Staff Report of the

CALIFORNIA ENVIRONMENTAL PROTECTION AGENCY

REGIONAL WATER QUALITY CONTROL BOARD CENTRAL VALLEY REGION

# METAL CONCENTRATIONS, LOADS, AND TOXICITY ASSESSMENT IN THE SACRAMENTO/SAN JOAQUIN DELTA: 1993-1995

December 1998

53.1

REPORT COMPILED BY: Stephen L. Clark Student Intern

Contributors: CVRWQCB Staff: Jerry Bruns, Valerie Connor, Janice Cooke, Bill Croyle, Chris Foe, Michelle McGraw, Shelly Morford, and Sue Yee State of California

California Environmental Protection Agency

# REGIONAL WATER QUALITY CONTROL BOARD CENTRAL VALLEY REGION

Edward Schnabel, Chair Steven Butler, Vice Chair Chuck Ahlem, Member Jane Papazian, Member Craig Pedersen, Member William Porter, Member

Gary M. Carlton, Executive Officer

3443 Routier Road, Suite A Sacramento, California 95827-3003

> Phone: (916) 255-3000 CalNet: 8-494-3000

# DISCLAIMER

This publication is a technical report by staff of the California Regional Water Quality Control Board, Central Valley Region. No policy or regulation is either expressed or intended.

# Forward

This project has been funded by the Bay Protection Toxic Clean-up Program and by the Central Valley Regional Water Quality Control Board under contract number FG 2305 ES with the California Department of Fish and Game to conduct a survey of metals in the Sacramento/San Joaquin Delta Estuary. This document was prepared through agreement number 2-088-250 with the California State Water Resources Control Board. The contents of this document do not necessarily reflect the views and policies of the California Department of Fish and Game nor of the State Water Resources Control Board nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

ii

# TABLE OF CONTENTS

| TABLE OF CONTENTS                                                          | iii |
|----------------------------------------------------------------------------|-----|
| LIST OF TABLES                                                             | iv  |
| LIST OF FIGURES                                                            | vii |
| LIST OF APPENDICES                                                         | X   |
| EXECUTIVE SUMMARY                                                          | xi  |
| INTRODUCTION                                                               | 1   |
| Basin Description                                                          | 1   |
| Sources of Metals                                                          | 1   |
| Metal Toxicity                                                             | 2   |
| Water Quality Criteria/Objectives                                          | 3   |
| Bay Protection Toxic Cleanup Program                                       | 4   |
| MATERIALS AND METHODS                                                      | 6   |
| Quality Assurance Program                                                  | 6   |
| Sample Locations                                                           | 6   |
| Sample Collection and Storage                                              | 6   |
| Metal Analyses                                                             | 6   |
| Toxicity Samples                                                           | 7   |
| Were Low Detection Limits Obtained Using Ultra -Clean Techniques?          | 7   |
| AA Methods (Trace Metal Lab)                                               | 7   |
| AA Methods (Mussel Watch Lab)                                              | 7   |
| Were Water Quality Objectives Exceeded?                                    | 8   |
| Was Metals Related Toxicity Identified in the Delta?                       | 8   |
| Statistical methods and definitions of toxicity                            | 8   |
| Were Metal Loading Patterns Characteristic of Hydrological Conditions?     | 9   |
| Water Years 1993, 1994, and 1995                                           | 9   |
| Flow Rates                                                                 | 9   |
| Load Calculations                                                          | 9   |
| What Source(s) of Metals Were Identified During Metals Source Pilot Study? | 10  |
| RESULTS AND DISCUSSION                                                     | 12  |
| Quality Assurance/Quality Control                                          | 12  |
| Hydrological Conditions                                                    | 12  |
| Were Low Detection Limits Obtained Using Ultra -Clean Techniques?          | 12  |
| Were Water Quality Objectives Exceeded?                                    | 12  |
| Was Metals Related Toxicity Identified in the Delta?                       | 13  |
| Were Metal Loading Patterns Characteristic of Hydrological Conditions?     | 15  |
| What Trends in Metal Concentrations Were Identified?                       | 17  |
| What Source(s) of Metals Were Identified During Metals Source Pilot Study? | 22  |
| ACKNOWLEDGMENTS.                                                           | 23  |
| SUMMARY OF RECOMMENDATIONS                                                 | 24  |
| LITERATURE CITED                                                           | 25  |
| APPENDICES                                                                 | 216 |

# LIST OF TABLES

**?** 

| Table | 1.  | Sites and dates of sampling in the Delta and Lower Sacramento River Basin47     |
|-------|-----|---------------------------------------------------------------------------------|
| Table | 2.  | Analytical information for four programs monitoring metals in the Sacramento    |
|       |     | River Watershed                                                                 |
| Table | 3.  | Summary of Water Year 1993-1994 metal concentration data and related water      |
|       |     | quality objectives from the San Joaquin River at Antioch                        |
| Table | 4.  | Summary of Water Year 1994-1995 metal concentration data and related water      |
|       |     | quality objectives at Duck Slough                                               |
| Table | 5.  | Summary of Water Year 1994 metal concentration data and related water           |
|       |     | quality objectives from French Camp Slough                                      |
| Table | 6.  | Summary of Water Year 1993-1994 metal concentration data and related water      |
|       |     | quality objectives from the Sacramento River at Hood                            |
| Table | 7.  | Summary of Water Year 1993-1994 metal concentration data and related water      |
|       |     | quality objectives from Middle River at Bullfrog Landing                        |
| Table | 8.  | Summary of Water Year 1993-1995 metal concentration data and related water      |
|       |     | quality objectives from the Mokelumne River                                     |
| Table | 9.  | Summary of Water Year 1994 metal concentration data and related water           |
|       |     | quality objectives from the Old River at Tracy Blvd                             |
| Table | 10  | . Summary of Water Year 1994 metal concentration data and related water         |
|       |     | quality objectives from Paradise Cut                                            |
| Table | 11. | . Summary of Water Year 1994-19945 metal concentration data and related         |
|       |     | water quality objectives from Prospect Slough                                   |
| Table | 12. | . Summary of Water Year 1993-1994 metal concentration data and related water    |
|       |     | quality objectives from the Sacramento River at Rio Vista                       |
| Table | 13. | . Summary of Water Year 1995 metal concentration data and related water         |
|       |     | quality objectives from Skag Slough74                                           |
| Table | 14. | . Summary of Water Year 1994 metal concentration data and related water         |
|       |     | quality objectives from the San Joaquin River at Stockton                       |
| Table | 15. | . Summary of Water Years 1994-1995 metal concentration data and related water   |
|       |     | quality objectives at Ulatis Creek                                              |
| Table | 16. | . Summary of Water Year 1993-1995 metal concentration data and related water    |
|       |     | quality objectives from the San Joaquin River at Vernalis                       |
| Table | 17. | . Summary of Water Year 1995 metal concentration data and related water         |
|       |     | quality objectives from the Sacramento River at Greene's Landing                |
| Table | 18. | . Number of Dissolved (0.45 $\mu$ m) metal analyses and exceedances of water    |
|       |     | quality objectives during water years 1993-1995                                 |
| Table | 19. | . Summary of 1993-1994 toxicity monitoring data                                 |
| Table | 20. | . Summary of 1994-1995 toxicity monitoring data                                 |
| Table | 21  | . Summary of Dissolved (0.45 $\mu$ m) metal analyses from 1993 to 1995 with     |
|       |     | notes on levels of concern in the literature                                    |
| Table | 22  | . Summary of lead concentrations reported to have effect on algae and diatoms92 |
| Table | 23  | . Summary of lead concentrations reported to have effect on invertebrates       |

iv

| Table | 24. Summary of lead concentrations reported to have effect on fish                 |   |
|-------|------------------------------------------------------------------------------------|---|
| Table | 25. Summary of arsenic concentrations reported to have effect on algae             |   |
| Table | 26. Summary of arsenic concentrations reported to have effect on invertebrates96   |   |
| Table | 27. Summary of arsenic concentrations reported to have effect on fish              |   |
| Table | 28. Summary of chromium concentrations reported to have effect on algae and        |   |
|       | diatoms                                                                            |   |
| Table | 29. Summary of chromium concentrations reported to have effect on                  |   |
|       | invertebrates                                                                      |   |
| Table | 30. Summary cf chromium concentrations reported to have effect on fish100          | ) |
| Table | 31. Summary of nickel concentrations reported to have effect on algae and          |   |
|       | diatoms101                                                                         | l |
| Table | 32. Summary of nickel concentrations reported to have effect on invertebrates102   | 2 |
| Table | 33. Summary of nickel concentrations reported to have effect on fish103            | 3 |
| Table | 34. Summary of copper concentrations reported to have effect on fish104            | 1 |
| Table | 35. Summary of copper concentrations reported to have effect on invertebrates105   | 5 |
| Table | 36. Summary of copper concentrations reported to have effect on algae100           | 5 |
| Table | 37. Summary of zinc concentrations reported to have effect on fish107              | 7 |
| Table | 38. Summary of zinc concentrations reported to have effect on invertebrates108     | 3 |
| Table | 39. Summary of zinc concentrations reported to have effect on algae109             | ) |
| Table | 40. Summary of cadmium concentrations reported to have effect on fish110           | ) |
| Table | 41. Summary of cadmium concentrations reported to have effect on invertebrates112  | l |
| Table | 42. Summary of cadmium concentrations reported to have effect on algae112          | 2 |
| Table | 43. Comparison of Metal Load Estimates in the Sacramento River at Greene's         |   |
|       | Landing from January through April during a Dry Year (1994) and a Wet Year         |   |
|       | (1995)111                                                                          | 3 |
| Table | 44. Comparison of Metal Load Estimates in the Sacramento River at River Mile       |   |
|       | 44 from January through April during a Dry Year (1994) and a Wet Year              |   |
|       | (1995)114                                                                          | 4 |
| Table | 45. Comparison of Metal Loads to the Delta Contributed by Sources which            |   |
|       | Drain to the Yolo Bypass and Sacramento River, January-April 199511:               | 5 |
| Table | 46. Total recoverable and dissolved (0.45 $\mu$ m) metal concentrations in samples |   |
|       | collected from all stations monitored in 1993, 1994 and 1995110                    | 5 |
| Table | 47. Total recoverable and dissolved (0.45 $\mu$ m) metal concentrations in samples |   |
|       | collected at Greene's Landing from January through March of 1993, 1994             |   |
|       | and 199511                                                                         | 7 |
| Table | 48. BPTCP: Summary of regression coefficients for total recoverable and            | _ |
|       | dissolved (0.45 μm) metals, flow, and TSS during Water Year 199411                 | 8 |
| Table | 49. BPTCP: Summary of regression coefficients for total recoverable and            | _ |
|       | dissolved (0.45 $\mu$ m) metals, flow, and TSS during Water Year 199511            | 9 |
| Table | 50. BPTCP: Summary of regression coefficients for total recoverable and            |   |
|       | dissolved (0.45 $\mu$ m) metals, flow, and TSS during Water Years 1994 and         | ~ |
|       | 199512                                                                             | 0 |

| ,    |                                                                                                                                                                                                              |   |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|      |                                                                                                                                                                                                              |   |
|      |                                                                                                                                                                                                              |   |
| Tabl | le 51. Ambient Monitoring Program: Summary of regression coefficients for total<br>recoverable and dissolved (0.45 μm) metals, flow, and TSS during Water Year<br>1994                                       |   |
| Tabl | le 52. Ambient Monitoring Program: Summary of regression coefficients for total<br>recoverable and dissolved (0.45 μm) metals, flow, and TSS during Water Year<br>1995                                       | ۶ |
| Tabl | le 53. Ambient Monitoring Program: Summary of regression coefficients for total<br>recoverable and dissolved (0.45 μm) metals, flow, and TSS during Water Years<br>1994-1995                                 | ĩ |
| Tabl | <ul> <li>le 54. BPTCP: Summary of total recoverable metals regressed against other metals for<br/>samples collected from Greene's Landing during WY94, WY95, and the</li> <li>combined WY94/95124</li> </ul> |   |
|      |                                                                                                                                                                                                              |   |
|      |                                                                                                                                                                                                              |   |

vi

.

.

.

,

. .

**a** ',

# LIST OF FIGURES

| Figure | 1. Map of the Sacramento-San Joaquin River Delta and its major tributaries | .126  |
|--------|----------------------------------------------------------------------------|-------|
| Figure | 2. Sacramento River Flow at Freeport from January 1993 to September 1995   | .127  |
| Figure | 3. Total Recoverable Copper vs. Flow during WY94                           | .128  |
| Figure | 4. Total Recoverable Zinc vs. Flow during WY94                             | .129  |
| Figure | 5. Total Recoverable Chromium vs. Flow during WY94                         | .130  |
| Figure | 6. Total Recoverable Lead vs. Flow during WY94                             | .131  |
| Figure | 7. Total Recoverable Nickel vs. Flow during WY94                           | 132   |
| Figure | 8. Total Recoverable Copper vs. TSS during WY94                            | .133  |
| Figure | 9. Total Recoverable Zinc vs. TSS during WY94                              | 134   |
| Figure | 10. Total Recoverable Chromium vs. TSS during WY94                         | 135   |
| Figure | 11. Total Recoverable Lead vs. TSS during WY94                             | 136   |
| Figure | 12. Total Recoverable Nickel vs. TSS during WY94                           | .137  |
| Figure | 13. Dissolved (0.45 μm) Copper vs. Flow during WY94                        | .138  |
| Figure | 14. Dissolved (0.45 μm) Chromium vs. Flow during WY94                      | .139  |
| Figure | 15. Dissolved (0.45 μm) Nickel vs. Flow during WY94                        | .140  |
| Figure | 16. Dissolved (0.45 μm) Copper vs. TSS during WY94                         | 141   |
| Figure | 17. Dissolved (0.45 μm) Chromium vs. TSS during WY94                       | 142   |
| Figure | 18. Dissolved (0.45 μm) Nickel vs. TSS during WY94                         | .143  |
| Figure | 19. Chromium, Total Recoverable vs. Dissolved (0.45 µm) during WY94        | .144  |
| Figure | 20. Lead, Total Recoverable vs. Dissolved (0.45 µm) during WY94            | .145  |
| Figure | 21. Total Recoverable Copper vs. Flow during WY95                          | .146  |
| Figure | 22. Dissolved (0.45 μm) Copper vs. Flow during WY95                        | .147  |
| Figure | 23. Total Recoverable Zinc vs. Flow during WY95                            | 148   |
| Figure | 24. Dissolved (0.45 µm) Zinc vs. Flow during WY95                          | 149   |
| Figure | 25. Total Recoverable Chromium vs. Flow during WY95                        | 150   |
| Figure | 26. Dissolved (0.45 μm) Chromium vs. Flow during WY95                      | .151  |
| Figure | 27. Total Recoverable Lead vs. Flow during WY95                            | .1.52 |
| Figure | 28. Dissolved (0.45 μm) Lead vs. Flow during WY95                          | .153  |
| Figure | 29. Total Recoverable Cadmium vs. Flow during WY95                         | .154  |
| Figure | 30. Dissolved (0.45 µm) Cadmium vs. Flow during WY95                       | .155  |
| Figure | 31. Total Recoverable Nickel vs. Flow during WY95                          | .156  |
| Figure | 32. Dissolved (0.45 μm) Nickel vs. Flow during WY95                        | .157  |
| Figure | 33. Total Recoverable Arsenic vs. Flow during WY95                         | .158  |
| Figure | 34. Dissolved (0.45 µm) Arsenic vs. Flow during WY95                       | .159  |
| Figure | 35. Total Recoverable Copper vs. TSS during WY95                           | .160  |
| Figure | 36. Total Recoverable Zinc vs. TSS during WY95                             | .161  |
| Figure | 37. Total Recoverable Cadmium vs. TSS during WY95                          | .162  |
| Figure | 38. Total Recoverable Cadmium vs. Flow during WY94                         | .163  |
| Figure | 39. Copper, Total Recoverable vs. Dissolved (0.45 μm) during WY95          | .164  |
| Figure | 40. Lead, Total Recoverable vs. Dissolved (0.45 μm) during WY95            | .165  |
| Figure | 41. Total Recoverable Copper vs. TSS, WY94-WY95                            | .166  |

| Figure | 42.                                                                            | Total Recoverable Zinc vs. TSS, WY94-WY95                              | 167 |
|--------|--------------------------------------------------------------------------------|------------------------------------------------------------------------|-----|
| Figure | 43.                                                                            | Total Recoverable Chromium vs. TSS, WY94-WY95                          | 168 |
| Figure | 44.                                                                            | Total Recoverable Nickel vs. TSS, WY94-WY95                            | 169 |
| Figure | 45.                                                                            | Total Recoverable Copper vs. Flow, WY94-WY951                          | 170 |
| Figure | 46.                                                                            | Total Recoverable Zinc vs. Flow, WY94-WY95                             | 171 |
| Figure | 47.                                                                            | Total Recoverable Chromium vs. Flow, WY94-WY95                         | 172 |
| Figure | 48.                                                                            | Total Recoverable Nickel vs. Flow, WY94-WY95                           | 173 |
| Figure | 49.                                                                            | Dissolved (0.45 µm) Chromium vs. TSS, WY94-WY95                        | 174 |
| Figure | 50.                                                                            | Dissolved (0.45 µm) Lead vs. TSS, WY94-WY95                            | 175 |
| Figure | 51.                                                                            | Dissolved (0.45 µm) Nickel vs. TSS, WY94-WY95                          | 176 |
| Figure | 52.                                                                            | Dissolved (0.45 µm) Chromium vs. Flow, WY94-WY95                       | 177 |
| Figure | 53.                                                                            | Dissolved (0.45 µm) Lead vs. Flow, WY94-WY95                           | 178 |
| Figure | 54.                                                                            | Dissolved (0.45 µm) Nickel vs. Flow, WY94-WY95                         | 179 |
| Figure | 55.                                                                            | Total Zinc vs. Total Copper, WY94                                      | 180 |
| Figure | 56.                                                                            | Total Chromium vs. Total Copper, WY94                                  | 181 |
| Figure | 57.                                                                            | Total Lead vs. Total Copper, WY94                                      | 182 |
| Figure | 58.                                                                            | Total Nickel vs. Total Copper, WY941                                   | 183 |
| Figure | 59.                                                                            | Total Chromium vs. Total Zinc, WY94                                    | 184 |
| Figure | 60.                                                                            | Total Lead vs. Total Zinc, WY94                                        | 185 |
| Figure | 61.                                                                            | Total Nickel vs. Total Zinc, WY94                                      | 186 |
| Figure | 62.                                                                            | Total Lead vs. Total Chromium, WY941                                   | 187 |
| Figure | 63.                                                                            | Total Nickel vs. Total Zinc, WY94                                      | 188 |
| Figure | 64.                                                                            | Total Nickel vs. Total Lead, WY94                                      | 189 |
| Figure | 65.                                                                            | Flow vs. TSS, WY94                                                     | 190 |
| Figure | gure 66. Flow and TSS Pattern in the Sacramento River at Greene's Landing from |                                                                        |     |
|        |                                                                                | January through March 19941                                            | 91  |
| Figure | 67.                                                                            | Total Zinc vs. Total Copper, WY951                                     | 192 |
| Figure | 68.                                                                            | Total Chromium vs. Total Copper, WY95                                  | 193 |
| Figure | 69.                                                                            | Total Cadmium vs. Total Copper, WY95                                   | 194 |
| Figure | 70.                                                                            | Total Nickel vs. Total Copper, WY951                                   | 195 |
| Figure | 71.                                                                            | Total Chromium vs. Total Zinc, WY95                                    | 96  |
| Figure | 72.                                                                            | Total Cadmium vs. Total Zinc, WY951                                    | 97  |
| Figure | 73.                                                                            | Total Nickel vs. Total Zinc, WY95                                      | 198 |
| Figure | 74.                                                                            | Total Cadmium vs. Total Chromium, WY95                                 | 99  |
| Figure | 75.                                                                            | Total Nickel vs. Total Chromium, WY95                                  | 200 |
| Figure | 76.                                                                            | Flow vs. TSS, WY95                                                     | 201 |
| Figure | 77.                                                                            | Precipitation and TSS Pattern at Greene's Landing from January Through |     |
|        |                                                                                | Mid February 1995                                                      | 202 |
| Figure | 78.                                                                            | Flow and TSS Pattern from January to March 1995                        | 203 |
| Figure | 79.                                                                            | Flow vs. TSS, WY95 Without Pre- and First Flush Values                 | 204 |
| Figure | 80.                                                                            | Total Zinc vs. Total Copper, WY94/WY95                                 | 205 |
| Figure | 81.                                                                            | Total Chromium vs. Total Copper, WY94/WY95                             | 206 |
| Figure | 82.                                                                            | Total Lead vs. Total Copper, WY94/WY95                                 | 207 |

ବ

viii

| 83. Total Nickel vs. Total Copper, WY94/WY95   |                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 84. Total Chromium vs. Total Zinc, WY94/WY95   |                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 85. Total Lead vs. Total Zinc, WY94/WY95       |                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 86. Total Nickel vs. Total Zinc, WY94/WY95     |                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 87. Total Lead vs. Total Chromium, WY94/WY95   |                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 88. Total Nickel vs. Total Chromium, WY94/WY95 |                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 89. Total Nickel vs. Total Lead, WY94/WY95     |                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 90. Flow vs. TSS, WY94/WY95                    |                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                | <ol> <li>83. Total Nickel vs. Total Copper, WY94/WY95</li> <li>84. Total Chromium vs. Total Zinc, WY94/WY95</li> <li>85. Total Lead vs. Total Zinc, WY94/WY95</li> <li>86. Total Nickel vs. Total Zinc, WY94/WY95</li> <li>87. Total Lead vs. Total Chromium, WY94/WY95</li> <li>88. Total Nickel vs. Total Chromium, WY94/WY95</li> <li>89. Total Nickel vs. Total Lead, WY94/WY95</li> <li>90. Flow vs. TSS, WY94/WY95</li> </ol> |

# LIST OF APPENDICES

| Appendix A: | Description of Site Locations                         | .216 |
|-------------|-------------------------------------------------------|------|
| Appendix B: | Raw Metal Analysis Data                               | 219  |
| Appendix C: | Quality Assurance/Quality Control Methods and Results | .244 |
| Appendix D: | Metals Source Pilot Study                             | .253 |

х

ŝ

**EXECUTIVE SUMMARY** The Sierra Nevada, Klamath, Cascade, and Coast range mountains surrounding the Central Valley are rich in geological deposits of metal laden ores. Historic mining activity resulted in open mines and exposed tailings which leach metals into the Sacramento River and its tributaries. Runoff from mining operations has resulted in exceedances of water quality objectives, fish kills, and elevated metal concentrations in sediment and tissues of aquatic organisms (Nordstrom *et al.*, 1977; Wilson *et al.*, 1981; SWRCB, 1990; Montoya and Pan, 1992; Fujimura *et al.*, 1995; Saiki *et al.*, 1995; Cain *et al.*, 1998). In addition, metals in the upper and middle regions of the watershed have been linked to impacts in aquatic life using toxicity tests (Connor *et al.*, 1993; Bailey *et al.*, 1994; Connor *et al.*, 1994). However, metal concentrations and toxicity have not been well characterized in the Sacramento-San Joaquin River Delta.

The Bay Protection and Toxic Cleanup Program (BPTCP) was created to identify toxic hot spots, develop sediment quality objectives, and remediate toxic hot spots in California. The Central Valley Regional Water Quality Control Board utilized BPTCP funds to determine if metals threatened beneficial uses in the Delta. The current study had four objectives: 1) to determine if metal concentrations (i.e., arsenic, cadmium, chromium, copper, lead, nickel, and zinc) could be measured in the Sacramento-San Joaquin Delta during low and high flow periods using ultra clean methods with detection limits low enough to evaluate compliance with water quality objectives; (2) to define the extent of water quality objective exceedances in the Delta for metals; 3) to define the extent of metal associated toxicity throughout the Delta using the EPA three species toxicity tests; and 4) to determine the metal loading patterns into the Delta from the Yolo Bypass and Sacramento River (at Greene's Landing) during low and high flow periods. To address these objectives, fixed stations were monitored over multiple seasons and storm events. However, much of the sampling effort was focused during the winter to complement ongoing monthly metals monitoring by the Sacramento County Ambient Monitoring Program. The biotoxicity project is discussed in separate reports (Deanovic et al., 1996 & 1998). Because significant loads were identified entering the Delta during storm events, a study (Metals Source Pilot Study) was conducted during a single winter storm event to better characterize the source(s) of the loads.

Water samples were collected for metal analyses during the relatively normal 1993 water year (October 1992-September 1993: WY93), critically dry 1994 water year (October 1993-September 1994: WY94), and high flow 1995 water year (October 1994-September 1995: WY95). Flows in the combined discharge of the Sacramento River and Yolo Bypass peaked at 135,000 CFS on 28 March during WY93 and at 334,000 CFS on 13 March during WY95. As a result of the low rainfall during WY94, flows at Freeport did not exceed 30,000 CFS and the Yolo Bypass had measurable flows above 1000 CFS on only four days.

## Were low detection limits obtained using ultra clean techniques? Yes

• Evapoconcentration prior to analysis of field collected samples resulted in the detection of arsenic, cadmium, chromium, copper, lead, nickel, and zinc down to the low to mid parts per trillion range, well below values set for water quality objectives.

• Analysis of laboratory and field blanks indicated samples could be collected relatively free of metal contamination.

# Were water quality objectives exceeded for metals during the study? No

• USEPA National Ambient Water Quality Criteria and the USEPA Proposed California Toxics Rule Criteria were never exceeded in any of 549 samples collected from 15 Delta stations during critically dry, normal, and wet water years.

• The site-specific numeric water quality objectives for arsenic, copper, silver, and zinc were not exceeded in the Delta.

a)

#### What trends in metal concentrations were identified?

• During the critically dry WY94, total recoverable concentrations of chromium, copper, lead, nickel, and zinc increased with increasing flow conditions and increased sediment load in the Sacramento River at Greene's Landing.

• TSS or flow could be used to predict general levels (high versus low) of total recoverable copper, chromium, lead, nickel, and zinc during the drought-like conditions in WY94. Furthermore, these metals tracked each other very closely during this period such that high total recoverable zinc concentrations coincided with high total recoverable copper, chromium, lead, and nickel concentrations.

• During the high flow WY95, total recoverable cadmium, chromium, copper, and zinc concentrations at Greene's Landing were still significantly related to TSS indicating these metals were bound to suspended sediment particles during both dry and wet years.

• During the high flow WY95, total recoverable cadmium, chromium, copper, nickel, and zinc were inter-related and lead was not associated with any other metal. Using the inter-related nature of TSS and the grouped metals (i.e., copper, zinc, chromium, and cadmium), one could begin to utilize TSS levels as a general indicator for levels of these metals (e.g., high versus low concentrations).

• The value of these relationships is in designing when to collect samples if one is interested in sampling for high metal concentrations. For some metals, high flow events would be expected to produce high total recoverable metal concentration.

### Was metals related toxicity identified in the Delta? No

• Fifty eight samples exhibited toxicity during the study. Metals were never implicated in the Toxicity Identification Evaluation (TIEs) studies conducted on samples collected from the Delta which were toxic. However, TIEs could not be performed on all samples which exhibited toxicity due to budgetary constraints.

# Were metal loading patterns characteristic of hydrological conditions? Yes

• Depending on the metal, Sacramento River loads increased from approximately 460%

to 5,300% from the critically dry WY94 to the wet WY95. This indicates that high flow water years can greatly increase metal inputs to the Delta when compared to dry years.

• Sediment loading patterns in the Sacramento River and Yolo Bypass were nearly identical to the load patterns for copper and zinc during the wet WY95, with greater loads in the Bypass. These metals, as well as chromium, appeared to be transported into the Delta bound to sediment particles.

| Constituent .          | Bypass Load | River Load |
|------------------------|-------------|------------|
| Copper (kg)            | 296,000     | 144,000    |
| % of total             | 67          | 33         |
| Zinc (kg)              | 727,000     | 394,000    |
| % of total             | 65          | 35         |
| Chromium (kg)          | 472,000     | 155,000    |
| % of total             | 74          | 26         |
| Lead (kg)              | 64,700      | 54,400     |
| % of total             | 54          | 46         |
| Cadmium (kg)           | 1,550       | 1,660      |
| % of total             | 48          | 52         |
| Nickel (kg)            | 911,000     | 201,000    |
| % of total             | 82          | 18         |
| Arsenic (kg)           | 22,400      | 20,800     |
| % of total             | 52          | 48         |
| Sediment (metric tons) | 2,500,000   | 1,300,000  |
| % of total             | 66          | 34         |

#### What source(s) of metals were identified during the March 1995 high flow pilot study?

• Metal loading from historic mines in the Lake Shasta region could not be assessed because reservoir releases were maintained low to minimize downstream flooding.

• Areas of significant load contributions during the study included Cottonwood Creek in the upper Watershed and Cache Creek in the lower Watershed.

• Additional inputs of metals which resulted in high loads occurred between the Bend River bridge and Ord Ferry bridge and between County Road A-8 and Colusa. Both regions receive runoff from undammed creeks during major storm events.

Based on a lack of metals related toxicity and no exceedances of water quality objectives for metals in this study, future metals monitoring (excluding mercury) in the Delta as Regional Board special studies is not a high priority. However, staff recommend that ambient monitoring programs such as the Coordinated Monitoring Program, Regional Monitoring Program, Sacramento River Watershed Program, and CALFEDs Coordinated Monitoring and Research Program continue to include water column metals monitoring and that sediment testing and tissue analyses be included.

# **INTRODUCTION**

#### **BASIN DESCRIPTION**

The Sacramento-San Joaquin Delta Estuary is ecologically, aesthetically, and economically significant to the State of California. The area comprises over 700 miles of interconnected waterways and encompasses 1,153 square miles (Central Valley Regional Water Quality Control Board, 1994). The Delta, together with San Francisco Bay, is the largest estuary on the west coast of North America. It is fed by three main rivers, the Sacramento, the San Joaquin, and the Mokelumne, with a combined average unimpaired flow of about twenty-two million acre-feet per year. The Sacramento-San Joaquin Delta serves California as a significant water resource. Recognized beneficial uses include fisheries and wildlife habitat, agricultural supply, recreation, navigation, industrial process and municipal and domestic supply. Two statistics are presented below to help illustrate the environmental significance of the estuary to the people of California. First, over two-hundred-eighty species of birds and over fifty species of fish inhabit the freshwater portion of the estuary (San Francisco Estuary Project, 1992; Herbold and Moyle, 1989). This is considerably more than any other water body in the State of California (San Francisco Estuary Project, 1992). Second, over half of all the drinking water for the State of California is pumped from the Delta (San Francisco Estuary Project, 1992). The Sacramento River contributes over 80% of the drinking water to the Delta, but is also a major conveyance route for contaminants from upstream sources to the Delta.

