Water Flea Reproduction and Survival Test
 - 4.5.2.2 Mysid Growth and Survival Test
 - 4.5.2.3 Sea Urchin Fertilization Test
 - 4.5.2.4 Toxicity Identification Evaluations (TIEs)
 - 4.5.2.5 Statistical Analysis
 - **RAINFALL AND HYDROLOGY**
- 5.1 Precipitation during the 2002/2003 Storm Season
 - 5.1.1 Monthly Precipitation

5.0

- 5.1.2 Precipitation during Monitored Events
- 5.2 Stormwater Runoff during Monitored Events

6.0 CHEMISTRY RESULTS		59
6.1 Wet Weather Chemistry Results	•	59
6.2 Wet Weather Load Calculations		59
6.3 Dry Weather Sampling Results		60
6.3.1 Basin 14: Dominguez Gap Monitoring Site	· · · · ·	60 -
6.3.2 Basin 20: Bouton Creek Monitoring Site		60
6.3.3 Basin 23: Belmont Pump Station Monitoring Site		61
6.3.4 Basin 27: Los Cerritos Channel Monitoring Site		61
7.0 TOXICITY RESULTS		89
7.1 Wet Weather Discharge		89
7.1.1 Belmont Pump		89
7.1.2. Bouton Creek		89
713 Los Cerritos Channel		· 90
7.2 Toxicity Identification Evaluations (TIEs) of Stormwater		. 90
7.2.1 Belmont Pump Station	,	91
7.2.2. Bouton Creek Station		· 91
7.2.3 Los Cerritos Channel Station		- 91
7.2.4 Dominguez Gap Pump Station	N	91
7.3 Dry Weather Discharge		91
7.3.1 Belmont Pump Station		91
7.3.2 Bouton Creek		92
7.3.3 Los Cerritos Channel		92
7.4 Dry Weather Toxicity Identification Evaluations	<i>′</i> .	92
8.0 ALAMITOS BAY PILOT RECEIVING WATER STUDY RESULTS		105
8.1 Vertical and Horizontal Extent of the Stormwater Plume		i 105
8.2 Chemical Characterization	· .	105
8.3 Toxicological Characterization		106
9.0 DISCUSSION		115
9.1 Wet Season Water Quality		115
911 Conventionals and Bacteria		115
9.1.2 Trace Metals	· .	116
9.1.3 Chlorinated Pesticides and Organophosphate Pesticides		116
9.2 Dry Season Water Quality	ι.	116
9.3 Temporal Trends of Selected Metals and Organic Compounds		117
9.4 Stormwater Toxicity		118
9.4.1 Dry Weather Toxicity		118
9.4.2 Temporal Toxicity Patterns		119
9.4.3 Comparative Sensitivity of Test Species		119
9.4.4 Relative Toxicity of Stormwater		120
9.4.5 Toxicity Characterization	•	120
10.0 CONCLUSIONS	,	157
11.0 REFERENCES CITED		159

ii

APPENDICES Appendix A - Quality Assurance/Quality Control Assessment Appendix B – 2001/2002 Data Tables

LIST OF FIGURES

Figur	e No.	Page
3.1	Los Angeles Basin	11
.3.2	City of Long Beach.	·11
3.3	City of Long Beach, Major Drainage Basins.	12
4.1	Land Use of Drainage Basin #14 which Drains to the Dominguez Gap Mass	
	Emission Site.	26
4.2	Land Use of Drainage Basin #20 which Drains to the Bouton Creek Mass	
	Emission Site.	27
4.3	Land Use of Drainage Basin #23 which Drains to the Belmont Pump Station	
	Mass Emission Site.	28
4.4	Land Use of Drainage Basin #27 which Drains to the Los Cerritos Channel	
	Monitoring Site.	29.
4.5	Typical KLASS Stormwater Monitoring Station.	30
5.1	Monthly Rainfall Totals for the 2002/2003 Wet Weather Season.	39
5.2	Belmont Pump Station - Event 1 (7-8 November 2002).	40
5.3	Bouton Creek - Event 1 (7-10 November 2002).	41
5.4	Los Cerritos Channel - Event 1 (8-10 November 2002).	42
5.5	Belmont Pump Station - Event 2 (16-17 December, 2002).	43
5.6	Bouton Creek-Event 2 (16-17 December, 2002).	44
5.7	Los Cerritos Channel - Event 2 (16-17 December, 2002).	45
5.8	Belmont Pump Station-Event 3 (11-12 February, 2003).	. 46
5.9	Bouton Creek - Event 3 (11-13 February, 2003).	47
5.10	Los Cerritos Channel - Event 3 (11-13 February, 2003).	48
5.11	Dominguez Gap Pump Station - Event 3 (11-12 February, 2003).	49
5.12	Belmont Pump Station -Event 4 (24-25 February, 2003).	50
5.13	Bouton Creek - Event 4 (24-25 February, 2003).	51
5.14	Los Cerritos Channel - Event 4 (24-25 February, 2003).	52
5.15	Dominguez Gap Pump Station - Event 4 (24-25 February, 2003).	53
5.16	Dominguez Gap Pump Station - Event 5 (15-16 March, 2003).	54
7.1	Toxicity Dose Response Plots for Stormwater Samples Collected from the	
	Belmont Pump Station.	93
7.2	Toxicity Dose Response Plots for Stormwater Samples Collected from Bouton	
	Creek.	94
7.3	Toxicity Dose Response Plots for Stormwater Samples Collected from the Los	•
	Cerritos Channel.	- 95
7.4	Toxicity Dose Response Plots for Stormwater Samples Collected from the	
,	Dominguez Gan Pump Station	96
75	Summary of Dhase I TIE Analyses on Stormwater Samples from the Belmont	
1.5	Pump Station	97
7.6	Summary of Phase I TIE Analyses on Stormwater Samples from the Bouton	21
7.0	Creek Station	97
7.7	Summary of Phase I TIE Analyses on Stormwater Samples from the Los Cerritos	
	Channel Station.	98

Figure No.

8.1	Map of Surface Salinity in Alamitos Bay with Locations of Eight Water	
,	Ouality Profiling Sites, 12/16/2003.	107
8.2	Map of Surface Salinity in Alamitos Bay with Water Quality Sampling	
	Locations, 12/16/2003.	108
8.3(a-d)	CTD Casts taken during Alamitos Bay Receiving Water Study.	.109
8.3(e-h)	CTD Casts taken during Alamitos Bay Receiving Water Study.	110
8.4	Toxicity Dose Response Plots for Sea Urchin Fertilization Tests using	
	Stormwater Plume Samples collected from Alamitos Bay.	111
91	Relmont Pump Station Chemistry Results: a) Cadmium: b) Conner: c) Nickel.	123
9.2	Belmont Pump Station Chemistry Results: a) Lead (total and dissolved); b)	
	Lead (dissolved): c) Zinc.	124
9.3	Belmont Pump Chemistry Results: a) Chlorpyrifos: b) Diazinon.	125
9.4	Bouton Creek Chemistry Results: a) Cadmium; b) Copper; c) Nickel.	. 126
9.5	Bouton Creek Chemistry Results: a) Lead (total and dissolved); b) Lead	
	(dissolved); c) Zinc.	127
9.6	Bouton Creek Chemistry Results: a) Chlorpyrifos; b) Diazinon.	128
9.7	Los Cerritos Channel Chemistry Results: a) Cadmium; b) Copper; c) Nickel.	129
9.8	Los Cerritos Channel Chemistry Results: a) Lead (total and dissolved); b) Lead	
	(dissolved); c) Zinc.	130
9.9	Los Cerritos Channel Chemistry Results: a) Chlorpyrifos; b) Diazinon.	131
9.10	Dominguez Gap Pump Station Chemistry Results: a) Cadmium; b) Copper; c)	
	Nickel.	132
9.11	Dominguez Gap Pump Station Chemistry Results: a) Lead (total and	
,	dissolved): b) Lead (dissolved): c) Zinc.	133
9.12	Dominguez Gap Pump Station Chemistry Results: a) Chlorpyrifos; b)	•
	Diazinon.	134
9.13	Summary of Wet and Dry Weather Toxicity Results for all Long Beach	
	Samples	135
9.14	Comparison of Measured (Total) Toxic Units for the Sea Urchin Fertilization	-
	Test and Toxic Units Predicted from the Dissolved Concentrations of Copper	
	and Zinc in the Test Samples	136
9.15	Comparison of Measured (Total) Toxic Units for the Water Flea Survival Test	
	and Toxic Units Predicted from the Concentration of Chlorpyrifos, Diazinon	•
	and Dissolved Zinc in the Test Samples	137

Page

il i

iv

LIST OF TABLES

Ta	ble No.	Page
3.1	Total Area and Land Use for City of Long Beach Watersheds.	13
. 4.1	Location Coordinates of Monitoring Stations for the City of Long Beach	
	Stormwater Monitoring Program.	31
4.2	Analytical Methods, Holding Times, and Reporting Limits.	32
5.1	Rainfall for Monitoring Events During the 2002/2003 Wet Weather Season.	55
5.2	Descriptive Statistics for Rainfall and Flow Data During the 2002/2003	
	Monitoring Season.	56
5.3	Flow Data for Monitored Events During the 2002/2003 Wet Weather Season.	57
6.1	Monitored Storm Events, 2002/2003.	62
6.2	Stormwater Chemistry Results: City of Long Beach Storm Monitoring Project,	
	Bouton Creek and Belmont Pump Station.	63
6.3	Stormwater Chemistry Results: City of Long Beach Storm Monitoring Project,	
	Los Cerritos Channel and Dominguez Gap Pump Station.	67
6.4	Load Calculations (pounds) for each Storm Event at Bouton Creek.	71
6.5	. Load Calculations (pounds) for each Storm Event at the Belmont Pump Station.	- 74
6.6	Load Calculations (pounds) for each Storm Event at Los Cerritos Channel.	77
6.7	. Load Calculations (pounds) for each Storm Event at the Dominguez Gap Pump	
	Station.	80
6.8	Monitored Dry Weather Events, 1999-2003	· 83
6.9	Field Measurements for Bouton Creek, Belmont Pump, and Los Cerritos	
	Channel, Dry Weather Season (2002/2003)	83
6.1	0 Summary of Chemical Analyses of Dry Weather Monitoring, 2002/2003	84
7.1	Toxicity of Wet Weather Samples Collected from the City of Long Beach	
	Belmont Pump Station During the 2002/2003 Monitoring Season.	. 99
7.2	Toxicity of Wet Weather Samples Collected from the City of Long Beach	
	Bouton Creek Station During the 2002/2003 Monitoring Season.	100
7.3	Toxicity of Wet Weather Samples Collected from the City of Long Beach Los	
	Cerritos Channel Station During the 2002/2003 Monitoring Season.	101
7.4	Toxicity of Wet Weather Samples Collected from the City of Long Beach	
	Dominguez Gap Pump Station During the 2002/2003 Monitoring Season.	102
7.5	Summary of TIE Activities.	102
7.6	Toxicity of Dry Weather Samples from Collected from Mass Emission Sites	
	During the 2002/2003 Monitoring Season.	103
8.1	Summary of Receiving Water Quality in Stormwater Plume Samples from	
	Alamitos Bay.	112
8.2	Toxicity of Receiving Water Samples Collected from Alamitos Bay During the	
	2002'2003 Storm Season	113
9.1	Summary of Beneficial Uses for Receiving Water Bodies Associated with each	
	Monitoring Location.	138
9.2	Comparison of Water Quality Measurements from Bouton Creek with Guidelines	
	and Standards.	139
9.3	Comparison of Water Quality Measurements from Belmont Pump Station with	
	Guidelines and Standards.	143

.

Table	e No.	Page
9.4	Comparison of Water Quality Measurements from Los Cerritos Channel with	
	Guidelines and Standards.	147
9.5	Comparison of Water Quality Measurements from Dominguez Gap Pump Station	
	with Guidelines and Standards.	151
9.6	Summary of Toxicity Characteristics of Stormwater from Various Southern	
	California Watersheds.	155
9.7	Summary of TIE Results for Each Sample.	156
9.8	Nonparametric Spearman Correlation Coefficients Showing the Relationship	
	Between Change in Chemical Concentration and Toxic Units for the Sea Urchin	
	and Water Flea Toxicity Tests.	156

vi

/

];

ACRONYMNS AND ABBREVIATIONS LIST

ASTM - American Society for Testing and Materials

BHC - Benzene hexachloride

BMP - Best Management Practice

BOD-Biological Oxygen Demand

CCC - Criterion Continuous Concentration

CD - Compact Disk

CFU - Colony Forming Units

CMC - Criterion Maximum Concentration

COD - Chemical Oxygen Demand

CRWQCB – California Regional Water Quality Control Board

CTR - California Toxics Rule

2,4 D - 2,4-dichlorophenoxy

2,4 DB - (2,4-dichlorophenoxy) butanoic acid

DDD - dichloro (p-chlorophenyl)ethane

DDE - dichloro (p-chlorophenyl)ethylene

DDT - dichlorodiphenyl trichloroethane

DF - dilution factor

DI - Deionized

DL - Detection Limit (considered the same as RL)

DO - Dissolved Oxygen

EC₅₀ - Concentration causing effects to 50% of the test population

EDTA - ethylene diamine triacetic acid

EMC-Event mean concentration

GIS - Geographic Information System

IC25 - Concentration causing 25% inhibition in growth or reproduction

IC50 - Concentration causing 50% inhibition in growth or reproduction

ICP-MS - Inductively Coupled Plasma-Mass Spectrometry

Halocline – a locally steepened vertical gradient of salinity

KLASS - Kinnetic Laboratories Automated Sampling System

KLI - Kinnetic Laboratories, Inc.

 LC_{50} - Bioassay concentration that produces 50% lethality

LDPE - Low Density Polyethylene

LOEC - Lowest Observed Effect Concentration

LPC - Limiting Permissible Concentration

MBAS - methylene-blue-active substances

MCPA - 2-methyl-4-chloro-phenoxy acetic acid

MCPP - 2-(4-chloro-2-methylphenoxy) propanoic acid

ML - Minimum level as defined in State Implementation Plan

MPN- Most Probable Number

MS4 - Multiple Separate Storm Sewer System

MTBE- Methyl Tertiary Butyl Ether

NADP-National Atmospheric Deposition Program

NCDC-National Climate Data Center

NPDES -National Pollutant Discharge Elimination System

NOEC - No observed effect concentration

NTS - Not to Scale

NTU - nephelometric turbidity units

NURP- Nationwide Urban Runoff Program PAH - Polynuclear Aromatic Hydrocarbons PCB - Polychlorinated bi-phenyls PDF - Portable Document Format ppb - Parts per Billion O - Flow QA/QC - Quality Assurance/Quality Control **RMP** - Regional Monitoring Program RL-Reporting Limit (considered the same as DL) **RPD-** Relative Percent Difference SAP - Sampling and Analysis Plan SCCWRP - Southern California Coastal Water Research Project sf- Square Feet SIP – State Implementation Plan SM- Standard Methods for the Examination of Water and Wastewater SOP - Standard Operating Procedure SRM - Standard Reference Material STS - sodium tetradecyl sulfate SV - Semi-Volatile Compound SWRCB-State Water Resource Control Board 2, 4, 5-TP - 2-(2,4,5-trichlorophenoxy) propanoic acid 2, 4, 5-T - 2,4,5-trichlorophenoxy TDS - Total Dissolved Solids TIE – Toxicity Identification Evaluation TKN- Total Kjeldahl Nitrogen **TOC - Total Organic Carbons** 2, 4, 5-TP - 2-(2,4,5-trichlorophenoxy) propanoic acid TPH - total petroleum hydrocarbons TRPH - Total Recoverable Petroleum Hydrocarbons TSI - ToxScan, Inc. TSS -- Total Suspended Solids TU - Toxicity Unit TUc - Chronic Toxicity Unit USEPA - U.S. Environmental Protection Agency WQO - Water Quality Objective WQS - Water Quality Standard

CITY OF LONG BEACH STORMWATER MONITORING REPORT 2002/2003

NPDES Permit No. CAS004003 (CI 8052)

1.0 EXECUTIVE SUMMARY

1.1 Background and Purpose

The City of Long Beach was required to conduct a water quality monitoring program for stormwater and dry weather discharges through the City's municipal separate storm sewer system (MS4) beginning in the 1999/2000 wet weather season under terms of Order No. 99-060 National Pollutant Discharge Elimination Systems Municipal Permit No. CAS004003 (CI 8052).

The monitoring program called for monitoring mass emissions and toxicity at three representative mass emission sites during the first wet season and four sites for subsequent wet seasons. Four wet weather storm events were to be monitored annually. Monitoring during the first two years also included a receiving water site (Alamitos Bay) be monitored with each wet weather storm event.

Dry weather inspections and the collection and analysis of dry weather discharges were required at each of these monitoring sites over two different 24-hour periods during each dry season. Water samples collected at the monitoring sites during each time period were to be analyzed for all parameters specified in the permit and tested for toxicity. The program also initially called for monitoring the receiving water body site (Alamitos Bay) for bacteria and toxicity to provide water quality information during the dry seasons and on the effectiveness of a dry-weather diversion.

Monitoring sites specified in the permit are as follows:

- Basin 14: Dominguez Gap Pump Station Monitoring Site
- Basin 20: Bouton Creek Monitoring Site
- Basin 23: Belmont Pump Station Monitoring Site
- Basin 27: Los Cerritos Channel Monitoring Site (Starting in Second Year)
- Alamitos Bay Receiving Water Monitoring Site

During the first 1999/2000 wet weather season, start-up delays associated with permitting for placement of stormwater monitoring equipment in the Los Angeles County Flood Control District facilities prevented the wet weather monitoring from being carried out. Instead, a special research study on Parking Lot Runoff was carried out with the permission of the Regional Water Quality Control Board staff. In addition, the required dry weather monitoring was carried out for this first year. A previous report (Kinnetic Laboratories, Inc., 2000) covered the first season dry-weather monitoring events performed in June of 2000 as well as one additional receiving water sampling in April 2000. Subsequent reports have summarized the results of both second (Kinnetic Laboratories, Inc., 2001) and third (Kinnetic Laboratories, Inc. 2002) wet and dry season monitoring programs.

The purpose of this present report is to submit the results of the City of Long Beach's stormwater monitoring program for the fourth year, 2002/2003. Kinnetic Laboratories, Inc. conducted this monitoring program as Prime Contractor to the City of Long Beach. Toxicity testing and chemical analyses were conducted by ToxScan, Inc. Analytical laboratory services were supplemented by other

participating laboratories as necessary. North Coast Analytical analyzed the chlorinated herbicides and Associated Labs analyzed the grab samples for bacteria and hexavalent chromium.

1.2 Summary of Results

Wet weather sampling of storm events began in November 2002. The first major storm of the year was sampled on November 11. During this wet weather season, the targeted number of four storm events were monitored at all of the City of Long Beach's mass emission stations, with the exception of the Dominguez Gap Pump Station where only three overflow discharge events occurred. Discharges from the Dominguez Gap Pump Station all happened late in the storm season. Two of the events were sampled in concert with storm events at the other stations. The third event at this site was sampled only at the Dominguez Gap Pump Station since sampling requirements had been completed at the other mass emission sites.

In a letter dated November 13, 2002, the Executive Officer of the California Regional Water Quality Control Board, Los Angeles Region issued adjustments to the monitoring program. Included in the changes was implementation of a pilot receiving water study. This study was conducted on December 16th following the second event of the season. The horizontal and vertical extent of the stormwater plume in Alamitos Bay was delineated and water samples were taken from four different locations in the plume. Sampling locations represented a range of salinities within the plume that ranged from 8.7 to 24.9 ppt. Water samples were tested for toxicity and a subset of water quality parameters which included selected trace metals and organophosphorous pesticides.

Two dry weather inspections/monitoring events were conducted. The first was conducted in September 2002 prior to the winter rains. The second was conducted in May 2003 once winter rains had subsided. Dry weather monitoring was conducted for the three mass emission sites that exhibited dry weather flows. These included Bouton Creek, the Belmont Pump Station, and the Los Cerritos Channel.

The results of the City of Long Beach's 2002/2003 stormwater monitoring program are summarized as follows:

Wet Weather Chemical and Bacterial Results

Numerical standards do not exist for stormwater discharges. However, water quality criteria or objectives may provide reference points for assessing the relative importance of various stormwater contaminants, though specific receiving water studies are necessary to quantify the presence and magnitude of any actual water quality impacts. The California Ocean Plan (SWRCB 2002), the Los Angeles Region Basin Plan (CRWQCB, Los Angeles Region. 1994), AB411 public health criteria, and both saltwater and freshwater criteria from the California Toxics Rule (USEPA 2000) were used as benchmarks as requested by Regional Board staff. Not all of these criteria are appropriate for Long Beach discharges or for comparison with stormwater runoff water quality. In order for these comparisons to be useful it is important that a regional strategy be developed that provides consistent and appropriate benchmarks.

• Total suspended solids (TSS) in the Long Beach wet weather discharges exceeded the Ocean Plan criterion of 3 mg/L in all cases. This is an open ocean, not estuarine standard and all stormwater runoff would be expected to exceed this criterion. Therefore this standard is not applicable for evaluation of stormwater discharges.

- The pH of stormwater discharges from Long Beach typically ranged from 6.2 to 6.8. More than half of the stormwater samples had pH values that were below the lower Basin Plan limits of 6.5. Stormwater discharged from the Dominguez Gap Pump Station on February 25, 2003 had a pH of 5.4. Low pH in stormwater is not unusual since rainwater is slightly acidic due to dissolved carbon dioxide scavenged from the atmosphere. The average pH of rainwater in Southern California is reported to be approximately 5.2 (NADP 2003).
- Concentrations of bacteria (total coliform, fecal coliform, and enterococcus) in the Long Beach stormwater discharges routinely exceed public health criteria provided by AB411 and the Ocean Plan. Both total and fecal coliform concentrations exceeded criteria in 100 percent of the stormwater samples. Enterococcus concentrations exceeded AB411 criteria during all but one event when reported values were below criteria at three sites. Other studies have shown that such exceedances are not limited to urban stormwater sources but are also measured in stormwater discharges from undeveloped surrounding land.
- Total recoverable metal concentrations were compared against the Ocean Plan's aquatic life criteria and the Basin Plan drinking water quality objectives. Concentrations of total recoverable copper, lead and zinc exceeded Ocean Plan criteria in 80 to 100 percent of the samples. Stormwater runoff from the Dominguez Gap Pump Station tended to have lower levels of total metals. Lead and zinc criteria were exceeded in only one-third of the events at this site.

Total recoverable aluminum exceeded the Basin Plan drinking water criterion of 1000 μ g/L during all events at all sites. The Basin Plan drinking water criterion of 6 μ g/L was slightly exceeded during one event in water discharged from the Los Cerritos Channel.

Dissolved metal concentrations were compared against both saltwater and freshwater Criteria Continuous Concentrations (CCC) values from the California Toxics Rule (CTR). Dissolved copper, lead and zinc commonly exceeded the reference values. Concentrations of dissolved copper exceeded both the freshwater and saltwater CTR criteria at all sites during all storm events. Dissolved lead and zinc exceeded the CTR criteria during all storm events at Bouton Creek, the Belmont Pump Station and Los Cerritos Channel. Lead and zinc criteria were exceeded in two out of three events at the Dominguez Gap Pump Station.

- Very few organic compounds exceeded the reference criteria in runoff from the four mass emission sites. Concentrations of dieldrin exceeded the saltwater CTR criterion in one sample from the Belmont Pump site and another from the Los Cerritos Channel. In both cases, the reported value was less than twice the Minimum Level¹ (ML) of 0.01 µg/L. Simazine, an organophosphorus herbicide, exceeded the Basin Plan Maximum Contaminant Level (MCL) in one sample from the Los Cerritos Channel.
- Among the four mass emission sites, the Los Cerritos Channel consistently exhibited the highest overall loads of solids and total metals. Estimates of solids discharged at the Los Cerritos Channel site ranged from 92,163 to 704,927 pounds. Estimates of total copper, one of the most significant urban contaminants, ranged from 14 to 143 pounds. In contrast, the Belmont Pump Station was estimated to discharge between 397 and 4018 pounds of solids and 0.22 to 1.7 pounds of copper during each event.

¹ The minimum level represents the lowest quantifiable concentration in a sample based on the proper application of all method-based analytical procedures and the absence of any matrix interferences.

Dry Weather Chemical and Bacterial Results

- In general, the concentrations of suspended particulates and total recoverable metal concentrations continue to be low in dry weather runoff. Trace metals are predominantly in the dissolved form. Hardness is also consistently high which tends to mitigate the effects of the dissolved metals. Concentrations of bacteria exceed public health criteria and are comparable to levels in stormwater runoff. Pesticides and semivolatiles were largely undetected.
- Sampling conducted at Bouton Creek in May 2003 resulted in elevated levels of TSS, turbidity, total recoverable metals (aluminum, copper, iron, lead, selenium, silver and zinc) and dissolved selenium. The results of this survey suggest that there was an upstream source of sediment at this location at that time. Possible sources are being investigated.
- As in previous years, no dry weather discharges were observed from the Dominguez Gap Pump Station.

Alamitos Bay Pilot Receiving Water Program

Monitoring of a stormwater plume in Alamitos Bay was conducted on December 16, 2002 following a brief, but intense storm event. The storm lasted for four to five hours producing 1.21 to 1.26 inches. Runoff during the storm resulted in a surface plume that extended throughout Alamitos Bay. Sampling was conducted at four dilutions within the plume for chemical and toxicological testing. Salinities of each sampling location were 24.7 ppt (RW1), 16.5 ppt (RW2), 10.9 ppt (RW3) and 8.7 ppt (RW4).

- Measured surface salinity within Alamitos Bay ranged from 1 to 28 ppt. The lower part of the range was found within the lower reaches of the Los Cerritos Channel near the Pacific Coast Highway Bridge. The higher surface salinities occurred near the Bay entrance.
- The fresher water of stormwater plume generally formed a surface plume that was typically three to five feet in depth.
- The stormwater plume tended to be cooler and more turbid than the underlying marine waters. Temperatures in the plume were typically one degree centigrade lower than the deeper marine waters. Turbidity in the surface plume ranged from 45 to 80 NTU. Marine water under the plume was relatively clear with turbidity measurements typically in the range of 2 to 5 NTU.
- Total suspended solids increased from 10 to 28 mg/L as the surface salinity decreased from 24.7 to 8.7 ppt. Similarly, total copper, nickel, lead and zinc concentrations also increased with decreasing salinity. Concentrations generally doubled over the salinity gradient. Total cadmium was relatively constant with values ranging from 0.09 to 0.12 μ g/L.
- Strong spatial trends were not evident in the distribution of dissolved metals.
- Organophosphate (OP) pesticides were mostly not detected. Simazine, an herbicide, was the only OP pesticide detected in the plume. Concentrations were similar at all locations with levels ranging from 1.1 to 1.3 μg/L.
- Water samples from the four plume sites were tested for toxicity using the sea urchin fertilization test showed negligible toxicity. All EC50s were >50%. Toxicity testing of stormwater

discharges from the mass emission sites demonstrated a similar lack of toxicity, consistent with the high dilutions due to the large rainfall and low toxicity in stormwater runoff samples from the mass emission sites.

Temporal Trends in Constituents of Concern

Although data are not yet sufficient to make definitive statements supported by statistical test, several general trends are emerging. Major observations include:

- Dissolved concentrations of cadmium, copper, nickel and lead appear to be comparable during both wet and dry weather periods. Unlike these four metals, dissolved zinc concentrations are consistently higher during storm events.
- Concentrations of total copper, lead and zinc are distinctly higher in association with storm flows.
- No distinct seasonal or year to year differences are evident in concentrations of total cadmium, total nickel, chlorpyrifos or diazinon.
- Characteristics of stormwater discharges from the Dominguez Gap Pump Station are consistent with earlier observations at this site. Discharges from this site tend have lower concentrations of total metals than the other mass emission sites.

Toxicity Results

- Toxicity to one or more test organisms was detected at three of the four stations sampled this year for each of the four wet weather storm events. Water flea toxicity was seen during the first two storms at the Belmont and Cerritos stations, but not at all at the Bouton station. No wet weather water flea toxicity was detected after the second storm. Sea urchin toxicity was seen during the first storm at Belmont, Bouton and Dominguez stations, and again during the second and fourth storms at Bouton and the third storm at Cerritos. No toxicity was detected at Dominguez during the only (third) storm when that station was sampled. The toxicity measured was less this year, possibly because there were fewer storms last year. The frequency and magnitude of stormwater toxicity from the Long Beach stations during this monitoring period were markedly reduced from both previous Long Beach stormwater programs and stormwater samples from other southern California watersheds. The Chollas Creek (San Diego) and Ballona Creek (Santa Monica)were most similar to the Long Beach study, as these samples were obtained from smaller highly urbanized watersheds relative to the Los Angeles River and San Gabriel River.
 - Toxicity was measured in all of the dry weather samples except those from Belmont Pump station, where there was only very slight toxicity to water fleas in September. The magnitude of toxicity was not consistently less than that measured in the wet weather samples as seen in previous Long Beach studies. These results do not support the hypothesis suggesting significant differences in the composition of stormwater and dry weather discharge from the City of Long Beach.
- Perhaps indicative of the generally reduced magnitude of toxicity seen during this testing program, only five TIEs (four wet weather and one dry weather) were triggered in 2002/2003.
 There were limited TIE procedures incorporated into two additional dry weather samples.

Virtually all of the TIE attempts were abandoned due to loss of toxicity in the laboratory, but useful data were salvaged on 10 samples. The results of this year were consistent within each species and similar to those obtained from the previous year.

- All TIEs conducted using the water flea indicated that organophosphate pesticides were the most likely category of toxic constituents.
- The three-year toxicity data set also implicated dissolved metals, including copper, lead, nickel and zinc, as causes of stormwater toxicity. These conclusions are supported by the TIE results, by correlations of toxicity with chemical constituents, and by calculations of predicted toxicity based upon measured zinc and organophosphate pesticide concentrations in the stormwater.

2.0 INTRODUCTION

The City of Long Beach serves a population of about 481,000² people in an area of approximately 50 square miles. The discharges from the MS4 system consist of surface runoff (non-stormwater and stormwater) from various land uses in the hydrologic drainage basins within the City. Approximately 44% of the land area discharges to the Los Angeles River, 7% to the San Gabriel River, and the remaining 49% drains directly to Long Beach Harbor and San Pedro Bay (City of Long Beach Municipal Stormwater Permit, 1999). The quality and quantity of these discharges vary considerably and are affected by the hydrology, geology, and land use characteristics of the watersheds; seasonal weather patterns; and frequency and duration of storm events. Impairments or threatened impairments of beneficial uses of water bodies in Long Beach include Alamitos Bay, Los Angeles River, El Dorado Lake, Los Angeles River Reach 1 and Reach 2, San Gabriel River Estuary, San Gabriel River Reach 1, Colorado Lagoon, and Los Cerritos Channel. These areas also include coastal shorelines, including Alamitos Bay Beaches, Belmont shore Beach, Bluff Park Beach, and Long Beach Shore.

The City of Long Beach received an NPDES Permit issued by the California Regional Water Quality Control Board, Los Angeles Region on 30 June 1999 (Order No 99-060, NPDES No. CAS004003, (CI 8052)). This order defined Waste Discharge Requirements for Municipal Stormwater and Urban Runoff discharges within the City of Long Beach. Specifically, the permit regulates discharges of stormwater and urban runoff from municipal separate storm sewer systems (MS4s), also called storm drain systems, into receiving waters of the Los Angeles Basin.

The NPDES permit requires the City of Long Beach to prepare, maintain, and update if necessary a monitoring plan. The specified monitoring plan required the City to monitor three (Year 1) and four (Years 2 through 5) discharge sites draining representative urban watersheds (mass emission sites) during the first two years of the monitoring program. Flow, chemical analysis of water quality, and toxicity were to be monitored at each of these sites for four representative storm events each year. During the dry season, inspections and monitoring of these same discharge sites were to be carried out, with the same water quality characterization and toxicity tests to be run. In addition, one receiving water body (Alamitos Bay) was to be monitored during the first two years of the program for bacteria and toxicity. Monitoring at the Alamitos Bay site was to be conducted during both the wet and the dry seasons and was to be used to document the effect of a dry weather diversion.

The Regional Board first modified the permit by letter on October 24, 2001 based upon review of the second year report and concurrent modifications being negotiated on the Los Angeles County stormwater permit. Permit modifications consisted of three primary elements. The first modification was an adjustment to the list of constituents and the required reporting limits for consistency with Minimum Levels (MLs) listed in the State's *Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays and Estuaries of California* (SIP). The second change addressed the requirements for triggering TIEs and a reduction in toxicity testing requirements for the mysid, *Americamysis.* TIE triggers were changed to enhance opportunities for defining toxicity that might be related to first flush or other early season events. Testing of mysids was reduced to conducting these tests only during the first event of the season. The final change was a requirement to compare stormwater quality data to water quality criteria applicable to specific beneficial uses in each receiving water body.

² Population estimate as of January 1, 2003. State of California Department of Finance Demographic Research Unit

After reviewing the third year report, the Regional Board issued another letter on November 13, 2002 that provided further adjustments to the monitoring program. Major changes included:

- continuation of monitoring at the Dominguez Pump Station site but suspension of toxicity testing at this site,
- elimination of monitoring requirements for semi-volatile organic compounds during the 2002/2003 season while investigating alternative sampling and analytical approaches to obtain lower detection limits in subsequent years,
- elimination of the Alamitos Bay Receiving Water Site,
- implementation of a pilot receiving water program, and
- implementation of upstream investigations if extreme pH values are encountered during Dry Weather monitoring at any of the Mass Emission Stations.

The purpose of this report is analyze the samples and data collected during the 2002/2003 permit year and to present the results from the fourth year of the City of Long Beach's stormwater monitoring program.

3.0 STUDY AREA DESCRIPTION

The four sites for mass emissions monitoring were originally selected by the City of Long Beach with the assistance of the Southern California Coastal Water Research Project (SCCWRP), with input from the Los Angeles Department of Public Works, the environmental community, and with the approval of the Regional Water Quality Control Board. These sites were then specified in the NPDES permit after an analysis of the drainage basins and receiving waters. They were selected to be representative of the stormwater discharges from the City's storm drain system, as well as to be practical sites to carry out stormwater and dry weather monitoring. An additional site in Alamitos Bay was also selected as representative of receiving waters and for evaluation of the effectiveness of a dry weather diversion.

3.1 Regional Setting

3.1.1 Geography

The City of Long Beach is located in the center and southern part of the Los Angeles Basin (Figure 3.1) and is part of the highly urbanized Los Angeles region. In addition to residential and other uses, the City also encompasses heavy industrial and commercial areas and includes a major port facility, one of the largest in the United States. The City's waterfront is protected from the open Pacific Ocean by the extensive rock dikes encircling the outer harbor area of the Port of Los Angeles/Port of Long Beach complex. The waterfront includes port facilities along with a downtown commercial/residential area that includes small boat marinas, recreational areas, and convention facilities. Topography within the City boundaries can be generally characterized as low relief, with Signal Hill being the most prominent topographic feature (Figure 3.2).

3.1.2 Major Watersheds

Major water bodies receiving stormwater discharges from the City of Long Beach include the Los Angeles River located near the western boundary of the City, the San Gabriel River located near the eastern boundary, and the outer Harbor of the Los Angeles/Long Beach area. The City of Long Beach has fifteen pump stations that discharge into the Los Angeles River, and one pump station that discharges into the San Gabriel River. Receiving water sub-areas of importance include the extensive Alamitos Bay, heavily developed for marina and recreational uses, and the inner harbor areas of the City, heavily developed as port facilities. Other receiving water sub-areas include the Los Angeles River, El Dorado Lake, Los Angeles River Reach 1 and Reach 2, San Gabriel River Estuary, San Gabriel River Reach 1, Colorado Lagoon, and Los Cerritos Channel. These areas also include coastal shorelines, including Alamitos Bay Beaches, Belmont Shore Beach, Bluff Park Beach, and Long Beach Shore. The drainage from the City is characterized by major creeks or storm channels, usually diked and/or concrete lined such as the Los Cerritos Channel that originates in Long Beach, flows near the eastern City boundary, and discharges into the Marine Stadium and then into Alamitos Bay. Other such regional drains include:

- Coyote Creek, which passes through a small portion of Long Beach before it discharges to the San Gabriel River;
- Heather Channel and Los Cerritos Line E that both enter Long Beach from the City of Lakewood and discharge into the Los Cerritos Channel; and the
- Artesia-Norwalk Drain that enters Long Beach from Hawaiian Gardens and discharges into Coyote Creek.

The City of Long Beach, including the City of Signal Hill, is divided into 30 watersheds as shown in Figure 3.3. Data presently in the City of Long Beach GIS database on total areas and specific land use categories for each basin are given in Table 3.1 (City of Long Beach 2001). Specific watersheds selected by the City of Long Beach for this present stormwater monitoring program are described in more detail in the following section.

3.1.3 Annual Rainfall and Climate

The City of Long Beach is located in the semi-arid Southern California coastal area and receives significant rainfall on a seasonal basis. The rain season generally extends from October through April, with the heavier rains more likely in the months of November through March (see Figure 5.1 for average rainfall by month and seasonal total rainfall as measured at the Long Beach Airport). The long-term average rainfall for October through April at the Long Beach Airport is 12.27 inches per year.

The City lies in the Los Angeles Plain, which is south of the Santa Monica and San Gabriel Mountains and west of the San Jose and the Puente Hills. The Los Angeles River is the largest stream on the Plain and it drains the San Fernando Valley and much of the San Gabriel Mountains. Most of the streams are dry during the summer and there are no lakes or ponds, other than temporary ponding behind dunes (Miles & Goudy, 1998). The climate is mild, with a 30-year average temperature of 23.4 °C (74.1°F) at the Long Beach Daugherty Airport (NCDC, 2000).

3.1.4 **Population and Land Use Characteristics**

The population of the City of Long Beach totaled approximately 481,000 residents in January 2003 (California Department of Finance Demographic Research Unit, 2003). The total population of the County of Los Angeles, in which it resides, was 9,979,600. The independent city of Signal Hill, located on a promontory, is surrounded by the City of Long Beach. Signal Hill's population was recently estimated to be 10,300. Signal Hill contributes runoff to drainage basins 6, 7, 8, 9 and 18.

The City of Long Beach has a total area of 26,616 acres. Of that total 16,926 acres (64%) are classified as residential, 4,784 acres (18%) as commercial, 2,269 acres (8.5%) as industrial, 1,846 (7%) as institutional, and 786 acres (3%) as open space (City of Long Beach, 1999). The drainage basins sampled for the stormwater monitoring study follow this general pattern of land use.

Figure 3.1 Los Angeles Basin. (Source: 3-D TopoQuads Copyright 1999 DelLorme, Yarmouth, ME 04096).

Figure 3.2 City of Long Beach. (Source: 3-D TopoQuads Copyright 1999 DelLorme, Yarmouth, ME 04096).

Major Drainage Basins and Monitoring Sites

Figure 3.3 City of Long Beach Major Drainage Basins (Source: City of Long Beach, Department of Technology Services, last update 1994) and City of Long Beach Stormwater Monitoring Sites.

