RECEIVED

JAN 2 9 1997 NATUKAL RESOURCES

William W. Abbott

R33-b

WILLIAM ABBOTT

& ASSOCIATES

ATTORNEYS AT LAW

Diane G. Kindermann

PH 3:09

<u>CI APR 27</u>

(R33-c attached)

RECEIVED JAN 28 1997,

January 27, 1997

REGULATORY COMPLIANCE OFFICE

Greg Vaughn Central Valley Regional Senior Engineer Central Valley Regional Water Quality Control Board 3443 Routier Road, Suite A Sacramento, CA 95827-3098

> Re: Notice of Emergency Remediation Measures Gwin Mine, Calaveras County, California

Dear Mr. Vaughn:

This firm represents Gwin Mine Associates, LLC, ("GMA") the operators of the Gwin Mine. The Gwin Mine is located in Rich Gulch canyon near the towns of Paloma, San Andreas and Mokelumne Hills in the County of Calaveras. This notice is to advise you of the implementation of emergency remediation measures at the Gwin Mine to gain control of an hydraulic discharge at the main shaft occurring as a result of the recent storm events. The notification should be read in conjunction with the enclosed "Notice of Emergency Remediation Measures Report" prepared by SECOR International, Inc., dated January 27, 1997 ("Report").

BACKGROUND FACTS

The Gwin Mine is a gold mine located adjacent to an intermittent stream that empties into the Mokelumne River approximately at the headwaters of the Pardee Reservoir. The Gwin Mine was mined from 1857 to 1908, at which time mining operations ceased. In furtherance of recent reopening and exploratory ativities, the collar of the mine's main shaft was opened several months ago. It has been determined that, over the course of its abandonment, the mine has filled up with water. GMA, through its consultants, has been conducting water quality sampling to submit to the Regional Water Quality Control Board ("RWQCB") for the purposes of obtaining approval to dewater the mine. Preparation of the permit application is underway, but it has not yet been submitted.

Notice-Greg Vaughn January 27, 1997 Page 2

EMERGENCY CONDITIONS

Due to the recent storm events, undetermined amounts of surface water upgradient of the mine have been disappearing as the stream diverts downward in the area of the former middle and south shafts of the mine. We conclude that there is hydraulic communication with the old workings in the upper part of the mine. This water then exits the mine at the collar of the main shaft and flows into the stream. Water quality test results reveal that this water contains somewhat elevated levels of arsenic and sulphur concentrations.

As the water exits the mine, sulphur and dolomite precipitate along the streambed for about 200 yards, after which the minewater is diluted by the surface waters.

EMERGENCY REMEDIATION MEASURES

The following three emergency remediation measures will be implemented:

- Locating the finite points at which the surface water is entering the mine, and sealing those entrance points;
- Interim diversion of the discharge from the main shaft to onsite tanks for treatment of arsenic and sulphur; and
- 3) Placement of a geochemical barrier downstream, if necessary, to neutralize any potential acidity.

The enclosed Report provides full descriptions of these emergency remediation measures and provides the framework for implementation of each.

CONCLUSION

In conclusion, the recent storm events have created an emergency situation in which surface waters are mixing with mine water and are being discharged at the main shaft of the mine into the stream. GMA has acted immediately to ensure that there is no threat to water quality by devising and commencing implementation of the above identified interim strategies to gain hydraulic control of the emergency discharge. Notice- Greg Vaughn Janury 27, 1997 Page 3

Please feel free to contact me should you have questions or comments. Moreover, we will be happy to meet with you at your convenience to further discuss these issues.

Very truly yours, cone am

Diane G. Kindermann

DGK:yb

enclosures

cc: Parker Sorg Joel Pitto Sierra Engineering Secor International Tim Smith Alex Coate Kim Schwab Jeannine Stroh

NOTICE OF EMERGENCY REMEDIATION MEASURES PRELIMINARY REPORT

January 27, 1997

R 33- C

R33-c

NOTICE OF EMERGENCY REMEDIATION MEASURES PRELIMINARY REPORT

January 27, 1997

Submitted to:

Gwin Mine Associates, L.L.C. c/o Diane G. Kindermann, Esq. William Abbott & Associates 455 Capitol Mall, Suite 702 Sacramento, CA 95814 (916) 446-9595

Submitted by:

SECOR International, Inc. Geochemistry Group 1787 Tribute Road, Suite C Sacramento, CA 95815 (916) 648-9160

Prepared by:

All Land

William J. Wallker, Ph.D. Chief Geochemist

Reviewed by:

Nasarta 1./ 4/MA

CarolAnn K. Maslanka, P.E. Senior Chemical Engineer

2

2B

TABLE OF CONTENTS

1.0	EXECUTIVE SUMMARY 1
2.0	PURPOSE OF REPORT
3.0	STATEMENT OF THE PROBLEM 4
4.0	DESCRIPTION OF WATER QUALITY IN RICH GULCH54.1Sampling Data - January 13, 199754.2Sampling Data - January 17, 1997 and January 20, 19978
5.0	SIGNIFICANCE OF FINDINGS105.1Source of Arsenic105.2Source of Sulfur105.3Sulfur Dynamics in Rich Gulch105.3.1Conceptual Model105.4Acid Generation Potential125.4.1Static Acid-Base Accounting Tests135.4.2Procedures for Conducting a Static Test135.4.3Interpretation of Static Test Results14
6.0	SUMMARY AND RECOMMENDATIONS 15
FIGU	RES
Figure	1 Site Map
Figure	2 Recommended Static Test Procedure for Each Geologic Unit
APPE	NDIX A - MINE SHAFT WATER CHEMISTRY
APPE	NDIX B - ANALYTICAL REPORT, AMERICAN ENVIRONMENTAL NETWORK LABORATORY
APPEI	NDIX C - X-RAY DIFFRACTION PATTERNS

C:\IMASTER\PROJECT\7D\7D017\GWINWQRB.WPD

1.0 EXECUTIVE SUMMARY

Water quality within Rich Gulch has been impacted by recent storm events causing mine water to exit the former Main Shaft (see Figure 1). Samples obtained from upstream locations have no detectable arsenic or sulfides and are classified as Ca/Mg bicarbonate waters. As a result of the recent storm events, surface water upgradient of the mine tends to "disappear" as the stream diverts downward in the area of the former middle and south shafts suggesting hydraulic communication with the old workings in the upper part of the mine. This water mixes (to an unknown degree) with mine water and exits the mine at the collar of the Main Shaft. Water exiting the mine and into the stream at this point is turbid, reduced (Eh = -200 mv), has elevated arsenic concentrations (200 to 300 ppb) and elevated sulfide (about 1 ppm). As the reduced mine water mixes with surface water and exits the mine, both elemental sulfur and dolomite precipitate along the streambed. This impact is evident several hundred yards downstream until mixing with seeps and tributaries dilute the minewater. Currently arsenic entering the river ranges from 80 ppb to almost 200 ppb depending on prevailing flow conditions.

During high flow or storm water runoff conditions, the effect is merely one of dilution as surface water flow upstream of the mine exceeds the infiltration rate to the middle and south shafts. Water then follows the stream bed around the collar of the mine and enters the creek opposite the outfall of water from the Main Shaft. This water mixes with mine water about 50 feet from the inflow, causing increased aeration and dilution.

The stream bed deposits are composed primarily of elemental sulfur with lower amounts of carbonates, principally dolomite. Elemental sulfur forms from chemical oxidation of sulfide as water exits the mine while dolomite precipitates from carbonate saturated water possibly due to interaction with limestone placed around the mine collar. The exact mechanism by which elemental sulfur forms is still under investigation.

Based on what is known about these processes to date, *SECOR* recommends the following interim actions to both determine the impacts to surface water and to ameliorate future water quality impacts.

1. At present, the entrance of surface water to the former middle and south shafts should be located and sealed. The entry of surface water to the former upper workings presently appears to be the single most important factor affecting downstream water quality. Sealing the entrances should decrease the flow of water and hence the mass of sulfur and arsenic exiting from the mine at the Main Shaft. At the same time, consideration should be given to diverting the stream bed so that surface water bypasses all the shaft entrances.

12

\$

73

可能設備

日本である

3.

- 2. The mine at the Main Shaft should be dewatered to about 80 feet below the sleeves in the collar as soon as possible to gain hydraulic control of mine water seeping into the stream. The sleeves should be capped to prevent further leakage of mine water to the stream. Mine water from the Main shaft should be pumped into a series of treatment tanks designed to eliminate precipitation of sulfur in the stream and to reduce the load of arsenic to downstream locations. In this way, seepage from the mine can be controlled and diverted for removal of arsenic and other constituents of concern prior to discharge. Treated water should be discharged back into the stream at a suitable downstream location
 - The acid generation potential of deposits in the stream bed should be determined statically and kinetically to insure that pulses of acidity do not enter the watershed or local surface water bodies. If acid generation appears likely, then a downstream geochemical barrier should be put in place to completely neutralize any acidity generated by sulfur oxidation.

<u>.</u>...

3

ELCALCERCE TO A DEFICI

2.0 PURPOSE OF REPORT

This preliminary report describes *SECOR's* activities in sampling and analysis for assessing water quality in the Rich Gulch area, Calaveras County (Site) pursuant to the recent storm events. The location and topography of the Site is depicted on Figure 1, Site Map. Recent heavy rainfall and the observation of turbid water near the outfall of the Gwin Mine prompted *SECOR* to evaluate the possible impact mine water might have on surface water chemistry of the area. Amendments to this report will be provided as new data becomes available.

77

ALM REP.

с. 5

1

ŝ

3.0 STATEMENT OF THE PROBLEM

Recent heavy rainfall in the Rich Gulch area, coupled with mine construction activities at the Main Shaft of the former Gwin Mine, appear to have created a condition of increased turbidity in surface water near the Main Shaft area. The stream bed for several hundred yards has become discolored with a yellow-white chalky substance. *SECOR* has sampled the mine water and stream at several locations, at three different times, in order to determine the potential impact of the turbidity to local surface water bodies.

C:\IMASTER\PROJECT\7D\7D017\GWINWQRB.WPD

Construction of the second sec

.

- *V*

4.4

tin in the second

4.0 DESCRIPTION OF WATER QUALITY IN RICH GULCH

Three different sampling events have been conducted by *SECOR* in the Rich Gulch area. Additional analyses, performed on samples collected by Sierra Engineering, have been included in Appendix A. The results of *SECOR*'s field activities and analyses are described below.

4.1 Sampling Data - January 13, 1997

The NPDES requirements of the Regional Water Quality Control Board (RWQCB) for the Gwin Mine include establishment of the baseline water quality of the in-stream surface water as well as the Mokelumne River receiving water body. On January 10, 1997, an opaqueness in surface water downstream of the Main Shaft was reported by Sierra Engineering and Counsel to *SECOR*. To evaluate that observation, *SECOR* personnel visited the Gwin Mine site on January 13, 1997. Storm water/surface water samples were collected at the following four locations within Rich Gulch (see Figure 1):

Sample # 1 "distant downstream" - at EBMUD culvert, east side of Gwin Mine Road, point "1.05 miles"

Sample # 2 "near downstream", 0.58 miles north of Sample #4

Sample #3 north of the Main Shaft, downstream of the silt fence, 0.2 miles north of Sample #4

Sample # 4 upstream - near pullout, point "0 miles", between set control point markers #975 and #974, southernmost point of obvious flow

A single grab sample was collected at each of the locations, for analysis to be performed at *SECOR* Geochemistry Laboratory. Samples # 1, # 2 and # 4 were clear, with no observable color or solids present. Sample # 3 was somewhat opaque, with pasty gray, "chalky" material adhering to rocks and the streambed. There were strong sulfur-like odors present in that area. The water collected at this location was noticeably warmer than surrounding water. One full set of samples was collected at the Sample # 3 location. These samples were transferred under chain of custody documentation to a California certified laboratory, American Environmental Network, Inc. (AEN). The laboratory report is included in Appendix B.

4

		Samp	le/ID	
Analyte	#1	#2	#3	#4
рН	7.95	7.90	7.01	7.90
Eh (mv)	240.6	246.7	195.6	226.6
Cl [·] (mg/L)	43.65	11.09	14.65	23.44
NO ₃ (mg/L)	3.96	- 5.88	0.89	16.21
Ca (mg/L)	61.34	65.63	62.66	29.02
As (μg/L)	105	117	181	ND (<5)
Cd (mg/L)	ND (<20)	ND (<20)	ND (<20)	ND (<20)
Fe (mg/L)	ND (<500)	ND (<500)	ND (<500)	ND (<500)
Pb (mg/L)	ND (<20)	ND (<20)	ND (<20)	ND (<20)

Analytical results for analyses performed at SECOR's Geochemistry Laboratory are as follows:

ND = Not Detected at detection limit listed.

The additional analytical results for Sample #3, as analyzed by AEN, are included in the following table:

Analyte	Sample#3 Concentration
Total Alkalinity (as mg CaCO ₃ /L)	290
Total Phosphorous (mg/L)	0.25
Total Suspended Solids (mg/L)	3
Sulfate (mg/L)	7.1
Oil and Grease (mg/L)	ND (<0.5)
MBAS (surfactants) (mg/L)	ND (<0.1)
Silver (mg/L)	ND (<0.005)
Beryllium (mg/L)	ND (<0.002)
Cadmium (mg/L)	ND (<0.005)
Chromium (mg/L)	ND (<0.01)

C:\1MASTER\PROJECT\7D\7D017\GWINWQRB.WPD

20

....

j

and dustion

Analyte	Sample#3 Concentration
Copper (mg/L)	ND (<0.01)
Mercury (mg/L)	ND (<0.0002)
Nickel (mg/L)	ND (<0.01)
Lead (mg/L)	ND (<0.04)
Antimony (mg/L)	ND (<0.02)
Selenium (mg/L)	ND (<0.004)
Thallium (mg/L)	ND (<0.05)
Zinc (mg/L)	ND (<0.01)
Arsenic (µg/L)	170
Iron (µg/L)	150

It must be noted that the collection of samples on January 13, 1997 followed a storm event (on January 1-3, 1997) which was quite unusual in that it was estimated to be a 50-year storm, and additionally, substantial runoff/runon and snow melt occurred during and subsequent to the storm event. Therefore, these samples may not be truly representative of typical surface water conditions, due to dilution effects.

A review of this data indicates that the upstream sample contained the most nitrate, but being unaffected by mine drainage, contains no arsenic. As would be anticipated with mine drainage, the area around the mine shaft (Sample #3) is impacted in several ways, most importantly by a decreased pH and substantially elevated arsenic concentrations. Moving downstream, in less than one-half mile, the pH recovers, and the arsenic is somewhat diluted by runoff, springs and seeps. At the location of the EDMUD culvert, 0.85 miles downstream from the main shaft, elevated concentrations of arsenic are still apparent.

Additionally, several rocks coated with the chalky substance were retrieved from within the streambed for analysis of the gray-white material. The results of analysis of this material are described in section 4.2 of this report.

4.2 Sampling Data - January 17, 1997 and January 20, 1997

SECOR also collected samples and conducted some in-field measurements in order to better define the local geochemical conditions. Data collected as part of this exercise are to be included in a geochemical model that will describe sulfur dynamics in the Rich Gulch watershed. Samples were collected from seven different locations within the stream. The locations are noted in Figure 1. Samples were analyzed for As, Eh, pH and in some cases sulfides, in the SECOR Geochemistry Laboratory. The results of the January 17 sampling are noted below.

Sampling Location	Arsenic (ug/L)	рН	Eh
Main Shaft	264	6.3	-89
10' downstream of shaft	257	6.5	+86
50' downstream of shaft	278	6.6	+114
Main stream above 1st tributary	222	7.0	+149
at River	143	7.5	+171

This sampling was conducted approximately 2¹/₂ weeks after the 50-year storm. Base flow for the stream appeared to have returned to a more normal state. As such, the dilution described earlier from overland flow above the mine was not occurring, resulting in arsenic values in the stream similar to those noted in the main shaft. Little dilution occurred until the stream mixed with the first tributary. The pH and Eh trends were similar to those from the first sampling. It should be noted that the Eh values reported for this sampling cannot be considered too accurate as this analyses is best conducted in the field, and these samples were analyzed back in the laboratory. The trend in Eh is, however, consistent with discharge of reducing water that then aerates and mixes.