#### SOURCES OF METALS

The Sierra Nevada, Cascade, Klamath, and Coast range mountains surrounding the Central Valley are rich in geological deposits of metal laden ores. Historic mining activity resulted in open mines and exposed tailings which leach metals into the upper Sacramento River Watershed and its tributaries. Relatively few historic mining operations contributed the majority of metals to regional waters. Runoff from mining operations in the upper Watershed has resulted in exceedances of water quality objectives, fish kills, and elevated metal concentrations in sediment and tissues of aquatic organisms (Nordstrom *et al.*, 1977; Wilson *et al.*, 1981; SWRCB, 1990; Montoya and Pan, 1992; Fujimura *et al.*, 1995; Saiki *et al.*, 1995; Cain *et al.*, 1998). Since the implementation of acid mine drainage controls on Iron Mountain Mine (IMM), exceedances of water quality standard exceedances in Keswick Reservoir have been reduced (Heiman, pers. comm.). However, limited water-quality standard exceedances in Keswick Reservoir have been reported as recently as January, 1997 (Alpers, written comm.). The spatial and temporal patterns of metal dispersion from mines are variable (Alpers, written comm.). Although mine drainage is a significant contributor of metals to the system, metals also enter from other sources.

Discharges from agriculture areas are important sources of metals laden runoff to the lower Sacramento River. Agricultural drains discharged an estimated 74% of the total chromium load, 75% of total nickel load, and 17% of the total copper load in the Sacramento Valley in 1985 (Montoya *et al.*, 1988; CVRWQCB, 1989). Agricultural applications of the pesticide copper sulfate [i.e., hydroxide and sulfate (basic and pentahydrate)] reached 6,471,596 lbs. in California

during 1993 (Department of Pesticide Regulation, 1995). This quantity represents a 17% increase from 1991 applications (Department of Pesticide Regulation, 1993). Of the total applied during 1993, 1,808,043 lbs. of copper were applied on rice crops (Department of Pesticide Regulation, 1995). This quantity represents a 21% increase from 1991 applications (Department of Pesticide Regulation, 1993). By far, the majority of the rice cultivation in California occurs in the Sacramento River Watershed. Copper levels measured in agricultural drainage of the Sacramento River Watershed during 1985 were significantly higher during the rice growing season (May-June) compared to January-April levels (Montoya et al., 1988; CVRWQCB, 1989). Copper use on orchards is also increasing, but the potential for off site movement has not been investigated. United States Geological Survey (USGS) load estimates for the dissolved and colloidal forms of copper during July and September 1996 and May-June 1997 show increases on the Sacramento River between Colusa and Verona where water enters from the Colusa Basin Drain, Sacramento Slough, and other tributaries carrying agricultural return flows (Alpers, written comm.). Furthermore, data collected for the USGS National Water Quality Assessment (NAWQA) program on the Sacramento River indicate loads of copper into the Colusa Basin Drain during June 1997 were slightly less than that from Iron Mountain Mine via Spring Creek during the same sampling period (Alpers, written comm.). However, the transport, fate, and biotic effects of copper from the drains into the softer waters of the Sacramento River are not completely understood.

Another important source of metal input to the system is urban runoff which carries metals from transportation and homeowner uses into regional waters. Urban runoff has been estimated to contribute approximately 94% of the lead, 8-9% of the copper, cadmium, and zinc, and 14-16% of the nickel and chromium total loads in the Sacramento River Watershed (Montoya *et al.*, 1988; CVRWQCB, 1989). The American River in the lower Sacramento River Watershed receives urban runoff containing metals from several sources in the Sacramento metropolitan area. Total recoverable copper, lead, and zinc concentrations increased from upstream to downstream monitoring stations on the American River when concentrations were averaged from July 1994 to 1995 (Larry Walker Associates, 1996). Although increased concentrations were observed, they were minor and well below water quality objectives and were at least in part associated with wet weather urban inflows. Of concern to the Central Valley Regional Water Quality Control Board (CVRWQCB) are the effects metal sources may have on aquatic life throughout the Watershed, including the Delta.

## METAL TOXICITY

The most sensitive beneficial use when metals are considered is the protection of aquatic life. In order to understand the scope of metal impacts in the Delta, the spatial and temporal extent of effects in the upper Watershed must first be characterized. The Basin Plan of the Central Valley Regional Water Quality Control Board contains a narrative toxicity objective which states that all waters must be maintained free of toxic substances in concentrations that cause detrimental physiological responses in aquatic organisms (Central Valley Regional Water Quality Control Board, 1994). The Basin Plan also states that compliance with this narrative objective can be

evaluated in a number of ways, including the use of the US EPA three species bioassay protocols and by comparing metal concentrations with available objectives and criteria. The Regional Board uses both approaches to evaluate threats posed by elevated metal concentrations. These bioassays measure changes in growth, survival, and/or reproduction of three species from three diff\_rent phyla and trophic levels. Regional Board staff have relied on the use of the three species bioassays since 1986 to assess compliance with the Basin Plan's narrative toxicity objectives. Toxicity testing results have indicated metal related toxicity in the Shasta Mining District.

Studies conducted from 1991-1992 to monitor toxicity and metal concentrations in discharges from major reservoirs identified relatively few incidents of toxicity (Goetzl and Stephenson, 1993; Connor *et al.*, 1994). Results may have been influenced by climate conditions, such as the ongoing drought, as well as mine remediation projects. Significant toxicity to the freshwater alga *Selenastrum* was detected in the Sacramento River downstream from the Keswick Dam. Toxicity was detected in 75% of the samples collected from Keswick Reservoir (Connor *et al.*, 1994). When compared to 18 other sites sampled throughout the Watershed, samples collected downstream from Keswick Dam exhibited the highest frequency of toxicity and the greatest number of exceedances of cadmium, copper, and zinc water quality objectives (Goetzl and Stephenson, 1993). There was a positive relationship between *Selenastrum* was detected in a similar study conducted in 1993 (Bailey *et al.*, 1994).

In conclusion, metal analyses and toxicity testing conducted since 1988 provide some indication of metals impacting aquatic life in the Sacramento River from mining. However, no studies have been undertaken in the Delta to determine the overall importance of metals and toxicity on aquatic resources.

# WATER QUALITY CRITERIA/OBJECTIVES

The CVRWQCB is not only interested in characterizing toxicity to aquatic organisms, but also in characterizing regional waters for compliance with numeric water quality objectives. However, in the past it was difficult to use monitoring data to evaluate compliance with existing metal water quality objectives because either the detection limits were too high (e.g., above actual instream concentrations) or the quality assurance and control were not rigorous. Further difficulty has been encountered because of changes in water quality objectives in California. During 1995, criteria used to protect aquatic life from inorganic constituents were promulgated in the California Inland Surface Waters Plan. These objectives were based on the US EPA National Ambient Water Quality Criteria. However, values for the Inland Surface Waters Plan were expressed as total recoverable metal, while the US EPA criteria were expressed as dissolved metal (Marshack, 1995). The Inland Surface Waters Plan was repealed in 1994 as a result of a legal challenge, leaving California without enforceable numerical water quality objectives for priority toxic pollutants in surface waters as required for each state by the Clean Water Act, except for certain site-specific numeric water quality objectives in the Water Quality Control Plan for the

CVRWQCB. The Water Quality Control Plan contains numeric water quality objectives for several metals in the Sacramento River, including arsenic, barium, cadmium, copper, cyanide, iron, manganese, silver, and zinc. In 1997, the US EPA proposed to promulgate water quality criteria for priority toxic pollutants for California's inland surface waters by developing the California Toxics Rule. In addition to the site-specific water quality objectives in the Water Quality Control Plan, criteria currently used as guidance for the CVRWQCB to protect freshwater aquatic life from inorganic constituents are the US EPA Proposed California Toxics Rule and the US EPA National Ambient Water Quality Criteria. As of 1998, both criteria are expressed as dissolved metals (Marshack, 1998). Therefore, additional metal monitoring was needed to better assess compliance.

# BAY PROTECTION AND TOXIC CLEANUP PROGRAM

In 1989, the California Water Code was amended to create the Bay Protection and Toxic Cleanup Program (BPTCP). The three primary goals of the program are to: 1) identify toxic hot spots; 2) develop sediment quality objectives; and 3) remediate toxic hot spots, either through cleanup efforts, mitigation or prevention. Section 13391.5 of the Water Code defines toxic hot spots as: "....[L]ocations in enclosed bays, estuaries, or adjacent waters in the 'contiguous zone' or the 'ocean' as defined in Section 502 of the Clean Water Act (33. U.S.C. Section 1362), the pollution or contamination of which affects the interests of the State, and where hazardous substances have accumulated in the water or sediment to levels which (1) may pose a substantial present or potential hazard to aquatic life, wildlife, fisheries, or human health, or (2) may adversely affect the beneficial uses of the bay, estuary, or ocean waters as defined in the water quality control plans, or (3) exceeds adopted water quality or sediment quality objectives."

The BPTCP identifies five conditions that are used to define toxic hot spots.

- 1. Exceedance of water quality objectives
- 2. Toxicity associated with a toxic pollutant
- 3. Exceedance of tissue contaminant levels
- 4. Impairment of resident organisms
- 5. Degradation of populations or communities associated with toxic pollutants

Using Bay Protection Toxic Cleanup Program funds, the Central Valley Regional Water Quality Control Board conducted a study from May 1993 to December 1996 to characterize toxicity, metal concentrations, and metal loads in the Delta. The overall focus of this study was to determine if there were metal impacts in the Delta, and if so, identify whether the impacts were a result of transport or *in situ* processes. Prior to this study, there had been ongoing monitoring efforts in the Delta for many years. However, the monitoring was deficient in three general areas. First, as stated above, the monitoring focused on chemical analyses with a lack of rigorous quality assurance and high detection limits. Second, the monitoring efforts did not incorporate measurements of multiple metals and organic compounds. In addition, toxicity tests were not conducted concurrently with monitoring therefore prohibiting an assessment of the contribution

â

metals had on aquatic life in the Delta. Furthermore, the situation of multiple metals working in an additive manner to cause toxicity is potentially important in the Delta because of the high load and diversity of inputs. Third, most of the annual metal load to the Delta is associated with major storm events. Past monitoring within the Delta had not adequately characterized metal level, and loads to the Delta during storm events.

The current study had four objectives: 1) to determine if metal concentrations (i.e., arsenic, cadmium, chromium. copper, lead, nickel, and zinc) could be measured in the Sacramento-San Joaquin Delta during low and high flow periods using ultra clean techniques with detection limits low enough to evaluate compliance with water quality objectives; 2) to define the extent of water quality objective exceedances in the Delta for metals; (3) to define the extent of metal associated toxicity throughout the Delta using the EPA three species toxicity tests; and (4) to determine the metal loading patterns into the Delta from the Yolo Bypass and Sacramento River (at Greene's Landing) during low and high flow periods. To address these objectives, fixed stations were monitored for metals and biotoxicity over multiple seasons and storm events. However, much of the sampling effort was focused during the winter to complement ongoing monthly monitoring by the Sacramento County Ambient Monitoring Program. The biotoxicity project is discussed in separate reports (Deanovic *et al.*, 1996; 1998). Because significant loads were identified entering the Delta during storm events, a pilot study was conducted ("Metals Source Pilot Study") during a single winter storm event to better characterize the source(s) of the loads (Appendix D).

)

# MATERIALS AND METHODS

# QUALITY ASSURANCE PROGRAM

The purpose of the Quality Assurance Program was to ensure the data were generated under conditions that accurately reflected the quality of the water sample. Standardized procedures were followed in all aspects of research. These methods are described in the Project Quality Assurance Plan designed for this project (Connor *et al.*, 1995). Both accuracy and precision were addressed in the quality assurance/quality control (QA/QC) document. A full description of the QA/QC methods and data can be found in Appendix C.

# SAMPLE LOCATIONS

Water samples were collected for metal analyses and toxicity assessments during the 1993 (October 1992-September 1993), 1994 (October 1993-September 1994), and 1995 (October 1994-September 1995) water years. Sampling sites for metal analyses included main river inputs to the Delta, back sloughs and small upland drainages, areas receiving urban runoff, and points along the path of water movement across the Delta (Fig.1; Table 1). In addition, samples for were collected for a pilot study ("Metals Source Study") designed to identify sources of metals loads into the Delta and upstream to Shasta Dam during a single storm event (Fig. D-1; Table D-1). Additional sampling sites were selected for toxicity assessments (Deanovic *et al.*, 1996; 1998). Detailed site descriptions are provided in Appendix A and D.

### SAMPLE COLLECTION AND STORAGE

#### Metal Analyses

Samples for total recoverable and dissolved metals analyses were collected by Regional Board staff. All samples were collected from beneath the water surface by boat, from a bridge, or from the bank in a rapidly moving section of the water course. The samples were collected by inserting cleaned bey-a-line tubing through 25 feet of PVC pipe (Goetzl and Stephenson, 1993). The use of the pipe allowed the sampling point to be about 20 feet from the shore and thus minimized edge effects. All samples were pumped from the point of collection (using a peristaltic pump) through 25 feet of acid-cleaned tubing directly into an analysis bottle containing acid. The tubing ended in a dust free sampling box which contained the sampling bottles. The bottles were handled without opening the box through gloved port holes. The tubing and the box were employed to minimize the exposure of the samples to airborne contamination. The exception to this procedure was the sampling conducted during high flow events. This sampling used an acid washed one gallon borosilicate glass composite sampler instead of a glove box for sample collection. All analysis bottles were double bagged except while being filled. All samples collected for determining the concentration of dissolved metals were filtered through a 0.45 micron polypropylene MSI cartridge filter attached to the end of the tubing. At each site water conditions, sampling conditions, water temperature, pH, and EC were recorded. After collection, all samples were triple bagged and placed in a dust free container until shipped to the Moss

Landing Mussel Watch Lab. The details of the sampling equipment and procedures are fully described in Goetzl and Stephenson (1993).

# **Toxicity Samples**

Bioacsay surveys were conducted from May 1993 to December 1996 in the Delta. Site locations, method of water collection, and sample storage are contained in Deanovic *et al.*, (1996) and (1998). Bioassays were run on all water samples collected from the Delta for metal analyses. However, additional sites were only tested for toxicity. If toxicity was detected and no samples were collected for metal analyses, then sub-samples were taken from the bioassay water and placed in a one liter polyethylene bottle (containing nitric acid) for determination of total recoverable and dissolved (filtered with a Gelman A/E glass fiber filter, nominal pore size of 0.45  $\mu$ m) metal concentrations.

WERE LOW DETECTION LIMITS OBTAINED USING ULTRA CLEAN TECHNIQUES?

Total recoverable and dissolved (0.45  $\mu$ m filtered) metal concentrations were analyzed by the California Department of Fish and Game Mussel Watch Laboratory and at the Moss Landing Marine Lab Trace Metals Laboratory, using ultra-clean facilities and graphite furnace atomic absorption spectrophotometry (Goetzl and Stephenson, 1993). Twenty percent of the samples were split samples analyzed by the Trace Metals Laboratory. Samples were analyzed using an evapo-concentration technique to obtain low detection limits (Goetzl and Stephenson, 1993; Goetzl *et al.*, 1994, 1995). The essence of this procedure is that a sample is concentrated twenty-five fold by evaporation followed by an acid-treatment to re-dissolve the sample. This procedure can achieve detection limits in the parts per trillion range.

# Atomic Absorption Methods (Trace Metal Lab)

Samples were analyzed by flameless Atomic Absorption (AA) on a Perkin-Elmer Zeeman 5000 Atomic Absorption Spectrophotometer equipped with an HGA 500 graphite furnace at the Salinas facility of Moss Landing Marine Laboratories. Due to high concentrations, a few samples were analyzed using flame AA on a Perkin-Elmer 603 AAS. Samples and standards were prepared in a laminar-flow clean bench inside the trace metal lab. To ensure accurate results, the samples were analyzed using the stabilized-temperature platform technique. The characteristic mass for each element was computed to ensure the proper functioning of the Zeeman AA. Samples may be analyzed using a matrix modifier made up from ultra-clean chemicals. When no modifier is used, high-char temperatures allow interfering matrix components of the sample to be volatilized prior to atomization. Single spike additions to samples allow a check for recovery when standards are linear. Finally, the SLRS-2 (1993-94 samples) or SLRS-3 (1994-95 samples) river water standard reference material was evapoconcentrated and analyzed with each set of samples.

### AA Methods (Mussel Watch Lab)

The Mussel Watch Lab is located at the Moss Landing Marine Laboratories in Moss Landing, California. Samples were analyzed by furnace AA on a Perkin-Elmer Zeeman 3030 Atomic

Absorption Spectrophotometer with an AS60 auto-sampler and HGA 500 graphite furnace. Samples, blanks, matrix modifiers, and standards were prepared using clean techniques inside a clean lab. Milli-Q water and ultra-clean chemicals were used for all standard preparations. To ensure accurate results the samples were analyzed using the stabilized-temperature platform technique. Matrix modifiers were used when the components of the matrix interfered with adsorption. Matrix modifiers were used for arsenic in all samples and for lead in 1993-94 samples. Blanks and a standard reference material (SLRS2 river water) were evapoconcentrated and analyzed with each set of samples.

÷

0

# WERE WATER QUALITY OBJECTIVES EXCEEDED?

Compliance with site-specific numeric water quality objectives described in the Water Quality Control Plan was assessed for samples collected from the Delta (CVRWQCB, 1994). In addition, the more stringent US EPA Proposed California Toxics Rule and the US EPA National Ambient Water Quality Criteria (expressed as four day average criteria) to protect freshwater aquatic life (Marshack, 1998) were compared to hardness corrected dissolved metal concentrations to determine whether exceedances occurred in the Delta during the study.

# WAS METALS RELATED TOXICITY IDENTIFIED IN THE DELTA?

Standardized U.S. EPA freshwater bioassay protocols were used for this study (U.S. EPA, 1994). The three organisms used in the laboratory assays were: (1) a primary producer, the green algae *Selenastrum capricornutum*; (2) a primary consumer, the zooplankton *Ceriodaphnia dubia*; and (3) a secondary consumer, the fathead minnow, *Pimephales promelas*. A complete description of the methodologies applied in testing ambient water samples for toxicity can be found in Deanovic *et al.*, (1996; 1998). When toxicity was detected in a sample, follow-up toxicity identification evaluation (TIE) procedures coupled to analytical chemistry were implemented to help determine the cause. Briefly, samples were tested for toxicity following several manipulations designed to render certain chemical/elemental constituents in the sample non-toxic. In addition, methods were applied to recover the chemical/elemental causes of the observed toxicity. A complete description of TIE procedures can be found in U.S. EPA (1991; 1992) and Bailey *et al.*, (1996).

# Statistical Methods and Definition of Toxicity

Toxicity was defined as a statistically significant difference (p<0.05) between a sample and the laboratory control. Bartlett's Test for homogeneity of variance was run on all fish growth and mortality, *Ceriodaphnia* reproduction, and algal growth data. When the data variance was homogeneous, the samples were compared to the controls using Analysis of Variance and Dunnett's mean separation tests. If the data variance was not homogeneous, then comparisons were made against the control using Kruskal-Wallis and Dunn's non-parametric multiple comparison. *Ceriodaphnia* survival was compared against the control with a Fisher's Exact Test. No statistical analyses were conducted on TIE results. Acute toxicity was defined as a statistically significant difference in mortality within 96 hours between an ambient water and

laboratory control sample. *Selenastrum* toxicity was defined during the 1993-1994 monitoring as a statistically significant difference in cell counts between an ambient sample and a laboratory control. Due to the low frequency of statistically significant toxicity when ambient samples were compared to laboratory control samples, cell counts in the 1994-1995 samples were also compared to other field samples collected on the same day to determine if the relative level of cell counts differed among stations. Consult Deanovic *et al.*, (1996) and (1998) for additional information regarding the statistics applied for the toxicity test results.

# WERE METAL LOADING PATTERNS CHARACTERISTIC OF HYDROLOGICAL CONDITIONS?

### Water Years 1993, 1994, and 1995

Water year 1993 (October 1992-September 1993) was classified as a relatively normal water year in the Sacramento Basin. Precipitation in the region during water year 1993 was 149 percent of the long-term average while runoff was about 125 percent of the 1961-1990 median based on five representative streamflow records (Mullen *et al.*, 1994). Water year 1994 (October 1993-September 1994) was classified as critically dry and is identified in this report as a "dry year". Precipitation in the region during water year 1994 was 36 percent of the long-term average while runoff was about 69 percent of the 1961-1990 median based on five representative streamflow records (Friebel *et al.*, 1995). During such dry years, the Sacramento River serves as the primary source of water transport from the Sacramento Basin to the Delta. Conversely, water year 1995 (October 1994-September 1995) was characterized by high flows which resulted in water transport to the Delta via the Sacramento River and the Yolo Bypass. Although summary hydrologic conditions for the region are not available for water year 1995, combined flows for the Sacramento River and Yolo Bypass peaked at 334,000 CFS and 16 inches of rain fell in the City of Sacramento in January (Foe and Croyle, 1998). Therefore, water year 1995 was classified as a "wet year" for the purposes of this study.

#### Flow Rates

)

Daily water discharge rates from the Sacramento River at Greene's Landing and the Yolo Bypass at Prospect Slough were obtained from USGS flow gauges (Mullen *et al.*, 1994; Friebel *et al.*, 1995; Markham *et al.*, 1996; California Data Exchange Center, 1998).

#### Load Calculations

Bulk daily metal loads (kg/day) at Prospect Slough and the Sacramento River at Greene's Landing were calculated for arsenic, cadmium, chromium, copper, lead, nickel, and zinc from January through April 1994 and 1995. Mercury loads were not included in this report but can be found in Foe and Croyle (1998). Two methods were employed to calculate loads. First, regression analyses were performed to determine if significant relationships existed between flow and total recoverable concentrations of each individual metal (Steel and Torrie, 1960). When the variance appeared to greatly increase/decrease with increasing flow, the data were log transformed and a comparison of residuals was conducted. If the variance in the data was then similar with increasing flow, then a best fit line was applied to the log transformed data. When regression

analyses were significant, models were developed for each metal using a linear regression with flow as the independent variable and total recoverable concentration as the dependent variable. Daily flows were entered into the linear regression equation to obtain daily predicted metal concentrations. Daily predicted concentrations ( $\mu g/l$ ) were then multiplied by daily flow to obtain model generated estimates of metal load. This method was used to provide a rough estimate of loads when significant relationships existed between flow and metal concentrations, however transformation of the data may affect concentrations by 5-25%. Alternative methods are available which provide a more rigorous estimate of load (Cohn *et al.*, 1989; Helsel and Hirsch, 1992). These methods were not applied here since the objective was to provide a rough estimate of load fluctuations between wet and dry years and the sample collection design could not be properly applied to the models.

A second method was applied when a regression was not significant. Loads were calculated individually for Prospect Slough and Greene's Landing by multiplying daily flow readings by the average metal concentration ( $\mu$ g/l) measured in all field samples at each of the two sites ("Average Concentration Method"):

Daily Load (kg) = [Avg. metal concentration ( $\mu$ g/l)] x (2.445 x 10<sup>-3</sup>) x [Flow (CFS)]

Total load was estimated by summing the daily loads for each period. Due to the uncertainties in flow measurements ( $\pm$  10%) and the uncertainty involved with the regression analyses, the number of significant figures for load calculations was set at three for the purposes of load comparisons. Loads were also calculated using data from the Sacramento Coordinated Water Quality Monitoring Program's Ambient Monitoring Program (AMP), using the Average Concentration Method and regression models. This permitted a comparison of load estimates calculated for two independent monitoring efforts on the Sacramento River at Greene's Landing and River Mile 44. However, AMP monitoring relied on different collection methods, sample frequencies, sample locations, and temporal pattern of sampling than those of this study (Larry Walker and Associates, 1996).

# WHAT SOURCE(S) OF METALS WERE IDENTIFIED DURING THE METALS SOURCE PILOT STUDY?

3

Water samples were collected for a one-time pilot study during a major storm event in March 1995 to assess the relative metal load contribution from sources upstream of the Delta, primarily in the Sacramento River Watershed. Sampling methods followed those described above with sampling dates reported in Table D-1. The study was designed to assess metal loads, therefore only total recoverable concentrations were quantified. No toxicity samples were collected and the lack of dissolved metals analyses prohibited an assessment of water quality objective exceedances. Although the objective of the pilot study was to track sources of metals during a high flow event, the data could not be used to quantify the load contribution from mines in the area of Lake Shasta and Keswick Reservoir because discharges from the reservoirs were

maintained at low levels to minimize downstream flooding. This resulted in samples downstream of the reservoirs which were negligibly affected by runoff from mines. A full description of the results of the Metals Source Pilot Study can be found in Appendix D.

.

)

# **RESULTS AND DISCUSSION**

# QUALITY ASSURANCE/QUALITY CONTROL PROGRAM

Field blanks collected on nine occasions indicated negligible contamination with no metals detected above 1  $\mu$ g/l (Table C-1). Field duplicates were collected on 64 occasions with a resulting average difference between two laboratories of 16% (Table C-2). Analysis of laboratory blanks resulted in 65% of the individual metals data quantified as below the detection limits for the methods applied in this study (Table C-3). Intra-laboratory precision results ranged from 2 to 20%, depending upon the metal (Goetzl *et al.*, 1994, 1995). A more complete description of the quality assurance and quality control results can be found in Appendix C.

# HYDROLOGICAL CONDITIONS

Water samples for chemical analyses were collected and toxicity assessments were performed during the relatively normal 1993 water year (WY93), critically dry 1994 water year (WY94), and high flow 1995 water year (WY95). Flows in the combined discharge of the Sacramento River and Yolo Bypass peaked at 135,000 on 28 March during WY93 and at 334,000 CFS on 13 March during WY95 (Mullen *et al.*, 1994; Markham *et al.*, 1996). As a result of the low rainfall during WY94, flows at Freeport did not exceed 30,000 and the Yolo Bypass had measurable flows above 1,000 CFS on only four days (Fig. 2; Friebel *et al.*, 1994).

WERE LOW DETECTION LIMITS OBTAINED USING ULTRA CLEAN TECHNIQUES? Evapoconcentration of field collected samples resulted in the detection of arsenic, cadmium, chromium, copper, lead, nickel, and zinc down to the low to mid parts per trillion range (Table 2). This method improved upon other analytical methods and resulted in detection limits which were among the lowest of four programs monitoring metals in the Sacramento River Watershed (Table 2; Larry Walker and Associates, 1996; Sacramento Regional County Sanitation District, 1996). The advantage of a lower detection limit is metals can be quantified at concentrations which are well below values set for water quality objectives. Furthermore, these lower detection limits minimize the frequency of non-detects, permit the detection of metals at and below actual instream values, and provide for a more accurate estimate of metal loads (Goetzl and Stephenson, 1993).

S.

# WERE WATER QUALITY OBJECTIVES EXCEEDED?

Site-specific numeric water quality objectives in the Water Quality Control Plan for the CVRWQCB were compared to dissolved metal concentrations (0.45 µm filtered) in samples collected from 15 Delta stations during WY94 and WY95 to determine if the exceedances occurred (CVRWQCB, 1994; Tables 3-17). The site-specific numeric water quality objectives for arsenic, copper, silver, and zinc in the Delta were not exceeded.

Dissolved metal concentrations were compared to the more stringent USEPA National Ambient Water Quality Criteria and the USEPA Proposed California Toxics Rule Criteria (Tables 3-17). With the exception of As, criteria for the metals quantified in this study are water hardness dependent. No water quality criteria were exceeded for 549 individual Delta metal analyses (Table 18).

## WAS METALS RELATED TOXICITY IDENTIFIED IN THE DELTA?

Waters sampled from the Delta region were tested for toxicity during WY94 and WY95 using the EPA three species toxicity tests to determine if aquatic life was impacted. Deanovic *et al.*, (1996) and Deanovic *et al.*, (1998) contain a full description of the results. In brief, 34 and 58 (including relative reductions in algal cell counts) toxic events were detected during WY94 and WY95, respectively (Table 19 & 20).

Approximately 7% of the samples collected from the Delta region tested toxic to *Ceriodaphnia* during WY94, while samples were toxic 14% of the time during WY95. Most of the toxicity (e.g., 68%) to *Ceriodaphnia* occurred in samples collected from back-sloughs and small upland drainages. Toxicity Identification Evaluations were performed on toxic samples during both years to determine if the cause of toxicity could be determined. Typically, toxicity was related to pesticides, including organophosphates, carbamates, and unknown metabolically activated compounds. Metals were never implicated in TIE studies conducted on the samples which exhibited toxicity (Table 19 & 20). However, TIEs were not performed on all toxic samples due to budgetary limitations.

On 329 occasions *Selenastrum* toxicity tests were performed on samples collected from the Delta during WY94 to WY95. The number of toxic events remained fairly constant at about 1% for both water years (Table 19). However, nearly 30% of the ambient samples exhibited reductions in cell counts relative to other ambient samples collected on the same day in WY 95 (Table 20). As with *Ceriodaphnia*, the majority of the events with reduced cell counts occurred in the back-sloughs and small upland drainages (Table 20). TIE tests on Delta samples which exhibited toxicity implicated non-polar organics as causative toxicants and, as with the *Ceriodaphnia* TIEs, no examples of metal related toxicity were found.

*Pimephales* toxicity tests were conducted on 216 Delta samples, with the bulk of the testing during WY94 (Table 19). Approximately 9% of the samples were toxic in WY94 with toxicity in all water categories except urban runoff receiving waters. No TIEs were conducted on these samples so the causative agents remain unknown.

The EPA Three Species may not necessarily be the most sensitive organisms to metals. Tables were created documenting the most sensitive 10-15 literature reports for algae, invertebrates, and fish. Dissolved metal concentrations were selected as this is the form most bioavailable to aquatic organisms during water column exposure. Effect levels from the literature values were then compared to the highest dissolved concentration measured in the Delta for each metal to

assess the potential for effects in species other than the three species used in the EPA toxicity tests applied in this study (Reyes, 1994; Table 21).

Dissolved lead peaked at 3.87  $\mu$ g/l (at 5-mile Slough; hardness = 80 mg/l) and averaged 0.31  $\mu$ g/l over the combined water years (Table 21). No algal responses would be expected at these concentrations (Table 22). Unicellular invertebrates, such as ciliates, had reduced oxygen uptake after only four minutes exposure to 0.75  $\mu$ g/l lead (Table 23; Slabbert and Morgan, 1982). Three-spine stickleback, a freshwater fish, had increased mortality in response to 0.2  $\mu$ g/l dissolved lead exposure after five days (Table 24; Jones, 1938). More recent work indicates carp enzyme systems are sensitive to lead down to 1.1  $\mu$ g/l (Table 24; Nakagawa *et al.*, 1995).