Drainage Basin	Drainage Pattern	Sub- basins	Total Acres	Residential Acres	Commercial Acres	Industrial Acres	Institutional Acres	Open Space Acres
1	N to S	4	456	393	44	0	7	12
2	E to W	· 1	1,276	905	287	22	59	3
3	E to W	3	1,083	367	642	7	58	9
4	E to W	2	810	426	176	140	. 56	12
5	E to W	1	546	434	97	0	13	. 2
6	S & SE	1	695	475	125	.0	73	17
7	to center	. 1	1,029	858	89	11	53	18
8	E to W	1	248	163	27	58	0	0
9	SW & NW	1	399	295	91	0	12	. 1
10	S & E	3	416	16	49	351	. 0	0
11	S & E	1	424	338	64	3	18	1 ,
12	S & E	1	719	556	98	9 -	41	15
13	S & E	1	84	0	7	77	0.	0
14	S & W	• 2	3,374	2,445	392	148	273	116
15	S & W	1	958	569	167	197	25	0
16	N to S	1	194	113	61	8	5	7
ľ7	S & E	1	317	244	68	0	5	0
18	Е	1	1,814	804	262	729	19	0
19	E	20	3,898	2,475	610	439	228	146
20	S & E	1	2,259	1,215	412	70	492	70
21	S & E	3	1,172	773	125	0	55	219
22	variable	9 [;]	. 520	38	428	0	54	. 0
23	S	1	213	110	85	0	14	4
24	SE & NW	1 .	281	188	30	0	0	63
25	W & E	2	90	70	9	0	4	7
26	- S & W	3	355	304	22	0	29	0
27	E & S	9	1,083	825	109	0	143	6
28	S & E	1 -	630	386	179	0	65	0
29	SW(6) &	8	727	633	10	0	26	58
30	SW(0) & SE(1)	7	546	508	19	0	19	0

Table 3.1	Total Areas and Land Use for City of Long Beach Watersheds.
I WOIV OIL	Total filous and Band Ose for Ong of Bong south a determine

1.0

13

Total

Acres

26,616

16,926

786

2,269

4,784

1,846

4.0 MONITORING PROGRAM

4.1. Monitoring Program Objectives

The stated long-term objectives of the stormwater monitoring program are as follows:

- 1. Estimate annual mass emissions of pollutants discharged to surface waters through the MS4;
- 2. Evaluate water column and sediment toxicity in receiving waters;
- 3. Evaluate impact of stormwater/urban runoff on marine life in receiving waters;
- 4. Determine and prioritize pollutants of concern in stormwater;
- 5. Identify pollutant sources on the basis of flow sampling, facility inspections, and ICID investigations; and
- 6. Evaluate BMP effectiveness.

The emphasis during the first three years of monitoring efforts has been directed towards characterizing the chemical and toxicological characteristics of discharges from the city's MS4 during both storm events and dry weather periods to develop the data needed address the first five objectives listed above. In addition, a start on BMP investigations through the special Parking Lot Study was implemented during the first full year of monitoring. Specific objectives of this year's work included the following:

- 1. Obtain monitoring data from four (4) storm events for each mass emission station during the 2002-2003 storm season.
- 2. Conduct a pilot program to document the extent of stormwater plumes in Alamitos Bay and measure associated toxicity and water chemistry at four different dilutions.
- 3. Carry out dry weather inspections and obtain samples of dry weather flow at each of the four mass emission stations. Perform this dry weather work twice during the dry season that extends from May through October.
- 4. Perform chemical analyses for the specified suite of analytes at the appropriate detection limits for all stormwater samples collected.
- 5. Perform toxicity testing of the stormwater samples collected, and Toxicity Identification Evaluations (TIEs) if warranted by the toxicity results at a given site.
- 6. Report the above results and evaluate the monitoring data with respect to receiving water quality criteria.

4.2 Monitoring Site Descriptions

Four mass emission monitoring sites are routinely monitored as part of the City's stormwater program. The general locations of the drainage basins sampled by each of these sites and each monitoring location are shown in Figure 3.3. The latitude and longitude of each site are shown in Table 4.1. Brief descriptions of each drainage basin and land use are provided in the following sections. For more detailed descriptions including photographs and storm drain maps refer to previous annual reports (Kinnetic Laboratories, Inc. 2001 and 2002).

4.2.1 Basin 14: Dominguez Gap Monitoring Site

The sampling station located at the Dominguez Gap Pump Station is intended to monitor Basin 14 that covers 3,374 acres. Land use in this basin is 72% residential, 12% commercial, 8% institutional, 4% industrial, and 4% open space (Figure 4.1). The basin is located in the northwestern portion of Long

Beach just east of the Los Angeles River and is bounded on the north, south, east, and west by Artesia Boulevard, Roosevelt Road, the railroad, and the Los Angeles River respectively (City of Long Beach, 2001).

Normally in the summer, the retention basin located adjacent to the pump station would be dry according to the Flood Maintenance Division of the Los Angeles Public Works. However, current practice is to have the pumps locked off for the summer with water diverted into the retention basin from the Los Angeles River to recharge the groundwater aquifer and to study the feasibility of a wetland habitat in the area. During winter storms, the retention basin fills from stormwater discharge, which then infiltrates into the groundwater. During intense rains, when the retention basin fills to a specified level, the pump station pumps the water over the levee and discharges it into the Los Angeles River.

The stormwater monitoring equipment was located within the Dominguez Gap Pump Station. The automatic sampler utilized a peristaltic pump to collect water from the pump station's sump. The sampler was activated at the same set point (sump elevation) that activated the main discharge pumps, thus obtaining water samples during discharge to the Los Angeles River. Sump elevation was determined with a pressure transducer. Flow rates were determined from the individual pump curves of each pump, and total volume discharged was obtained by integrating this data over the period of time each pump discharged.

4.2.2 Basin 20: Bouton Creek Monitoring Site

This site collects water from Basin 20 covering 2,259 acres. Basin 20 is 54% residential, 22% institutional, 18% commercial, 3% industrial, and 3% open space (Figure 4.2). This basin is located in the east central portion of the City and is bounded on the north, south, east, and west by Spring Street, 8th Avenue, the Los Cerritos Channel and Redondo Avenue, respectively. The sampling station is located a short way upstream from the point of discharge into Los Cerritos Channel, along side of the Alamitos Maintenance Yard of the Los Angeles County Public Works Department.

At the sampling station, Bouton Creek is a 35 ft wide, 8.5 ft deep open concrete box channel. The elevation of the channel bed is approximately one inch lower at the side than the center. About a quarter of a mile to the southeast, Bouton Creek flows into Los Cerritos Channel. Based on numerous observations of conductivity at various tides, this site has saltwater influence at tide levels above three feet. The automatic sampling equipment was therefore configured and programmed to measure discharge flow and to obtain flow composited samples of the freshwater discharge down the creek, avoiding the tidal contributions by using real-time conductivity sensors. A velocity sensor was mounted on the invert of the box channel near the center of flow. Two conductivity sensors were mounted on the wall of the channel near the bottom and 2 feet above the bottom. A third conductivity sensor and the sample intake were mounted on a floating arm that kept them near the surface.

4.2.3 Basin 23: Belmont Pump Station Monitoring Site

This site collects water from Basin 23 that covers 213 acres. Land use in the basin is 52% residential, 40% commercial, 0% industrial, 6% institutional, and 2% open space (Figure 4.3). This basin is located in the southeastern portion of the City and is bounded on the north, south, east, and west by Colorado Street, Division Street, Ultimo Avenue and Belmont Avenue respectively. The Belmont Pump Station is located at 222 Claremont Avenue.

Water enters the forebay of the facility via a nine-foot diameter underground storm pipe. A trash rack catches debris before water drops four feet into the sump area. A single sump pump typically comes on

and discharges about two feet of water from the sump area every evening at around 2300 hours. Four main pumps are available to remove water during storm events. Water from these pumps is discharged into Alamitos Bay.

The stormwater monitoring equipment was located outside the pump station but on the grounds of the pump station inside a steel utility box. The sensors and sampling hose were installed inside the pump station sump adjacent to the large discharge pumps. The automatic sampler utilized a peristaltic pump to sample from the sump. The sampler was activated at the same set point (sump elevation) that activated the discharge pumps, thus obtaining water samples during the discharge to Alamitos Bay. Sump elevation was determined with a pressure transducer. Flow rates were determined from the individual pump curves of each pump, and total volume discharged obtained by integrating this data over the period of time each pump discharged.

4.2.4 Basin 27: Los Cerritos Channel Monitoring Site

Basin 27 is 1,083 acres and land use is 76% residential, 10% commercial, 13% institutional, and 1% open space (Figure 4.4). It is located in the east central portion of Long Beach and is bound on the north, south, east, and west by Spring Street, Rendina Street, the San Gabriel River, and Bellflower Boulevard, respectively.

The drainage pattern is to the east and south on the west side of the Los Cerritos Channel and to the west and south on the east side. There are eight major storm drain systems with a total of three major storm drain lines contributing runoff. All eight major systems discharge into the Los Cerritos Channel.

The stormwater monitoring station was installed in a steel utility box located on the west side of the channel south of Stearns Street. Flow sensors and sampling tubing was installed on the bottom of the large concrete lined channel. This sampling site is above tidewater on Los Cerritos Channel. Flow rates based upon flow velocity and channel dimensions are used to control the composite sampler, and to calculate total flow at the end of the storm event.

4.3 Monitoring Station Design and Configuration

Each of the four land use stations monitored in Long Beach were equipped with Kinnetic Laboratories Automatic Sampling System (KLASS). Figure 4.5 illustrates the configuration of a typical KLASS. This system consists of several commercially available components that Kinnetic Laboratories has integrated and programmed into an efficient flow-based stormwater compositing sampler. The receiving water site was not equipped with a KLASS.

The integral components of this system consist of an acoustic Doppler flow meter or a pressure transducer, a data logger/controller module, cellular or landline telecommunications equipment, a rain gauge, and a peristaltic sampler. The system installed at Bouton Creek also incorporated several conductivity cells for distinguishing tidal flow from fresh water runoff.

The equipment was installed with intakes and sensors securely mounted, tubing and wires in conduits, and all above ground instruments protected within a security enclosure. Section 4.2 described how the equipment was placed at each station.

All materials used in the collection of stormwater samples and in contact with the samples met strict criteria in order to prevent any form of contamination of the sample. These materials must allow both

inorganic and organic trace toxicant analyses from the same sampler and composite bottle. Only the highest grade of borosilicate glass is suitable for both trace metal and organic analyses from the same composite sample bottle. Sample hoses were Teflon®.

All bottles and hoses were cleaned according to EPA-approved protocols consistent with approved methodology for analysis of stormwater samples (USEPA, 1983). These bottles and hoses were then evaluated through a blanking process to verify that the hoses and composite bottles were contamination-free and appropriately cleaned for analyses of both inorganic and organic constituents.

4.4 Field Monitoring Procedures

The following sections provide a summary of the field methods and procedures used to collect and process data for both the wet and dry weather surveys.

4.4.1 Wet Weather Monitoring

Stormwater runoff was collected using two primary methods. Composite sampling was conducted to collect water for both chemical analysis and toxicity testing. A few analytes such as bacteria must be sampled using grab sampling methods and thus reflect conditions only at the time of sampling. This season, wet weather monitoring also included a pilot study designed to investigate the spatial extent conducted in the receiving waters of Alamitos Bay. The following sections provide details of methods used for composite sampling, grab sampling and for the pilot receiving water study in Alamitos Bay.

4.4.1.1 Composite Sample Collection

A priority objective of the storm monitoring was to maximize the percent storm capture of the composite sample, while ensuring that the composite bottle collects enough water to support all the required analyses. This study required volumes of up to 70 liters of sample from each of the four land use sites to meet these analytical needs.

All aspects of the sampling events were continuously tracked from an office command and control center (Storm Control) located at our Santa Cruz laboratory. The status of each station was monitored through telecommunication links to each site. Station data were downloaded, and the stations were controlled and reprogrammed remotely. Weather information, including Doppler displays of rainfall for each area being monitored were also available on screen at the Storm Control center. In addition, Storm Control was in contact by cellular phone with the field crews.

When a storm was likely, all stations were made ready to sample. This preparation included entering the correct volume of runoff required for each sample aliquot ("Volume to Sample"), setting the automatic sampler and the data logger to sampling mode, pre-icing the composite sample bottle, and performing a general equipment inspection. A brief physical inspection of the equipment was made if possible to make certain that there were no obvious problems such as broken conduit, a kinked hose, or debris.

Once a storm event ended, the stations were shut down either on site or remotely by Storm Control. The station was left ready for the next storm event in case there was insufficient time for a maintenance visit between storms. Data were retrieved remotely via telecommunications from the data logger on a daily basis throughout the wet weather season.

All water samples were kept chilled (4°C) and were transferred to the analytical laboratories within holding times. Prior to sample shipping, sub-sampling from the composite container into sample containers was accomplished using protocol cleaned Teflon and silicone sub-sampling hoses and a peristaltic pump. Using a large magnetic stirrer, all composite water was first mixed together thoroughly and then continuously mixed while the sub-sampling took place. All sub-sampling took place at a staging area near Long Beach. Documentation accompanying samples to the laboratories included Chain of Custody forms, and Analysis Request forms (complete with detection limits).

4.4.1.2 Grab Sampling

During each storm event, grab samples for oil and grease, total recoverable petroleum hydrocarbons (TRPH), total and fecal coliform, enterococcus, and methyl tertiary butyl ether (MTBE) were collected. The timing of grab sampling efforts was often driven by the short holding times for the bacterial analyses. The ability to deliver samples to the microbiological laboratory within the 6-hour holding time was always a major consideration.

Except at the pump stations, all grab samples were taken near the center of flow as possible or at least in an area of sufficient velocity to ensure good mixing. At the Dominguez Gap sampling site, grabs were taken from the sump. At the Belmont pump station, grabs were taken at the point of discharge for the pumps. Some sites required the use of a pole to obtain the samples. Poles used were fitted with special bottle holders to secure the sampling containers. Care was taken not to overfill the sample containers for some of the containers contained preservative. For the MTBE samples, care was taken to assure that no air bubbles were trapped in the sample vial.

4.4.1.3 Alamitos Bay Pilot Receiving Water Study

This element of the stormwater monitoring program was initiated during the annual program review with Regional Board staff. The primary objectives of the pilot receiving water program were to:

- Define the general vertical and horizontal extent of stormwater in Alamitos Bay, Marine Stadium and Los Cerritos Channel.
- Evaluate toxicity and associated water quality characteristics of the stormwater plume.

Alamitos Bay, located approximately 10 miles southeast of Long Beach Harbor, is a 1 by ³/₄ mile, multiuse harbor. The opening of the harbor is at the southeast corner. The center of the harbor is occupied by Naples Island, which effectively gives it the structure of a ring. The bay receives fresh water from a variety of sources, the largest being Cerritos Creek, which drains the Long Beach Area and regions further inland. The upper end of Marine Stadium also can receive significant stormwater discharge volumes from Colorado Lagoon.

This pilot program was intended to be conducted once during the early portion of the 2002/2003 wetweather season. The study area included all of Alamitos Bay, Marine Stadium and the Los Cerritos Channel up to the first upstream bridge. The study was to target an event where total rainfall was expected to exceed 0.5 inches to provide higher probabilities of encountering suitable ranges of stormwater concentrations in the study area. Field sampling was to be initiated within 12 to 24 hours following the end of rainfall.

The first task of this field program was to roughly define the horizontal and vertical extent of the stormwater plume. This required rapid characterization of the plume by use of a towed YSI Multiparameter Sonde deployed from a boom off the side of KLI's research vessel, the *D.W. Hood*. For

establishing the horizontal extent of the plume, the sonde was towed at a depth of approximately 0.5 feet. Data from the Sonde was recorded on a portable computer. Sonde parameters included time, salinity, temperature, turbidity, pH and dissolved oxygen. A Garmin differential global positioning system (DGPS) unit was linked to a separate portable computer to record location and time and provide a realtime display of position. The Sonde and DGPS unit were synchronized to the nearest second to ensure concurrent locational data for all water quality data.

Occasional depth profiles were conducted in the plume to determine the depth of freshwater influence. Profiles were made to a depth of 10 feet with near surface data being recorded at six-inch depth intervals. After defining the halocline, recording depth intervals were increased to 1-foot. After establishing the general distribution of stormwater in receiving waters, sites were selected for collection of water samples based upon salinity. Four sites were selected to be representative of four different stormwater dilutions. To the extent practical, sites were intended to be selected from locations within the defined study area where receiving water salinities ranged from approximately 15 to 30 ppt.

The following table summarizes the target ranges of conditions to be sampled in the field. The target ranges were to provide a general framework and strategy for selection of sampling locations. This was intended to provide stormwater concentrations ranging from 12 to 56 percent. As anticipated, the actual ranges varied due to specific field conditions during the survey such as the general extent of the stormwater plume and characteristics of the vertical profiles of the plume.

Receiving Water Station Designation	Salinity (ppt)	Est. % Stormwater
RW-1	15	56
RW-2	20	41
RW-3	25	26
RW-4	30	12

Each receiving water sample was subjected to the sea urchin fertilization test. This is the only test that has been found to suggest potential for toxicity in the marine/estuarine receiving waters of Alamitos Bay. These samples were also analyzed for a subset of the analytes required for the stormwater monitoring program. Analytes were selected based upon previous results of toxicity testing and Toxicity Identification Evaluations (TIEs) conducted on the stormwater samples as well as general potential for toxicity. Chemical analyses of receiving water samples included total and dissolved trace metals (Cd, Cu, Ni, Pb and Zn), TSS, ammonia-N, pH, conductivity, salinity and organophosphate pesticides.

The data files from the YSI Sonde that contained time and water quality measurements, and from the Garmin DGPS that contained time and position data were merged by the time field. This combined data was entered into ArcInfo and contours based upon the point measured values of salinity were generated. The contours were plotted on a map of Alamitos Bay to show the salinity throughout the bay a few hours after the end of the strong rainfall.

4.4.2 Dry Weather Sampling

The NPDES Permit calls for two dry weather inspections and sampling events to be carried out during the summer dry weather period at each of the four mass emission stations as well as samples to be taken at the Alamitos Bay receiving water site.

Inspections at each site included whether water was present and whether this water was flowing or just ponded. At sites that were found not to have flowing water, inspections were done in the upstream drains to verify that flow was not occurring into the site. This situation was encountered again this year at the Dominguez Gap Pump station where remnants of water were still ponded in the basin in front of the pump station, but the storm drain discharges into this basin were dry.

When flowing water was present at one of these mass emission sites, then water quality measurements, flow estimates, and water samples were taken along with observations of site conditions. Flowing water was present and all measurements were taken at Bouton Creek, the Belmont Pump Station, and at Los Cerritos Channel. Temperature and conductivity were measured with an Orion Model 140 meter, pH with an Orion Model 250 meter, and oxygen was measured the Orion Model 840.

Water samples were collected at the Belmont Pump Station and the Los Cerritos Channel Station by use of an automatic peristaltic pump sampler that collected aliquots every half hour for a 24-hour period. For the Bouton Creek Station where tidal influences are present, a similar sample was collected over a 2-4 hour period of low tide in order to isolate sampling of just the fresh water discharge down the creek. Additional grab samples were taken just after the time-composited samples for MTBE, TPH, and bacteria. All samples were chilled to 4 °C and transported to the appropriate laboratory for analysis.

4.5 Laboratory Analyses

The water quality constituents selected for this program were established based upon the requirements of the City of Long Beach NPDES permit for stormwater discharges. Analytical methods are based upon approved USEPA methodology. The following sections detail laboratory methods for chemical and biological testing.

4.5.1 Analytical Suite and Methods

Conventional, bacteriological, and chemical constituents selected for inclusion in this stormwater quality program are presented in Table 4.2. Analytical method numbers, holding times, and reporting limits are also indicated for each analysis. Semivolatile organic compounds listed in the table apply only to the September 2002 dry weather monitoring event as these constituents were not required as part of the 2002/2003 monitoring program.

4.5.1.1 Laboratory QA/QC

Quality Assurance/ Quality Control (QA/QC) activities associated with laboratory analyses are detailed in Appendix A.

The laboratory QA/QC activities provide information needed to assess potential laboratory contamination, analytical precision and accuracy, and representativeness. Analytical quality assurance for this program included the following:

- Employing analytical chemists trained in the procedures to be followed.
- Adherence to documented procedures, USEPA methods and written SOPs.
- Calibration of analytical instruments.
- Use of quality control samples, internal standards, surrogates and SRMs.
- Complete documentation of sample tracking and analysis.

Internal laboratory quality control checks included the use of internal standards, method blanks, matrix spike/spike duplicates, laboratory control spikes and Standard Reference Materials (SRMs).

Data validation was performed in accordance with the National Functional Guidelines for Organic Data Review (EPA540/R-94/012), Inorganic Data Review (EPA540/R-94/013), and Guidance on the Documentation and Evaluation of Trace Metals Data Collected for the Clean Water Act Compliance Monitoring (EPA/821/B/95/002).

4.5.2 Toxicity Testing Procedures

Upon receipt in the laboratory, stormwater discharge and receiving water samples were stored at 4 °C, in the dark until used in toxicity testing. Toxicity testing commenced within 72 hours of sample collection for most samples (Appendix Table A2-2). The relative toxicity of each discharge sample was evaluated using three chronic test methods: the water flea (*Ceriodaphnia dubia*) reproduction and survival test (freshwater), the purple sea urchin (*Strongylocentrotus purpuratus*) fertilization test (marine), and the mysid (*Americamysis bahia*) growth and survival test (marine). ToxScan, Inc. conducted the freshwater toxicity tests using the water flea, *Ceriodaphnia dubia*. Marine toxicity tests used the purple sea urchin (*Strongylocentrotus purpuratus*) and the mysid (*Americamysis bahia*). Tests using the mysid were limited to the first event of the season. Each of the methods is recommended by the USEPA for the measurement of effluent and receiving water toxicity. Water samples were diluted with laboratory water to produce a concentration series using procedures specific to each test method.

4.5.2.1 Water Flea Reproduction and Survival Test

Toxicity tests using the water flea, *Ceriodaphnia dubia*, were conducted in accordance with methods recommended by USEPA (1994a). The test procedure consisted of exposing 10 *C. dubia* neonates (less than 24 hours old) to the samples for six days. One animal was placed in each of 10 individual polystyrene cups containing approximately 20 mL of test solution. The test temperature was 25 ± 1 °C and the photoperiod was 16 hours light: 8 hours dark. Daily water changes were accomplished by transferring each individual to a fresh cup of test solution; water quality measurements and observations of survival and reproduction (number of offspring) were made at this time also. Prior to transfer, each cup was inoculated with food (100 µL of a 3:1 mixture of *Selenastrum* culture, density approximately 3.5 x 10^8 cells/mL, and *Ceriodaphnia* chow).

The test organisms were obtained from in-house cultures that were established from broodstock obtained from USEPA (Duluth, MN). The laboratory water used for cultures, controls, and preparation of sample dilutions was synthetic moderately hard freshwater, prepared with deionized water and reagent chemicals. Test samples were poured through a 60 μ m Nitex screen in order to remove indigenous organisms prior to preparation of the test concentrations. Serial dilutions of the test sample were prepared, resulting in test concentrations of 100, 50, 25, 12, and 6 %.

The quality assurance program for this test consisted of three components. First, a control sample (laboratory water) was included in all tests in order to document the health of the test organisms. Second, a reference toxicant test consisting of a concentration series of potassium chloride (KCl) was conducted with each batch of samples to evaluate test sensitivity and precision. Third, the results were compared to established performance criteria for control survival, reproduction, reference toxicant sensitivity, sample storage, and test conditions. Any deviations from the performance criteria were noted in the laboratory records and prompted corrective action, ranging from a repeat of the test to adjustment of laboratory equipment.

4.5.2.2 Mysid Growth and Survival Test

Samples of wet weather discharge and receiving water were assessed for chronic toxicity using the marine mysid, *Americamysis bahia* (formerly named *Mysidopsis bahia*). Test procedures followed the guidelines established by USEPA (1994b). The procedure consisted of a seven-day exposure of juvenile (7 day old) mysids to the samples. Eight replicate test chambers (250 mL beakers), each containing five mysids, were tested for each concentration. The beakers contained 150 mL of test solution, which was changed daily. The test temperature was 26 ± 1 °C and the photoperiod was 16 hours light: 8 hours dark. Water quality and mysid survival measurements were recorded during each water change. Mysids were fed a standardized amount of newly hatched brine shrimp twice daily. At the end of the test, the surviving animals were dried and weighed to the nearest 0.001 mg to determine effects on growth.

The discharge water samples were adjusted to a salinity of 30 g/kg before testing. This was accomplished by adding a sea salt mixture (TropicMarinTM) to the samples. The addition of sea salts was carried out the day before a test was initiated. The receiving water samples from Alamitos Bay had salinities greater than 30 g/kg and were tested without adjustment of the salinity. The salinity-adjusted samples were then diluted with seawater to produce test concentrations of 100, 50, 25, 12, and 6%. The test organisms were lab-reared A. bahia that were purchased from a commercial supplier. For most of the tests, the animals were received the day before the test started and were acclimated to the test temperature and salinity overnight.

Negative control (1.0 µm and activated carbon filtered natural seawater from ToxScan's Marine Bioassay facility at Long Marine Laboratory in Santa Cruz was diluted to 30 g/kg with deionized water) and sea salt control samples (deionized water mixed with sea salts) were included in each test series for quality control purposes. In addition, a reference toxicant test was included with each batch of test samples. Each reference toxicant test consisted of a concentration series of copper chloride with eight replicates tested per concentration. The median lethal concentration (LC50) was calculated from the data and compared to control limits based upon the cumulative mean and two standard deviations from recent experiments. Control and water quality data were also compared to established performance objectives; any deviations from these were noted and corrected, if possible.

4.5.2.3 Sea Urchin Fertilization Test

All discharge and receiving water samples of stormwater were also evaluated for toxicity using the purple sea urchin fertilization test (USEPA 1995). This test measures toxic effects on sea urchin sperm, which are expressed as a reduction in their ability to fertilize eggs. The test consisted of a 20-minute exposure of sperm to the samples. Eggs were then added and given 20 minutes for fertilization to occur. The eggs were then preserved and examined later with a microscope to assess the percentage of successful fertilization. Toxic effects are expressed as a reduction in fertilization percentage. Purple sea urchins (*Strongylocentrotus purpuratus*) used in the tests were supplied by U.C. Davis – Granite Canyon. The tests were conducted in glass shell vials containing 10 mL of solution at a temperature of 15 ± 1 °C. Five replicates were tested at each sample concentration.

All samples were adjusted to a salinity of 33.5 g/kg for the fertilization test. Previous experience has determined that many sea salt mixes are toxic to sea urchin sperm. Therefore, the salinity for the urchin test was adjusted by the addition of hypersaline brine. The brine was prepared by freezing and partially thawing seawater. Since the addition of brine dilutes the sample, the highest stormwater concentration that could be tested for the sperm cell test was 50%. The adjusted samples were diluted with seawater to produce test concentrations of 50, 25, 12, 6, and 3%.

Seawater control (1.0 μ m filtered natural seawater from ToxScan's Long Marine Laboratory facility) and brine control samples (50% deionized water and 50% brine) were included in each test series for quality

control purposes. Water quality parameters (temperature, dissolved oxygen, pH, ammonia, and salinity) were measured on the test samples to ensure that the experimental conditions were within desired ranges and did not create unintended stress on the test organisms. In addition, a reference toxicant test was included with each stormwater test series in order to document intralaboratory variability. Each reference toxicant test consisted of a concentration series of copper sulfate with four replicates tested per concentration. The median effective concentration (EC50) was estimated from the data and compared to control limits based upon the cumulative mean and two standard deviations of recent experiments.

4.5.2.4 Toxicity Identification Evaluations (TIEs)

Phase I TIEs were conducted on selected runoff samples from stations that exhibited substantial (≥ 2 TU_{ec}) toxicity, in order to determine the characteristics of the toxicants present. Each sample was subjected to treatments designed to selectively remove or neutralize classes of compounds (e.g., metals, nonpolar organics) and thus the toxicity that may be associated with them. Treated samples were then tested to determine the change in toxicity using the sea urchin fertilization test.

Four or five treatments were applied to each sample. These treatments were: particle removal, trace metal chelation, nonpolar organic extraction, organophosphate (OP) deactivation (except urchins) and chemical reduction. With the exception of the organics extraction, each treatment was applied independently on a salinity-adjusted sample. A control sample (lab dilution water) was included with each type of treatment to verify that the manipulation itself was not causing toxicity. If the TIE was not conducted concurrently with the initial testing of a sample, then a reduced set of concentrations of untreated sample was tested at the time of the TIE to determine the baseline toxicity and control for changes in toxicity due to sample storage.

Ethylene diamine tetraacetic acid (EDTA), a chelator of metals, was added to a concentration of 60 mg/L to the marine test samples. EDTA additions to the *Ceriodaphnia* samples were based upon sample hardness (USEPA 1991). Sodium thiosulfate (STS), a treatment that reduces oxidants such as chlorine and also decreases the toxicity of some metals was added to a concentration of 50 mg/L to separate portions of each marine sample. STS additions to the *Ceriodaphnia* samples were at 500, 250 and 125 mg/L. The EDTA and sodium thiosulfate treatments were given at least one hour to interact with the sample prior to the start of toxicity testing. Pipernyl butoxide, which inhibits activation of OP pesticides was added to a concentration of 100 mg/L for mysids and at three concentrations (125, 250 and 500 mg/L) for *Ceriodaphnia*.

Samples were centrifuged for 30 min at 3000 X g to remove particle-borne contaminants and tested for toxicity. A portion of the centrifuged sample was also passed through a 360 mg Sep-Pak[™] C18 solid phase extraction column in order to remove nonpolar organic compounds. C18 columns have also been found to remove some metals from aqueous solutions.

4.5.2.5 Statistical Analysis

The toxicity test results were normalized to the control response in order to facilitate comparisons of toxicity between experiments. Normalization was accomplished by expressing the test responses as a percentage of the control value. Four statistical parameters (NOEC, LOEC, median effect, and TUc) were calculated to describe the magnitude of stormwater toxicity. The NOEC (highest test concentration not producing a statistically significant reduction in fertilization or survival) and LOEC (lowest test concentration producing a statistically significant reduction in fertilization or survival) were calculated by comparing the response at each concentration to the dilution water control. Various statistical tests were used to make this comparison, depending upon the characteristics of the data. Water flea survival and reproduction data were usually tested against the control using Fisher's Exact and Steel's Many-One Rank test, respectively. Sea urchin fertilization and mysid survival data were evaluated for significant

differences using Dunnett's multiple comparison test, provided that the data met criteria for homogeneity of variance and normal distribution. Data that did not meet these criteria were analyzed by the nonparametric Steel's Many-One Rank or Wilcoxon's tests.

Measures of median effect for each test were calculated as the LC50 (concentration producing a 50% reduction in survival) for mysid and water flea survival, the EC50 (concentration effective on 50% of eggs) for sea urchin fertilization, or the IC50 (concentration inhibitory to 50% of individuals) for water flea reproduction and IC25 for mysid growth. The LC50 or EC50 was calculated using either probit analysis or the trimmed Spearman-Karber method. The IC25 and IC50 were calculated using linear interpolation analysis. All procedures for calculation of median effects followed USEPA guidelines.

The toxicity results were also expressed as chronic Toxic Units (TUc). This statistic was calculated as: 100/NOEC. Increased values of toxic units indicate relatively greater toxicity, whereas greater toxicity for the NOEC, LOEC, and median effect statistics is indicated by a lower value.

Comparisons of chemical or physical parameters with toxicity results were made using the non-parametric Spearman rank order correlation.

Figure 4.1 Land Use of Drainage Basin #14 which Drains to the Dominguez Gap Mass Emissions Site (Source: City of Long Beach Department of Technology Services, last update 12/20/00).

Land Use of Drainage Basin 20

Figure 4.3 Land Use of Drainage Basin #23 which Drains to the Belmont Pump Station Mass Emissions Site (Source: City of Long Beach, Department of Technology Services, last updated 12/20/00)

Land Use of Drainage Basin 27

Figure 4.5 Typical KLASS Stormwater Monitoring Station.

Table 4.1	Location Coordinates of	Monitoring Statio	ns for t	the City of	Long Beach	Stormwater
	Monitoring Program.		. * •			

	State Plane Co	ordinates: Zone 5	North American Datum (NAD) 83				
Station Name	Northing (ft)	Easting (ft)	Latitude	Longitude			
•	•						
Belmont Pump	1734834.9	6522091.2	33° 45' 36.6"N	118° 07' 48.7"W			
Bouton Creek	1741960.5	6529305.2	33° 46' 44.3"N	118° 06' 23.4"W			
Cerritos Channel	1747935.9	6530153.2	33° 47' 43.3"N	118° 06'13.4"W			
Dominguez Gap	1764025.0	6500042.5	33° 50' 22.1"N	118° 12' 10.5"W			

Analyte and Reporting Unit	EPA Method Number	Holding Time	Target Reporting Limit or ML
	/	- <u></u>	,
CONVENTIONAL PARAMETERS			
Oil and Grease (mg/L)	1664	28 days	5.0
Total Phenols (mg/L)	420.1	28 days	0.1
Cvanide (ug/L)	335.2	14 davs	0.005
pH (units)	150.1	ASAP	0 - 14
Dissolved Phosphorus (mg/L)	365.3	48 hours	0.01
Total Phosphorus (mg/L)	365.3	28 days	0.05
Turbidity (NTU)	180.1	48 hours	1.0
Total Suspended Solids (mg/L)	160.2	7 days	1.0
Total Dissolved Solids (mg/L)	160.1	7 days	1.0
Volatile Suspended Solids (mg/L)	160.4	7 days	1.0
Total Organic Carbon (mg/L)	415.1	28 days	1.0
Total Recoverable Petroleum Hydrocarbon (mg/L)	1664	28 days	5.0
Biochemical Oxygen Demand (mg/L)	405.1	48 hours	4.0
Chemical Oxygen Demand (mg/L)	410.1	28 days	4.0
Total Ammonia-Nitrogen (mg/L)	350.2	28 days	0.1
Total Kieldahl Nitrogen (mg/L)	351.3	28 days	0.1
Nitrite Nitrogen (mg/L)	300.0	48 hours	0.1
Nitrate Nitrogen (mg/L)	300.0	48 hours	0.1
Alkalinity as CaCO3 (mg/I)	310.1	48 hours	5.0
Arkaninty, as Cacos (ing/L)	120.1	40 hours	1.0
Total Hardness (mg/L)	120.1	46 hours	1.0
MBAS (mg/L)	425.1	48 hours	. 0.02
Chloride (mg/L)	300.0	48 hours	1.0
Fluoride (mg/L)	300.0	48 hours	0.1
Methyl tertiary butyl ether (MTBE) (ug/L)	8020A/8260	14 days	0.5
nongrothary bary oner (NTDD) (µgD)	0020110200	i i duys	0.0
BACTERIA (MPN/100ml)			
Total Coliform	SM 9221B	6 hours	<20
Fecal Coliform	SM 9221B	6 hours	<20
Enterococcus	SM 9230C	6 hours	<20
TOTAL AND DISSOLVED METALS (ug/L) ¹		•	
Aluminum	200.8	180 days	25
Antimony	200.8	180 days	0.5
Arsenic	200.8	180 days	0.5
Beryllium	200.8	180 days	0.5
Cadmium	200.8	180 days	0.25
Chromium	200.8	180 days	0.5
Copper	200.8	180 days	0.5
Hexavalent Chromium (total)	SM 3500D	24 hours	0.3-20
Iron	236.1	180 days	25
Lead	200.8	180 days	0.5
Mercury	245.7	28 days	0.2
Nickel	200.8	180 days	1.0
Selenium	. 200.8	180 days	1.0
Silver	200.8	180 days	0.25
Thallium	200.8	180 davs	1.0
Zinc	200.8	180 days	1.0

Table 4.2Analytical Methods, Holding Times, and Reporting Limits.

1. Samples to be analyzed for dissolved metals are to be filtered within 48 hours.

Table 4.2

Analytical Methods, Holding Times, and Reporting Limits. (continued)

Analyte and Reporting Unit	EPA Method Number	Holding Time	Target Reporting Limit
CHLORINATED PESTICIDES (µg/L)		1	
Aldrin	8081A	7 days	0.005
alpha-BHC	8081A	7 days	0.01
beta-BHC	8081A	7 days	0.005
delta-BHC	8081A	7 days	0.005
gamma-BHC (lindane)	8081A	7 days	0.02
alpha-Chlordane	8081A	7 days	0.1
gamma-Chlordane	8081A	7 days	0.1
4.4'-DDD	8081A	7 days	0.05
4.4'-DDE	8081A	7 days	0.05
4.4'-DDT	8081A	7 days	0.01
Dieldrin	8081A	7 days	0.01
Endosulfan I	8081A	7 days	0.02
Endosulfan II	8081A	7 days	0.01
Endosulfan sulfate	8081A	7 days	0.05
Endrin	8081 A	7 days 7 days	0.01
Endrin Aldehyde	80814	7 days	0.01
Hantashlar	2021A	7 days	0.01
Heptachion	0001A	7 days	0.01
	0001A	7 days	0.01
Ioxaphene	8081A	/ days	0.5
AROCLORS (µg/L)	• •		·
Aroclor-1016	8081A	7 days	0.5
Aroclor-1221	8081A	7 days	0.5
Aroclor-1232	8081A	7 davs	0.5
Aroclor-1242	. 8081A	7 days	0.5
Aroclor-1248	8081A	7 days	0.5
Aroclor-1254	80814	7 days 7 days	. 0.5
Aroclor-1254	80814	7 days	0.5
Total BCPs	8081 A	7 days	0.5
	0001A	7 days	0.5
ORGANOPHOSPHATE PESTICIDES (µg/L)			
Diazinon	8141A	7 days	0.01
Chlorpyrifos (Dursban)	8141A	7 days	0.05
Malathion	8141A	7 days	1.0
Prometryn	8141A	7 days	1.0
Atrazine	- 8141A	7 days	1.0
Simazine	8141A	7 days	1.0
Cvanazine	8141A	7 days	1.0
			, · · ·
HERBICIDES (μg/L)	01514	7 dava	1.0
2,4-1J	0151A	7 days	1.0
2,4,)-1P-SHVEX	8IJIA	/ days	0.50
Glyphosate	. 547	14 days	5.0

. 33

Table 4.2	Analytical Methods, Ho	Iding Times, and Rep	orting Limits. (continued)
	<i>.</i> ,		

Analyte and Reporting Unit	EPA Method Number	Holding Time	Target Reporting Limit
SEMIVOLATILE ORGANIC COMPOUNDS (µg/L)			·····
Acenaphthene	625	7 days	1.0
Acenaphthylene	625	7 days	- 1.0
Anthracene	625	7 days	1.0
Benzidine	625	7 davs	1.0
Benzo(a)anthracene	. 625	7 days	10
Benzo(h)fluoranthene	625	7 days	1.0
Benzo(k)fluoranthene	625	7 days	1.0
Benzo(a h i)nervlene	625	7 days	1.0
Benzo(g)nyrene	625	7 days	1.0
Benzul hutul abthalate	625	7 days	1.0
Bis(2 shloroethyl)ether	625	7 days	1.0
Bis(2-chloroethory)methano	625	7 days	1.0
Bis(2 - children line)	625	7 uays	2.0
Bis(2 chloricopropul)ether	625	7 days	1.0
A Promonhanyl nhanyl ether	625	7 days 7 days	1.0
2 Chloroothul vinul other	625	7 days 7 days	1.0
2-Chloropenhthalana	625	7 days	- 10
A Chloronhanul abanul athar	625	7 days	1.0
4-Chlorophenyr phenyr ether	625	7 days	1.0
Chrysene Diberra (a b)anthracana	625	7 days	1.0
Didenzo(a,n)aninracene	623	7 days	1.0
1,3-Dichlorobenzene	625	7 days	1.0
1,2-Dichlorobenzene	625	7 days	1.0
1,4-Dichlorobenzene	625	7 days	1.0
3,3-Dichlorobenzidine	625	7 days	1.0
Diethylphthalate	625	7 days	1.0
Dimethylphthalate	625	· 7 days	1.0
Di-n-Butyl phthalate	625	7 days	1.0
2,4-Dinitrotoluene	625	7 days	1.0
2,6-Dinitrotoluene	625	7 days	1.0
4,6 Dinitro-2-methylphenol	625	7 days	2.0
1,2-Diphenylhydrazine	625	7 days	1.0
Di-n-Octyl phthalate	625	7.days	1.0
Fluoranthene	625	7 days	1.0
Fluorene	625	7 days	1.0
Hexachlorobenzene	625	7 days	1.0
Hexachlorobutadiene	625	7 days	. 1.0
Hexachloro-cyclopentadiene	625	7 days	1.0
Hexachloroethane	625	7 days	1.0
Indeno[1,2,3-cd]pyrene	625	7 days	1.0
Isophorone	625	7 days	1.0
Naphthalene	625	7 days	1.0
Nitrobenzene	625	7 days	1.0
N-Nitroso-dimethyl amine	625	7 days	- 9
N-Nitroso-diphenyl amine	625	7 days	1.0
N-Nitroso-di-n-propyl amine	625	7 days	5.0

Analyte and Reporting Unit	EPA Method Number	Holding Time	Target Reporting Limit
SEMIVOLATILE ORGANIC COMPOUNI	DS (µg/L) (continued)	•	
Phenanthrene	625	7 days ′	1.0
Pyrene	625	7 days	1.0
1,2,4-Trichlorobenzene	625	7 days	1.0
4-Chloro-3-methylphenol	625	7 days	1.0
2-Chlorophenol	625	7 days	2.0
2,4-Dichlorophenol	625	7 days	2.0
2,4-Dimethylphenol	625	7 days	1.0
2,4-Dinitrophenol	625	7 days	5.0
2-Nitrophenol	625	7 days	1.0 ·
4-Nitrophenol	625	7 days	1.0
Pentachlorophenol	625	7 days	1.0
Phenol	625	7 days	1.0
2,4,6-Trichlorophenol	625	7 days	1.0

Table 4.2 Analytical Methods, Holding Times, and Reporting Limits. (continued)

SM = Method number from Standard Methods for the Examination of Water and Wastewater (APHA 1995).
1. Samples must be filtered within 48 hours.
- indicates analyte not reported.