Due to the limitations posed by some of the lab-based measurements in such a dynamic system, another sampling and analysis event was conducted on January 20. The purpose of this sampling was to:

- 1. obtain field based measurements of sulfide (the smell of sulfide emanating from the area is quite strong),
- 2. in-field Eh measurements, and
- 3. collection of samples for arsenic determination and total sulfur. See Figure 1 for sampling points.

0

·····,

90) 91) 91)

 $m \sim m$

be. 1. ...

観光の

Elona a

男性が言

Sample Location	Eh (mv)	Sulfide (µg.S ⁼ /L)	Total sulfides (µg/L) Total Sulfide = HS: + S ⁼
Main shaft	-210	trace	900
Stream near silt fence	-190	trace	790
Stream inflow behind collar	+36	nd	nd
Pool near stream inflow	+6	250	na
Mixing zone of mine water and surface water from behind collar	-70	trace	na
200 ' downstream	-30	na	na
Main stream above 1st tributary	+80	na	na

The data collected to date from this event are summarized below:

na = not yet analyzed

nd = not detected

trace = $<10^{-7}$ M

The Eh values taken in the field demonstrate the prevalence of reducing conditions in and around the mine's Main Shaft. Dissolved sulfides within the stream and mine shaft are elevated and responsible for the coating observed in the stream bed (see next section).

5.0 SIGNIFICANCE OF FINDINGS

5.1 Source of Arsenic

2

100

ġ

á

Since the upstream stormwater sample contains $<5 \ \mu g/L$ arsenic (As), and the Main Shaft historically carries about 200-300 $\mu g/L$ As (see Main Shaft water chemistry data in Appendix A), it seems logical that As in surface water north of the Main Shaft is at least partially derived from mine water discharging into the stream. Since the Rich Gulch area is underlain by a rich mineralized zone and is known to contain abundant sources of arsenic and various metals, it is premature to rule out other sources of naturally occurring arsenic. This part of the study is currently under investigation.

5.2 Source of Sulfur

A sample of the white-yellow chalky material coating the stream bed which was analyzed by x-ray diffraction at the Department of Land, Air & Water Resources, U.C. Davis. The diffraction patterns of the sample exactly matched that of elemental sulfur. A copy of the x-ray diffraction patterns is included in Appendix C. This naturally-occurring material can cause adverse effects within the streambed if oxidation of elemental sulfur proceeds as:

$$2S + 3O_2 + 2H_2O = 2H_2SO_4$$

As seen, sulfuric acid, a strong acid, is produced and may cause serious water quality impacts. The source of sulfur in the stream originates from the mine's Main Shaft area. While sulfate in mine shaft water is low, sulfide tends to be high (900 ppb). A discussion of sulfur geochemistry at the site is discussed below.

5.3 Sulfur Dynamics in Rich Gulch

5.3.1 Conceptual Model

Based on the data collected to date, the following site model appears to describe the origin of elemental sulfur in the stream bed:

Origin of Sulfur and Species Distribution within the Mine Shaft

Since the upstream sampling locations show little total sulfur and sulfide gas is observed within the mine shaft, it is logical to assume that the historic mine workings are the main source of sulfur. Within the mine, it appears that groundwater sulfate is reduced by decomposing organic matter which is provided by the

C:\IMASTER\PROJECT\7D\7D017\GWINWQRB.WPD

increasing amount of framing and shoring timber within the mine and possibly by carbon present in the mine's overburden. Because the mine water is anaerobic, sulfate reduction and hydrogen sulfide gas production occurs by:

$$CH_2O + \frac{1}{2}SO_4^{2-} + H^+ \rightarrow CO_2 + \frac{1}{2}H_2S + H_2O$$

which shows that 1 mole of sulfate reduced produces 1 mole of sulfide gas.

One H_2S (gas) is produced in the system; some of it will dissolve and then dissociate based on ambient pH conditions:

$$H_2S_{(g)} \rightarrow H_2S_{(aq)}$$
$$H_2S_{(al)} \rightarrow HS^- + H^+$$
$$HS^- \rightarrow H^+ + S^=$$

At pH between 6 and 7, most sulfide exists as $H_2S_{(aq)}$ and HS which is perfectly consistent with the sulfide data collected from the main shaft. As the sulfide rich mine water mixes with incoming high pH, and high oxygen content water, sulfide rapidly oxidizes to form various sulfur species. Also the water exiting the Main Shaft must percolate through a bed of limestone rock placed around the collar before entering the stream. Thus water entering the stream will also be saturated with respect to dolomite resulting in eventual precipitation of carbonates along with sulfur (see X-ray diffraction patterns in Appendix C). Sulfur species forming under these conditions could include:

$$HS^{-} + \frac{1}{2}O_{2} \rightarrow HSO_{3}^{-}$$

$$SO_{3}^{2^{-}} + \frac{1}{2}O_{2} \rightarrow SO_{4}^{-2^{-}}$$

$$SO_{3}^{2^{-}} + HS^{-} + \frac{1}{2}O_{2} \rightarrow S_{2}O_{3}^{-2^{-}} + OH^{-}$$

$$S_{2}O_{3}^{2^{-}} + \frac{1}{2}O_{2} \rightarrow SO_{4}^{-2^{-}} + S$$

As noted, in the process of reducing sulfate and oxidizing sulfide, a number of compounds with intermediate oxidation states can be formed. These include sulfate (SO_4^{2-}) , thiosulfate $(S_2O_3^{2-})$, polysulfides (S_n^{2-}) and solid sulfur (S_8^{0}) in colloidal or orthorhombic form. It is known that partial oxidation of sulfide by molecular oxygen leads to the formation of elemental sulfur, polysulfide, and thiosulfate. The reaction observed as the mine water leaves the collar area and mixes with oxygenated surface water is chemical in nature and leads to the formation of colloidal or orthorhombic elemental sulfur which then deposits on the surface of the streambed.

C:\1MASTER\PROJECT\7D\7D017\GWINWQRB.WPD

and

STALL STAL

Kinetic Modeling

Once sufficient data is collected, a kinetic rate expression can be derived that will predict the rate at which elemental sulfur is deposited within the stream bed. The model will be useful for predicting the long-term loading of sulfur to the stream under a variety of mixing scenarios. The rate expression will be generalized to describe the rate of sulfide consumption irrespective of oxidation products, and has the general form:

 $-d[H_2S]/dt = k_{s(-II)}[H_2S]^a[O_2]^b$

where $k_{s(-II)}$ is the overall rate constant and a and b are the order of the reaction with respect to sulfide and dissolved oxygen. Previous work has demonstrated that a and b are equal to 1 (i.e. first order) in most cases.

The rate constant is also dependent on pH and temperature and can be corrected by:

$$k_{s(-11)} = k_{H2S} + k_{HS}K_{1}/[H^{+}])/(1+K_{1}/[H^{+}])$$

where $k_{H2S} = 1.33 \text{ M}^{-1}\text{min}^{-1}$ and $k_{HS} = 0.12 \text{ M}^{-1}\text{min}^{-1}$ for the oxidation of H₂S and HS, respectively. K₁ is the ionization constant of H₂S. The rate constants can also be corrected for ionic strength and temperature:

and

Devision 14.

 $\log k_{H2S} = 7.44 - (2.4 \times 10^3)/T$

 $\log k_{HS} = 8.72 + 0.16 \text{pH} - (3.0 \times 10^3)/\text{T} + 0.44 \text{ I}^{0.5}$

These equations will be valid from pH 4 to 8, temperature (T) ranging from 8°C to 50°C, and I (ionic strength) of 0 to 6 M.

5.4 Acid Generation Potential

Since both elemental sulfur and carbonate have been deposited in the streambed, the concern in the nearterm will be to determine the rate at which oxidation of sulfur to sulfuric acid occurs in relation to the ability of carbonate in the stream bed to neutralize acidity as it is generated:

 $2S + 3O_2 + 2H_2O = 2H^+ + SO_4^{2-}$ (acidity production)

 $2H^+ + (CaMg)CO_3 = Ca + Mg + 2HCO_3$ (neutralization of acidity)

 $Ca + SO_4^{2-} = CaSO_4$ (solid phase formation - new sulfur sink)

C:\IMASTER\PROJECT\7D\7D017\GWINWQRB.WPD

. 29

:

aller and the

The objective then becomes determining if enough net neutralization capacity exists to overcome all potential acidity generated by the oxidation of sulfur. Fortunately, there are several ways to determine if acid generation is likely.

5.4.1 Static Acid-Base Accounting Tests

A static acid-base test defines the balance between potentially acid-generating minerals (potential acidity) and acid-neutralizing minerals (sulfide neutralization potential) in a sample. In particular, acid-generating compounds include reactive minerals and acid-neutralizing compounds include carbonate minerals. A sample will theoretically generate net acidity at some point in time only if the potential acidity exceeds the neutralization potential; otherwise the sample will not produce net acidity as long as the neutralization potential is not dissolved faster than the generation of acidity.

Despite the theoretical simplicity, static tests can not be used to predict the quality of drainage emanating from waste materials at any future time. Acid generation processes and, therefore, drainage quality are time-dependant and functions of a large number of complex factors such as mineralogy, rock structure and climate. For this reason, static tests should be treated as a qualitative predictive method, that is they can only indicate whether or not there is a potential for generation of net acidity at some unknown time.

There are several types of static tests such as acid-base accounting, APP/sulfur ratio, and the B.C. Research initial test. However, all of these tests are simply variations on a basic procedure and all require variations of the same basic analyses for determining the balance between potential acidity and neutralization potential. Consequently, the basic, common procedure will be presented and the names of the variations will be de-emphasized.

5.4.2 Procedures for Conducting a Static Test

The initial step in defining the acid-generating/acid-neutralizing balance in a sample begins with a measurement of total sulfur in a sample, commonly performed with a Leco furnace/analyzer. The measurement of total sulfur allows the calculation of "maximum potential acidity", which may overestimate the potential for acid generation if all sulfur in a sample is not acid generating. Therefore, additional analysis may be performed to refine the potential acidity.

Following the delineation of potential acidity, the next parameter, neutralization potential, is defined (see Figure 2). The measurement of neutralization potential provides a gross value for neutralization; however, this value may overestimate the capacity of the sample to neutralize the pH to an environmentally acceptable level above 6. An analysis of carbonate content will provide a more meaningful measure of

۔ فد:

ń

7

5 W

(1257)1790

Laurenza

tina ana si tin

Distant.

neutralization potential from the perspective of pH neutralization. The carbonate analysis is recommended as an optional part of static tests.

Following these analyses, the potential for net acidity is calculated by subtracting the potential acidity from the neutralization potential with a negative value indicating the potential for net acidity. Alternatively, a ratio of neutralization potential to potential acidity can be used (APP/sulfur ratio), but the subtraction method (acid-base accounting) will be adopted here.

5.4.3 Interpretation of static test results

The subtraction of maximum potential acidity (based on total sulfur) from the gross neutralization potential yields the "net neutralization potential (NNP)". Theoretically, a sample can be expected to generate net acidity at some point in time if the NNP is less than zero. However, based on general experience, values of NNP in the range -20 and +20 tons of $CaCO_3/1000$ t of sample (-2 to +2% $CaCO_3$) may be considered to have the ability to generate net acidity. This range of uncertainty is attributed to the source of error in:

- 1. obtaining the objective of defining true potential acidity and neutralization;
- 2. converting total sulfur to acidity using a restricted conversion factor; and
- 3. analytical error.

The subtraction of potential acidity (based on reactive sulfide) from carbonate content yields the "net neutralization potential from species (NNP(S))". This value will presumably reflect the actual net neutralization potential due to the narrower range of uncertainty and, thus, provide more reliable predictions, although there is no database to confirm these conclusions. The primary sources of error is similar to those for the NNP (above), except that estimating long-term reactive sulfide from a short-term test may result in some uncertainty.

In the event the samples from a geologic unit indicate that unit or may have the potential for net acid generation, kinetic tests should be conducted. Design of these tests is in progress and will be discussed at a later time.

. Xerà

3

6.0 SUMMARY AND RECOMMENDATIONS

Water quality within Rich Gulch has been impacted by recent storm events causing mine water to exit the former Main Shaft. Samples obtained from upstream locations have no detectable arsenic or sulfides, and are classified as Ca/Mg bicarbonate waters. As a result of the recent storm events, surface water upgradient of the mine tends to "disappear" as the stream diverts downward in the area of the former middle and south shafts. This suggests hydraulic communication with the old workings in the upper part of the mine. This water mixes (to an unknown degree) with mine water and exits the mine at the collar of the Main Shaft. Water exiting the mine and into the stream at this point is turbid, reduced (Eh = -200 mv), has an elevated arsenic content (200 to 300 ppb) and sulfide content of about 1 ppm. As the reduced mine water mixes with surface water and exits the mine, both elemental sulfur and dolomite precipitate along the streambed. This impact is evident several hundred yards downstream until mixing with seeps and tributaries dilute the minewater. Currently, arsenic entering the river ranges from 80 ppb to almost 200 ppb, depending on prevailing flow conditions.

During high flow or storm water runoff conditions, the effect is merely one of dilution as surface water flow upstream of the mine exceeds the infiltration rate to the middle and south shafts. Water then follows the stream bed around the collar of the mine and enters the creek opposite the outfall of water from the Main Shaft. This water mixes with mine water about 50 feet from the inflow, causing increased aeration and dilution.

The stream bed deposits are composed primarily of elemental sulfur with lower amounts of carbonates, principally dolomite. Elemental sulfur forms from chemical oxidation of sulfide as water exits the mine, while dolomite precipitates from carbonate saturated water, possibly due to interaction with the limestone which has been placed around the mine collar.

Based on what is known about these processes to date, *SECOR* recommends the following interim actions to both determine the impacts to surface water and to ameliorate future water quality impacts:

1. The entrance of surface water to the former middle and south shafts should be located and sealed. At present, the entry of surface water to the former upper workings appears to be the single most important factor affecting downstream water quality. Sealing the entrances should decrease the flow of water and hence the mass of sulfur and arsenic exiting from the mine at the Main Shaft. At the same time, consideration should be given to divering the stream bed so that surface water bypasses all the shaft entrances.

1:524

3

kc. ...sf

可用が開

de consel

- 2. The mine at the Main Shaft should be dewatered to about 80 feet below the sleeves in the collar as soon as possible to gain hydraulic control of mine water seeping into the stream. The sleeves should be capped to prevent further leakage of mine water to the stream. Mine water from the Main shaft should be pumped into a series of treatment tanks designed to eliminate precipitation of sulfur in the stream and to reduce the load of arsenic to downstream locations. In this way, seepage from the mine can be controlled and diverted for removal of arsenic and other constituents of concern prior to discharge. Treated water should be discharged back into the stream at a suitable downstream location
- 3. The acid generation potential of deposits in the stream bed should be determined statically and kinetically to insure that pulses of acidity do not enter the watershed or local surface water bodies. If acid generation appears likely, then a downstream geochemical barrier should be put in place to completely neutralize any acidity generated by sulfur oxidation.

.

• -

13

in better in

FIGURES

823 S. HWY, 49 P.O. BOX 1268 • JACKSON, CA 95642 (209) 223-2800

-

C72.