2

2

The average dissolved concentration of arsenic was 1.28  $\mu$ g/l and the highest concentration was 3.03  $\mu$ g/l (Table 21; at 5-mile Slough; hardness = 80 mg/l). Phytoplankton exhibited altered photosynthetic productivity following long-term exposure to 1.5  $\mu$ g/l arsenic, however exposure for 109 days at this concentration in the basin is highly unlikely (Table 25; Wangberg *et al.*, 1991). Fifty percent of *Daphnia duplex* were immobilized following exposure to 0.5  $\mu$ g/l arsenic for as little as one day (Table 26; Lilius *et al.*, 1995). Fish did not respond to arsenic exposure until concentrations exceeded 27  $\mu$ g/l (Table 21).

Dissolved chromium concentrations reached 5.39  $\mu$ g/l (hardness = 98 mg/l) at Duck Slough and averaged 1.34  $\mu$ g/l from 1993-1995 (Table 21). Algal responses occurred from 2  $\mu$ g/l to 5.2  $\mu$ g/l and included altered biomass and incipient growth inhibition (Table 28; Bringmann, 1975; Shabana *et al.*, 1986). *Selenastrum* responses were not reported until 20  $\mu$ g/l (Table 28; Pillard *et al.*, 1987). The most sensitive response of any aquatic invertebrate in the USEPA Aquire Database was decreased survival in an euglenoid down to 1  $\mu$ g/l (Table 29; Yonge *et al.*, 1979). Environment Canada (1994) reported toxicity in some zooplankton species at chromium concentrations of 0.5  $\mu$ g/l. Cytogenetic alterations and changes in growth were reported in carp at 0.05  $\mu$ g/l and 1.5  $\mu$ g/l, respectively (Table 30; Al-Sabti *et al.*, 1994; Mao and Wang, 1990).

Greene's Landing had the highest measured dissolved nickel concentration of 26  $\mu$ g/l (hardness = 44 mg/l) and the average for the study was 2.72  $\mu$ g/l (Table 21). Blue-green algae exhibited mortality at concentrations down to 1.2  $\mu$ g/l (Table 31; Bringmann and Kuhn, 1978). The EC<sub>50</sub> for *Selenastrum capricornutum* exposed for four days to nickelous chloride was 6.3  $\mu$ g/l (Table 45; Blaise *et al.*, 1986). Mortality was recorded for *Ceriodaphnia dubia* down to 3.8  $\mu$ g/l (Table 32; Kszoz *et al.*, 1992). No fish responses were reported in this concentration range (Table 33).

The maximum dissolved concentration of copper measured in this study was 9.48  $\mu$ g/l (at Greene's Landing; hardness = 62 mg/l) which has been shown to have effects on fish, invertebrates, and algae (Table 21). Freshwater fish responses ranged from avoidance to death (Table 34; Reyes, 1994). This concentration was lethal to several species of water flea for exposure durations down to two days (Table 35; Reyes, 1994). Algal responses ranged from altered photosynthetic output to decreased growth and altered metabolism (Table 36; Reyes, 1994).

The highest dissolved zinc concentration measured during monitoring was 70.2  $\mu$ g/l (at 5-mile Slough; hardness = 80 mg/l) (Table 21). This concentration is high enough to have potential effects on aquatic life. The most sensitive fish response in the literature was avoidance of solutions containing 5.6  $\mu$ g/l zinc sulfate by rainbow trout (Table 37; Sprague, 1964b). Invertebrates, such as the aquatic sowbug, experienced mortality at 10  $\mu$ g/l (Table 38; Migliore & DeNicola Guidici, 1990). Algae exhibit population declines (as measured by declines in cell numbers) when exposed to concentrations down to 5  $\mu$ g/l (Table 39). This concentration is slightly above the mean concentration when both water years were averaged. Exposures of *Selenastrum* for seven days at 5  $\mu$ g/l, as opposed to the four day exposures in this study, resulted in inhibited cell growth.

Cadmium concentrations peaked at 0.55  $\mu$ g/l (at Greene's Landing; hardness = 72 mg/l) and averaged 0.3  $\mu$ g/l in this study (Table 21). Exposure of rainbow trout to comparable concentrations for 18 months resulted in reduced survival (Table 40; Birge *et al.*, 1981). Other more short term effects include albinism in catfish (Table 40; Westerman and Birge, 1978). Invertebrates, such as copepods and water fleas, are reported to respond at this concentration range with increased mortality (Table 41). Algal responses to cadmium are reported to occur in the parts per billion range (Table 42; Reyes, 1994).

Some of the potential responses of algae, invertebrates, and fish described above would obviously be affected by the duration of exposure, which is difficult to assess from the composite Delta samples. Furthermore, some of the dissolved metal could be biologically unavailable because of high organo-iron complexes present in the Delta. However, the maximum dissolved concentrations of metals reported in this report may be an underestimation of actual instream maxima. For example, total recoverable metal concentrations measured during the metals source pilot study were, by far, the highest measured during the three water years (Appendix D). No dissolved concentrations were measured during the source study. Furthermore, none of the water samples collected during the metals source study were tested for toxicity due to the project objectives. It is possible that high total recoverable concentrations in the metals source pilot study coincided with higher dissolved metal concentrations than those presented in Table 21.

# WERE METAL LOADING PATTERNS CHARACTERISTIC OF HYDROLOGICAL CONDITIONS?

The objectives of the metal loads component of this study were to: (1) estimate loads on the mainstem lower Sacramento River from January to April during a critically dry and a wet year and determine how they vary with hydrological conditions and (2) determine the spatial partitioning of loads during a wet year when water enters the Delta from the Yolo Bypass and lower Sacramento River. The emphasis of this study on high flows was designed to complement ongoing monthly metals monitoring by the Sacramento County Ambient Monitoring Program. Load calculations were based on a regression relationship and/or the Average Concentration (AC) method (see methods). More rigorous load evaluation methods are available (Cohn *et al.*, 1989).

However, the intent here was to provide rough load estimates and the two methods selected were considered adequate for this purpose.

Regression models for WY94 consistently estimated lower loads at Greene's Landing during WY94 when compared to the AC method (Table 43). When significant, the regression model approach was considered to be more robust because it tested for statistical fitness whereas the AC approach lacked statistical analyses. The load estimate for cadmium during the dry WY94 was the lowest of all metals, with 698 kg contributed to the Delta over the four month time period (Table 43). Zinc load was the highest of all metals, ranging from 37,900 to 50,700 kg depending upon the method selected.

2

Water years were compared using the regression model for WY94 and the AC method for WY95. Increased flows and higher total recoverable metal concentrations for most metals combined to result in increases in metal loads ranging from approximately 240% to 2,400% (Table 43). This is somewhat of an invalid comparison because much of the water entering the Delta during WY95 was in the Bypass and, therefore, this load contribution would not be included in these values. When total loads into the Delta from the Sacramento River Watershed (e.g., Greene's Landing + Yolo Bypass) for WY95 are compared to WY94, percent increase in loads ranges from 460% for cadmium to 5,300% for chromium (Table 43 & 44). To put these percentages in the context of the amount of metals added to the Delta, cadmium loads increased from 698 kg in WY94 to 1,660 kg in WY95 while nickel loads increased from 13,700 kg to 1,110,000 kg. Chromium loads also increased markedly from 10,500 kg to 627,000 kg. These data indicate high flow years contribute significantly more metal loads to the Delta when compared to a critically dry year.

In an effort to determine if similar load patterns emerged with an independent data set, loads were calculated in the same manner using the Sacramento County Ambient Monitoring Program (AMP) data collected during the same water years. The same pattern emerged when WY94 and WY95 were compared but, with the exception of cadmium, the magnitude of increased loads for WY95 was lower than those estimated for this study (Table 45). A similar pattern of lower load prediction for most metals was found when estimates for each method (e.g., average concentration and model) were compared (Table 45). For example, load calculations using the Ambient Monitoring Program data ranged from 18% to 102% of estimates in this study. As with the metal concentration comparisons among these two studies, much of the difference can be attributed to the frequency of sample collection. Sampling frequency for this study was much greater than that of the AMP due to the programmatic questions each study addressed. The increased sample frequency in this study resulted in samples which were collected across a wider spectrum of flow conditions within the time period of interest, which is important for accurate predictions of loads.

Metal loads were calculated for the lower Sacramento River and Yolo Bypass during high flow to using the BPTCP data to characterize the contribution differences between these two sources of Delta water. Since the regression relationships between total recoverable metal concentrations and flows were not significant for WY95, comparisons between the two sources were based on

the AC method. Bypass water carried between 48% and 82% of the total load of the measured metals whereas the Sacramento River contributed between 18% and 52% (Table 44). Combined loads for these two sources varied from 3,210 kg of cadmium to 1,120,000 kg and 1,110,000 kg of zinc and nickel, respectively. Dividing loads by the number of days from January to April provides an estimate of the average daily load entering the Delta from the Sacramento River Watershed during high flow conditions. Average daily loads of cadmium, zinc, and nickel which entered the Delta from January through April of 1995 was estimated at 31 kg, 10,700 kg, and 10,700 kg, respectively.

Interesting patterns developed when the load contributions were compared for the lower Sacramento River and Yolo Bypass. Foe and Croyle (1998) estimated the sediment load entering the Delta from the Sacramento River and the Bypass to be 1,300,000 (34%) and 2,500,000 (66%) metric tons, respectively, from January through April 1995. The percentages of copper and zinc from the two sources was nearly identical to those of sediment (Table 44). The Bypass contributed 74% of the chromium as well. These three metals were significantly related to TSS during this water year (see trends in metal concentration section below), indicating that they were either bound to sediment particles diverted into the Bypass or bound to sediment sources within the Bypass. The bulk of nickel loads entering the Delta from the Sacramento River Watershed were carried in the Bypass as well, but this contribution had no relationship to sediment loads. Nickel is common in the geological deposits of the western valley and may enter the Bypass from local sources. Arsenic, cadmium, and lead loads were generally equal in the Bypass and lower Sacramento River.

#### WHAT TRENDS IN METAL CONCENTRATIONS WERE IDENTIFIED?

Metal analyses conducted in this study were essential for assessing exceedances of water quality objectives, performing meaningful toxicity tests, and calculating loads. Another important use for the metals analyses data can be in the determination of relationships between metal concentrations and other water quality and hydrological parameters. The following paragraphs describe relationships which occurred during this study between metal concentrations, flow, and total suspended solids. In addition, some metals seemed to be inter-related, such that high concentrations in one usually coincided in high concentrations in others. These relationships can be useful for determining the best time to collect water quality samples. For example, if certain events (e.g., high flow storm events) can be used to predict when metal concentrations may be among the highest levels for the year in a particular area, monitoring plans can be developed to capture the data of interest by knowing when to expect peak flows. The information is not intended to be used as a predictive tool for metals concentrations in place of actual in-stream monitoring. On the contrary, the information is intended to improve our understanding of when, where, and possibly why we could expect metals concentrations to be high such that appropriate monitoring designs can be developed for future studies.

Four hundred and four water samples were collected from 37 stations for analysis of dissolved and total recoverable metal concentrations (Appendix B). When total recoverable and dissolved

concentrations were independently averaged for all samples collected, a trend of increasing chromium, copper, nickel, and zinc concentrations was observed from WY93 and WY94 to WY95 (Table 46). Clearly, the data are highly variable within each year due to the large spatial and temporal scale of the sampling effort. This typically would result in data which are not significantly different. The data were not analyzed statistically due to large differences in the number of samples collected among years. However, the results indicate that extended periods of unusually high flows can result in marked increases in the average concentration of chromium, copper, nickel, and zinc. Other metals did not exhibit a consistently strong association with peak flows. For example, total recoverable and dissolved arsenic showed a trend of decreasing average concentration from WY94 to WY95. Cadmium, on the other hand, had a distinctly different profile with total recoverable concentrations increasing and dissolved concentrations essentially remaining unchanged during the three water years. Average total recoverable lead concentrations decreased slightly from the WY93 to WY94, then increased by more than three fold in WY95. while the average dissolved concentration increased from WY93 to WY95. It should be noted that averaging the metal analyses for all stations can be problematic because of different sample collection frequencies at each station and different stations monitored among water years. Ideally, statistical analyses of the data would be performed to ascertain if significant relationships existed in the data set. Again, the experimental design employed in this study resulted in great variability about the mean which prohibits the identification of significant relationships. The data should however be used for the basis of follow-up studies which should incorporate a more statistically balanced sampling design.

An analysis of average metal concentrations was performed at Greene's Landing on the lower Sacramento River to determine if the trends among water years held true within a station extensively sampled during the same period. Similar to when concentrations from all stations were averaged, the average total recoverable and dissolved chromium, lead, nickel, and zinc showed a trend of increased concentrations from WY93 to WY94, WY94 to WY95, and WY93 to WY95 (Table 47). Average dissolved concentrations of cadmium behaved in a similar fashion as the entire data set, with no changes among water years. However, average total recoverable cadmium concentrations had a different pattern with a decrease from WY94 to WY95. Average dissolved copper concentrations were also inconsistent with the combined data with no difference between WY93 and WY 94, but matched the trends for the combined data from WY94 to WY95. Arsenic was not measured at Greene's Landing during WY94 and therefore changes during water years could not be compared at this station. With the exception of dissolved cadmium concentrations, the concentration of the monitored metals appear to be closely tied to flow or other parameters related to flow when high flow conditions are compared to normal or drought conditions. However, the reverse trend (e.g., decreased concentrations with decreased flows) does not hold true when comparing drought conditions to normal hydrological conditions.

Dissolved and total recoverable metal concentrations collected from the Sacramento River at Greene's Landing were regressed against each other, flow at Freeport, and total suspended solids (TSS) for WY94, WY95, and combined the WY94 and WY95 (WY94/95) to determine if these factors were interrelated. The number of significant relationships between dissolved metals, total

÷

recoverable metals, flow, and TSS declined from 13 in the critically dry WY94 to eight in the high flow WY95 (Tables 44 and 49). When data from water year 1994 and 1995 were combined, 16 of 35 regression analyses were significant (Table 49).

During the dry WY94, total recoverable concentrations of chromium, copper, lead, nickel, and zinc at Greene's Landing were significantly associated with total suspended solids and flows (Table 48; Figs. 3-12). These significant relationships indicate these metals were bound to suspended sediments. These metal laden suspended sediments are in turn closely associated with flows during this critically dry year, such that the total recoverable metal concentrations increase with increasing flows. Conversely, dissolved chromium, copper, and nickel were also closely tied to flow conditions but did not exhibit significant relationships with total suspended solids (Table 48; Figs. 13-18). Filtration (0.45 $\mu$ m) of samples as done in this study would permit the passage of colloid-associated metals into the dissolved fraction. The lack of significant relationships between dissolved metals and TSS may be due to the presence of other suspended solids in the TSS measurements. Total recoverable metal concentrations could not be used to predict dissolved concentrations due to a lack of significant relationships (Table 48; Figs. 19 & 20). Both total recoverable and dissolved cadmium concentrations were unrelated to flow and TSS, which is consistent with the lack of a trend reported in Tables 46 and 47. Therefore, concentrations of several metals would be expected to increase with increasing flow conditions and/or increased sediment load in the Sacramento River during dry conditions.

These conclusions did not necessarily hold true at Greene's Landing during the wet WY95. Of particular interest is the absence of significant relationships between flows and total recoverable and dissolved metal concentrations in WY95 when compared to WY94 (Tables 48 and 49; Figs. 21-34). When compared to the dry WY94, the breakdown in the relationships in WY95 may be related to, but are not limited to: (1) an increase in tributary input of suspended sediments in the system during this exceptionally wet year; (2) contribution of suspended sediments, flow, and metals from sources further into the watershed; (3) resuspension of deeply buried sediments in the waterways; (4) transportation of larger particles which may have different affinities for metal contaminants than those which occur in the system during dry years; (5) stripping of algae from rocks and transport downstream due to scour during high flows; and (6) flushing of planktonic communities from lakes and rivers during high flow conditions. The major sources of suspended sediments in the lower watershed during a dry water year are the Sacramento, Feather, and American Rivers, whereas smaller tributaries on the western and eastern valley slopes may contribute significantly to the total suspended solids during a wet year. The different geological sources of these sediments may result in different binding affinities for the metals and could therefore disrupt the relationships between total recoverable metals, total suspended solids, and flow. However, this is conjecture at this point and would require further study to clarify the role of small tributary sediments during high flow conditions.

Although the relationships between flow and metal concentrations broke down during high flows found in WY95, total recoverable copper, zinc, and cadmium concentrations at Greene's Landing were still significantly related to TSS indicating these metals are bound to suspended sediment

particles during both dry and wet years (Table 49; Figs. 35-37). The level of significance for this relationship with cadmium ( $R^2 = 0.92$ ) is drastically different than in WY94, again possibly pointing toward further evidence that additional sources of suspended sediments enter the system during high flows (Table 49; Fig. 38). In contrast to WY94, total recoverable and dissolved concentrations for some metals (i.e., copper and lead) were related in WY95 (Table 49; Figs. 39 & 40). Therefore, as dissolved concentrations of lead increased at Greene's Landing, one could predict that total recoverable copper concentrations would increase as well.

Significant relationships between total recoverable copper, zinc, chromium, and nickel at Greene's Landing reemerged again when data from the two water years were combined (Table 50; Figs. 41-48). Consistent with WY94 and WY95, total recoverable concentrations of these metals were significantly associated with suspended sediments and flow for WY94/95 (Table 50; Figs. 41-48). One could apply the relationships between flow and total recoverable concentrations of these metals as a predictive tool. Although the relationships are significant, there is considerable variability about the regression line, especially during high flows (Fig. 46). Therefore, predicting total recoverable concentrations from flow would have a wide margin of error. Dissolved chromjum, lead, and nickel also were significantly related to flow, but only dissolved lead was significantly related to TSS (Table 50; Figs. 49-54). This finding indicates the dissolved forms of chromium and nickel increased over the sampling period with increasing flow, but the metals were not significantly related to suspended sediments. Dissolved chromium and lead were associated with the total recoverable form. This relationship was also significant for copper and nickel, but the dissolved forms of these two metals were not associated with suspended sediments. Therefore, the relationships among dissolved concentration, total recoverable concentration, flow, and TSS are often metal dependent, different when extreme water years are compared and when water years are combined. Additional research would be required to determine if consistent relationships occurred during dry and wet years and blind studies may be necessary to determine the accuracy of using these relationships as a predictive tool for metal concentrations in the Sacramento River.

Relationships found between flow, TSS, and metals during this study should not be applied to times of the year other than when winter flows occur because the relationships may not apply. For example, the Sacramento County's Ambient Monitoring Program (AMP) collected similar concentration and flow data throughout the year from the Sacramento River about eight miles upstream of Greene's Landing (Larry Walker & Associates, 1996). Many of the relationships between flow, TSS, and metals were not significant during the dry WY94 (Table 51), indicating the relationships reported during winter flows do not necessarily hold true at other times of the year. However, relationships between TSS and total recoverable copper, zinc, chromium, and cadmium held true during WY95 for both sampling efforts (Table 52). When water years were combined for both data sets, little overlap in significant relationships between metals, flow, and TSS occurred (Tables 50 and 53). These contrasting data sets provide a good example of the differences which may be encountered during environmental monitoring with two different approaches: a systematic sampling effort with samples collected approximately every two weeks versus a program with samples collected many times during set events.

In comparing individual metals to flows and TSS, some associations were apparent (e.g., total recoverable copper, zinc, chromium, and nickel were associated with flow and TSS at Greene's Landing in the combined WY94 and WY95). To better understand this grouping of metals, total recoverable concentrations of each metal was plotted against other individual metals for individual and combined water years (Tables 54; Figs. 55-65, 67-75, & 80-89). During the dry WY94, significant relationships existed between total recoverable copper and chromium, lead, nickel and zinc (Tables 54; Figs. 55-58). Zinc was also significantly related to chromium, lead, and nickel (Tables 54; Figs. 59-6!). When all of the combinations of metal relationships were examined, copper, chromium, lead, zinc, and nickel appeared to be inter-related (Tables 54; Figs. 62-64). Interestingly, these metals were all significantly related to flow and TSS during this water year (Table 48). Flow and TSS were also significantly related to each other during WY94 and seemed to track closely track each other (Figs. 65 & 66). Cadmium was the only metal which did not have significant relationships with the other metals or flow and TSS. It would appear that TSS or flow could be used to formulate rough predictions of copper, chromium, lead, nickel, and zinc concentrations during the drought-like conditions in WY94. Furthermore, these metals would be expected to track each other very closely such that high zinc concentrations could be used to predict high copper, chromium, lead, and nickel concentrations.

A different pattern emerged at Greene's Landing during the wet WY95: cadmium, chromium, copper, nickel, and zinc were inter-related and lead was not associated with any other metal (Table 54; Figs. 67-75). Although none of these metals had significant relationships with flow during this water year, copper, zinc, chromium, and cadmium were significantly related to TSS (Table 49). Furthermore, the relationship between flow and TSS was not significant during WY95 (Fig. 76). This could be explained by several outlier points on the plot. Three low flow and low TSS values occurred at the beginning of January 1995 (Fig. 76). This was followed by a first flush event with high flows, precipitation, and TSS (Figs. 76-78). This high TSS pulse followed a peak of almost three inches in rainfall which was then followed by peak flows of nearly 100,000 CFS (Figs. 77-78). Conditions prior to, and including the pulsed event, appeared to cause the breakdown in the relationship between flow and TSS during WY95. Therefore, the data points were removed and the data was re-plotted resulting in a significant relationship (Fig. 79). The rapid changes in flow conditions induced by heavy rainfall could explain the lack of relationships between flow and the grouped metals. Using the inter-related nature of TSS and the grouped metals (i.e., copper, zinc, chromium, cadmium, and nickel), one could begin to predict high TSS concentrations would result in high concentrations of these metals during periods of very high flows.

Copper, zinc, chromium, lead, and nickel were again inter-related when both water years were combined (Table 54; Figs. 80-89). With the exception of lead, these metals were again significantly related to flow and TSS (Table 50). In addition, flow and TSS were also significantly related (Fig. 90). As illustrated for WY94, TSS and/or flow would appear to be useful in predicting concentration of copper, zinc, chromium, and nickel. Clearly, however, further study would be required to determine how accurate such predictions would be.

Furthermore, these relationships vary with water year as is apparent for WY94 and WY95 and should only be applied to different water years for the purpose of testing the "goodness of fit" of the relationship under different hydrological conditions. A more appropriate use of these relationships is in the design of monitoring plans for metals. For example, if a study is designed to quantify metals when concentrations are high, the relationships above indicate knowledge of flow conditions in the river can be used to optimize sampling such that concentrations would be expected to be high.

# WHAT SOURCE(S) OF METALS WERE IDENTIFIED DURING THE METALS SOURCE PILOT STUDY?

Given that concentrations of many metals peaked with high flow conditions, a special pilot study was undertaken to track sources of metal loads up the Sacramento River Watershed during one of the largest storms of the year in 1995. Due to the limited budget for the study and the focus on metal loads, analyses were performed for total recoverable concentrations only. Samples were not collected for the determination of toxicity or exceedances of water quality objectives (e.g., dissolved metal analyses). Although the objective of the pilot study was to track sources of metal loads during a high flow event, the data could not be used to quantify the load contribution from mines in the area of Lake Shasta and Keswick Reservoir because discharges from the reservoirs were maintained at low levels to minimize downstream flooding. This resulted in samples downstream of the reservoirs which were negligibly affected by runoff from mines. However, some previously reported and some unknown sources of metals were identified during the study. A complete description of the results from this study can be found in Appendix D.
## ACKNOWLEDGMENTS

The authors wish to thank the U.S. Bureau of Reclamation for use of their monitoring facility at Greene's Landing. We would like to thank Linda Deanovic, Kristy Cortright, Karen Larsen, Emilie Reyes, and Tom Kimball of the U.C. Davis Aquatic Toxicology Laboratory for conducting the toxicity tests. Mark Stephenson, Jon Goetzl, and the staff of the California Department of Fish and Game's Mussel Watch Laboratory were instrumental in conducting the metal analyses for this project. Metal load estimates for the Sacramento County Ambient Monitoring Program were calculated by Claus Suverkropp and made available for this report. The authors would also like to thank Charlie Alpers, Joseph Domagalski, Brian Finlayson, Tom Grovhoug, Dennis Heiman, Mark Stephenson, Rick Sugarek, and Claus Suverkropp for their detailed and thoughtful review of draft forms of this report.

Į

## SUMMARY OF RECOMMENDATIONS

1. Continue to rely on the metal analysis protocols and QA/QC guidelines implemented in this project for determining metal concentrations in the surface waters of the Central Valley.

2. Continue using the US EPA Three Species Assays to identify toxicity in field samples. However, findings from a comprehensive literature search indicate other species may be more sensitive to metals. If future biomonitoring studies indicate a species is in decline in the Delta, efforts should be made to determine if the species could be affected by ambient metal concentrations.

3. Conduct a special study to determine if there is a problem with accumulation of metals in the tissues of aquatic organisms, and determine if bioaccumulation is/is not resulting in biomagnification. If accumulation is occurring, determine if the high total loads measured during wet years, such as WY95, play a role in any identifiable bioaccumulation problem.

4. Relative to other sources, determine the contribution of mines, urban runoff, and agricultural discharges on the overall metal loads entering the Delta. Included in this study should be a description of how the contribution varies seasonally and with major storm events.

5. Ambient monitoring programs such as the Coordinated Monitoring Program, Regional Monitoring Program, Sacramento River Watershed Program, and CALFEDs Coordinated Monitoring and Research Program continue to include water column metals monitoring and incorporate sediment testing and tissue analyses.

6. Additional recommendations specific to the Metals Source Pilot Study can be found in Appendix D. Several metals appear to be closely associated with suspended sediment particles. Special studies should initiated to determine if erosion controls can reduce suspended sediment and total recoverable metal concentrations in regions which were sources of high suspended sediment and metal concentrations during the study.

24

## Literature Cited

Abbassi, S.A., P.C. Nipaney, and R. Soni. 1985. Environmental consequences of the inhibition of the hatching of pupae of <u>Aedes aegypti</u> by mercury, zinc, and chromium - The abnormal toxicity of zinc. Int. J. Environ. Stud. 24: 107-114.

Academy of Natural Sciences. 1960. The sensitivity of aquatic life to certain chemicals commonly found in industrial wastes. Philadelphia, Pennsylvania.

Adams, E.S. 1975. Effects of lead and hydrocarbons from snowmobile exhaust on brook trout (*Salvelinus fontinalis*). Trans. Am. Fish. Soc. 104(2):363-373

Alkahem, H.F. 1994. The toxicity of nickel and the effects of sublethal levels on haemetological parameters and behavior of the fish, *Oreochromis niloticus*. J. Univ. Kuwait Sci. 21(2):243-251

Allen, P. 1993. Changes in tissue GSH concentrations as indicators of acute cadmium or lead toxicity. Fresenius Environ. Bull. 2(10):582-587.

Al-Sabti, K., M. Franko, B. Andrijanic, S. Knez and P. Stegnar. 1994. Chromium induced micronuclei in fish. J. Appl. Toxicol. 14(5):333-336

Anderson, R.L., C.T. Walbridge, and J.T. Fiandt. 1980. Survival and growth of <u>Tanytarsus dissimilus</u> (Chironomidae) exposed to copper, cadmium, zinc, and lead. Arch. Environ. Contam. Toxicol. 9: 329-335.

Andros, J.D. and R.R. Garton. 1980. Acute lethality of copper, cadmium, and zinc to northern squawfish. Trans. Am. Fish. Soc. 109: 235.

Angandi, S.B. and P. Mathad. 1994. Effect of chromium and nickel on *Scenedesmus quadricauda*. Phykos 33(1/2):99-103

Applegate, V.C., J.H. Howell, A.E. Hall Jr. and M.A. Smith. 1957. Toxicity of 4,346 chemicals to larval lampreys and fishes. Spec. Sci. Rep.-Fish. No. 207, U.S. Fish Wildlife Service, U.S.D.I, Washington, D.C.:157 p.

Arthur, J.W. and E.N. Leonard. 1970. Effects of copper on <u>Gammarus pseudo-limnaeus</u>, <u>Physa integra</u>, and <u>Campeloma decisum</u> in soft water. Jour. Fish. Res. Board Can. 27: 1277.

Azeez, P.A. and D.K. Banerjee. 1987. Influence of light on chlorophyll A content of blue-green algae treated with heavy metals. Bull. Environ. Contam. Toxicol. 38(6):1062-1069

)

Bailey, H.C., C. DiGiorgio, L. Deanovic, and D.E. Hinton. 1994. Master Contract North Valley Study. Quarterly Report prepared for the California State Water Resources Control Board. March 1994.

Bailey, H.C., C.L. DiGigorgio, K. Kroll, G. Starrett, M. Miller, and D.E. Hinton. 1996. Development of procedures for identifying pesticide toxicity in effluents and ambient waters: carbofuran, diazinon, chlorpyrifos. Environmental Toxicology and Chemistry. 15(6): 837-845.

Bales, S.S., M. Letourneau, A. Tessier, & P.G.C. Campbell. 1983. Variation in zinc adsorption and transport during growth of *Chlamydomonas variabilis* (Chlorophyceae) in batch culture with daily addition of zinc. Can. J. Fish. Aquat. Sci. 40: 895-904

Bartlett, L., F.W. Rabe, W.H. Funk. 1974. Effects of copper, zinc, and cadmium on *Selenastrum capricornutum*. Water Res. 8: 179-185

Becker, C.D. and M.G. Wolford. 1980. Thermal resistance of juvenile salmonids sublethally exposed to nickel, determined by the critical thermal maximum method. Environ. Pollut. 21(30):181-189

Belanger, S.E., J.L. Farris, & D.S. Cherry. 1989. Effects of diet, water hardness, and population source on acute and chronic copper toxicity to *Ceriodaphnia dubia*. Arch. Environ. Contam. Toxicol. 18(4): 601-611.

Benoit, D.A. 1976. Toxic effects of hexavalent chromium on brook trout *(Salvelinus fontinalis)* and rainbow trout *(Salmo gairdneri)*. Water Res. 10: 497

Benoit, D.A., and G.W. Holcombe. 1978. Toxic effects of zinc on fathead minnows Pimephales promelas in soft water. J. Fish. Biol. 13: 701-708.