5.0 RAINFALL AND HYDROLOGY

All Long Beach monitoring stations were fully operational during the 2002/2003 wet weather season. Precipitation and discharge were continuously monitored throughout the season. The first two major storm events of the season were captured at three of the stations including the Belmont Pump Station, Los Cerritos Creek and Bouton Creek. Neither of the events were sufficient to produce a discharge at the Dominguez Gap Pump Station. As required by the NPDES permit, four events were sampled at Belmont Pump Station, Los Cerritos Creek and Bouton Creek. Only three events were monitored at Dominguez Gap Pump Station since this site did not discharge until late in the season following a series of events where runoff volumes finally exceeded infiltration capacity of the basin to cause discharge of stormwater from this station. All discharge events at the Dominguez Gap Pump Station site were sampled during this monitoring year.

5.1 Precipitation during the 2002/2003 Storm Season

Precipitation during the 2002/2003 water year was slightly below normal in Long Beach according to the National Weather Service climate station at Long Beach Daugherty Airport (Figure 5.1) but well above levels from the previous year. During the prior season, only 1.99 inches of rain was recorded at the Long Beach Airport from October 2001 to April 2002. This season, a total of 8.62 inches of rainfall was recorded at the airport during this time period. Normal precipitation for October through April at the Long Beach Airport is 12.27 inches.

Rainfall was relatively uniform at each of the monitoring stations with seasonal totals ranging from 11.13 inches at the Dominguez Pump Station to 12.11 inches at the Los Cerritos Creek stormwater monitoring site.

5.1.1 Monthly Precipitation

Normal rainfall during January averages nearly three inches making it one of the wettest months of the storm season (Figure 5.1) in Long Beach. During January 2003 no rainfall was measured at the Long Beach Airport or any of the stormwater monitoring stations. This lack of rain was made up for by an above normal February, which had 4.40 inches of rain. The combined rainfall for January and February 2003 was 4.40 inches, nearly 74 percent of the normal for those two months.

5.1.2 Precipitation during Monitored Events

Precipitation during each storm event was characterized by total rainfall, duration of rainfall, maximum intensity, days since last rainfall, and the magnitude of the event immediately preceding the monitored storm event (antecedent rainfall). Precipitation characteristics for each event are summarized in Table 5.1 and resulting flow in Table 5.2. Cumulative descriptive statistics for the season at each monitoring station are presented in Table 5.3. Cumulative rainfall and intensity are summarized graphically for each monitored event at each station in Figures 5.2 through 5.16.

Total rainfall measured during each of the five monitored events in the 2002/2003 wet season varied from 0.99 to 2.70 inches The third event was the largest with an average rainfall among sampling stations of 2.70 inches and the fourth event was the smallest with an average rainfall of 0.99 inches. All rainfall monitored during the 2002/2003 storm season was above normal for single events The mean rainfall amount for all monitored events ranged from 1.43 inches at the Belmont Pump Station to 1.89 inches at the Dominguez Gap Pump Station.

Maximum rainfall intensities were particularly impressive during the 2002/2003 storm season. The mean maximum rainfall intensities among monitored events ranged from 0.72 inches per hour at Bouton Creek to 0.92 inches per hour at the Dominguez Gap Pump Station.

Except for Event 4 on 24 February 2003 at the Belmont Pump Station, all storm events monitored were spaced by at least 5 days of no antecedent rainfall. The fourth event at Belmont Pump Station was preceded by 0.12 inches of rainfall 0.4 days earlier. The 51 days preceding the third event on February 11, 2003 was the driest period prior to a monitored event. Overall the mean period of dry conditions between monitored events ranged from 23.2 days at Dominguez Gap Pump Station to 49.7 days at Los Cerritos Creek.

5.2 Stormwater Runoff during Monitored Events

Monitoring was designed to isolate rainfall events and the runoff created by those events. Table 5.2 summarizes flow characteristics among monitored events at each station. Table 5.3 provides descriptive statistics for all monitored events since the beginning of the 2002/2003 season. This information complements Event Mean Concentration (EMC) statistics for each monitored analyte at these sites. Figures 5.2 through 5.16 graphically depict flow during each monitored event at each station in response to rainfall. These figures also show how the aliquoting of each composite sample was conducted.

There was high variability between the stations in duration of flow during each event. Flow duration was typically greatest at Bouton Creek due to tidal effects. During incoming tides, low flows are backed up and held back by the tide. As the tide recedes, stormwater is detected at the station and sampling continues. This effect was most notable during the first and third events (Figure 5.3 and 5.9). Los Cerritos Creek also had long flow durations, and during Event 2 it had an extremely high total flow volume in a short amount of time. The station briefly exceeded the maximum rated stage causing a failure in the sampling strategy. Since the sampling was halted when the flow rating was exceeded, only a first flush sample was collected representing the rising hydrograph and approximately the first 20 percent of the runoff. Normally, this sample would have been discarded. However, since receiving water samples were collected in Los Alamitos Bay during this event and the sample represented a worst case situation, the sample was retained for comparative purposes.

The percent storm captures (percentage of the total storm event volume effectively represented by the flow-weighted composite sample) were acceptable in most cases. The storm capture at the Los Cerritos Creek Station during Event 2 was low due to the circumstances described above and the extreme intensity of rainfall and runoff, which caused bottles to fill rapidly before crews could get to the sites to change bottles and settings. In all cases the rising limb of the hydrograph and periods of high flow were well represented by the samples.

Figure 5.1Monthly Rainfall Totals for the 2002/2003 Wet Weather Season and Normal Rainfall
at Long Beach Daugherty Air Field.

	Belmont Pump	Bouton Creek	Los Cerritos Creek	Dominguez Gap	Long Beach Airport	Long Beach Airport-Normal
October	0.06	0.05	0.04	0.00	0.00	0.40
November	1.97	1.87	1.58	1.23	0.19	1.12
December	2.11	1.99	2.12	1.54	1.69	1.76
January	0.00	0.01	.0.00	0.00	0.00	2.95
February	3.60	3.77	4.17	4.65	4.40	3.01
March	3.11	3.13	3.26	2.59	0.89	2.43
April	0.94	0.98	0.94	1.12	1.45	0.60
Season Totals	11.79	11.80	12.11	11.13	8.62	12.27

:

Figure 5.6 - Bouton Creek - Event 2 (16 - 17 December, 2002)

Figure 5.7 - Los Cerritos Channel - Event 2 (16 - 17 December, 2002)

Figure 5.8 - Belmont Pump Station - Event 3 (11 - 12 February, 2003)

Figure 5.9 - Bouton Creek - Event 3 (11 - 13 February, 2003)

Rainfall Intensity (inches/hr.)

Figure 5.12 -**Belmont Pump Station -Event 4** (24 - 25 February, 2003)

Figure 5.13 - Bouton Creek - Event 4 (24 - 25 February, 2003)

· · · · · · · · · · · · · · · · · · ·	Start I	Rain	End H	Rain					
Site/Event	Date	Time	Date	Time	Duration Rain (hrs:mins)	Total Rain (inches)	Max Intensity (Inches/hr)	Antecedent Rain (days)	Antecedent Rain (inches)
FVFNT 1		· .		•	•				-
Belmont Pump Station	11/7/02	21.07	11/8/02	10.05	12.58.00	145	0.48	>120	-
Bouton Creek	11/7/02	21.07	11/9/02	18.05	45:30:00	1.13	0.24	>120	-
Los Cerritos Creek	11/7/02	21:15	11/9/02	21:00	47:45:00	1.32	0.36	>120	•
EVENT 2					,			·	
Belmont Pump Station	12/16/02	12:45	12/16/02	17.25	4.40.00	126	0.84	16.4	0.23
Bouton Creek	12/16/02	13:40	12/16/02	17.40	4.00.00	1.20	0.96	16.1	0.32
Los Cerritos Creek	12/16/02	13:50	12/16/02	17:40	3:50:00	1.21	0.96	16.2	0.16
EVENT 3		•		•	•		·	•	•
Belmont Pump Station	2/11/03	11:15	2/12/03	18:20	31:05:00	2.19	1.08	51.3	0.60
Bouton Creek	2/11/03	3:00	2/13/03	11:00	56:00:00	2.77	0.84	51	0.69
Los Cerritos Creek	. 2/11/03	3:00	2/13/03	2:15	47:15:00	2.57	0.84	51	0.16
Dominguez Gap Pump Station	2/11/03	3:00	2/13/03	10:00	55:00:00	3.26	1.08	51.1	0.43
EVENT 4	. *			• .				•	· · · · ·
Belmont Pump Station	2/24/03	22:10	2/25/03	10:35	12:25:00	0.8	1.08	0.4	0.12
Bouton Creek	2/24/03	22:15	2/25/03	8:15	10:00:00	1.1	0.84	11.5	2.57
Los Cerritos Creek	2/24/03	22:15	2/25/03	8:15	10:00:00	1.1	0.84	11.5	2.57
Dominguez Gap Pump Station	2/24/03	22:00	2/25/03	8:05	10:05:00	0.97	. 0.72	11.5	3.26
EVENT 5									,
Dominguez Gap Pump Station	3/15/03	6:40	3/16/03	5:55	23:15:00	1.43	0.96	6.9	0.26

Table 5.1Rainfall for Monitored Events during the 2002/2003 Wet-Weather Season.

	Start F	low	End Flow							
Site/Event	Date	Time	Date	Time	Duration Flow (hrs:mins)	Total Flow (kilo-cubic feet)	No. of Sample Aliquots Collected	Peak Flow (cfs)	% Capture	Peak Capture
EVENT 1										
Belmont Pump Station	11/8/02	1:33	11/8/02	10:02	8:29:00	63.6	25	66	100	Y
Bouton Creek	11/8/02	1:35	11/11/02	2:00	72:25:00	4374	133	154	86.2	Ŷ
Los Cerritos Creek	11/7/02	23:55	11/10/02	4:00	52:05:00	13421	154 (141)	502	79.2	Y
EVENT 2				•		·				
Belmont Pump Station	12/16/02	14:23	12/17/02	3:00	12:37:00	252	8	66	100	Y
Bouton Creek	12/16/02	14:02	12/17/02	7:25	17:23:00	3761	70	527	93.8	Y
Los Cerritos Creek	12/16/02	13:50	12/17/02	13:00	23:10:00	>25093	38	>3295	20.8	N
EVENT 3							· .			
Belmont Pump Station	2/11/03	11:14	2/12/03	17:50	30:36:00	805	12	66	96.3	Y
Bouton Creek	2/11/03	6:54	2/13/03	23:30	64:36:00	9833	73	523	97.2	Y
Los Cerritos Creek	2/11/03	4:00	2/13/03	19:00	63:00:00	47482	100	>3295	88.6	Y
Dominguez Gap Pump Station	2/12/03	4:05	2/13/03	15:30	35:25:00	4514	2	312	N/A	
EVENT 4		•				. •				
Belmont Pump Station	2/24/03	22:20	2/25/03	10:05	11:45:00	259	6	66	92.3	Y
Bouton Creek	2/24/03	23:05	2/25/03	22:25	23:20:00	2912	. 42	118	97.1	Y
Los Cerritos Creek	2/24/03	23:10	2/25/03	18:00	18:50:00	11418	55 ·	719	98.9	Y
Dominguez Gap Pump Station	2/25/03	7:25	2/25/03	10:15	2:50:00	845	2	81	N/A	
EVENT 5							•			
Dominguez Gap Pump Station	3/15/03	13:15	3/16/03	9:15	20:00:00	5670	10	163	N/A	Ň

Table 5.2 Flow for Monitored Events during the 2002/2003 Wet-Weather Season.

able 5.3	Cumulative D	escripti	ve Statisti	cs for Rain	fall and Flo	ow Data for A	ll Monitored I	Event
	(2002/2003)					•	• •	
			•				•	

T

Site / Parameter					Standard	1st	-	3rd
· · · ·	n	Min	Max	Mean	Deviation	Quartile	Median	Quartile
BELMONT PUMP ST.		:	•					
Duration Flow (days)	. 4	0.35	1.28	0.66	0.42	0.46	0.51	0.71
Total Storm Vol. (kcf)	4	63.6	805	345	320	205	255	395
Duration Rain (days)	4	0.19	1.30	0.64	`0.47 [,]	0.44	0.53	0.73
Total Rain (in)	4	0.80	2.19	1.43	0.58	1.15	1.36	1.64
Max Intensity (in/hr)	• 4	0.48	1.08	0.87	0.28	0.75	0.96	1.08
Antecedent Dry (days)	4	0.40	120.00	47.03	53.09	12.40	33.85	68.48
Antecedent Rain (in)	3	0.12	0.60	0.32	0.25	0.18	0.23	0.42
BOUTON CREEK			•	•	• •			
Duration Flow (days)	4	0.72	3.02	1.85	1.17	0.91	1.83	2.77
Total Storm Vol. (kcf)	4	2910	9830	5220	3130	3550	4070	5740
Duration Rain (days)	4	0.17	2.33	1.20	1.07	0:35	1.16	2.01
Total Rain (in)	4	1.10	2.77	1.66	0.77.	1.18	1.38	1.85
Max Intensity (in/hr)	4	0.24	0.96	0.72	0.32	0.69	0.84	0.87
Antecedent Dry (days)	4	11.50	120.00	49.65	50.11	14.95	33.55	68.25
Antecedent Rain (in)	3	0.32	2.57	1.19	1.21	0.51	0.69	1.63
LOS CERRITOS CHAN	NNEL	`						
Duration Flow (days)	4	0.78	2.63	1.64	0.90	0.92	1.57	2.28
Total Storm Vol. (kcf)	4	11400	47500	24400	16600	12900	19300	30700
Duration Rain (days)	4	0.16	1.99	1.13	0.98	0.35	1.19	1.97
Total Rain (in)	4	1.10	2.57	1.55	0.69	1.18	1.27	1.63
Max Intensity (in/hr)	4	0.36	0.96	0.75	0.27	0.72	0.84	0.87
Antecedent Dry (days)	4	11.50	120.00	49.68	50.08	15.03	33.60	68.25
Antecedent Rain (in)	3	0.16	2.57	0.96	1.39	0.16	0.16	1.37
DOMINGUEZ GAP PU	MP S	г.					•	
Duration Flow (days)	3	0.12	1.48	0.81	0.68	0.48	0.83	1.15
Total Storm Vol. (kcf)	3	845	5670	3680	2,520	2680	4510	5090
Duration Rain (days)	3	0.42	2.29	1.23	0.96	0.69	0.97	1.63
Total Rain (in)	3	0.97	3.26	1.89	1.21	1.20	1.43	2.35
Max Intensity (in/hr)	3	0.72	1.08	0.92	0.18	0.84	0.96	1.02
Antecedent Dry (days)	3	6.90	51.10	23.17	24.30	9.20	11.50	31.30
Antecedent Rain (in)	3	0.26	3.26	1.32	1.69	0.35	0.43	1.85

6.0 CHEMISTRY RESULTS

6.1 Wet Weather Chemistry Results

Despite the fact that total seasonal rainfall was still below normal, more events were monitored during the 2002/2003 season than any previous monitoring year. Four storm events were monitored at the Bouton Creek, Belmont Pump and Los Cerritos Channel sites and three events were monitored from the Dominguez Gap Pump Station site. The three events monitored at the Dominguez Gap Pump Station were all late season events from February and March. These were the only stormwater discharges that occurred at this location during the monitoring year (Table 6.1).

For each of these monitored events, all chemical constituents except for the semivolatile organic compounds summarized in Table 4.2 were analyzed in the resulting samples for each station. Analysis of semivolatile organic compounds were suspended for the current monitoring year in order to investigate alternatives for lower detection limits for the polycyclic aromatic hydrocarbons. Composite samples collected during these storm events were also tested for toxicity with two species, the water flea (freshwater crustacean) and sea urchin (marine).

The results of the chemical analysis of these composite and grab stormwater samples are summarized in Table 6.2 and 63. Toxicity results for the composite samples and the receiving water samples from these monitored events are given in Section 7 below.

6.2 Wet Weather Load Calculations

Estimates of total pollutant loads associated with stormwater runoff during each storm event are provided in Tables 6.4 through 6.7. Load calculations were made by multiplying the measured concentration times the total stormwater discharge along with the appropriate unit conversion factors. The following calculation is an example of the process used for analytes such as TSS that are measured in mg/L. The specific example is for the third storm event at Bouton Creek

(72 mg/L) x [(9833 kcf)(28317 L/kcf)] x (1 pound/453592 mg) = 44,197 pounds

Among the four mass emission sites, the Los Cerritos Channel consistently results in the highest overall loads of solids and total metals. Estimates of solids discharged at the Los Cerritos Channel site ranged from 92,163 to 704,927 pounds. Estimates of total copper ranged from 14 to 143 pounds. In contrast, the Belmont Pump Station was estimated to discharge between 397 and 4018 pounds of solids and 0.22 to 1.7 pounds of copper during each event.

Loading estimates for solids and total recoverable metals from the Dominguez Gap Pump Station were 20 to 40 times lower than those from the Los Cerritos Channel during the two storms when both sites were monitored. The drainage area for the Dominguez Gap Pump station is approximately three times greater than the drainage area for the Los Cerritos Channel site.

6.3 Dry Weather Sampling Results

The NPDES Permit calls for two dry weather inspections and sampling events to be carried out during the summer dry weather period at each of the four mass emission stations. During the 1999/2000 year, the two dry weather inspections/sampling events were done in late June so that the results could be reported in the annual report due 15 July 2000. For the second year, the first of these dry weather inspections/samplings was done at all sites in June 2001 and the results are reported in the 2001 annual report. The second sampling event was conducted later in the summer, and the results from this second event were reported as an addendum to the 2002 annual report. The 2002 report also included a sampling event in May 2002.

In the 2002/2003 year, dry weather inspection/sampling events were again performed before the beginning of the storm season, in September 2002, and at the end of the storm season, in May 2003. All dry weather events monitored during the during previous monitoring seasons are summarized in Table 6.8 below. Events 7 and 8 conducted during the 2002/2003 season are shaded. Field measurements are provided in Table 6.9. Chemical analyses performed in the laboratory are summarized in Table 6.10.

6.3.1 Basin 14: Dominguez Gap Monitoring Site

Inspections for dry weather flow were conducted at the Dominguez Gap Pump Station on 04 September 2002 and on 19 May 2003. No dry weather flow was observed on either occasion. The basin in front of the pump house had standing water in it but field crews were unable to reach the water to measure the depth. The source of this ponded water was not determined due to the lack of flow. The concrete lined channel that extends east from, and discharges into, the basin had small, isolated pools of standing water, but there was no flow. There was also no flow observed from the north part of the basin. It is apparent that water from the Los Angeles River was not being diverted into the swale for ground water recharge as observed in 2001.

6.3.2 Basin 20: Bouton Creek Monitoring Site

On 5 September 2002, Bouton Creek was sampled from 4:00 a.m. to 5:00 a.m. This time corresponded to a period of low tide when the flow in the creek was not impeded by seawater backing into the creek. The tide levels at this time were between negative 0.43 and negative 0.3 feet in the Long Beach area. This assured that the flow was fresh water flowing downstream in the creek and that that saline tidal water did not commingle with the dry weather discharge of fresh water.

Every 10 minutes during the 1-hour period, a 2.86-liter aliquot of water was pumped from the creek using the automatic sampler installed at the site. An aliquot was deposited into each of four 20-liter borosilicate glass bottles. At the conclusion of the sampling, grab samples for MTBE, TPH and bacteria were collected.

Bouton Creek was also sampled on 20 May 2003 from 9:00 a.m. to 9:30 a.m. Samples were collected from the creek and deposited into four 20-liter borosilicate glass bottles using the automatic sampler. For this event, the sampler was moved from the station to the creek bed because the water level was very low. Also, samples were continuously collected rather than collected in 10-minute intervals as previously done to ensure that the freshwater flow was captured. The tide levels at this time were between negative 0.45 and negative 0.46 feet in the Long Beach area. At the conclusion of the sampling at 9:50 a.m., grab samples for MTBE, TPH and bacteria were collected.

6.3.3 Basin 23: Belmont Pump Station Monitoring Site

Time-weighted composite sampling was conducted over a 24-hour period starting on 4 September 2002 and ending on 5 September 2002. Samples were collected from the sump using the automated sampler installed outside of the pump house. Samples were collected into three 20-liter borosilicate bottles. Every half-hour for the 24 hours, an aliquot of approximately 1.25 liters of water was pumped from the sump into a 20-liter bottle. The bottles were changed every eight hours and chilled to 4°C with ice during sampling and transportation. Following completion of the sampling, the three bottles of water were combined into a composite. Upon completion of the 24-hour sampling, on 5 September 2002 at 7:30 a.m., grab samples for MTBE, TPH and bacteria were manually collected from the sump.

Time-weighted composite sampling was again conducted over a 24-hour period starting on 19 May 2003 and ending on 20 May 2003. Samples were collected into a total of three 20-liter borosilicate bottles and chilled to 4°C with ice during sampling and transportation. An aliquot of approximately 1.25 liters was pumped every half hour into a 20-liter bottle, which was changed after 8 hours. Upon completion of the sampling, the three bottles of water were combined into a composite. At the end of the 24-hour period, on 20 May 2003 at 10:43 a.m., grab samples for MTBE, TPH and bacteria were manually collected from the sump.

6.3.4 Basin 27: Los Cerritos Channel Monitoring Site

Time-weighted sampling was conducted over a 24-hour period of the water flowing through the channel. Sampling began on 4 September 2002 and ended on 5 September 2002. A separate sampling event began on 19 May 2003 and ended on 20 May 2003.

Samples were taken from the middle of the channel using the automated sampler installed on the bank of the channel. In September 2002, the dry weather flow was a narrow stream approximately 10 feet wide and 1.5 inches deep located in the middle of the channel. To reach the water, the sampling hose that is used for sampling stormwater was extended an additional 33 feet. Every half-hour for 24 hours, an aliquot of approximately 1.25 liters of water was pumped into a 20-liter bottle. The bottles were changed every eight hours and chilled to 4°C with ice during sampling and transportation. Following completion of the sampling, the three bottles of water were combined into a composite sample. After the 24-hour sampling, on 5 September 2002 at 6:30 a.m., grab samples were manually collected for MTBE, TPH and bacteria.

In May 2003, the dry weather flow was a narrow stream approximately 42 feet wide and 0.25 inches deep located in the middle of the channel. To reach the stream, the sampling hose was extended an additional 40 feet. Samples were collected into three 20-liter borosilicate bottles. As in the previous sampling event, an aliquot of approximately 1.25 liters of water was pumped into a 20-liter bottle every half-hour for 24 hours. The bottles were changed every eight hours and chilled to 4°C with ice during sampling and transportation. Following completion of the sampling, the three bottles of water were combined into a composite sample. After completion of the 24-hour sampling, on May 20 at 10:00 a.m., grab samples were manually collected for MTBE, TPH and bacteria.

Station	Event 1 11/11/02	Event 2 12/12/02	Event 3 2/12/03	Event 4 2/26/03	Event 5 3/16/03
Bouton Creek	X	x	X	X	
Belmont Pump	X	X	x	x	
Los Cerritos Channel	X	X	X	х	,
Dominguez Gap			x	X	X

Table 6.1Monitored Storm Events, 2002-2003

	Bouton	Bouton	Bouton	Bouton	Bouton	Belmont	Belmont	Belmont	Belmont	Belmont
	Creek 1	Creek 2	Creek 2FD	Creek 3	Creek 4	Pump 1	Pump 2	Pump 2FD	Pump 3	Pump 4
ANALYTE	11 Nov '02	12 Dec '02	12 Dec '02	12 Feb '03	25 Feb '03	- 11 Nov '02	12 Dec '02	12 Dec '02	12 Feb '03	25 Feb '03
CONVENTIONALS										
BOD (mg/L)	6.7	4.0U		4.1	5.7	· 12	4.0U .	4.0U	5.5	7.3
COD (mg/L)	76	26		98	52	91	34	40	120	5.6
EC (umhos/cm)	200	110		100	100	150	110	110	110	130
TOC (mg/L)	20	11		5.7	9.8	13	8.4	9.2	8.5	8.3
Hardness (mg/L)	36	21J		23	22	27	24J	20	22	26
Alkalinity (mg/L)	32	18		22	19	30	50	22	27	24
Cyanide (ug/L)	5.0U	5.0U		5.0U	5.0U	5.0U	5.0U	5.0U .	5.0U	5.0U
Chloride (mg/L)	31	15	•	16	16	16	15	15	13	18
Fluoride (mg/L)	0.31	0.19		0.17	0.13	0.22	0.16	0.17	0.13	0.10U
TKN (mg/L)	2.7	1.3	•	1.2	1.0	2.7	1.7	. 1.4	1.3	1.3
Ammonia as N (mg/L)	0.92	0.31		0.30	0.21	0.72	0.36	0.32	0.37	0.22
Nitrite N (mg/L)	0.10U	0.10U	. <u>-</u>	0.10U	0.10U	0.10U	0.10U	0.10U	0.10U	0.10U
Nitrate N (mg/L)	1.0	0.54		0.52	0.47	1.1	0.7	0.69	0.64	0.49
Total P (mg/L)	0.49	0.51		0.42	0.27	0.73	0.6	0.57	0.72	0.49
Ortho-P (Dissolved). (mg/L)	0.5	0.23		0.18	0.15	0.68	0.38	0.37	0.28	0.25
MBAS (mg/L)	0.15	0.07	•	0.098	0.069	0.10	0.064	0.023	0.12	0.076
MTBE (ug/L)	0.5U	0.5U	0.5U	0.5U	- 0.5U	0.5U	0.5U		0.5U	0.5U
Total Phenols (mg/L)	0.1U	0.1U		0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U
Oil & Grease (mg/L)	5. 0 U	5.0U	5.0U	· 5.0U	5.0U	5.0U	5.0U		5.0U	5.0U
Turbidity (NTU)	32	82		44	31	45	58	77	32	27
TRPH (mg/L)	5.0U	5.0Ú	5.0U	5.0U	5.0U	5.0U	5.0U		5.0U	5.0U
TSS (mg/L)	52	140		72	48	100	90	74	80	78
TDS (mg/L)	150	74		74	66	100	70	70	82	74
TVS (mg/L)	32	R	·	12	46	42	R	R	12	44

Table 6.2Stormwater Chemistry Results: City of Long Beach Storm Monitoring Project, Bouton Creek and Belmont Pump Station
(Page 1 of 4)
	Bouton Creek 1	Bouton Creek 2	Bouton ' Creek 2FD	Bouton Creek 3	Bouton Creek 4	Belmont Pump 1	Belmont Pump 2	Belmont Pump 2FD	Belmont Pump 3	Belmont Pump 4
ANALYTE	11 Nev '02	12 Dec '02	12 Dec '02	12 Feb '03	25 Feb '03	11 Nov '02	12 Dec '02	12 Dec '02	12 Feb '03	25 Feb '03
BACTERIA (mpn/100ml)		<i>,</i>								
Enterococcus	1140	. 8560	8370	57	2950	588	3390		. 39	3390
Fecal Coliform	11000	3000	11000	13000	11000	50000	8000		13000	13000
Total Coliform	50000	160000	90000	30000	80000	240000	>160000		160000	28000
TOTAL METALS (µg/L)								•		
Aluminum	. 2100	4300		2100	1200	3400	2800	2500	2000	1300
Antimony	3.7	3.1	· ·	2.2	1.6	3.2	2.8	2.6	2.9	1.9
Arsenic	2.4	2.5		2.1	1.5	2.5	2.4	2.2	2.5	1.8
Beryllium	0.50U	0.50U		0.50U	0.50U	0.50U	0.50U	0.50U .	0.50U	0.50U
Cadmium .	0.61	0.82		0.53	0.45	0.88	0.72	0.64	0.72	0.25U
Chromium	18	24		18	16	7.9	· 6.7	6.0	6.0	4.3
Hex Chromium	•	0.02U	-	0.02U	0.02U		0.02U	0:02U	0.02U	0.02U
Copper	28	35		23	17	55	33	29	34	34
Iron	2200	5100		2300	1600	3400	3800	3000	2100	2300
Mercury	0.20U	0.20U		0.20U [′]	0.20U	0.20U	0.20U	0.20U	· 0.20U .	. 0.20U
Nickel	9.4	9.8	-	7.9	5.6	10	6.8	6.2	6.6	5.0
Lead	16	32		20	13	40	34	30	28	28
Selenium	1.0U	1.0U		1.0U	1. 0U	1.0U	1.0U	1.0U	1.0U	. 1.0U .
Silver	0.74	0.25U		0.25	0.25U	1.5	0.25U	0.25U	0.25U	0.25U
Thallium	1.0U	1.0U		1.0U	1. 0U	∴ 1.0U	1.0U	1.0U	1.0U	1.0U
Zinc	180	220J		150	100	290	220J	<u>190J</u>	220	190
DISSOLVED METALS (µg/	L)			•				•		,
Aluminum	180	57		71	25U	29	43	46	230	25U
Antimony	2.3	1.1		1.2	0.93	1.2	0.96	0.94	1.5	1.1
Arsenic	1.7	1.2		1.3	1.2	1.7	1.4	1.4	1.6	1.3
Beryllium	0.50U	. 0.50U	•	0.50U	0.50U	0.50U	0.50U	0.50U	0.50U	0.50U
Cadmium	0.30	0.25U		0.25U	0.25U	0.25U	0.25U	0.25U	0.25U	0.25U
Chromium	3.3	2.6		3.2	3.1	0.88	1.0	0.94	· <u>1.1</u>	0.61
Copper	18	7.7		7.7	7.5	11	7.6	7.6	10	9.1

Table 6.2Stormwater Chemistry Results: City of Long Beach Storm Monitoring Project, Bouton Creek and Belmont Pump Station
(Page 2 of 4)

(rage	5.01.4)								•	
· · · · · · · · · · · · · · · · · · ·	Bouton Creek 1	Bouton Creek 2	Bouton Creek 2FD	Bouton Creek 3	Bouton Creek 4	Belmont Pump 1	Belmont Pump 2	Belmont Pump 2FD	Belmont Pump 3	Belmont Pump 4
ANALYTE	11 Nov '02	12 Dec '02	12 Dec '02	12 Feb '03	25 Feb '03	11 Nov '02	12 Dec '02	12 Dec '02	12 Feb '03	25 Feb '03
Iron	190	80	· .	86 .	79	63	71	82	47	43
Mercury	0.20U	0.20U	· · ·	0.20U	0.20U	0.20U	0.20U	0.20U	.020U	0.20U
Nickel	6.5	3.2		3.6	3.2	4.8	2.1	2.1	2.5	1.7
Lead	5.0	1.7		1.8	1.4	1.6	1.4	1.3	0.89	0.64
Selenium	1.0U	1.0U		1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U
Silver	0.25U	0.25U		0.25U	0.25U	0.25U	0.25U	0.25U	0.25U	0.25U .
Thallium	1.0U	1.0U		1.0U	1.0U	1.0U	1.0U	1.0U	1. 0 U	1.0U
Zinc	160	69		49	64J [′]	100	67	75	60	63J
CHLORINATED PESTIC	IDES (µg/L)						,			
4,4'-DDD	0.050U	0.050U	-	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U
4,4'-DDE	0.050U	0.050U		0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U
4,4'-DDT	0.010U	0.010U		0.010U	0:010U	0.010U	0.010U	0.010U	0.010U	0.010U
Aldrin	0.005U	0.005U	· · ·	0,005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U
alpha-BHC	0.010U	0.010U	÷	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U
alpha-Chlordane	0.10U	0.10U		0.10U	0.10U	0.10U	0.10U	, 0.10Ù	0.10U	0.10U
alpha-Endosulfan	0.020U	0.020U	;	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U
beta-BHC	0.005U	0.005U		0.005U	0.005U	0.005U	0.005U	0.005U	0.005U `	0.005U
beta-Endosulfan	0.010U	0.010U		0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U
delta-BHC	0.005U	0.005U	· · ·	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U
Endosulfan Sulfate	0.050U	0.050U		⁻ 0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U
Endrin	0.0 <u>10U</u>	0.010U		0.010U	• 0.010U	0.010U	0.010U	• 0.010U	0.010U	0.010U
Endrin Aldehyde	0.010U	0.010U		0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U
Dieldrin	0.010U	0.010U		0.010U	0.010U	0.019	0.010U	0.010U	0.010U	0.010U
gamma-BHC	0.020U	0.020U		0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U
gamma-Chlordane	0.10U	0.10U		0.10U	0.10U	0.10Ù	0.10U	0.10U	0.10U	0.10U
Heptachlor	· 0.010U	0.010U		. 0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U
Heptachlor Epoxide	. 0.010U	0.010U	,	0.010U	0.010U	0.010U	0.010U	0.010 ∪ [.]	0.010U ·	0.010U
Toxaphene	0.5U	0.5U		0.5U	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U

Table 6.2	Stormwater Chemistry Result	s: City of Long Beach Storn	n Monitoring Project, Bouton	Creek and Belmont Pu	mp Station
	(Page 3 of 4)			- 1	

	Bouton Creek 1	Bouton Creek 2	Bouton Creek 2FD	Bouton Creek 3	Bouton Creek 4	Belmont Pump 1	Belmont Pump 2	Belmont Pump 2FD	Belmont Pump 3	Belmont Pump 4
ANALYTE	11 Nov '02	12 Dec '02	12 Dec '02	12 Feb '03	25 Feb '03	11 Nov '02	12 Dec '02	12 Dec '02	12 Feb '03	25 Feb '03
AROCLORS (µg/L)		. '					•	·		•
Aroclor 1016	0.5U	0.5U		0.5U	0.5U	0.5U	• 0.5 U	0.5U	0.5U	` 0.5U
Aroclor 1221	0.5U	0.5U		0.5U	0.5U	0.5U	0 .5U	0.5U	0.5U	0.5U
Aroclor 1232	0.5U	0.5U	· ·	0.5U	0.5U	· 0.5U	. 0.5U	0.5U	0.5U	0.5U
Aroclor 1242	0.5U	0.5U	•	0.5U	0.5U	. 0.5U	0.5U	0.5U	0.5U	0.5U
Aroclor 1248	0.5U	0.5U		0.5U	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U
Aroclor 1254	0.5U	0.5U		0.5U	0.5U	[•] 0.5U	0.5 U	0.5U	0.5U	0.5U
Aroclor 1260	0.5U	0.5U		0.5U	0.5U	0.5U	. 0.5U	0.5U	0.5U	0.5U
Total PCB's	0.5U	0.5U		0.5U	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U
ORGANOPHOSPHATE PES	TICIDES (µg/L)									
Atrazine	2.0U	2.0U		1.0U	0.50U	2.0U .	2.0U	2. 0 U	1.0U	0.50U
Chlorpyrifos	0.05U	0.05U		0.05U	0.05U	0.05U	0.26Y	0.21Y	0.05U	0.050U
Cyanazine	2.0U	2.0U		1.0U	0.50U	2.0U	2.00	2.0U	1.0U	0.50U
Diazinon	0.19Y	0.21		0.11	0.23Y	0.31	0.35	0.27	0.22	0.15Y
Malathion	1.0U	1.0U		1.0U	1.0U	· 1.1 ·	1.0Ū	1. 0U	1.0U	1.0U
Prometryn	2.0U	2.0U	_	1.0U	0.50U	2.0U	.: 2.0 U	2.0U	1.0U	0.50U
Simazine	2.0U	2.6	-	1.0U	3.0	2.0U	<u>, 2.0U</u>	2.0U	1.0U	0.50U
HERBICIDES (µg/L)		4						, · ·		
2,4,5-TP (Silvex)	0.50U	0.50U		0.50U	0.50U	0.50U	0.50U	0.50U	0.50U	0.50U
2,4-D	1.0U	1.0U	· .	. 1.0U	1.0U	1.0U	1.0U	1.0U ⁻	1.0U	1.0U
Glyphosate	5.0U	5.0U	÷ .	5.0U	5.0U	5.0U	5.0U	5.0U	5.0U	5.0U

Table 6.2Stormwater Chemistry Results: City of Long Beach Storm Monitoring Project, Bouton Creek and Belmont Pump Station
(Page 4 of 4)

Bolded values indicate results that were greater than the reporting detection limit.

R¹ Indicates data were not valid. Data were rejected.

Indicates analyte not tested.

Y=% Difference between primary and confirmation column is >40%. U=Not de

U=Not detected at the associated value. J=A

J=Analyte is considered an estimate, value detected below quantitation limits.

11 Nov 2002 Event - Atrazine, Cyanazine, Prometryn, Simazine and Malathion done by ToxScan.

12 Dec 2002 Event - All OP Pest done by APPL.

12 and 25 Feb 2002 Events - Prometryn, Atrazine, Simazine and Cyanazine done by ToxScan. Chlorpyrifos, Malathion and Diazinon.