REPORT

Page 1 of 5 TEST REPORT: 429784

Gwin Mine Associates PO Box 1059 San Andreas, CA 95249-

Sample Identification: 20' Main shaft Collected By:LG Date & Time Taken:09/09/96 1515

Other Data: G W 1LG/HNO3 Sample Matrix: Liquid **Report Date: 10/07/96**

Received: 09/10/96

Client: GWIN

	ARAMETER	RESULTS	UNITS	ANALYZED	EQL	METHOD	BY
; S	ilver, GFAA	<5	ug/L	1230 09/23/96	5.0	EPA200.9	TN
Å	luminum, GFAA	290	սց/Լ	0825 09/23/96	50	EPA200.9	TN
æ. ₿	arium, FAA	0.26	mg/L	1140 09/10/96	0.10	EPA208.1	אז
B	eryllium, GFAA	<1	ug/L	0935 09/12/96	1.0	EPA200.9	TH
C	admium, GFAA	<1	ug/L	1215 09/10/96	1.0	EPA200.9	TN
- Cl	hromium, GFAA	3.2	ug/L	1000 09/22/96	2.0	EPA200.9	TN
° Co	opper, FAA	<0.03	mg/L	1405 09/10/96	0.03	EPA220.1	тн
lr	ron, FAA	0.69	mg/L	1530 09/17/96	0.05	EPA236.1	TN
° ∖	ercury, CVAA	<0.5	ug/L	1310 09/11/96	0.5	EPA245.1	TN
d g Ma	anganese, FAA	0.69	mg/L	1510 09/17/96	0.03	EPA243.1	TN
, So	odium, FAA	30	mg/L	1555 09/11/96	0.05	EPA273.1	тн
⁹ Ni	ickel, FAA	0.15	mg/L	1600 10/04/96	0.10	EPA249.1	ЧT
rage Le	ead, GFAA	<2	ug/L	1240 09/24/96	2.0	EPA200.9	TN
اھ Ar	ntimony, GFAA	2.7	ug/L	1400 09/18/96	2.5	EPA200.9	тн
s Se	elenium, Hydride	<1	ug/L	0845 09/11/96	1.0	SM3114B	TN
1 Tł	nallium, GFAA	1.1	ug/L	0850 09/24/96	1.0	EPA200.9	тн
Zi	inc, FAA	<0.05	mg∕L	1350 09/10/96	0.05	EPA289.1	TN
ì							

Continued

REPORT

÷

N.

ī

823 S. HWY, 49 P.O. BOX 1268 • JACKSON, CA 95642 (209) 223-2800

· ---

	10/07/96			42	9784 Conti	inueđ		I	Page 2 of	5
-	PARAMETER	R	RE	SULTS	UNITS	ANAI	LYZED	EQL	METHOD	BY
	Arsenic, Hydr	·ide	16	0	ug/L	1100 0	19/11/96	2.0	SM31148	TN
			Sam	ple Pr	eparation	Steps fo	or 4297	84		
	Digestion, Ar	senic by Hydride	••••• 09	· · · · · · · · / 10/96	Date	0830 0	9/10/96	• • • • • •	SM303E	 LK
	Digestion, Se	lenium by Hydride	09	/10/96	Date	0900 0	9/10/96		SM303E	LK
	Digestion, Me	rcury, Liquid	09	/10/96	Date	1330 0	9/10/96		EPA7470	LK
		Qual	ity A	ssuran	ce for the	SET wit	h Samp	le 429	784	
•	Sample #	Description	Result	Units	Dup/Std Value	Spk Conc. GFAA	Percent	 	ime Date	ву
		Blank	<5.0	ug/L	·			12	230 09/23	5/96 TN
		Standard	8.0	ug/L	8.0		100	12	30 09/23	5/96 TN
		Standard	8.7	ug/L	8.0		109	12	30 09/23	5/96 TN
· · •	429975	Duplicate	<5.0	ug/L	<5.0		0	12	30 09/23	796 TH
	429809	Spike		ug/L		5.0	90	12	30 09/23	796 TN
					Aluminum	, GFAA				
		Blank	<50	ug/L				08	25 09/23	/96 TN
		Standard	74	ug/L	75		99	08	25 09/23	/96 TN
÷		Standard	60	ug/L	75		80	08	25 09/23	/96 TN
	429784	Duplicate	290	ug/L	280		4	08	25 09/23	/96 TN
	429973	Spike		ug/L		100	124	08	25 09/23	/96 TN
•,					Barium,	Faa				
		Blank	<0.10	mg∕i_				11	40 09/10	/96 TN
		Standard	50.8	mg∕L	50.0		102	11	40 09/10	/96 TN
		Standard	48.5	mg/L	50.0		97	11	40 09/10	/96 TN
-	429784	Duplicate	0.26	mg/L	0.17		42	11-	40 09/10	/96 TN
	429786	Spike		mg∕L		1.00	93	11-	40 09/10	/96 TH
					Beryllium	, GFAA				
		Blank	<1.0	ug/L				09.	35 09/12	/96 TN
		Standard	6.0	ug/L	6.0		100	09	35 09/12,	/96 TN
		Standard	5.5	ug/L	6.0		92	09.	35 09/12,	/96 TN
		Standard	5.9	ug/L	6.0		98	09	35 09/12	/96 TN
;		Standard	6.0	ug/L	6.0		100	093	35 09/12	/96 TN
	429784	Duplicate	<1.0	ug/L	<1.0		0	093	35 09/12	/96 TH
10000	429977	Duplicate	<1.0	ug/L	<1.0		0	093	35 09/12,	/96 TN
dial di	429809	Spike		ug/L		5.0	132	093	35 09/12	/96 TN
	429974	Spike		ug/L		5.0	114	09	35 09/12,	/96 TN
4					Cadmium,	GFAA				
ز		Blank	<1.0	ug/L	-			12	15 09/10,	/96 TN
		Standard	11	սց/Լ	10		110	12	15 09/10,	/96 TN
ŧ		Standard	9.8	ug/L	10		98	12	15 09/10,	/96 TN
:	429756	Duplicate	<1.0	ũg∕L	<1.0		0	12	15 09/10,	/96 TN
,	429751	Spike		ug/L		10	100	12	15 09/10,	/96 TN
		•		-						

Continued

REPORT

823 S. HWY, 49 P.O. BOX 1268 • JACKSON, CA 95642 (209) 223-2800

10/07/96

429784 Continued

Page 3 of 5

	Sample #	Description	Result	Units	Dup/Std Value	≥ Spk Conc. n. GFAA	Percent	Time	Date	B
		Blank	<10	ug/L		-,		1000	09/22/96	Ţ
		Standard	9.5	ug/L	10		95	1000	09/22/96	T
		Standard	11	ug/L	10		110	1000	09/22/96	т
		Standard	13	ug/L	10				1000 09/22	/96
		Standard	18 ·	ug/L	10				1000 09/22	/96
	429786	Duplicate	6.6	-3/2 ua/l	6.6		0	1000	09/22/96	ТА
305 803	620076	Duplicate	37	-3/ -	35		6	1000	00/22/96	TI
	120754	Coite	3.1		J.J	10	105	1000	00/22/96	17 T1
2.5	429730	Spike		ug/L		10	210	1000	09/22/90	17. TN
	429911	spike		09/6	Conner	מאק	210	1000	09/22/90	
		Standard	/2 B	m m /1	(0.2	FAA	104	1605	00/10/96	Та
		Standard	42.0	"'y/L	40.2		108	1405	09/10/96	71
	1.2078/	Duplicate	43.0	mg/L	40.2		106	1405	09/10/96	าก 16
- 1. 14 ¹	427704	Soite	NO.03	mg/L	NU.US	0.5	0	1405	09/10/96	ា ។ ម
	429700	spike		Hg/L	Tron	0.5 RAA	75	1405		1.4
т. С		Black	<0.05	ma /1	rion,	T AA		1530	09/17/96	עד
		Standard	52 0	mg/L mg/L	50.0		106	1530	09/17/96	TN
		Standard	50.8	mg/L	50.0		102	1530	09/17/96	אד
		Standard	51.8	mg/L	50.0		10/	1530	09/17/96	ייי
	120800	Dumliante	20.05	#19/L	-0.05		104	1530	00/17/96	ייי
·.	429009	Duplicate	<0.05	μης/L			0	1530	09/17/96	TN
	429975	ouplicate	<u.u5< td=""><td>mg/1_</td><td><u.us< td=""><td>0.50</td><td>0</td><td>1550</td><td>09/17/90</td><td>ти Т</td></u.us<></td></u.u5<>	mg/1_	<u.us< td=""><td>0.50</td><td>0</td><td>1550</td><td>09/17/90</td><td>ти Т</td></u.us<>	0.50	0	1550	09/17/90	ти Т
<i>s</i> ,	429785	Spike		៣g/L		0.50	101	1530	09/17/96	1 M T U
	429838	Spike		mg/L	16	0.50	101	1220	09/17/90	14
					mercury,	CVAA			00/11/0/	T 11
		BLANK	<0.5	ug/L				1310	09/11/90	11
		Standard	5.3	ug/L	5.0		106	1310	09/11/96	IN TH
~		Standard	5.0	ug/L	5.0		100	1310	09/11/96	1.N
	429751	Duplicate	<0.5	ug/L	<0.5		0	1310	09/11/96	11
ī	429756	Spike		ug/L		5.0	104	1310	09/11/96	18
					Manganes	e, FAA				-
		Blank	<0.03	mg/L				1510	09/17/96	אז
		Standard	52.0	mg/L	49.7		105	1510	09/17/96	TN
		Standard	52.2	mg/L	49.7		105	1510	09/17/96	TN
3		Standard	52.2	mg/L	49.7		105	1510	09/17/96	T N
	429809	Duplicate	<0.03	mg/L	<0.03		0	1510	09/17/96	אז
形式	429975	Duplicate	<0.03	tng/L	<0.03		0	1510	09/17/96	TN
292	429785	Spike		mg/L		0.50	105	1510	09/17/96	TN
	429860	Spike		ng/L		0.50	100	1510	09/17/96	TN
9					Sodium,	FAA				
		Blank	<0.05	mg∕L				1555	09/11/96	TN
لع		Standard	93.5	mg/L	100		94	1555	09/11/96	אז
ધ્ય		Standard	96.0	mg/L	100		96	1555	09/11/96	אד
		Standard	97.0	ົ mg/L	100		97	1555	09/11/96	ТМ
4	429850	Duplicate	33	mg/L	33		0	1555	09/11/96	אד
		,		.			-			

Continued

REPORT

823 S. HWY, 49 PO. BOX 1268 • JACKSON, CA 95642 (209) 223-2800

10/07/96

C1+----

429784 Continued

- - .

Page 4 of 5

:	Sample #	Description	Result	Units	Dup/Std Value	e Spk Conc.	Percent	Time	Dat	e	8y
	429986	Duplicate	1.15	mg∕L	1.14		1	1555	09/	11/96	тн
	429840	Spike		mg/L		2.00	102	1555	09/	11/96	TN
	429977	Spike		mg/L		2.00	102	1555	09/	11/96	TH
		×			Nickel,	FAA					
		Blank	<0.10	mg∕L				1600	10/	04/96	тн
Э.ч.		Standard	48.5	mg/L	49.2		99	1600	10/	04/96	TN
		Standard	46.7	mg/L	49.2		95	1600	10/	04/96	ТН
		Standard	49.2	mg/L	49.2		100	1600	10/	04/96	TN
		Standard	47.7	mg∕L	49.2		97	1600	10/	04796	ТН
	430387	Duplicate	<0.10	mg/L	<0.10		0	1600	10/	04/96	тн
	430392	Spike		mg/L		0.50	103	1600	10/	04/96	тн
					Lead,	GFAA					
		Standard	8.3	ug/L	8.0		104	1240	09/3	24/96	тн
 		Standard	4.6	ug/L	8.0		58	1240	09/7	24/96	TN
	429809	Duplicate	2.4	սց/Լ	2.2		9	1240	09/2	24/96	TH
ж.Эł	429986	Spike		ug/L		10	82	1240	09/7	24/96	TH
					Antimony	, GFAA					
		Blank	<2.5	ug/L				1400	09/1	8/96	TN
		Standard	17	ug/L	10				1400	09/18/96	
		Standard	12	ug/L	10		120	1400	09/1	8/96	тн
-		Standard	14	ug/L	10				1400	09/18/96	
		Standard	14	ug/L	10				1400	09/18/96	
4	429756	Duplicate	<2.5	ug/L	<2.5		0	1400	09/1	8/96	ТН
	429973	Duplicate	<2.5	ug/L	<2.5		0	1400	09/1	8/96	кт
<i>,</i>	429809	Spike		ug/L		10	92	1400	09/1	8/96	אז
;,	429975	Spike		ug/L		10	123	1400	09/1	8/96	TN
				5	Selenium,	Hydride					
		Blank	<1.0	ug/L		-		0845	09/1	1/96	TN
		Standard	6.3	ug/L	5.0				0845	09/11/96	
		Standard	5.2	ug/L	5.0		104	0845	09/1	1/96	тн
:	429751	Duplicate	1.0	ug/L	<1.0		200	0845	09/1	1/96	тн
	429756	Snike		-s ua/l		5.0	98	0845	09/1	1/96	TN
		opine		-37 -	Thallium	GFAA					
	•					/ 01144		0050	00.0		T 11
		Blank	<1.0	ug/L				0850	09/2	4/90	1 N
		Standard	6.0	ug/L	8.0		75 F.	0850	09/2	4/96	111
ſ		Standard	4.5	ug/L	8.0		54	0850	09/2	4/90	1 M T.1
, FILL	429785	Duplicate	1.1	ug/L	1.1		0	0850	09/2	4/96	18
	429974	Spike		ug/L		10	95	0850	09/2	4/96	1 N
					Zinc,	PAA					
		Blank	<0.05	mg/L				1350	09/1	0/96	TN
		Standard	42.2	mg∕L	40.8		103	1350	09/1	0/96	TN
		Standard	42.6	mg/L	40.8		104	1350	09/1	0/96	TN
	429784	Duplicate	<0.05	mg/L	<0.05		0	1350	09/1	0/96	TN
j.	429786	Spike		[™] mg/L		0.50	101	1350	09/1	0/96	ΤN
					Arsenic,	Hydride					

Continued

REPORT

823 S. HWY. 49 P.O. BOX 1268 • JACKSON, CA 95642 (209) 223-2800

10/07/96		429784 Continued					Page 5 of 5		
Sample #	Description	Result	Units	Dup/Std Value	Spk Conc.	Percent	Time	Date	 Ву
	Blank	<2.0	ug/L				1100	09/11/96	тн
	Standard	4.9	ug/L	5.0		98	1100	09/11/96	тн
	Standard	5.8	ug/L	5.0		116	1100	09/11/96	TH
429751	Duplicate	<2.0	ug/L	<2.0		0	1100	09/11/96	тн
429756	Spike		ug/L		5.0	87	1100	09/11/96	TN

Dry Rurse/m Tony Nurse, Owner/Analyst

7 •

<u>نسب</u> ب ر

٠,

E OF SERVICE

1.4.1

•

REPORT

823 S. HWY. 49 P.O. BOX 1268 • JACKSON, CA 95642 (209) 223-2800

1

Page 1 of 2 TEST REPORT: 429787

Gwin Mine Associates PO Box 1059 San Andreas, CA 95249-

Sample Identification:20' Main shaft Collected By:LG Date & Time Taken:09/09/96 1540

Other Data: G W 1gal P Sample Matrix: Liquid **Report Date: 09/18/96**

Received: 09/10/96

Client: GWIN

- --- -

PARAMETER	RESULTS	UNITS	ANALYZED	EQL	METHOD	BY
Alkalinity, Total	340	mg/L	1300 09/10/96	5.0	EPA310.1	. GK
Chloride, Titrimetric	6.7	mg/L	1100 09/17/96	1.0	EPA325.3	GK
Specific Conductance	650	umho/cm	1300 09/10/96	1.0	EPA120.1	GK
Fluoride, Ion Electrode	0.16	mg/L	0945 09/11/96	0.1	EPA340.2	GK
Foaming Agents (MBAS)	<0.1	mg/L	0945 09/10/96	0.1	EPA425.1	GK
Magnesium, Calculation	24	mg/L	1500 09/17/96	0.05	SM3500Mg-E	RJ
Nitrogen, Nitrite-N	<0.02	mg/L	1510 09/10/96	0.02	EPA354	GK
Nitrogen, Nitrate-N	<0.05	mg/L	1445 09/10/96	0.05	EPA353.2	GK
Sulfate, Turbidimetric	6.7	mg/L	1000 09/17/96	0.5	EPA375.4	GK
Solids, Total Dissolved	410	mg/L	0900 09/16/96	10	EPA160.1	MG
pH ·	6.8	unit	1345 09/10/96	0.1	EPA150.1	GK
Calcium, Titrimetric	84	mg/L	1215 09/17/96	4.0	EPA215.2	GK
Hardness	310	mg/L	1400 09/10/96	5.0	EPA130.1	GK
Oual	Ity Assurance	for the S	SET with Same	le 429	787	