Berglind, R., G. Dave and M.L. Sjobeck. 1985. The effects of lead on deltaaminolevulinic acid dehydratase activity, growth, hemoglobin content and reproduction in *Daphnia magna*. Ecotoxicol. Environ. Safety 9(2):216-229

Bertram, P.E. and B.A. Hart. 1979. Longevity and reproduction of <u>Daphnia pulex</u> (deGeer) exposed to cadmium-contaminated food or water. Environ. Pollut. 19: 295.

Biegert, E.K. and V. Valkovic. 1980. Acute toxicity and accumulation of heavy metals in aquatic animals. Period. Biol. 82(1):25-31.

Birge, W.J. 1978. Aquatic toxicology of trace elements of coal and fly ash. In: J.H. Thorp and J.W. Gibbons (Eds.), Dept. Energy Symp. Ser., Energy and Environmental Stress in Aquatic Systems, Augusta, GA 48:219-240

Birge, W.J. Black, and B.A. Ramey. 1981. The reproductive toxicology of aquatic contaminants. In: Hazard Assessment of Chemicals: Current developments. Vol. 1. Saxeena, J. and F. Fisher (Eds.). Academic Press, New York, NY pp.59-115

Birge, W.J., J.A. Black and A.G. Westerman. 1979. Evaluation of aquatic pollutants using fish and amphibian eggs as bioassay organisms. In: S.W. Nielsen, G. Migaki and D.G. Scarpelli. Symp. Animals Monitors Environ. Pollut. 1977, Storrs, CT 12:108-118.

Birge, W.J., J.E. Hudson, J.A. Black, and A.G. Westerman. 1978. Embryo-larval bioassays in inorganic coal elements and in situ biomonitoring of coal waste effluents. In: Symp. U.S. Fish Wild. Serv., Surface Mining Fish Wildlife. Needs in Eastern U.S., W. VA:97-104

Black, M.C., J.R. Ferrell, R.C. Horning and L.K. Martin, Jr. 1996. DNA strand breakage in freshwater mussels (*Anodonta grandis*) exposed to lead in the laboratory and field. Environ. Toxicol. Chem. 15(5):802-808

Blaise, C., R., Legault, N. Beringham, R Van Coillie and P. Vasseur. 1986. A simple microplate algal assay technique for aquatic toxicity assessment. Toxic. Assess. 1:261-281

Blaylock, B.G. and M.L. Frank. 1979. A comparison of the toxicity of nickel to the developing eggs and larvae of carp (*Cyprinus carpio*). Bull. Environ. Contam. Toxicol. 21:604-611

Borgmann, U., O. Kramar and C. Loveridge. 1978. Rates of mortality, growth and biomass production of *Lymnaea palustris* during chronic exposures to lead. J. Fish. Res. Board Can. 35(8):1109-1115

Borgmann, V., W.P. Norwood, I.M. Babirad. 1991. Relationship between chronic toxicity and bioaccumulation of cadmium in *Hyalella azteca*. Can J. Fish Aquat. Sci. 48: 1055-1060

Borgmann, U., W.P. Norwood and C. Clarke. 1993. Accumulation, regulation and toxicity of copper, zinc, lead and mercury in *Hyalella azteca*. Hydrobiologica. 259:79-89

Boutet, C. and C. Chaisemartin. 1973. Specific scientific properties of metallic salts in *Austropotamobius pallipes* pallipes and *Orconectes limosus*. C.R. Soc. Biol. (Paris) 167(12):1933-1938

Braginskiy, L.P. and E.P. Scherban. 1978. Acute toxicity of heavy metals to aquatic invertebrates at different temperatures. Hydrobiol. Jour. 14(6): 76.

Bringmann, G. 1975. Determination of the biologically harmful effect of water pollutants by means of the retardation of cell proliferation of the blue algae *Microcystis*. Gesundheits-Ing. 96:238

Bringmann, G and R. Kuhn. 1959. Water toxicology studies with protozoans as test organisms. Gesund. -Ing. 80:239-242

Bringmann, G and R. Kuhn. 1978. Testing of substances for their toxicity threshold: Model organisms *Microcystis (Diplocystis) aeriginosa* and *Scenedesmus quadricauda*. Mitt. Int. Ver. Theor. Angew. Limnol. 21:275-284

Bringmann, G and R. Kuhn. 1980. A comparison of the toxicity thresholds of water pollutants to bacteria, algae and protozoa in the cell multiplication inhibition test. Water Res. 14(3):231-241

Bringmann, G and R. Kuhn. 1981. Comparison of the effects of harmful substances on flagellates as well as ciliates and on halozoic bacteriophagious and saprozoic protozoa. Gas-wasserfach, Wasser- Abwasser 122:308-313

Bringham, G, R. Kuhn and A. Winter. 1980. Determination of biological damage from water pollutants to protozoa. III. Saprozioc Flagellates. Z. Wasser-Abwasser-Forsch. 13(5):170-173

Brkovic-Popovic, I. and M. Popovic. 1977. Effects of heavy metals on survival and respiration rate of tubificid worms: Part II - effects on survival. Environ. Pollut. 13: 93-98

Buhl, K.J. and S.J. Hamilton. 1990. Comparative toxicity of inorganic contaminants released by placer mining to early life stages of salmonids. Ecotoxicol. Environ. Safety 20(3):325-342

Cain, D.J., J.L. Carter, S.U. Fend, S.N. Luoma, C.N. Alpers and H.E. Taylor. 1998. Metal exposure to a benthic invertebrate, *Hydropsyche californica*, in the Sacramento River downstream of Keswick Reservoir, California. U.S. Geological Survey. Preliminary Report. August 20

Cairns, J. Jr. and A. Scheier. 1968. A comparison of the toxicity of some industrial waste components tested individually and combined. Prog. Fish-Cult. 30:3.

Cairns, J. Jr., and R.E. Sparks. 1971. The use of bluegill breathing to detect zinc. PB211332. National Technical Information Service, Springfield, VA.

Cairns J. Jr. 1978. Effects of temperature on aquatic organism sensitivity to selected chemicals. Bulletin 106. Virginia Water Resources Research Center. Blacksburg, Virginia

Cairns, J. Jr., et al. 1978. Effects of temperature on aquatic organism sensitivity to selected chemicals. Bulletin 106. Virginia Water Resources Research Center, Blacksburg, Virginia.

Calderon Llanten, C.E. and H. Greppin. 1993. Toxicity tests on Zn, Cu and Pb with *Chlorella rubescent*, Chod: using Super(31)P NMR. Arch Aci. 46(2):249-258

California Data Exchange Center. 1998. Accessed by internet at http://cdec.water.ca.gov/ Data maintained by California Department of Water Resources, Division of Flood Control, Sacramento, CA

California Department of Pesticide Regulation. 1993. Pesticide Use Report Annual 1991 Indexed by Chemical. Dept. Pesticide Regulation, Information Systems Branch. Sacramento, CA.

California Department of Pesticide Regulation. 1995. Pesticide Use Report Annual 1993 Indexed by Chemical. Dept. Pesticide Regulation, Information Systems Branch. Sacramento, CA.

Call, D.J. et al. 1983. Toxicity and metabolism studies with EPA priority pollutants and related chemicals in freshwater organisms. PB83-263665. National Technical Information Service, Springfield, VA.

Canterford, G.S. and D.R. Canterford. 1980. Toxicity of heavy metals to the marine diatom, *Ditylum brightwellii* (West): Correlation between toxicity and metal speciation. J. Mar. Biol. Assoc. U.K. 60(1):227-242

Capelo, S., M.F. Vilhena, M.L.S. Simoes Goncalves and M.A. Sampayo. 1993. Effect of lead on the uptake of nutrients by unicellular algae. Water Res. 27(10):1563-1568

Carlson, A.R. and T.H. Roush. 1985. Site-specific water quality studies of the Straight River, Minnesota: Complex effluent toxicity, zinc toxicity, and biological survey relationships. EPA-600/3-85-005. National Technical Information Service, Springfield, VA.

Carlson, A.R., et al. 1982. Cadmium and endrin toxicity to fish in waters containing mineral fibers. EPA-600/3-82-053. National Technical Information Service, Springfield, VA.

Central Valley Regional Water Quality Control Board. 1989. A mass loading assessment of major point and non-point sources discharging to surface waters in the Sacramento Valley, California 1985. Staff report, Standards, Policy and Special Studies Section. Sacramento, CA. March

Central Valley Regional Water Quality Control Board. 1994. Water Quality Control Plan (Basin Plan): Sacramento River and San Joaquin River Basins, Third Edition. Staff Report, Sacramento CA. Chakomakos, C., et al. 1979. The toxicity of copper to cutthroat trout (Salmo clarki) under different conditions of alkalinity, pH, and hardness. Environ. Sci. Technol. 13: 213.

Chapman, G.A. 1975. Toxicity of copper, cadmium and zinc to Pacific Northwest salmonids. U.S. APE, Corvallis, Oregon.

Chapman, G.A. 1982. Letter to Charles E. Stephan. U.S. EPA, Corvallis, Oregon. December 6.

Chapman, G.A. and D.G. Stevens. 1978. Acutely lethal levels of cadmium, copper, and zinc to adult male coho salmon and steelhead. Trans. Am. Fish. Soc. 107: 837.

Christensen, E.R. and P.A. Zielski. 1980. Toxicity of arsenic and PCB to a green alga *(Chlamydomonas)*. Bull. Environ. Contam. Toxicol. 25(1):43-48

Clements, W.H., D.S. Cherry, & J. Cairns, Jr. 1989. The influence of copper exposure on predator-prey interaction in aquatic insect communities. Freshwater Biol. 21: 483-488.

Cohn, T.A., L.L. DeLang, E.J. Gilroy, R.M. Hirsch and D.K. Wells. 1989. Estimating constituent loads. Water Resources Research 22(5): 937-942

Conway, H.L. 1978. Sorption of arsenic and cadmium and their effects on growth, micronutrient utilization, and photosynthetic pigment composition of <u>Asterionella</u> formosa. Jour. Fish. Res. Board Can. 35: 286.

Cowell, B.C. 1965. The effects of sodium arsenite and silvex on the plankton populations in farm ponds. Tran. Am. Fish. Soc. 94:371

Colwell, F.S., S.G. Hornor, D. S. Cherry. 1989. Evidence of structural and functional adaption in epilithon exposed to zinc. Hydrobiologia. 171: 79-90

Connor, V., L. Deanovic, and E. Reyes. 1994. Basin Plan Metal Implementation Plan Development Project - Bioassay Results 1991-1992. Staff Report, Standards, Policies and Special Studies Unit, Central Valley Regional Water Quality Control Board, Sacramento, CA December 1994.

Connor, V., L. Deanovic, H. Nielsen, and H. Bailey. 1995. Quality Assurance Project Plan: Delta Monitoring 1993-1994. Staff Report, Standards, Policies and Special Studies Unit, Central Valley Regional Water Quality Control Board, Sacramento, CA. Cote, R. 1983. Toxic aspect of copper on the biomass and productivity of phytoplankton in the Saguenay River, Quebec. Hydrobiologia. 98: 85.

Daday, A., A.H. Mackerras and G.D. Smith. 1985. The effect of nickel on hydrogen nietabolism and nitrogen fixation in the cyanobacteria *Anabaena cylindrica*. J. Gen. Microbio. 131:231-238

Dave, g. 1984. Effects of copper on growth, reproduction, survival, and hemoglobin in Daphnia magna. Comp. Biochem. Physiol. 78C: 439.

Dave, G. and R. Xiu. 1991. Toxicity of mercury, copper, nickel, lead and cobalt to embryos and larvae of zebrafish, *Brachydanio rerio*. Arch. Environ. Contam. Toxicol. 21:126-134

Davis, P.H, J.P. Goettl Jr., J.R. Sinley and N.F. Smith. 1976. Acute and chronic toxicity of lead to rainbow trout (*Salmo gairdneri*) in hard and soft water. Water Res. 10(3):199-206

Deanovic, L.A., H.C. Bailey, T.W. Shed, and D.E. Hinton. 1996. Sacramento-San Joaquin Delta Bioassay Monitoring Report: 1993-1994. First Annual Report to the Central Valley Regional Water Quality Control Board, Sacramento, CA.

Deanovic, L.A., H.C. Bailey, T.W. Shed, and D.E. Hinton. 1998. Sacramento-San Joaquin Delta Bioassay Monitoring Report: 1994-1995. Second Annual Report to the Central Valley Regional Water Quality Control Board, Sacramento, CA.

DeFoe, D.L. 1982. Arsenic (V) Test Results. U.S. EPA, Duluth MN (Memo to R.L. Spehar, US EPA Duluth MN)

Den Dooren de Jong, L.E. 1965. Tolerance of *Chlorella vulgaris* for metallic and nonmetallic ions. Antonie Leeuwenhoek J. Microbiol. Serol. 31:301-313

De Nicola Guidici, M., L. Migliore, & S.M. Guarino. 1987. Sensitively of *Asellus aquaticus* (L.) and *Proasellus coxalis dollf*. (Crustacea, isopoda) to copper. Hydrobiologia 146: 63-69.

De Nicola Guidici, M., L. Migliore, C. Gambardella, and A Marotta. 1988. Effect of chornic exposure to cadmium and copper on *Asellus aquaticus* (L.) (Crustacea, isopoda) to copper. Hydrobiologia 157(3): 265-269.

Dowden, B.F. and H.J. Bennett. 1965. Toxicity of selected chemicals to certain animals. J. Water Pollut. Control Fed. 37(9):1308-1316

Eaton, J.G., et al. 1978. Metal toxicity to embryos and larvae of seven freshwater fish species - I. cadmium. Bull. Environ. Contam. Toxiolo. 19: 95.

Elder, J.F. and A.J. Horne. 1978. Copper cycles and CuSO4 algicidal capacity in two California lakes. Environ. Manage. 2: 17.

Environment Canada. 1994. Priority Substances List Assessment Report: Chromium and its Compounds. Canadian Environmental Protection Act. Quebec, Canada

Fezy, J.S., D.F. Spencer and R.W. Greene. 1979. The effect of nickel on the growth of the freshwater diatom *Navicula pelliculosa*. Environ. Pollut. 20(2):131-137

Finlayson, B.J. and D.C. Wilson. 1989. Evaluation of lethal levels, release criteria,, and water quality objectives for an acid-mine waste. In: Aquatic Toxicology: Eleventh Volume. ASTM Special Technical Publication 1007. pp. 189-203.

Foe, C. and W.C. Croyle. 1998. Mercury concentrations and loads from the Sacramento River and from Cache Creek to the Sacramento-San Joaquin Delta Estuary. Staff report submitted to the Central Valley Regional Water Quality Control Board, Sacramento, CA

Friebel, M.F., K.L. Markham, S.W. Anderson and G.L. Rockwell. 1995. Water Resources Data California Water Year 1994, Volume 4, Northern Central Valley Basin and the Great Basin from Honey Lake Basin to Oregon State Line. U.S. Geological Survey Water Data Report CA 94-4, 452 p.

Fujimura, R.W., C. Huang and B. Finlayson. 1995. Chemical and toxicological characterization of Kerswick Reservoir sediments. California Department of Fish and Game, Aquatic Toxicology Laboratory Report prepared for the State Water Resource Control Board.

Gachter, R., et al. 1973. Complexing capacity of the nutrient medium and its relation to inhibition of algal photosynthesis by copper. Schweiz. Z. Hydrol. 35: 252.

Garvey, J.E., H.A. Owen, & R.W. Winner. 1991. Toxicity of copper to *Chlamydomonas reinhardtii* (Chlorophyceae) and *Ceriodaphnia dubia* (Crustacea) in relation to changes in water chemistry. Aquat. Toxicol. 21: 157-170

Gendusa, A.C. 1990. Toxicity of chromium and flouranthene from aqueous and sediment sources to selected freshwater fish. Ph. D. Dissertation, University of North Texas:138

Genter, R.B., D.S. Cherry, E.P. Smith & J. Cairns, Jr. 1988A, Attached algal abundance altered by individual and combined treatments of zinc and pH. Environmental Toxicology & Chemistry 7: 723-733.

32

Goetzl, J., M. Stephenson, M. Puckett, G. Ichikawa, K. Paulson, J. Kanihan, and P Browne. 1994. Quality Assurance/Quality Control Document Bay Protection and Toxic Cleanup Program 1993-1994 Delta Metals. Staff Report, California Department of Fish and Game. Prepared for the State Water Resources Control Board.

Goetzl, J., J. Kanihan, M. Stephenson, M. Puckett, G. Ichikawa, and N. Morgan. 1995. Quality Assurance/Quality Control Document Bay Protection and Toxic Cleanup Program 1994-1995 Delta Metals. Staff Report, California Department of Fish and Game. Prepared for the State Water Resources Control Board.

Ghosh, K. and S. Jana. 1988. Effects of combinations of heavy metals on population growth of fish nematode *Spinicauda spinacauda* in aquatic environment. Environ. Ecol. 6(4):791-794

Grande, M. and S. Anderson. 1983. Lethal effects of hexavalent chromium, lead and nickel on young stages of Atlantic salmon (*Salmo salar L.*) in soft water. Vatten 39(4):405-416

Harrison, F.L. et al. 1981. Effects of copper on adult and early life stages of the freshwater clam, <u>Corbicula manilensis</u>. UCRL-52741. National Technical Information Service, Springfield, Virginia.

Harrison, F.L. et al. 1984. The toxicity of copper to the adult and early life stages of the freshwater clam, <u>Corbicula manilensis</u>. Arch. Environ. Contam. Toxicol. 13: 85.

Harry, H.W. and D.V. Aldrich. 1963. The distress syndrome in *Taphius glabratus* as a reaction to toxic concentrations of inorganic ions. Malacologia 192:283-289

Hart, B.A. and B.D. Schaife. 1977. Toxicity and bioaccumulation of cadmium in Chlorella pyrenoidosa. Environ. Res. 14: 401.

Hatakeyama, S. and Y. Sugaya. 1989. A freshwater shrimp (*Paratya compressa improvisa*) as a sensitive test organism to pesticides. Environ. Pollut. 59(4) 325-336.

Hatakeyama, S. and M. Yasuno. 1981. Effects of cadmium on the periodicity of parturation and brood zsize of <u>Moina macrocopa</u> (Cladocera). Environ. Pollut. (Series A) 26: 111.

Helsel, D.R. and R.M. Hirsch. 1992. Statistical Methods in Water Resources. Series: Studies in Environmental Science Vol 49. Elsevier, Amsterdam, 527p.

Herbold, B. and P.B. Moyle. 1989. The Ecology of the Sacramento-San Joaquin Delta: A Community Profile. U.S. Fish and Wildlife Service Biol. Rep. 85(7.22). 106p.

Heumann, H-G. 1987. Effects of heavy metals on growth and ultrastructure of *Chara* vulgaris. Protoplasma 136(1): 37-48.

Hofslagare, O., S. Sjoberg and G. Samuelsson. 1994. The effect of arsenate and arsenite on photosynthesis in *Scenedesmus obliquus*. A potentiometric study in a closed CO2 system. Chem. Spec. Bioavail. 6(4):95-102

Holcombe, G.W., et al. 1984. Methods for conducting snail (<u>Aplexa hypnorum</u>) embryo through adult exposures: effects of cadmium and reduced pH levels. Arch. Environ. Contam. Toxicol. 13: 627.

Horning, W.B. and T.W. Neiheisel. 1979. Chronic effect of copper on the bluntnose minnow, Pimephales notatus (Rafinesque). Arch. Environ. Contam. Toxicol. 8:545.

Hughes, J.S. 1973. Acute toxicity of thirty chemicals to striped bass (<u>Morone saxatilis</u>). Presented at the Western Association of State Game and Fish Comissioners, Salt Lake City, UT. July.

Hutchinson, T.C. 1973. Comparative studies of the toxicity of heavy metals to phytoplankton and their synergistic interactions. Water Pollut. Res. Can. 8:68-90

Hutchinson, T.C. and P.M. Stokes. 1975. Heavy metal toxicity using algal bioassays. In: Water Quality parameters. Barabas, S. (Ed.). ASTM STP 573. American Society for Testing and Materials, Philadelphia, PA. 320-343

Irmer, U., I. Wachholz, H. Schafer and D.W. Lorck. 1986. Influence of lead on *Chlamydomonas reinhardii* Danegard (Volvocales, Chlorophyta): Accumulation, toxicity and ultrastructural changes. Environ. Exp. Bit. 26(2):97-105

Jana, S.R. and N. Bandyopadhyaya. 1988. Effect of heavy metals on some biochemical parameters in the Freshwater fish, *Channa punctatus*. Aquat. Sci. Fish. Abstr.. 18(4):5486-1Q18: Environ. Ecol. 5(3):488-493.

Jana, S. and S.S. Sahana. 1989. Sensitivity of the freshwater fishes *Clarias batrachus* and *Anabas testudineus* to heavy metals. Environ. Ecol. 7(2):265-270

Jones, J.R.E. 1938. The relative toxicity of salts of lead, zinc and copper to the stickleback (*Gasterosteus aculeatus L.*) and the effect of calcium on the toxicity... J. Exp. Biol. 15(3):394-407.

Jones, J.R.E. 1939. The relation between the electrolytic solution pressures of the metals and their toxicity to the stickleback (*Gastrerosteus aculeatus L.*). J. Exp. Bio. 16 (4):425-437

34

Kapu, M.M. and D.J. Schaeffer. 1991. Planarians in toxicology. Responses of asexual *Dugesia dorotocephala* to selected metals. Bull. Environ. Contam. Toxicol. 47(2): 302-307

Keller, A.E. and S.G. Zam. 1991. The acute toxicity of selected metals to the freshwater mussel, *Anodonta imbecilis*. Environ. Toxicol. Chem. 10(4):539-546

Khangarot, B.S. 1991. Toxicity of metals to a freshwater tubificid worm, *Tubifex tubifex* (Muller). Bull. Environ. Contam. Toxicol. 46:906-912

Klass, E., et al. 1974. The effects of cadmium on population growth of the green alga <u>Scendesmus quadricauda</u>. Bull. Environ. Contam. Toxicol. 12: 442.

Klauda, R.J. 1985. Influence of delayed initial feeding on mortality of striped bass larvae exposed to arsenic and selenium. Am. Fish. Soc. Annu. Meeting No. 115:92-93

Kszos, L.A., A.J. Stewart and P.A. Taylor. 1992. An evaluation of nickel toxicity to *Ceriodaphnia dubia* and *Daphnia magna* in a contaminated stream and in laboratory tests. Environ. Toxicol. Chem. 11 (7):1001-1012

Kumar, D., and H.D. Kumar. 1985. Heavy metal toxicity in the Cyanobacterium *Nostoc linckia*. Aquat. Bot. 22(2):101:105

Lalande, M. and B. Pinel-Alloul. 1986. Acute toxicity of cadmium, copper, mercury and zinc to <u>Tropocyclops prasinus mexicanus</u> (Cycolpoida, Copepoda) from three Quebec lakes. Environ. Toxicol. Chem. 5: 95-102.

Lanzer-DeSouza, M.E. and N.M.M. DaSilva. 1988. Influence of pollutants on aquatic crustacean *Decapoda palamonidae*. Iheringia Ser. Misc. 2:13-30 (Spanish, English abstr.)

Larry Walker Associates. 1996. Sacramento Coordinated Water Quality Monitoring Program 1995 Annual Report. Prepared for the Sacramento Regional County Sanitation District, Sacramento County Water Agency and the City of Sacramento.

Laube, V.M., C.N. McKenzie and D.J. Kushner, 1980. Strategies of response to copper, cadmium and lead by blue-green and a green alga. Can. J. Microbiol. 26(11):1300-1311

Lawrence, S.G., M.H. Holoka 7 R. D. Hamilton. 1989. Effects of cadmium on a microbial food chain, *Chlamydomonas reinhardtii* and *Tetrahymena vorax*. Sci Total Environ. 87/88: 381-395.

Lilius, H., T. Hastbacka and B. Isomaa. 1995. A comparison of the toxicity of 30 reference chemicals to *Daphnia magna* and *Daphnia pulex*. Environ. Toxicol. Chem. 14(12):2085-2088

Lillebo, H.P., S. Shaner, D.Carlson, N. Richard, and P. DuBowy. 1988. Criteria based on direct toxicity to aquatic organisms. In: Water Quality Criteria for Selenium and Other Trace Elements for Protection of Aquatic Life and its Uses in the San Joaquin Valley.

Lind, D., K. Alto, and S. Chatterton. 1978. Regional copper study. Draft Report, Minnesota Environmental Quality Board St. Paul, MN 54p.

Maeda, S., R. Inoue, T. Kozono, T. Tokuda, A. Ohki and T. Takeshita. 1990. Arsenic metabolism in a freshwater food chain. Chemosphere 20(1-2):101-108

Mao, S. and C. Wang. 1990. The effect of some pollutants on SCE of grass carp cells. Ocean. Limnol. Sin./ Haiyang Yu Huzhao 21(3):205-211

Markham, K.L., S.W. Anderson, G.L. Rockwell, and M.F. Friebel. 1996. Water Resources Data California; Water Year 1995, Volume 4, Northern Central Valley Basin and the Great Basin from Honey Lake Basin to Oregon State Line. U.S. Geological Survey. Water Data Report CA 95-4, 428 p.

Marr, J.C.A, H.L. Bergman, J. Lipton, and C. Hogstrand. 1995. Differences in relative sensitivity of naive and metals-acclimated brown and rainbow trout exposed to metals representative of the Clark Fork River, Montana. Can. J. Fish. Aquat. Sci. 52: 2016-2030.

Marshack, J.B. 1995. A Compilation of Water Quality Goals. Staff Report submitted to the California Regional Water Quality Control Board, Central Valley Region. Sacramento, CA April 1996.

Marshack, J.B. 1998. A Compilation of Water Quality Goals. Staff Report submitted to the California Regional Water Quality Control Board, Central Valley Region. Sacramento, CA March 1998.

Marshall, J.S. 1978. Population dynamics of <u>Daphnia galeata mendotae</u> as modified by chronic cadmium stress. Jour. Fish. Res. Board Can. 35: 461.

Marshall, J.S., D.L. Mellinger, and J.I. Parker. 1981. Combined effects of cadmium and zinc on a Lake Michigan zooplankton community. Int. Assoc. Great Lakes Res. 7: 215-223.

McGreachy, S.M. and D.G. Dixon, 1990. Effect of temperature on the chronic toxicity of arsenate to rainbow trout (*Oncorhynchus mykiss*). Can J. Fish. Aquat. Sci. 47(11):2228-2234

McKim, J.M. et al. 1978. Metal toxicity to embryos and larvae of eight species of freshwater fish - II. copper. Bull. Environ. Contam. Toxicol. 19: 608.

McLeay, D.J. 1975. Sensitivity of blood cell counts in juvenile coho salmon (<u>Oncorhynchus kisutch</u>) to stressors including sublethal concentrations of pulp mill effluent and zinc. J. Fish. Res. Board Can. 32: 2357-2364.

Meindl, U. and G. Roderer, 1990. Influence of inorganic and triethyl lead on nuclear migration and ultrastructure of *Micrasterias*. Ecotoxicol. Environ. Safety 19(2):192-203

Meyer, W., G. Harisch and A.N. Sagredos. 1986. Biochemical and histochemical aspects of lead exposure in dragonfly larvae (*Odonata: Anisoptera*). Ecotoxicol. Environ. Safety.11(3):308-319

Meyer, W., M. Kretschmer, A. Hoffmann and G. Harisch. 1991. Biochemical and histochemical observations on effects of low level heavy metal load (lead, cadmium) in different organ systems of the freshwater crayfish, *Astacus astacus*. Ecotoxicol. Environ. Safety. 21(2):137-156

Migliore, L., and M.De Nicola Giudici. 1990. Toxicity of heavy metals to *Asellus aquaticus* (L.) (Crustacea, Isopoda). Hydrobiologica 203(3):155-164

Monahan, T.J. 1976. Lead inhibition of chlorophycean microalgae. J. Phycol. 12:358

Montoya, B.L. F.J. Blast and G.E Hans. 1988. A Mass Loading Assessment of Major Point and Non-point Sources Discharging to Surface Waters in the Central Valley. Draft Staff Report, Standards, Policies and Special Studies Unit, Central Valley Regional Water Quality Control Board. Sacramento, California.

Montoya, B.L. and X. Pan. 1992. Inactive Mine Drainage in the Sacramento Valley, California. Staff Report, Standards, Policies and Special Studies Unit, Central Valley Regional Water Quality Control Board. Sacramento, California.

Mount, D.I. 1982. Memorandum to Charles S Stephen. U.S. EPA, Duluth, Minnesota. June 7

Moore, M.V. & R.W. Winner. 1989. Relative sensitivity of *Ceriodaphnia dubia* laboratory tests and pond communities of zooplankton and benthos to chronic copper stress. Aquatic Toxicol. 15: 311-330.

Mount, D.I. 1982. Memorandum to Charles E. Stephan. U.S. EPA, Duluth, Minnesota. June 7.

Mount, D.I. and T.J. Norberg. 1984. A seven-day life-cycle cladoceran toxicity test. Environ. Toxicol. Chem. 3(3):425-434

Mullen, J.R., M.F. Friebel, K.L. Markham and S.W. Anderson. 1994. Water Resources Data California; Water Year 1993, Volume 4, Northern Central Valley Basins and the Great Basin from Honey Lake Basin to Oregon State Line. U.S. Geological Survey. Water Data Report CA-93-4, 437 p.

Munzinger, A. & M.-L. Guarducci. 1988. The effect of low zinc concentrations on some demographic parameters of *Biomphalaria glabrata* (Say), mollusca:gastropoda. 12:51-61

Munziger, A. 1990. Effects of nickel on *Daphnia magna* during chronic exposure and alterations in the toxicity to generations pre-exposed to nickel. Water Res. 24(7):845-852

Munzinger, A. & F. Monicelli. 1991. A comparison of the sensitivity of three *Daphnia* magna populations under chronic heavy metal stress. Ecotoxicol. Environ. Safety 22: 24-31

Naddy, R.B., T.W. LaPoint and S.J. Klaine. 1995. Toxicity of arsenic, molybdenum and selenium combinations to *Ceriodaphnia dubia* 

Nakagawa, H., T. Sato and H. Kubo. 1995. Evaluation of chronic toxicity of water lead to carp *Cyprinus carpio* using its blood 5-aminolevulinic acid dehydratase. Fish. Sci. 61(6):956-959

Nebeker, A.V., et al. 1984. Effects of copper, nickel and zinc on the life cycle of the caddisfly <u>Clistoronia magnifica</u> (Limnephilidae). Environ. Toxicol. Chem. 3: 645.