16 Mar 2003 Event - All OP Pest done by ToxScan.

<u> </u>		×		1 .								· · ·
	Los Cerritos Channel, 1	Los Cerritos Channel AFD	Los Cerritos Channel 2	Los Cerritos Channei 3	Los Cerritos Channel 3FD	Los Cerritos Channel 4	Los Cerreros Channel AFD	Dominguez Gap 1	Dominguez Gap 2	Dominguez Cap 2FD	Dominguez Gap 3	Dominguez Gap 3FD
ANALYTE	11 Nov '02	A1 Nov '02	12 Dec '02	12 Feb '03	12 Feb '03	25 Feb '03 /	25 Feb '03	12 Feb '03	25 Feb '03	25 Feb '03	16 Mar '03	16 Mar '03
CONVENTIONALS						,		· · · · ·		A		
BOD (mg/L)	4.5	8.0	4.0U	4.0U	(4.0U	6.0		. 4.0U	4.0U	40U	4.8	49
COD (mg/L)	75	98	32	180	94	69		81	38	54	29	24 ~
EC (umhos/cm)	120	A 200	97	55	54.	59		210 ·	48	48	74	74
TOC (mg/L)	19	11/21	13	6.7	5.7	8.0	•	7.8	5.8	6.0	11	∫ ž1ŏ
Hardness (mg/L)	38	1131	27J	17	115 -	21		49	14	12	17	. 18
Alkalinity (mg/L)	34	着32	25	21	1130	19	· ·	-46		- 18	24	21
pH (pH units)	(6.8)	6.8	6.7	6.2	1162	= (63)		< 6.6	(5.4)	(6:3)	A6.7)	6.5>
Cyanide (ug/L)	5.0U	50U	5.0U	5.0U	5.0U	5.00		5.0U	5.00	50U	5.0U	15.00
Chloride (mg/L)	8.2	11133	9.6	3.2	1 13.3	4.3	•	- 26	3.4	33	11	5.7
Fluoride (mg/L)	0.24	0.32	0.2	0.10U	រុំចំពែល	0.10U		0.22	0.10U	0 10U	0.12	0)10U
TKN (mg/L)	2.5	12.5	2.6	1.1	111	1.0		. 2.1	0.73	0.78	1.2	122
Ammonia as N (mg/L)	0.90	0.92	0.51	0.29	0.29	0.29		1.1	0.29	0.16	0.39	0.36
Nitrite N (mg/L)	0.10U	O IOU	0.10U	0.10U	Ô ÌÕÚ	0.10U	-	0.20	0.10U	010U	0.10U	d li õu
Nitrate N (mg/L)	1.1	111	0.72	0.47	0.47	0.46		- 1.0	0.30	0.31	0.38	0.37
Total P (mg/L)	0.83	0.51	1.3	0.93	0.67	0.49		0.57	0.35	0.35	0.37 ·	0.37
Ortho-P (Dissolved). (mg/L)	0.44	0.45	0.17	0.15	0.15	0.14		0.30	0.24	0.24	0.27	0.27
MBAS (mg/L)	0.18	0.15	0.11	0,029	`0.05 <u>7</u>	- 0.078		0.07	0.031	0.036	0.051	0.062
MTBE (ug/L)	0.5U	<u>)</u> !sŲ	0.5U	0.5U	0.50	0.5U	0.5U	0.5U	<u>0.5U</u>		0.5U	0.5U
Total Phenols (mg/L)	0.1U	ġ. Ì(U	0.1Ų	0.1U	0.1U [*]	0.1U		0.1U	0.IU	0.1U	0.1U	0.1U
Oil & Grease (mg/L)	5.0U	5/00	5.0U	5.0U	5.0U	. 5.0U	5.0U	5.0U	· 5.0U		5.0U	5.0U
Turbidity (NTU)	. 48	33	140	78	74	69		. 14	30	28	29	30
TRPH (mg/L)	5.0U	5.0U	5.0U	5.0U	5.0U	5.0U	5.0U	5.0U	5.0U			
TSS (mg/L)	110	54	450	220	200	.130		80	40	40	38	40
TDS (mg/L)	110	150	78	32	32	56		- 140	40	36	74	66
TVS (mg/L)	38	26	R	24	30	50	•	28	48 -	48	24	23

Stormwater Chemistry Results: City of Long Beach Storm Monitoring Project, Los Cerritos Channel and Dominguez Gap Table 6.3 (Page 1 of 4)

4 & 7 samples (pl+)"

Table 6.3Stormwater Chemistry Results: City of Long Beach Storm Monitoring Project, Los Cerritos Channel and Dominguez Gap
(Page 2 of 4)

the second s							· · · ·					
	Los Cerritos Channel 1	Los Cerritos Channel 1FD	Los Cerritos Channel 2	Los Cerritos Channel 3	Los Cerritos Channel 3FD	Los Cerritos Channel 4	Los Cerritos Channel 4FD	Dominguez Gap 1	Dominguez Gap 2	Dominguez Gap 2FD	Dominguez Gap 3	Dominguez Gap 3FD
ANALYTE	11 Nov '02	11 Nov '02	12 Dec '02	12 Feb '03	12 Feb '03	25 Feb '03	25 Feb '03	12 Feb '03	25 Feb '03	25 Feb '03	16 Mar '03	16 Mar '03
BACTERIA (mpn/100ml)												
Enterococcus	1178	1100	6670	144	225	4400	4530	26	5200		6560	6350
Fecal Coliform	11000	8000	90000	3000	8000	11000	8000	8000	30000		50000	22000
Total Coliform	80000	30000	>160000	50000	24000	>160000	>160000	90000	30000		160000	160000
TOTAL METALS (ug/L)												
Aluminum	2100	4600	13000	4800	4700	1400		3000	1500	580	2000	540
Antimony	3.5	3.4	6.4	1.9	1.9	1.0		1.4	0.65	0.50U	1.1	0.64
Arsenic	2.3	4.5	5.5	3.0	3.1	1.6		2.6	1.7	1.1	1.8	2
Beryllium	0.50U	0.50U	0.50U	0.50U	0.50U	0.50U	1	0.50U	0.50U	0.50U	0.50U	0.50U
Cadmium	0.59	2.2	2.9	1.0	1.1	0.61		0.45	0.25U	0.25U	0.25U	0.25U
Chromium	18	11 -	23	9.3	9.9	4.4	I	5.8	3.4	1.9	3.2	1.6
Hex Chromium			0.02U	0.02U	0.02U	0.02U		0.02U	0.02U	0.02U	0.02U	0.02U
Copper	27	52	91	46	26	20		20	11	9.3	11	9.3
Iron	2200	4300	12000	4000	4500	5100		2600	1900	1700	1700	1500
Mercury	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U		0.20U	0.20U	0.20U	0.20U	0.20U
Nickel	9.1	15	23	8.0	8.3	5.1		6.5	3.1	2.3	3.4	2.5
Lead	16	42	120	31	32	22		· 19	12	10	10	8.7
Selenium	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U		1.0U	1.0U	1.0U	1.0U	1.0U
Silver	0.54	0.76	0.32	0.25U	0.25U	0.25U		0.25U	0.25U	0.25U	0.25U	0.25U
Thallium	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U		1. 0 U	1.0U	1.0U	1.0U	1.0U
Zinc	180	500	680J	250	500	160		140	60J	54	59	57
DISSOLVED METALS (ug/L)			•									
Aluminum	420	100	65	51	56	40		34	25	32	150	140
Antimony	2.8	2.4	2.1	1.1	1.1	0.91		0.69	0.50U	0.50U	0.6	0.61
Arsenic	2.1	1.8	1.6	1.5	1.4	1.4		1.5	1.4	1.3	1.8	1.8
Beryllium	0.5011	0.5011	0.50U	÷ 0 50U	0.50U	0 50U	-	0.50U	0.50U	0.50U	0.50U	. 0.50U
Cadmium	0.36	0.29	0.25U	0.25U	0.25U	0.25U		• 0.25U •	0.25U	0.25U	0.25U	0.25U
Chromium	3.2	2.4	1.4	1.1	1.1	1.1		0.79	0.56	0.56	0.83	0.8
Copper	19	15	81	50	5.0	56		58	44	45	73	74
Iron	490	110	95	52	62	72		57	76	99	180	180
Mercury	0 200	0 20U	0.20U	0.20U	0.200	0.20U		0.200	0.20U	0.20U	0.20U	0.20U
Nickel	71	60	26	13	12	1.5		2.2	1.0	1.0U	1.7	1.7
Lead	7.6	3.8	1.4	0.79	0.90	0.97		1.0	1.2	0.99	1.8	1.8
Selenium	1.0U	1.0U	1.0U	1.0U	1.0U	1.00		1.0U	1.0U	1.0U	1.0U	1.0U

·	Los Cerritos Channel 1	Los Cerritos Channel 1FD	Los Cerritos Channel 2	Los Cerritos Channel 3	Los Cerritos Channel 3FD	Los Cerritos Channel 4	Los Cerritos Channel 4FD	Domingucz Gap 1	Dominguez Gap 2	Dominguez Gap 2FD	Dominguez Gap 3	Dominguez Gap 3FD
ANALYTE	11 Nov '02	11 Nov '02	12 Dec '02	12 Feb '03	12 Feb '03	25 Feb '03	25 Feb '03	12 Feb '03	25 Feb '03	25 Feb '03	16 Mar '03	16 Mar '03
Silver	0.25U	0.25U	0.25U	0.25U	0.25U	0.25U		0.25U	0.25U	0.25U	0.25U	0.25U
Thallium	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U		1.0U	1.0U	1.0U	1. 0 U	1.0U
Zinc	160	140	60	35	33	63J		37	41J	46J	39J	38J
CHLORINATED PESTIC	DES (µg/L)			~								
4,4'-DDD	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U		0.050U	0.050U	0.050U	0.050U	0.050U
4,4'-DDE	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U		0.050U	0.050U	0.050U	0.050U	0.050U
4,4'-DDT	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U		0.010U	0.010U	0.010U	0.010U	0.010U
Aldrin	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U		0.005U	0.005U	0.005U	0.005U	0.005U
alpha-BHC	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U		0.010U ·	0.010U	0.01 0U	0.010U	0.010U
alpha-Chlordane	0.10U	0.10U	0.10U	0.10U	0.10U	0.10U		0.10U	0.10U	0.10U	0.10U	0.10U
alpha-Endosulfan	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U		0.020U	0.020U	0.020U	0.020U	0.020U
beta-BHC	· 0.005U	0.005U	0.005U	0.005U	0.005U	0.005U		0.005U	0.005U	0.005U	0.005U	0.005U
beta-Endosulfan	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U		0.010U	0.010U	0.010U	0.010U	0.010U
delta-BHC	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U		0.005U	0.005U	0.005U	0.005U	0.005U
Endosulfan Sulfate	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U		0.050U	0.050U	0.05 0U	0.050U	0.050U
Endrin	0.010U	0.010U	0:010U	0.010U	0.010U	0.010U		0.010U	0.010U	0.010U	0.010U	0.010U
Endrin Aldehyde	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U		0.010U	0.010U	0.010U	0.010U	0.010U
Dieldrin	0.016	0.021	0.010U	0.010U	0.010Ų	0.010U		0.010U	0.010U	0.010U	0.010U	0.010U
gamma-BHC	0.020U	0.020U	0.12	0.020U	0.020U	0.020U		0.020U	0.020U	0.020U	0.020U	0.020U
gamma-Chlordane	0.10U	0.10U	0.10U	0.10U	0.10U	0.10U		0.10U	0.10U	0.10U	0.10U	0.10U
Heptachlor	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U		0.010U	0.010U	0.010U	0.010U	0.010U
Heptachlor Epoxide	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U		0.010U	0.010U	0.010U	0.010U	0.010U
Toxaphene	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U		0.5U	0.5U	0.5U	0.5U	0.5U
AROCLORS (µg/L)												
Aroclor 1016	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U		0.5U	0.5U	0.5U	0.5U	0.5U
Aroclor 1221	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U		0.5U ·	0.5U	0.5U	0.5U	0.5U
Aroclor 1232	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U		0.5U	0.5U	0.5U	0.5U	0.5U
Aroclor 1242	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U		0.5U	0.5U	0.5U	0.5U	0.5U
Aroclor 1248	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U		0.5U	0.5U	0.5U	0.5U	0.5U
Aroclor 1254	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U		0.5U	0.5U	0.5U	0.5U	0.5U
Aroclor 1260	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U		0.5U	0.5U	0.5U	0.5U	0.5U
Total PCB's	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U		0.5U	0.5U	0.5U	0.5U	0.5U

Table 6.3Stormwater Chemistry Results: City of Long Beach Storm Monitoring Project, Los Cerritos Channel and Dominguez Gap
(Page 3 of 4)

Table 6.3Stormwater Chemistry Results: City of Long Beach Storm Monitoring Project, Los Cerritos Channel and Dominguez Gap
(Page 4 of 4)

	Los Cerritos Channel I	Los Cerritos Channel 1FD	Los Cerritos Channel 2	Los Cerritos Channel 3	Los Cerritos Channel 3FD	Los Cerritos Channel 4	Los Cerritos Channel 4FD	Dominguez Gap 1	Dominguez Gap 2	Dominguez Gap 2FD	- Dominguez Gap _ 3	Dominguez Gap 3FD
ANALYTE	11 Nov '02	11 Nov '02	12 Dec '02	12 Feb '03	12 Feb '03	25 Feb '03	25 Feb '03	12 Feb '03	25 Feb '03	-25 Feb '03	16 Mar '03	16 Mar '03
ORGANOPHOSPHATE PES	TICIDES (µg	r/L)										
Atrazine	2.0U	2.0U	2.0U	1.0U	1.0U	0.50U		1.0U	0.50U	0.50U	1.0U	1.0U
Chlorpyrifos	0.25Y	0.05U	0.05U	0.05U	0.05U	0.05U		0.05U	0.05U	0.05U	0.05U	0.062U
Cyanazine	2.0U	2.0U	· 2.0U	1.0U	1.0U	0.50U		1.0U	0.50U	0.50U	<u>1.0U</u>	1.0U
Diazinon	0.27Y	0.20Y	0.25	. 0.11	0.12	0.13Y		0.09	0.14Y	0:10Y	0.023	0.023
Malathion	1.0U	1.0U	1.0U	1.0U ·	1.0U	~ 1.0U		1.0U	1.0U	1.0U	1.0U	1.2U
Prometryn	2.0U	2.0U	2.0U	1.0U	1.0U	0.50U		1.0U	0.50U	0.50U	1.0U	1.0U
Simazine	2.0U	2.0U	27	1.0U	1.0U	2.4		1.0U	1.4	1.5	1.8	1.4
HERBICIDES (µg/L)								•				
2,4,5-TP (Silvex)	0.50U	0.50U	0.50U	0.50U	0.50U	0.50U		0.50U	0.50U	0.50U	0.50U	0.50U
2,4-D	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U		1.0U	1.0U	1.0U	1.0U	1.0U
Glyphosate	5.2U	5.0U	5.0U	5.0U	5.0U	5.0U [']		5.0U	5.0U	5.0U	5.0U	5.0U

70

Bolded values indicate results that were greater than the reporting detection limit.

R¹ Indicates data were not valid. Data were rejected.

Indicates analyte not tested.

Y=% Difference between primary and confirmation column is >40%. U=Not detected at the associated value.

J=Analyte is considered an estimate, value detected below quantitation limits.

11 Nov 2002 Event - Atrazine, Cyanazine, Prometryn, Simazine and Malathion done by ToxScan.

12 Dec 2002 Event - All OP Pest done by APPL.

12 and 25 Feb 2002 Events - Prometryn, Atrazine, Simazine and Cyanazine done by ToxScan. Chlorpyrifos, Malathion and Diazinon.

16 Mar 2003 Event - All OP Pest done by ToxScan.

		11/8/2002	12/12/2002	2/12/2003	2/25/2003
Analyte	ML ¹	Bouton Creek	Bouton Creek	Bouton Creek	Bouton Creek
Conventionals		Douton Creek	Douton Crook	Bouton creek	
BOD	4 mg/L	1830	0	2517	1036
COD	4 mg/L 4 mg/I	20753	615	60158	9453
TOC	1 mg/L	5461	2583	3499	1782
Hardness	1 mg/L	0830	4884	14119	3999
Alkalinity	5 mg/L	8738	4004	13505	3454
Cuenida	5 mg/L	0750	4220	15505	5454
Cyanide	5 ug/L	0	2522	0822	2000
Elucrido	1 mg/L	· 8405	3522	9822	2909
TUNI	0.1 mg/L	65 727	45	104	24
	0.1 mg/L	/3/ 251	33 ·	194	28
	0.1 mg/L	231	12	164	30
NO2-N (Nitrite)	0.1 mg/L	0 272 ·	107	0	0
NU3-N (Nitrate)	0.1 mg/L	2/3	127	· 319	83
P(10tal)	0.05 mg/L	134	120	258	49
Ortho-P (Dissolved)	0.01 mg/L	. 137	54		27
MBAS (Surfactants)	0.02 mg/L	41	16	60	13
MIBE	0.05 ug/L	. 0	· 0	0	0
Total Phenols	0.01 mg/L	. 0	. 0	0	0
Oil & Grease	5 mg/L	0	0	• 0	1 0
TRPH	5 mg/L	. O ·	0	. 0	. 0
TSS	l mg/L	14199	3288	44197	8726
TDS	1 mg/L	40959	17375	45425	11998
Total Metals	•		,		
Al	25 ug/L	573	845	1289	218
Sb	0.5.ug/L	1.0	0.73	1.4	0.29
As	0.5 ug/L	0.66	0.59	1.3	0.27
Be	0.5 ug/L	0	0	0	0
Cd	0.25 ug/L	0.17	0.19	0.33	0.082
Cr	0.5 ug/L	4.9	.5.6	11	2.9
Cr(VI)	0.3-1 mg/L		. 0	0,	0
Cu	0.5 ug/L	7.6	8.2	14	3.1
Fe	25 ug/L	601	1197	1412	291
Hg	0.2 ug/L	0	0.	0	0
Ni	l ug/L	2.6	2.3	4.8	1.0
Pb	0.5 ug/L	4.4	7.5	12	2.4
Se	1 ug/L	0	. 0	0	0
Ag	0.25 ug/L	0.20	0	0.15	0
TI	l ug/L	0	0 .	0	0
Zn	l ug/L	49	52	92	, 18

 Table 6.4
 Load Calculations (pounds) for each Storm Event at Bouton Creek

· ·		11/8/2002	12/12/2002	2/12/2003	2/25/2003
Analyte	ML ¹	Bouton Creek	Bouton Creek	Bouton Creek	Bouton Creek
Dissolved Metals					· · · · ·
Al	25 ug/L	49	13	44	. 0
Sb	0.5 ug/L	0.63	0.26	0.74	0.17
As	0.5 ug/L	0.46	0.28	0.80	0.22
Be	0.5 ug/L	0	0	0	0
Cd ·	0.25 ug/L	0.082	· 0	0	0
Cr	0.5 ug/L	0.90	0.61	2.0	0.56
Cu	0.5 ug/L	4.9	1.8	4.7	1.4
Fe	25 ug/L	. 52	19	53	14
Hg	0.2 ug/L	· 0	0	0	0
Ni	l ug/L	1.8	0.75	2.2	0.58
Pb	0.5 ug/L	1.4	0.40	1.1	0.25
Se	l ug/L	0	0.	0	0
Ag	0.25 ug/L	· 0	0	0	. 0 .
TI	l ug/L	0	0	0	0
Zn	l ug/L	44	16	30	12
Chlorinated Pesticides					
4,4'-DDD	0.05 ug/L	. 0	0	0	0
4,4'-DDE	0.05 ug/L	0 .	0	0	0
4,4'-DDT	0.01 ug/L	0	0	0	0
Aldrin	0.005 ug/L	0	0	0	0
alpha-BHC	0.01 ug/L	0.	0 .	0	0
alpha-Chlordane	0.1 ug/L	0	0	0	0
alpha-Endosulfan	0.1 ug/L	0	0	0	0
beta-BHC	0.005 ug/L	0	0	0	0
beta-Endosulfan	0.01 ug/L	0	· 0	0 `	0.
delta-BHC	0.005 ug/L	0	· 0	0	0
Endosulfan Sulfate	0.05 ug/L	· 0 .	0	0	0
Endrin	0.01 ug/L	0	0	0	0
Endrin Aldehyde	0.01 ug/L	0	0	0	. 0
Dieldrin	0.01 ug/L	0	0	0	0
gamma-BHC	0.02 ug/L	0	0	0	0
gamma-Chlordane	0.01 ug/L	· 0	0	0	0
Heptachlor	0.01 ug/L	0	0	0 ·	0
Heptachlor Epoxide	0.01 ug/L	. 0	0	0	0
Toxaphene	0.5 ug/L	0	0	0	· . 0
Aroclors					
Aroclor 1016	0.5 ug/L	0	0	0	0
Aroclor 1221	0.5 ug/L	0	· 0	0	0 ·
Aroclor 1232	0.5 ug/L	0	0	0	. 0
Aroclor 1242	0.5 ug/L	0	0	0	. 0
Aroclor 1248	0.5 110/1	0	0	0	0
Aroclor 1254	0.5 ug/L	0 0	0 .	ů Ú	0
Aroclor 1260	0.5 ug/L	0	Ő	· 0	0
Total PCB's	0.5 ug/L	0	0	0	Ũ

 Table 6.4
 Load Calculations (pounds) for each Storm Event at Bouton Creek. (continued)

Analyte	ML ¹	11/8/2002 Bouton Creek	12/12/2002 Bouton Creek	2/12/2003 Bouton Creek	2/25/2003 Bouton Creek
Organophosphates					
Atrazine	l ug/L	. 0	. 0	0	0
Chlorpyrifos	0.05 ug/L	0	· 0 ·	0	0
Cyanazine	l ug/L	· · · 0 ·	0	0	0
Diazinon	0.01 ug/L	0.052	0.049	0.07	0.042
Malathion	1 ug/L	0	0	0	0
Prometryn	l ug/L	0	0	0	0
Simazine	l ug/L	0	0.61	0	0.55
Chorinated Herbicides					
2,4,5-TP (Silvex)	0.05 ug/L	. 0	0	. 0	0
2,4-D	l ug/L	0	· 0	0	0
Glyphosate	5 ug/L	1.1	0	0	0

Table 6.4 Load Calculations (pounds) for each Storm Event at Bouton Creek. (continued)

1. ML = Minimum Level as defined in the State Implementation Plan.

Notes:

A "0" indicates that an analysis was performed but the analyte was not detected. A blank cell indicates that the analysis was not performed.

			,	•	
		11/8/2002	12/12/2002	2/12/2003	2/25/2003
Analyte	ML ¹	Belmont Pump	Belmont Pump	Belmont Pump	Belmont Pump
Conventionals					
BOD	4 mg/L	48	0	276	118
COD	4 mg/L	361	534	6027	91
TOC	1 mg/L	52	132	427	134
Hardness	1 mg/L	107	374	1105	420
Alkalinity	5 mg/L	119	786	1356	388
Cyanide	5 ug/L	0	0	0	0
Chloride	1 mg/L	64	236	653	291
Fluoride	0.1 mg/L	0.87	2.5	6.5	0
TKN	0.1 mg/L	- 11	27	65	21
NH3-N	0.1 mg/L	2.9	5.6	19	3.6
NO2-N (Nitrite)	0.1 mg/L	0	0	0	0
NO3-N (Nitrate)	0.1 mg/L	4.37	11	32	7.9
P (Total)	0.05 mg/L	2.90	9.4	36	7.9
Ortho-P (Dissolved)	0.01 mg/L	2.70	6.0	14	4.0
MBAS (Surfactants)	0.02 mg/L	0.40	1.0	6.0	0
MTBE	0.05 ug/L	0	0	0	0
Total Phenols	0.01 mg/L	0	0	0	0
Oil & Grease	5 mg/L	0	0	0	0
TRPH	5 mg/L	0	. 0	0	0
TSS	1 mg/L	397	1414	4018	1261
TDS	1 mg/L	397	1100	4119	1196
Total Metals					
Al	25 ug/L	13	36	100	21
Sb	0.5 ug/L	0.013	0.044	0.15	0.031
As	0.5 ug/L	0.010	0.038	0.13	0.029
Be	0.5 ug/L	• • 0	0	0	0
Cd	0.25 ug/L	0:0035	0.011	0.04	0
Cr	0.5 ug/L	0.031	0.11	0.30	0.070
Cr(VI)	0.3-1 mg/L		0	0	0
Cu	0.5 ug/L	0.22	0.52	1.7	0.55
Fe	25 ug/L	13	60	105	37
Hg	0.2 ug/L	0	0	0	0
Ni	l ug/L	0.040	0.11	0.33	0.081
Pb	0.5 ug/L	0.16	0.53	1.4	0.45
Se	1 ug/L	0	0	0	0
Ag	0.25 ug/L	0	0	0	0
TI	l ug/L	0	0	0	0
Zn	l ug/L	1.2	3.5	11	3.1

Table 6.5Load Calculations (pounds) for each Storm Event at the Belmont Pump Station.

·······	······	11/8/2002	12/12/2002	2/12/2003	2/25/2003
Analyte	ML ¹	Belmont Pump	Belmont Pump	Belmont Pump	Belmont Pump
Dissolved Metals		• •			
Al	25 ug/L	0.12	0.68	12	. 0.
Sb	0.5 ug/L	0.0048	0.015	0.075	0.018
As	0.5 ug/L	0.0067	0.022	0.080	0.021
Be	0.5 ug/L	0.0020	0	. 0	0
Cd	0.25 ug/L	0	0	0	0
Cr	0.5 ug/L	0.0035	0.02	0.06	0.010
Cu	0.5 ug/L	0.044	0.12	0.50	0.15
Fe	25 ug/L	0.25	1.1	2.4	0.70
Hg	0.2 ug/L	0	0	0	0
Ni	1 ug/L	0.02	0.033	0.13	0.027
Pb	0.5 ug/L	0.01	0.022	0.045	0.010
Se		0	0	0	0,
Ag	0.25 µg/L	ů	ů 0	0	0
	1 ug/I	0	0	0	0
Zn	1 ug/L	040	11	3.0	1.0
Chloringted Pesticides	1_48/13	0.10			
4 4'-DDD	0.05 μα/Ι	0	. 0	0	0
4 4'-DDF	0.05 ug/L	0	0	О	0 '
	0.05 ug/L	0	0	0	0 ·
4,4 -DD1	0.01 ug/L	0	0	0	. 0
Alurin alpha DUC	0.005 ug/L	0	Ú Í O	0	. 0 ·
alpha Chlandona	0.01 ug/L	0	0	0	0
alpha-Chiordane	0.1 ug/L	0	0	0	. 0
heta DUC	0.1 ug/L	0	0	0	0
boto Endemilton	0.005 ug/L	0	0	0	0
delte DUC	0.01 ug/L	0	0	× U 0	0
Endogulfon Sulfato	0.003 ug/L	0	0	0.	, O
Endosunan Sunate	0.03 ug/L	Ŭ O -	0	0	0
Enurin Endrin Aldebude	0.01 ug/L	0	0	0	0
Dialdria	0.01 ug/L	0 00075	0	0	0
	0.01 ug/L	0.000075	0,	0	0
gamma-BHC	0.02 ug/L	. 0	. 0	0	0
gamma-Unfordane	0.01 ug/L	0	0	. 0	0
Heptachior	0.01 ug/L	0	0	, 0	0
Heptachior Epoxide	0.01 ug/L	0	0	0	0
	0.5 ug/L	<u> </u>	0	0	0
Aroclors	0 6 /T		0	0	0
Arocior 1016	0.5 ug/L	0	0	0	0
Aroclor 1221	0.5 ug/L	. 0	0	0	0
Aroclor 1232	0.5 ug/L	U	U .	U	0
Aroclor 1242	0.5 ug/L	U	U	U	U O
Arcolor 1248	0.5 ug/L	U	U	U .	0
Arcolor 1254	0.5 ug/L	U	U	U ` ^	0
Total DCDie	0.5.ug/L	U	U O	U O	0
TOTAL PCB'S	0.5 ug/L	U	U	U	U

Table 6.5Load Calculations (pounds) for each Storm Event at the Belmont Pump Station.
(continued)

Analyte	\mathbf{ML}^1	11/8/2002 Belmont Pump	12/12/2002 Belmont Pump	2/12/2003 Belmont Pump	2/25/2003 Belmont Pump
Organophosphates					
Atrazine	l ug/L	0	0	0	0
Chlorpyrifos	0.05 ug/L	0	0	· 0	0
Cyanazine	l ug/L	0	0	0	0
Diazinon	0.01 ug/L	0.0012	0.0055	0.14	0.0024
Malathion	1 ug/L	0.0044	0	0	0
Prometryn	l ug/L	. 0	0	0	0
Simazine	l ug/L	0	0	0	0
Chorinated Herbicides					
2,4,5-TP (Silvex)	0.05 ug/L	0	0	0	.0
2,4-D	1 ug/L	, 0	0	0	0
Glyphosate	0.05 ug/L	0.016	0	0	0 ·

Table 6.5Load Calculations (pounds) for each Storm Event at the Belmont Pump Station.
(continued)

1. ML = Minimum Level as defined in the State Implementation Plan.

Notes:

A "0" indicates that an analysis was performed but the analyte was not detected. A blank cell indicates that the analysis was not performed.

		11/8/2002 Los Cerritos	12/12/2002 Los Cerritos	2/12/2003 Los Cerritos	2/25/2003 Los Cerritos
Analyte	ML ¹	Channel	Channel	Channel	Channel
Conventionals			· · ·		
BOD	′ 4 mg/L	3770	0.	0	4277
COD	4 mg/L	62838	50128	533557	49183
TOC	1 mg/L	15919	20365	19860	5702
Hardness	1 mg/L	31838	41826	50391	14969
Alkalinity	5 mg/L	28487	39163	62248	13543
Cyanide	5 ug/L	0	0	0	0
Chloride	1 mg/L	6870	15038	9485	3065
Fluoride	0.1 mg/L	201	313	0	0
TKN	0.1 mg/L	2095	4073	3261	713
NH3-N	0.1 mg/L	754	799	860	207
NO2-N (Nitrite)	0.1 mg/L	0	0	• 0	0
NO3-N (Nitrate)	0.1 mg/L	922	1128	1393	328
P (Total)	0.05 mg/L	695	2036	2757	349
Ortho-P (Dissolved)	0.01 mg/L	369	266	445	100
MBAS (Surfactants)	0.02 mg/L	151	172	86	56
MTBE	0.05 ug/L	0	0	0	· 0
Total Phenols	0.01.mg/L	0	0	. 0	0
Oil & Grease	5 mg/L	0	0	0.	0
TRPH	5 mg/L	` 0	0	0	0
TSS	1 mg/L	92163	704927	652125	92664
TDS	1 mg/L	92163	122187	94855	39917
Total Metals					
Al	25 ug/L	1759	15665	14228	998
Sb	0.5 ug/L	2.9	10	5,6	0.71
As	0.5 ug/L	1.9	8.6	8.9	1.1
Be	0.5 ug/L	·· 0 .	0	0	0
Cd	0.25 ug/L	0.49	4.5	3.0	0.43
Cr	0.5 ug/L	15	36	28	3.1
Cr(VI)	0.3-1 mg/L		0	0	0 · · ·
Cu	0.5 ug/L	22.6	143	136	14
Fe	25 ug/L	1843	18799	11857	3635
Hg	0.2 ug/L	0.00	0	. 0	0
Ni	l ug/L	· 7.6	36	.24	3.6
Pb	0.5 ug/L	13	188	92	16
Se	l ug/L	0	0	0	0
Ag	0.25 ug/L	0.45	0.50	0	0
Tl	l ug/L	0	0	0	0
Zn	1 ug/L	151	1065	741	114

 Table 6.6
 Load Calculations (pounds) for each Storm Event at Los Cerritos Channel.

		11/8/2002 Los Cerritos	12/12/2002 Los Cerritos	2/12/2003 Los Cerritos	2/25/2003 Los Cerritos
Analyte	ML'	Channel	Channel	Channel	Channel
Dissolved Metals					_
Al	25 ug/L	352	102	151	29
Sb	0.5 ug/L	2.3	3.3	3.3	0.65
As .	0.5 ug/L	1.8	2.5	4.4	1.0
Be	0.5 ug/L	0	. 0	0	0
Cd	0.25 ug/L	0.30	· 0	0	0
Cr	0.5 ug/L	2.7	2.2	3.3	0.78
Cu	0.5 ug/L	16	13	15	4.0
Fe	25 ug/L	. 411	· 149	154	51
Hg	0.2 ug/L	0	0	0	0
Ni	l ug/L	5.9	4.1	3.9	1.1
Pb	0.5 ug/L	6.4	,2.2	2.3	0.69
Se	l ug/L	0	0	. 0 -	0
Ag	0.25 ug/L	0	0	0	0
TI	l ug/L	0	0	0.	, 0
Zn	1 ug/L	134	94	104	45
Chlorinated Pesticides					
4,4'-DDD	• 0.05 ug/L	0	0	0	0
4,4'-DDE	0.05 ug/L	0	0	0	· 0
4,4'-DDT	0.01 ug/L	0	0	0	0
Aldrin	0.005 ug/L	Ò	0	. 0	0
alpha-BHC	0.01 ug/L	0 ·	0	• 0	0
alpha-Chlordane	0.1 ug/L	0	0	0	· 0
alpha-Endosulfan	0.1 ug/L	. 0	0	0	0
beta-BHC	0.005 ug/L	0	0	0	0
beta-Endosulfan	0.01 ug/L	· 0	0	0	0
delta-BHC	0.005 ug/L	0	0	0	. 0
Endosulfan Sulfate	0.05 ug/L	0	0	0	· • 0
Endrin	0.01 ug/L	Ö	0	0	0 .
Endrin Aldehyde	0.01 ug/L	0	0	0	· 0
Dieldrin	0.01 ug/L	0.013	0	0	0
gamma-BHC	0.02 ug/L	0	0.19	· 0	0
gamma-Chlordane	0.01 ug/L	· 0	0 .	0	0
Heptachlor	0.01 ug/L	· 0	0	. 0	0
Heptachlor Epoxide	0.01 ug/L	0	0	0	0
Toxaphene	0.5 ug/L	0	0	0	0
Aroclors		<u> </u>			
Aroclor 1016	0.5 ug/L	0	0	0	• 0
Aroclor 1221	0.5 ug/L	0	0	0	0
Aroclor 1232	0.5∙ug/L	0	0	0	. 0
Araclar 12/2	Δ 5 μα/Ι	0	0	٥	0
Araolog 1242	0.5 ug/L .		0	<u>,</u>	, v
Aroclor 1248	0.5 ug/L	0	0	0	0
Araolor 1254	0.5 ug/L	0	0	0	
AIOCIOF 1200	0.5 ug/L	0	0	, υ 	0
	0.3 ug/L		U	U	U
· · · · · · · ·				•	
		78			
		70			

Fable 6.6	Load	Calculations	(pounds)	for	each	Storm	Event	at	Los	Cerritos	Channel:
	(conti	nued)	-								

Analyte	ML ¹	11/8/2002 Los Cerritos Channel	12/12/2002 Los Cerritos Channel	2/12/2003 Los Cerritos Channel	2/25/2003 Los Cerritos Channel
Organophosphates					
Atrazine	l ug/L	· 0	Q	0	0
Chlorpyrifos	0.05 ug/L	0.21	0	0	0
Cyanazine	l ug/L	0	0	` 0	0
Diazinon	0.01 ug/L	0.23	0.39	0.0055	0.093
Malathion	1 ug/L	0	0	0	0
Prometryn	· 1 ug/L	0	0	0	0
Simazine	1 ug/L	0	42	~ 0	1.7
Chorinated Herbicides		•	· · ·	•	
2,4,5-TP (Silvex)	0.05 ug/L	0	0	0	0
2,4-D	l ug/L	0	0	0.	0
Glyphosate	5 ug/L	4.4	0	0	0

Table 6.6Load Calculations (pounds) for each Storm Event at Los Cerritos Channel.
(continued)

1. ML = Minimum Level as defined in the State Implementation Plan. Notes:

A "0" indicates that an analysis was performed but the analyte was not detected. A blank cell indicates that the analysis was not performed.

		2/12/2003	2/25/2003	3/16/2003
Analyte	ML ¹	Dominguez	Dominguez	Dominguez
Conventionals				
BOD	4 mg/L	0	0	253
COD	4 mg/L -	22826	2005	1530
TOC	1 mg/L	2198	306	580
Hardness	1 mg/L	13808	739	918
Alkalinity	5 mg/L	12963	950	1266
Cyanide	5 ug/L	0	0	· 0
Chloride	1 mg/L	7327	179	580
Fluoride	0.1 mg/L	62	0	6.3
TKN	0.1 mg/L	592	39	63
NH3-N	0.1 mg/L	310	15	21
NO2-N (Nitrite)	0.1 mg/L	56	0	0
NO3-N (Nitrate)	0.1 mg/L	282	16	20
P (Total)	0.05 mg/L	161	18	20
Ortho-P (Dissolved)	0.01 mg/L	85	13	14
MBAS (Surfactants)	0.02 mg/L	20	1.6	2.7
MTBE	0.05 ug/L	0	0	0
Total Phenols	0.01 mg/L	0	· 0 ·	0
Oil & Grease	5 mg/L	0	0	· · 0
TRPH	5 mg/L	0	0	0
TSS	1 mg/L	22544	2110	2005
TDS	1 mg/L	39452	2110	3904
Total Metals				
Al	25 ug/L	845	79	106
Sb	0.5 ug/L	0.39	0.034	0.058
As	0.5 ug/L	0.73	0.090	0.095
Be	0.5 ug/L	0	0	· · 0
°Cd	0.25 ug/L	0.13	0	0
Cr	0.5 ug/L	1.6	0.18	0.17
Cr(VI)	0.3-1 mg/L	0	0	0
Cu	0.5 ug/L	5.6	0.58	0.58
Fe	25 ug/L	733	100	90
Hg	0.2 ug/L	0	0	0
Ni	1 ug/L	1.8	.0.16	0.18
Pb	0.5 ug/L	5.4	0.63	0.53
Se	l ug/L	0	0	0
Ag	0.25 ug/L	0	0	0
TI	l ug/L	0.	0	0
Zn	1 ug/L	39.	3.2	3.1

 Table 6.7
 Load Calculations (pounds) for each Storm Event at the Dominguez Pump Station.

80 .

		2/12/2003	2/25/2003	3/16/2003
Analyte	\mathbf{ML}^{1}	Dominguez	Dominguez	Dominguez
Dissolved Metals		8		,
Al	25 ug/L	10 .	1.7	7.9
Sb	0.5 ug/L	0.19	0	0.032
As	0.5 ug/L	0.42	0.069	0.095
Be	0.5 ug/L	0	0	· 0
Cd	0.25 ug/L	0	0	0 [°]
Cr	0.5 mg/L	0.22	0.030	0.044
Cu '	0.5 ug/L	1.6	0.050	0.30
Fe	25 ug/L	1.0	5.24	95
Ησ	0.2 ug/L	0	0	0
Ni	1 ug/L	0.62	0 0	0.090
Ph	0.5 µg/L	0.32	0.052	0.095
Se	1 ng/I	0	0	0
Ag	0.25 ug/L	Õ	ů ·	Û.
TI	1 ng/L	0	Õ	0
Zn	1 ug/L	10	2.4	2.1
Chlorinated Pesticides	<u> </u>	*** <u></u>		
4 4'-DDD	0.05 µg/I	0	0	0
4 4'-DDE	0.05 ug/L	ů O	Û .	0
4 4'-DDT		Û	ů	0
Aldrin	0.01 ug/L	0	. 0	0
alpha BHC	0.005 ug/L	0, .	0	0
alpha-Chlordane		0	0	0
alpha-Endosulfon	0.1 ug/L	< 0	0	0
beta-BHC	0.1 ug/L	0	0	· 0
beta-Endosulfan	0.005 ug/L	0 0	. 0	0
delta-BHC	0.01 ug/L	0	0	0
Endosulfan Sulfate	0.05 ug/L	. 0	0	0
Endrin	0.01 ug/L	0	Ô	0
Endrin Aldehyde	0.01 ug/L	ů ·	0	ů 0
Dieldrin	0.01 ug/L	ů,	0	0
gamma-BHC	0.02 ug/L^3	0 **	Ő	Ŭ,
gamma-Chlordane	0.01 ug/L	0	0	0
Heptachlor	0.01 ug/L	0	0	0
Heptachlor Epoxide	0.01 ug/L	0	0	0
Toxaphene	0.5 ug/L	· 0	0	0
Aroclors			· .	
Aroclor 1016	0.5 ug/L	0 '	0	0
Aroclor 1221	0.5 ug/L	0	0	0
Aroclor 1232	0.5 ug/L	0	0	0
Aroclor 1242	0.5 ug/L	0	0	0
Aroclor 1248	0.5 ug/L	0	0	0
Aroclor 1254	0.5 ug/L	0	0	0
Aroclor 1260	0.5 ug/L	0	0	0
Total PCB's	0.5 ug/L	0	0	0

Table 6.7Load Calculations (pounds) for each Storm Event at the Dominguez Pump Station.
(continued)

Table 6.7Load Calculations (pounds) for each Storm Event at the Dominguez Pump Station.
(continued)

Analyte	ML ¹	2/12/2003 Dominguez	2/25/2003 Dominguez	3/16/2003 Dominguez
Organophosphates		-		
Atrazine	l ug/L	0	0	0
Chlorpyrifos	0.05 ug/L	0	0	0
Cyanazine	l ug/L	0	0	0
Diazinon	0.01 ug/L	0.27	0.0053	0.0012
Malathion	1 ug/L	0	, 0 ,	0
Prometryn	l ug/L	0	0	0
Simazine	l ug/L	0	0.079	0.095
Chorinated Herbicides			· · ·	
2,4,5-TP (Silvex)	0.05 ug/L	· 0	0	0
2,4-D	1 ug/L	0	0	0
Glyphosate	0.05 ug/L	0	0 .	0

1. ML = Minimum Level as defined in the State Implementation Plan.

Notes:

A "0" indicates that an analysis was performed but the analyte was not detected. A blank cell indicates that the analysis was not performed.

12-03

7.0 TOXICITY RESULTS

Toxicity tests were conducted on subsamples of the composites collected for chemical analysis. Wet weather samples were collected from four storm events: November 8-9, 2002, December 16-17, 2002, February 12-13, 2003 and February 25, 2003. Composite samples were collected during separate storm events and were tested with either two or three species. The water flea (freshwater crustacean), mysid (marine crustacean), and sea urchin (marine echinoderm) were used on the first storm sample, and only the water flea and sea urchin were used on the final three storm samples.

Dry weather sampling occurred on September 5, 2002 and May 20, 2003.