. Time Date By Sample # Result Units Dup/Std Value Spk Conc. Percent Description Alkalinity, Total GK mg∕L 09/10/96 <5.0 1300 Blank GK 09/10/96 87 1300 Standard 270 mg/L 310 GK 09/10/96 429788 Duplicate 350 mg∕L 370 6 1300

Continued

REPORT

823 S. HWY. 49 P.O. BOX 1268 • JACKSON, CA 95642 (209) 223-2800 09/18/96

4

. ŝ

429787 Continued

Page 2 of 2

	Sample #	Description	Result	Units	Dup/Std Value	Spk Conc.	Percent	Time	Date	By
н ^с	429818	Duplicate	920	mg/L	950		3	1300	09/10/96	GK
				Chl	oride, Tit	trimetric				
		Blank	<1.0	mg/L				1100	09/17/96	GK
		` Standard	140	mg∕L	140		100	1100	09/17/96	GK
	429788	Duplicate	9.2	mg∕L	9.5		3	1100	09/17/96	GK
				Sp	ecific Cor	nductance				
醤		Standard	312	umho/cm	303		103	1300	09/10/96	GK
1.5	429789	Duplicate	648	umho/cm	653		1	1300	09/10/96	GK
,		·		Fluo	ride, Ion	Electrod	e			
		Blank	<0.1	mg/L	-			0945	09/11/96	GK
		Standard	21	mg/L	20		105	0945	09/11/96	GK
	429757	Duplicate	0.14	mg/L	0.14		0	0945	09/11/96	GK
	429787	Spike		mg/L		4.0	108	0945	09/11/96	GK
				Foar	ning Agent	s (MBAS)				
		Standard	42	mg∕L	50		84	0945	09/10/96	GK
~ ?				Ni	trogen, Ni	ltrite-N				
_		Standard	23	mg∕L	25		92	1510	09/10/96	GK
	429808	Duplicate	<0.02	mg/L	<0.02		0	1510	09/10/96	GK
ر بر ا	429814	Spike		ug/l		7.5	98	1510	09/10/96	GK
÷.				Ni	trogen, Ni	trate-N				
		Standard	19	mg/L	20		95	1445	09/10/96	GK
14 15 1	429787	Duplicate	<0.05	mg/L	<0.05		0	1445	09/10/96	GK
	429789	Spike		mg/L		0.4	89	1445	09/10/96	GK
8				Suli	fate, Turb	oidimetric	3			
		Standard	150	mg/L	150		100	1000	09/17/96	GK
	429787	Spike		mg/L		28	100	1000	09/17/96	GK
				Solid	is, Total	Dissolved	1			
v		Standard	300	mg/L	290		103	0900	09/16/96	MG
3	429862	Duplicate	510	mg∕L	500		2	0900	09/16/96	MG
-	430071	Duplicate	130	mg/L	110		17	0900	09/16/96	MG
3					рн				00 (10 (0)	CY
		Standard	7.4	unit	7.4		100	1345	09/10/96	GK
	429787	Duplicate	6.8	unit Cl-7			U	1345	04/10/40	UK.
3				Cal	Idium, Tit	rimetric	÷	1015	00/17/0/	CY
		Blank	<4.0	mg/L	100		105	1215	09/17/90	CK CK
11 T	(20000	Standard	200	mg/L	190		105	1215	09/17/90	Cr
(97 W)	429808	Duplicate	120	mg/L	110 Hondoo		y	1215	09/17/90	97
		B ().	- F _ C		патипе	:58		1/00	00/10/06	Gr
Ŋ		Blank	<.u	mg/L	700		~	1400	09/10/90	Cr'
الم الم	(20202	Standard	750	mg/L	780		Y0	1400	09/10/90	UK CY
2	429787	Duplicate	310	mg/L	300		٢	1400	04/10/A0	UK.

Ky Kurse/m Nurse Ormer/Analyst

REPORT

823 S. HWY, 49 P.O. BOX 1268 • JACKSON, CA 95642 (209) 223-2800

2

1997

......

BUN HARD

W. a. J. T. B

Sierra Foothill Laboratory Quality Control Worksheet

Sample ID: 429784;787

						Conversion
Analyte	Charge	Conc.	(mg/L) <u>Catio</u>	n Anion	Factor
Alk	Anion		340	ł	6.8000	50.00
CI	Anion		6.7		0.1890	35.45
F	Anion		0.16		0.0084	19.00
NO3 as N	Anion					14.00
PO4	Anion					31.66
SO4	Anion		6.7		0.1395	48.03
Al	Cation					8.99
В	Cation					10.82
Ba	Cation		0.26	0,003	8	68.67
Ca	Cation		84	4,191	6	20.04
Cu	Cation					31.77
Fe	Cation		0.69	0.037	1	18.62
K .	Cation					39.10
Mg	Cation		24	1.975:	3	12.15
Mn	Cation		0.69	0.0503	3	13.73
Na	Cation		30	1.3049	Ð	22.99
NH3	Cation					18.04
Si	Cation					38.04
Zn	Cation					32.69
EC			650			
TDS		····	410			
Total				7.56	5 7.14	
QC Measure	ment	Result		Evaluation	Acceptance	Criteria
C-A Balance	%	94.4%		Acceptable	Greater than	85%
Calculated 1		461.6			-	
Calculated 11	DS / EC Ratio	0.71		High	Range = 0.5	5 - 0.7
Measured TD	DS / EC Ratio	0.63		Acceptable	Range = 0.5	5 - 0.7
Measured TD	S / Calculated TDS	0.89		Low	Range = 1.0	- 1.2
EC Ratio / Ar	non	0.91		Acceptable	Range = 0.8	- 1.2
EC Ratio / Ca	ation	0.86		Acceptable	Range = 0.8	- 1:2

C-A Balance Acceptance Criteria for Drinking Water

7•

Anion Sum	Acceptable %
(meq/L)	Difference
0 - 3.0	+- 0.2 meq/L
3.0 - 10.0	+- 2%
10.0 - 800	+- 2-5%

CALC-BAL.WKS

.

823 S. HWY, 49 P.O. BOX 1268 • JACKSON, CA 95642 (209) 223-2800

-

REPORT

Page 1 of 5 TEST REPORT: 429785

Gwin Mine Associates PO Box 1059 San Andreas, CA 95249-

Sample Identification:1200' Main shaft Collected By:LG Date & Time Taken:09/09/96 1612

Other Data: G W 11G/HN03 Sample Matrix: Liquid Report Date: 10/07/96

Received: 09/10/96

Client: GWIN

PARAMETER	RESULTS	UNITS	ANALYZED	EQL	METHOD	BY
Silver, GFAA	<5	ug/L	1230 09/23/96	5.0	EPA200.9	TH
Aluminum, GFAA	55	ug/L	0825 09/23/96	50	EPA200.9	тн
Barium, FAA	0.24	mg/L	1140 09/10/96	0.10	EPA208.1	דא
Beryllium, GFAA	<1	ug/L	0935 09/12/96	1.0	EPA200.9	TN
Cadmium, GFAA	<1	ug/L	1215 09/10/96	1.0	EPA200.9	TN
Chromium, GFAA	3.6	ug/L	1000 09/22/96	2.0	EPA200.9	TN
Copper, FAA	<0.03	mg/L	1405 09/10/96	0.03	EPA220.1	TN
Iron, FAA	0.27	mg/L	1530 09/17/96	0.05	EPA236.1	ти
Kercury, CVAA	<0.5	ug/L	1310 09/11/96	0.5	EPA245.1	TN
Manganese, FAA	0.62	mg/L	1510 09/17/96	0.03	EPA243.1	тн
Sodium, FAA	31	mg/L	1555 09/11/96	0.05	EPA273.1	TN
Nickel, FAA	0.35	mg/L	1600 10/04/96	0.10	EPA249.1	тн
Lead, GFAA	<2	ug/L	1240 09/24/96	2.0	EPA200.9	TN
Antimony, GFAA	<2.5	ug/L	1400 09/18/96	2.5	EPA200.9	TN
Selenium, Hydride	<1	ug/L	0845 09/11/96	1.0	SM3114B	TN
Thallium, GFAA	1.1	ug/L	0850 09/24/96	1.0	EPA200.9	TN
Zinc, FAA	~ <0.05	mg/L	1350 09/10/96	0.05	EPA289.1	TH

Continued

REPORT

823 S. HWY 49 P.O. BOX 1268 • JACKSON, CA 95642 (209) 223-2800 0/07/96

429785 Continued

Page 2 of 5

ARAMETE	R	REST	JLTS	UNITS	ANALY	ZED	EQL	METHC	D	BY
Arsenic, Hyd	ride	150		ug/L	1100 09/	11/96	2.0	SM31148		TN
· ·	×	Sampl	le Prej	paration	Steps for	4297	85			
Digestion, A	••••••••••••••••••••••••••••••••••••••	09/10	0/96	Date	0830 09/1	10/96	• • • • • •	SM303E		 LK
Sigestion, So	elenium by Hydride	e 09/10	0/96	Date	0900 09/1	10/96		SM303E		LK
jigestion, Me	ercury, Liquid	09/10	0,/96	Date	1330 09/1	10/96		EPA7470		LK
••••	Qual	lity Ass	surance	e for the	SET with	Samp	le 429	785		
sample #	Description	Result	Units	Dup/Std Value Silver,	Spk Conc. GFAA	Percent	т	ime D	ate	Ву
	Blank	<5.0	ug/l				1	230 0	9/23/96	TN
فلند	Standard	8.0	ug/L	8.0		100	1.	230 0	9/23/96	TN
*	Standard	8.7	ug/L	8.0		109	13	230 0	9/23/96	TN
~ 29975	Duplicate	<5.0	ug/L	<5.0		0	1	230 0	9/23/96	TN

sample #	Description	Result	Units	Dup/Std Value Silver,	Spk Conc. GFAA	Percent	Time	Date	Ву
	Blank	<5.0	ug/L				1230	09/23/96	TN
ودع	Standard	8.0	ug/L	8.0		100	1230	09/23/96	TN
r	Standard	8.7	ug/L	8.0		109	1230	09/23/96	TN
··· 29975	Duplicate	<5.0	ug/L	<5.0		0	1230	09/23/96	TN
29809	Spike		ug/L		5.0	90	1230	09/23/96	TN
7				Aluminum	, GFAA				
	Blank	<50	ug/L				0825	09/23/96	אד
	Standard	74	ug/L	75		99	0825	09/23/96	TN
	Standard	60	ug/L	<i>7</i> 5		80	0825	09/23/96	TN
429784	Duplicate	290	ug/L	280		4	0825	09/23/96	אז
.29973	Spike		ug/L		100	124	0825	09/23/96	TN
	•			Barium,	FAA				,
	Blank	<0.10	ing/L				1140	09/10/96	· TN
	Standard	50.8	ing/L	50.0		102	1140	09/10/96	TN
	Standard	48.5	ing/L	50.0		97	1140	09/10/96	TN
Ä29784	Duplicate	0.26	ing/L	0.17		42	1140	09/10/96	TN
429786	Spike		ung/L		1.00	93	1140	09/10/96	TN
1				Beryllium	, GFAA				
~	Blank	<1.0	ug/L				0935	09/12/96	TN
	Standard	6.0	ug/L	6.0		100	0935	09/12/96	тн
	Standard	5.5	ug/l	6.0		92	0935	09/12/96	TN
*	Standard	5.9	ug/L	6.0		98	0935	09/12/96	TN
	Standard	6.0	ug/L	6.0		100	0935	09/12/96	TN
<u>-</u> 429784	Duplicate	<1.0	ug/L	<1.0		0	0935	09/12/96	אד
氢29977	Duplicate	<1.0	ug/L	<1.0		0	0935	09/12/96	TN
229809	Spike		ug/L		5.0	132	0935	09/12/96	TN
429974	Spike		ug/L		5.0	114	0935	09/12/96	TN
				Cadmium,	GFAA				
6	Blank	<1.0	ug/L				1215	09/10/96	TH
	Standard	11	ug/L	10		110	1215	09/10/96	TN
4	Standard	9.8	ug/L	10		98	1215	09/10/96	TN
29756	Duplicate	<1.0	ug7L	<1.0		0	1215	09/10/96	אד
429751	Spike		ug/L		10	100	1215	09/10/96	TN
H arrisolard			Cont	inued					

SIEDDA FOOTUILT TABORATORY IS CERTIFIED BY THE STATE OF CALIFORNIA OFPT. HEALTH SERVICES

REPORT

823 S. HWY, 49

......

PO. BOX 1268 • JACKSON, CA 95642 (209) 223-2800

10/07/96

429785 Continued

Page 3 of 5

	Sample #	Description	Result	Units	Dup/Std Value Chromium	e Spk Conc. 1, GFAA	Percent	Time	Date		Ву
		Blank	<10	ug/L				1000	09/22	2/96	ТК
		Standard	9.5	ug/L	10		95	1000	09/22	2/96	ти
		Standard	11	ug/L	10		110	1000	09/22	/96	тн
		Standard	13	ug/L	10				1000	09/22/96	
		Standard	18 .	ug/L	10				1000	09/22/96	
	429786	Duplicate	6.6	ug/L	6.6		0	1000	09/22	/96	TN
	429974	Duplicate	3.7	ug/L	3.5		6	1000	09/22	/96	ТН
	429756	Spike		ug/L		10	185	1000	09/22	/96	TN
	429977	\$pike		ug/L		10	210	1000	09/22	/96	TN
					Copper,	FAA					
		Standard	42.8	mg/L	40.2		106	1405	09/10	/96	TH
·		Standard	43.6	mg∕L	40.2		108	1405	09/10	/96	TN
2	429784	Duplicate	<0.03	mg∕L	<0.03		0	1405	09/10	/96	TN
	429786	spike		mg∕L	_	0.5	93	1405	09/10	/96	TN
2 %					Iron,	FAA					
		Blank	<0.05	mg∕L	_			1530	09/17	/96	TN
		Standard	52.9	mg/L	50.0		106	1530	09/17	/96	TN
		Standard	50.8	mg/L	50.0		102	1530	09/17	/96	TN
		Standard	51.8	mg/L	50.0		104	1530	09/17	/96	T N
	429809	Duplicate	<0.05	mg/L	<0.05		0	1530	09/17,	/96	1 א
ġ.	429975	Duplicate	<0.05	mg/L	<0.05		0	1530	09/17,	/96	1 1
•	429785	Spike		mg/L		0.50	101	1530	09/17,	/96	18
	429858	Spike		mg/L		0.50	101	1530	09/17,	/96	i N
		0 1 1	-0 F		mercury,	CVAA		4740	00/44		
·		BLANK	<u.)< td=""><td>ug/L</td><td>F 0</td><td></td><td>10/</td><td>1310</td><td>09/11/</td><td>(96 (0)</td><td>או דע</td></u.)<>	ug/L	F 0		10/	1310	09/11/	(96 (0)	או דע
•		Standard	5.5	ug/L	5.0		106	1210	09/11/	90	IN TH
	(2075 1	Standard	5.U -0.E	ug/L	5.0		100	1310	09/11/	90	18
	429731	Dupticate	KU.5	ug/L	<u.5< td=""><td>F O</td><td>0</td><td>1210</td><td>09/11/</td><td>70</td><td>TN</td></u.5<>	F O	0	1210	09/11/	70	TN
	429130	Spike		ug/L	Manganog	ס.ט ה עצא	104	1210	UY/ [] /	90	1 1
		Diank	<0.07		мануанев	e, raa		1610	00/17/	201	τu
		Blank	52.0	mg/L	10.7		105	1510	00/17/	90 '04	ית דע
	•	Standard	52.0	mg/L	49.7		105	1510	09/1//	90	
		Standard	52.2	mg/L	49.7		105	1510	09/17/	96	ĨN
		Standard	52.2	mg∕L	49.7		105	1510	09/17/	96	T N
ę	429809	Duplicate	<0.03	mg/L	<0.03		0	1510	09/17/	96	IN
urta.s.	429975	Duplicate	<0.03	mg/L	<0.03	•	0	1510	09/17/	96	1 N
,	429785	Spike		mg/L		0.50	105	1510	09/17/	96	TN
	429860	Spike		mg/L	a 11	0.50	100	1510	09/17/	96	TN
					Sodium,	FAA					
		Blank	<0.05	mg/L				1555	09/11/	96	(N
		Standard	93.5	mg∕L	100		94	1555	09/11/	96	TN
		Standard	96.0	mg/L	100		96	1555	09/11/	96	T N
		Standard	97.0	mg/L	100		97	1555	09/11/	96	TN
	429850	Duplicate	33	mg/L	33		0	1555	09/11/	96	ŤŇ