Nebeker, A.V., C. Savonen and D.G. Stevens. 1985. Sensitivity of rainbow trout early life stages to nickel chloride. Environ. Toxicol. Chem. 4: 233-239

Nichols, J.W., G.A. Wedemeyer, R.L. Mayer, W.W. Dickhoff, S.V. Gregory, W.T. Yasutake et al. 1984. Effects of freshwater exposure to arsenic trioxide on the parr-smolt transformation of coho salmon (*Oncorhynchus kisutch*). Environ. Toxicol. Chem. 3:143-149

Nielsen, H., L. Deanovic, and H. Bailey. 1995. Quality Assurance Project Plan: Delta Monitoring 1994-1995. Staff Report, Standards, Policies and Special Studies Unit, Central Valley Regional Water Quality Control Board, Sacramento, CA Nordstrom, D., F. Jenne and R. Avereth. 1977. Heavy metal discharges into Shasta Lake and Keswick Reservoirs on the upper Sacramento River, California: A reconnaissance during low flow. U.S. Geological Survey. Water Resources Investigations 76-49. Menlo Park, California. March

Novak, A., B.S. Walters and D.R.M. Passion. 1980. Toxicity of contaminants to integrate food organisms. Prog. Fish. Res. 1980, Great Lakes Fish. Lab., U.S. Fish Wild. Serv., Ann Arbor, MI:2 p.

Oladimeji, A.A., S.U. Qadri and A.S.W. De Freitas. 1984. Measuring the elimination of arsenic through the gills of rainbow trout (*Salmo gairdneri*) by using a two-compartment respirometer. Bull. Environ. Contam. Toxicol. 32(6):661-668

Olson, P.A. 1958. Comparative toxicity of Cr (VI) and Cr (III) in salmon. Hanford Biol. Res. Annu. Rep. #HW-53500, 1957:215-218.

Palowski, C.J., J. B. Hunn, and F.J. Dwyer. 1985. Sensitivity of young stripped bass to organic and inorganic contaminants in fresh and saline waters. Trans. Am, Fish Soc. 114:748-753

Pandey, G.N. and Nisha. 1984. Effect of hexavalent chromium on freshwater fish. C.A. Sel-Environ. Pollut. 3(100):2

Pardue, W.J. and T.S. Wood. 1980. Baseline toxicity data for freshwater bryozoa exposed to copper, cadmium, chromium and zinc. J. Tennessee Acad. Sci. 55:27

Patrick, R. et al. 1968. The relative sensitivity of diatoms, snails, and fish to twenty common constituents of industrial wastes. Prog. Fish. Cult. 30:137

Paulauskis, J.E. & R.W. Winner. 1988 Effects of water hardness and humic acid on zinc toxicity to *Daphnia magna* Straus. Aquat. Toxicol. 12: 273-290

Pawlaczyk-Szpilowa, M., M. Moskal and J. Weretelnik, 1972. [The usefulness of biological tests for...]. Acta Hydrobiol. 14(2):115-127

Pearlmutter, N.L. and M.A. Buchheim. 1983. Copper susceptibility of three growth stages of the green alga <u>Haematococcus</u>. PB83-25678. National Technical Information Service, Springfield, Virginia.

Peterson, R.H., et al. 1983. Effects of cadmium on yolk utilization, growth, and survival of Atlantic salmon alevins on newly feeding fry. Arch. Environ. Contam. Toxicol. 12: 37.

Pietilainen, K. 1975. Synergistic and antagonistic effects of lead and cadmium on aquatic primary production. In: Int. Conf. on Heavy Metals in the Environment, Symp. Proc., Vol 2(2), Institute for Environmental Studies, University of Toronto, Ont., Canada: 861-873

Pickering, Q.H. and C. Henderson. 1964. The acute toxicity of some heavy metals to different species of warm water fishes. Proc. 19th Ind. Waste Conf., Purdue University, West Lafayette, IN: 578-591

Pierson, K.B. 1981. Effects of chronic zinc exposure on the growth, sexual maturity, reproduction, and bioaccumulation of the guppy, <u>Poecilia reticulata</u>. Can. J. Fish. Aquat. Sci. 38: 23-31.

Pillard, D.A., P.M. Rocchio, K.M. Cassidy, S.M. Stewart and B.D. Lance. 1987. Hexavalent chromium effects on carbon assimilation in *Selenastrum capricornutum*. Bull. Environ. Contam. Toxicol. 38(4):725-721

Planas, D. and F.P. Healey. 1978. Effects of arsenate on growth and phosphorus metabolism of phytoplankton. J. Phycol. 14(3):337:341

Prasad, P.V.D. and Y.B.K. Chowdary. 1981. Effects of metabolic inhibitors on the calcification of a freshwater green alga, *Gloeotaenium ioitlesbergarianum*. Hansgirg 1. Ann. Bot. 47(4):451-459

Rabe, F.W. and C.W. Sappington. 1970. Biological productivity of the Coeur d'Alene Rivers as related to water quality. Project A-024-Ida. Water Resources Research Institute, Moscow., ID.

Rachlin, J.W. and M. Farran. 1974. Growth responses of the green algae <u>Chlorella</u> <u>vulgaris</u> to selective concentrations of zinc. Water. Res. 8: 575-577.

Rachlin, J.W., T.E. Jensen, and B. Warkentine. 1982. The growth response of the green alga (<u>Chlorella saccharophila</u>) to selected concentrations of the metals Cd, Cu, Pb, and Zn. In: Trace substances in environmental health-XVI. Hemphill, D.D. (Ed.). University of Missouri, Columbia, MO. pp. 145-154.

Rachlin, J.W., T.E. Jensen, and B. Warkentine. 1983. The growth response of the diatom <u>Navicula incerta</u> to selected concentrations of the metals: cadmium, copper, lead and zinc. Bull. Torrey Bot. Club. 110: 217-223.

Rai, U.N. and P. Chandra. 1989. Removal of heavy metals from polluted waters by *Hydrodictyon reticulatum* (Linn.) lagerheim. Sci. Total Environ. 87/88:509-515

Rai, U.N. and P. Chandra. 1992. Accumulations of copper, lead, manganese and iron by field populations of *Hydrodictyon reticulatum* (Linn.) lagerheim. Sci. Total Environ. 116(3):203-211

Reish, D.J. and T.V. Gerlinger. 1984. The effects of cadmium, lead and zinc on survival and reproduction in the Polychaetous annelid *Neanthes arenaceodentata* (F. Nereididae). In: P.A. Hutchings (Ed.), Proc. of the First Int. Polychaete Conf., Sydney, Aust. July 1983. The Linnean Society of New South Wales, Aust. 383-389.

Reuther, R. 1992. Arsenic introduced into a littoral freshwater model ecosystem. Sci. Total. Environ. 115(3):219-237

Reyes, E. 1994. A review of copper, cadmium, and zinc toxicity in aquatic organisms. Staff Report, Standards, Policies and Special Studies Unit, California Regional Water Quality Control Board, Central Valley Region, Sacramento, CA. October 1994.

Richter, J.E. 1982. Memorandum to Charles E. Stephan. U.S. EPA Duluth, MN. June 30.

Sacramento Regional County Sanitation District. 1996. Industrial waste Pretreatment Program: 1995. Annual Report. March

Saiki, M.K., D.T. Castlebury, T.W. May, B.A. Martin and F.M. Bullard. 1995. Copper, cadmium and zinc concentrations in aquatic food chains from the upper Sacramento River (California) and selected tributaries. Arch. Environ. Contam.Toxicol. 29: 484-491.

Sakaguchi, T., et al. 1977. Uptake of copper by <u>Chlorella regularis</u>. Nippon Nog. Kag. Kaishi. 51: 497.

anders, H.O. and O.B. Cope. 1966. Toxicities of several pesticides to two species of cladocerans. Trans. Am. Fish. Soc. 95:165

か

San Francisco Estuary Project. 1992. State of the Estuary: A report on conditions and problems in the San Francisco Bay/Sacramento-San Joaquin Delta Estuary. Report obtained from the San Francisco Bay Regional Water Quality Control Board, Oakland, CA.

Sathya, K. S. and K.P. Blakrishnan, 1987. Physiology of phytoplankton in relation to metal concentration. Water Air Soil Pollution 38(3-4): 283-297

Sauter, S., K.S. Buxton, K.J. Macek and S.R. Petrocelli. 1976. Effects of exposure to heavy metals on selected freshwater fish: toxicity of copper, cadmium, chromium and lead to eggs and fry of seven fish species. EPA-600/3-76-105, Environ. Res. Lab., US EPA Duluth, MN: 74p.

Shabana, E.F., A.F. Dowidar, I.A. Kobbia and S.A. El-Attar, 1986. Studies on the effects of some heavy metals on the biological activities of some phytoplankton species. II. The effects of some metallic ions. Egypt. J. Physiol. Sci. 13(1/2):55-71

Sharma, G.P., R.C. Soboti, A. Chaudhru and K.K. Ahluwalia. 1988. Genotoxicity of two heavy metal compounds- lead acetate and mercuric chloride in the mosquito, *Anopheles stephensi* Liston (Culicidae: Diptera). Cytologia (Tokyo) 53(2):263-267

Shavrina, O.B. and L.D. Gapochka, 1984. Effect of some heavy metals on the growth of the bluegreen algae *Synechocystsis aquatilis* in culture. C.A. Sel.-Environ. Pollut. 3(100):3

Shaw, T.L. and V.M. Brown. 1971. Heavy metals and fertilization of rainbow trout eggs. Nature(London) 230(5291):251

Shiau, S.Y. and S.F. Lin. 1993. Effect of supplemental dietary chromium and vandium on the utilization of different carbohydrates in tilapia, *Oreochromis niloticus* (cross) *O. aureus*. Aquaculture 110 (3/4)"321-330.

Shukla, J.P., U.N. Dwivedi, P. Tewari and M. Prasad. 1985. Deleterious effects of arsenic on the nucleic acids and protein metabolism in the liver of *Heteropneustes fossilis* (Bl.) - a freshwater teleost. Acta Hydrochim. Hydrobiol. 13(5):611-614

Singhal, K.C. 1994. Biochemical and enzymatic alterations due to chronic lead exposure in the freshwater catfish, *Heteropneustes fossilis*. J. Environ. Biol. 15(3): 185-191

Slabbert, J.L. and J.P. Maree. 1986. Evaluation of interactive toxic effects of chemicals in water using a *Tetrahymena pyriformis* toxicity screening test. Water S. A. 12(2):57-62

Slabbert, J.L. and W.S.G. Morgan. 1982. A bioassay technique using *Tetrahymena pyriformis* for the rapid assessment of toxicants in water. Water Res. 16(5):517-523

Sorensen, E.M.B. 1976. Toxicity and accumulation of arsenic in green sunfish, *Lepomis cyanellus*, exposed to arsenate in water. Bull. Environ, Contam. Toxicol. 15(6):756-761

Soundrapandian, S. and K. Venkataraman. 1990. Effect of heavy metal salts on the life history of *Daphnia similis* Claus (Crustacea: Cladocera). Proc. Indian Acad. Sci. Anim. Sci. 99(5): 411-418.

42

Sparks, R.E., W.T. Waller, and J. Cairns. 1972. Effects of shelters on the resistance of dominant and submissive bluegills (<u>Lepomis macrochirus</u>) to a lethal concentration of zinc. J. Fish. Res. Board Can. 29: 1356-1358.

Spehar, R.L. 1976a. Cadmium and zinc toxicity to Jordanella floridiae. EPA-600/3-76-096. National Technical Information Service, Springfield, VA.

Spehar, R.L. 1976b. Cadmium and zinc toxicity to flagfish, Jordanella floridiae. J. Fish. Res. Board Can. 33: 1939-1945.

Spehar, R.L., R.L. Anderson and J.T. Fiandt. 1978. Toxicity and bioaccumulations of cadmium and lead in aquatic invertebrates. Environ. Pollut. 15(3): 195-208

Spehar, R.L., J.T. Fiandt, R.L. Anderson and D.L. Defoe. 1980. Comparative toxicity of arsenic compounds and their accumulation in invertebrates and fish. Arch. Environ. Contam. Toxicol. 9(1):53-63

Spehar R.L. and J.T. Fiandt. 1986. Acute and chronic effects of water quality criteriabased metal mixtures on three aquatic species. Environ. Toxicol. Chem. 5(10):917-931

Spencer, D.F., and R.W. Greene. 1981. Effects of nickel on seven species of freshwater algae. Environ. Pollut. Ser. A Ecol. Biol. 25(4):241-247

Sprague, J.B. 1964. Avoidance of copper-zinc solutions by young salmon in the laboratory. J. Water Pollut. Control Fed. 36:990.

Stauber, J.L. and T.M. Florence. 1987. Mechanism of toxicity of ionic copper and copper complexes to algae. Mar. Biol. 94(4):511-519

Steel, R.G.D. and J.H. Torrie. 1960. Principles and Procedures of Statistics with Special Reference to the Biological Sciences. McGraw-Hill Book Company, New York, N.Y. p.481

Steemann-Nielsen, E. and S. Wium-Anderson. 1970. Copper ions as poisons in sea and in freshwater. Mar. Biol. 6: 93.

Stokes, P.M. 1981. Multiple metal tolerance in copper-tolerant green algae. J. Plant Nutry. 3(1-4):667-678

Sugatt, R.H. 1980. Effects of sodium dichromate exposure on the immune responses of juvenile coho salmon, *Oncorhynchus kisutch* against *Vibro anguillarum*. Arch. Environ. Contam. Toxicol. 9:207

Surber, E.W. and O.L. Meehan. 1931. Lethal concentrations of arsenic for certain aquatic organisms. Trans. Am. Fish. Soc. 61:225-239

Suzuki, K. 1959. The toxic influence of heavy metals salts upon mosquito larvae. Hokkaido Univ. J. Fac. Sci. Ser. 6(14):196-209

SWRCB. 1990. Sacramento River Toxic Chemical Risk Assessment Project. Final Project Report. Section III p22-29. State Water Resources Control Board Division of Water Quality and Regional Water Quality Control Board, Central Valley Region. Report 90-11WQ. October.

Tewari, H., T.S. Gill and J. Pant. 1987. Impact of chronic lead poisoning on the hematological and biochemical profiles of a fish, *Barbus conchonius* (Ham). Bull. Environ. Contam. Toxicol. 38(5):748-752

Thorp, J.H., et al. 1979. Effects of chronic cadmium exposure on crayfish survival, growth, and tolerance to elevated temperatures. Arch. Environ. Contam. Toxicol. 8: 449.

USEPA. 1984A. Ambient water quality criteria for copper. Office of Water Regulations and Standards. EPA-440/5-84-032

USEPA. 1984B. Ambient water quality criteria for cadmium. Office of Water Regulations and Standards. EPA-440/5-84-032

USEPA. 1985A. Ambient water quality criteria for arsenic. Office of Water Regulations and Standards. EPA-440/5-84-033

USEPA. 1985B. Ambient water quality criteria for chromium. Office of Water Regulations and Standards. EPA-440/5-84-029

USEPA. 1985C. Ambient water quality criteria for lead. Office of Water Regulations and Standards. EPA-440/5-84-027

USEPA. 1986. Ambient water quality criteria for nickel. Office of Water Regulations and Standards. EPA-440/5-86-004

USEPA. 1987. Ambient water quality criteria for zinc. Office of Water Regulations and Standards. EPA-440/5-87-003

USEPA. 1991. Methods for aquatic toxicity identification evaluations: Phase I Toxicity Characterization Procedures, Second Edition, Environmental Research Laboratory, Special Publications EPA/600/6-91/003.

USEPA. 1992. Methods for aquatic toxicity identification evaluations: Phase II Toxicity identification procedures for and development, Special Publications EPA/600/R-92/080.

USEPA. 1994. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms, Third Edition, Special Publication EPA-600/4-91/002.

Van Leeuwen, C.J., W.J. Luttmer, and P.S. Griffioen. 1985. The use of cohorts and populations in chronic toxicity studies with *Dapnia magna*: a cadmium example. Ecotoxicol. Environ Safety 9: 26-39.

Vardia, H.K., P.S. Rao, and V.S. Durve. 1988. Effects of copper, cadmium, and zinc on fish-food organisms, *Daphnia lumholtzi* and *Cypris subglobosa*. Proc. Indian Acad. Sci. (Acad. Sci.) 97(2): 175-180.

Vareille-Morel, C. and C. Chaisemartin, 1982. Natural tolerance and acclimation of different populations of *Austropotamobius pallipes* to heavy metals. Acta. Oecol. Appl. 3(1):105-122

Vasseur, P., P. Pandard, and D. Burnel. 1988. Influence of some experimental factors on metal toxicity to *Selenastrum capricornutum*. Toxic. Assess. 3(3): 331-444.

Vocke, R.W., K.L. Sears, J.J. O'Toole and R.B. Wildman. 1980. Growth responses of selected freshwater algae to trace elements and scrubber ash slurry generated by coal-fired power plants. Water Res. 14(2):141-150

Wangberg, S.A., U. Heyman and H. Blanck. 1991. Long-term and short-term arsenate toxicity to freshwater phytoplankton and periphyton in limnocorrals. Can. J. Fish. Aquat. Sci. 48(2):173-182

Weir, P.A. and C.H. Hine. 1970. Effects of various metals on behavior of conditioned goldfish. Arch. Environ. Health 20(1):45-51

Welsh, P., J. Lipton, R. Hunson, T. Podrabsky, and D. Cacela. 1998. Data report: Acute copper toxicity to salmonids in surface waters in the vicinity of the iron mountain mine. California- Volume I. Hagler Bailly Service Inc.

Westerman, A.G. and W.J. Birge. 1978. Accelerated rate of albinism in channel catfish exposed to metals. Prog. Fish-Cult. 40:143

Wettern, M., D.W. Lorch and A. Weber. 1976. The effect of lead and manganese on the green alga *Pediastrum tetras* in axenic culture I. Accumulation rates and influence on growth. Arch Hydrobiol. 77(3):267-276

Williams, P.L. and D.B. Dusenbery. 1990. Aquatic toxicity testing using the nematode, *Caenorhabditis elegans*. Environ. Toxicol. Chem. 9(10):1285-1290

Willis, M. 1988. Experimental studies of the effects of zinc on *Ancylus fluviatilis* (Muller) (Mollusca: Gastropoda) from the Afon Crafnant, N. Wales. Arch. Hydrobiol. 112(2): 299-316

Wilson, W.B., and L.R. Freeburg. 1980. Toxicity of metals to marine phytoplankton cultures. EPA-600/3-80-025, Ecol. Res. Ser., Ser., U.S. EPA, Environ. Res. lab., Narragansett, RI:110p.

Wilson, D.B., B. Finlayson, and N. Morgan. 1981. Copper, zinc and cadmium concentrations of resident trout related to acid-mine wastes. California Department of Fish and Game 67:176-186

Winner, R.W. 1988. Evaluation of the relative sensitivities of 7-day *Daphnia magna* and *Ceriodaphnia dubia* toxicity tests for cadmium and sodium pentachlorophenate. Environ. Toxicol. Chem. 7: 153-159

Wium-Andersen, S. 1974. The effect of chromium on the photosynthesis and growth of diatoms and green algae. Physiol. Plant. 32: 308-310

Wong, C.K. 1993. Effects of chromium, copper, nickel and zinc on longevity and reproduction of the cladoceran *Moina macrocopa*. Bull. Environ. Contam. Toxicol. 50:633-639

Wurtz, C.B. 1962. Zinc effects on fresh water mollusks. Nautilus. 76: 53-61.

Yongue, W.H. Jr., B.L. Berrent and J. Cairns Jr. 1979. Survival of *Euglena gracilis* exposed to sublethal temperature and hexavalent chromium. J. Protozool. 26(1): 122-125

Young, R.G. and D.J. Lisk. 1972. Effect of copper and silver ions on algae. Jour. Water Pollut. Control Fed. 44: 1643.

Zarafonetis, J.H. and R.E. Hampton. 1974. Some effects of small concentrations of chromium on growth and photosynthesis in algae. Michigan Acad. 6:417

| Site Name            | Date Sampled |
|----------------------|--------------|
| 5 Mile Sl            | 10/5/94      |
| Antioch              | 7/19/93      |
| Antioch              | 7/19/93      |
| Antioch              | 4/27/94      |
| Antioch              | 11/4/94      |
| Antioch              | 11/4/94      |
| Duck Slough          | 5/10/94      |
| Duck Slough          | 5/10/94      |
| Duck Slough          | 7/12/94      |
| Duck Slough          | 7/12/94      |
| Duck Slough          | 8/9/94       |
| Duck Slough          | 8/9/94       |
| Duck Slough          | 9/2/94       |
| Duck Slough          | 9/2/94       |
| Duck Slough          | 9/2/94       |
| Duck Slough          | 1/9/95       |
| French Camp Slough   | 3/23/94      |
| French Camp Slough   | 3/23/94      |
| French Camp Slough   | 9/2/94       |
| French Camp Slough   | 9/2/94       |
| Grizzly Bay          | 2/5/95       |
| Grizzly Bay          | 2/5/95       |
| Martinez             | 2/5/95       |
| Martinez             | 2/5/95       |
| Martinez             | 2/5/95       |
| Middle R. @ Bullfrog | 7/7/93       |
| Middle R. @ Bullfrog | 7/7/93       |
| Middle R. @ Bullfrog | 8/17/93      |
| Middle R. @ Bullfrog | 8/17/93      |
| Middle R. @ Bullfrog | 10/29/93     |
| Middle R. @ Bullfrog | 10/29/93     |
| Middle R. @ Bullfrog | 1/11/94      |
| Middle R. @ Bullfrog | 1/11/94      |
| Middle R. @ Bullfrog | 1/11/94      |
| Middle R. @ Bullfrog | 4/27/94      |
| Middle R. @ Bullfrog | 4/27/94      |
| Mokelumne River      | 8/3/93       |
| Mokelumne River      | 8/3/93       |
| Mokelumne River      | 9/14/93      |
| Mokelumne River      | 9/14/93      |
| Mokelumne River      | 9/14/93      |
| Mokelumne River      | 10/14/93     |
| Mokelumne River      | 10/14/93     |
| Mokelumne River      | 4/12/94      |
| Mokelumne River      | 4/12/94      |
| Mokelumne River      | 5/10/94      |
| Mokelumne River      | 5/10/94      |

| Site Name               | Date Sampled |
|-------------------------|--------------|
| Mokelumne River         | 7/21/94      |
| Mokelumne River         | 10/19/94     |
| Mokelumne River         | 12/13/94     |
| Mokelumne River         | 12/13/94     |
| Mokelumne River         | 12/13/94     |
| Mokelumne River         | 3/22/95      |
| Mokelumne River         | 3/22/95      |
| Old River @ Tracy Blvd. | 5/25/94      |
| Old River @ Tracy Blvd. | 5/25/94      |
| Old River @ Tracy Blvd. | 6/3/94       |
| Old River @ Tracy Blvd. | 6/3/94       |
| Paradise Cut            | 4/30/94      |
| Paradise Cut            | 5/10/94      |
| Paradise Cut            | 5/10/94      |
| Paradise Cut            | 5/25/94      |
| Paradise Cut            | 5/25/94      |
| Paradise Cut            | 6/3/94       |
| Paradise Cut            | 6/3/94       |
| Paradise Cut            | 7/12/94      |
| Paradise Cut            | 7/12/94      |
| Prospect Slough         | 7/12/94      |
| Prospect Slough         | 7/12/94      |
| Prospect Slough         | 8/9/94       |
| Prospect Slough         | 8/9/94       |
| Prospect Slough         | 9/2/94       |
| Prospect Slough         | 9/2/94       |
| Prospect Slough         | 9/2/94       |
| Prospect Slough         | 1/10/95      |
| Prospect Slough         | 1/10/95      |
| Prospect Slough         | 1/11/95      |
| Prospect Slough         | 1/12/95      |
| Prospect Slough         | 1/13/95      |
| Prospect Slough         | 1/14/95      |
| Prospect Slough         | 1/15/95      |
| Prospect Slough         | 1/15/95      |
| Prospect Slough         | 1/17/95      |
| Prospect Slough         | 1/18/95      |
| Prospect Slough         | 1/22/95      |
| Prospect Slough         | 1/23/95      |
| Prospect Slough         | 1/25/95      |
| Prospect Slough         | 1/25/95      |
| Prospect Slough         | 1/26/95      |
| Prospect Slough         | 1/26/95      |
| Prospect Slough         | 1/27/95      |
| Prospect Slough         | 1/28/95      |
| Prospect Slough         | 1/28/95      |
| Prospect Slough         | 1/31/95      |

Table 1. Sites and Dates of Sampling in the Delta and Lower Sacramento River Basin

| Table 1 ( | cont). | Sites and Dates | of Sam | pling in | the | Delta and | Lower | Sacramento | River | Basin |
|-----------|--------|-----------------|--------|----------|-----|-----------|-------|------------|-------|-------|
|-----------|--------|-----------------|--------|----------|-----|-----------|-------|------------|-------|-------|

| Site Name                | Date Sampled |
|--------------------------|--------------|
| Prospect Slough          | 2/3/95       |
| Prospect Slough          | 2/6/95       |
| Prospect Slough          | 2/10/95      |
| Prospect Slough          | 2/14/95      |
| Prospect Slough          | 2/17/95      |
| Prospect Slough          | 2/28/95      |
| Prospect Slough          | 3/21/95      |
| S I River @ Pt Antioch   | 10/29/93     |
| S I River @ Pt Antioch   | 10/29/93     |
| S I River @ Pt Antioch   | 10/29/93     |
| S I River @ Pt Antioch   | 11/29/93     |
| S I River @ Pt Antioch   | 1/10/94      |
| S I River @ Pt Antioch   | 1/10/94      |
| Sac River @ G. Landing   | 1/11/93      |
| Sac River @ G. Landing   | 1/13/03      |
| Sac River @ G. Landing   | 1/1/03       |
| Sac River @ G. Landing   | 11/10/02     |
| Sac River @ G. Landing   | 11/10/93     |
| Sac River @ G. Landing   | 11/11/93     |
| Sac River @ G. Landing   | 1/12/93      |
| Sac River @ G. Landing   | 1/10/94      |
| Sac River @ G. Landing   | 1/13/94      |
| Sac River @ G. Landing   | 1/18/94      |
| Sac River @ G. Landing   | 1/19/94      |
| Sac River @ G. Landing   | 1/23/94      |
| Sac River @ G. Landing   | 1/24/94      |
| Sac River @ G. Landing   | 1/25/94      |
| Sac River @ G. Landing   | 1/26/94      |
| Sac River @ G. Landing   | 1/27/94      |
| Sac River @ G. Landing   | 1/28/94      |
| Sac River @ G. Landing   | 1/29/94      |
| Sac River @ G. Landing   | 1/30/94      |
| Sac River @ G. Landing   | 1/31/94      |
| Sac River @ G. Landing   | 2/1/94       |
| Sac River @ G. Landing   | 2/2/94       |
| Sac River @ G. Landing   | 2/5/94       |
| Sac River @ G. Landing   | 2/7/94       |
| Sac River @ G. Landing   | 2/8/94       |
| Sac River @ G. Landing   | 2/9/94       |
| Sac River @ G. Landing   | 2/10/94      |
| Sac River @ G. Landing   | 2/11/94      |
| Sac River @ G. Landing   | 2/12/94      |
| Sac River @ G. Landing   | 2/16/94      |
| Sac River @ G. Landing   | 2/17/94      |
| Sac River @ G Landing    | 2/18/94      |
| Sac River @ G Landing    | 2/19/94      |
| Sac River @ G. Landing   | 2/20/94      |
| Sac River @ G. Landing   | 2/20/94      |
| Sac River @ C. Landing   | 2/21/24      |
| Sac River () C. Landing  | 2/22/24      |
| Sac River @ C. Landing   | 2123194      |
| Sac River @ G. Landing   | 2124124      |
| Sac River @ C. Landing   | 2122194      |
| Sac River (0) G. Landing | 2/2//94      |

| Site Name              | Date Sampled |
|------------------------|--------------|
| Sac River @ G. Landing | 2/28/94      |
| Sac River @ G. Landing | 3/1/94       |
| Sac River @ G Landing  | 3/4/94       |
| Sac River @ G. Landing | 3/9/94       |
| Sac River @ G. Landing | 3/10/94      |
| Sac River @ G. Landing | 3/15/94      |
| Sac River @ G. Landing | 3/16/94      |
| Sac River @ G. Landing | 5/10/94      |
| Sac River @ G. Landing | 10/5/94      |
| Sac River @ G. Landing | 1/6/95       |
| Sac River @ G. Landing | 1/7/95       |
| Sac River @ G. Landing | 1/8/95       |
| Sac River @ G. Landing | 1/10/95      |
| Sac River @ G. Landing | 1/11/95      |
| Sac River @ G. Landing | 1/12/95      |
| Sac River @ G. Landing | 1/13/95      |
| Sac River @ G. Landing | 1/14/95      |
| Sac River @ G. Landing | 1/15/95      |
| Sac River @ G. Landing | 1/17/95      |
| Sac River @ G. Landing | 1/18/95      |
| Sac River @ G. Landing | 1/20/95      |
| Sac River @ G. Landing | 1/22/95      |
| Sac River @ G. Landing | 1/23/95      |
| Sac River @ G. Landing | 1/24/95      |
| Sac River @ G. Landing | 1/25/95      |
| Sac River @ G. Landing | 1/26/95      |
| Sac River @ G. Landing | 1/27/95      |
| Sac River @ G. Landing | 1/28/95      |
| Sac River @ G. Landing | 1/29/95      |
| Sac River @ G. Landing | 1/30/95      |
| Sac River @ G. Landing | 1/31/95      |
| Sac River @ G. Landing | 2/1/95       |
| Sac River @ G. Landing | 2/2/95       |
| Sac River @ G. Landing | 2/3/95       |
| Sac River @ G. Landing | 2/6/95       |
| Sac River @ G. Landing | 2/10/95      |
| Sac River @ G. Landing | 2/14/95      |
| Sac River @ G. Landing | 2/1//95      |
| Sac River @ C. Landing | 2/21/93      |
| Sac River @ C. Landing | 2/23/93      |
| Sac River @ C. Landing | 2/24/93      |
| Sac River @ G. Landing | 2/20/95      |
| Sac River @ G. Landing | 3/5/95       |
| Sac River @ G. Landing | 3/7/05       |
| Sac River @ G. Landing | 3/11/05      |
| Sac River @ G. Landing | 3/22/05      |
| Sac R @ Hood           | 7/19/93      |
| Sac. R. @ Hood         | 7/19/93      |
| Sac. R. @ Hood         | 8/3/93       |
| Sac. R. @ Hood         | 8/3/93       |
| Sac R @ Hood           | 8/3/93       |

ý

| Site Name              | Date Sampled |
|------------------------|--------------|
| Sac, R. @ Hood         | 9/14/93      |
| Sac. R. @ Hood         | 9/14/93      |
| Sac. R. @ Hood         | 10/14/93     |
| Sac. R. @ Hood         | 10/14/93     |
| Sac R @ Hood           | 10/14/93     |
| Sac R @ Hood           | 12/13/93     |
| Sac R @ Hood           | 12/13/93     |
| Sac. R. @ Hood         | 12/13/93     |
| Sac. R. @ Hood         | 4/12/94      |
| Sac R @ Hood           | 4/12/94      |
| Sac R @ Hood           | 4/12/94      |
| Sac. R. @ Hood         | 4/12/94      |
| Sac R @ Hood           | 5/10/94      |
| Sac R @ Hood           | 5/10/94      |
| Sac R @ Hood           | 5/10/94      |
| Sac River @ Rio Vista  | 7/20/93      |
| Sac River @ Rio Vista  | 7/20/93      |
| Sac River @ Rio Vista  | 7/20/93      |
| Sac River @ Rio Vista  | 8/3/03       |
| Sac River @ Rio Vista  | 8/3/93       |
| Sac River @ Rio Vista  | 9/14/93      |
| Sac River @ Rio Vista  | 9/14/93      |
| Sac River @ Rio Vista  | 9/14/93      |
| Sac River @ Rio Vista  | 10/14/93     |
| Sac River @ Rio Vista  | 10/14/93     |
| Sac River @ Rio Vista  | 12/13/93     |
| Sac River @ Rio Vista  | 12/13/93     |
| Sac River @ Rio Vista  | 4/12/94      |
| Sac River @ Rio Vista  | 4/12/94      |
| Sac River @ Rio Vista  | 5/10/94      |
| Skag Slough            | 1/22/95      |
| Skag Slough            | 1/23/95      |
| Skag Slough            | 1/28/95      |
| Skag Slough            | 2/14/95      |
| S L River @ Stockton   | 10/29/93     |
| S I River @ Stockton   | 10/29/93     |
| S.J. River @ Stockton  | 10/29/93     |
| S.J. River @ Stockton  | 11/29/93     |
| S. J. River @ Stockton | 1/10/94      |
| S I River @ Stockton   | 1/10/94      |
| S I River @ Stockton   | 1/10/94      |
| S I River @ Stockton   | 4/27/94      |
| S I River @ Stockton   | 4/27/94      |
| Sveamore               | 3/13/05      |
| Ullatis Creek          | 3/23/94      |
| Ellatis Creek          | 3/23/04      |
| Ullatis Creek          | 12/13/94     |
| Illatis Creek          | 12/13/04     |
| S L River (a) Vernalis | 7/7/02       |
| S I River @ Vernalis   | בסודוד       |
| B.J. KIVCI (G. Vernans |              |

.