7.1 Wet Weather Discharge

The following sections describe the results of toxicity testing at each of the mass emission station. Toxicity tests were conducted on water from all four storm events at the Belmont Pump Station, Bouton Creek and the Los Cerritos Channel. A single sample was obtained from the Dominguez Gap Pump Station during the third storm.

7.1.1 Belmont Pump

The first sample from the Belmont Pump Station was collected on November 8, 2002. This sample caused toxic effects to all three test species (Table 7.1), with the fertilization test being the most sensitive, showing 8 TUc (Figure 7.1). Both the water flea survival and reproduction endpoints showed the presence of toxicity (4 TUc) with the survival endpoint slightly more sensitive (Figure 7.1). Both mysid survival and growth, were adversely affected by the sample.

The second Belmont Pump Station sample was collected on December 16 2002 and produced toxic responses in water fleas but not in sea urchins.. The water flea test was the most sensitive indicator of toxicity with a NOEC of 50% sample (2 TUc) and 73% sample calculated to cause a 50% reduction in survival (Table 7.1). Significant reductions in water flea survival and reproduction were found only at the 100% concentration. Water flea survival showed a greater degree of response than did the reproduction endpoint (Figure 7.1).

The third Belmont Pump Station sample was collected on February 12, 2003 and produced no toxic responses in either water flea survival/reproduction or sea urchin fertilization (Table 7.1 and Figure 7.1).

The fourth Belmont Pump Station sample was collected on February 25, 2003. This sample produced no toxic responses in either water flea survival/reproduction or sea urchin fertilization (Table 7.1 and Figure 7.1).

7.1.2 Bouton Creek

The first sample from the Bouton Creek station was collected on November 9, 2001. Toxicity to this sample was detected by sea urchins but not by water fleas or mysids (Table 7.2). Sea urchin egg fertilization was by far the most sensitive test method, with 16 TUc (Figure 7.2).

The second Bouton Creek sample was collected on December 17, 2002 and caused a toxic response (4 TUc) to sea urchins but no toxicity to water fleas (Table 7.2 and Figure 7.2).

The third Bouton Creek sample was collected on February 13, 2003 and produced no toxic responses in either water flea survival/reproduction or sea urchin fertilization (Table 7.2 and Figure 7.2).

The fourth Bouton Creek sample was collected on February 25, 2003 and produced no toxic response in water flea survival/reproduction but produced a marked reduction in sea urchin fertilization, with a NOEC of 3.125%, and 32 TUc (Table 7.2 and Figure 7.2).

7.1.3 Los Cerritos Channel

The first sample from the Los Cerritos Channel station was collected on November 9, 2002. This sample caused a toxic response in all three test species (Table 7.3 and Figure 7.3). The sea urchin was the most sensitive of the three species, with a NOEC of 6.25% (16 TUc) and an EC50 of 29.5%. Both endpoints (survival and reproduction) in the water flea bioassay showed the presence of toxicity (4 TUc) as did both survival and growth of the mysid.

The second Los Cerritos Channel sample was collected on December 16, 2002 and elicited a toxic response from the water flea survival and reproduction test (NOEC = 50%, 2 TUc) but no toxicity was demonstrated in the sea urchin fertilization test (NOEC = >50%, Table 7.3).

The third Los Cerritos Channel sample was collected on February 12, 2003. A toxic response was seen in the sea urchin fertilization test (NOEC = 25%, 4 TUc), but no toxicity was produced to either survival or reproduction in the water flea bioassay (Table 7.3).

The fourth storm sample was collected from Los Cerritos Channel on February 25, 2003, and produced no toxic responses in either water flea survival/reproduction or sea urchin fertilization (Table 7.3 and Figure 7.3).

7.1.4 Dominguez Gap

The sampling station at Dominguez Gap was triggered only during the third storm, and the sample was collected on February 12, 2003. Bioassay testing produced no toxic responses in either water flea survival/reproduction or sea urchin fertilization (Table 7.4 and Figure 7.4).

7.2 Toxicity Identification Evaluations (TIEs) of Stormwater

The trigger for performing a TIE was modified prior to the 2002/2003 wet season. A TIE was initiated when a LC50 of \leq 50% (equivalent to \geq 2 acute TU) was obtained for the water flea or mysid test, or an EC50 of \leq 50% (\geq 2 acute TU) was obtained for the sea urchin fertilization test. This TIE trigger was exceeded 4 times among the tests conducted on four wet weather samples (Table 7.5). Of the three species, only tests conducted with water fleas and urchins exceeded the TIE trigger.

During the monitoring period, TIEs were triggered only for the first wet weather sampling event. TIEs were initiated on samples from Belmont Pump and Los Cerritos Channel for the water flea test, and on the Bouton Creek and Los Cerritos Channel samples for the sea urchin test. A reduction in toxicity relative to the initial test result was obtained for all four TIEs, resulting in a baseline toxicity of less than 2 TU, which prompted termination of these TIEs. However, despite the weak TIE signals available, some evidence of toxicant identity was obtained by inspection of the raw TIE data sets along with their statistical evaluation.

7.2.1 Belmont Pump Station

The results of the TIE conducted on the November 8 sample from the Belmont pump station are summarized in Figure 7.5. Extraction of the sample using a C18 column was highly effective in reducing toxicity in the water flea test. PBO treatment also eliminated the toxicity. Increased toxicity was present in the blank for the STS treatment. The increase in toxicity of the Belmont pump sample seen after this treatment (Figure 7.5) is an artifact of this blank toxicity and confounds the interpretation of this portion of the results. The effectiveness of the C18 treatment and elimination of toxicity obtained with the PBO treatment suggest that a nonpolar organic, probably an organophosphate (OP) pesticide, is a likely toxicant of concern in this sample.

7.2.2 Bouton Creek Station

One TIE was conducted on stormwater from Bouton Creek. The November 9th sample was tested using the sea urchin fertilization test. The TIE results obtained for this sample showed that addition of EDTA eliminated the toxicity of the sample. Addition of STS, centrifugation, and extraction using a C18 column did not have a substantial impact on the toxicity of this sample. This suggests that divalent cationic metals were likely toxicants in this sample.

7.2.3 Los Cerritos Channel Station

A TIE was conducted on stormwater collected on November 9th from the Los Cerritos Channel site. The sea urchin fertilization test test was used for this TIE. The results obtained for this sample showed addition of EDTA and STS eliminated the toxicity of the sample. Extraction using a C18 column reduced toxicity by about 20%. Centrifugation did not have a substantial impact on the toxicity of this sample. These results suggest that divalent metals were the most likely toxicants of concern in this sample.

7.2.4 Dominguez Gap Pump Station

No TIEs were conducted on samples from the Dominguez Gap Pump Station during this monitoring period.

7.3 Dry Weather Discharge

Toxicity tests were conducted on samples from two dry weather sampling events, on September 5, 2002 and May 20, 2003. The Bouton Creek sample collected in September 2002 contained 8.7 g/kg salinity, which was more than twice the LC50 for the fresh water organism (water flea), and this sample was not tested with the water flea. In the May 2003 sampling, the salinity of the Bouton Creek sample was 5 g/kg, approximately 1.6X the published LC50. The water flea was tested with the less saline September sample, but the results were interpreted with awareness of the probable contribution of salinity to observed toxicity at Bouton Creek.

7.3.1 Belmont Pump Station

In September 2002 the undiluted Belmont Pump sample did not produce measurably decreased survival in the water flea, but did produce decreased reproduction; the NOEC for reproduction was 50% (2 TUc). The Belmont Pump Station sample was not toxic to sea urchins (Table 7.6).

The May 2003 dry weather sample produced no toxic responses in either water flea survival/reproduction or sea urchin fertilization (Table 7.6 and Figure 7.6).

7.3.2 Bouton Creek

The September 2002 Bouton Creek sample was not tested with the water flea due to elevated sample salinity. Significant toxicity to sea urchins (NOEC = 12.5%) was demonstrated in the September sample.

In May 2003, the Bouton Creek dry weather sample produced toxicity to water flea survival (NOEC=50%) and reproduction (NOEC=25%). Bouton Creek sample also produced severe toxicity (NOEC=<3.1%) to sea urchins in May. Note that the toxicity to water fleas may have been exacerbated by salinity stress in this freshwater organism.

7.3.3 Los Cerritos Channel

Both of the Los Cerritos dry weather samples were toxic to both water fleas and sea urchins. The September 2002 sample produced NOECs of 50% and 25% in water flea survival and reproduction (TUc ranging from 2 to 4), and a NOEC of 6.25% (16 TUc) in sea urchin fertilization.

The May 2003 Los Cerritos Channel dry weather sample was more toxic to both species, showing NOECs of 25% and 12.5% in water flea survival and reproduction (4-8 TUc) and a NOEC of <3.1% (>32 TUc) in sea urchin fertilization.

7.4 Dry Weather Toxicity Identification Evaluations

A sea urchin TIE was initiated on the September 5 2002 dry weather sample from Los Cerritos station. Marginally sufficient baseline toxicity was present in the sample to complete the TIE. The toxicity of the Los Cerritos sample was slightly reduced by addition of EDTA (Figure 7.7). The remaining treatments did not alter the toxicity of the sample. The pattern of response of the sea urchin sperm to the TIE treatments is consistent with the presence of toxic concentrations of divalent trace metals.

Limited TIE treatments were also incorporated into the sea urchin bioassays of the dry weather samples from Belmont Pump, Bouton Creek and Los Cerritos Channel stations of 20 May 2003. Only the highest (50%) concentration of each sample was manipulated with the addition of EDTA and STS. In the Bouton Creek and Los Cerritos Channel samples EDTA reduced toxicity (increased fertilization success) by 79.9% and 62.1%, respectively. Treatment with STS did not substantially affect toxicity in either of the samples. As above, this response pattern is consistent with the presence of toxic concentrations of divalent trace metals. The Belmont Pump Station did not produce sufficient toxicity to warrant analysis of the TIE treatments.

Figure 7.1. Toxicity Dose Response Plots for Storm Water Samples Collected from Belmont Pump.

Figure 7.2. Toxicity Dose Response Plots for Storm Water Samples Collected from Bouton Creek.

Figure 7.3. Toxicity Dose Response Plots for Storm Water Samples Collected from Los Cerritos Channel.

Figure 7.7. Summary of Phase I TIE Analyses on Stormwater Samples from the Los Cerritos Channel Station.

		Tes			
Date	Test	NOEC ^a	LOEC	Median Response ^c	TUc ^d
11/8/02	Water Flea Survival	25	50	37.5	. 4
11/8/02	Water Flea Reproduction	25	50	38.7	4
11/8/02	Mysid Survival	≤50	100	ла	≥2
11/8/02	Mysid Growth	≤50	100	na	≥2
11/8/02	Sea Urchin Fertilization	12	25	40.5	8
12/17/02	Water Flea Survival	50	100	73.2	2
12/17/02	Water Flea Reproduction	50	100	82.3-	• 2
12/17/02	Sea Urchin Fertilization	>50	>50	>50	>2
2/12/03	Water Flea Survival	100	>100	>100	1
2/12/03	Water Flea Reproduction	100	>100	>100	1
2/12/03	Sea Urchin Fertilization	>50	>50	>50	>2
2/25/03	Water Flea Survival	100	>100	>100	1
2/25/03	Water Flea Reproduction	100	>100	>100	1
2/25/03	Sea Urchin Fertilization	50	>50	. >50	2

Table 7.1.Toxicity of Wet Weather Samples Collected from the City of Long Beach Belmont
Pump Station during the 2002/2003 Monitoring Season. Test results indicating
toxicity are shown in bold type. The mysid tests were conducted using 100% sample
only.

Table 7.2.Toxicity of Wet Weather Samples Collected from the City of Long Beach Bouton
Creek Station during the 2002/2003 Monitoring Season. Test results indicating
toxicity are shown in bold type. The mysid test was conducted using 100% sample only.

		Test	Test Response (% sample)			
Date	Test	NOEC ^a	LOEC	Median Response ^c	TUc	
11/9/02	Water Flea Survival	>100	>100	>100	>1.0	
11/9/02	Water Flea Reproduction	>100	>100	>100	>1.0	
11/9/02	Mysid Survival	100	100	na	>1.0	
11/9/02	Mysid Growth	100	100	na	>1.0	
11/9/02	Sea Urchin Fertilization	6	12	32.4	16	
12/17/02	Water Flea Survival	100	>100	>100	>1.0	
12/17/02	Water Flea Reproduction	100	>100	>100	>1.0	
12/17/02	Sea Urchin Fertilization	25	50	>50	4	
2/13/03	Water Flea Survival	100	>100	>100	1	
2/13/03	Water Flea Reproduction	50	100	>100	2	
2/13/03	Sea Urchin Fertilization	>50	>50	>50	>2	
2/25/03	Water Flea Survival	100	>100	>100	1	
2/25/03	Water Flea Reproduction	50	100	>100	2	
2/25/03	Sea Urchin Fertilization	<3	6	>50	33	

Fable 7.3.	Toxicity of Wet Weather Samples Collected from the City of Long Beach L	0S
	Cerritos Channel Station during the 2002/2003 Monitoring Season. Test resu	lts
	indicating toxicity are shown in bold type. The mysid test was conducted using 100	%
	sample only.	

	· .	Tes			
Date	Test	NOEC ^a	LOEC	Median Response ^c	TUc ^d
11/9/02	Water Flea Survival	25	50	37.5	4
11/9/02	Water Flea Reproduction	25	50	41.6	4
11/9/02	Mysid Survival	≤50	≤100	na	≥2
11/9/02	Mysid Growth	≤50	≤100	na	≥2 .
11/9/02	Sea Urchin Fertilization	6	12	29.5	16
12/16/02	Water Flea Survival	50	100	70.7	2
12/16/02	Water Flea Reproduction	50	100	80.5	2
12/16/02	Sea Urchin Fertilization	6	12	>50	16
2/12/03	Water Flea Survival	.100	>100	>100	1
2/12/03	Water Flea Reproduction	50	100	>100	2
2/12/03	Sea Urchin Fertilization	25	50	>50	4
2/25/03	Water Flea Survival	100	>100	>100	· 1
2/25/03	Water Flea Reproduction	- 50	100	>100	2
. 2/25/03	Sea Urchin Fertilization	'50	>50	>50	2

Table 7.4.Toxicity of Wet Weather Samples Collected from the City of Long Beach
Dominguez Gap Station during the 2002/2003 Monitoring Season. Test results
indicating toxicity are shown in bold type. The mysid test was conducted using 100%
sample only.

		Tes			
Date	Test	NOEC ^a	LOEC	Median Response ^c	TUc ^d
2/12/03	Water Flea Survival	100	>100	>100	1
2/12/03	Water Flea Reproduction	100	>100	>100	1
2/12/03	Sea Urchin Fertilization	>50	>50	>50	`>2

Table 7.5.Summary of TIE Activities. Acute Toxic Units for the initial (TU-I) and TIE baseline
(TU-B) tests are shown (96 hr exposure time for water flea), along with the TIE-related
action taken. TIEs were abandoned when the baseline TU value was less than 2.0.

		Water Flea		Mysid			Sea Urchin			
Date	Test	TU -I	TU- B	Action	TU- I	TU- B	Action	TU- I	TU- B	Action
Wet V	Veather Eve	ent:								
11/8/02	Belmont	2.7	1.8	abandon	na	na	na	na	na	na
11/9/02	Bouton Los	na	na	na	na	na	na	3.1	1.5	abandon
11/9/02	Cerritos	2.7	1.1	abandon	na	na	na	3.1	1.5	abandon
Dry Wea	ther Event:	. .		,						
9/5/02	Belmont	na	na	na	na	na	na	na	na	na
9/5/02	Bouton Los	na	na	na	na	na	na	na	na	na
9/5/02	Cerritos	1.5	1.5	abandon	na	na	na	na	na	na

na = not applicable; insufficient toxicity to trigger TIE

			Test F	Test Response (% sample)			
Station	Date	Test	NOEC ^a	NOEC ^a LOEC ^b Me Res		n TUc ^d se ^c	
Belmont	9/5/02	Water Flea Survival	100	>100	>100	. 1.	
Belmont	9/5/02	Water Flea Reproduction	50	100	>100	2	
Belmont	9/5/02	Sea Urchin Fertilization	50	>50	>50	2	
Belmont	5/20/03	Water Flea Survival	100	>100	>100	1	
Belmont	5/20/03	Water Flea Reproduction	100	>100	>100	1	
Belmont	5/20/03	Sea Urchin Fertilization	50	>50	>50	2	
Bouton	9/5/02	Water Flea Survival ^e	na	na	na	na	
Bouton	9/5/02	Water Flea Reproduction ^e	na	na	na	na	
Bouton.	9/5/02	Sea Urchin Fertilization	12	25	>50	8	
Bouton	5/20/03	Water Flea Survival ^e	50 [°]	100	48.4	2	
Bouton	5/20/03	Water Flea Reproduction ^e	25	50	33.3	4	
Bouton.	5/20/03	Sea Urchin Fertilization	<3	6	18	33	
Los Cerritos	9/5/02	Water Flea Survival	50	100	66	2	
Los Cerritos	9/5/02	Water Flea Reproduction	25	50	34.1	4	
Los Cerritos	9/5/02	Sea Urchin Fertilization	6	12	15	16	
Los Cerritos	5/20/03	Water Flea Survival	25	50	45.8	4	
Los Cerritos	5/20/03	Water Flea Reproduction	12	25	17.4	8 .	
Los Cerritos	5/20/03	Sea Urchin Fertilization	<3	6	27.1	33	

Table 7.6.	Toxicity of Dry Weather Samples from the City of Long Beach.	Test results
	indicating toxicity are shown in bold type.	:

THIS PAGE INTENTIONALLY LEFT BLANK

8.0 ALAMITOS BAY PILOT RECEIVING WATER STUDY RESULTS

8.1 Vertical and Horizontal Extent of the Stormwater Plume

Runoff during the December 16, 2002 storm resulted in a surface plume that extended throughout Alamitos Bay (Figure 8.1). Rainfall measures at the Long Beach mass emission sites ranged from 1.21 to 1.26 inches over a period of roughly four to five hours. In the upper elevations of the Los Angeles Basin, rainfall totaled 3.5 inches over a 24-hour period and was the second highest 24-hour rainfall recorded since records were first maintained in the late 19th century.

Based upon the plume characteristics, the Los Cerritos Channel was the major source of stormwater entering Alamitos Bay. The surface salinity increased from essentially fresh levels in the Los Cerritos Channel on a steady, continuous basis around Naples Island to nearly open coast levels at the harbor entrance. Measured surface salinity within Alamitos Bay ranged from 1 to 28 ppt. The lower part of the range was found within the lower reaches of the Los Cerritos Channel near the Pacific Coast Highway Bridge. The higher surface salinities occurred near the Bay entrance. Although salinity was relatively low within the upper reaches of Marine Stadium, the plume from this portion of the watershed was minor in comparison to the plume emanating from the Los Cerritos Channel.

The fresher water of stormwater plume generally formed a surface plume that was typically three to five feet in depth (Figures 8.3a to 8.3h). The layer was thickest and most distinct in Cerritos Creek (Figure 8.3c). The structure of the plume became far less defined near the harbor entrance (Figure 8.3f).

The characteristics of the stormwater plume in western Alamitos Bay differed from those measured elsewhere in the Bay. The stormwater plume in this region tended to be only two to three feet in depth. The plume was most distinct near the Second Street Bridge.

In all cases, the stormwater plume tended to be cooler and more turbid than the underlying marine waters. Temperatures in the plume were typically one degree centigrade lower than the deeper marine waters. Turbidity in the surface plume ranged from 45 to 80 NTU. Marine water under the plume was relatively clear with turbidity measurements typically in the range of 2 to 5 NTU.

8.2 Chemical Characterization

Four sites within the plume were selected on the basis of salinity. The location of these sites is shown in Figure 8.2. After mapping the plume, sampling was initiated at RW1 where salinity within the plume was 24.7 ppt. Three additional sites were sampled with recorded salinities of 16.5 ppt (RW2), 10.9 ppt (RW3) and 8.7 ppt (RW4).

Total suspended solids increased from 10 to 28 mg/L as the surface salinity decreased from 24.7 to 8.7 ppt. Similarly, total copper, nickel, lead and zinc concentrations also increased with decreasing salinity. Concentrations generally doubled over the salinity gradient. Total cadmium was relatively constant with values ranging from 0.09 to $0.12 \mu g/L$.

Strong spatial trends were not evident in the distribution of dissolved metals. Concentrations of dissolved cadmium, copper, lead and zinc were all highest at RW1, the station closest to the entrance to the Bay and with the least stormwater influence. The lowest concentrations of dissolved cadmium, copper, lead and
zinc occurred at RW2 where the plume was roughly 50% seawater. Salinity at this site was 16.5 ppt. Overall, however, concentrations of dissolved metals differed by no more than 32 percent at RW2, RW3 and RW4; the three stations with the greatest stormwater influence.

Organophosphate (OP) pesticides were mostly not detected. Simazine, an herbicide, was the only OP pesticide detected in the plume. Concentrations were similar at all locations with levels ranging from 1.1 to $1.3 \mu g/L$.

8.3 Toxicological Characterization

Water samples from the four plume sites were tested for toxicity using the sea urchin fertilization test and showed negligible toxicity (Table 8.2, Figure 8.3). Although all EC50s were >50%, the NOECs ranged from 12.5 to 25% in the three sites most influenced by stormwater runoff. Despite the fact the statistical tests indicated significant effects in these three cases, the magnitude of the response was minor (Figure 8.3). The maximum response was observed in tests conducted in water from RW4 where fertilization was 94% of controls in the maximum concentration.

Figure 8.1

Map of Surface Salinity in Alamitos Bay with Locations of Eight Water Quality Profiling Sites, 12/16/2003.

Figure 8.2

Map of Surface Salinity in Alamitos Bay with Water Quality Sampling Locations, 12/16/2003.

Figure 8.3(a-d)

CTD Casts taken during Alamitos Bay Receiving Water Study

Figure 8.3(e-h)

CTD Casts taken during Alamitos Bay Receiving Water Study. (Locations of each cast are shown on Figure 8.1)

Alamitos Bay (12/16/2002)

Figure 8.4Toxicity Dose Response Plots for Sea Urchin Fertilization Tests using Stormwater
Plume Samples collected from Alamitos Bay.

	Receiving Water Monitoring Sites								
ANALYTE	RW1	RW2	RW3	RW4					
Conventionals									
pH	7.8	7.7	7.7	7.7					
Specific Conductance (EC – µmhos/cm)	35500	24900	17400	14200					
Salinity (ppt)	24.7	16.5	10.9	8.7					
Total Suspended Solids	10	19	25	28					
Ammonia as N (mg/L)	0.24	0.34	0.36	0.34					
Total Metals (µg/L)									
Cd	0.09	0.10	0.12	0.11					
Cu	4.5	5.6	7.5	7.9					
Ni	1.2	1.8	2.5	2.8					
Pb	1.7	2.3	3.8	3.5					
Zn	·* 17	21	29	38					
Dissolved Metals (µg/L)									
Cd	0.06	0.03	0.04	0.04					
Cu ,	2.0	1.1	1.2	1.3					
Ni	0.91	1.1	0.94	1.3					
Pb	0.74	0.24	0.34	0.40					
Zn	12	8.5	9.1	8.7					
Organophosphate Pesticides (µg/L)									
Chlorpyrifos (Dursban)	0.05U	0.05U	0.05U	0.05U					
Diazinon	0.01U	0.01U	0.01U	0.01U					
Atrazine	2U	2U	2U	2U					
Cyanazine	2U	2U	2U	2U					
Malathion	1U	1 U	1U	1 U					
Prometryn	2U	2U	2 U	2U					
Simazine	1.1	1.3	1.3	1.2					

Table 8.1Summary of Receiving Water Quality in Stormwater Plume Samples from Alamitos
Bay.

		R	eceiving Water N	eiving Water Monitoring Sites					
Test Species	Endpoint	RW1	RW2	RW3	RW4				
S. purpuratus-	· ·								
Fertilization	EC50	>50%	>50%	>50%	>50%				
	NOEC	>50%	12.5%	25%	25%				

Table 8.2Toxicity of Receiving Water Samples Collected from Alamitos Bay during the
2002/2003 Storm Season.

9.0 DISCUSSION

9.1 Wet Season Water Quality

Numerical standards are not available for stormwater discharges. Water quality criteria or objectives, however, can provide valuable reference points for assessing the relative importance of various stormwater contaminants. Ultimately, specific beneficial uses of the receiving water body should be considered when selecting the appropriate benchmarks. Existing, potential and intermittent beneficial uses are provided in Table 9.1 for the receiving waters associated with each discharge point.

Tables 9.2 through 9.5 provide a comparison of Event Mean Concentrations (EMCs) for each measured constituent with various water quality criteria. These benchmarks are intended to serve as a tool for interpreting the stormwater quality data and assuring beneficial uses are not impacted. Exceedances of these receiving water quality benchmarks do not necessarily indicate impairment. Other factors such as dilution, duration and transformation in the receiving waters must also be considered.

For comparative purposes, an EMC was considered to be an exceedance if the value was higher than any of the reference values. In using these benchmarks, it is important that the source of the specific criterion is considered. For instance, metals concentrations derived from California Toxics Rule freshwater criteria for protection of aquatic life are based upon dissolved concentrations and are often a function of hardness. Values listed are based upon a default hardness of 50 mg/L. Evaluation of possible exceedances are based upon the hardness EMC for that site and event. Saltwater objectives listed for metals under the CTR are also based upon dissolved concentrations while those listed under the California Ocean Plan are based upon total recoverable measurements. Although Ocean Plan numbers are used for comparative purposes, the marine and estuarine receiving waters in the vicinity of Long Beach would only be subject the CTR saltwater values since Alamitos Bay and the coastal waters of Long Beach are considered enclosed bays and estuaries. Values provided for the Basin Plan are primarily based upon drinking water standards.

9.1.1 Conventionals and Bacteria

Between 50 and 67 percent of the stormwater samples had measured pH values that were below the lower Basin Plan limits of 6.5. In each case pH concentrations were in the range of 6.2 to 6.5. The pH of stormwater is often slightly acidic since rainwater normally tends to be slightly acidic. This is mostly due to dissolved carbon dioxide that the rain "scrubs" from the atmosphere. Other gases such as sulfur dioxide (SO2) and nitrogen oxides (NOx) can cause further acidification of the rainfall. In Southern California, the National Atmospheric Deposition Program (NADP 2003) indicates that pH associated with rainfall is typically 5.2.

One hundred percent of the samples had TSS concentrations that exceeded the Ocean Plan limit of 3 mg/L. Appropriate benchmarks are not available under the other guideline documents.

As previously noted in this and other stormwater programs, bacteria are commonly found at very high concentrations in stormwater. Total and fecal coliform concentrations exceeded public health criteria under AB411 in 100 percent of the samples. Enterococcus concentrations exceeded AB411 criteria in most, but not all, cases. Enterococcus concentrations measured in runoff from three of the four sites during the event on February 12, 2003 were below AB411 criteria.

9.1.2 Trace Metals

Reference values were exceeded at least once for a total of five different total recoverable metals. These included copper, lead, zinc, aluminum, and antimony. Concentrations of total recoverable copper, lead and zinc in runoff from the mass emission sites commonly exceeded Ocean Plan criteria. These criteria were exceeded for all runoff samples from Bouton Creek, the Belmont Pump Station, and the Los Cerritos Channel. Stormwater runoff from the Dominguez Gap Pump Station site had far fewer exceedances with total recoverable zinc and copper criteria being exceeded in only one-third of the events. The Ocean Plan lead criterion of 8 µg/L was exceeded in runoff from all three events at the Dominguez Pump Station.

Two trace metals measured in stormwater were found to exceed primary Maximum Contaminant Level³ (MCL) for drinking water cited in the Basin Plan. The criterion of 1000 μ g/L of total recoverable aluminum was exceeded in all cases. The concentration of antimony exceeded a primary MCL for drinking water on one occasion in runoff from the Los Cerritos Channel.

Dissolved copper, lead and zinc commonly exceeded the reference values. Concentrations of dissolved copper exceeded both the freshwater and saltwater California Toxics Rule (CTR) criteria at all sites during all storm events. Dissolved lead and zinc exceeded the CTR criteria during all storm events at Bouton Creek, the Belmont Pump Station and Los Cerritos Channel. Lead and zinc criteria were exceeded in two out of three events at the Dominguez Gap Pump Station.

9.1.3 Chlorinated Pesticides and Organophosphate Pesticides

Very few organic compounds exceeded the reference criteria in runoff from the four mass emission sites. Concentrations of dieldrin exceeded the saltwater CTR criterion in one sample from the Belmont Pump site and another from the Los Cerritos Channel. In both cases, the reported value was less than twice the ML of 0.01 μ g/L. Simazine, an organophosphorus herbicide, exceeded the Basin Plan MCL in one sample from the Los Cerritos Channel.

Although the CTR, Basin Plan and Ocean Plans all lack criteria for both diazinon, this pesticide was ubiquitous in the stormwater samples. Another organophosphorous compound of concern, chlorpyrifos, was detected in 25 percent of the stormwater samples from the Belmont Pump Station and Los Cerritos Creek.

9.2 Dry Season Water Quality

In previous years, dry season water quality did not vary greatly between sites or sampling dates. In general, the concentrations of suspended particulates and total recoverable metal concentrations are low in dry weather runoff. Trace metals are predominantly in the dissolved form. Hardness is also consistently high which tends to mitigate the effects of the dissolved metals. Concentrations of bacteria are comparable to levels in winter, stormwater runoff. Pesticides and semivolatiles were largely undetected.

Although the previous observations held true at most sites during the past season, sampling conducted at Bouton Creek in May 2003 resulted in elevated levels of TSS, turbidity, total recoverable metals (aluminum, copper, iron, lead, selenium, silver and zinc) and dissolved selenium. For many of these

³ The Maximum Contaminant Level (MCL) is a drinking water standard. The MCL is the concentration that is not expected to produce adverse health effects after a lifetime of exposure, based upon toxicity data and risk assessment principles.

constituents, these were among the highest dry weather concentrations encountered at this site since the start of the NPDES monitoring program. The results of this survey suggest that there was an upstream source of soils. The potential source of these sediments has not yet been investigated since the results of the chemical analyses were only recently received and evaluated.

Previous dry weather monitoring within both Bouton Creek and the Los Cerritos Channel have resulted in occasional elevations of pH. The program now calls for immediate upstream investigations to be conducted whenever pH levels are found to exceed 9.0. This year none of the field measurements indicated high pH levels in the receiving water. Despite moderate to high levels of alkalinity (130 to 420 mg/L), laboratory measurements taken within 48 hours of sampling resulted in several cases where pH levels exceeded 9.0.

Sampling and measurement differences may have contributed to some of the differences but the major factor is likely to be the delay associated with measuring pH in the laboratory. Field measurements were taken directly from the water body whereas laboratory measurements were taken in subsamples of the composite water.

9.3 Temporal Trends of Selected Metals and Organic Compounds

Temporal trends were examined for selected trace metals and organic compounds that are often high in storm drain discharges or suspected to be primary sources of toxicity (Figures 9.1 through 9.12). Time series are presented for five trace metals including cadmium, copper, nickel, lead and zinc. Time series are also provided for two important organophosphate pesticides, diazinon and chlorpyrifos, that have been implicated as major sources of toxicity. The figures include all wet and dry weather data for the past three years at each monitoring site. Periods of dry weather are indicated by the shaded areas. Due to the typically large differences between total and dissolved lead concentrations, a separate graphic is included to detail changes in dissolved lead over time.

Although data are not yet sufficient to make definitive statements supported by statistical test, several general trends are emerging. Dissolved concentrations of cadmium, copper, nickel and lead appear to be comparable during both wet and dry weather periods. Unlike these four metals, dissolved zinc concentrations are consistently higher during storm events. Concentrations of total copper, lead and zinc are distinctly higher in association with storm flows. Seasonal differences in total cadmium and nickel are less evident. Similarly, no distinct seasonal trends were noted for either chlorpyrifos of diazinon. In the case of the latter two organophosphate compounds, earlier detection limits were not suitable to provide measurements of these analytes at the levels typically encountered in the discharges.

Characteristics of stormwater discharges from the Dominguez Gap Pump Station also are consistent with earlier observations at this site. Prior to this year, only three storms were sampled at this site. During the 2001/2002 monitoring year rainfall was not sufficient to cause the pumps to be activated at this site. This year another three storm events were monitored. Discharges from this site tend to have lower concentrations of total metals than the other mass emission sites.

Given adequate rainfall in the 2003/2004 monitoring year, hypotheses testing will be conducted to determine if seasonal trends observed for these key contaminants are statistically significant. The seasonal trends in concentrations and partitioning between dissolved and particulate forms will be important in developing control strategies for these constituents.

9.4 Stormwater Toxicity

A total of thirteen wet weather samples were analyzed for toxicity during the monitoring period. All thirteen samples were tested with water fleas and sea urchins (26 total bioassays), and a subset of three of those samples was tested with mysids. There was, then, a total of 29 bioassays performed on thirteen water samples.

Each storm produced similar toxicity results in samples from the Belmont Pump station and the Los Cerritos Channel station, in that the same group of species showed significant toxic efects. Toxicity results were quite different in samples from the Bouton Creek station, with different storms producing toxicity only to sea urchins.

The sea urchin test detected toxicity in six of thirteen storm samples, while the water flea test showed significant toxicity in four of thirteen samples. Mysids showed toxic results in two of three samples tested.

The toxicity of the wet weather samples analyzed during the monitoring period was generally less than that measured during the previous monitoring period (Figure 9.13). One of the Bouton Creek samples contained a high level of toxicity to sea urchins (32 TUc) matching that of Bouton Creek samples tested previously.

9.4.1 Dry Weather Toxicity

The sample of dry weather discharge collected from Belmont Pump station in September 2002 was not toxic to sea urchins, but was toxic to water flea reproduction (but not survival). The magnitude of reproductive toxicity was the same or slightly less than the stormwater samples analyzed during 2002-2003 (Figure 9.13). The Belmont Pump dry weather sample collected in May 2003 produced no toxicity to either water fleas or sea urchins.

The dry weather samples collected from Bouton Creek were both characterized by elevated salinity. The water flea test was not performed on the September 2002 sample. The slightly less saline sample collected in May 2003 was tested, however, and showed both lethal and reproductive toxicity. Some portion of this toxicity may have been due to salinity stress on this freshwater test organism. Both the September 2002 and May 2003 dry weather samples from Bouton Creek were toxic to sea urchins, with TUc values of 8 and 32, respectively. The magnitude of the toxicity to sea urchins was comparable to that seen in three of the four storm samples tested in the 2002-2003 monitoring period.

Both dry weather samples from the Los Cerritos Channel were toxic to both test species. The September 2002 dry weather sample produced 2-4 TUc of toxicity to water fleas and 16 TUc of toxicity to sea urchins. The May 2003 dry weather sample showed about twice as much toxicity to each species, producing 4-8 TUc to water fleas and 32 TUc to sea urchins. The magnitude of dry weather toxicity in September 2002 was comparable to that seen in wet weather samples analyzed during 2002-2003, but toxicity in the May 2003 dry weather samples was greater than that seen in wet weather samples.

Data from the previous (2001-2002) monitoring period suggested that dry weather samples collected in May 2002 were generally less toxic than wet weather samples collected during the winter of 2001-2002, and that this pattern was consistent with dry weather results from the 2000-2001 monitoring period Threse toxicity results were cited to support the indication that "there are significant differences in the

composition of stormwater and dry weather discharge from the City of Long Beach" (Kinnetic Laboratories Inc. and Southern California Coastal Water Research Project July 2002)

Data from the 2002/2003 monitoring period indicate that the magnitude of dry weather toxicity was somewhat less than wet weather toxicity at the Belmont Pump station. At the Bouton Creek station, dry weather and wet weather toxicities were of similar magnitude, while at the Los Cerritos Channel station dry weather discharge showed equal or greater toxicity to stormwater, with particularly elevated toxicity to sea urchins in the May 2003 collection. Current toxicity data, then, do not necessarily support the indication of significantly different composition of seasonal discharges.

9.4.2 Temporal Toxicity Patterns

The toxicity data from the 2000/2001 and 2001/2002 monitoring periods suggest that seasonal flushing may be an important factor affecting the variability in stormwater toxicity, and current data from the 2002/2003 monitoring period generally support that suggestion.

At the Belmont Pump station significant toxicity was seen in all three species during the first storm event (4 TUc and 8 TUc to water fleas and sea urchins, respectively). The second storm produced reduced toxicity (2TUc) to water fleas only, and storms three and four showed no measurable toxicity to any species.

Bouton Creek samples showed toxicity only to sea urchins. The first storm produced 16 TUc, the second storm produced 4 TUc and the third storm produced no urchin toxicity. The fourth storm, however, produced the highest toxicity (32 TUc) of any wet weather samples tested during this period.

Cerritos Channel samples produced toxicity to all three species in the first storm, with 4 TUc to water fleas and 16 TUc to sea urchins The second storm produced no toxicity to urchins and only 2 TUc to water fleas. The third storm showed no water flea toxicity and 4 TUc to urchins, and the fourth storm produced no toxicity to either species.

With the obvious exception of storm four at Bouton Creek, there is a clear trend toward decreasing toxicity with increased flushing

In previous studies, it was found that early season storm water runoff from Ballona Creek (Los Angeles County) was more toxic than samples obtained later in the season (Bay *et al.* 1999).

9.4.3 Comparative Sensitivity of Test Species

There were a total of twelve wet weather samples tested for toxicity with both water fleas and sea urchins. Toxicity was detected to one or both species in eight of those samples and the sea urchin fertilization test was the most sensitive toxicity test method in six of those eight samples. The water flea survival/reproduction test was the most sensitive method for the December 16 sample from Los Cerritos Channel and the December 17 sample from the Belmont Pump station. Neither of those stormwater samples was toxic to sea urchins. In additon there were six dry weather discharge samples tested using water fleas and sea urchins. Of those six samples, five showed toxicity and the sea urchin was the more sensitive test in four of those five. Thus, of the thirteen water samples showing toxicity, the sea urchin test was the more sensitive in 10 samples (77%).

The relative sensitivity of the mysid toxicity test could not be evaluated for this monitoring period because only the 100% stormwater concentration was tested, which prevented estimation of a precise

value for the EC50 or NOEC. Mysid survival and growth in 100% stormwater generally indicated less toxicity than the sea urchin or water flea results for similar sample concentrations, indicating that the mysid test was the least sensitive of the three methods.

This same pattern of sensitivity (sea urchin > water flea > mysid) was also observed during the 2000/2001 monitoring program and in a study of urban stormwater toxicity in San Diego (Southern California Coastal Water Research Project 1999).

9.4.4 Relative Toxicity of Stormwater

Table 9.6 compares the frequency and magnitude of stormwater toxicity from the Long Beach stations in 2002/2003 with that of stormwater samples from Long Beach in previous years and with toxicity in other southern California watersheds. The data suggest a marked decrease from previous years in the frequency of Long Beach stormwater toxicity during the 2002/2003 monitoring year and also show a decreased magnitude of toxicity to water fleas. Both frequency and magnitude are also decreased from those reported for other nearby watersheds.

Results from the Chollas Creek and Ballona Creek studies would be expected to be similar to the Long Beach study, as these samples were obtained from smaller highly urbanized watersheds, relative to the samples from the L.A. River and San Gabriel River. The data suggest such comparability for Long Beach samples from the first two monitoring periods, but clearly indicate the changes seen during the 2002/2003 monitoring period. Toxicity in Long Beach samples and in those from other watersheds is variable among storms, and stormwater toxicity is most often detected using the sea urchin fertilization test.

9.4.5 Toxicity Characterization

The TIE testing program for this monitoring period was limited due to overall low levels of toxicity in the stormwater samples during the past year. Phase I TIEs were attempted on four wet weather and one dry weather samples and they yielded useful information for all five samples. In addition, two more samples on which limited TIEs were run concurrently with initial toxicity testing of the samples yielded useful information for sea urchins. The remaining TIE was not useful due to the substantial loss of toxicity with time in the laboratory.