Continued

- ----

REPORT

823 S. HWY. 49 P.O. BOX 1268 • JACKSON. CA 95642 (209) 223-2800 **10/07/96**

429785 Continued

Page 4 of 5

	429986 429840	Duplicate	1 15	United		. opr conc.	, crocite	11110	Pare		ву
	429840	Daptioute		ma /1	1 14		1	1555	0971	1/06	TH
•	427040	Snike	1.12	ma/l	1-14	2 00	102	1555	09/1	1/96	1 N T V
	429977	Spike		ma/l		2.00	102	1555	09/1	1/96	יאי דע
	,	,			Nickel.	FAA			•,, •	.,,,,	1.4
		Blank	<0.10	ma /1	nzonoz,			1600	1070	4/96	τN
• .		Standard	48.5	ma/1	49.2		99	1600	10/0	4/96	ти ТИ
		Standard	46.7	ma/l	49.2		95	1600	10/0	4/96	ты Ты
		Standard	49.2	ma/l	49.2		100	1600	10/0	4/96	т т
		Standard	47.7	mor/L	49.2		97	1600	10/0	4/96	דא
•	430387	Duplicate	<0.10	mg/L	<0.10		0	1600	10/0	4/96	TN
•	430392	Spike		mg/L		0.50	103	1600	10/0	4/96	TN
		·			Lead,	GFAA					
		Standard	8.3	ug/L	8.0		104	1240	09/2	4/96	ти
•		Standard	4.6	ug/L	8.0		58	1240	09/2	4/96	ТN
i lait	429809	Duplicate	2.4	ug/L	2.2		9	1240	09/24	4/96	TN
	429986	Spike		ug/L		10	82	1240	09/24	4/96	TN
					Antimony	, GFAA					
·		Blank	<2.5	ug/L				1400	09/18	3/96	אד
		Standard	17	ug/L	10				1400	09/18/96	
•		Standard	12	ug/L	10		120	1400	09/18	3/96	TN
		Standard	14	ug/L	10				1400	09/18/96	
		Standard	14	ug/L	10				1400	09/18/96	
	429756	Duplicate	<2.5	ug/L	<2.5		0	1400	09/18	1/96	ТН
	429973	Duplicate	<2.5	ug/L	<2.5		0	1400	09/18	/96	TN
••	429809	Spike		ug/L		10	92	1400	09/18	3/96	TN
·:-	429975	Spike		ug/L		10	123	1400	09/18	3/96	ТN
				5	Selenium,	Hydride					
<i></i>		Blank	<1.0	ug/L				0845	09/11	/96	TN
		Standard	6.3	ug/L	5.0				0845	09/11/96	
		Standard	5.2	ug/L	5.0		104	0845	09/11	/96	TN
	429751	Duplicate	1.0	ua/L	<1.0		200	0845	09/11	/96	TN
	429756	Spike		ug/L		5.0	98	0845	09/11	/96	TN
				-37 -	Thallium	, GFAA					
		Blank	<1.0	ug/L				0850	09/24	/96	TN
,		Standard	6.0	ug/L	8.0		75	0850	09/24	/96	TN
-		Standard	4.3	ug/L	8.0		54	0850	09/24	/96	TN
1	429785	Duplicate	1.1	ug/L	1.1		0	0850	09/24	/96	TN
22	429974	Spike		ug/L		10	95	0850	09/24	/96	TN
					Zinc,	FAA					
-25		Blank	<0.05	mg/L				1350	09/10	/96	TN
3		Standard	42.2	mg∕L	40.8		103	1350	09/10	/96	אד
		Standard	42.6	mg∕L	40.8		104	1350	09/10	/96	TN
ł	429784	Duplicate	<0.05	mg/L	<0.05		0	1350	09/10	/96	TN
	429786	Spike		mg/L		0.50	101	1350	09/10	/96	TN
×					Arsenic,	Hydride					

Continued

REPORT

823 S. HWY. 49 P.O. BOX 1268 • JACKSON. CA 95642 (209) 223-2800

10/07/96

429785 Continued

```
Page 5 of 5
```

Sample #	Description	Result	Units	Dup/Std Value	Spk Conc.	Percent	Time	Date	By
	Blank	<2.0	ug/L				1100	09/11/96	TH
	Standard	4.9	ug/L	5.0		98	1100	09/11/96	TH
	Standard	5.8	ug/L	5.0		116	1100	09/11/96	TN
429751	Duplicate	<2.0	ug/L	<2.0		0	1100	09/11/96	אד
429756	Spike		ug/L		5.0	87	1100	09/11/96	TH

Jory Rutse/m Tony Nurse, Owner/Analyst

20

REPORT

823 S. HWY, 49 P.O. BOX 1268 • JACKSON, CA 95642 (209) 223-2800

2

Page 1 of 2 TEST REPORT: 429788

Gwin Mine Associates PO Box 1059 San Andreas, CA 95249–

Sample Identification:1200' Main shaft Collected By:LG Date & Time Taken:09/09/96 1642

Other Data: Gwlgal P Sample Matrix: Liquid Report Date: 09/18/96

Received: 09/10/96

Client: GWIN

PA	RAMETER	RESULTS	UNITS	ANALYZED	EQL	METHOD	BY
AL	kalinity, Total	350	mg/L	1300 09/10/96	5.0	EPA310.1	GK
	loride, Titrimetric	9.2	mg/L	1100 09/17/96	1.0	EPA325.3	GK
Sp	pecific Conductance	653	umho/cm	1300 09/10/96	1.0	EPA120.1	GK
Fl	uoride, Ion Electrode	0.16	mg∕L	0945 09/11/96	0.1	EPA340.2	GK
- Fo	paming Agents (HBAS)	0.22	mg/L	0945 09/10/96	0.1	EPA425.1	GK
Ma	gnesium, Calculation	28	mg/L	1500 09/17/96	0.05	SM3500Mg-E	RJ
Ni	trogen, Nitrite-N	_<0.02	mg/L	1510 09/10/96	0.02	EPA354	GK
» Ni	trogen, Nitrate-N	<0.05	mg/L	1445 09/10/96	0.05	EPA353.2	GK
Su	lfate, Turbidimetric	6.7	mg/L	1000 09/17/96	0.5	EPA375.4 -	GK
- So	lids, Total Dissolved	410	mg/L	0900 09/16/96	10	EPA160.1	MG
, bł		6.8	unit	1345 09/10/96	0.1	EPA150.1	GK
: Ca	lcium, Titrimetric	86	mg/L	1215 09/17/96	4.0	EPA215.2	GK
nongan Ka	rdness	330	mg/L	1400 09/10/96	5.0	EPA130.1	GK

Quality Assurance for the SET with Sample 429788

j	Sample #	Description	Result	Units	Dup/Std Value Spk Conc.	Percent	Time	Date	Ву
	-	·			Alkalinity, Total				
3		Blank	<5.0	mg/L	_		1300	09/10/96	GK
		Standard	270	mg∕L	310	87	1300	09/10/96	GK
•	429788	Duplicate	350	mg/L	370	6	1300	09/10/96	GK

Continued

REPORT

823 S. HWY. 49 P.O. BOX 1268 • JACKSON. CA 95642 (209) 223-2800 **09/18/96**

429788 Continued

Page 2 of 2

429818 Duplicate 920 mg/L 950 3 1300 09/1 Chloride, Titrimetric Blank <1.0 mg/L 1100 09/1	0/96 GK 7/96 GK 7/96 GK
Chloride, Titrimetric Blank <1.0 mg/l 1100 09/1	7/96 GK 7/96 GK
Blank <1.0 mg/1 1100 09/1	7/96 GK 7/96 GK
	7/96 GK
Standard 140 mg/L 140 100 1100 09/1	
429788 Duplicate 9.2 mg/L 9.5 3 1100 09/1	7/96 GK
Specific Conductance	
Standard 312 umho/cm 303 103 1300 09/1	0/96 GK
🐸 429789 Duplicate 648 umho/cm 653 1 1300 09/1	0/96 GK
Fluoride, Ion Electrode	
Blank <0.1 mg/L 0945 09/1	1/96 GK
Standard 21 mg/L 20 105 0945 09/1	1/96 GK
429757 Duplicate 0.14 mg/L 0.14 0 0945 09/1	1/96 GK
10 429787 Spike mg/L 4.0 108 0945 09/10	1/96 GK
Foaming Agents (MBAS)	
Standard 42 mg/L 50 84 0945 09/10	0/96 GK
Nitrogen, Nitrite-N	
Standard 23 mg/L 25 92 1510 09/10	1/96 GK
429808 Duplicate <0.02 mg/L <0.02 0 1510 09/10	1/96 GK
429814 Spike ug/L 7.5 98 1510 09/10	1/96 GK
Nitrogen, Nitrate-N	
Standard 19 mg/L 20 95 1445 09/10	/ YO UK
429/8/ Duplicate <0.05 mg/L <0.05 0 1445 09/10	190 GK
Cultate Mg/L U.4 89 (443 09/10	140 GK
Sullate, Iurbidimetile	104 CK
Standard 150 mg/L 150 100 100 09/17	/90 UK
Solida Total Diggolved	/ 30
Standard 300 m/l 200 103 0000 09/1/	.796 MG
429862 Duplicate 510 mg/L 500 2 0900 09/16	/96 MG
~ 430071 Duplicate 130 mg/L 110 17 0000 09/16	/96 MG
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Standard 7.4 unit 7.4 100 1345 09/10	/96 GK
429787 Dunlicate 6.8 unit 6.8 0 1345 09/10	/96 GK
Calcium, Titrimetric	,
Blank <4.0 mg/L 1215 09/17	/96 GK
Standard 200 mg/t 190 105 1215 09/17	/96 GK
429808 Duplicate 120 mg/L 110 9 1215 09/17	/96 GK
Hardness	
Blank <5.0 mg/L 1400 09/10	/96 GK
Standard 750 mg/L 780 96 1400 09/10	/96 GK
429787 Dimiicate 310 mg/l 300 3 1400 09/10	/96 GX
	,

Jory Rurse/m Tony Nurse, Owner/Analyst

.

.

REPORT

823 S HWY. 49 PO BOX 1268 • JACKSON. CA 95642 (209) 223-2800

È

or this is

Sierra Foothill Laboratory Quality Control Worksheet

Sample ID: 429785;788

				,		Con	version
Analyte	<u>Charge</u>	Conc. (mg/L) <u>Ca</u>	atior	n Anion	Factor
Alk 🕚	Anion		350)		7.0000	50.00
CI	Anion		9.2			0.2595	35.45
F	Anion		0.16	i		0.0084	19.00
NO3 as N	Aniori						14.00
PO4	Aniori						31.66
SO4	Anior		6.7			0.1395	48.03
AI	Cation						8.99
В	Cation						10.82
Ba	Cation		0.24	0.0	035		68.67
Ca	Cation		86	4.2	2914		20.04
Cu	Cation						31.77
Fe	Cation		0.27	0.0)145		18.62
К	Cation						39.10
Mg	Cation		28	2.3	045		12.15
Mn	Cation		0.62	0.0	452		13.73
Na	Cation		31	1.3	484		22.99
NH3	Cation						18.04
Si	Cation						38.04
Zn	Cation						32.69
EC			653				
TDS			410				
Total				8	3.01	7.41	
QC Measurement		Result	_	Evaluati	01	Acceptance Crite	<u>ria</u>
C-A Balance %		92.5%		Accepta	ble	Greater than 85%	0
Calculated TDS		480.1					
Calculated TDS / EC F	Ratio	0.74		High		Range = $0.55 - 0.55$.7
Measured TDS / EC R	latio	0.63		Acceptal	ble	Range = 0.55 - 0.	.7
Measured TDS / Calcu	lated TDS	0.85		Low		Range = 1.0 - 1.2	1
EC Ratio / Anion		0.88		Acceptal	ble	Range = 0.8 - 1.2	2
EC Ratio / Cation		0.82		Acceptal	ble	Range = 0.8 - 1.2	

C-A Balance Acceptance Criteria for Drinking Water

-	
Anion Sum	Acceptable %
(meq/L)	Difference
0 - 3.0	+- 0.2 meq/L
3.0 - 10.0	+- 2%
10.0 - 800	+- 2-5%

REPORT

823 S. HWY. 49 PO BOX 1268 • JACKSON. CA 95642 (209) 223-2800

the property of the second

Page 1 of 5 TEST REPORT: 429786

Gwin Mine Associates PO Box 1059 San Andreas, CA 95249-

Sample Identification:2400' Main shaft Collected By:LG Date & Time Taken:09/09/96 1815

Other Data: G W 11G/HN03 Sample Matrix: Liquid Report Date: 10/07/96

Received: 09/10/96

Client: GWIN

<i></i>							
-	PARAMETER	RESULTS	UNITS	ANALYZED	EQL	METHOD	BY
*	Silver, GFAA	<5	ug/L	1230 09/23/96	5.0	EPA200.9	TN
5	Aluminum, GFAA	<50	ug/L	0825 09/23/96	50	EPA200.9	TN
	Barium, FAA	0.25	mg/L	1140 09/10/96	0.10	EPA208.1	TN
	Beryllium, GFAA	<1	ug/L	0935 09/12/96	1.0	EPA200.9	TN
	Cadmium, GFAA	<1	ug/L	1215 09/10/96	1.0	EPA200.9	н
•.	Chromium, GFAA	6.6	ug/l	1000 09/22/96	2.0	EPA200.9	TN
	Copper, FAA	<0.03	mg∕L	1405 09/10/96	0.03	EPA220.1	TN
•	Iron, FAA	0.20	mg/L	1530 09/17/96	0.05	EPA236.1	тн
	Mercury, CVAA	<0.5	ug/L	1310 09/11/96	0.5	EPA245.1	тн
	Manganese, FAA	0.60	mg/L	1510 09/17/96	0.03	EPA243.1	ти
	Sodium, FAA	31	mg/L	1555 09/11/96	0.05	EPA273.1	אז
	Nickel, FAA	0.50	mg∕L	1600 10/04/96	0.10	EPA249.1	TN
	Lead, GFAA	<2	ug/L	1240 09/24/96	2.0	EPA200.9	TN
	Antimony, GFAA	2.7	ug/L	1400 09/18/96	2.5	EPA200.9	TN
	Selenium, Hydride	<1	ug/L	0845 09/11/96	1.0	SM3114B	TN
	Thallium, GFAA	1.4	ug/L	0850 09/24/96	1.0	EPA200.9	ТН
	Zinc, FAA	<0.05	mg/L	1350 09/10/96	0.05	EPA289.1	TN

Continued

.

REPORT

823 S. HWY. 49

٠.