.

| Site Name             | Date Sampled |
|-----------------------|--------------|
| S.J. River @ Vernalis | 8/17/93      |
| S.J. River @ Vernalis | 8/17/93      |
| S.J. River @ Vernalis | 10/29/93     |
| S.J. River @ Vernalis | 10/29/93     |
| S.J. River @ Vernalis | 1/11/94      |
| S.J. River @ Vernalis | 1/11/94      |
| S.J. River @ Vernalis | 1/11/94      |
| S.J. River @ Vernalis | 4/27/94      |
| S.J. River @ Vernalis | 3/22/95      |
| S.J. River @ Vernalis |              |
| S.J. River @ Vernalis |              |
| Victoria island       | 1/9/95       |

•

Table 1 (cont). Sites and Dates of Sampling in the Delta and Lower Sacramento River Basin

|                                  |                                  |                                         | Monitoring Progra                                         | m                                                         |                                            |
|----------------------------------|----------------------------------|-----------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------|
|                                  | Ambient<br>Monitoring<br>Program | SRCSD Waste<br>Water Treatment<br>Plant | Iron Mountain M<br>Prog                                   | ВРТСР                                                     |                                            |
| Metal Detection<br>Limits (µg/l) |                                  |                                         | USBR: @ Spring Cr.<br>Dam, Keswick Dam,<br>and Shasta Dam | CVRWQCB                                                   |                                            |
| As                               | 1                                | 0.05                                    | NS                                                        | NS                                                        | 0.03                                       |
| Cd                               | 0.03                             | 0.01                                    | 5-10                                                      | 0.1                                                       | 0.002                                      |
| Cr                               | 1                                | 0.05 - 0.1                              | NS                                                        | NS                                                        | 0.05                                       |
| Cu                               | 0.5                              | 0.05                                    | 20-40                                                     | 1                                                         | 0.04                                       |
| Ni                               | 1                                | 0.05 - 0.15                             | NS                                                        | NS                                                        | 0.02                                       |
| РЬ                               | 0.1                              | <b>0.1</b> (1997)                       | NS                                                        | NS                                                        | 0.01                                       |
| Zn                               | 4                                | 0.2 - 0.5                               | 20-40                                                     | 3                                                         | 0.01                                       |
| Analytical Lab                   | ToxScan<br>Laboratory            | Frontier Geoscience                     | USBR Keswick Dam<br>Lab                                   | CH2M Hill'; Quality<br>Analytical Labs, Inc. <sup>#</sup> | Moss Landing Mussel<br>Watch               |
| Method EPA methods               |                                  | Variable - see reports                  | Graphite Furnace AA                                       | Graphite Furnace AA                                       | Evapo-concentration & AA Spectrophotometer |

Table 2. Analytical information for four programs monitoring metals in the Sacramento River Watershed

|                               |                                                                        |                                         | <b>Monitoring Program</b>                                   | m     |                                                    |  |
|-------------------------------|------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------|-------|----------------------------------------------------|--|
|                               | Ambient<br>Monitoring<br>Program                                       | SRCSD Waste<br>Water Treatment<br>Plant | Iron Mountain M<br>Progi                                    | ВРТСР |                                                    |  |
| Sample Method                 | pumped cross-<br>sectional composite<br>and 24-hour time-<br>composite | 24-hour composite                       | grab                                                        | grab  | Acid cleaned CPE<br>tubing and peristaltic<br>pump |  |
| Total or total<br>recoverable | l or total<br>verable Total recoverable Total recoverable              |                                         | Mine samples = Total<br>Sac. River = Total and<br>dissolved | Total | Total recoverable                                  |  |
| Citation                      | 1                                                                      | 2                                       | 3                                                           | 3     | 4                                                  |  |

.

Table 2 (cont.). Analytical information for four programs monitoring metals in the Sacramento River Watershed

1 = Larry Walker Associates. 1996. Sacramento Coordinated Water Quality Monitoring Program 1995 Annual Report

2 = Sacramento Regional County Sanitation District, 1996

3 = RWQCB IMM Monitoring Reports, 1985-86 through 1992-93

4 = Goetzl, J. and M. Stephenson. 1993. Metals Implementation Project: Metals Monitoring of Central Valley Reservoir Releases: 1991-1992

NS = not sampled

\*= 11/95 to 6/93

# = 7/93 - present

|    |            |      | (    | COPPE  | R          |    | ZINC CHROMIUM |      |           |     |     |      |      | UM  |       | CAD   | HARDNESS_ |     |         |
|----|------------|------|------|--------|------------|----|---------------|------|-----------|-----|-----|------|------|-----|-------|-------|-----------|-----|---------|
|    | DATE       | D    | Т    | C*     | <b>C</b> # | 0  | D             | Т    | <b>C*</b> | C#  | 0.  | D    | Т    | C*# | D     | т     | C*        | C#  |         |
|    | 7/19/93    | 2.22 | 4.65 | 9.2    | 7.2        | 10 | 2.06          | 9.98 | 85        | 96  | 100 | 0.78 | 4.09 | 145 | 0.013 | 0.03  | 0.86      | 1.9 | 78      |
|    | . 10/29/93 |      | 2.72 | 37.0   | 29.0       | 10 |               | 4.99 | 340       | 380 | 100 |      | 1.34 | 550 |       | 0.014 | 2.90      | 6.2 | 626     |
|    | 10/29/93   | 2.73 | 1.72 | 37.0   | 29.0       | 10 | 3.18          | 1.68 | 340       | 380 | 100 | 2.62 | 0.19 | 550 | 0.018 | 0.017 | 2.90      | 6.2 | 626     |
|    | 11/29/93   |      | 2.69 | 37.0   | 29.0       | 10 |               | 2.3  | 340       | 380 | 100 |      | 1.86 | 550 |       | 0.02  | 2.90      | 6.2 | 616     |
|    | 1/10/94    | 3.82 | 3.68 | 25.9   | 20.4       | 10 | 2             | 10.5 | 236       | 267 | 100 | 0.12 | 3.35 | 392 | 0.04  | 0.02  | 2.10      | 4.6 | 262     |
|    | 4/27/94    | 2.71 | 4.72 | . 16.4 | 13.0       | 10 | 1.46          | 7.06 | 151       | 170 | 100 | 0.81 | 3.27 | 254 | 0.013 | 0.031 | 1.42      | 3.1 | 154     |
| 52 | 4/27/94    | 2.75 | 4.85 | 16.4   | 13.0       | 10 | 1.23          | 6.48 | 151       | 170 | 100 | 0.63 | 2.82 | 254 | 0.016 | 0.029 | 1.42      | 3.1 | 154     |
|    | 11/4/94    | 2.19 | 3.69 |        |            | 10 | 2.97          | 7.23 |           |     |     | 0.71 | 2.31 |     | 0.014 | 0.012 |           |     | no data |

Table 3. Summary of Metal Concentration Data and Related Water Quality Objectives for Samples Collected from the San Joaquin River at Antioch During Water Years 1993 and 1994.

D = Dissolved concentration ( $\mu g/l$ ) following 0.45  $\mu m$  filtration

T = Total recoverable concentration ( $\mu$ g/l)

C\* = USEPA National Ambient Water Quality Criteria to Protect Freshwater Aquatic Life (expressed as dissolved metal 4-day average criteria)

C# = USEPA Proposed California Toxics Rule Criteria to Protect Freshwater Aquatic Life (expressed as dissolved metal 4-day average criteria)

C^ = USEPA National Ambient Water Quality Criteria to Protect Freshwater Aquatic Life (expressed as dissolved metal 1-hour average criteria)

C<sup>†</sup> = California Proposition 65 Regulatory Level as Drinking Water Level

O' = Site-specific numeric water quality objective (hardness corrected when applicable) for the CVRWQCB Water Quality Control Plan. Objectives = dissolved concentrations.

|          |      | NIC  | KEL |     |      | ARS  | ENIC |    |       | SIL   | VER  |    |      | LEAD | HARDNESS |         |
|----------|------|------|-----|-----|------|------|------|----|-------|-------|------|----|------|------|----------|---------|
| DATE     | D    | Т    | C*  | C#  | D    | Т    | C†   | 0. | D     | T     | C^   | 0. | D    | Т    | C*#      |         |
| 7/19/93  | 1.47 | 5.91 | 127 | 42  |      |      |      |    |       | 0.01  | 2.25 | 10 | 0.08 | 0.85 | 1.9      | 78      |
| 10/29/93 |      | 3.21 | 510 | 170 |      |      |      |    |       |       |      |    |      | 0.03 | 11       | 626     |
| 10/29/93 | 2.73 | 1.61 | 510 | 170 |      |      |      |    |       |       |      |    | 0.25 |      | 11       | 626     |
| 11/29/93 |      | 2.97 | 510 | 170 |      |      |      |    |       | 0.014 | 79   | 10 |      | 0.07 | 11       | 616     |
| 1/10/94  | 0.98 | 3.42 | 355 | 117 |      |      |      |    |       | 0.004 | 18   | 10 | 0.04 | 0.41 | 7.1      | 262     |
| 4/27/94  | 1.98 | 5.15 | 227 | 75  |      |      |      |    |       |       |      |    | 0.12 | 0.66 | 4.0      | 154     |
| 4/27/94  | 1.43 | 4.15 | 227 | 75  |      |      |      |    |       |       |      |    | 0.13 | 0.93 | 4.0      | 154     |
| 11/4/94  | 2.12 | 4.2  |     |     | 0.13 | 0.41 | 5    | 10 | 0.004 | 0.012 |      | 10 | 0.09 | 0.36 |          | no data |

.

.

Table 3 (cont.). Summary of Metal Concentration Data and Related Water Quality Objectives for Samples Collected from the San Joaquin River at Antioch During Water Years 1993 and 1994.

-

.

,

Table 4. Summary of Metal Concentration Data and Related Water Quality Objectives for Samples Collected from Duck Slough During Water Years 1994 and 1995.

|         |      | (    | COPPE | R    |    |        |      | ZINC |     |     | СН   | ROMI | UM  | CADMIUM |       |                  |     | HARDNESS |
|---------|------|------|-------|------|----|--------|------|------|-----|-----|------|------|-----|---------|-------|------------------|-----|----------|
| DATE    | D    | Т    | C*    | C#   | 0  | D      | Т    | C*   | C#  | 0.  | D    | Т    | C*# | D.      | Т     | C*               | C#  |          |
| 5/10/94 | 4.9  | 12   | 11.2  | 8.8  | 10 | 7.76   | 26   | 103  | 116 | 100 | 5.39 | 18.7 | 175 | 0.012   | 0.069 | 1.02             | 2.2 | 98       |
| 7/12/94 | 4.41 | 12.6 | 8.6   | 6.8  | 10 | . 7.17 | 32.3 | 79   | 89  | 100 | 4.78 | 19.6 | 136 | 0.035   | 0.081 | 0.81             | 1.8 | 72       |
| 8/9/94  | 4.52 | 12.5 | 8.2   | 6.4  | 10 | 6.75   | 27.5 | 75   | 85  | 100 | 5    | 22.4 | 130 | •0.011  | 0.066 | 0.78             | 1.7 | 68       |
| 9/2/94  | -    | 13.5 | 8.4   | 6.6  | 10 |        | 29.6 | 77   | 87  | 100 |      | 23.1 | 133 |         | 0.071 | 0.79             | 1.7 | 70       |
| 9/2/94  | 3.58 | 14.9 | 8.4   | 6.6  | 10 | 4.56   | 30.7 | 77   | 87  | 100 | 4.08 | 21.9 | 133 | 0.021   | 0.064 | 0.7 <del>9</del> | 1.7 | 70       |
| 1/9/95  | 3.39 | -    | 23.5  | 18.5 | 10 | 2.75   | -    | 215  | 243 | 100 | 2.41 | -    | 357 | 0.021   | -     | 1.93             | 4.2 | 234      |

54

D = Dissolved concentration ( $\mu$ g/l) following 0.45  $\mu$ m filtration

- T = Total recoverable concentration ( $\mu$ g/l)

C\* = USEPA National Ambient Water Quality Criteria to Protect Freshwater Aquatic Life (expressed as dissolved metal 4-day average criteria)

C# = USEPA Proposed California Toxics Rule Criteria to Protect Freshwater Aquatic Life (expressed as dissolved metal 4-day average criteria)

C<sup>†</sup> = California Proposition 65 Regulatory Level as Drinking Water Level

O' = Site-specific numeric water quality objective (hardness corrected when applicable) for the CVRWQCB Water Quality Control Plan. Objectives = dissolved concentrations

.H

|         |      | NIC  | KEL |     |      | ARSI | ENIC |    |      | LEAD | HARDNESS |     |  |
|---------|------|------|-----|-----|------|------|------|----|------|------|----------|-----|--|
| DATE    | D    | Т    | C*  | C#  | D    | Т    | C†   | 0. | D    | Т    | C*#      |     |  |
| 5/10/94 | 8.52 | 24.1 | 155 | 51  | 1.09 | 2.06 | 5    | 10 | 1.05 | 3.3  | 2.5      | 98  |  |
| 7/12/94 | 6.85 | 28.8 | 119 | 39  | 1.32 | 1.58 | 5    | 10 | 0.88 | 4.28 | 1.8      | 72  |  |
| 8/9/94  | 8    | 31.4 | 113 | 38  | 2.05 | 2.4  | 5    | 10 | 1.38 | 8.98 | 1.6      | 68  |  |
| 9/2/94  |      | 35.8 | 116 | 38  |      | 2.21 | 5    | 10 |      | 8.56 | 1.7      | 70  |  |
| 9/2/94  | 5.16 | 34.3 | 116 | 38  | 2.17 | 3.98 | 5    | 10 | 1.08 | 7.39 | 1.7      | 70  |  |
| 1/9/95  | 6.35 | -    | 323 | 107 | -    | -    | 5    | 10 | 0.37 | -    | 6.3      | 234 |  |

Table 4 (cont.). Summary of Metal Concentration Data and Related Water Quality Objectives for Samples Collected from Duck Slough During Water Years 1994 and 1995.

.

.

.

•

• .

•

-

.

,

Table 5. Summary of Metal Concentration Data and Related Water Quality Objectives for Samples Collected from French Camp Slough During Water Year 1994.

|         | COPPER |      |     |     |    |      | ZINC |    |           |     |      | CHROMIUM |     |       | CAD   | HARDNESS |     |    |
|---------|--------|------|-----|-----|----|------|------|----|-----------|-----|------|----------|-----|-------|-------|----------|-----|----|
| DATE    | D      | Т    | C*  | C#  | 0  | D    | Т    | C* | <b>C#</b> | 0'  | D    | Т        | C*# | D     | Т     | C*       | C#  |    |
| 3/23/94 | 2.83   | 2.72 | 5.6 | 4.4 | 10 | 3.59 | 9.24 | 52 | 59        | 100 | 0.81 | 4        | 91  | 0.011 | 0.044 | 0.56     | 1.2 | 44 |
| 9/2/94  | 2.94   | 6.17 | 9.6 | 7.6 | 10 | 2.27 | 13.3 | 88 | 100       | 100 | 0.99 | 3.64     | 151 | 0.014 | 0.038 | 0.89     | 1.9 | 82 |

D = Dissolved concentration ( $\mu$ g/l) following 0.45  $\mu$ m filtration

 $T = Total recoverable concentration (\mu g/l)$ 

C\* = USEPA National Ambient Water Quality Criteria to Protect Freshwater Aquatic Life (expressed as dissolved metal 4-day average criteria)

C# = USEPA Proposed California Toxics Rule Criteria to Protect Freshwater Aquatic Life (expressed as dissolved metal 4-day average criteria)

C<sup>†</sup> = California Proposition 65 Regulatory Level as Drinking Water Level

O' = Site-specific numeric water quality objective (hardness corrected when applicable) for the CVRWQCB Water Quality Control Plan. Objectives = diss. concentrations.

æ

56

|         |      | KEL  |     |    | ARSI | ENIC |    |    | LEAD | HARDNESS |     |       |
|---------|------|------|-----|----|------|------|----|----|------|----------|-----|-------|
| DATE    | D    | Т    | C*  | C# | D    | Т    | Ċ† | o  | D    | Т        | C*# | · · · |
| 3/23/94 | 1.29 | 3.33 | 78  | 26 | 1.33 | 1.49 | 5  | 10 | 0.41 | 2.26     | 1.0 | 44    |
| 9/2/94  | 0.99 | 2.15 | 133 | 44 | 2.4  | 2.71 | 5  | 10 | 0.37 | 1.58     | 2.0 | 82    |

Table 5 (cont.). Summary of Metal Concentration Data and Related Water Quality Objectives for Samples Collected from French Camp Slough During Water Year 1994.

ŧ'

۰.

- -

.

,

Table 6. Summary of Metal Concentration Data and Related Water Quality Objectives for Samples Collected from the Sacramento River at Hood During Water Years 1993 and 1994.

|          | COPPER |      |     |     |            |      | ZINC |    |    |     |      |      | UM  |       |       | HARDNESS |     |      |
|----------|--------|------|-----|-----|------------|------|------|----|----|-----|------|------|-----|-------|-------|----------|-----|------|
| DATE     | D      | Т    | C*  | C#  | <b>o</b> . | D    | Т    | C* | C# | 0.  | D    | T    | C*# | D     | Т     | C*       | C#  |      |
| 7/19/93  | 1.42   | 3.6  | 6.1 | 4.8 | 10         | 1.12 | 6.46 | 56 | 63 | 100 | 0.32 | 2.85 | 98  | nd    | 0.041 | 0.60     | 1.3 | 48   |
| 8/3/93   | 1.61   | 3.77 | 8.0 | 6.3 | 10         | 1.47 | 5.91 | 73 | 83 | 100 | 0.36 | 3.25 | 127 | 0.015 | 0.039 | 0.76     | 1.6 | . 66 |
| 8/3/93   |        | 4.18 | 8.0 | 6.3 | 10         |      | 7.41 | 73 | 83 | 100 |      | 3.27 | 127 |       | 0.037 | 0.76     | 1.6 | 66   |
| 9/14/93  | 2      | 3.76 | 7.8 | 6.1 | 10         | 5.02 | 16   | 72 | 81 | 100 | 0.36 | 2.52 | 124 | 0.026 | 0.038 | 0.74     | 1.6 | 64   |
| 10/14/93 | 1.38   | 2.71 | 6.1 | 4.8 | 10         | 1.29 | 8.55 | 56 | 63 | 100 | 0.22 | 1.57 | 98  | 0.012 | 0.036 | 0.60     | 1.3 | 48   |
| 10/14/93 | 1.39   |      | 6.1 | 4.8 | 10         | 0.95 |      | 56 | 63 | 100 | 0.34 |      | 98  | 0.014 | ·     | 0.60     | 1.3 | 48   |
| 12/13/93 |        | 4.38 | 6.7 | 5.3 | 10         |      | 7.5  | 62 | 70 | 100 |      | 3.99 | 107 |       | 0.08  | 0.65     | 1.4 | 54   |
| 12/13/93 | 2.16   | 4.35 | 6.7 | 5.3 | 10         | 0.38 | 7.6  | 62 | 70 | 100 | 0.19 | 3.4  | 107 | 0.01  | 0.07  | 0.65     | 1.4 | 54   |
| 4/12/94  | 2.12   | 2.89 | 8.4 | 6.6 | 10         | 2.36 | 4.62 | 77 | 87 | 100 | 0.4  | 1.34 | 133 | 0.015 | 0.027 | 0.79     | 1.7 | 70   |
| 4/12/94  | 2.17   | 2.94 | 8.4 | 6.6 | 10         | 1.72 | 3.81 | 77 | 87 | 100 | 0.34 | 1.03 | 133 | 0.015 | 0.033 | 0.79     | 1.7 | 70   |
| 5/10/94  |        | 2.63 | 6.7 | 5.3 | 10         |      | 5.14 | 62 | 70 | 100 |      | 1.52 | 107 |       | 0.036 | 0.65     | 1.4 | 54   |
| 5/10/94  | 1.84   | 2.94 | 6.7 | 5.3 | 10         | 1.33 | 3.8  | 62 | 70 | 100 | 0.55 | 1.36 | 107 | 0.016 | 0.026 | 0.65     | 1.4 | 54   |

D = Dissolved concentration ( $\mu$ g/l) following 0.45  $\mu$ m filtration

· £5

T = Total recoverable concentration ( $\mu g/l$ )

C\* = USEPA National Ambient Water Quality Criteria to Protect Freshwater Aquatic Life (expressed as dissolved metal 4-day average criteria)

C# = USEPA Proposed California Toxics Rule Criteria to Protect Freshwater Aquatic Life (expressed as dissolved metal 4-day average criteria)

C^ = USEPA National Ambient Water Quality Criteria to Protect Freshwater Aquatic Life (expressed as dissolved metal 1-hour average criteria)

O' = Site-specific numeric water quality objective (hardness corrected when applicable) for the CVRWQCB Water Quality Control Plan. Objectives = diss. concentrations.

10

58
|          |      | NIC  | KEL |    |       | LEAD |     | <u>.</u> | SILV  | 'ER       |    | HARDNESS |
|----------|------|------|-----|----|-------|------|-----|----------|-------|-----------|----|----------|
| DATE     | D    | Т    | C*  | C# | D     | Ť    | C*# | Ď        | Т     | <b>C^</b> | Ó• |          |
| 7/19/93  | 0.7  | 4.19 | 84  | 28 | 0.06  | 2.85 | 1.1 | 0.003    | 0.009 | 0.98      | 10 | 48       |
| 8/3/93   | 0.84 | 4.3  | 111 | 37 | 0.05  | 0.61 | 1.6 | 0.004    |       | 1.69      | 10 | 66       |
| 8/3/93   |      | 4.81 | 111 | 37 |       | 0.53 | 1.6 |          | 0.011 | 1.69      | 10 | 66       |
| 9/14/93  | 0.96 | 3.76 | 108 | 36 | 0.03  | 0.3  | 1.5 |          |       | 1.60      | 10 | 64       |
| 10/14/93 | 0.63 | 2.3  | 84  | 28 | nd    | 0.31 | İ.1 |          |       | 0.98      | 10 | 48       |
| 10/14/93 | 0.67 |      | 84  | 28 | 0.06  |      | 1.1 |          |       | 0.98      | 10 | 48       |
| 12/13/93 |      | 4.52 | 93  | 31 |       | 0.64 | 1.3 | 0.002    | 0.012 | 1.20      | 10 | 54       |
| 12/13/93 | 0.87 | 4.81 | 93  | 31 | 0.04  | 0.63 | 1.3 |          |       | 1.20      | 10 | 54       |
| 4/12/94  | 0.92 | 2.02 | 116 | 38 | 0.07  | 0.24 | 1.7 |          |       | 1.87      | 10 | 70       |
| 4/12/94  | 0.75 | 1.64 | 116 | 38 | 0.075 | 0.24 | 1.7 |          |       | 1.87      | 10 | 70       |
| 5/10/94  |      | 2.34 | 93  | 31 |       | 0.29 | 1.3 |          |       | 1.20      | 10 | 54       |
| 5/10/94  | 1    | 1.83 | 93  | 31 | 0.09  | 0.34 | 1.3 |          |       | 1.20      | 10 | 54       |

,

Table 6 (cont.). Summary of Metal Concentration Data and Related Water Quality Objectives for Samples Collected from the Sacramento River at Hood During Water Years 1993 and 1994.

,

Table 7. Summary of Metal Concentration Data and Related Water Quality Objectives for Samples Collected from Middle River at Bullfrog Landing During Water Years 1993 and 1994.

|          | COPPER |      |      |      |     |      |        | ZINC |     |     | CH    | IROMI | UM  |       | CAD   | AIUM |     | HARDNESS |
|----------|--------|------|------|------|-----|------|--------|------|-----|-----|-------|-------|-----|-------|-------|------|-----|----------|
| DATE     | D      | Т    | C*   | C#   | 0   | D.   | Т      | C*   | C#  | o   | D     | T     | C*# | D     | Т     | C*   | C#  |          |
| 7/7/93.  | 1.67   | 2.54 | 8.8  | 6.9  | 10  | 1.15 | 6.77   | 81   | 92  | 100 | 0.45  | 0.007 | 139 |       | 0.007 | 0.83 | 1.8 | 74       |
| 8/17/93  | 1.73   | 28.3 | 6.1  | 4.8  | 10, | 1.31 | 6.66   | 56   | 63  | 100 | .0.58 | 26.8  | 98  |       | 0.456 | 0.60 | 1.3 | 48       |
| 10/29/93 | 1.47   | 1.59 | 7.5  | 6.0  | 10  | 0.62 | 1.34   | 70   | 79  | 100 | 0.24  | 0.41  | 120 | 0.005 | 0.01  | 0.72 | 1.6 | 62       |
| 1/11/94  |        | 2.06 | 10.2 | 8.0  | 10  |      | 2.2    | 94   | 106 | 100 |       | 0.56  | 160 |       | 0.02  | 0.94 | 2.0 | 88       |
| 1/11/94  | 2.01   | 0.75 | 10.2 | 8.0  | 10  | 1.2  | 1.7    | 94   | 106 | 100 | 0.39  | 0.24  | 160 | 0.02  | 0.01  | 0.94 | 2.0 | 88       |
| 4/27/94  | 2.07   | 2.38 | 13.6 | 10.8 | 10  | 0.16 | 1.97 · | 125  | 142 | 100 | 0.28  | 0.68  | 212 | 0.007 | 0.01  | 1.21 | 2.6 | 124      |

D = Dissolved concentration ( $\mu$ g/l) following 0.45  $\mu$ m filtration

 $T = Total recoverable concentration (\mu g/l)$ 

60

C\* = USEPA National Ambient Water Quality Criteria to Protect Freshwater Aquatic Life (expressed as dissolved metal 4-day average criteria)

C# = USEPA Proposed California Toxics Rule Criteria to Protect Freshwater Aquatic Life (expressed as dissolved metal 4-day average criteria)

C<sup>^</sup> = USEPA National Ambient Water Quality Criteria to Protect Freshwater Aquatic Life (expressed as dissolved metal 1-hour average criteria)

|          |      | NIC  | KEL |    |      | LEAD |     |       | SIL   | VER       |       | HARDNESS |
|----------|------|------|-----|----|------|------|-----|-------|-------|-----------|-------|----------|
| DATE     | D    | Т    | C*  | C# | D    | Т    | C*# | Ð     | Т     | <b>C^</b> | 0•    |          |
| 7/7/93   | 1.04 | 2.62 | 122 | 40 | 0.1  | 0.46 | 1.8 | 0.005 | 0.013 | 2.06      | 10.00 | 74       |
| 8/17/93  | 1.22 | 38.8 | 84  | 28 | 0.22 | 39.4 | 1.1 |       |       |           |       | 48       |
| 10/29/93 | 0.71 | 1.07 | 105 | 35 |      | 0.13 | 1.5 |       |       |           |       | 62       |
| 1/11/94  |      | 2.16 | 141 | 47 |      | 0.11 | 2.2 |       |       |           |       | 88       |
| 1/11/94  | 1.52 | 0.84 | 141 | 47 | 0.06 | 0.03 | 2.2 |       |       |           |       | 88       |
| 4/27/94  | 1.41 | 1.98 | 189 | 62 | 0.06 | 0.16 | 3.2 |       |       |           |       | 124      |

Table 7 (cont.). Summary of Metal Concentration Data and Related Water Quality Objectives for Samples Collected from Middle River at Bullfrog Landing During Water Years 1993 and 1994.

- -

4

.

.

.