The results of the 2002/2003 TIE analyses were consistent within each species and generally similar to the data obtained from the previous year (Table 9.7). One of the TIEs conducted using the water flea indicated that organophosphate (OP) pesticides was the most likely category of toxic constituents. This conclusion is supported by the effectiveness of the C-18 and PBO treatments for reducing toxicity to the water flea. Other monitoring programs in California have obtained similar Phase I TIE results and subsequent studies have verified that OP pesticides are frequently the cause of urban stormwater toxicity to this species. In the other water flea TIE, an uncategorized non-polar organic (NPO) toxicant was implicated because the C18 treatment was effective and the PBO treatment was not effective.

EDTA was consistently the most effective treatment for removing toxicity in the sea urchin TIEs. EDTA is effective at chelating divalent metals, such as copper, cadmium and zinc, thus rendering them biologically unavailable. Studies in other watersheds have also found EDTA to be successful at removing toxicity from runoff (Jirik *et al.* 1998, Schiff *et al.* 2001). In these studies, copper and zinc were found to be the specific metals most likely causing toxicity. Solid phase extraction using C-18 was partially effective at removing toxicity to sea urchins from the Los Cerritos Channel sample. This treatment is intended to remove non-polar organic contaminants from the sample. However, C-18 treatment has also been shown to remove significant amounts of toxicity associated with copper and zinc from the water

(Schiff *et al.* 2001). Toxicity in the Los Cerritos Channel sample was also reduced by treatment with STS, which can reduce toxicity to some metals (e.g., cadmium, copper, zinc). Since solid phase extraction, STS and EDTA were all highly effective in this sample, it is likely that divalent metals, rather than organics, caused the observed toxicity. The other possibility is that both metals and non-polar organics are present and acting in a synergistic manner so that the removal of one effectively eliminates most of the toxicity in the sample. Additional tests are necessary to confirm the unlikely presence of such a synergistic effect.

The removal of particles by centrifugation was not effective in reducing toxicity in any sample. Previous studies have also found particle removal to be an ineffective method for the removal of toxicity from stormwater (Bay *et al.* 1999). However, particles may contribute to the chemical-associated toxicity of stormwater from the desorption of bound contaminants into the water. A previous study found that urban stormwater particles released toxic quantities of unidentified materials into clean seawater in less than 24 hours (Noblet *et al.* 2001).

Correlation analysis of the toxicity and chemistry data provides an additional test of the association between stormwater toxicity and chemical contamination. The data from all three years of monitoring were pooled for the correlation analyses, except for the test using diazinon, which was detected only in the second and third years of monitoring. The correlation analyses confirm the results from the first year of study: that the toxic responses measured in this study are related to the chemical composition of the stormwater samples. The toxic responses of sea urchins and/or water fleas were significantly correlated with increased concentrations of several stormwater constituents, including dissolved metals, TSS, TDS and TOC (Table 9.8). Dissolved lead, nickel and zinc were significantly correlated with toxicity to both species. As in last years report, zinc showed the strongest correlation with reduced sea urchin fertilization, closely followed by copper. Lead and nickel were also significantly correlated with sea urchin fertilization. These results differed from those obtained using only the first two years of monitoring data, which showed significant correlations only with dissolved copper and zinc.

A larger number of constituents were significantly correlated with toxicity to the water flea, including TSS, TOC, and dissolved metals including lead, nickel and zinc (Table 9.8). Increased concentrations of the OP pesticide diazinon had correlations with water flea toxicity (r=0.22 to 0.24) that were reduced from the values reported in 2001/2002 (r=0.54). The association was clearly not statistically significant, perhaps due to the small number of data points available and/or the high frequency of samples in which diazinon was not detected.

The presence of significant correlations between toxicity and selected chemicals generally supports the TIE results and provides information to help identify key constituents of concern, but the statistical results do not prove that those constituents are the cause of toxicity. The true cause of toxicity may be another (possibly unmeasured) constituent that has a similar pattern of occurrence in the samples.

A third method, comparing the measured and predicted toxic units of the samples was used to assess the importance of zinc, copper, and pesticides as a cause of the toxicity of Long Beach stormwater. The predicted toxicity of the sample was calculated from the measured concentrations of the chemical constituents and their corresponding EC50 or LC50. This toxic unit comparison showed that all three stormwater samples that produced toxicity to sea urchins contained sufficient dissolved zinc and copper to account for all of the sea urchin toxicity measured (Figure 9.14). Note that the predicted toxicity of the toxic samples was markedly higher than that of the remaining stormwater samples. These results were similar to those obtained for the monitoring data from the first two years.

Comparison of the measured and predicted toxic units for the water flea tests (Figure 9.15) showed a different pattern from that obtained for the sea urchin tests. The toxicity of two of the four samples

containing substantial toxicity could be accounted for by the measured concentrations of diazinon and chlorpyrifos. While zinc was estimated to contribute ≤ 1 toxic unit, the addition of zinc toxicity to the predicted pesticide toxic units for the second storm sample from Los Cerritos could account for all of the measured toxicity. The measured concentrations of OP pesticides and zinc accounted for only about 70% of the toxicity of the first Belmont Pump Station sample, suggesting that additional unmeasured toxicants are present. Alternatively, the undetected poor recovery of chemical analytes or losses during storage may have reduced the measured concentrations of some constituents and resulted in low predicted toxicity values.

Figure 9.1 Belmont Pump Station Chemistry Results: a) Cadmium; b) Copper; c) Nickel.

Lead (dissolved); c) Zinc. Belmont Pump Station Chemistry Results: a) Lead (total and dissolved); b)

2.0 srugiA

()

(q

(B

Figure 9.3

Belmont Pump Station Chemistry Results: a) Chlorpyrifos; b) Diazinon.

Figure 9.4 Bouton Creek Chemistry Results: a) Cadmium; b) Copper; c) Nickel.

Figure 9.5 Bouton Creek Chemistry Results: a) Lead (total and dissolved); b) Lead (dissolved); c) Zinc.

Figure 9.6

Bouton Creek Chemistry Results: a) Chlorpyrifos; b) Diazinon.

Los Cerritos Channel Chemistry Results: a) Cadmium; b) Copper; c) Nickel.

Figure 9.8

Los Cerritos Channel Chemistry Results: a) Lead (total and dissolved); b) Lead (dissolved); c) Zinc.

Los Cerritos Channel Chemistry Results: a) Chlorpyrifos; b) Diazinon.

Figure 9.10 Dominguez Gap Pump Station Chemistry Results: a) Cadmium; b) Copper; c) Nickel.

Figure 9.11 Dominguez Gap Pump Station Chemistry Results: a) Lead (total and dissolved); b) Lead (dissolved); c) Zinc.

Figure 9.12 Dominguez Gap Pump Station Chemistry Results: a) Chlorpyrifos; b) Diazinon.

Figure 9.14 Comparison of Measured (Total) Toxic Units for the Sea Urchin Fertilization Test and Toxic Units Predicted from the Dissolved Concentrations of Copper and Zinc in the Test Samples. Measured toxic units are based on the EC50 (100/EC50). A value of 1 toxic unit was assigned to low/nontoxic samples having an estimated EC50>100%.

2001/2002

Figure 9.15 Comparison of Measured (Total) Toxic Units for the Water Flea Survival Test and Toxic Units Predicted from the Concentration of Chlorpyrifos, Diazinon and Dissolved Zinc in the Test Samples. Measured toxic units are based on the EC50 (100/EC50). A value of 1 toxic unit was assigned to low/nontoxic samples having an estimated EC50 of >100.

DISCHARGE LOCATION	HYDRO. UNIT	СОММ	EST	GWR	IND	MAR	MUN	NAV	RARE	RECI	REC2	SHELI	WARM	WET	WILD
Bouton Creek	405.15	·		,			P			Р	I		I		E
Los Cerritos Channel	405.15			Б	п		$\left(\begin{array}{c} P \\ P \end{array} \right)$			P	I		I		E
Belmont Pump Sta.	405.15	Ē	Е	E	r E	>E		È	E	E	E	E	E	Е	F
 Source: California Regional Water Q Ventura Counties. P=Potential, E=Ex 	uality Contraction of the contra	ol Board, Los I=Intermittent	Angeles	Region. 19	994. Wat	ter Quality	y Control Pla	n, Los A1	ngeles Reg	on, Basin	Plan for t	he Coasta	l Watershed	ls of Los A	Angeles and
Commercial and Sport Fishing (COMM): Uses o intende	f water for co d for human c	ommercia onsumpti	l or recrea on or bait p	tional co ourposes.	llection o	of fish, shell	fish, or o	ther organ	isms inclu	ıding, but	not limit	ed to, uses	involving	g organisms
Estuarine Habitat (EST):	Uses o or wild	f water that su life (e.g., estua	pport estu trine man	uarine ecosy nmals, wate	ystems ir rfowl, sl	ncluding, l norebirds)	but not limite	ed to, pre	servation o	r enhance	ment of es	tuarine ha	abitats, vege	tation, fis	h, shellfish
Ground Water Recharge (GWR):	Uses o intrusio	f water for na on into freshwa	tural or a ter aquif	artificial re-	charge o	f ground	water for pu	rposes of	future ext	raction, m	naintenanc	e of wate	r quality, o	halting	of saltwate
Industrial Service Supply (IND):	Uses o convey	f water for ind ance, gravel w	lustrial ac ashing, f	tivities that	t do not on, or oil	depend pr well re-p	rimarily on w ressurization	vater qual	ity includi	ng, but no	t limited to	o, mining	, cooling wa	ter suppl	y, hydraulio
Marine Habitat (MAR):	Uses o shellfis	f water that su h, or wildlife (pport ma e.g., mar	rine ecosys ine mamma	tems incl ils, shore	luding, bu birds).	it not limited	to, prese	rvation or o	enhancem	ent of mar	ine habita	its, vegetatio	on, such a	s kelp, fish
Municipal and Domestic Supply (MUN):	: Uses of	f water for con	nmunity,	military, or	individu	ial water s	upply system	ns includi	ng, but not	limited to	, drinking	water.			
Navigation (NAV):	Uses of	f water for ship	oping, tra	vel, or othe	r transpo	rtation by	private, mili	tary, or c	ommercial	vessels.					
Rare, Threatened, or Endangered Species (RARE):	Uses of or fede	f water that sup ral law as rare	pport hab , threaten	itats necess ed, or enda	ary, at le ngered.	ast in part	t, for the surv	vival and s	successful	naintenan	ce of plan	t or anima	Il species est	ablished	under state
Water Contact Recreation (REC-1):	Uses o limited	f water for rec to, swimming	reational , wading	activities ir , water-skii	ivolving ng, skin a	body cont and scuba	act with wat diving, surfi	er, where ng, white	ingestion of water activ	of water is vities, fish	reasonabl ing, or use	y possible of natura	e. These use I hot springs	es include 5.	, but are no
Non-contact Water Recreation (REC-2) Shellfish Harvesting (SHELL):	: Uses o reason: study, I Uses o	f water for re- ably possible. hunting, sights	creational These us eeing, or	l activities es include, aesthetic er abitats suit	involving but are r njoymeng able for	g proximi ot limited t in conjur the colle	ty to water, to, picnicki nction with the ction of filt	but not r ng, sun b ne above : er-feeding	ormally in athing, hiki activities. g shellfish	volving b ng, beach (e.g., clau	ody conta combing, o	ct with w camping, s. and m	ater, where boating, tide ussels) for	ingestion pool and human co	of water is marine life
Should her vesting (Stille).	comme	ercial, or sports	s purpose	s.		the cone		or roouni,	s sherinsh	(0.5., 014			455615) 101	numan e	histinphon
Warm Freshwater Habitat (WARM):	Uses o wildlif	of water that s e, including in	upport w vertebrate	arm water es.	ecosyste	ms includ	ling, but not	limited	to, preserv	ation or e	nhanceme	nt of aqu	atic habitats	s, vegetat	ion, fish, o
Wetland Habitat (WET):	Uses it wildlif filtratio	f water that sup e, and other u on and purifica	pport wet nique we tion of na	land ecosys tland funct aturally occ	stems inc tions wh urring co	luding, b ich enhan ontaminan	ut not limited ice water qua its.	l to, prese ality, suc	ervation ór h as provid	enhancem ling flood	ent of wet and erosi	land habi	tats, vegetat ol, stream ba	ion, fish, ank stabil	shellfish, o ization, and
Wildlife Habitat (WILD):	Uses o (e.g., N	of water that surfammals, bird	upport te s, reptiles	rrestrial eco , amphibia	osystems ns, invert	including tebrates),	g, but not lin or wildlife w	nited to, ater and f	preservatio ood source	n and enh s.	ancement	of terres	trial habitats	, vegetati	on, wildlif
Bpts	Y	- 57 - 82	P.A)-(r 13		138		PAL B.	2	Laner L					

Table 9.1	Summary of Beneficial	Uses for Receiving	Water Bodies	Associated with	each Monitoring	Location
1 4 1/ 10 / 11	Summary or Denemoral		THUCH DOULDS	LOGOCIALCA WILL	CHCH MICHICAINE	LIVCHLIVII

Bouton Creek	···· · · · · · · · · · ·			Guide	lines and Stands		Mas	ss Emission	n .	· · ·		
Class Constituent	ML	Units	Ocean Plan 2001 ^d	Basin Plan	AB411	CTR (saltwater) ^b	CTR (freshwater) ^{a,b}	No. of Samples	No. of Nondetects ²	Percent Detects	No. of Exceed.	Percent Exceed.
CONVENTIONALS	·····			· ·								
BOD	4	mg/l						4	. 1	75		•
COD	4-900	mg/l						4	0	100		
EC								4	0	100		
TOC	1	mg/l						. 4	· 0	100	,	
Hardness	1	mg/l						4	0	100		
Alkalinity	.5	mg/l `						4	. 0 .	100		-
рН	0-14			<6.5 & >8.5		•		4	0	100	2	50
Cyanide	0.005	mg/l	0.004	0.2			0.0052	4	4	0	.0	0
Chloride	1	mg/l					·	4	0	100		
Fluoride	0.1	mg/l	1	,				4	0	100		
TKN	0.1	. mg/l						4.	. 0	100		
Ammonia as N	0.1	mg/l	2.4			· · · · ·		4	0	100	0	0
Nitrite N	0.01	mg/l		•	• -			4	4	0		
Nitrate N	0.01	mg/l						4	0	100	L.	
Total P	0.05	mg/l						4.	. 0	100		•
Diss. P.	0.01	mg/l						.4	0	100		-
MBAS	0.02	mg/l		0.5			*	. 4	0	100	0	0
МТВЕ	0.5	mg/l						4	4	0		
Total Phenols	0.1	mg/l			-			4	· 4	0		
Oil & Grease	5	mg/l	′ 75		*			4	4	0	0	0
Turbidity	1	NTU	225					4	0	100	0	0
ткрн .	5	mg/l						4	4	0		
TSS .	1	mg/l	3 .					4	0	100	4	100
TDS	· 1	mg/l						4.	0	100		
TVS	- 1	mg/l						4	. 1 .	75	•	

Table 9.2 Comparison of Water Quality Measurements from Bouton Creek with Guidelines and Standards

Bouton Creek				Guid	elines and Stands	ards			М	ass Emission	1		
Class Constituent	ML	Units	Ocean Plan 2001 ^d	Basin Plan	AB411	CTR (saltwater) ^b	CTR (fresbwater) ^{a,b}	No. of Samples	No. of Nondetects ^e	Percent Detects	No. of Exceed.	Percent Exceed.	
BACTERIA (mpn/100ml)													
Enterococcus	<20	MPN/100m l			104 (instantaneous)			4	0	100	3	75	ate
Fecal Coliform	<20	MPN/100m l	400 (instantaneous)	200	400 (instantaneous)			4	0	100	4	100	105
Total Coliform	<20	MPN/100m 1	10,000 (instantaneous)		10,000 (instantaneous)			4	. 0	100	4	100	
TOTAL METALS													
Aluminum	25	ug/L		100Ő				4	· 0	100	. 4	100	
Antimony	0.5	ug/L	220 ^h	· 6				4	0	100	0	0	
Arsenic	0.5	ug/L	32	50				4	0	100	0	0	
Beryllium	0.5	ug/L	0.03 <u>3</u> ^b	4	•			4	4	0	0.	0	
Cadmium	0.25	ug/L	· 4	5				4	0	100	0	0	
Chromium	0.5	ug/L		50				4	0	100	0	0	Í
Hex Chromium	20	ug/L	8 · · ·				11 -	3	3	0	0	0	
Copper	0.5	ug/L	12					4	0	100	4	100	1 steat
Iron	 ≥ 25 	ug/L						4	0	100			n'
Mercury	0.2	ug/L	0.16	2				4	· 4	0	0	0	
Nickel	1	ug/L	20	100				. 4	0.	100	· 0	0	
Lead	0.5	ug/L	8					4	0	100	4	100	21500
Selenium	1	ug/L	60	50	-			4	· 4	. 0	0	0	
Silver	0.25	ug/L	2.8					4	2	50	0	0	
Thallium	1	ug/L	2.0 ^h	. 2				4	4	0	0	0	
Zinc	$\cdot 1$	ug/L	80					4	0	100	4	100	Lister
DISSOL VED METALS													1
Aluminum	25	ug/L						4	1	75			
Antimony	0.5	ug/L			. ~			4	0	100			
Arsenic	0.5	ug/L				36	150	4.	0	100	0	0	
Beryllium	0.5	ug/L						4	4	0			
Cadmium	0.25	ug/L			,	9.3	1.3	4	3	25	. 0	0	
Chromium	0.5	ug/L				•	- 100	4	0	100	. 0	0	1
Copper	0.5	ug/L				3.1	5.0	4	0	100	4 [·]	100	Lislad.

Table 9.2 Comparison of Water Quality Measurements from Bouton Creek with Guidelines and Standards (continued)

Bouton Creek				Guidelii	es and Stand	lards			Ma	uss Emissio	n] [
Class Constituent	ML	Units	Ocean Plan 2001 ^d	Basin Plan	AB411	CTR (saltwater) ^b	CTR (freshwater) ^{a,b}	No. of Samples	No. of Nondetects ^t	Percent Detects	No. of Exceed.	Percent Exceed.	
Iron	25	ug/L	,			\		4	Ŏ	100]
Mercury	0.2	ug/L	- -	•	•	~		4	4.	0			
Nickel	1	ug/L	·			8.2	29	4	· 0	100	.0	0	۱۰ ,
Lead	0.5	ug/L				.8.1	1.2	4	0	100	4	100	List
Selenium	1	ug/L				71	5.0 ^e	4	4	0	0	0	
Silver	0.25	ug/L				. '	1.1 [°]	4	4	0 '	0	0	
Thallium	1	ug/L		• •			1.2 ^c	4	4	0.	0	. 0	5
Zinc	1	ug/L				81	66	4	0 ′	100	4	100	his'
CHLORINATED PESTIC	CIDES			¥ , -								•	
4,4'-DDD	0.05	ug/L				•		4	4	0			
4,4'-DDE	0.05	ug/L			• •			· 4	4	Ó		•	
4,4'-DDT	0.01	ug/L	•			0.001	0.001	4	4	0	0	0 ·	
Aldrin	0.05	ug/L	0.000022 ^h			1.3 °	3 ^c	4	4	0	0	0	
alpha-BHC	0.05	ug/L					-	4	4	0			
alpha-Chlordane	0.5	∙ug/L						4	4	0			
alpha-Endosulfan	0.05	ug/L			. •	0.0087	0.056	4	4	0	0	0	
beta-BHC	0.05	ug/L						4	4	0	•		
beta-Endosulfan	0.05	ug/L				0.0087	0.056	4	4	0	. 0	. 0	
delta-BHC	0.05	ug/L		, 1		:		.4	4	0			
Endosulfan Sulfate	0.05	ug/L	0.018	· •			•	4	4	0	0	0	
Endrin	0.01	ug/L	0.004	2		0.0023	0.036	4`	4	0	0	0	
Endrin Aldehyde	0.01	ug/L		•	· ·			4	4	0			
Dieldrin	0.01	ug/L	0.00004 ^h -			0.0019	0.056	4	4	0	0	0	
gamma-BHC	0.05	ug/L			· .	0.95 °	0.16 ^c	. 4	4	0	0	• 0	
gamma-Chlordane	0.5	ug/L	· · ·	· e				4.	4	0	1		1 ·
Heptachlor	0.01	ug/Ĺ	0.00005 ^b	0.01		0.0036	0.0038	4	4	. 0	0	0	ŀ
Heptachlor Epoxide	0.01	ug/L	0.00002 ^h	0.01		0.0036	0.0038	4	4	0	0	. 0	
Toxaphene	0.5	ug/L	0.00021 ^h	3		0.0002	0.0002	4	4	0	0	·0	1

Table 9.2 Comparison of Water Quality Measurements from Bouton Creek with Guidelines and Standards (continued)

141 ु

- أكلم

Bouton Creek				Guid	elines and Stand:	ırds		Ma	ss Emission	1		
Class Constituent	ML .	Units	Ocean Plan 2001 ^d	Basin Plan	AB411	CTR (saltwater) ^b	CTR (fresbwater) ^{a,b}	No. of Samples	No. of Nondetects [#]	Percent Detects	No. of Exceed.	Percent Exceed.
AROCLORS												
Aroclor 1016	0.5	ug/L						4	4	0		
Aroclor 1221	0.5	ug/L					-	4	4	0		
Aroclor 1232	0.5	ug/L						4	4	0		
Aroclor 1242	0.5	ug/L	•					4	4	0		
Aroclor 1248	0.5	ug/L						· 4 ·	4	0		
Aroclor 1254	0.5	ug/L			۰.			- 4	4	0		
Aroclor 1260	0.5	ug/L						4.	4	0		
Total PCBs	0.5	ug/L						4	4	0		•
ORGANOPHOSPHATE F	PESTICIDES			· .			-					
Atrazine	.1	ug/L		.3				4	4	0	0	• 0
Chlorpyrifos	0.05	ug/L		•				·4	4	0	1	
Cyanazine	1	ug/L						4	4	0		
Diazinon	0.01	ug/L						4	0 ·	100		
Malathion	l	ug/L						4	4	0		
Prometryn	1	ug/L						4	. 4	0		
Simazine	1.	ug/L		• 4			-	4	2	50	1	25
HERBICIDES							-					
2,4,5-TP (Silvex)	0,5	ug/L		50				4	. 4	0	0	0
2,4-D	1	ug/L		70			• •	4	4	0	· 0	0.
Glyphosate	5	ug/L		700				4	• 4	0	0	0

Table 9.2 Comparison of Water Quality Measurements from Bouton Creek with Guidelines and Standards (continued)

Based on a hardness of 50 mg/L

^bCriteria continuous concentration which equals the highest concentration of pollutant to which aquatic life can be exposed for an extended period of time without deleterious effects.

^cCriteria maximum concentration which equals the highest concentration of pollutant to which aquatic life can be exposed for a short period of time with deleterious effects

^dCriteria based on daily maximum

*Expressed as total recoverable

^fML= Minimum Level

^g Non-detect refers to a lab result value that is below them minimum level

^b Criteria based on 30 day average
Belmont Pump				Guideli	ines and Stand	ards			Ma	ass Emissio	D	
Class Constituent	ML	Units	Ocean Plan 2001 ⁴	Basin Plan	AB411	CTR (saltwater) ^b	CTR (freshwater) ^{a,b}	No. of Samples	No. of Nondetects ^e	Percent Detects	No. of Exceed.	Percent Exceed.
CONVENTIONALS		•••••		-			•			•		
BOD	4	mg/l		. · · ·							· .	
COD	4-900	mg/l						•	`			
EC				·				· ·			· •	
тос	1	mg/l						4 [.]	0	100		
Hardness	1	mg/l						4	· 0	, 100		
Alkalinity	5	mg/l			1			· 4	0	100		
рН	0-14		· · ·	<6.5 & >8.5	•			4	0	100	1	25
Cyanide	0.005	mg/l	0.004	0.2		•	0.0052	- 4	4	0	0	0 😳
Chloride	· 1	mg/l						4	4 `	100		
Fluoride	0.1	mg/l						. 4	1.	75		
TKN	0.1	mg/l					•	4	0	100		•
Ammonia as N	0.1	mg/l	2.4					4	0	100	0	0 ``
Nitrite N	0.01	mg/l	· .		•	- •		4 ·	4 、	0		
Nitrate N	0.01	mg/l						4.	0	100		
Total P	0.05	mg/l						.4	0	100		
Diss. P	0.01	mg/l	· ·		•			4	0	100		•
MBAS	0.02	mg/l		0.5				4	0	100	. 0	0
MTBE	0.5	mg/l						. 4	4	0	`~	
Total Phenols	0.1	mg/l						4	4	0		
Oil & Grease	5	mg/l	. 75			•		4	4	0	0	0
Turbidity	1	NTU	225					4	4	0	0	0
TRPH	5	mg/l						4	0	100		
TSS	1	mg/l	3					4	0	100	4	100
TDS	· .1	mg/l						4	0	100		
TVS	1	mg/l						4	1_	75		

Table 9.3 Comparison of Water Quality Measurements from Belmont Pump Station with Guidelines and Standards

· ·

Belmont Pump				Guide	elines and Standa	rds			Ma	ss Emissio	n .]
Class Constituent	ML	Units	Ocean Plan 2001 ^d	Basin Plan	. AB411	CTR (saltwater) ^b	CTR (freshwater) ^{a,b}	No. of Samples	No. of Nondetects ^g	Percent Detects	No. of Exceed.	Percent Exceed.	
BACTERIA (mpn/100ml)													ľ
Enterococcus	<20	MPN/100m 1			104 (instantaneous)			4	0	100	3	75	.t.D
Fecal Coliform	<20	MPN/100m l	400 (instantaneous)		400 (instantaneous)			4	0	100	. 4	100	1312
Total Coliform	<20	MPN/100m 1	10,000 (instantaneous)		10,000 (instantaneous)	,	,	4	0	100	4	100	
TOTAL METALS						•					1		1
Aluminum	25	ug/L		1000				4	0	100	4	100	
Antimony	0.5	ug/L	220 ^h	6				4	0	100	0	0	
Arsenic	0.5	ug/L	32	50				4	0	100	0	0	
Beryllium	0.5	ug/L	0.033 ^h	4	•			4	4	0	0	0	
Cadmium	0.25	ug/L	4	5				4.	1	75	0	0	
Chromium	0.5	ug/L		50		٠.		4	0.	100	0	0	
Hex Chromium	20	ug/L	8				• •	3	3	0	0	0	1.501
Copper	0.5	ug/L	12		·			4	0	100	.4	100	Listan
Iron	25	ug/L		•		• •		4	0	100			-
Mercury	0.2	ug/L	0.16	2				4	4	0.	4	100	1.5
Nickel2-	2F	Ug/L7	70	100				.4	0.	100	0	. 0	570
Lead	0.5	ug/L	8	•				4	0	100	4	100 ·	125 d
Selenium	1	ug/L	60	50		`		4	4	0	0	. 0	- 1
Silver	0.25	ug/L	2.8					4	3	25	0	0	
Thallium	1	ug/L	2.0 ^h	2				4	4	0	. 0	0	
Zinc	1	ug/L	80					4	0	100	4	100	Lister
DISSOLVED METALS													1
Aluminum	25	ug/L			-			4	1	75			
Antimony	0.5	ug/L						4	0	100			
Arsenic	0.5	ug/L				36	150	4	0	100	0	0	
Beryllium	0.5	ug/L						4	4	0			
Cadmium	0.25	ug/L	J	,		9.3	1.3	4	4	0	.0	0	J
Chromium	0.5	ug/L					100	4 ·	. 0	100	0	0	·
Copper	0.5	ug/L				3.1	5.0	4	0	100	4	100	Lister

Table 9.3 Comparison of Water Quality Measurements from Belmont Pump Station with Guidelines and Standards (continued)

Belmont Pump				Guideli	nes and Stand	iards			M	ass Emissio	n		
Class Constituent	ML	Units	Ocean Plan 2001 ^d	Basin Plan	AB411	CTR (saltwater) ^b	CTR (freshwater) ^{a,b}	No. of Samples	No. of Nondetects ^g	Percent Detects	No. of Exceed.	Percent Exceed.	
Iron	25	ug/L		· '				4	0	100			ĺ.,
Mercury	0.2	ug/L						4	4	. 0			
Nickel	1	ug/L			•	8.2	29	4	0	100	0 _	0	
Lead	0.5	ug/L				8.1	1.2	4	. 0	100	. 4	100	120
Selenium	1	ug/L				71	5.0 ^e	4	4	0	0	0	
Silver	0.25	ug/L				· .	1.1 ^c	4	4	0 .	0	0 ·	
Thallium	1	ug/L					1.2 ^c	4	4	0	0	0	
Zinc	1	ug/L				81	66	4	0	100	4	100	Lis
CHLORINATED PESTI	CIDES												
4,4'-DDD	0.05	ug/L			-	•		4	4	· 0 .			
4,4'-DDE	0.05	ug/L					•	4	4	0			
4,4'-DDT	. 0.01	ug/L				0.001	0.001	4	4	0	0	0	
Aldrin	0.05	ug/L	0.000022 ^h			1.3 ^c	3 ^c	4	4	0	0	0	
alpha-BHC	0.05	ug/L						4	4	0			
alpha-Chlordane	0.5	ug/L						4	4	0			
alpha-Endosulfan	0.05	ug/L				0.0087	0.056	4	4	. 0	0	ò	
beta-BHC	0.05	ug/L	· ·					4	4	0			
beta-Endosulfan	0.05	ug/L				0.0087	0.056	4	4	0	0	0	
delta-BHC	0.05	ug/L	•	• <u>.</u>				4	4	0			
Endosulfan Sulfate	0.05	ug/L	0.018					4	4	0			
Endrin	0.01	ug/L	0.004	2		0.0023	0.036	. 4	4	0	0	0	
Endrin Aldehyde	0.01	ug/L						_4	4	0			
Dieldrin	0.01	ug/L	0.00004 ^h			0.0019	0.056	4	3	25	. 1	25	
gamma-BHC	0.05	ug/L				0.95 ^c	0.16 ^c	4	4	0	0	0	
gamma-Chlordane	0.5	ug/L						4	4	0			
Heptachlor	0.01	ug/L	0.00005 ^h	0.01		0.0036	0.0038	4	4	0	0	0	
Heptachlor Epoxide	0.01	ug/L	0.00002 ^h	0.01		0.0036	0.0038	4	4	0	0	0	
Toxaphene	0.5	ug/L	0.00021 ^h	-3		0.0002	0.0002	4	4	0	0	`0	

Table 9.3 Comparison of Water Quality Measurements from Belmont Pump Station with Guidelines and Standards (continued)

Belmont Pump				Guide	lines and Stan	dards			Ma	ss Emissio	n j	
Class Constituent	ML	Units	Ocean Plan 2001 ^d	Basin Plan	AB411	CTR (saltwater) ^b	CTR (freshwater) ^{s,b}	No. of Samples	No. of Nondetects ^z	Percent Detects	No. of Exceed.	Percent Exceed.
AROCLORS								4	4	0		
Aroclor 1016	0.5	ug/L						4	4	0		
Aroclor 1221	0.5	ug/L		:				4	4	0		
Aroclor 1232	0.5	ug/L						4	4	0		
Aroclor 1242	0.5	ug/L						4	4	0		
Aroclor 1248	0.5	ug/L						4	4	0		
Aroclor 1254	0.5	ug/L						4	4	0		
Aroclor 1260	0.5	ug/L						4	4	0		
Total PCBs	0.5	ug/L						4	4	0		
ORGANOPHOSPHATE P	ESTICIDES										•	
Atrazine	1	ug/L		3				4	4	0	0	0
Chlorpyrifos	0.05	ug/L					*	4	3	25		
Cyanazine	1.	ug/L						4	4 .	0		
Diazinon	0.01	ug/L						4	0	100		
Malathion	I	ug/L						4	3	25		•
Prometryn	1	ug/L						4	4	0		
Simazine	1	ug/L		4	•			4	4	0	0	0
HERBICIDES						-		4	4	0		
2,4,5-TP (Silvex)	0.5	ug/L		50				4	4	0	0	0
2,4-D	· 1	ug/L		70				4	• 4	0	0	0
Glyphosate	5	ug/L		700				4	4	0	0	0

Table 9.3 Comparison of Water Quality Measurements from Belmont Pump Station with Guidelines and Standards (continued)

* Based on a hardness of 50 mg/L

^bCriteria continuous concentration which equals the highest concentration of pollutant to which aquatic life can be exposed for an extended period of time without deleterious effects.

Criteria maximum concentration which equals the highest concentration of pollutant to which aquatic life can be exposed for a short period of time with deleterious effects

^d Criteria based on daily maximum

^eExpressed as total recoverable

^fML= Minimum Level

^g Non-detect refers to a lab result value that is below them minimum level

^b Criteria based on 30 day average

Los Cerritos Channel				Guide	lines and Stands	ards			M	ass Emission	1	
Class Constituent	ML	Units	Ocean Plan 2001 ^d	Basin Plan	AB411	CTR (saltwater) ^b	CTR (freshwater) ^{s,b}	No. of Samples	No. of Nondetects ²	Percent Detects	No. of Exceed.	Percent Exceed.
CONVENTIONALS												
BOD	4	mg/l						4	2	50		
COD	4-900	mg/l				•	·	4	• 0	100		
EC					•		•	4	0	100		-
TOC	1	mg/l		-				4	0	100		
Hardness	1	mg/l						.4	0	100		
Alkalinity	5	mg/l					-	4	0	100		
pH	0-14			<6.5 & >8.5				4	0	100	2	50
Cyanide	0.005	mg/l	0.004	0.2			0.0052	4	4	. 0	0	0
Chloride	1	mg/l						4	Ο.	100		
Fluoride	0.1	mg/l		• •	-			4	1	75		
TKN	0.1	mg/l			`.		-	4	0	[′] 100		
Ámmonia as N	· 0.1	mg/l	2.4					4	0	100	0	0
Nitrite N	0.01	mg/l						4	4	0		
Nitrate N	0.01	mg/l	•					4	0	100		
Total P	0.05	mg/l		•				4	0	100		
Diss. P	0.01	mg/l						4	0	100		
MBAS	0.02	mg/l		0.5			•	4	0	100	0	0
MTBE	0.5	mg/l						4.	4	0		
Total Phenols	0.1	mg/l			· ·			4	4	0		•
Oil & Grease	5	mg/l	. 75					4	. 4	0	0	0
Turbidity	. 1	NTU	225					4	0	100	0	Ò
тгрн	5	mg/l						4	0	100		
TSS	1	mg/l	3					4	0	100	4	100
TDS	1	mg/l						. 4	0	100		
TVS	1	.mg/l						4	1	75	•	

Table 9.4	Comparison of Water (Quality	Measurements from Los Cerritos Channel with Guidelines and Standards

Los Cerritos Channel				Guid	lelines and Standa	ards			Ma	ss Emissio	n		
Class Constituent	ML	Units	Ocean Pian 2001 [¢]	Basin Plan	AB411	CTR (saltwater) ^b	CTR (freshwater) ^{a,b}	No. of Samples	No. of Nondetects ²	Percent Detects	No. of Exceed.	Percent Exceed.	
BACTERIA (mpn/100ml)													
Enterococcus	<20	MPN/100m			104 (instantaneous)		,	4	0	100	4	100	1 Ard
Fecal Coliform	<20	MPN/100m l	400 (instantaneous)	200	400 (instantaneous)			4	0	100	4	100	2
Total Coliform	<20	MPN/100m 1	10,000 (instantaneous)		10,000 (instantaneous)			4	0	100	4	100	
TOTAL METALS				<u></u>							*		
Aluminum	25	ug/L		1000			-	4	0	100	4	100	
Antimony	0.5	ug/L	220h	6				4	0	100	1.	25	
Arsenic	0.5	ug/L	32	50		,		4	0	100	0	0	
Beryllium	0.5	ug/L	0.033h	4				4	4	0	0	0	
Cadmium	0.25	ug/L	4	5				4	0	100	0	0	
Chromium	0.5	ug/L		50			·	4	0	100	0	· 0 ·	
Hex Chromium	20	ug/L	8					· 3	3	100	0	0	1. tol
Copper	0.5	ug/L	12					4	0	100	4	100	
Iron	25	ug/L			•			4	0.	100			
Mercury	0.2	ug/L	0.16	2				4	4	0	0	0	
Nickel	1	ug/L	20	100				4	0	100	1	25	.t.d
Lead	0.5	ug/L	8					4	0	100	4	100	Lisler
Selenium	1	ug/L	60	50				4	4	0	0	0	
Silver	0.25	ug/L	2.8					4	2	50	0	0	
Thallium	1	ug/L	2.0h	2	· ·			4	4	0	0	O	to
Zinc	1	ug/L	80					4	0	100	4	100	1.5.10
DISSOLVED METALS													1
Aluminum	25	ug/L					\mathbf{x}^{-1}	4	0	100			
Antimony	0.5	ug/L						4	0	100			
Arsenic	0.5	ug/L				36	150	4	• 0	100	. 0	0	
Beryllium	0.5	ug/L						4	4	0			
Cadmium	0.25	ug/L	·			9.3	1.3	4	3	25	0	0	· ·
Chromium	0.5	ug/L					100	4	0	100	. 0	0	
Copper	0.5	ug/L				3.1	5.0	4	0	100	4	100	123.1

Table 9.4 Comparison of Water Quality Measurements from Los Cerritos Channel with Guidelines and Standards (continued)

Los Cerritos Channel				Guide	lines and Stan	dards	· .		Ma	ss Emissio	n .	
Class Constituent	ML	Units	Ocean Plan 2001 ^d	Basin Plan	AB411	CTR (saltwater) ^b	CTR (freshwater) ^{a,b}	No. of Samples	No. of Nondetects [#]	Percent Detects	No. of Exceed.	Percent Exceed.
Iron	25	ug/L				•		4	0 ·	100		
Mercury	0.2	ug/L		-				4	4	0		
Nickel -	1	ug/L		· .		8.2	29	4	0	100	0	0
Lead	0.5	ug/L	•			8.1	1.2	4	0	100	4	100
Selenium	1	ug/L				71	5.0e	4	4	0	0	0
Silver	0.25	ug/L					1.1c	4	4	0	0	0
Thallium	1	ug/L					1.2c	4	4	0	0	0
Zinc	1.	ug/L		·		81	66	4	0	100.	4	100
CHLORINATED PEST	TICIDES					-						
4,4'-DDD	0.05	ug/L					· • .	4	4	0		•
4,4'-DDE	0.05	ug/L						4	4	0		-
4,4'-DDT	0.01	ug/L				0.001	0.001	4	4	0	0	0
Aldrin	0.05	ug/L	0.000022h - ·		•	1.3 c	3 c	. 4	4	0	0	0
alpha-BHC	0.05	ug/L					•	4	4	0	•	
alpha-Chlordane	0.5	ug/L	•	±		•		4	4	0		
alpha-Endosulfan	0.05	ug/L			• •	0.0087	0.056	4	4	0	. 0	• 0
beta-BHC	0.05	ug/L						4	4	ò -		
beta-Endosulfan	0.05	ug/L				0.0087	0.056	4	4	0	0	0
delta-BHC	0.05	ug/L						· 4	4	0	-	
Endosulfan Sulfate	0.05	ug/L	0.018	-				4	_ 4	0	0	0
Endrin	0.01	ug/L	0.004	2	•;	0.0023	0.036	4	4	0	0	0.
Endrin Aldehyde	0.01	ug/L				· .		4	4	0		
Dieldrin	· 0.01	ug/L	0.00004h			0.0019	0.056	4.	• 3	25	1	. 25
gamma-BHC	0.05	ug/L				0.95 c	0.16c	· 4	3	25	0	0
gamma-Chlordane	0.5	ug/L						4	. 4	. 0		
Heptachlor	0.01	úg/L	0.00005h	0.01		0.0036	0.0038	4	4	0	0	0
Heptachlor Epoxide	0.01	ug/L	0.00002h	0.01		0.0036	0.0038	• . 4	. 4	0	0	0
Toxaphene	0.5	ug/L	0.00021h	3		0.0002	0.0002	. 4	4	0	0	0

Table 9.4 Comparison of Water Quality Measurements from Los Cerritos Channel with Guidelines and Standards (continued)

Los Cerritos Channel	?			Guid	elines and Stand	lards			Ma	ss Emission		
Class Constituent	ML	Units	Ocean Plan 2001 ^d	Basin Plan	AB411	CTR (saltwater) ^b	CTR (freshwater) ^{a,b}	No. of Samples	No. of Nondetects ^t	Percent Detects	No. of Exceed.	Percent Exceed.
AROCLORS								4	4	0		
Aroclor 1016	0.5	ug/L						4	4	0		
Aroclor 1221	0.5	ug/L						. 4	4	0		
Aroclor 1232	0.5	ug/L						4	4	0		
Aroclor 1242	0.5	ug/L					•	4	• 4	.0		
Aroclor 1248	0.5	ug/L						· 4	4	0		
Aroclor 1254	0.5	ug/L			4 A			4.	4	0		• .
Aroclor 1260	0.5	ug/L					-	4 ·	. 4	0		
Total PCBs	0.5	ug/L						4	4	0		
ORGANOPHOSPH.	ATE PESTICIDE	S										
Atrazine	-1	ug/L		3				4	4	Ô.	0 ·	0
Chlorpyrifos ·	0.05	ug/L	}					4	3	25		
Cyanazine	1	ug/L				•		4	4	0		
Diazinon	0.01	ug/L		· ·				4	0	100		
Malathion	1	ug/L						4	4	0		. •
Prometryn	1	ug/L						4	4	· 0		
Simazine	1	ug/L		4				4	2	50	1	25
HERBICIDES	•			· · · · ·								
2,4,5-TP (Silvex)	0.5	ug/L		50				4 ·	4	0	0	0
2,4-D .	. 1	ug/L		. 70				4	4	0	0	0.
Glyphosate	5	ug/L		700			· .	4	3	. 25	0	0

Table 9.4 Comparison of Water Quality Measurements from Los Cerritos Channel with Guidelines and Standards (continued)

*Based on a hardness of 50 mg/L

^b Criteria continuous concentration which equals the highest concentration of pollutant to which aquatic life can be exposed for an extended period of time without deleterious effects.