P.O. BOX 1268 • JACKSON, CA 95642 (209) 223-2800

	(200) 220-200	~								
	10/07/96			42	9786 Conti	Inued		P	age 2 of 5	
	PARAMETE	R	R	ESULTS	UNITS	ANA	LYZED	EQL	METHOD	BY
••	Arsenic, Hyd	ride		120	ug/L	1100 0	 09/11/96	2.0	SM31148	ти
-			Sa	mple Pro	eparation	Steps fo	or 4297	36		
				- • • • • • • •	_ <i></i>	•••••				• • • • • • •
	Digestion, A	rsenic by Hydride		09/10/96	Date	0830 0	9/10/96		SM303E	LK
	Digestion, Se	elenium by Hydride		09/10/96	Date	0900 0	9/10/96		SM303E	LK
ġ.	Digestion, He	ercury, Liquid		09/10/96	Date	1330 0	9/10/96		EPA7470	LK
		Qual	ity	Assurance	ce for the	SET wit	th Sampl	le 4297	786	
	Sample #	Description	Resul	t Units	Dup/Std Value Silver,	Spk Conc. GFAA	Percent	Tin	ne Date	Ву
		Blank	<5.0	ug/L				123	09/23/96	TN
		Standard	8.0	ug/L	8.0		100	127	09/23/96	TN
-		Standard	8.7	ug/L	8.0		109	123	09/23/96	тн
£.5	429975	Duplicate	<5.0	ug/L	<5.0		0	123	09/23/96	ТИ
	429809	Spike		ug/L		5.0	90	123	09/23/96	ТН
					Aluminum	, GFAA				
		Blank	<50	ug/L				082	09/23/96	TN
		Standard	74	ug/L	75		99	082	09/23/96	тн
		Standard	60	ug/L	75		80	082	09/23/96	ти
: :-	429784	Duplicate	290	ug/L	280		4	082	5 09/23/96	TN
•	429973	Spike		ug/L		100	124	082	5 09/23/96	тн
					Barium,	FAA				
		Blank	<0.10	mg/L				114	0 09/10/96	ТN
		Standard	50.8	mg/L	50.0		102	114	0 09/10/96	TN
÷ ;		Standard	48.5	mg/L	50.0		97	114	0 09/10/96	тн
	429784	Duplicate	0.26	mg/L	0.17		42	114	0 09/10/96	ТН
	429786	Spike		mg/L		1.00	93	114	0 09/10/96	TN
]					Beryllium	, GFAA				
÷		Blank	<1.0	ug/L				093	5 09/12/96	TN
		Standard	6.0	ug/L	6.0		100	093	5 09/12/96	TN
		Standard	5.5	ug/L	6.0		92	093	5 09/12/96	тн
		Standard	5.9	ug/L	6.0		98	093	5 09/12/96	TN
;		Standard	6.0	ug/L	6.0		100	093	5 09/12/96	TN
-	429784	Duplicate	<1.0	ug/L	<1.0		0	093	5 09/12/96	тн
N.	429977	Duplicate	<1.0	ug/L	<1.0		0	093	5 09/12/96	TN
SLU	429809	Spike		ug/L		5.0	132	093	5 09/12/96	TN
	429974	Spike		ug/L		5.0	114	093	5 09/12/96	ТН
1		an finan an an an			Cadmium.	GFAA			• •	
, T		Blank	<1.0	ua/L				121	5 09/10/96	тн
-		Standard	11	ug/L	10		110	121	5 09/10/96	TN
7		Standard	9.8	ug/L	10		98	121	5 09/10/96	ТН
	429756	Duplicate	<1.0		<1.0		0	121	5 09/10/96	TN
Я	429751	Spike		ug/L		10	100	121	5 09/10/96	тн
		•								

Continued

SIERRA FOOTHILL LARORATORY IS CERTIFIED BY THE STATE OF CALIFORNIA DEPT. HEALTH SERVICES

REPORT

823 S. HWY, 49 P.O. BOX 1268 • JACKSON, CA 95642 (209) 223-2800

10/07/96

· · · · · · · ·

12000

429786 Continued

Page 3 of 5

:-	Sample #	Description	Result	Units	Dup/Std Value Chromium	spk Conc.	Percent	Time	Date	• .	8,
		Blank	<10	ug/L				1000	09/22/	96	TH
f		Standard	9.5	ug/L	10		95	1000	09/22/	96	TN
		Standard	11	ug/L	10		110	1000	09/22/	96	TH
		Standard	13	ug/L	10				1000	09/22/96	
		Standard	18	աց/Լ	10				1000	09/22/96	
	429786	Duplicate	6.6	ug/L	6.6		0	1000	09/22/9	76	TN
13	429974	Duplicate	3.7	ug/L	3.5		6	1000	09/22/9	76	TN
	429756	Spike		ug/L		10	185	1000	09/22/9	76	TR
: .	420077	Spike		-3/ -		10	210	1000	09/22/9	26	TN
	42//11	•P····•		-3/ -	Copper.	FAA					
		Standard	42.8	mg/L	40.2		106	1405	09/10/9	6	тн
		Standard	43.6	mg/L	40.2		108	1405	09/10/9	96	тн
	429784	Duplicate	<0.03	mg/L	<0.03		0	1405	09/10/9	<i>'</i> 6	тн
م جر ز	429786	Spike		mg/L		0.5	93	1405	09/10/9	6	тн
		•		0, -	Iron.	FAA					
F 15		Blank	<0.05	mg/L				1530	09/17/9	6	TN
		Standard	52.9	mg/L	50.0		106	1530	09/17/9	6	тн
		Standard	50.8	mg/L	50.0		102	1530	09/17/9	6	тн
		Standard	51.8	mg/L	50.0		104	1530	09/17/9	6	TN
	429809	Duplicate	<0.05	mg/L	<0.05		0	1530	09/17/9	6	тн
т. Е	429975	Duplicate	<0.05	mg/L	.<0.05		0	1530	09/17/9	6	TN
с. ¢	429785	Spike		mg/L		0.50	101	1530	09/17/9	6	TN
	429858	Spike		mg/L		0.50	101	1530	09/17/9	6	TN
		·		0	Mercury,	CVAA					
		Blank	<0.5	ug/L				1310	09/11/9	6	אז
. 3		Standard	5.3	ug/L	5.0		106	1310	09/11/9	6	TN
		Standard	5.0	ug/L	5.0		100	1310	09/11/9	6	нт
	429751	Duplicate	<0.5	ug/L	<0.5		0	1310	09/11/9	6	TN
	429756	Spike		ug/L		5.0	104	1310	09/11/9	6	TH
					Manganes	e, FAA					
		Blank	<0.03	mg/L				1510	09/17/9	6	КТ
		Standard	52.0	mg∕L	49.7		105	1510	09/17/9	6	нт
		Standard	52.2	mg/L	49.7		105	1510	09/17/9	5	TN
;		Standard	52.2	mg/L	49.7		105	1510	09/17/9	6	TN
	429809	Duplicate	<0.03	mg/L	<0.03		0	1510	09/17/9	6	TN
1997 1997	429975	Duplicate	<0.03	mg/L	<0.03		0	1510	09/17/9	5	TN
1	429785	Spike		mg/L		0.50	105	1510	09/17/9	5	TN
	429860	Spike		mg/L		0.50	100	1510	09/17/9	5	TN
					Sodium,	FAA					
:		Blank	<0.05	mg/L	•			1555	09/11/9	5	TN
3		Standard	93.5	mg/L	100		94	1555	09/11/9	6	тн
		Standard	96.0	mg/L	100		96	1555	09/11/9	6	TN
1		Standard	97.0	mg/1	100		97	1555	09/11/9	6	кт
3	629850	Dunlicate	33	mar /	33		0	1555	09/11/9	5	тн
	427030	Dupticate	~~	11137 C			v	م د د			

Continued

REPORT

823 S. HWY. 49 P.O. BOX 1268 • JACKSON, CA 95642

<u>,</u>

(209) 223-2800 10/07/96

429786 Continued

Page 4 of 5

	Sample #	Description	Result	Units	Dup/Std Value	e Spk Conc.	Percent	Time	Date	2	By
	429986	Duplicate	1.15	mg∕L	1.14		1	1555	09/	11/96	TN
	429840	Spike		mg∕L		2.00	102	1555	09/	11/96	TN
,	429977	Spike		mg/L		2.00	102	1555	09/1	11/96	TN
		X			Nickel,	, FAA					
		Blank	<0.10	mg∕L				1600	10/0	04/96	TN
•		Standard	48.5	mg∕L	49.2		99	1600	10/0	04/96	TN
		Standard	46.7	mg∕L	49.2		95	1600	10/0	04/96	TN
•		Standard	49.2	mg∕L	49.2		100	1600	10/0	04/96	TN
		Standard	47.7	mg/L	49.2		97	1600	10/0	04/96	TH
. ~	430387	Duplicate	<0.10	mg∕L	<0.10		0	1600	10/0	14/96	TN
•	430392	Spike		mg/L		0.50	103	1600	10/0	4/96	TN
					Lead,	GFAA					
ъ.		Standard	8.3	ug/L	8.0		104	1240	09/2	4/96	TN
		Standard	4.6	ug/L	8.0		58	1240	09/2	4/96	TN
. .	429809	Duplicate	2.4	ug/L	2.2		9	1240	09/2	4/96	אד
~ ~	429986	Spike		ug/L		10	82	1240	09/2	4/96	TN
:					Antimony	, GFAA					
		Blank	<2.5	ug/L				1400	09/1	8796	TN
		Standard	17	ug/L	10				1400	09/18/96	
-		Standard	12	ug/L	10		120	1400	09/1	8/96	TN
		Standard	14	ug/L	10				1400	09/18/96	
		Standard	14	ug/l	10				1400	09/18/96	
ŕ	429756	Duplicate	<2.5	ug/L	<2.5		0	1400	09/1	8/96	TN
	429973	Duplicate	<2.5	ug/L	<2.5		0	1400	09/1	8/96	TN
	429809	Spike		սց/Լ		10	92	1400	09/1	8/96	TN
	429975	Spike		ug/L		10	123	1400	09/1	8/96	TN
•				-	Selenium,	Hvdride					
		Blank	<1.0	ua/L	•	-		0845	09/1	1/96	TN
.,		Standard	6.3	-3/ = Ug/1	5.0				0845	09/11/96	
		Standard	5.2	uo/l	5.0		104	0845	09/1	1/96	ты
	1.20751	Dumlicate	1 0		<1.0		200	0845	09/1	1/96	TN
•	429757		1.0		\$1.0	r 0	00	0015	00/1		70
	429756	Spike		Ug/L		5.0	98	0845	0971	1/90	IN
	×				Thallium	, GFAA					
		Blank	<1.0	ug/L				0850	09/24	4/96	TN
•		Standard	6.0	ug/L	8.0		75	0850	09/24	•/96	TN
2		Standard	4.3	ug/L	8.0		54	0850	09/24	4/96	TN
l'hieut	429785	Duplicate	1.1	ug/L	1.1		0	0850	09/24	\$/96	TN
1	429974	Spike		ug/L		10	95	0850	09/24	\$/96	TN
					Zinc,	FAA					
·		Blank	<0.05	mg/L				1350	09/10)/96	TN
		Standard	42.2	mg∕L	40.8		103	1350	09/10	0/96	TH
•		Standard	42.6	mg/L	40.8		104	1350	09/10	0/96	TN
	429784	Duplicate	<0.05	mg∕L	<0.05		0	1350	09/10	0/96	TN
	429786	Spike		mg/L		0.50	101	1350	09/10	0/96	TN
;					Arsenic,	Hydride					

Continued

SIERRA FOOTHILL LABORATORY IS CERTIFIED BY THE STATE OF CALIFORNIA DEPT. HEALTH SERVICES

 \mathcal{D}

823 S. HWY. 49 P.O. BOX 1268 • JACKSON, CA 95642 (209) 223-2800

10/07/96

- 3

429786 Continued

Page	5	of	5
------	---	----	---

. •••	ample#	Description	Result	Units	Dup/Std Value	Spk Conc.	Percent	Time	Date	By
•		Blank	<2.0	ug/L				1100	09/11/96	T
		Standard	4.9	ug/L	5.0		98	1100	09/11/96	TA
		Standard	5.8	ug/L	5.0		116	1100	09/11/96	TN
42	29751	\Duplicate	<2.0	ug/L	<2.0		0	1100	09/11/96	TH
42	29756	Spike		ug/L		5.0	87	1100	09/11/96	TN

Joxy Hurse /m Tony Nurse, Owner/Analyst

REPORT

REPORT

823 S. HWY. 49 PO. BOX 1268 • JACKSON, CA 95642 (209) 223-2800

4

1.1.1

Page 1 of 2 TEST REPORT: 429789

Gwin Mine Associates PO Box 1059 San Andreas, CA 95249-

Sample Identification: 2400' Main shaft Collected By:LG Date & Time Taken:09/09/96 1850

Other Data: G W 1gal P Sample Matrix: Liquid **Report Date:** 09/18/96

Received: 09/10/96

Client: GWIN

	DADAMETER	<u> </u>	TNTTTC	ANALYZED	FOI.	METHOD	BV
	Alkalinity, Total	370	mg/L	1300 09/10/96	5.0	EPA310.1	GK
	Chloride, Titrimetric	6.7	mg/L	1100 09/17/96	1.0	EPA325.3	GK
7 8 	Specific Conductance	648	umho/cm	1300 09/10/96	1.0	EPA120.1	GK
-	Fluoride, Ion Electrode	0.17	mg/L	0945 09/11/96	0.1	EPA340.2	GK
· · · ·	Foaming Agents (MBAS)	0.25	mg∕L	0945 09/10/96	0.1	EPA425.1	GK
*	Magnesium, Calculation	32	mg/L	1500 09/17/96	0.05	SN3500Mg-E	RJ
5	Nitrogen, Nitrite-N	<0.02	mg/L	1510 09/10/96	0.02	EPA354	GK
	Nitrogen, Nitrate-N	<0.05	mg/L	1445 09/10/96	0.05	EPA353.2	GK
-	Sulfate, Turbidimetric	7.0	mg/L	1000 09/17/96	0.5	EPA375.4	GK
-	Solids, Total Dissolved	420	mg/L	0900 09/16/96	10	EPA160.1	MG
c	РН	6.8	unit	1345 09/10/96	0.1	EPA150.1	GK
;	Calcium, Titrimetric	96	mg/L	1215 09/17/96	4.0	EPA215.2	GK
Marketter.	Hardness	370	mg/L	1400 09/10/96	5.0	EPA130.1	GK

Quality Assurance for the SET with Sample 429789

Sample #	Description	Result	Units	Dup/Std Value Spk Conc. Alkalinity, Total	Percent	Time	Date	Ву
	Blank	<5.0	mg/L	_		1300	09/10/96	GK
	Standard	270	mg/L	310	87	1300	09/10/96	GK
429788	Duplicate	350	mg/L	370	6	1300	09/10/96	GK

Continued

REPORT

823 S. HWY. 49 P.O. BOX 1268 • JACKSON. CA 95642 (209) 223-2800 **09/18/96**

429789 Continued

Page 2 of 2

	Sample #	Description	Result	Units	Dup/Std \	/alue Spk Conc.	Percent	Time	Date	Ву
	429818	Duplicate	920	mg/L	950		3	1300	09/10/96	GK
				Chl	loride,	Titrimetr	ic			
. 1		Blank	<1.0	mg/L				1100	09/17/96	GK
		Standard	140	mg/L	140		100	1100	09/17/96	GK
	429788	Duplicate	9.2	mg/L	9.5		3	1100	09/17/96	GK
				SI	pecific	Conductan	.ce			
		Standard	312	umho/cm	303		103	1300	09/10/96	GK
1	429789	Duplicate	648	umho/cm	653		1	1300	09/10/96	GK
		•		Fluc	oride, 3	Ion Electr	ođe			
		Blank	<0.1	mg/L				0945	09/11/96	GK
		Standard	21	mg/L	20		105	0945	09/11/96	GK
	429757	Duplicate	0.14	mg/L	0.14		0	0945	09/11/96	GK
	429787	Spike		mg/L		4.0	108	0945	09/11/96	GK
				Foa	ming Ag	gents (MBA	S)			
·		Standard	42	mg/L	50		84	0945	09/10/96	GK
- .				Ni	.trogen,	, Nitrite-	N			
		Standard	23	mg/L	25		92	1510	09/10/96	GK
	429808	Duplicate	<0.02	mg∕L	<0.02		0	1510	09/10/96	GK
	429814	Spike		ug/L		7.5	98	1510	09/10/96	GK
				Ы	.trogen,	, Nitrate-	N .			
		Standard	19	mg∕L	20		95	1445	09/10/96	GK
	429787	Duplicate	<0.05	mg/L	<0.05		0	1445	09/10/96	GK
	429789	Spike		mg/L	_	0.4	89	1445	09/10/96	GK
				Sul	fate, 1	furbidimet:	ric			
•		Standard	150	mg/L	150		100	1000	09/17/96	GK
4	429787	Spike		mg/L	_	28	100	1000	09/17/96	GK
				Soli	ds, Tot	al Dissol	veđ			
·		Standard	300	mg/L	290		103	0900	09/16/96	MG
	429862	Duplicate	510	mg/L	500		2	0900	09/16/96	MG
	430071	Duplicate	130	mg∕L	110		17	0900	09/16/96	MG
						рн			÷	
		Standard	7.4	unit	7.4		100	1345	09/10/96	GK
·,	429787	Duplicate	6.8	unit	6.8		0	1345	09/10/96	GK
				Ca	lcium,	Titrimetr:	ic			
;		Blank	<4.0	mg/L				1215	09/17/96	GK
2		Standard	200	mg/L	190		105	1215	09/17/96	GK
i Ler	429808	Duplicate	120	mg/L	110	_	9	1215	09/17/96	GK
3					Har	dness				
		Blank	<5.0	mg∕L				1400	09/10/96	GK
1		Standard	750	mg/L	780		96	1400	09/10/96	GK
J	429787	Duplicate	310	mg∕L	300		3	1400	09/10/96	GK
-										