\$

|          |      |      | COPPE | R   |    |      |      | ZINC |    |                  | СН   | ROMI | UM   | CADMIUM |       |      | HARDNESS   |         |
|----------|------|------|-------|-----|----|------|------|------|----|------------------|------|------|------|---------|-------|------|------------|---------|
| DATE     | D    | Т    | C*    | C#  | 0. | D    | Т    | C*   | C# | 0                | D    | Т    | C*#  | D       | Т     | C*   | C#         |         |
| 8/3/93   |      |      | 4.7   | 3.7 | 10 |      |      | 44   | 50 | 100              |      |      | · 77 |         |       | 0.48 | 1.1        | 36      |
| 8/3/93   | 1.62 | 1.98 | 4.7   | 3.7 | 10 | 2.49 | 6.15 | 44   | 50 | 100              | 0.09 | 0.66 | 77   | 0.013   | 0.022 | 0.48 | 1.1        | 36      |
| 9/14/93  |      | 3.19 | 4.3   | 3.4 | 10 |      | 4.84 | 40   | 45 | 100              |      | 1.08 | 70   |         | 0.031 | 0.44 | 1.0        | 32      |
| 9/14/93  | 1.6  | 2.8  | 4.3   | 3.4 | 10 | 3.16 | 4.12 | 40   | 45 | 100              | 0.09 | 1.51 | 70   | 0.011   | 0.026 | 0.44 | 1.0        | 32      |
| 10/14/93 | 1.37 | 1.77 | 3.4   | 2.6 | 10 | 1.24 | 3.37 | 31   | 35 | 100              | 0.11 | 0.54 | 55   | 0.01    | 0.017 | 0.36 | 0.8        | 24      |
| 4/12/94  | 1.29 | 2.21 | 4.3   | 3.4 | 10 | 0.75 | 4.2  | 40   | 45 | 100              | 0.2  | 1.49 | 70   | 0.005   | 0.013 | 0.44 | 1.0        | 32      |
| 5/10/94  |      | 2.42 | 4.1   | 3.2 | 10 |      | 4.51 | 38   | 43 | 100              | ÷    | 0.94 | 66   | :       | 0.012 | 0.42 | 0.9        | 30      |
| 5/10/94  |      | 2.05 | 4.1   | 3.2 | 10 |      | 2.91 | 38   | 43 | 100              |      | 1.06 | 66   |         | 0.006 | 0.42 | <b>0.9</b> | 30      |
| 7/21/94  | 1.25 | 2.01 |       |     | 10 | 5.65 | 5.32 |      |    | <sub>c</sub> 100 | 0.16 | 0.72 |      | 0.017   | 0.024 |      |            | no data |
| 7/21/94  | 1.14 | 1.88 |       |     | 10 | 5.57 | 6.34 |      |    | 100              | 0.11 | 0.57 |      | 0.008   | 0.022 |      |            | no data |
| 10/19/94 |      | 2.15 |       |     | 10 | ·•   | 7.29 |      |    | 100              |      | 0.73 |      | -       | 0.019 |      |            | no data |
| 12/13/94 | 1.84 | 3.97 |       |     | 10 | 4.1  | 52.8 |      |    | 100              | 0.72 | 3.54 |      | 0.01    | 0.02  |      |            | no data |
| 12/13/94 | 1.89 |      |       |     | 10 | 2    |      |      |    | 100              | 0.77 |      |      | 0.01    |       |      |            | no data |
| 3/11/95  |      | 4.31 | 3.1   | 2.5 | 10 |      | 16.1 | 29   | 33 | 100              |      | 2.41 | 52   |         | 0.066 | 0.34 | 0.7        | 22      |
| 3/11/95  |      | 4.79 | 3.1   | 2.5 | 10 |      | 6.27 | 29   | 33 | 100              |      | 3.86 | 52   |         | 0.033 | 0.34 | 0.7        | 22      |
| 3/22/95  |      | 4.26 | 4.7   | 3.7 | 10 |      | 18.2 | 44   | 50 | 100              |      | 2.1  | 77   |         | 0.095 | 0.48 | 1.1        | 36      |
| 3/22/95  |      | 4.72 | 4.7   | 3.7 | 10 |      | 13.3 | 44   | 50 | 100              |      | 1.93 | 77   |         | 0.084 | 0.48 | 1.1        | 36      |

Table 8. Summary of Metal Concentration Data and Related Water Quality Objectives for Samples Collected from the Mokelumne River During Water Years 1993, 1994, and 1995.

D = Dissolved concentration ( $\mu$ g/l) following 0.45  $\mu$ m filtration

 $T = Total recoverable concentration (\mu g/l)$ 

C\* = USEPA National Ambient Water Quality Criteria to Protect Freshwater Aquatic Life (expressed as dissolved metal 4-day average criteria)

C# = USEPA Proposed California Toxics Rule Criteria to Protect Freshwater Aquatic Life (expressed as dissolved metal 4-day average criteria)

C^ = USEPA National Ambient Water Quality Criteria to Protect Freshwater Aquatic Life (expressed as dissolved metal 1-hour average criteria)

C<sup>†</sup> = California Proposition 65 Regulatory Level as Drinking Water Level

O' = Site-specific numeric water quality objective (hardness corrected when applicable) for the CVRWQCB Water Quality Control Plan. Objectives = diss.concentrations.

|            |      | NIC  | KEL |    | ·    | LEAD |     | <u> </u> | SIL   | VER       |    | ARSENIC |      |    |    | HARDNESS |
|------------|------|------|-----|----|------|------|-----|----------|-------|-----------|----|---------|------|----|----|----------|
| DATE       | Ð    | Т    | C*  | C# | Ð    | T    | C*# | D        | Т     | <b>C^</b> | 0• | D       | Т    | C† | 0• |          |
| <br>8/3/93 |      |      | 66  | 22 |      |      | 0.8 |          |       | 0.60      | 10 |         |      |    |    | 36       |
| 8/3/93     | 0.31 | 0.75 | 66  | 22 | 0.08 | 0.3  | 0.8 | nđ       | 0.003 | 0.60      | 10 |         |      |    |    | 36       |
| 9/14/93    |      | 1.23 | 60  | 20 |      | 0.45 | 0.7 |          |       |           |    |         |      |    |    | 32       |
| 9/14/93    | 0.39 | 1.11 | 60  | 20 | 0.1  | 0.5  | 0.7 |          |       |           |    |         |      |    |    | 32       |
| 10/14/93   | 0.31 | 0.92 | 47  | 16 | 0.07 | 0.26 | 0.5 |          |       |           |    |         |      |    |    | 24       |
| 4/12/94    | 0.55 | 1.73 | 60  | 20 | 0.1  | 0.34 | 0.7 |          |       |           |    |         |      |    |    | 32       |
| 5/10/94    |      | 1.48 | 57  | 19 |      | 0.32 | 0.7 |          |       |           |    |         | 1.27 | 5  | 10 | 30       |
| 5/10/94    |      | 1.19 | 57  | 19 |      | 0.38 | 0.7 |          |       |           |    |         | 1.22 | 5  | 10 | 30       |
| 7/21/94    | 0.44 | 0.68 |     |    | 0.08 | 0.3  |     | 0.008    | 0.008 |           | 10 | 0.6     | 0.5  | 5  | 10 | no data  |
| 7/21/94    | 0.47 | 0.63 |     |    | 0.1  | 0.25 |     |          |       |           |    | 0.45    | 0.63 | 5  | 10 | no data  |
| 10/19/94   |      | 0.83 |     |    |      | 0.28 |     |          |       |           |    |         |      |    |    | no data  |
| 12/13/94   | 1.34 | 3.34 |     |    | 0.18 | 0.67 |     |          |       |           |    |         |      |    |    | no data  |
| 12/13/94   | 1.33 |      |     |    | 0.18 |      |     |          |       |           |    |         |      |    |    | no data  |
| 3/11/95    |      | 2.61 | 44  | 14 |      | 4.66 | 0.5 |          |       |           |    |         |      |    |    | 22       |
| 3/11/95    |      | 5.72 | 44  | 14 |      | 3.19 | 0.5 |          |       |           |    |         |      |    |    | 22       |
| 3/22/95    |      | 2.47 | 66  | 22 |      | 0.89 | 0.8 |          |       |           |    |         |      |    |    | 36       |
| 3/22/95    |      | 1.72 | 66  | 22 |      | 1.3  | 0.8 |          |       |           |    |         |      |    |    | 36       |

Table 8 (cont.). Summary of Metal Concentration Data and Related Water Quality Objectives for Samples Collected from the Mokelumne River During Water Years 1993, 1994, and 1995.

Table 9. Summary of Metal Concentration Data and Related Water Quality Objectives for Samples Collected from Old River at Tracy Blvd. During Water Year 1994.

|         |      |      | COPPE | R    |    |      |      | ZINC |     |     | СН   | ROMI | UM  |       | CAD   | 4IUM |     | HARDNESS |
|---------|------|------|-------|------|----|------|------|------|-----|-----|------|------|-----|-------|-------|------|-----|----------|
| DATE    | D    | т    | C*    | C#   | 0  | D    | Т    | C*   | C#  | 0.  | D    | Т    | C*# | : D   | Т     | C*   | C#  |          |
| 5/25/94 | 1.44 | 2.43 | 16.2  | 12.8 | 10 | 1.99 | 7.18 | 149  | 168 | 100 | 0.37 | 2.33 | 251 | 0.014 | 0.02  | 1.40 | 3.0 | 152      |
| 6/3/94  | 1.74 | 3.84 | 23.8  | 18.8 | 10 | 1.99 | 9.26 | 218  | 246 | 100 | 0.25 | 3.2  | 362 | 0.008 | 0.023 | 1.96 | 4.2 | 238      |

D = Dissolved concentration ( $\mu$ g/l) following 0.45  $\mu$ m filtration

 $T = Total recoverable concentration (\mu g/l)$ 

64

C\* = USEPA National Ambient Water Quality Criteria to Protect Freshwater Aquatic Life (expressed as dissolved metal 4-day average criteria)

C# = USEPA Proposed California Toxics Rule Criteria to Protect Freshwater Aquatic Life (expressed as dissolved metal 4-day average criteria)

C<sup>†</sup> = California Proposition 65 Regulatory Level as Drinking Water Level

|         |      | NIC  | KEL |     |      | LEAD |     |      | _ ARSI | ENIC |           | HARDNESS |
|---------|------|------|-----|-----|------|------|-----|------|--------|------|-----------|----------|
| DATE    | D    | Т    | C*  | C#  | D    | Т    | C*# | D    | Т      | C†   | <b>O•</b> |          |
| 5/25/94 | 3.01 | 2.82 | 224 | 74  | 0.12 | 3.06 | 4.0 | 1    | 0.98   | 5    | 10        | 152      |
| 6/3/94  | 1    | 3.28 | 327 | 108 | 0.05 | 1.92 | 6.4 | 1.58 | 0.81   | 5    | 10        | 238      |

Table 9 (cont.). Summary of Metal Concentration Data and Related Water Quality Objectives for Samples Collected from Old River at Tracy Blvd. During Water Year 1994.

٠

.

,

1

- -

e

|                    | COPPER |      |           |          |          |      |      | ZINC       |            | ,          | СН   | ROMI | UM         |       | CADN  | <u>AIUM</u> |            | HARDNESS   |
|--------------------|--------|------|-----------|----------|----------|------|------|------------|------------|------------|------|------|------------|-------|-------|-------------|------------|------------|
| DATE               | D      | Т    | C*        | C#       | 0.       | D    | Т    | C*         | <b>C</b> # | 0.         | D    | Т    | C*#        | D     | Т     | C*          | C#         |            |
| 4/30/94            | 1.19   |      | 37        | 29       | 10       | 0.83 |      | 340        | 380        | 100        | 0.21 |      | 550        | 0.008 |       | 2.9         | 6.2        | 432        |
| 5/10/94            | 2.19   | 3.42 | 37        | 29       | 10       | nd   | 4.86 | 335        | 379        | 100        | 0.06 | 2.13 | 549        | 0.008 | 0.018 | 2.8         | 6.2        | 396        |
| 5/25/94            | 1.01   |      | 37        | 29       | 10       | 2.07 |      | 337        | 380        | 100        | 0.25 |      | 550        | 0.009 |       | 2.9         | 6.2        | 398        |
| 5/25/94            | 1.81   |      | 37        | 29       | 10       | 1.43 |      | 337        | 380        | 100        | 0.08 |      | 550        | nd    |       | 2.9         | 6.2        | 398        |
| 6/3/94             | 2.41   | 4.3  | 36        | 28       | 10       | 2.54 | 7.3  | 327        | 369        | 100        | 0.08 | nd   | 536        | 0.008 | 0.019 | 2.8         | 6.0        | 384        |
| 7/12/94<br>7/12/94 | 0.2    | 4.88 | 37<br>37- | 29<br>29 | 10<br>10 | 3.55 | 8.95 | 338<br>338 | 380<br>380 | 100<br>100 | 0.2  | 4.72 | 550<br>550 | 0.007 | 0.025 | 2.9<br>2.9  | 6.2<br>6.2 | 400<br>400 |

Table 10. Summary of Metal Concentration Data and Related Water Quality Objectives for Samples Collected from Paradise Cut During Water Year 1994.

D = Dissolved concentration ( $\mu$ g/l) following 0.45  $\mu$ m filtration

T = Total recoverable concentration ( $\mu g/l$ )

C\* = USEPA National Ambient Water Quality Criteria to Protect Freshwater Aquatic Life (expressed as dissolved metal 4-day average criteria)

C# = USEPA Proposed California Toxics Rule Criteria to Protect Freshwater Aquatic Life (expressed as dissolved metal 4-day average criteria)

C<sup>†</sup> = California Proposition 65 Regulatory Level as Drinking Water Level

|         | <u>KEL</u> |      |     | LEAD       |      |      | ARS | ENIC |      | HARDNESS |    |     |
|---------|------------|------|-----|------------|------|------|-----|------|------|----------|----|-----|
| DATE    | D          | Т    | C*  | <b>C</b> # | D    | Т    | C*# | D    | Т    | C†       | 0• |     |
| 4/30/94 | 2.07       |      | 510 | 170        | nd   |      | 11  | 1.24 |      | 5        | 10 | 432 |
| 5/10/94 | 1.83       | 3.79 | 504 | 167        | nd   | 0.33 | 11  | 0.24 | 0.11 | 5        | 10 | 396 |
| 5/25/94 | 2.12       |      | 506 | 167        | 0.04 |      | 11  | 1.4  |      | 5        | 10 | 398 |
| 5/25/94 | 2.29       |      | 506 | 167        | nd   |      | 11  | 1.34 |      | 5        | 10 | 398 |
| 6/3/94  | 2.38       | 4.75 | 491 | 162        | 0.07 | 0.64 | 10  | 1    | 1.74 | 5        | 10 | 384 |
| 7/12/94 | 2.16       | 8.59 | 508 | 168        | 0.05 | 0.6  | 11  | 2.27 | 3.15 | 5        | 10 | 400 |
| 7/12/94 |            |      | 508 | 168        |      |      | 11  |      |      |          |    | 400 |

J.

.

Table 10 (cont.). Summary of Metal Concentration Data and Related Water Quality Objectives for Samples Collected from Paradise Cut During Water Year 1994.

.

|   |         |      |      | COPP | ER      |     |      |       | ZINO | C       |     | C    | HROM | IIUM    | CADMIUM |       |      | HARDNESS |         |
|---|---------|------|------|------|---------|-----|------|-------|------|---------|-----|------|------|---------|---------|-------|------|----------|---------|
|   | DATE    | D    | Т    | C*   | C#      | _0. | D    | Т     | C*   | C#      | 0   | D    | Т    | C*#     | D       | T     | C*   | C#       |         |
|   | 7/12/94 | 3.52 | 8.29 | 9.8  | 7.7     | 10  | 6.83 | 16.6  | 90   | 102     | 100 | 3.06 | 10.8 | 155     | 0.017   | 0.035 | 0.91 | 2.0      | 84.3    |
|   | 8/9/94  | 4.1  | 7.7  | 8.6  | 6.8     | 10  | 4.03 | 12.1  | 79   | 89      | 100 | 3.83 | 11   | 136     | 0.023   | 0.03  | 0.81 | 1.8      | 72      |
|   | 9/2/94  |      | 8.16 | 10.0 | 7.9     | 10  |      | 13.3  | 92   | 104     | 100 |      | 9.58 | 157     |         | 0.036 | 0.92 | 2.0      | 86      |
|   | 9/2/94  | 4.22 | 8.49 | 10.0 | 7.9     | 10  | 3.97 | 12.2  | 92   | 104     | 100 | 3.52 | 9.84 | 157     | 0.021   | 0.031 | 0.92 | 2.0      | 86      |
|   | 1/10/95 |      | 124  | 9.6  | 7.6     | 10  |      | 270   | 88   | 100     | 100 |      | 242  | 151     |         | 0.568 | 0.89 | 1.9      | 82      |
|   | 1/10/95 |      | 162  | 9.6  | 7.6     | 10  |      | 328   | 88   | 100     | 100 |      | 271  | 151     |         | 0.52  | 0.89 | 1.9      | 82      |
|   | 1/11/95 |      | 86.9 | 10.2 | 8.0     | 10  |      | 172   | 94   | 106     | 100 |      | 168  | 160     |         | 0.229 | 0.94 | 2.0      | 88      |
|   | 1/12/95 |      | 34.4 | 7.5  | 6.0     | 10  |      | 66.3  | 70   | 79      | 100 |      | 57.6 | 120     |         | 0.181 | 0.72 | 1.6      | 62      |
|   | 1/13/95 |      | 17.9 | 7.1  | 5.6     | 10  |      | 42.4  | 66   | 74      | 100 |      | 32.7 | 114     |         | 0.163 | 0.69 | 1.5      | 58      |
| • | 1/14/95 |      | 40.3 | 9.6  | 7.6     | .10 |      | 84    | 88   | 100     | 100 |      | - 58 | 151     |         | 0.224 | 0.89 | 1.9      | 82      |
|   | 1/15/95 |      | 29.8 | 7.3  | 5.8     | 10  |      | 128   | 68   | 77      | 100 |      | 42.3 | 117     |         | 0.203 | 0.71 | 1.5      | 60      |
|   | 1/15/95 |      | 28.9 | 7.3  | 5.8     | 10  |      | 128 - | 68   | 77      | 100 |      | 42.5 | 117     |         | 0.197 | 0.71 | 1.5      | 60      |
|   | 1/17/95 |      | 19   | 6.1  | 4.8     | 10  |      | 78.9  | 56   | 63      | 100 |      | 27.1 | 98      |         | 0.087 | 0.60 | 1.3      | 48      |
|   | 1/18/95 |      | 24.3 |      | no data | 10  |      | 103   |      | no data | 100 |      | 32.9 | no data |         | 0.17  |      |          | no data |
|   | 1/22/95 |      | 13.3 | 7.8  | 6.1     |     |      | 26.3  | 72   | 81      | 100 |      | 18.7 | 124     |         | 0.092 | 0.74 | 1.6      | 64      |

Table 11. Summary of Metal Concentration Data and Related Water Quality Objectives for Samples Collected from Prospect Slough During Water Years 1994 and 1995.

D = Dissolved concentration ( $\mu g/l$ ) following 0.45  $\mu m$  filtration

 $T = Total recoverable concentration (\mu g/l)$ 

C\* = USEPA National Ambient Water Quality Criteria to Protect Freshwater Aquatic Life (expressed as dissolved metal 4-day average criteria)

C# = USEPA Proposed California Toxics Rule Criteria to Protect Freshwater Aquatic Life (expressed as dissolved metal 4-day average criteria)

C<sup>†</sup> = California Proposition 65 Regulatory Level as Drinking Water Level

O' = Site-specific numeric water quality objective (hardness corrected when applicable) for the CVRWQCB Water Quality Control Plan. Objectives = diss. concentrations.

ō

|         |      | 1    | COPPE | . <u>R</u> |    | · · · · · · · · · · · · · · · · · · · |      | ZINC |     |     | C    | HROM | IUM | CADMIUM |       |      |     | HARDNESS |
|---------|------|------|-------|------------|----|---------------------------------------|------|------|-----|-----|------|------|-----|---------|-------|------|-----|----------|
| DATE    | D    | Т    | C*    | C#         | 0  | D                                     | Т    | C*   | C#  | 0'  | D    | Т    | C*# | Ď       | Т     | C*   | C#  |          |
| 1/23/95 |      | 14.9 | 7.3   | 5.8        | 10 |                                       | 39.3 | 68   | 77  | 100 |      | 17.4 | 117 |         | 0.104 | 0.71 | 1.5 | 60       |
| 1/25/95 | 3.48 | 9.06 | 7.8   | 6.1        | 10 | 5.69                                  | 28.3 | 72   | 81  | 100 | 2.51 | 9.56 | 124 | 0.023   | 0.075 | 0.74 | 1.6 | 64       |
| 1/26/95 | 4.78 | 15   | 6.9   | 5.5        | 10 | 8.17                                  | 36.3 | 64   | 72  | 100 | 4.08 | 21.6 | 111 | 0.064   | 0.107 | 0.67 | 1.5 | 56       |
| 1/27/95 |      | 12.3 | 7.3   | 5.8        | 10 |                                       | 31.9 | 68   | 77  | 100 |      | 19.2 | 117 |         | 0.096 | 0.71 | 1.5 | 60       |
| 1/28/95 | 4.51 | 12.5 | 7.3   | 5.8        | 10 | 7.87                                  | 32.8 | 68   | 77  | 100 | 3.69 | 17.6 | 117 | 0.064   | 0.111 | 0.71 | 1.5 | 60       |
| 1/31/95 |      | 9.73 | 8.2   | 6.4        | 10 |                                       | 23.3 | 75   | 85  | 100 |      | 11.5 | 130 |         | 0.065 | 0.78 | 1.7 | 68       |
| 2/3/95  |      | 8.69 | 8.2   | 6.4        | 10 |                                       | 19.9 | 75   | 85  | 100 |      | 10   | 130 |         | 0.07  | 0.78 | 1.7 | 68       |
| 2/6/95  |      | 14.7 | 5.8   | 4.6        | 10 |                                       | 29.2 | 54   | 61  | 100 |      | 14.3 | 94  |         | 0.082 | 0.58 | 1.3 | 46       |
| 2/10/95 |      | 7.34 | 8.0   | 6.3        | 10 |                                       |      | 73   | 83  | 100 |      | 7.65 | 127 |         | 0.068 | 0.76 | 1.6 | 66       |
| 2/14/95 |      | 8.22 | 9.4   | 7.4        | 10 |                                       |      | 87   | 98  | 100 |      | 10.5 | 148 |         | 0.084 | 0.87 | 1.9 | 80       |
| 2/17/95 |      | 5.72 | 15.9  | 12.5       | 10 |                                       |      | 146  | 165 | 100 |      | 8.08 | 245 |         | 0.036 | 1.38 | 3.0 | 148      |
| 2/28/95 |      | 8.59 | 24.3  | 19.2       | 10 |                                       |      | 223  | 252 | 100 |      | 14.5 | 370 |         | 0.065 | 1.99 | 4.3 | 244      |
| 3/21/95 |      | 10   | 6.9   | 5.5        | 10 |                                       | 20.5 | 64   | 72  | 100 |      | 13.3 | 111 |         | 0.072 | 0.67 | 1.5 | 56       |

Table 11 (cont.). Summary of Metal Concentration Data and Related Water Quality Objectives for Samples Collected from Prospect Slough During Water Years 1994 and 1995.

.

.

69

-

- -

¢

|         |      | NIC  | KEL _      |         |      | LEAD |     | ARSENIC |      |    |      | HARDNESS |
|---------|------|------|------------|---------|------|------|-----|---------|------|----|------|----------|
| DATE    | D    | Т    | <b>C</b> * | C#      | D    | Т    | C*# | D       | T    | C† | 0•   |          |
| 7/12/94 | 5.36 | 15.3 | 136        | 45      | 0.4  | 1.24 | 2.1 | 1,      | 1.06 | 5  | 10   | 84.3     |
| 8/9/94  | 7.04 | 15.7 | 119        | 39      | 0.41 | 1.24 | 1.8 | 1.93    | 1.67 | 5  | 10   | 72       |
| 9/2/94  |      | 18.3 | 138        | 46      | i.   | 2.24 | 2.1 |         | 2.1  | 5  | 10   | 86       |
| 9/2/94  | 6.12 | 18.5 | 138        | 46      | 0.73 | 2.06 | 2.1 | 2.04    | 3.24 | 5  | 10   | 86       |
| 1/10/95 |      | 601  | 133        | 44      |      | 28.4 | 2.0 |         | 0.6  | 5  | 10   | 82       |
| 1/10/95 |      | 587  | 133        | 44      |      | 41.2 | 2.0 |         |      | 5  | 10   | 82       |
| 1/11/95 |      | 417  | 141        | 47      |      | 16   | 2.2 |         | 1.46 | 5  | 10   | 88       |
| 1/12/95 |      | 103  | 105        | 35      |      | 7.81 | 1.5 |         | 1.5  | 5  | 10   | 62       |
| 1/13/95 |      | 38   | 99         | 33      |      | 3.65 | 1.4 |         | 1.63 | 5  | 10   | 58       |
| 1/14/95 |      | 79.2 | 1.33       | 44      |      | 13.5 | 2.0 |         | 1.2  | 5  | 10   | 82       |
| 1/15/95 |      | 53.7 | 102        | 34      |      | 6.54 | 1.4 |         | 2.48 | 5  | 10   | 60       |
| 1/15/95 |      | 62.8 | 102        | 34      |      | 6.15 | 1.4 |         | 2.27 | 5  | 10   | 60       |
| 1/17/95 |      | 36.6 | 84         | 28      |      | 2.95 | 1.1 |         | 3.32 | 5  | 10   | 48       |
| 1/18/95 |      | 45.1 |            | no data |      | 4.82 |     |         | 4.41 | 5  | 10   | no data  |
| 1/22/95 |      | 27.3 | 108        | 36      |      | 2.49 | 1.5 |         | 1.07 | 5  | 10 - | 64       |

c

Table 11 (cont.). Summary of Metal Concentration Data and Related Water Quality Objectives for Samples Collected from Prospect Slough During Water Years 1994 and 1995.

|         |      | NIC  | KEL |     |      | LEAD |     |      | ARS  | ENIC |    | HARDNESS |
|---------|------|------|-----|-----|------|------|-----|------|------|------|----|----------|
| DATE    | D    | Ť    | C*  | C#  | D    | T    | C*# | D    | T    | C†   | 0• |          |
| 1/23/95 |      | 28.8 | 102 | 34  |      | 3    | 1.4 |      | 1.18 | 5    | 10 | 60       |
| 1/25/95 | 4.39 | 16.7 | 108 | 36  | 0.38 | 1.26 | 1.5 | 1.43 | 1.81 | 5    | 10 | 64       |
| 1/26/95 | 7.28 | 36.6 | 96  | 32  | 0.57 | 2.53 | 1.3 | 1.51 | nd   | 5    | 10 | 56       |
| 1/27/95 |      | 28.3 | 102 | 34  |      | 2.07 | 1.4 |      | 1.48 | 5    | 10 | 60       |
| 1/28/95 | 6.75 | 29.3 | 102 | 34  | 0.57 | 2.11 | 1.4 | 1.45 | 0.99 | 5    | 10 | 60       |
| 1/31/95 |      | 14.8 | 113 | 38  |      | 1.45 | 1.6 |      |      | 5    | 10 | 68       |
| 2/3/95  |      | 13.5 | 113 | 38  |      | 1.12 | 1.6 |      |      | 5    | 10 | 68       |
| 2/6/95  |      | 21.3 | 81  | 27  |      | 1.95 | 1.1 |      |      | 5    | 10 | 46       |
| 2/10/95 |      | 11.4 | 111 | 37  |      | 0.76 | 1.6 |      |      | 5    | 10 | 66       |
| 2/14/95 |      | 15.8 | 130 | 43  |      | 4.2  | 2.0 |      |      | 5    | 10 | . 80     |
| 2/17/95 |      | 13.8 | 219 | 72  |      | 0.75 | 3.8 |      |      | 5    | 10 | 148      |
| 2/28/95 |      | 28.3 | 334 | 111 |      | 1.93 | 6.5 |      |      | 5    | 10 | 244      |
| 3/21/95 |      | 19.3 | 96  | 32  |      | 3.45 | 1.3 |      |      | 5    | 10 | 56       |

Table 11 (cont.). Summary of Metal Concentration Data and Related Water Quality Objectives for Samples Collected from Prospect Slough During Water Years 1994 and 1995.

|          |      |      | COPPE | R   |    |      |      | ZINC        |    |     | CH   | IROM | IUM |       | CAD   | MIUM |            | HARDNESS |
|----------|------|------|-------|-----|----|------|------|-------------|----|-----|------|------|-----|-------|-------|------|------------|----------|
| DATE     | D    | Т    | • C*  | C#  | 0  | D    | T    | C*          | C# | 0   | D    | Т    | C*# | D     | Т     | C*   | <b>C</b> # |          |
| 7/20/93  | 1.56 | 3.51 | 5.6   | 4.4 | 10 | 1.31 | 6.96 | 52          | 59 | 100 | 0.41 | 2.63 | 91  | 0.01  | 0.04  | 0.56 | 1.2        | 44       |
| 7/20/93  | 1.45 |      | 5.6   | 4.4 | 10 | 0.7  |      | 52          | 59 | 100 | 0.5  |      | 91  | 0.015 | -     | 0.56 | 1.2        | 44       |
| 8/3/93   | 2.4  | 3.17 | 7.8   | 6.1 | 10 | 2.64 | 4.55 | 72          | 81 | 100 | 1.14 | 2.06 | 124 | 0.024 | 0.031 | 0.74 | 1.6        | 64       |
| 9/14/93  | 1.97 | 2.98 | 7.8   | 6.1 | 10 | 1.4  | 6.08 | 72          | 81 | 100 | 0.56 | 2.11 | 124 | 0.017 | 0.035 | 0.74 | 1.6        | 64       |
| 9/14/93  | 1.86 |      | 7.8   | 6.1 | 10 | 0.88 |      | 72          | 81 | 100 | 0.59 | -    | 124 | 0.014 |       | 0.74 | 1.6        | 64       |
| 10/14/93 | 1.91 | 3.48 | 6.9   | 5.5 | 10 | 2.64 | 12.5 | 64          | 72 | 100 | 0.3  | 2.36 | 111 | 0.025 | 0.035 | 0.67 | 1.5        | 56       |
| 12/13/93 | 1.58 | 2.97 | 9.0   | 7.1 | 10 | 0.71 | 4.6  | 83          | 94 | 100 | 0.72 | 1.56 | 142 | 0.01  | 0.03  | 0.84 | 1.8        | 76       |
| 4/12/94  | 1.88 | 2.98 | 9.0   | 7.1 | 10 | 1.06 | 4.02 | 83          | 94 | 100 | 0.37 | 1.77 | 142 | 0.019 | 0.024 | 0.84 | 1.8        | 76       |
| 5/10/94  | 1.9  | 2.97 | 7.5   | 6.0 | 10 | 1.75 | 5:07 | <b>70</b> - | 79 | 100 | 0.52 | 2.05 | 120 | 0.015 | 0.028 | 0.72 | 1.6        | 62       |

Table 12 Summary of Metal Concentration Data and Related Water Quality Objectives for Samples Collected from the Sacramento River at Rio Vista During Water Years 1993 and 1994.