^c Criteria maximum concentration which equals the highest concentration of pollutant to which aquatic life can be exposed for a short period of time with deleterious effects

^d Criteria based on daily maximum

'Expressed as total recoverable

^fML= Minimum Level

⁴Non-detect refers to a lab result value that is below them minimum level

^b Criteria based on 30 day average

Dominguez Pump				Guidel	ines and Stand	lards			Ma	iss Emission	1	
Class Constituent	ML	Units	Ocean Plan 2001 ^d	Basin Plan	AB411	CTR (saltwater) ^b	CTR (freshwater) ^{a,b}	No. of Samples	No. of Nondetects ²	Percent Detects	No. of Exceed.	Percent Exceed.
CONVENTIONALS								· .				
BOD	4	mg/l			· .			3	2	33	· .	•
COD	4-900	mg/l						3	0	100 🚬		
EC								3	0	100		
TOC	1	mg/l						3	· 0 .	100		
Hardness	1	mg/l						3	0	· 100		
Alkalinity	5	mg/l		•	•	. •	· · ·	3	· 0	100		
nU	0.14	•		<6.5 &	•			2	0	100	· •	67
pri	0.005	ma/1	0.004	~8.5			0.0052		. 3	. 0	2	0/
Cyanide Chlorida	0.005	mg/l	0.004	. 0.2	•		0.0052		0	100	v	U .
Elviorida	1	mg/l		•				2	0	67		**
TEN	0.1	mg/L					•		1 /	100		
	0.1	mg/1	24					2	0	100	•	0
Ammonia as N	. 0.1	mg/1	2.4	*				2	0	100	U	. 0.
Nitrite N	0.01	mg/I					-*	3 . 2	2	. 33		
Nitrate N	0.01	mg/I	-					3	0	100		,
I otal P	0.05	mg/I	· •					3	0	100		•
Diss. P	0.01	mg/l						. 3	0	100	• ·	
MBAS	0.02	mg/l		0.5			,	3	0	100	0	0
MTBE	0.5	mg/l				1. A.		3	3	0.		
Total Phenols	0.1	mg/l						3	3	0_	-	
Oil & Grease	5	mg/l	75			•		3.	. 3	0	0	0
Turbidity	1	NTU	. 225			· ,		3	. 0	.100	0	0
TRPH	5	mg/l						2	2	0		
TSS	1	mg/l	3					-3	0	100	3 .	100
TDS	1 -	mg/l						3	0	100		
TVS	1	mg/l						3	0.	100		

Table 9.5 Comparison of Water Quality Measurements from Dominguez Pump Station with Guidelines and Standards.

151 .

Dominguez Pump				Guio	lelines and Standa	rds			Ma	ss Emission	0	
Class Constituent	ML	Units	Ocean Pian 2001 [¢]	Basin Plan	AB411	CTR (saltwater) ^b	CTR (freshwater) ^{a,b}	No. of Samples	No. of Nondetects ^r	Percent Detects	No. of Exceed.	Percent Exceed.
BACTERIA (mpn/100ml)												
Enterococcus	<20	MPN/100m l		•	104 (instantaneous)		· · · ·	3	0	100	2	66
Fecal Coliform	<20	MPN/100m l	400 (instantaneous)	200	400 (instantaneous)			3	0	100	3	100
Total Coliform	<20	MPN/100m 1	10,000 (instantaneous)		10,000 (instantaneous)		_	3	0	100	3	100
TOTAL METALS	'				. ,							
Aluminum	25	ug/L		1000		,		3	0	100	3	100
Antimony	0.5	ug/L	220 ^h	6				3	0	100	0	0
Arsenic	0.5	ug/L	32	50				3	· 0	100	. 0	0
Beryllium	0.5	ug/L	0.033 ^h	4				3	3	0	0	0
Cadmium	0.25	ug/L	. 4	5.				3	2	33	0	0
Chromium	0.5	ug/L	• .	50				3	0	100	۲ O	0
Hex Chromium	20	ug/L	8					3	3	0	0	0
Copper	0.5	ug/L	12					3	0	100	. 1	33
Iron	25	ug/L						3	0	100		
Mercury	0.2	ug/L	0.16	2 .				3	3	0	0	0
Nickel	1 -	ug/L	20	100	. •			3.	0	100	0	0
Lead	0.5	ug/L	8					3	0	100	3	100
Selenium	1	ug/L	-60	50				3	3	0	0 .	0
Silver	0.25	ug/L	2.8		,	•		3	3	0	0	0
Thallium	1	ug/L	2.0 ^h	2				3	3	0	0	0
Zinc	1	ug/L	80		•			3	0	100	1	33
DISSOLVED METALS		· ····	-		· ·							
Aluminum	25	ug/L						3	0	100		
Antimony	0.5	ug/L						3	1	67		
Arsenic	0.5	ug/L				36	150	3	0	100		
Beryllium	0.5	119/L			•			3	3	0		
Cadmium	0.5	ug/L				93	13	3	3	0	0	0
Chromium	0.25	110/L				7.5	100	3	0	100	õ	ő
Conner	0.5	ug/L				3.1	5.0		ů 0	100	3	100

Table 9.5 Comparison of Water Quality Measurements from Dominguez Pump Station with Guidelines and Standards. (continued)

152 ·

Dominguez Pump			· ·	Guidelin	es and Stand	ards			Ma	ss Emissio	D		
Class Constituent	ML	Units	Ocean Plan 2001 ^d	Basin Plan	AB411	CTR (saltwater) ^b	CTR (freshwater) ^{a,b}	No. of Samples	No. of Nondetects ^g	Percent Detects	No. of Exceed.	Percent Exceed.	
Iron	25	ug/L						3	0	100	· ·		
Mercury	0.2	ug/L						3	3	0			
Nickel	1	ug/L				8.2	29	3	0	100	0.	0	1.1
Lead	0.5	ug/L	••			8.1	1.2	- 3	0	100	$\left(2\right)$	67	List
Selenium	1	ug/L				_ 71	5.0 ^e	3	3	0	0	0	
Silver	0.25	ug/L				٠.	1.1 ^c	3	3	0	0	0	
Thallium	1	ug/L		:		••	1.2 ^c .	3	3	, 0	0	0	
Zinc	1	ug/L	_	•		81	66	•3	0	100	2	67	
CHLORINATED PESTICID	ES						-					-	
4,4'-DDD	0.05	ug/L				·		3.	3	0			
4,4'-DDE	0.05	ug/L						3 : '	3.	0			_
4,4'-DDT	0.01	ug/L		`		0.001	0.001	3	3	. 0	0	0	
Aldrin	0.05	ug/L	0.000022 ^h			1.3 °	3 ^c	3	3	0	0	0	<u>.</u>
alpha-BHC	0.05	ug/L					•	3	• 3	0	·		
alpha-Chlordane	0.5	ug/L						3	3 .	0			
alpha-Endosulfan	0.05	ug/L	· · · ·			0.0087	0.056	3 ·	3	0	0	0	
beta-BHC	0.05	ug/L						3	3	0			
beta-Endosulfan	0.05	ug/L				0.0087 .	0.056	3	3	· 0	0	0	
delta-BHC	0.05	ug/L						3	3	0			
Endosulfan Sulfate	0.05	ug/L	0.018					3 .	3	0			
Endrin	0.01	ug/L	0.004			0.0023	0.036	3	3	0	0	0	
Endrin Aldehyde	0.01	ug/L						3	`3	0			
Dieldrin	0.01	ug/L	0.00004 ^b			0.0019	0.056	3	3	0	· 0 ·	0	
gamma-BHC	0.05	ug/L				0.95 ^c	0.16 ^c	3	3	0	. 0	0	
gamma-Chlordane	0.5	ug/L						3	3	0			
Heptachlor	0.01	ug/L	0.00005 ^b			0.0036	0.0038	3	3	0	0	0	•
Heptachlor Epoxide	0.01	ug/L	0.00002 ^h			0.0036	0.0038	3	3 .	Ó	0	0	
Toxaphene	0.5	ug/L	0.00021 ^h	· · ·	•	0.0002	0.0002	· 3	3	Ó	0	0	

 Table 9.5
 Comparison of Water Quality Measurements from Dominguez Pump Station with Guidelines and Standards. (continued)

153 .

Dominguez Pump	e e			Guide	lines and Stan	dards			Ма	ss Emission	n	
Class Constituent	ML	Units	Ocean Plan 2001 ^d	Basin Plan	AB411	CTR (saltwater) ^b	CTR (freshwater) ^{a,b}	No. of Samples	No. of Nondetects [#]	Percent Detects	No. of Exceed.	Percent Exceed.
AROCLORS								3	3 .	0		
Aroclor 1016	0.5	ug/L						3	3	0	~	·
Aroclor 1221	- 0.5	ug/L						3	3	0		
Aroclor 1232	0.5	ug/L						3	. 3	0		
Aroclor 1242	0.5	ug/L		•				3.	3	0		
Aroclor 1248	. 0.5	ug/L			•			3	3	0		
Aroclor 1254	0.5	ug/L						3	3	0		
Aroclor 1260	0.5	ug/L						3	3	0		
Total PCB's	0.5	ug/L						3 . ′	3.	0		
ORGANOPHOSPHA	TE PESTICIDES											
Atrazine	1	ug/L	· ·	3			•	3	3	0	0	0
Chlorpyrifos	0.05	ug/L						3	3	· 0		
Cyanazine	· 1	ug/L	· · ·					3	3	0		
Diazinon	0.01	ug/L					· .	3	0	100		
Malathion	. 1	ug/L						3	2 3	0		
Prometryn	. 1	ug/L	1					3	3	0		
Simazine	1	ug/L		4				3	1	67	0	0
HERBICIDES		•										
2,4,5-TP (Silvex)	0.5	ug/L		50				3	3	0	0	0
2,4-D	1	ug/L	1	70				3	3	0	0	0
Glyphosate	5	ug/L		700			·	3	3	0	0 .	0.

Table 9.5 Comparison of Water Quality Measurements from Dominguez Pump Station with Guidelines and Standards. (continued)

^a Based on a hardness of 50

^b Criteria continuous concentration which equals the highest concentration of pollutant to which aquatic life can be exposed for an extended period of time without deleterious effects.

^c Criteria maximum concentration which equals the highest concentration of pollutant to which aquatic life can be exposed for a short period of time with deleterious effects

^dCriteria based on daily maximum

^eExpressed as total recoverable

^f ML= Minimum Level

⁸ Non-detect refers to a lab result value that is below them minimum level

^b Criteria based on 30 day average

Table 9.6	Summary of Toxicity Characteristics of Stormwater from Various Southern
	California Watersheds. Test Types: SF = sea urchin fertilization, MS = mysid
	survival/growth DS = daphnid survival/reproduction

Location	Date	Test Type	Number of Samples	%Toxic	TUc
Long Beach	2002-2003	SF	13	46	≤2-32
Long Beach	2002-2003	DS	13	31	1-4
Long Beach	2000-2002	SF	22	86	≤2-32
Long Beach	2000-2002	MS	20	55	1-16
Long Beach	2000-2002	DS	22	77	1->16
Los Angeles River	1997-1999	SF	4	100 ·	4-8
San Gabriel River	1997-1999	SF	4	50	≤2-4
Ballona Creek	1996-1997	SF	13	85	≤4-32
Chollas Creek	1999-2000	SF	5	100	8-32
Chollas Creek	1999	MS	3	0	1
Chollas Creek	1999	DS	3	67	1-2

Table 9.7Summary of TIE Results for Each Sample. The primary toxicant category indicates
the chemical class most strongly indicated by the results. The secondary category
indicates the chemical class indicated from partially effective TIE treatments.

Date	Station	Wate	er Flea	M	ysid	Sea	Urchin
	. •	Primary Category ^a	Secondary Category ^a	Primary Category	Secondary Category	Primary Category	Secondary Category
Wet Weat	ther Event:				· · ·		
11/8/02	Belmont	OP					
11/9/02	Bouton			'		Metal	
11/9/02	Cerritos					Metal	NPO
Dry Weat	her Events:						
9/5/02	Cerritos	NPO	Metal (?)				
5/20/03	Bouton			. 		Metal	·
5/20/03	Cerritos		·			Metal	

^a OP = organophosphate pesticide, METAL = divalent trace metal, NPO = unspecified nonpolar organic, PARTICLE = toxicity associated with particulate fraction of sample.

Table 9.8Nonparametric Spearman Correlation Coefficients Showing the Relationship
between Change in Chemical Concentration and Toxic Units for the Sea Urchin and
Water Flea Toxicity Tests. Toxic units are based on the EC50 (sea urchin fertilization,
water flea reproduction) or LC50 (water flea survival). Values in bold are statistically
significant at $p \le 0.05$ (*) or $p \le 0.01$ (***). N=35 for all constituents
except for diazinon, where n=19.

		Sea Urchin	W	ater Flea
Co	onstituent	Fertilization	Survival	Reproduction
		TUa	TUa	TUa
TSS		0.02	0.48**	0.51**
TDS		0.13	0.46**	0.43
TOC		0.36*	0.72***	0.74***
Cadmium	Dissolved	0.23	-0.04	-0.01
Chromium	Dissolved	0.09	-0.01	-0.01
Copper	Dissolved	0.57***	0.32	0.25
Lead	Dissolved	0.43*	0.42*	0.40*
Nickel	Dissolved	0.50**	0.65***	0.64***
Zinc	Dissolved	0.57***	0.44*	0.42*
Diazinon		0.04	0.26	0.22

10.0 CONCLUSIONS

The City of Long Beach's water quality monitoring program for stormwater and dry weather discharges through the City's municipal separate storm sewer system (MS4) began in the 1999/2000 wet weather season under terms of Order No. 99-060 National Pollutant Discharge Elimination Systems Municipal Permit No. CAS004003 (CI 8052). Since that time about 37 wet weather monitoring events have been conducted at the four Long Beach mass emission stations, along with 32 dry weather inspections/ monitoring events. Receiving water studies were also carried out in lower Alamitos Bay to document dry weather diversion effects on bacterial contamination and on toxicity associated with wet weather flow events. This last year, a pilot wet weather receiving water study was conducted throughout Alamitos Bay to document potential toxicity effects in the receiving waters in the Bay.

The Long Beach stormwater monitoring program has emphasized an approach of paired chemical analysis and toxicity testing of discharges of municipal stormwater. The purpose of this approach was to first identify the constituents in the City of Long Beaches stormwater discharges that exhibited potential water quality impacts. Also, since numerical stormwater quality standards do not exist, it was desired to measure the impacts of these discharges in the Long Beach receiving waters.

General conclusions that may be made from the data collected to this time are as follows:

- Exceedances of available benchmark values based upon receiving water, ocean water, drinking water or other available comparisons have been identified for some metals, primarily zinc and copper, and for diazinon and chlorpyrifos (organophosphate pesticides). Indicator bacterial counts also were high compared to standards for both wet weather and for dry weather discharges. Other factors such as dilution, duration, and transformation in the receiving waters must also be considered, along with California Toxics Rule (CTR) receiving water standards that apply to the Long Beach estuarine receiving waters or those applicable to the Los Angeles River.
- Several general temporal trends are emerging. Dissolved concentrations of cadmium, copper, nickel and lead appear to be comparable during both wet and dry weather periods. Unlike these four metals, dissolved zinc concentrations are consistently higher during storm events. Concentrations of total copper, lead and zinc are distinctly higher in association with storm flows. No distinct seasonal or year to year differences are evident in concentrations of total cadmium, total nickel, chlorpyrifos or diazinon. Characteristics of stormwater discharges from the Dominguez Gap Pump Station are consistent with earlier observations at this site. Discharges from this site tend have lower concentrations of total metals than the other mass emission sites. In addition, stormwater discharges are less frequent at Dominguez Gap because of the infiltration that occurs in the basin associated with this pump station.
- Stormwater discharges have consistently shown measured toxicity to freshwater and marine test species, but lesser or no toxicity after a series of storms or very large runoff events.
- Toxicity Identification Evaluations (TIEs) implicate organophosphate pesticides (diazinon and chlorpyrifos) in causing toxicity to the freshwater water flea (freshwater test). In addition, dissolved metals, primarily zinc and perhaps copper, are implicated in the toxicity to the purple sea urchin (marine test).
- The lower Alamitos Bay receiving water site monitored in previous years did not show measured toxicity to the marine test species (sea urchin fertilization test), consistent with the results of the laboratory toxicity tests, and with the measured dilutions in the receiving waters.

- This year's Pilot Receiving Water Program mapped the vertical and horizontal extent of a stormwater plume that developed in Alamitos Bay in association with a brief, intense storm. The storm yielded 1.21 to 1.26 inches of rain in less than five hours. The plume extended from the surface down to depths of 3 to 6 feet throughout Alamitos Bay, with salinities varying from 1 to 28 parts per thousand (ppt). Turbidity in the surface plume ranged from 45 to 80 Nephelometric Turbidity Units (NTU) in contrast to just 2 to 5 NTU in the underlying Alamitos Bay water. The plume originated primarily from the Los Cerritos Channel. Total metals were highest at the lowest salinities, indicating stormwater as the source. Concentrations of total metals in the surface plume increased by about a factor of two from the higher salinity water near the mouth of the Bay (24.7 ppt) to the lowest salinity tested (8.7 ppt). Strong spatial trends were not evident in the distribution of dissolved metals. Organophosphate pesticides (OP pesticides) were mostly not detected, with Simazine, an herbicide being the only OP pesticide detected. Receiving water CTR standards were not violated in any of the four plume monitoring sites.
- Water samples from the four plume sites were tested for toxicity using the sea urchin fertilization test and showed negligible toxicity. Toxicity testing of discharges from the mass emission sites demonstrated a similar lack of toxicity, consistent with the high dilutions due to the large rainfall and low toxicity in stormwater runoff samples from the mass emission sites.

والمجافظة والمحرور والمحرو

11.0 REFERENCES CITED

- APHA [American Public Health Association]. 1995. Standard Methods for the Examination of Water and Waste Water. (19th edition) Eaton, A.D., L.S. Clesceri, and A.E. Greenberg (Eds.). American Public Health Association, Washington, D.C.
- Bay, S., B.H. Jones, and K. Schiff. 1999. Study of the Impact of Stormwater Discharge on Santa Monica Bay. Executive Summary. Sea Grant Program, University of Southern California. Los Angeles.
- California Regional Water Quality Control Board, Los Angeles Region. 1994. Water Quality Control Plan, Los Angeles Region, Basin Plan for the Coastal Watersheds of Los Angeles and Ventura Counties.
- California Regional Water Quality Control Board, Los Angeles Region. 1999. Waste Discharge Requirements for Municipal Stormwater and Urban Runoff Discharges within the City of Long Beach. Order No. 99-060 National Pollutant Discharge Elimination Systems Municipal Permit No. CAS004003 (CI 8052), June 30, 1999.
- City of Long Beach, 1999. City of Long Beach Stormwater Management Program. Section 3. Geographic Characteristics.

City of Long Beach, 1994. City of Long Beach GIS Database. Dept. of Technology, Long Beach.

- Jirik, A.W., S.M. Bay, D.J. Greenstein, A. Zellers, and S.L. Lau. 1998. Application of TIEs in studies of urban stormwater impacts on marine organisms. Pp. 284-298 in: E. E. Little, A. J. DeLonay and B. M. Greenberg Environmental Toxicology and Risk Assessment: Seventh Volume, ASTM STP 1333. American Society for Testing and Materials.
- Kinnetic Laboratories, Inc. 2000. City of Long Beach Storm Water Monitoring Report 1999-2000. NPDES Permit No. CAS0040003 (CI 8052), July, 2000.
- Kinnetic Laboratories, Inc. and Southern California Coastal Water Research Project. 2001. City of Long Beach Storm Water Monitoring Report 2000-2001. NPDES Permit No. CAS004003 (CI 8052), July, 2001.
- Kinnetic Laboratories, Inc. and Southern California Coastal Water Research Project. 2002. City of Long Beach Storm Water Monitoring Report 2001-2002. NPDES Permit No. CAS004003 (CI 8052), July, 2002.
- Marshack, Jon. 2000. Compilation of Water Quality Goals. California Regional Water Quality Control Board, Central Region.
- Miles, S.R. and C.B. Goudey. 1998. Ecological Subregions of California. Internet number R5-EM-TP-005 NET. Available at: http://www.r5.pswfs.gov/ecoregions. [Access Date June 6, 2001]
- National Atmospheric Deposition Program (NRSP-3)/National Trends Network. (2003). NADP Program Office, Illinois State Water Survey, 2204 Griffith Dr., Champaign, IL 61820. (Isopleth maps of annual average pH in rainfall throughout the continental United States. <u>http://nadp.sws.uiuc.edu/isopleths/annualmaps.asp</u>.)

- National Climate Data Center, 2000. NCDC TD 9641 CLIM 81 1961-1990 NORMALS. Available at: http://www.worldclimate.com [Access Date June, 2002].
- Noblet, J.A., S.M. Bay, M.K. Stenstrom, and I.H. Suffet. 2001. Assessment of storm drain sources of contaminants to Santa Monica Bay. Volume VI Task B. Toxicity of suspended solids and sediments from Ballona Creek and sediments from Malibu Lagoon associated with urban stormwater runoff. University of California, Los Angeles. Los Angeles.
- Schiff, K.C., S.M. Bay, and C. Stransky. 2001. Characterization of stormwater toxicants from an urban watershed to freshwater and marine organisms. pp. 71-84 in: S. B. Weisberg and D. Elmore Southern California Coastal Water Research Project. Annual Report 1999-2000. Westminster. Southern California Coastal Water Research Project.
- Southern California Coastal Water Research Project. 1999. Characterization of stormwater toxicity from Chollas Creek, San Diego. Southern California Coastal Water Research. Westminster, CA
- State of California Department of Finance Demographic Research Unit. 2003. Population Estimate as of January 1, 2003.
- State Water Resources Control Board 2002. Water Quality Control Plan, Ocean Waters of California, California Ocean Plan 2001.
- Tiefenthaler. Liesl L, Kenneth C. Schiff, and Steven M. Bay. 2001. Characteristics of Parking Lot Runoff Produced by Simulated Rainfall. Report. Southern California Coastal Water Research Project, Westminster, CA.
- U.S. Census Bureau. 2000. State and County Quick Facts for Los Angeles County. Available at http://quickfacts.census.gov/qfd/states/06/06037.html [Accessed on 6 June 2001].
- USEPA [U.S. Environmental Protection Agency]. 1983. Methods for the chemical analyses of water and wastes. EPA-600/4-79/020. Revised March 1983.
- USEPA [U.S. Environmental Protection Agency]. 1994. USEPA Contract Laboratory Program national functional guidelines for organic data review. Vol. EPA-540/R-94/012. Washington D.C.: U.S. Environmental Protection Agency Office of Emergency Response and Remedial Response.
- USEPA [U.S. Environmental Protection Agency]. 1994. USEPA Contract Laboratory Program national functional guidelines for inorganic data review. Vol. EPA-540/R-94/013. Washington D.C.: U.S. Environmental Protection Agency Office of Emergency Response and Remedial Response.
- USEPA [U.S. Environmental Protection Agency]. 1994a. Short term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms (Third Edition). Vol. EPA-600/4-91/002. Cincinnati, OH: U.S. Environmental Protection Agency, National Exposure Research Laboratory:
- USEPA [U.S. Environmental Protection Agency]. 1994b. Short-term methods of estimating the chronic toxicity of effluents and receiving waters to marine and estuarine organisms. Edited by D. J. Klemm, G. E. Morrison, T. J. Norberg-King, W. H. Peltier and M. A. Heber. Vol. EPA/600/4-91/003. Cincinnati, OH: Environmental Monitoring Systems Laboratory:

- USEPA [U.S. Environmental Protection Agency]. 1995. Guidance on documentation and evaluation of trace metals data collected for the Clean Water Act compliance monitoring. Vol. EPA/821/B-95/002. Washington D.C.: U.S. Environmental Protection Agency, Office of Water, Engineering, and Analysis Division.
- USEPA [U.S. Environmental Protection Agency]. 1995. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to west coast marine and estuarine organisms. Edited by G. A. Chapman, D. L. Denton and J. M. Lazorchak. First ed. Cincinnati, OH: Office of Research and Development.

USEPA [U.S. Environmental Protection Agency]. 2000. <u>Federal Register, Part III</u>. "California Toxics Rule: Water Quality Standards; Establishment of Numeric Criteria for Priority Toxic Pollutants for the State of California; Rule."

4-36

Appendix B

4

2001/2002 Data Tables

	_				1						
ANALYTE	Belmont Pump 1	Belmont Pump 1FD	Belmont Pump 2	Bouton Creek 1	Bouton Creek 2	Los Cerritos Channel 1	Los Cerritos Channel 1FD	Los Cerritos Channel 2	Los Cerritos Channel 2FD	Alamitos Bay 1	Alamitos Bay 2
· · · · · · · · · · · · · · · · · · ·	12 Nov '01	12 Nov '01	24 Nov '01	13 Nov '01	24 Nov '01	12 Nov '01	12 Nov '01	24 Nov '01	24 Nov '01	12 Nov '01	24 Nov '01
CONVENTIONALS			•			1				1	
BOD5 (mg/L)	24	22	22J	31	19J '	49	-	16J	23J	•	-
COD (mg/L)	94	110	68	120	68	95	-	48	46	-	•
TOC (mg/L)	49J	57	22	52J	32	58J	•	21	22		-
EC (umhos/cm)	460	470	150	710	180	180	-	96	95	-	-
Hardness (mg/L)	100	.92	37	- 100	46	68	-	27	39	-	
Alkalinity (mg/L)	71	78	21	33	22	120	-	17	17	-	-
pH (units)	7.8	7.4	~ 7.2	7.3	7.3	7.4	. .	7.4	7.4	-	-
Cyanide (ug/L)	5U	5U	5U	.5U	5U	5U	-	5U	5U	-	-
Chloride (mg/L)	72J	63J	20J	170J	26J	52J	*	6.7J	6.2J	-	-
Fluoride (mg/L)	0.86J	0.90J	0.32J	1.3J	0.41J	0.66J	-	0.30J	0.28J	-	•
TKN (mg/L)	8.1	8.9	3.4	9.2	4.2	21	· •	4.4	3.1	· -	
Ammonia-N (mg/L)	1.1	1.1	0.73	1.2	0.88	1.5	-	0.69	0.67	-	
Nitrite N (mg/L)	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U		0.2U	0.2U	-	-
Nitrate N (mg/L)	2.9	2.9	1.5	3.0	1.6	2.5	-	1.2	1.2	-	-
Total Nitrogen	11.1	11.9	5	12.3	5.9	23.6	-	5.7	4.4	-	-
Total P (mg/L)	2.10	2.20	0.990	1.70	0.800	6.20	-	1.40	0.710	-	•
Diss. P (mg/L)	0.510	0.490	0.590	0.380	0.380	0.470	-	0.320	0.310	-	-
MBAS (mg/L)	0.20	0.24	0.14	0.18	0.17	0.16		0.18	0.16	· ·	•
MTBE (ug/L)	0.5U	0.5U	1.0U	0.5U	1.0U	0.5U	- ·	1.0U	1.0U	-	-
Tot. Phenols (mg/L)	0.1UJ	0.1UJ	0.1U	0.1UJ	0.1U	0.1UJ		. 0.1U	0.1U	-	•
Oil&Grease (mg/L)	7.4	-	5.0U	5.0U	5.0U	7,4	29	5.0U	5.0U	-	-
TRPH (mg/L)	5U	10	5U	5U_	5U	5U	· -	5U	5 <u>U</u>	-	-
TSS (mg/L)	620	580	220	380	200	1700		200	250	.	-
TDS (mg/L)	280	300	120	470	150	140	<u>.</u>	56	88	-	
Turbidity (NTU)	230	210	92	120	76	290	-	78	70	-	-
TVS (mg/L)	R ¹	R'	R'	R	R'	R	•	R'	R ¹		-
BACTERIA (mpn/100)ml)							•		.	
· Fecal Coliform	50000J	-	>160000J	50000J	>160000J	50000J	30000J	50000J	10000J	3000J	800J
Fecal Enterococci	13600	-	10160	8420	18480	13210	11020	7520	10240	820	720
Total Coliform	>160000J	-	>160000J	>160000J	>160000J	>160000J	>160000J	>160000J	>160000J	3000J	1300J

Stormwater Chemistry Results: City of Long Beach Storm Monitoring Project. (Page 1 of 5) Table 6.2.

 Bolded values indicate results that were greater than the reporting detection limit.

 R¹
 Indicates data were not valid. Data were rejected.
 U=not detected at the associated value

 Analyte not tested
 FD
 Field Duplicate
 J=estimated value

B-1

ANALYTE	Belmont Pump 1	Belmont Pump 1FD	Belmont Pump 2	Bouton Creek 1	Bouton Creek 2	Los Cerritos Channel 1	Los Cerritos Channel 1FD	Los Cerritos Channel 2	Los Cerritos Channel 2FD	Alamitos Bay 1	Alamitos Bay 2
	12 Nov '01	12 Nov '01	24 Nov '01	13 Nov '01	24 Nov '01	12 Nov '01	'12 Nov '01	24 Nov '01	24 Nov '01	12 Nov '01	24 Nov '01
TOTAL MET	ALS (ug/L)						· .				
Aluminum	4200	4000	1600	2600	1400	4800	-	1400	1400		
Antimony	2.3	2.6	1.6.1	4.4	5.4.1	5.1		2.2.J	2.9J	-	-
Arsenic	4.8	47	3.0	34	2.5	97	_	29	31		-
Beryllium	0.5011	0.5011	0.5011	0.5011	0.5011	0.5011	_	0.5011	0.5011		
Cadmium	2.000	. 3.70	1 20	1.90	1.20	6,500 E EQ	-	1 40	1 70		
Caumunt	2.80	2.70	1.30	1.80	1.50	5.50		1.00	1.70		-
Chromium	12	15	3.1	9.6	3.5	25	•	2.8	3.1	-	
Chromium	0.0211	0.0211	0.0211	0.0211	0.0211	0.0211		0.0211	0.0211		_
Copper	120	0.020	53	0.020	41	0.020		36	40	-	
Iron	5000	5500	3601	3100	17001	11000		1900.1	1900.1		-
Mercury	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	-	0.20U	0.20U	-	-
Nickel	25	23	9.9	16	9.3	28	-	8.8	9.0	-	-
Lead	150	190	59	88	45	370	-	43	46	-	
Selenium	1.0U	1.0U	1.0U	1.2	1.8	1.0U		1.0U	2.0	-	-
Silver	0.25U	0.25U	0.25U	0.76	0.25U	0.25U	-	0.25U	0.25U	-	
Thallium	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	-	1.0U	1.0U	-	-
Zinc	830	820	720	710	760	1500	•	770	780	-	
DISSOLVED	METALS (u	g/L)									
Aluminum	53	46	25	- 48 -	- 64	210	-	110	110	-	-
Antimony	2.5	2.2	1.3	1.7	1.3	2.1		1.0	0.98		-
Arsenic	1.9	1.8	1.2	1.3	1.1	1.9	-	1.2	1.1	•	
Beryllium	0.50U	0.50U	0.50U	0.50U	0.50U	0.50U	•	0.50U	0.50U	-	-
Cadmium	0.28	0.28	0.25U	0.25U	0.25U	0.25U	-	0.25U	0.25U	-	
Chromium	1.0	0.91	0.50U	1.2U	0.69	· 1.3	-	0.79	0.71	-	-
Copper	9.5	9.3	6.8	10	10 '	7.4	-	7.9	7.4	-	-
Iron	50U	50U	360	50U	300	94	-	110	160		-
Mercury	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	-	0.20U	0.20U	-	<u> </u>
Nickel	8.7	8.5	3.7	6.4	4.1	6.3	•	3.3U	_3.0U	-	-
Lead	2.7	2.5	1.7	.3.6	2.7	3.1	-	1.7	1.6	• *	-
Selenium	1.0U	1.0U	1.0U	1.0U	1.4	1.00	•	1.0U	1.0U	-	<u> </u>
Silver	0.25U	0.25U	0.25U	0.25U	0.25U	0.25U	-	0.25U	0.25U	-	
I hallium	1.00	1.00	1.0U	1.00	, 1.0U	1.00	-	1.00	1.00	•	-
Linc	- 49	48	44	91	72	48	-	78	65	- '	-

Table 6.2. Stormwater Chemistry Results: City of Long Beach Storm Monitoring Project. (Page 2 of 5)

 Bolded values indicate results that were greater than the reporting detection limit.

 R¹
 Indicates data were not valid. Data were rejected.
 U=not detected

 Analyte not tested.

 FD
 Field Duplicate

 U=not detected at the associated value

B-2

J=estimated value

I'my/L

										_	
ANALYTE	Belmont Pump 1	Belmont Pump 1FD	Belmont Pump 2	Bouton Creek 1	Bouton Creek 2	Los Cerritos Channel 1	Los Cerritos Channel 1FD	Los Cerritos Channel 2	Los Cerritos Channel 2FD	Alamitos Bay 1	Alamitos Bay 2 ,
	12 Nov '01	12 Nov '01	24 Nov '01	13 Nov '01	24 Nov '01	12 Nov '01	12 Nov '01	24 Nov '01	24 Nov '01	12 Nov '01	24 Nov '01
CHLORINATED PE	STICIDES	(ug/L)									
4,4'-DDD	. 0.05U	ົ້0.05ປ	0.05U	0.05U	0.05U	0.05U		0.05U	0.05U	. .	
4.4'-DDE	0.05U	0.05U	0.05U	0.05U	0.05U	0.05U	-	0.05U	0.05U	-	-
4.4'-DDT	0.01U	0.01U	0.04	0.01U	0.05	0.01U	-	0.01U	0.01U	-	-
Aldrin	0.005U	0.005U	0.066	0.005U	0.042	0.005U	•	0.071	0.079		•
alpha-BHC	0.0511	0.0511	0.05U	0.050	0.07	0.05U	-	0.05U	0.05U	-	-
alpha-Chlordane	0.5U	0.50	0.5U	0.5U	0.5U	0.50	-	0.5U	0.50	·	-
alpha-Endosulfan	0.05U	0.05U	0.05U	0.05U	0.05U	0.05U	-	0.05U	0.05U	• •	_
beta-BHC	0.05U	0.05U	0.05U	0.05U	0.05U	0.05U	-	0.05U	0.05U	-	-
beta-Endosulfan	0.05U	0.05U	0.05U	0.05U	0.05U	0.05U	-	0.05U	0.05U	-	
Delta-BHC	0.05U	0.05U	0.05U	0.05U	0.05U	0.05U	-	0.05U	0.05U	-	-
Endosulfan Sulfate	0.05U	0.05U	0.05U	0.05U	0.05U	0.05U	-	0.05U	0.05U	- .	-
Endrin	0.01U	0.01U	0.01U	0.01U	0.01U	0.01U	-	0.01U	0.01U	-	-
Endrin Aldehyde	0.01U	0.01U	0.01U	0.01U	0.01U	0.01U	-	0.01U	0.01U	-	-
gamma-BHC											
(lindane)	0.05U	0.05U	0.05U	0.05U	0.05U	0.05U	-	0.05U	0.05U	-	-
gamma-Chlordane	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U	-	0.5U	0.5U		<u></u>
Heptachlor	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	-	0.012	0.011	-	•
Heptachlor Epoxide	0.01U	0.01U	0.01U	0.01U	0.01U	0.01U	-	0.01U	0.01U	-	-
Total PCBs	1.0U	<u>1.0U</u>	1.00	1.0U	1.0U	1.0U	-	1.0U	1.0U	-	-
Toxaphene	10	<u>10</u>	10	10	IU	10	-	10	10	-	
AROCLORS (ug/L)				_		-		•			
Arochlor 1016	10	.1U	1U	1U.	. IU 1	1U	-	1U	1U	-	-
Arochlor 1221	10	IU	10	1U	IU	·1U	-	1U	1U	-	-
Arochlor 1232	IU	· 1U	IU	10	IU	IU	- ·	IU	IU	-	-
Arochlor 1242	10	10	1U	1U	1U	10	-	10	1U ·	-	-
Arochlor 1248	10	IU	IU	۱U	IU	IU.	-	IU	1U .	-	-
Arochlor 1254	<u>1U</u>	<u>1U</u>	<u>1U</u>	10	IU	<u>1U</u>	· -	10	10	-	
Arochlor 1260	<u>1U</u>	<u>1U</u>	<u>1U</u>	1U	1U	10	-	1U	1U	-	-
ORGANOPHOSPH/	TE PESTIC	CIDES (ug/L	.)								
Atrazine	IU	10	1U	1Ų	10	ĨŬ	-	1Ų	10	-	-
Dursban(chlorpyrifos)	0.13	0.07	0.05U	0.17	0.05U	0.05U	-	0.28	0.31	-	-
Cyanazine	10	<u>1U</u>	10	10	10	10	•	10	10	_	
Diazinon	3.0	2.4	0.92	0.43	0.42	0.01U	-	0.41	0.35	-	-
Malathion	1.1	1,3	· 1.4	1.0U	1.0U	1.0U ·	-	1.0U	1.0U	-	-
Prometryn	10	10	10	10	10	<u> </u>	•	<u> 10 </u>	1U	-	
Simazine	111	111	111	111	111	111	-	111	111		-

J=estimated value

Stormwater Chemistry Results: City of Long Beach Storm Monitoring Project. Table 6.2. (Page 3 of 5)

 Bolded values indicate results that were greater than the reporting detection limit.

 R¹
 Indicates data were not valid. Data were rejected.
 U=not detected at the associated value

 Analyte not tested.