Jory Rubse/m Tony Nurse, Owner/Analyst

-

REPORT

823 S. HWY. 49 P.O. BOX 1268 • JACKSON. CA 95642 (209) 223-2800

C. Mary

27862 -

Sierra Foothill Laboratory Quality Control Worksheet

Sample ID: 429786;789

						Conversion
Analyte	<u>Charge</u>	Conc. (mg/L	.) <u>Cati</u>	on Anion	Eactor
Alk	Anion		370	1	7.4000	50.00
CI	Anion		6.7	-	0.1890	35.45
F	Anion		0.17		0.0089	19.00
NO3 as N	Anion					14.00
PO4	Anion					31.66
SO4	Anion		7		0.1457	48.03
AI	Cation					8.99
В	Cation					10.82
Ba	Cation		0.25	0.003	36	68.67
Ca	Cation		96	4.790)4	20.04
Cu	Cation					31.77
Fe	Cation		0.2	0.010)7	18.62
К	Cation		•		_	39.10
Mg	Cation		32	2.633	57	12.15
Mn	Cation		0.6	0.043	57	13.73
Na	Cation		31	1.348	4	22.99
NH3	Cation					18.04
Si	Cation					38.04
Zn	Cation					32.69
EC			648			
TDS			420			
Total				8.8	3 7.74	
QC Measurement		Result		Evaluation	Acceptance	Criteria
C-A Balance %		87.7%		Marginal	Greater than	า 85%
Calculated TDS		511.9				
Calculated TDS / EC F	Ratio	0.79		High	Range = 0.5	55 - 0.7
Measured TDS / EC R	atio	0.65		Acceptable	Range = 0.5	5 - 0.7
Measured TDS / Calcu	ulated TDS	0.82		Low	Range = 1.0) - 1.2
EC Ratio / Anion		0.84		Acceptable	Range = 0.8	- 1.2
EC Ratio / Cation		0.73		Low	Range = 0.8	- 1.2

C-A Balance Acceptance Criteria for Drinking Water

24

%
_
-

CALC-BAL.WKS

9/18/96

REPORT

823 S. HWY, 49 P.O. BOX 1268 • JACKSON, CA 95642 (209) 223-2800

Sierra Foothill Laboratory 10/08/96Gwin Mine Associates GWIN from 09/10/96 to 09/10/96 Page: 1

429784	4 20' Main shaft	Taken:	09/09/96 15	15 Re	cvd: 09/10/96	Mail: 10/07/	/96
	G W 11G/HNO3						
	Parameter	Results	Units	EQL	Analyzed	By	
	Silver, GFAA	<5	ug/L	5.0	09/23/96 1230	тн	
-	Aluminum, GFAA	290	ug/L	50	09/23/96 0825	TN	
	Barium, FAA	0.26	mg/L	0.10	09/10/96 1140	TN	
	Beryllium, GFAA	<1	ug/L	1.0	09/12/96 0935	TN	
	Cadmium, GFAA	<1	ug/L	1.0	09/10/96 1215	TN	
-	Chromium, GFAA	3.2	ug/L	2.0	09/22/96 1000	TN	
	Copper, FAA	<0.03	mg/L	0.03	09/10/96 1405	TN	
	Iron, FAA	0.69	mg/L	0.05	09/17/96 1530	TN	
	Mercury, CVAA	<0.5	ug/L	0.5	09/11/96 1310	TN	
	Manganese, FAA	0.69	mg/L	0.03	09/17/96 1510	TN	
	Sodium, FAA	30	mg/L	0.05	09/11/96 1555	TN	
• 4	Nickel, FAA	0.15	mg/L	0.10	10/04/96 1600	TN	
	Lead, GFAA	<2	ug/L	2.0	09/24/96 1240	TN	
	Antimony, GFAA	2.7	ug/L	2.5	09/18/96 1400	TN	
	Selenium, Hydride	<1	ug/L	1.0	09/11/96 0845	TN	
	Thallium, GFAA	1.1	ug/L	1.0	09/24/96 0850	TN	
	Zinc, FAA	<0.05	mg∕L	0.05	09/10/96 1350	אד	
د با ک	Arsenic, Hydride	160	ug/L	2.0	09/11/96 1100	тн	
429785	5 1200' Main shaft G W 11G/HNO3	Taken:	09/09/96 161	2 Rec	vd: 09/10/96	Mail: 10/07/9	76
÷.	Parameter	Results	Units	EQL	Analyzed	Ву	
-	Silver, GFAA	<5	ug/L	5.0	09/23/96 1230	TN	
-	Aluminum, GFAA	55	ug/L	50	09/23/96 0825	TN	
	Barium, FAA	0.24	mg/L	0.10	09/10/96 1140	TN	
	Beryllium, GFAA	<1	ug/L	1.0	09/12/96 0935	ТН	
	Cadmium, GFAA	<1	ug/L	1.0	09/10/96 1215	TN	
	Chromium, GFAA	3.6	ug/L	2.0	09/22/96 1000	TN	
	Copper, FAA	<0.03	mg/L	0.03	09/10/96 1405	TN	
	Iron, FAA	0.27	mg/L	0.05	09/17/96 1530	TN	
	Mercury, CVAA	<0.5	ug/L	0.5	09/11/96 1310	TN	
	Manganese, FAA	0.62	mg/L	0.03	09/17/96 1510	TN	
Nut of a	Sodium, FAA	31	mg/L	0.05	09/1-1/96 1555	TN	
16 3	Nickel, FAA	0.35	mg/L	0.10	10/04/96 1600	TN	
	Lead, GFAA	<2	ug/L	2.0	09/24/96 1240	TN	
	Antimony, GFAA	<2.5	ug/L	2.5	09/18/96 1400	TN	
,	Selenium, Hydride	· <1	ug/L	1.0	09/11/96 0845	TN	
	Thallium, GFAA	1.1	ug/L	1.0	09/24/96 0850	TN	
	Zinc, FAA	<0.05	nq/L	0.05	09/10/96 1350	TN	
	Arsenic, Hydride	* 150	ug/1	2.0	09/11/96 1100	TN	
	the second the sec	120	~ <u>3</u> / L			•••	

REPORT

823 S. HWY. 49 P.O. BOX 1268 • JACKSON, CA 95642 (209) 223-2800

Sierra Foothill Laboratory 10/08/96Gwin Mine Associates GWIN from 09/10/96 to 09/10/96 Page: 2

429786	2400' Main shaft G W 11G/HNO3		Taken: 09/09/96 1815	R	ecvd: 09/10/96	Mail:	10/07/96
	Parameter	Results	Units	EQL	Analyzed	8y	
	Silvèr, GFAA	<5	ug/L	5.0	09/23/96 1	230 TN	
	Aluminum, GFAA	<50	ug/L	50	09/23/96 0	1825 TN	
•	Barium, FAA	0.25	mg/L	0.10	09/10/96 1	140 TN	
	Beryllium, GFAA	<1	ug/L	1.0	09/12/96 0	935 TN	
	Cadmium, GFAA	<1	ug/L	1.0	09/10/96 1	215 TN	
	Chromium, GFAA	6.6	ug/L	2.0	09/22/96 1	000 TN	
÷.,	Copper, FAA	<0.03	mg/L	0.03	09/10/96 1	405 TN	
2	Iron, FAA	0.20	mg/L	0.05	09/17/96 1	530 TN	
	Mercury, CVAA	<0.5	ug/L	0.5	09/11/96 1	310 TN	
:	Manganese, FAA	0.60	mg/L	0.03	09/17/96 1	510 TN	
	Sodium, FAA	31	mg/L	0.05	09/11/96 1	אז 555	
e	Nickel, FAA	0.50	mg/L	0.10	10/04/96 1	600 TN	
	Lead, GFAA	<2	ug/L	2.0	09/24/96 1	240 TN	
	Antimony, GFAA	2.7	ug/L	2.5	09/18/96 1	400 TN	
	Selenium, Hydride	<1	ug/L	1.0	09/11/96 0	845 TN	
	Thallium, GFAA	1_4	ug/L	1.0	09/24/96 0	850 TN	
	Zinc, FAA	<0.05	mg/L	0.05	09/10/96 1	350 TN	
	Arsenic, Hydride	120	ug/L	2.0	09/11/96 1	100 TN	
429787	20' Main shaft G W 1gal P		Taken: 09/09/96 1540	Re	cvd: 09/10/96	Mail:	09/18/96
	Parameter	Results	Units	EQL	Analyzed	Ву	
	Alkalinity, Total	340	mg/L	5.0	09/10/96 13	300 GK	
-	Chloride, Titrimetric	6.7	mg/L	1.0	09/17/96 11	100 GK	
	Specific Conductance	650	umho/cm	1.0	09/10/96 13	500 GK	
	Fluoride, Ion Electrode	0.16	mg/L	0.1	09/11/96 09	745 GK	
	Foaming Agents (MBAS)	<0.1	mg/L	0.1	09/10/96 09	745 GK	
	Magnesium, Calculation	24	mg/L	0.05	09/17/96 15	500 R.J	
	Nitrogen, Nitrite-N	<0.02	mg/L	0.02	09/10/96 15	10 GK	
	Nitrogen, Nitrate-N	<0.05	mg/L	0.05	09/10/96 14	45 GK	
	Sulfate, Turbidimetric	6.7	mg/L	0.5	09/17/96 10	000 GK	
	Solids, Total Dissolved	410	mg/L	10	09/16/96 09	200 MG	
	рН	6.8	unit	0.1	09/10/96 13	645 GK	
172	Calcium, Titrimetric	84	mg/L	4.0	09/17/96 12	215 GK	
3	Hardness	310	mg/L	5.0	09/10/96 14	00 GK	
429788	1200' Main shaft G W lgal P		Taken: 09/09/96 1642	Re	cvd: 09/10/96	Mail:	09/18/96
	Parameter	Results	Units	EQL	Analyzed	Ву	
	Alkalinity, Total	350	mg/L	5.0	09/10/96 13	500 GK	
	Chloride, Titrimetric	° 9.2	mg/L	1.0	09/17/96 11	00 GK	
	Specific Conductance	653	umho/cm	1.0	09/10/96 13	600 GK	

REPORT

Mail: 09/18/96

823 S. HWY, 49 P.O. BOX 1268 • JACKSON, CA 95642 (209) 223-2800

2.

a chidata taru

Sierra Foothill Laboratory 10/08/96Gwin Mine Associates GWIN from 09/10/96 to 09/10/96 Page: 3

Fluoride, Ion Electrode	0.16	mg/L	0.1	09/11/96	0945	GK
Foaming Agents (MBAS)	0.22	mg/L	0.1	09/10/96	0945	GK
Magnesium, Calculation	28	mg/L	0.05	09/17/96	1500	RJ
Nitrògen, Nitrite-N	<0.02	mg/L	0.02	09/10/96	1510	GK
Nitrogen, Nitrate-N	<0.05	mg/L	0.05	09/10/96	1445	GK
Sulfate, Turbidimetric	6.7	mg/L	0.5	09/17/96	1000	GK
Solids, Total Dissolved	410	mg/L	10	09/16/96	0900	MG
р н	6.8	unit	0.1	09/10/96	1345	GK
Calcium, Titrimetric	86	mg/L	4.0	09/17/96	1215	GK
Hardness	330	mg/L	5.0	09/10/96	1400	GK

Taken: 09/09/96 1850

Recvd: 09/10/96

429789 2400' Main shaft

G W Igal P						
Parameter	Results	Units	EQL	Analyzed		Ву
Alkalinity, Total	370	mg/L	5.0	09/10/96 13	300	GK
Chloride, Titrimetric	6.7	mg/L	1.0	09/17/96 11	100	GK
Specific Conductance	648	umho/cm	1.0	09/10/96 13	300	GK
Fluoride, Ion Electrode	0.17	mg/L	0.1	09/11/96 09	945	GK
Foaming Agents (MBAS)	0.25	mg/L	0.1	09/10/96 09	945	GK
Magnesium, Calculation	32	mg/L	0.05	09/17/96 15	500	RJ
Nitrogen, Nitrite-N	<0.02	mg∕L	0.02	09/10/96 15	510	GK
Nitrogen, Nitrate-N	<0.05	mg/L	0.05	09/10/96 14	445	GK
Sulfate, Turbidimetric	7.0	mg/L	0.5	09/17/96 10	000	GK
Solids, Total Dissolved	420	mg∕L	10	09/16/96 09	200	MG
рH	6.8	unit	0.1	09/10/96 13	545	GK
Calcium, Titrimetric	96	mg/L	4.0	09/17/96 12	215	GK
Hardness	370	mg/L	5.0	09/10/96 14	00	GK

7•

APPENDIX B

N.Y.Y.

. .

ففرغة

÷. .

<u>7</u> 2

_P\$

and the second

B

(fairs)

ANALYTICAL REPORT AMERICAN ENVIRONMENTAL NETWORK (AEN) LABORATORY

JAN-15-97 WED 16:52 01~15~97 17:35

٠,

12

۰.

1.1

> т. М

Columnan

H. Cont

WARDSON

記書と

3942-A Valley Avenue Pleasanton, CA 94566 Tel: 510.462,2771 Fax: 510.462.2775

Mr. William Svoboda American Environmental Network 3440 Vincent Road Pleasant Hill, CA 94523

Sample Source:January 15, 1997Client Project I.D. No.: 7D917-001-04January 15, 1997Client P.O. No.9701116Job No.9701058Data Rocoived: 01/14/97Sample No.001Matrix: WaterCust. No.10083

Lab No.	Sample I.D.	MBAS Results _mg/L_	Detection Limit mg/L	Method Number	Date Sampled	Date <u>Anglyzeň</u>
001	Eample #3	N.D.	0.1	SM 5540C	01/13/97	01/15/97

N.D. - None Detected

John B Crogory Laboratory Director

Californie State Cartified Laboratory No.2153

Quality Control Report Available on Request

JAN-15-97 WED 16:37

. •

list.

. <u>.</u>

- -

· · .

÷

- 5

EFFICIEN

لا المالية الم

Bistoriez

Printing a

P. 02/03

PAGE 2

SECOR

SAMPLE ID: SAMPLE #3	DATE SAMPLED: 01/13/97
AEN LAB NO: 9/01116-01	DATE RECEIVED: 01/14/97
CLIENT PROJ. ID: 7D017-001-04	REPORT DATE: 01/15/9/

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT UNITS	DATE ANALYZED
Alkalinity. Total	EPA 310.1	290 *	2 mg CaCO3/L	01/14/97
Total Phosphorus	EPA 365.2	0.25 *	0.05 mg/L	01/15/97
Total Suspended Solids	EPA 160.2	3 *	2 mg/L	01/14/97
£Anion Sample Prep.		-	Prep date	01/14/97
Sulfate	EPA 300	7.1 *	0.5 mg/L	01/14/97
∉Water Extrn for O&G	IR	-	Extrn Date	01/14/97
Oil & Grease (IR)	SM 5520C	ND	0.5 mg/L	01/15/97

ND = Not detected at or above the reporting limit
 * - Value at or above reporting limit

Macross : LSC Wards Chain-of Custody Number: SECOR Chain-of Custody Record Additional documents are altached, and are a part of this Record. Field Office: SACRAMENTO Job Name: STOCMUATER / SURFACE WATER. Location: GWIN MINE CALAVERAS COUNTY 1787 TEIBUTE ROAD, SUTE C SACRAVAENTO CA 95815-4404 Address: Analysis Request Project # 7D0 7 - 001 - 04Task # Project Manager 31LL WALKER Laboratory AEN TPH 418.1/WTPH 418.1 WATE Containers Halogenated Volatiles 601/8010 Turnaround Time __ L DAY Volatile Organics 624/8240 (GC/MS) Aromatic Volatiles 602/8020 TPHq/BTEXMT 8015 (modified)/ TPHd/WTPH-D 8015 (modified) 5 Sampler's Name APH MASLANKA Sampler's Signature from Maslanka Number Ì Comments/ Sample ID Instructions Date Matrix Time Note I Day Rush T.A.T. 1A-E SAMPLE # 3 1/13/17 1:05 W 114- See attached coc for revisions per Bill S. Q AREN, APX Received by: Special Instructions/Comments: Relinquished by: Sample Receipt Sign Richard C. Casion Print RICHARD C. CASIA Sign antitutienter Total no. of containers: 3 PLEASE CALL / FAX DATA Chain of custody seals Company SECOR Company SECOR Rec'd. in good condition/cold: Time 5:05 PM Date 1/13/13 Date 1/13/97 Time 5:45 TO CAROL MASLANKA Conforms to record: Relinguished by: RCC to Feel X Received by: 1. AB AS SOON AS AVAILABLE. Sign June Rolling Client: Sign Atchand C. Castas Print buces lodkomersite ph 916-648-9160 Var 916-648-8052 Client Contact: Company_SELOR Company AEN 916 648-9160 Client Phone: 648-9160 Time 5:50 pm Date 1/13/97 Time 10:30 Date 1/14/97

Date: 1 13197 Page 2 of 2

SAMPLE ID: SAMPLE #3
AEN LAB NO: 9701115-01
AEN WORK ORDER: 9701115
CLIENT PROJ. ID: 7D017-001-04

_

DATE SAMPLED: 01/13/97 DATE RECEIVED: 01/14/97 REPORT DATE: 01/21/97

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE ANALYZED
#Digestion, Metals by GFAA	EPA 3020	_	Pr	ep Date	01/15/97
#Digestion. Metals by ICP	EPA 3010	-	Pr	ep Date	01/15/97
Iron	EPA 6010	0.16 *	0.05 mg	J/L	01/16/97
Priority Pollutant Metals Ag Silver As Arsenic Be Beryllium Cd Cadmium Cr Chromium Cu Copper Hg Mercury Ni Nickel Pb Lead Sb Antimony Se Selenium TI Thallium	EPA 6010 EPA 7060 EPA 6010 EPA 6010 EPA 6010 EPA 7470 EPA 6010 EPA 6010 EPA 6010 EPA 7/40 EPA 6010	ND 0.17 * ND ND ND ND ND ND ND ND	0.005 mg 0.002 mg 0.005 mg 0.01 mg 0.001 mg 0.002 mg 0.01 mg 0.02 mg 0.02 mg 0.02 mg 0.02 mg	9/L 9/L 9/L 9/L 9/L 9/L 9/L 9/L 9/L 9/L	01/16/97 01/16/97 01/16/97 01/16/97 01/16/97 01/16/97 01/16/97 01/16/97 01/16/97 01/16/97

SECOR

ND = Not detected at or above the reporting limit
 * = Value at or above reporting limit

E. San Sha

B. 126(1)

1997 - T

- ---;

PAGE 2

AMERICAN ENVIRONMENTAL NETWORK 11 Esst Olive Road Pensacola, Plorida 32514 (904) 474-1001

[0) Page 1 Date 24-Jan-97

"DRELIMINARY RESULTS ONLY - SINGLE"

Accession: Client: Project Number: Project Name: Project Location: Test:	701281 AMERICAN ENVIR 9701115 7D017-001-04 N/S TOTAL ORGANIC	onmental netwo halides in wat	RK (CA), INC			
Sample Number:001	Dry Weight	₹;N/A Clie	nt Sample ID	SAMPLE #3		
Parameter:		Units:	Results:	Rpt Lmts:	Q:	
TOTAL ORGANIC HALI ANALYST	Des	MG/L INITIALS	0.02 KL	. 0.01		

Comments:

-

÷ .

 $\sigma \geq$

ş. -

1

5 7

4.5

v

3

9

CULERCE

, ŝ

3

na and States to an USANS and the second	n îs în			ge of a	- • *	Chain-of Custo	ody Number: $970 H$	15
	SECOR	Chain-of C	uste	ody R	ecord			
d Office: SACRAMENTO Iress: 1787 TRIBUTE ROAD, SACRAMENTO CA 95815	SUITE () - 4404		Job N Loca	Additiona Name: tion:	I docume STORI JWIN ALAVE	ents are attached, NWATER ISVE MINE RAS COUNT	and are a part of this Recor <i>FACE WATER</i>	rd.
$\begin{array}{c c} \hline \hline \ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	HCID TPH9/BTEXWTPH-G R015 (modified)/9020 TPI 44WTPH-D 8015 (modified) 8015 (modified)	Aromatic Volatiles 602/8020 Volatile Organica 624/8240 (GC/MS) Halogenated volatiles 601/8010	Semi-volatile Organics 525/3270 (GCMS)	Analysis 608/8030 7421	Metals (13) Metals (13)	UIT XIZI X	Comments/ Instructions Fundend T.A.T of 7 Days	Number of Containers
ecial Instructions/Comments:	Relinguighed by Sign and Mi Print <u>Aleon</u> Mr Company <u>SEC</u> Time <u>5:05</u> P	ASANKA DR DATO 112/4		Receiver Sign <u>k</u> Print <u>R</u> Compan Time	ру; 1 снаго 1 СНАР 5:0 (р	(C. Castas D C. CASTAS CUR Date 1/13/57	Sample Receipt Total ro. of containers: Chain of custody seals: Rec'd. in good condition/cold: Conforms to record:	2
	Relinquished by Sign Vaterion Print Company <u>SE</u> Time <u>S</u> S	y: RCC to Fed A.C. Carbo COR Dom Date 1/13/	×	Receive Sign 24 Print 24 Compan Time	d by: 	<u>LAB</u> <u>Bodhanad</u> Evalkomovski N Date <u>1/14/97</u>	Client: Client Contact: Client Phone:	

AEN CALIFORNIA

Date: 113 197 Page / of 7-

P. 02/03

APPENDIX C

Constraints

• •

2-22 198

÷.,

h: 22

1) 19 19

BYANKA

also anno 3

でのため

X-RAY DIFFRACTION PATTERNS

Sinter State

~ ~	<u> </u>									~~~~~	
4	3.85	2.21	3-44	7.69	a-2						*
ហ	100	ഫ	10	6	Sucrea					(Su) Fu	r)
Red	CuX 11	5405	Filter	Die	174 6141	1 dA	ц	<u>क</u> स	102	11.	ALC:
Ort ef	t 50A UCTOLFF, '	7.69	8 14 6	111 113 022	2.615	4 8 8	400 333 244				
874. 04140440461C - 8.0. Fame (10) a. 10.45 b. 12.84 c. 24.46 A.0.8139 C 1.505						4.00	2	292 151 220	2.401	14	317 404
в.	8 1010-		¥	Z. 17	16 Dz 2.076	3.91	12	131	2.288	6	335 8-2-10 048 7-0
fa 1 2V Ga Ral	.9575 8*58 D	8 + 8 2.1 8.07	0377 J. Mp 112.8*	Y 2.2452 Colar 4, NA LICI	Sign . Yellon et, 20*C)	2.2B	40	026	2.146	د 100	1.1.1
Dama's STRTEM OF MINEMALOGY 714 ED. YOL- 1 Validated by calculated mattern 24-733						- 23.21	60	206 313	2.057	2	511 D-0,12,2
	•					3.08	18 2 18	135 006 044	2.003 1.988 1.957	2	253 408 262
566	601 I (11 - 116	6480				2.688 2.67j	2	331 842	1.926	80	444

8-2470

d	3.65	3-21	3.44	7.69	a-2						*
N,	3 01	හ	40	6	Sulfun					(Su	(fur)
Bart	<u>ل</u>	·	filter	Di		AP	1/4	hhi	44	IV.	PP
Cut off Bed		1/L	10.00		•	1.838 1.823 1.781	2 4 12	159 2.4.10 266.337	1.461 1.439 1.424	2 4 4	
9-			80			1.754	8	595	1.19	2	
	6. Ø	,	ћ. Т	A 2	C Dx	1.696	8 2	1-3-13	1.368	2	
B.C.						1.647	2		1		
t a		0=1	1.	,	Blan	1-622	6				
XV	D	n	φ	Color	•	1.007	6		1		
Bet						1.601	2		j		
						1.567	2	1		1	
1						1.542	2		Į	1 1	
}						1.531	2	1	1		
}						1-515	3	1	1		
						1.504	Ę.				
See P	RECEDIC	GARD				11475	2	Ì	I		

1-1	8										
đ	2.89	2.19	3.79	4.01	Cullo(00 _p) ₂						*
N,	100	30	250	ન્ડ	CALCIUM MAGH	(8 (UNA)		Da	1,0161 TE		
Red (axa 1	1.5418	Filter #	i Du	L	49	M ₁	hki	٩.٣	И.	रुष्ट
Src h	10412 ARD	I/I: Di Bacatimine Rucationer	(11.03045 17, AUL UI 17, AUL UI 17, AUL UI 18,0	ren R. <u>43</u> 121 RS (155) 2 A 7 1	C 2.130	4.02 3.65 2.670 2.540 2.405	מ גם גיה מיל	101 012 104 006 015 110	1.380 1.325 1.297 1.269 1.238 1.202	2 ° C & 2 Z	030 0.0.13 211 0.2.10 128 220
Rd.	1912., ser		à Linca	در v	1.22	2.066	20 5 13 5	113 021 202	1.168	5000	1. j. 12 112 2. 1. 10
3V Bel	D 2	2.06 H	φ 	Color C	OLGALESE CR	1.804 1.786) 1.781)	X 0 30	018 116 009	1.008		0.0.15 604 915
Sauru Analyi Cal 3: Dolom	2 PADA HAC 16 (41- C 187, CO 1887, CO 1987, CO	.çv, Pose ∕o}i SiO; ∢7•22, Ha	Tur., Dur 0.12, FU 0 0.02.	aero , Car 0 0.22, H	400 IL 12,	1.567 1.545 1.496 1.663 1.445 1.431 1.431	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	211 123 1.0,10 214 028 110 125	0.475 -962 -959 -930 -928 -923 Pule T	5 6 6 C C 4 6	1.0.15 2.0.12 322 324 2.1.14 \$08 \$60.621

e.C.Sekino

<u>, - 58</u>	86					!						
9	3.04	2.3	29 2.	10 3.86	C	æ,						*
1/11	100	1	1	8 12	C#	lesua Carbo	53 5 5				(ದಾರ	to)
		1 6400		-			· d A	1.1	bk!	4.4	<i>U</i> 1,	bkl
Cutal	Cuanta Y	1.344	Diffract	unctar (18. /1		3.56	12	107	1.207	1	218
Ref.	SPAR3ON	and Fug	AL, NES	Circular 53	o, Yal	. U. \$1	5.035	100	104	1.284	1.	306
	(1953)			·			2.645		005	1,247	1	220
Svs. !	Horagona	n i		S.G. 83c ()	673		2.285		110	1 1700		
Ag ·	4.989 1	20	50	17.062 A		C 3.470	2.005	16	202	1.1538	1	314
9 0 - (њи [‡]	3	7	Z.	1.927	5	204	1,1425	ĩ	226		
Kel.	1010.						1.913	17	108	1.1244	<1	2111
	1 477					· · · · · · · · · · · · · · · · · · ·	1.875	17	116 711	1.0013	1 1	404
14	T'en,	a u p	1.633	47 6	ior Co	lorless	1.404	8	717	1.0447		139
Rel,	ibid. Ö		-0	~			1.587	2	1010	1.0357	2	0116,1113
							1,525	S	214	1-0254	4	1212
Spoc	isou fro	m Kall.	iackrod t	Chan. Norks	. 5000	t. Rhaii	1.518		208	1.0118		3012
<0.1	€Sτ;<⊄ <=- α0 1	0,011 B	1; <0.001	۲ Al, B, Ca از است	ι, Ο υ.	X, Mg. ##,	1.471		215	.9846		377
X-DA	y pattor	10 41 C 20	5°C.	, Lak, Mara			1.440	s	300	.9742	ł i	1017
Other	T form:	erster;	lea.				1.422	3	6012	.9767	3	2114
Here	* Indax	, seh Bo	l., p. 19	0.			1.354		217	_9655	2	234
	110 110	·p.					1.23		2010	7103 4		
3,0	រវ	1.87	3.85	100	Š4	29	4 4	1/1.	1 1 1.1	A >	1"	10 1 1 4 1
							1.6040	15	123	}		
C nC	<u>د</u> ت						1.5421	1 ?	1010			ł
							1.5061	1 1	119		}	}
· (41		roonate					1.4405	5	300	1	1	
Rof.	Saith	ot el	Annual	Report to t	he Jai		1.4165	3	0012	{		1
	Comit	tee on	Porter D	lffraction	Standa	rds (1973)	1.3361	1 3	0210	1		1
						- 	1.1536	1 3	134			1
5 91.	Hozago	nal	5.6.	NG (167)	Dx 2.1	722 Z G	1.1417	1	216		1	
# q	4.998		0 g 6		≓ <u>a</u> 37	, OU Z	1.0471	1 2	404		·)	}
Bcf.	Chosin	et al.	, ACEA C	rat., 18 6	ต์ (เห	55)	1.0440	2	318	}	}	
Scal	e fector	(Inter	rated for	censities]]	}		}		
1 1,54050 Calcite group.								}				
A		11.	n k I	d A	1/10	n \$ 1						
<u> </u>	A 1									1	3	4
		20	012	2.094	27	202			1	1	1	
4 / 3.1 3.2	A I 852 030 1	27	012 104	2.094	27	202 024				·		
d / 3.4 3.0 2.4	A I 852 030 1 834	29 00 2	012 104 006	2.094 1.9261 1.9071	27 4 17	202 024 - 018						
d , 3.4 3.0 2.4 2.4	A I 857 050 1 854 •95	29 00 2 7	012 104 006 110	2.054 1.9261 1.9071 1.6726	27 4 17 36	20Z 024 - 018 - 116						

a 479

an had a to

3

۰,

8-4	1 3										
. d	2,74	2.10	1.70	.2.74	HCCO 1						¥
ιΛι	740	45	35	100	Hagnosium Ca	rbonate			(Magna;	sito)	
Red. 4	LuKa, 1	1.5405	Filter	N1 Die		d A	1/11	hki	Ab	1.11	hki
Cac of Ref.)	il Its Circu	1/1, 01 1er 539 7	ffractone 28 (1957	ter 1/1	COT.	2.747 2.503 1.310	100 18	104 006 110	1.0510 1.0145 D.9697	2 9 2	225. 1211 404
Sys. 1	lozaconal 1.6332 be		5.C C, 15,	, RIC (16) 015 A Z 6	7] C. 5.2407 Qx 5.009	2.102 1.939 1.769	45 12 4	113 022 024	.9573 .9455 .9166	2 <1 4	318 20 <u>14</u> 211 <u>3</u> •
Ref, I	161d.					1.700	۲ ۲ ۲	116,018 211 121	.9134 ,8941 ,8857	4	3012- 324,1310
€a 1 3V Ref. 1	1.510 D 161d.	auß l	.700 (nep	y Color	Sign - Cóloticas	1,406 1,371 1,354	4	10 <u>10</u> ,214 208;119 119	.8758 .8676 .8460	2 4 4	140,1214 31 <u>11,413</u> 327
Sample New Je	from the	bakor G , heatod , anal. «	et 120,0	company, Ph 00 psi and Na: 40.011	1111psburg. 280°C for 41. Pe. Ub.	1.338	8	300 0012 217	.8346 .8265 .7581	<1 <1 2	018 4010 • 416,238 2116,502
ib, M struct Other	data 17-	-0.0011 Pectore 544.	Ba, Cr, a made at	Cu, NE. C 25°C.	alcite	1.1798 1.1583 1.1011	2222	128,306 220 1112			
1						11.0669	4	2110.11			1