 FD
 Field Duplicate

B-3

Stormwater Chemistry Results: City of Long Beach Storm Monitoring Project. Table 6.2. (Page 4 of 5)

1							· · ·				
ANALYTE	Belmont Pump 1	Belmont Pump 1FD	Belmont Pump 2	Bouton Creek 1	Bouton Creek 2	Los Cerritos Channei 1	Los Cerritos Channel 1FD	Los Cerritos Channel 2	Los Cerritos Channel 2FD	Alamitos Bay 1	Alamitos Bay 2
	12 Nov '01	12 Nov '01	24 Nov '01	13 Nov '01	24 Nov '01	12 Nov '01	12 Nov '01	24 Nov '01	24 Nov '01	12 Nov '01	24 Nov '01
HERBICIDES (ug/L)				. •							
2,4,5-TP (Silvex)	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U	-	0.5U	0.5U	-	-
2,4-D	4UJ	4UJ	IUI	. 4UJ	101	4UJ	•	1UJ	1UJ	-	-
Glyphosate	5U	5U	5UJ	5U	5UJ	5U		5UJ	5UJ	-	-
SEMIVOLATILES (ug/L)	-										
1,2,4-Trichlorobenzene	10	10	IU	· 1U	1U	1U	•	10	1Ü		-
1,2-Dichlorobenzene	1U	1U	1U	1,U	10	1Ų	•	10	1U	-	-
1,2-Diphenylhydrazine	10	10	1U	1U ·	۱U	10	-	1U	. 1U	-	-
1,3-Dichlorobenzene	1U	1U ⁻	10	10	1U -	1U	•	10	1U	-	
1,4-Dichlorobenzene	10	. 1U	1U	10	IU ·	10	-	IU	1U	-	-
2,4,6-Trichlorophenol	1U -	1U	1U	10	IU	1U	· •	1U	1U	•	-
2,4-Dichlorophenol	2U -	2U	2U	2U	2U-	2U	•	2U	· 2U	-	•
2,4-Dimethylphenol	JU	1U	2U	10	2U	10	-	2U'	2U .	-	-
2,4-Dinitrophenol	• 5.0U	5.0U	5.0U	5.0U	5.2	5.0U	• .	5.5	7.1	· •	-
2,4-Dinitrotoluene	10	1U	10	10	IU	10	•	10	IU	-	- ·
2,6-Dinitrotoluene	10	iŪ	iŭ	10	< iU	- 10	-	1U	1U	-	-
2-Chloroethylvinyl ether	-	-	-	· _ ·	-	• 、	•	-		-	
2-Chloronaphthalene	10	10	UL	10	IU	iU	-	1U	10	-	-
2-Chlorophenol	2U	2U	20	20	2U	2U	-	2U	20	-	· _
2-Nitrophenol	ĨŪ	ĩŪ	20	10	2U	10		2U	2U	-	· _
3.3'-Dichlorobenzidine	1U	1U	211	10	2U	10	<u> </u>	2U	2U	-	
4.6 Dinitro-2-methylphenol	20	20	5U	20	5U	2U		5U	5U	-	·_
4-Bromophenyl Phenyl Ether	10	10	- 1U	IU	ĩŬ	10		10	1U	· -	-
4-Chloro-3-methylphenol	111	111	111	111	111	1U		10	10		-
4-Chlorophenyl Phenyl Ether	10	10	10	10	10	10	•	10	iŭ	-	-
4-Nitrophenol	1.5	18	5.00	1.9	6.6	1.0U	-	5.9	6.3	-	-
Aconombihana	115	110	111	117	111	111		111	111		
Acenaphinene	10	10	10	10	10	10		10		/	
Anthracene	10	10		10			•	10	10	-	-
Denzidina	10	10	10	10	10	10		10	10	-	-
	10	10	10	10	. 10		•	. 10	10	-	-
Denzo(a)Anthracene	10 -	10		10			•			-	-
Denzo(a)Pyrene	10	10	20	10	20	10	-	20	20	-	-

 Bolded values indicate results that were greater than the reporting detection limit.
 Indicates data were not valid. Data were rejected.
 U=not detected at the associated value.

 Analyte not tested.
 Analyte not tested.
 Indicates data were not valid.
 Indicates data were not valid.
 J=estimated value

B-4

Table 6.2

Stormwater Chemistry Results: City of Long Beach Storm Monitoring Project. (Page 5 of 5)

ANALYTE	Belmont Pump 1	Belmont Pump 1FD	Belmont Pump 2	Bouton Creek 1	Bouton Creek 2	Los Cerritos Channel 1	Los Cerritos Channel 1FD	Los Cerritos Channel 2	Los Cerritos Channel 2FD	Alamitos Bay 1	Alamitos Bay 2
	12 Nov '01	12 Nov '01	24 Nov '01	13 Nov '01	24 Nov '01	12 Nov '01	12 Nov '01	24 Nov '01	24 Nov '01	12 Nov '01	24 Nov '01
SEMI-VOLATILES (ug/L)									· · · · ·		
Benzo(b)Fluoranthene	IU	10	10	10	10	10	-	10	10	-	-
Benzo(ghi)Perylene	10	10	2U	10	20	10		20	20	-	-
Benzo(k)Fluoranthene	10	10	10.	10	10	· 10	-	10	. 10	•	
Bis(2-chloroethoxy)Methane	2U	2U	10U	20	100	20	-	100	100	-	· •
Bis(2-chloroethyl)Ether	10	10	10U	10	100	10	•	100	100	• .	-
Bis(2-chloroisopropyl)Ether	10	10	2U	10	2U	10	•	_2U ,	2U		
Bis(2-Ethylhexyl)Phthalate	1.0U	1.0U	(8.0))	1.0U	10	1.0U	-	8.8	9.4	-	· •
Butylbenzyl Phthalate	1.0 U	1.0U	1.1	1.0U	1.7	1.0 U	-	1.2	1.6	-	- '
Chrysene	10	10	1U	10	1U	10 .	-	10	10	-	-
Dibenzo(a,h)Anthracene	1U .	. IU	2U	1U	2U	1U	•	2U	2U	-	-
Dieldrin	0.01U	0.01U	0.01U	0.01U	0.01U	0.01U	-	0.13	0.01U	-	-
Diethyl Phthalate	10	1U	4U	10	4U	10	-	<u>4U</u>	4U	-	
Dimethyl Phthalate	10	10	10	1U	1U -	1U	- ·	1Ū	1U	-	-
Di-n-Butyl Phthalate	2.4	1.6	4.0U	1.3UJ	4.0U	2.3	•	4.0Ú	4.0U	-	•
Di-n-Octyl Phthalate	1.0U	1.0U	1.7	1.1	4.5	1.0U	-	4.4	4.5	-	-
Fluoranthene	1U	. IU -	1U	1U	1U	10	-	10	10	-	•
Fluorene	10	1U	1U	1U	1U	- 1U	-	1,U	1U	•	-
Hexachlorobenzene	10	10	10	IU	. 1U	10	-	-1U	10	-	-
Hexachlorobutadiene	10 -	IU	2U	IU	2U	1U	•	2U	2U	•	-
Hexachlorocyclopentadiene	1U	1U -	2U	1U	2U	1U	•	2U	2U	•	-
Hexachloroethane	10	1U	2U	· 10	2U	1U	-	2U	2U	-	
Indeno(1.2.3-c.d)Pyrene	iŭ	10	20	10	2U	iŬ	-	20	2U	-	•
Isophorone	10	1U	5U	10	5U	10	-	5Ū	5U	-	-
Naphthalene	10	10	10	10	10	1U		10	1U	-	<u> </u>
Nitrobenzene	111	111	511	111	511	111		511	511	_	_
N Nitraadimathulamina	10	10	50	10	50	10 .	-	50	<i>30</i> , .	-	-
N Nitrosodi n Propulamine		511	-	511	1011	511		1011	1011	-	
N-Nitrosodinhenvlamine	111	111	211	111	. 20	10	-	211	211		-
Pentachlorophenol	100	15	83	101	500	100	-	5.011	500		-
Dhenanthrene '	111	111	111	1.00	111	111		111	111		
Pyrene	10	10	10	10	10		-	iŭ .	10	_	
Phenol	10	.10	2 011	10	2.00	5.7	-	2.011	2.00	_	-

 Bolded values indicate results that were greater than the reporting detection limit.
 Production of the second second

Table 6.3.Monitored Dry Weather Events, 1999-2002

Station	Event 1 10 Apr. '00	Event 2 21 Jun. '00	Event 3 29 Jun. '00	Event 4 5 Jun.'01	Event 6 16 Aug 01 9,14 May 02
Bouton Creek		×	x	×	×××
Belmont Pump	· .	x	x	×	X
Los Cerritos Channel				X	X
Dominguez Gap		, X1	X ¹	X ¹	, X1 , X1
Alamitos Bay	. ×	* X	X	×	X

1 Intake to basin was observed to be dry. Therefore, no samples were collected.

Shading indicates 2001/2002 Dry Weather Surveys included in this report. Data from Event 5 reported in earlier letter report that is included as Appendix F. Summary data from this event are included in the data tables.

Table 6.4. Dry and Wet Weather Bacteria Results for Alamitos Bay Receiving Waters (2001/2002)

Date	16 Aug '01 ²	12 Nov '01 ¹	24 Nov '01 ¹	9 May '02 ²
Total Coliform	. 11	3000J	1300J	240
Fecal Coliform	4	30003	800J	7
Fecal Enterococci	$1.0U^{3}$	820	. 720	10

1. Wet weather sampling event. Data also included in Table 6.3 for comparison with stormwater monitoring sites.

2. Dry weather sampling event.

3. Fecal Streptococci was measured during the 16 Aug 2001 survey. Analytical requirements were changed to enterococci for all subsequent events.

Table 6.5. Field Measurements for Bouton Creek, Belmont Pump, and Los Cerritos Channel, Dry Weather Season (2001/2002).

	Bouton	Creek	Belmon	t Pump	Los Cerritos		
Date	8/16/01	5/14/02	8/16/01	5/9/02	8/16/01	5/9/02	
Time	02:00	07:30	06:40	07:20	05:35	05:00	
Temperature (⁰ C)	20.8	17.0	21.8	16.1	19.9	13.9	
рН	8.15	8.41	8.45	8.39	8.17	8.72	
Conductivity (mmho/cm)	7.17	9.57	2.63	2.21	0.84	0.66	
Flow (cfs)	1.48	0.15 ³	00864	1.824	3.55 ¹	2.75 ¹	
Dissolved Oxygen (mg/L)	2.27 ²	9	5.17	11 .	2.77	9	

1. Flow was determined by measuring the depth and width of the water channel, as well as the velocity of a floating object in the water.

2. Value based on 100% saturation conditions, measured temperature and salinity values.

3. The flow rate was determined with the KLASS flow meter installed at the station.

4. The flow rate was determined by observing changes in water level in the sump area over a 24-hour period.

ANALYTE	Belmont Pump	Los Cerritos Channel	Bouton Creek	Bouton Creek FD	Alamitos Bay	Alamitos Bay	Belmont Pump	Los Cerritos Channel	Bouton Creek	Bouton Creek FD
	16 Aug '01	16 Aug '01	16 Aug '01	16 Aug '01	16 Aug '01	9 May '02	9 May '02	9 May '02	14 May '02	14 May '02
CONVENTIONALS					•					
Biochemical Oxygen Demand (mg/L)	5.0U	27J	26J	21J.	-	-	10U	18	10U	10U
Chemical Oxygen Demand (mg/L)	180	210	100	760	-	-	220	100	440	390
Total Organic Carbon (mg/L)	11U	13U	15U	12U	-	-	8	24	18	20
Specific Conductance (umhos/cm)	2800	840	7800	7700	· -		2700	650	12000	12000
Total Hardness (mg/L)	350	170	890	910		-	330	130	1300	1300
Alkalinity, as CaCO3 (mg/L)	440	150	140	140	-	-	380	. 120	170	170
pH (units)	8.4	8.6	7.8	8.0	-	-	8.41	9.66	7.71	7.72
Cyanide (ug/L)	5.0U	5.0U	5.0U	5.0U	-		5UJ	5UJ	5UJ	5UJ Î
Chloride (mg/L)	560	120	2500	2700	-	-	570	. 83	4200	4000
Fluoride (mg/L)	1.6	0.69	0.9	0.91	· -	-	1.7	0.76	1.7	1.4
Total Kjeldahl Nitrogen (mg/L)	0.90	1.8	4.1	1.8	-	-	0.89J	1.8J	1.5	1.7
Total Ammonia-Nitrogen (mg/L)	0.13	0.58	0.11	0.23	-		0.11	0.15	0.1Ų	0.1U
Nitrite Nitrogen (mg/L)	0.2U	0.2U	0.2U	0.2U	, -	_	0.2U	0.1U	· IU	IU
Nitrate Nitrogen (mg/L)	1.3	0.068	. 0.01U	0.01U	-	-	1.2	0.1U	1U [.]	IU
Total Nitrogen	2.3	2.0	4.2	1.9	-	-	2.19	2	2.6	2.8
Total Phosphorus (mg/L)	0.86	0.12	0.36	0.11	-		0.86	0.17	0.11	0.13
Dissolved Phosphorus (mg/L)	0.87	0.046	0.025	0.029	- '	-	0.96	0.046	0.031	0.031 ·
MBAS (mg/L)	0.046	0.054	0.064	0.040	-	-	0.037	0.02U	0.037	0.033
MTBE (ug/L)	1.0U	1.0U	1.0U	1.0U	-	_	1U	1U ·	0.5U	0.5U
Total Phenols (mg/L)	0.1U	0.1U	0.1U	0.1U		-	0.1UJ	0.1UJ	0.1UJ	0.1UJ
Oil & Grease (mg/L)	5.0U	-	5.0U	5.0U	-		5U	5U	5U .	- 5U
TRPH (mg/L)	5.0U	5.0U	5.0U	5.0U	-	· _	5U	5U	5U	5U
Total Suspended Solids (mg/L)	1.0U	58	10	10	-	-	2	2	IU	IU
Total Dissolved Solids (mg/L)	1800	600	5100	5100	-	-	1600	430	7400	7400
Turbidity (NTU)	11	36	10	9.2	-	-	1.8	4.9	2.5	2.6
Total Volatile Solids (mg/L)	1.0U	1. 0 U	1.0U	1.0U	[.]	-	. R ¹	\mathbf{R}^{1}	\mathbb{R}^{1}	R
BACTERIA (mpn/100ml)				· · ·	•					
Fecal Coliform	2,300	2300	230	2300	4	7	2400	1100	170	300
Fecal Enterococci		-	-	· - ·	~ _	10	1760	910	1720	910
Total Coliform	8,000	30,000	3,000	2300	11	240	90000	3000	17000	5000
Bolded values indicate results that were R ⁴ Indicates data were not	greater than the r valid. Data were	reporting detection rejected.	on limit. U	J=not detected a	t the associated v	value J=est	imated value			·

Table 6.6. Dry Weather Chemistry Results: City of Long Beach Storm Monitoring Project. (Page 1 of 5)

Analyte not tested Field Duplicate

-FD

ANALYTE	Belmont Pump	Los Cerritos Channel	Bouton Creek	Bouton Creek FD	Alamitos Bay	Alamitos Bay	Belmont Pump	Los Cerritos Channel	Bouton Creek	Bouton Creek FD
	16 Aug '01	16 Aug '01	16 Aug '01	16 Aug '01	16 Aug '01	9 May '02	9 May '02	9 May '02	14 May '02	14 May '02
TOTAL METALS (ug/L)		-				, ,				
Aluminum	140	97	84	88	-	-	31	25	39	29
Antimony	-	· _	-		-	-	0.6	3.7	1.1	1
Arsenic	3.9U	1.2U	1.8U	1.6U	`-	-	3.3	7	0.5U	0.5U
Beryllium	0.50U	0.50U	0.50U	0.50U	-	-	0.5U	0.5U	0.5U	0.5U
Cadmium	0.25U	0.57	0.25U	0.25U	-	-	0.25U	0.36	0.25U	0.25U
Chromium	2.5	1.5	2.4	2.4	- ·	· _	51	15	41	- 36
Hexavalent Chromium	4.91J	6.20	4.91J	5.43	-	-	0.02U	0.02U	0.02U	0.02U
Copper	4.8U	17	15	16	-	-	5.4	22	11	10
Iron	330	320	220	220	-		100J	50UJ ·	310J	280J
Mercury	0.20U	3.5	0.20U	0.20U	-	-	0.2U	0.2U	0.2U	0.2U ·
Nickel	5.6	7.5	5.0	5.2	-	- '	2.6	3.5	6.3	5.6
Lead	0.99	3.5	3	3.5	-	-	0.68	0.78	1.7	1.6
Selenium	-		- `	-	-	- .	2.5	2.2	4.7	2.7
Silver	-	-	-	-	÷ .	-	0.25U	0.62	0.56	0.25U
Thallium			-	-	-		1U .	• IU •	1U	1U
Zinc	13	43	21	23	_		19	17	41	39
DISSOLVED METALS (ug/L)										
Aluminum	140	88	80	75	-	- '	25U	25U	25U	25U
Antimony	`. -	-		-	-	-	0.5U	1.2	0.7	0.7
Arsenic	3.9U	1.1U	1.5U	1.6U	-	-	2.3	4.7	0.5U	0.5U
Beryllium	. 0.5U	0.5U	0.5U	0.5U	-	-	0.5U	0.5U	0.5U	0.5U
Cadmium	0.25U	0.5	0.25U	0.25U	-	-	0.25U	0.25U	0.25U	0.25U
Chromium	2.4	1.3	2.4	2.1	-	-	39	8.8	22	22
Copper	4.8	16	15	14	-	-	· 3.8	16	6.7	6.7
Iron	50	40	60	70	-	· -	110	50U	210	220
Mercury	0.2U	0.2U	0.2U	0.2U	-	-	0.2U	0.2U	0.2U	0.2U
Nickel	5.4	7.2	4.9	5.1	-	-	1.6	2.5	3.9	3.8
Lead	0.97	3.2	2.9	3	-	- 1	0.5U	0.5U	0.5U	0.5U
Selenium	-	··	·	-		-	1.9	. 1.1	4.2	1U ⁻
Silver	-	-	_	-	-		0.25U	0.25U	0.25U	0.25U
Thallium	· _	-		-	-	-	1U -	1U -	1U	1U
Zinc	13	39	21	20	<u> </u>	· -	12	9.3	23	26

Table 6.6. Dry Weather Chemistry Results: City of Long Beach Storm Monitoring Project. (Page 2 of 5)

Bolded values indicate results that were greater than the reporting detection limit. U=not detected at the associated value J=estimated value

Indicates data were not valid. Data were rejected. R¹

- Analyte not tested FD Field Duplicate.

ANALYTE	Belmont Pump	Los Cerritos Channel	Bouton Creek	Bouton Creek FD	Alamitos Bay	Alamitos Bay	Belmont Pump	Los Cerritos Channel	Bouton Creek	Bouton Creek FD
	16 Aug '01	16 Aug '01	16 Aug '01	16 Aug '01	16 Aug '01	9 May '02	9 May '02	9 May '02	14 May '02	14 May '02
CHLORINATED PESTICIDES (ug/	L)							_		
4,4'-DDD	0.5U	0.05U	0.05U	0.05U	-	-	0.05U	0.05U	0.05U	0.05U
4,4'-DDE	0.05U	0.05U	0.05U	0.05U	-	-	0.05U	0.05U	0.05U	0.05U
4,4'-DDT	0.05U	0.01U	0.01U	0.01U	_		0.01U	0.01U	0.01U	0.01U
Aldrin	0.005U	0.005U	0.005U	0.005U	-	-	0.005U	0.005U	0.005U	0.005U
alpha-BHC	0.05U	0.05U	0.05U	0.05U	-	-	0.01U	0.01U	0.01U	0.01U
alpha-Chlordane	0.5U	0.5U	0.5U	0.5U	- ·		0.1U	0.1U	0.1U	0.1U
alpha-Endosulfan	0.05U	0.05U	0.05U	0.05U		-	0.02U	0.02U	0.02U	0.02U
beta-BHC	0.05U	0.05U	0.05U	0.05U	-	-	0.005U	0.005U	0.005U	0.005U
beta-Endosulfan	0.05U	0.05U	0.05U	0.05U	-	-	0.01U	0.01U	0.01U	0.01U
delta-BHC	0.05U	0.05U	0.05U	0.05U	-	-	0.005U	0.005U	0.019	0.021
Endosulfan Sulfate	0.05U	0.05U	0.05U	0.05U	-	-	0.05U	0.05U	0.05U	0.05U
Endrin	0.01U	0.01U	0.01U	0.01U	-		0.01U	0.01U	0.01U	0.01U
Endrin Aldehyde	0.01U	0.01U ·	0.01U	0.01U	-	-	0.01U	0.01U ·	0.01U	0.01U
gamma-BHC (lindane)	0.05U	0.05U	0.05U	0.05U	-	-	0.01U	0.01U	0.01U	0.01U
gamma-Chlordane	0.5U	∽ 0.5U	0.5U	0.5U	-	-	0.02U	0.02U	0.02U	0.02U
Heptachlor	0.01U	0.01U	0.01U	0.01U	-		0.1U	0.1U	0.1U	0.1U
Heptachlor Epoxide	0.01U	0.01U	0.01U	0.01U	-	-	0.01U	0.01U	0.01Ú	0.01U
Total PCBs	1.0U	1.0U	1.0U	1.0U	-		0.01U	0.01U	0.01U	0.01U
Toxaphene	0.5U	0.5U	0.5U	0.5U	-		0.5U	0.5U	0.5U	0.5U
AROCLORS (ug/L)	-									
Arochlor 1016	1.0U	1.0U	1.0U	1.0U	-	· -	0.5U	0.5U	0.5U	0.5U
Arochlor 1221	1.0U	1.0U	1. 0 U	1.0U	-	÷	0.5U	0.5Ú	0.5U	0.5U
Arochlor 1232	1.0U	1.0U	1.0U	1.0U	-	-	0.5U	0.5U	<u>0.5U</u>	0.5U
Arochlor 1242	1.0U	1.0U	1.0U	1.0U	-		0.5U	0.5U	0.5U	0.5U
Arochlor 1248	1.0U	1.0U	1.0U	1.0U	-	-	0.5U	0.5U	0.5U	0.5U
Arochlor 1254	1.0U	1.0U	1.0U	1.0U	-		0.5U	0.5U	0.5U	0.5U
Arochlor 1260	1.0U	1.0U	1.0U	[•] 1.0U	-	-	0.5U	-0.5U	0.5U	0.5U
Atrazine	1.0U	1.0U	1.0U	1.0U	-	-	2U	2U	2 <u>U</u>	2U
Dursban (chlorpyrifos)	0.05U	0.05U	0.05U	0.05U	-	-	0.05U	0.05U	0.05U	0.05U
Cyanazine	1.0U	1.0U	1.0U	1.0U	-	-	2U	2U	2U	2U
Diazinon	0.22	0.096	0.15	0.15	-	-	0.12	0.32	0.33	0.34
Malathion	0.1U	0.1U	0.1U	0.1U	÷.,	-	IU	IU	IU	IU
Prometryn	1.0U	1.0U	1.0U	1.0U	-	-	2U	2U	2U	2U
Simazine	1.0U	1.0U	1.0U	1.0U	-	-	2U	2U	2U	2U .

Table 6.6. Dry Weather Chemistry Results: City of Long Beach Storm Monitoring Project. (Page 3 of 5)

Bolded values indicate results that were greater than the reporting detection limit. U=not detected at the associated value J=estimated value

R Indicates data were not valid. Data were rejected.

• •

3

- Analyte not tested FD Field Duplicate.

٢.

ANALYTE	Belmont Pump 16 Aug '01	Los Cerritos Channel 16 Aug '01	Bouton Creek 16 Aug '01	Bouton Creek FD 16 Aug '01	Alamitos Bay 16 Aug '01	Alamitos Bay 9 May '02	Belmont Pump 9 May '02	Los Cerritos Channel 9 May '02	Bouton Creek 14 May '02	Bouton Creek FD 14 May '02
HERBICIDES (ug/L)				O			K	*	é	· · · · · · · · · · · · · · · · · · ·
2.4.5-TP (Silvex)	0.5U	0.5U	0.5U	0.5U	. .	· _ ·	0.5U	0.5U	0.5U	• 0.5U
2.4-D	IU .	. IU	1U	1.0U		-	1.2	5.5	3	3
Glyphosate	5U	5U -	5U	5.0U	-	-	5UJ	5UJ	5ŪJ	5UJ
SEMI-VOLATILES (ug/L)				•		• •	· · · · · ·			
1,2,4-Trichlorobenzene	0.5U	0.5U	0.5U	0.5U	-	- ·	1U	IU	1U	1U
1,2-Dichlorobenzene	0.5U	0.5U	0.5U	0.5U	- ·	· -	1U	1U	IU	1U
1,2-Diphenylhydrazine	3.0U	3.0U	0.5U	3.0U	-	-	ΉU	. 1U	1U	IU
1,3-Dichlorobenzene	0.5U	0.5U	0.5U	0.5U	-	·_ ·	IU	1U	1U	IU
1.4-Dichlorobenzene	0.5U	0.5U	0.5U	0.5U	· -	-	1U ·	1U	1U -	· 1U
2,4,6-Trichlorophenol	1.0U	1.0U	1.0U	1. 0 U	-	-	1U	1U	1U	1U
2,4-Dichlorophenol	-2.0U	2.0U	2.0U	2.0U	-	-	2U	2U	2U	2U
2,4-Dimethylphenol	2.0U	2.0U	2.0U	2.0U	-	-	IU	1U	1U	1U
2,4-Dinitrophenol	3.0U	3.0U	3.0U	3.0U		-	5U	5U	5U	5U
2,4-Dinitrotoluene	0.5U	0.5U	0.5U	0.5U		-	IU	1Ú	1U	· 1U ·
2,6-Dinitrotoluene	0.5U	0.5U	0.5U	0.5U	-		1U	1U	· 1U	1U
2-Chloroethylvinyl ether	-	- '	-	- '	-	-	_`		-	·
2-Chloronaphthalene	-	-	-	-	-	- `	10	1U	10	1U
2-Chlorophenol	2.0U	2.0U	2.0U	2.0U	· _	- '	2U	2U	2U	2⊍ .
2-Nitrophenol	3.0U	3.0U	3.0U	3.0U	-	-	1U	1U	1U	- IU
3,3'-Dichlorobenzidine	3.0U	3.0U	3.0U	3.0U	-	-	1U	1U	1U	10
4,6 Dinitro-2-methylphenol	3.0U	3:0U	3.0U	3.0U	-	-	2U	2U	2U	2U
4-Bromophenyl Phenyl Ether	1.0U	1.0U	1.0U	1.0U	-	- ·	1U	· 1U	1U	· 1U
4-Chloro-3-methylphenol	. 3.0U	3.0U	3.0U	3.0U		-	IU	1U	1U	1U
4-Chlorophenyl Phenyl Ether	1.0U	1.0U	1.0U	1.0U	-	· _	1U	1U	1U	IU
4-Nitrophenol	3.0U	3.0U	3.0U	3.0U	- ·	-	1U	1U	1U	1U
Acenaphthene	0.5U	0.5U	0.5U	0.5U	-	-	· 1U	1U	1U	1U
Acenaphthylene	0.2U	0.2U	0.2U	0.2U	-	- '	· 1U	1U	1U	1U
Anthracene	0.5U	.0.5U	0.5U	0.5U	-	-	1U	1U	1U	1U
Benzidine	3.0U	3.0U	3.0U ·	3.0U	-	-	IU	1U	1U	10
Benzo(a)Anthracene	1.0U	1.0U	1.0U	1. 0 U	-	· _	1U ~	1U	1U	1U
Benzo(a)Pyrene	1.0U	1.0U	1.0U	1.0U	- .	-	1 U	1U	1U	1U
Benzo(b)Fluoranthene	1.0U	1.0U	1.0U	1.0U	-	-	IU	1U	1U	1U -
Benzo(ghi)Perylene	-		-	. .	-	-	1U	1U	1U	1U
Benzo(k)Fluoranthene	1.0U	1.0U	1.0U	1.0U		-	1U	1U	· 1U	1U
			·							

Dry Weather Chemistry Results: City of Long Beach Storm Monitoring Project. (Page 4 of 5) Table 6.6.

Bolded values indicate results that were greater than the reporting detection limit. R¹ Indicates data were not valid. Data were rejected.

Ъ

Analyte not tested Field Duplicate.

FD

· · · · · · · · · · · · · · · · · · ·	Belmont Pump	Los Cerritos Channel	Bouton Creek	Bouton Creek FD	Alamitos Bay	Alamitos	Belmont	Los Cerritos	Bouton	Bouton
ANALYTE			0		j	Bay	Pump	Channel	Creek	Creek FD
	16 Aug '01	16 Aug '01	16 Aug '01	16 Aug '01	16 Aug '01	9 May '02	9 May '02	9 May '02	14 May '02	14 May '02
SEMIVOLATILES (ug/L)						-				
Bis(2-chloroethoxy)Methane	1.0U	1.0U .	1.0U	1.0U	-	-	2U	2U	2U [.]	2U
Bis(2-chloroethyl)Ether	1.0U	1. 0U	1.0U	1.0U	-		1U	1U .	1U	IU
Bis(2-chloroisopropyl)Ether	1.0U	1.0U	1.0U	1.0U	-		<u> </u>	1U	1U	1U
Bis(2-Ethylhexyl)Phthalate	3.1	15.8	8.9	10.7	-	-	IU	10	1U	10
Butylbenzyl Phthalate	-	-	-	-	· -	-	IU	1U	IU	IU
Chrysene	1.0U	1.0U	1.0U	1.0U	-	-	1U	10	1U	1U
Dibenzo(a,h)Anthracene	-	_	-	-	-	-	0.1U	0.1U	0.2U	0.2U
Dieldrin	0.01U	0.01U	0.01U	0.01U		-	IU	1U	1U	IU
Diethyl Phthalate	0.5U	0.8	0.9	0.5U	-	·-	IU	4U	<u>,</u> 1U	1U
Dimethyl Phthalate	0.5U	0.5U	0.5U	0.5U	-	-	IU	<u> </u>	IU	<u> </u>
Di-n-Butyl Phthalate	3.0U	6.0	3.0U	3.1	-	-	IU	IU	IU	· 1U
Di-n-Octyl Phthalate	3.0U	3.0U	3.8	3.1	-	-	0.05U	0.05U	0.05U	0.05U
Fluoranthene	1.0U	1.0U	1.0U	1.0U	-	-	0.1U	0.1U	0.1U	0.1U
Fluorene	1.0U	1.0U	1.0U	1.0U	-	-	IU	IU	IU	IÚ
Hexachlorobenzene	0.5U	0.5U	0.5U	0.5U	-	-	' IU	IU	1U	IU
Hexachlorobutadiene	· 1.0U	1.0U	1.0U	1.0U	· -		·IU	1U	IU	IU
Hexachlorocyclopentadiene	3.0U	3.0U	3.0U	3.0U	-	-	1U	10	1U	IU
Hexachloroethane	1.0U	1.0U	1.0U	1.0U	-	-	ĪŪ	1U	1U	- IU
Indeno(1,2,3-c,d)Pyrene	1.0U	1.0U	1.0U	1.0U	-	. –	0.05U	0.05U	0.2U	0.2U
Isophorone	0.5U	0.5U	0.5U	0.5U	-	-	1U	IU	IU	IU
Naphthalene	0.5U	0.5U	0.5U	0.5U	-	-	0.2U	0.2U	0.2U	0.2U
Nitrobenzene	0.5U	0.5U	0.5U	0.5U	· _	-	1U	IU	-1U	IU
N-Nitrosodimethylamine	3.0U	3.0U	3.0U ·	3.0U	-		1U	IU	IU	10
N-Nitrosodi-n-Propylamine	1.0U	1.0U	1.0U	1.0U	-	-	5U	5U	5U	5U
N-Nitrosodiphenylamine	3.0U	3.0U	3.0U	3.0U	-	-	1U	IU	1U	" IU
Pentachlorophenol	2.0U	3.0U	2.0U	2.0U		-	<u>1U</u>	1U	1U	1U
Phenanthrene	0.5U	0.5U	0.5U	0.5U ·	-	-	0.05U	0.05U	0.05U	0.05U
Pyrene	0.5U	0.5U	0.5U	0.5U	-	-	0.1U	0.1U	0.1U	0.1U
Phenol	1.0Ú	1.0U	1.0U	1.0U	-	-	0.05U	0.05U	0.05U	0.05U

Table 6.6. Dry Weather Chemistry Results: City of Long Beach Storm Monitoring Project. (Page 5 of 5)

Bolded values indicate results that were greater than the reporting detection limit. U=not detected at the associated value J=estimated value

R¹ Indicates data were not valid. Data were rejected.

Analyte not tested

FD Field Duplicate.

Table 7.1.Toxicity of Wet Weather Samples Collected from the City of Long Beach Belmont Pump
Station during the 2001/2002 Monitoring Season. Test results indicating toxicity are shown in
bold type. The mysid tests were conducted using 100% sample only.

D - 4 -		Te	st Respons	e (% sample)	mr.d
Date	lest	NOEC ^a	LOEC ^b	Median Response ^c	TUC
11/12/2001	Water Flea Survival	<6	6	3.9	>16
11/12/2001	Water Flea Reproduction	6	12	8.0	16
11/12/2001	Mysid Survival	≤50	≤100	na ^c	≥2
11/12/2001	Mysid Growth	nm^{f}	nm	na	na
11/12/2001	Sea Urchin Fertilization	3	6	>50	32
11/24/2001	Water Flea Survival	6	12	10.2	16
11/24/2001	Water Flea Reproduction	12	25	15.7	8
11/24/2001	Mysid Survival	≤50	≤100	na	≥2
11/24/2001	Mysid Growth	. ≤50	≤100	na	≥2
11/24/2001	Sea Urchin Fertilization	3	6	27.1	32

No Observed Effect Concentration: the highest concentration with a test response not significantly different from the control.

Lowest Observed Effect Concentration: the lowest concentration producing a test response that was significantly different from the control.

Concentration causing 50% mortality to mysids or water fleas (LC50), 50% inhibition in water flea reproduction (IC50) or 50% reduction in sea urchin fertilization (EC50).

Chronic toxicity units = 100/NOEC.

Not applicable.

Not measured due to lack of survivors.

Table 7.2.Toxicity of Wet Weather Samples Collected from the City of Long Beach Bouton Creek
Station during the 2001/2002 Monitoring Season. Test results indicating toxicity are shown in
bold type. The mysid test was conducted using 100% sample only.

Det		Те	st Respons	e (% sample)	TIL
Date	lest	NOEC ^a	LOEC ^b	Median Response ^c	100
11/13/2001	Water Flea Survival	25	50	36.1	4
11/13/2001	Water Flea Reproduction	. 25	50	42.2	4
11/13/2001	Mysid Survival	≤50	≤100	nae	≥2
11/13/2001	Mysid Growth	≤50	≤100	na	≥2
11/13/2001	Sea Urchin Fertilization	3	6	47.0	32
11/24/2001	Water Flea Survival	50	100	64.3	2
11/24/2001	Water Flea Reproduction	50	100	70.1	2
11/24/2001	Mysid Survival	na	na	na	na
11/24/2001	Mysid Growth	na	na	na	na
11/24/2001	Sea Urchin Fertilization	3	6	38.4	32

No Observed Effect Concentration: the highest concentration with a test response not significantly different from the control.

Lowest Observed Effect Concentration: the lowest concentration producing a test response that was significantly different from the control.

Concentration causing 50% mortality to mysids or water fleas (LC50), 50% inhibition in water flea reproduction (IC50) or 50% reduction in sea urchin fertilization (EC50).

^d Chronic toxicity units = 100/NOEC.

• Not applicable.

ь

Table 7.3.

Toxicity of Wet Weather Samples Collected from the City of Long Beach Los Cerritos Channel Station during the 2001/2002 Monitoring Season. Test results indicating toxicity are shown in bold type. The mysid test was conducted using 100% sample only.

		Те	st'Respons	e (% sample)	
Date	Test	NOEC ^a	LOEC ^b	Median Response ^c	TUcd
11/12/2001	Water Flea Survival	12	25	21.4	8
11/12/2001	Water Flea Reproduction	12	25	19.9	8
11/12/2001	Mysid Survival	≤50	≤100	na ^e	_≥2
11/12/2001	Mysid Growth	≤50	≤100	Na	≥2
11/12/2001	Sea Urchin Fertilization	<3	. 3	>50	>32
11/24/2001	Water Flea Survival	12	50	18.8	8
11/24/2001	Water Flea Reproduction	12	50	19.3	8
11/24/2001	Mysid Survival	na	na	Na	na
11/24/2001	Mysid Growth	na	na	Na -	na
11/24/2001	Sea Urchin Fertilization	3	6	26.5	32

No Observed Effect Concentration: the highest concentration with a test response not significantly different from the control.

² Lowest Observed Effect Concentration: the lowest concentration producing a test response that was significantly different from the control.

² Concentration causing 50% mortality to mysids or water fleas (LC50), 50% inhibition in water flea reproduction (IC50) or 50% reduction in sea urchin fertilization (EC50).

^d Chronic toxicity units = 100/NOEC.

^e Not applicable.

Table 7.4.Toxicity of Receiving Water Samples Collected from Alamitos Bay during the 2001/2002
Storm Season. Water flea tests were not conducted on these samples.

Date	Test	Estimated % Runoff	NOEC ^a	TUc ^b
11/12/2001	Mysid Survival	2	Nontoxic	<1
11/12/2001	Mysid Growth	2	Nontoxic	<
11/12/2001	Sea Urchin	2	Nontoxic	<1
11/24/2001	Mysid Survival	1	Nontoxic	<1
11/24/2001	Mysid Growth	- 1	Nontoxic	<1
11/24/2001	Sea Urchin	1	Nontoxic	<1

No Observed Effect Concentration: the highest concentration with a test response not significantly different from the control.

Chronic toxicity units = 100/NOEC. These values are estimated since the NOEC was not determined through analysis of a dilution series.

Table 7.5.Summary of TIE Activities. Acute Toxic Units for the initial (TU-1) and TIE baseline (TU-B)
tests are shown (96 hr exposure time for water flea and mysid tests), along with the TIE-related
action taken. TIEs were aborted when the baseline TU value was less than 2.0.

			Water _. F	lea		Mysid			Sea Urch	ıin
Date	Test	TU-I	TUB	Action	TU-I	TU-B	Action	TU-I	TU-B	Action
11/12	Belmont	10.7	12	TIE	>1	3.4	TIE	<2	na	none
11/13	Bouton	1.4	1.2	abort	1	na	none	2.1	1.3	abort
11/12	Los Cerritos	2.8	3.3	TIE	<1	na	none	<2	na	none
11/24	Belmont	9.8	3.5	TIE	>1	1.7	TIÉ	3.7	4.8	TIE
11/24	Bouton	1.6	<1	abort	na	na	none	2.6	6.1	TIE
11/24	Los Cerritos	5.3	3.3	TIE	na -	na		3.8	6.2	TIE

Table 7.6.

¢

Toxicity of Dry Weather Samples from the City of Long Beach. Test results indicating toxicity are shown in **bold type**.

			Test	Response (%	sample)	
Station	Date	Test	NOEC ^a	LOEC ^b	Median Response ^c	TUc ^d
Belmont	5/9/2002	Water Flea Survival	<u>≥100</u>	>100	>100	<u>≤1</u>
Belmont	5/9/2002	Water Flea Reproduction	<u>≥</u> 100	>100	>100	<u><</u> 1
Belmont	5/9/2002	Sea Urchin Fertilization	25	50	47.6	4
Bouton	5/14/2002	Water Flea Survival ^e	25	50	37.5	4
Bouton	5/14/2002	Water Flea Reproduction ^e	6	12	29.6	16
Bouton.	5/14/2002	Sea Urchin Fertilization	<u>≥</u> 50	>50	>50	<u>≤</u> 2 ×
Los Cerritos	5/9/2002	Water Flea Survival	<u>≥</u> 100 .	>100	>100	<u>≤</u> 1
Los Cerritos	5/9/2002	Water Flea Reproduction	<u>≥</u> 100	>100	>100	<u>≤</u> 1
Los Cerritos	5/9/2002	Sea Urchin Fertilization	12	25	31.8	<u>8</u> ·

^a No Observed Effect Concentration: the highest concentration with a test response not significantly different from the control.

^b Lowest Observed Effect Concentration: the lowest concentration producing a test response that was significantly different from the control.

Concentration causing 50% mortality to mysids or water fleas (LC50), 50% inhibition in water flea reproduction (IC50),

or 50% reduction in sea urchin fertilization or mysid growth (EC50).

^d Chronic Toxicity Units = 100/NOEC.

^e The conductivity of this sample was believed to exceed the osmotic tolerance of the water flea.

Table 7.7

Toxicity of the Receiving Water Sample Collected from Alamitos Bay during the 2001/2002 Storm Season.

Date	Test	NOEC ^a	TUeb
5/9/2002	Sea Urchin	Nontoxic	≤1

^a No Observed Effect Concentration: the highest concentration with a test response not significantly different from the control.

^b Chronic toxicity units = 100/NOEC. These values are estimated since the NOEC was not determined through analysis of a dilution series.