D = Dissolved concentration ( $\mu$ g/l) following 0.45  $\mu$ m filtration

 $T = Total recoverable concentration (\mu g/l)$ 

C\* = USEPA National Ambient Water Quality Criteria to Protect Freshwater Aquatic Life (expressed as dissolved metal 4-day average criteria)

C# = USEPA Proposed California Toxics Rule Criteria to Protect Freshwater Aquatic Life (expressed as dissolved metal 4-day average criteria)

C<sup>^</sup> = USEPA National Ambient Water Quality Criteria to Protect Freshwater Aquatic Life (expressed as dissolved metal 1-hour average criteria)

C<sup>†</sup> = California Proposition 65 Regulatory Level as Drinking Water Level

O' = Site-specific numeric water quality objective (hardness corrected when applicable) for the CVRWQCB Water Quality Control Plan. Objectives = diss. concentrations.

|          |      | NIC  | KEL |    |      | LEAD | <u>.                                    </u> |     | ARS | ENIC |    |        | SILV  | ER   | <u> </u> | HARDNESS |
|----------|------|------|-----|----|------|------|----------------------------------------------|-----|-----|------|----|--------|-------|------|----------|----------|
| DATE     | D    | Т    | C*  | C# | D    | Т    | C*#                                          | D   | Т   | C†   | 0• | D      | Т     | 0^   | 0•       |          |
| 7/20/93  | 1.35 | 4.97 | 78  | 26 | 0.1  | 0.62 | 1.0                                          |     |     |      |    | nd     | 0.009 | 0.84 | 10       | 44       |
| 7/20/93  | 1.02 |      | 78  | 26 | 0.08 |      | 1.0                                          |     |     |      |    | <0.002 |       | 0.84 | 10       | 44       |
| 8/3/93   | 1.71 | 2.89 | 108 | 36 | 0.18 | 0.32 | 1.5                                          |     |     |      |    | 0.006  | 0.007 | 1.60 | 10       | 64       |
| 9/14/93  | 1.22 | 3.24 | 108 | 36 | 0.03 | 0.21 | 1.5                                          |     |     |      |    |        | 0.006 | 1.60 | 10       | 64       |
| 9/14/93  | 1.1  |      | 108 | 36 | 0.09 |      | 1.5                                          |     |     |      |    | <0.002 | nd    | 1.60 | 10       | 64       |
| 10/14/93 | 0.85 | 3.62 | 96  | 32 | 0.04 | 0.27 | 1.3                                          |     |     |      |    | nd     | 0.008 | 1.27 | 10       | 56       |
| 12/13/93 | 0.87 | 2.88 | 125 | 41 | 0.04 | 0.36 | 1.9                                          |     |     |      |    | 0.002  | 0.01  | 2.15 | 10       | 76       |
| 4/12/94  | 1.21 | 2.99 | 125 | 41 | 0.08 | 0.26 | 1.9                                          |     |     |      |    |        |       |      |          | 76       |
| 5/10/94  | 1.43 | 3.45 | 105 | 35 | 0.09 | 0.29 | 1.5                                          | 1.9 | 2.2 | 5    | 10 |        |       |      |          | 62       |

Table 12 (cont.). Summary of Metal Concentration Data and Related Water Quality Objectives for Samples Collected from the Sacramento River at Rio Vista During Water Years 1993 and 1994.

•

.

4

~

- -

Table 13. Summary of Metal Concentration Data and Related Water Quality Objectives for Samples Collected from Skag SloughDuring Water Year 1995.

|         |   | (    | COPPE | R    |    |   |      | ZINC | 2   |     | Cl | HROM | IUM |   | CAD   | MIUM |     | HARDNESS |
|---------|---|------|-------|------|----|---|------|------|-----|-----|----|------|-----|---|-------|------|-----|----------|
| DATE    | D | Т    | C*    | C#   | oʻ | D | Т    | C*   | C#  | o   | D  | Т    | C*# | D | Т     | C*   | C#  |          |
| 1/22/95 |   | 11.9 | 12.9  | 10.2 | 10 |   | 26.3 | 119  | 134 | 100 |    | 22.7 | 201 |   | 0.068 | F.15 | 2.5 | 116      |
| 1/23/95 |   | 14.6 | 13.6  | 10.8 | 10 |   | 45.6 | 125  | 142 | 100 |    | 24.3 | 212 |   | 0.068 | 1.21 | 2.6 | 124      |
| 1/28/95 |   | 13   | 11.7  | 9.3  | 10 |   | 30.3 | 108. | 122 | 100 |    | 20.1 | 184 |   | 0.12  | 1.06 | 2.3 | 104      |
| 2/14/95 |   | 3.89 | 19.8  | 15.6 | 10 |   |      | 182  | 205 | 100 |    | 5.74 | 304 |   | 0.026 | 1.67 | 3.6 | 192      |
| 3/10/95 |   | 5.22 | 22.3  | 17.6 | 10 |   | 15.3 | 204  | 230 | 100 |    | 4.82 | 340 |   | 0.057 | 1.85 | 4.0 | 220      |

7

D = Dissolved concentration ( $\mu$ g/l) following 0.45  $\mu$ m filtration

T = Total recoverable concentration ( $\mu g/l$ )

C\* = USEPA National Ambient Water Quality Criteria to Protect Freshwater Aquatic Life (expressed as dissolved metal 4-day average criteria)

C# = USEPA Proposed California Toxics Rule Criteria to Protect Freshwater Aquatic Life (expressed as dissolved metal 4-day average criteria)

C<sup>†</sup> = California Proposition 65 Regulatory Level as Drinking Water Level

|         |   | NIC  | KEL |     |   | LEAD |     |   | ARSI | ENIC |    | HARDNESS |
|---------|---|------|-----|-----|---|------|-----|---|------|------|----|----------|
| DATE    | D | Т    | C*  | C#  | D | T    | C*# | D | T    | C†   | 0• |          |
| 1/22/95 |   | 33.9 | 178 | 59  |   | 2.52 | 3.0 |   | 2.54 | 5    | 10 | 116      |
| 1/23/95 |   | 41.9 | 189 | 62  |   | 3.9  | 3.2 |   | 3.08 | 5    | 10 | 124      |
| 1/28/95 |   | 37.2 | 162 | 54  |   | 2.19 | 2.6 |   | 1.48 | 5    | 10 | 104      |
| 2/14/95 |   | 11.1 | 273 | 90  |   | 0.5  | 5.1 |   |      |      |    | 192      |
| 3/10/95 |   | 14.1 | 306 | 101 |   | 4.66 | 5.9 |   |      |      |    | 220      |

Table 13 (cont.). Summary of Metal Concentration Data and Related Water Quality Objectives for Samples Collected from Skag Slough During Water Year 1995.

-

.

.

· · · · · ·

Table 14 Summary of Metal Concentration Data and Related Water Quality Objectives for Samples Collected from the San Joaquin River at Stockton During Water Year 1994.

|          |      | ·    | COPPE | R    |    |      |      | ZINC |            |     | СН   | ROMI | UM  |       | CADN  | AIUM |     | HARDNESS |
|----------|------|------|-------|------|----|------|------|------|------------|-----|------|------|-----|-------|-------|------|-----|----------|
| DATE     | D    | T    | C*    | C#   | 0  | D    | Т    | C*   | <b>C</b> # | 0   | D    | Т    | C*# | D     | T     | C*   | C#  |          |
| 10/29/93 |      | 2.85 | 8.8   | 6.9  | 10 |      | 5.55 | 81   | 92         | 100 |      | 0.83 | 139 |       | 0.009 | 0.83 | 1.8 | 74       |
| 10/29/93 | 1.98 | 2.66 | 8.8   | 6.9  | 10 | 4.5  | 4.96 | 81   | 92         | 100 | 0.15 | 1.16 | 139 | 0.006 | 0.014 | 0.83 | 1.8 | 74       |
| 11/29/93 |      | 2.66 | 19.5  | 15.4 | 10 |      | 8.2  | 178  | 202        | 100 |      | 0.98 | 299 |       | 0.03  | 1.64 | 3.6 | 188      |
| 1/10/94  |      | 2.96 | 20.9  | 16.5 | 10 |      | 10.3 | 191  | 216        | 100 |      | 0.38 | 319 |       | 0.02  | 1.75 | 3.8 | 204      |
| 1/10/94  | 2.67 | 2.76 | 20.9  | 16.5 | 10 | 10   | 10.8 | 191  | 216        | 100 | 0.08 | 0.54 | 319 |       | 0.02  | 1.75 | 3.8 | 204      |
| 4/27/94  | 2.99 | 4.25 | 18.0  | 14.2 | 10 | 6.65 | 13   | 165  | 187        | 100 | 0.2  | 0.6  | 278 | 0.01  | 0.021 | 1.54 | 3.3 | 172      |

D = Dissolved concentration ( $\mu$ g/l) following 0.45  $\mu$ m filtration

T = Total recoverable concentration ( $\mu g/I$ ) following  $T = Total recoverable concentration (<math>\mu g/I$ )

C\* = USEPA National Ambient Water Quality Criteria to Protect Freshwater Aquatic Life (expressed as dissolved metal 4-day average criteria)

C# = USEPA Proposed California Toxics Rule Criteria to Protect Freshwater Aquatic Life (expressed as dissolved metal 4-day average criteria)

|          | _    | NIC  | KEL |    |      | LEAD |     | HARDNESS |
|----------|------|------|-----|----|------|------|-----|----------|
| DATE     | D    | Т    | C*  | C# | D    | Т    | C*# |          |
| 10/29/93 |      | 1.66 | 122 | 40 |      | 1.18 | 1.8 | 74       |
| 10/29/93 | 1.29 | 1.71 | 122 | 40 | 0.23 | 1.36 | 1.8 | 74       |
| 11/29/93 |      | 1.94 | 268 | 89 |      | 0.95 | 5.0 | 188      |
| 1/10/94  |      | 2.52 | 287 | 95 |      | 0.1  | 5.4 | 204      |
| 1/10/94  | 2.07 | 2.3  | 287 | 95 |      | 0.74 | 5.4 | 204      |
| 4/27/94  | 1.84 | 2.17 | 249 | 82 | 0.16 | 0.83 | 4.5 | 172      |

.

Table 14 (cont.). Summary of Metal Concentration Data and Related Water Quality Objectives for Samples Collected from the San Joaquin River at Stockton During Water Year 1994.

Table 15. Summary of Metal Concentration Data and Related Water Quality Objectives for Samples Collected from Ulatis Creek During Water Years 1994 and 1995.

|          |      | ·    | COPPE | R          |    |      |      | ZINC |     |     | CH         | ROMI | <u>UM</u> |       | CAD   | MIUM |     | HARDNESS |
|----------|------|------|-------|------------|----|------|------|------|-----|-----|------------|------|-----------|-------|-------|------|-----|----------|
| DATE     | D    | Т    | C*    | <b>C</b> # | 0  | D    | Т    | C*   | C#  | 0   | <b>D</b> . | Т    | C*#       | D     | Т     | C*   | C#  |          |
| 3/23/94  | 2.98 | 4.23 | 29.4  | 23.2       | 10 | 5.55 | 9.56 | 268  | 303 | 100 | 1.71       | 3.87 | 442       | 0.018 | 0.027 | 2.34 | 5.1 | 304      |
| 12/13/94 | 3.89 | 21.1 |       |            | 10 | 18.5 | 57.3 |      |     | 100 | 0.65       | 13.1 |           | 0.043 | 0.126 |      |     | no data  |

D = Dissolved concentration ( $\mu$ g/l) following 0.45  $\mu$ m filtration

T = Total recoverable concentration ( $\mu g/l$ )

C\* = USEPA National Ambient Water Quality Criteria to Protect Freshwater Aquatic Life (expressed as dissolved metal 4-day average criteria)

C# = USEPA Proposed California Toxics Rule Criteria to Protect Freshwater Aquatic Life (expressed as dissolved metal 4-day average criteria)

C<sup>†</sup> = California Proposition 65 Regulatory Level as Drinking Water Level

|          |      | NIC  | KEL |     |      | LEAD |     |      | ARSI | ENIC |    | HARDNESS |
|----------|------|------|-----|-----|------|------|-----|------|------|------|----|----------|
| DATE     | D    | Т    | C*  | C#  | D    | Т    | C*# | D    | Т    | C†   | 0. |          |
| 3/23/94  | 3.65 | 5.69 | 403 | 133 | 0.07 | 0.46 | 8.2 | 1.62 | 1.78 | 5    | 10 | 304      |
| 12/13/94 | 3.45 | 16.2 |     |     | 0.2  | 5.18 |     | 1.39 | 1.22 | 5    | 10 | no data  |

Table 15 (cont.). Summary of Metal Concentration Data and Related Water Quality Objectives for Samples Collected from Ulatis Creek During Water Years 1994 and 1995.

Table 16. Summary of Metal Concentration Data and Related Water Quality Objectives for Samples Collected from the San Joaquin River at Vernalis During Water Years 1993, 1994, and 1995.

|    |          |      |      | COPPE | R    |            |      |      | ZINC        |     |       | СН   | ROMI | UM  |       | CAD   | MIUM |     | HARDNESS |
|----|----------|------|------|-------|------|------------|------|------|-------------|-----|-------|------|------|-----|-------|-------|------|-----|----------|
|    | DATE     | D    | Т    | C*    | C#   | <b>o</b> . | Ð    | Т    | C*          | C#  | 0.    | D    | Т    | C*# | D     | Т     | C*   | C#  |          |
|    | 7/7/93   | 1.63 | 6.38 | 15.7  | 12.4 | 10         | 1.52 | 16.1 | 144         | 163 | 100   | 0.63 | 8.38 | 243 |       | 0.015 | 1.36 | 3.0 | 146      |
|    | 8/17/93  | 1.5  | 4.49 | 14.8  | 11.6 | 10         | 0.96 | 11.1 | 136         | 153 | 100   | 0.64 | 5.7  | 229 |       | 0.011 | 1.29 | 2.8 | 136      |
|    | 10/29/93 | 1.09 | 2.83 | 14.0  | 11.1 | 10         | 0.47 | 9.48 | 129         | 146 | 100 - | 0.2  | 2.62 | 218 | 0.008 | 0.02  | 1.24 | 2.7 | 128      |
|    | 1/11/94  | 2.47 |      | 16.6  | 13.1 | 10         | 0.39 |      | 152         | 172 | 100   | 0.17 |      | 256 |       |       | 1.43 | 3.1 | 156      |
|    | 1/11/94  | 1.93 | 1.51 | 16.6  | 13.1 | 10         | 0.3  | 3.5  | 152         | 172 | 100   | 0.74 | 1.19 | 256 | 0.001 | 0.01  | 1.43 | 3.1 | 156      |
| 00 | 4/27/94  |      |      | 9.8   | 7.7  | 10         |      | 0.08 | 90          | 102 | 100   |      |      | 154 |       |       | 0.91 | 2.0 | 84       |
| 0  | 4/27/94  |      |      | 9.8   | 7.7  | 10         |      | 0.24 | 90          | 102 | 100   |      |      | 154 |       |       | 0.91 | 2.0 | 84       |
|    | 4/27/94  | 1.17 | 3.58 | 9.8   | 7.7  | 10         | 0.48 | 9.24 | 90          | 102 | 100   | 0.4  | 4.4  | 154 | 0.002 | 0.014 | 0.91 | 2.0 | 84       |
|    | 4/27/94  | 0.68 |      | 9.8   | 7.7  | 10         | 0.54 |      | <b>90</b> · | 102 | 100   | 0.34 |      | 154 | · •   |       | 0.91 | 2.0 | 84       |
|    | 3/11/95  |      | 34.1 | 12.7  | 10.0 | 10         |      | 107  | 117         | 132 | 100   |      | 69.1 | 198 |       | 0.169 | 1.14 | 2.5 | 114      |
|    | 3/22/95  |      | 2.89 | 9.8   | 7.7  | 10         |      | 5.87 | 90          | 102 | 100   |      | 2.11 | 154 |       | 0.024 | 0.91 | 2.0 | 84       |

D = Dissolved concentration ( $\mu g/l$ ) following 0.45  $\mu m$  filtration

 $T = Total recoverable concentration (\mu g/l)$ 

C\* = USEPA National Ambient Water Quality Criteria to Protect Freshwater Aquatic Life (expressed as dissolved metal 4-day average criteria)

C# = USEPA Proposed California Toxics Rule Criteria to Protect Freshwater Aquatic Life (expressed as dissolved metal 4-day average criteria)

| Table 16 (cont.). | . Summary of Metal Concentration E  | Data and Related Water Qu | ality Objectives for Sampl | es Collected from the San Joa | aquin |
|-------------------|-------------------------------------|---------------------------|----------------------------|-------------------------------|-------|
| River at Vernalis | s During Water Years 1993, 1994, an | d 1995.                   |                            |                               |       |

• •

|   |          |      | NIC  | KEL |    |      | LEAD |     | HARDNESS |
|---|----------|------|------|-----|----|------|------|-----|----------|
|   | DATE     | D    | Т    | C*  | C# | D    | Т    | C*# |          |
|   | 7/7/93   | 2.23 | 11.2 | 217 | 72 |      | 1.43 | 3.8 | 146      |
|   | 8/17/93  | 1.7  | 8.9  | 204 | 67 |      | 1.13 | 3.5 | 136      |
|   | 10/29/93 | 1.13 | 4.03 | 194 | 64 | 0.04 | 0.14 | 3.3 | 128      |
|   | 1/11/94  | 0.95 |      | 229 | 76 |      |      | 4.1 | 156      |
|   | 1/11/94  | 1.93 | 2    | 229 | 76 | 0.15 | 0.06 | 4.1 | 156      |
|   | 4/27/94  |      |      | 136 | 45 |      |      | 2.1 | 84       |
| 2 | 4/27/94  |      |      | 136 | 45 |      |      | 2.1 | 84       |
|   | 4/27/94  | 0.97 | 5.53 | 136 | 45 | 0.07 | 0.79 | 2.1 | 84       |
|   | 4/27/94  | 0.88 |      | 136 | 45 | 0.09 |      | 2.1 | 84       |
|   | 3/11/95  |      | 128  | 176 | 58 |      | 17.6 | 2.9 | 114      |
|   | 3/22/95  |      | 3.97 | 136 | 45 |      | 5.43 | 2.1 | 84       |

. .

|         |      | (    | COPPE | R          |      |            |      | ZINC |     |                | <u> </u> | IROM | IUM |       | CAD   | <u>MIUM</u> |     | HARDNESS |
|---------|------|------|-------|------------|------|------------|------|------|-----|----------------|----------|------|-----|-------|-------|-------------|-----|----------|
| DATE    | D    | Т    | C*    | <b>C</b> # | o    | <b>D</b> . | Т    | C*   | C#  | 0 <sup>°</sup> | D        | Т    | C*# | · D   | Т     | • C*        | C#  |          |
| 1/6/95  | 2.99 | 5.54 | 10.6  | 8.3        | 10   | 3.2        | 10.2 | 97   | 110 | 100            | 1.28     | 3.71 | 166 | 0.028 | 0.063 | 0.97        | 2.1 | 92       |
| 1/7/95  | 3.39 | 9.02 | 8.0   | 6.3        | 10   | 3.75       | 17.9 | 73   | 83  | 100            | 1.98     | 7.2  | 127 | 0.028 | 0.118 | 0.76        | 1.6 | 66       |
| 1/8/95  | 4.91 | 10.6 | 7.3   | 5.8        | 10   | 5.59       | 19.7 | 68   | 77  | 100            | 2.94     | 11.4 | 117 | 0.038 | 0.108 | 0.71        | 1.5 | 60       |
| 1/10/95 | 4.9  | 28.4 | 6.5   | 5.1        | 10   | 5.99       | 62.9 | 60   | 68  | 100            | 3        | 29   | 104 | 0.039 | 0.474 | 0.64        | 1.4 | 52       |
| 1/12/95 | 3.35 | 17.4 | 5.4   | 4.3        | 10   | 2.86       | 33.1 | 50   | 57  | 100            | 3.2      | 19.3 | 87  | 0.034 | 0.184 | 0.54        | 1.2 | 42       |
| 1/13/95 | 3.67 | 14.2 | 7.1   | 5.6        | 10   | 6.32       | 32.5 | 66   | 74  | 100            | 4.78     | 21   | 114 | 0.035 | 0.166 | 0.69        | 1.5 | 58       |
| 1/14/95 | 3.94 | 15.2 | 5.2   | 4.1        | 10   | 11.2       | 71.8 | 48   | 54  | 100            | 4.42     | 21.3 | 84  | 0.018 | 0.167 | 0.52        | 1.1 | 40       |
| 1/15/95 | 3.62 | 10.7 | 5.6   | 4.4        | 10   | 7.93       | 44.8 | 52   | 59  | 100            | 3.05     | 12.2 | 91  | 0.031 | 0.114 | 0.56        | 1.2 | 44       |
| 1/17/95 | 3.6  | 9.39 | 5.6   | 4.4.       | . 10 | 9.4        | 18.4 | 52   | 59  | 100            | 3.4      | 11.6 | 91  | 0.002 | 0.087 | 0.56        | 1.2 | 44       |
| 1/18/95 | 3.68 | 10.3 |       |            | 10   | 4.68       | 46.9 |      |     | 100            | 3.83     | 13.3 | •   | 0.033 | 0.09  |             |     | no data  |
| 1/20/95 | 4.28 | 9.68 | 6.1   | 4.8        | 10   | 4.84       | 19.5 | 56   | 63  | 100            | 3.43     | 12.6 | 98  | 0.11  | 0.089 | 0.60        | 1.3 | 48       |
| 1/22/95 | 3.35 | 9.98 | 6.7   | 5.3        | 10   | 4.25       | 23.3 | 62   | 70  | 100            | 2.5      | 12   | 107 | 0.025 | 0.095 | 0.65        | 1.4 | 54       |
| 1/23/95 | 3.42 | 9.43 | 6.3   | 5.0        | 10   | 4.41       | 25.4 | 58   | 66  | 100            | 2.52     | 8.57 | 101 | 0.024 | 0.087 | 0.62        | 1.3 | 50       |
| 1/24/95 | 3.09 | 8.27 | 6.9   | 5.5        | 10   |            |      | 64   | 72  | 100            | 2.68     | 8.44 | 111 | 0.027 | 0.084 | 0.67        | 1.5 | 56       |
| 1/25/95 | 2.88 | 7.07 | 6.7   | 5.3        | 10   | 5.06       | 20.9 | 62   | 70  | 100            | 4.43     | 8.27 | 107 | 0.025 | 0.08  | 0.65        | 1.4 | 54       |
| 1/26/95 | 3.16 | 9.9  | 6.3   | 5.0        | 10   | 4.86       | 24.4 | 58   | 66  | 100            | 2.07     | 11   | 101 | 0.032 | 0.111 | 0.62        | 1.3 | 50       |
| 1/27/95 | 3.27 | 8.82 | 6.1   | 4.8        | 10   | 6.06       | 22.3 | 56   | 63  | 100            | 4.46     | 10.6 | 98  | 0.033 | 0.08  | 0.60        | 1.3 | 48       |

 Table 17. Summary of Metal Concentration Data and Related Water Quality Objectives for Samples Collected from the Sacramento

 River at Greene's Landing During Water Year 1995.

|   |         |      | (    | COPPE | R   |    |      |      | ZINC |    |     | Cł   | IROM | UM  |       | CAD   | MIUM |     | HARDNESS |
|---|---------|------|------|-------|-----|----|------|------|------|----|-----|------|------|-----|-------|-------|------|-----|----------|
|   | DATE    | D    | Т    | C*    | C#  | o  | D    | Т    | C*   | C# | 0.  | D    | Т    | C*# | D     | Т     | C*   | C#  |          |
|   | 1/28/95 | 2.77 | 8.11 | 6.1   | 4.8 | 10 | 5.9  | 21.7 | 56   | 63 | 100 | 2.07 | 9.84 | 98  | 0.073 | 0.082 | 0.60 | 1.3 | 48       |
|   | 1/29/95 | 2.89 | 7.34 | 5.6   | 4.4 | 10 | 4.34 | 17.8 | 52   | 59 | 100 | 2.13 | 7.75 | 91  | 0.034 | 0.105 | 0.56 | 1.2 | 44       |
|   | 1/30/95 | 2.87 | 6.79 | 6.1   | 4.8 | 10 | 2.47 | 14.4 | 56   | 63 | 100 | 1.75 | 7.17 | 98  | 0.021 | 0.054 | 0.60 | 1.3 | 48       |
|   | 1/31/95 | 1.89 | 7.02 | 6.1   | 4.8 | 10 | 3.98 | 14.6 | 56   | 63 | 100 | 1.59 | 6.77 | 98  | 0.02  | 0.104 | 0.60 | 1.3 | 48       |
|   | 2/1/95  |      | 3.53 | 6.3   | 5.0 | 10 |      | 12.2 | 58   | 66 | 100 |      | 5.02 | 101 |       | 0.07  | 0.62 | 1.3 | 50       |
|   | 2/2/95  |      | 5.9  | 6.3   | 5.0 | 10 |      | 13.3 | 58   | 66 | 100 |      | 4.88 | 101 |       | 0.042 | 0.62 | 1.3 | 50       |
| 1 | 2/3/95  |      | 6.57 | 6.1   | 4.8 | 10 |      | 14.3 | 56   | 63 | 100 |      | 6.03 | 98  |       | 0.062 | 0.60 | 1.3 | 48       |
|   | 2/6/95  | 2.37 | 6.45 | 5.8   | 4.6 | 10 | 3.6  | 14.5 | 54   | 61 | 100 | 1.68 | 5.78 | 94  | 0.032 | 0.051 | 0.58 | 1.3 | 46       |
|   | 2/10/95 | 2.49 | 4.95 |       |     | 10 | 2.41 | 10.6 |      |    | 100 | 1.41 | 4.47 |     | 0.012 | 0.057 |      |     | no data  |
|   | 2/14/95 |      | 5.07 |       |     | 10 |      |      |      |    |     |      | 4.65 |     |       | 0.056 |      |     | no data  |
|   | 2/17/95 |      | 7.3  |       |     | 10 |      |      |      |    |     |      | 8.79 |     |       | 0.11  |      |     | no data  |
|   | 2/21/95 |      | 4.99 |       |     | 10 |      |      |      |    |     |      | 4.16 |     |       | 0.048 |      |     | no data  |
|   | 2/23/95 |      | 4.78 |       |     | 10 |      |      |      |    |     |      | 3.93 |     |       | 0.053 |      |     | no data  |
|   | 2/24/95 |      | 4.08 |       |     | 10 |      |      |      |    |     |      | 3.9  |     |       | 0.057 |      |     | no data  |
|   | 2/28/95 |      | 4.14 |       |     | 10 |      |      |      |    |     |      | 3.97 |     |       | 0.045 |      |     | no data  |
|   | 3/3/95  |      | 4.75 |       |     | 10 |      |      |      |    |     |      | 4.44 |     |       | 0.066 |      |     | no data  |
|   | 3/5/95  |      | 4.94 |       |     | 10 |      |      |      |    |     |      | 5.02 |     |       | 0.076 |      |     | no data  |

Table 17 (cont.). Summary of Metal Concentration Data and Related Water Quality Objectives for Samples Collected from the Sacramento River at Greene's Landing During Water Year 1995.

4

•

- -

٠

•

~ ~ ~

Table 17 (cont.). Summary of Metal Concentration Data and Related Water Quality Objectives for Samples Collected from the Sacramento River at Greene's Landing During Water Year 1995.

|        |   |      | COPPE | R  |    | <br> |   | ZINC |    |    | C | HROM | IUM |   | CAD   | MIUM |    | HARDNESS |
|--------|---|------|-------|----|----|------|---|------|----|----|---|------|-----|---|-------|------|----|----------|
| DATE   | D | Т    | C*    | C# | 0' | D    | Т | C*   | C# | O' | D | Т    | C*# | D | Т     | C*   | C# |          |
| 3/7/95 |   | 5.73 |       |    | 10 |      |   |      |    |    |   | 4.94 |     |   | 0.052 |      |    | no data  |

D = Dissolved concentration ( $\mu g/l$ ) following 0.45  $\mu m$  filtration

T = Total recoverable concentration ( $\mu g/l$ )

2

C\* = USEPA National Ambient Water Quality Criteria to Protect Freshwater Aquatic Life (expressed as dissolved metal 4-day average criteria)

C# = USEPA Proposed California Toxics Rule Criteria to Protect Freshwater Aquatic Life (expressed as dissolved metal 4-day average criteria)

C<sup>†</sup> = California Proposition 65 Regulatory Level as Drinking Water Level

|   |         |      | NIC  | KEL |    |      | LEAD |     |      | ARSI | ENIC |      | HARDNESS |
|---|---------|------|------|-----|----|------|------|-----|------|------|------|------|----------|
|   | DATE    | D    | Т    | C*  | C# | D    | Т    | C*# | D    | Т    | C†   | 0.   |          |
|   | 1/6/95  | 2.19 | 6.02 | 146 | 48 | 0.45 | 1.2  | 2.3 | 1.41 | 1.52 | 5    | 10   | 92       |
|   | 1/7/95  | 2.97 | 10.5 | 111 | 37 | 0.78 | 3.48 | 1.6 |      | 1.2  | 5    | 10   | 66       |
|   | 1/8/95  | 4.51 | 16   | 102 | 34 | 0.77 | 3.91 | 1.4 | 0.45 | 0.3  | 5    | 10 · | 60       |
|   | 1/10/95 | 4.31 | 3.16 | 90  | 30 | 0.81 | 11.2 | 1.2 | 1.37 |      | 5    | 10   | 52       |
|   | 1/12/95 | 8.5  | 27.1 | 75  | 25 | 0.53 | 3.69 | 1.0 | 1.19 | 1.32 | 5    | 10   | 42       |
|   | 1/13/95 | 4.78 | 23.6 | 99  | 33 | 0.65 | 4.02 | 1.4 | 1.14 | 1.09 | 5    | 10   | 58       |
| ı | 1/14/95 | 6.02 | 26.9 | 72  | 24 | 0.8  | 2.66 | 0.9 | 0.84 | 2.45 | 5    | 10   | 40       |
| 1 | 1/15/95 | 19.1 | 13.8 | 78  | 26 | 0.48 | 2.55 | 1.0 | 0.91 | 0.9  | 5    | 10   | 44       |
|   | 1/17/95 | 26   | 24.8 | 78  | 26 | 0.49 | 1.57 | 1.0 | 1.12 | 0.72 | 5    | 10   | 44       |
|   | 1/18/95 | 6.21 | 23.7 |     |    | 0.52 | 7.42 |     | 1.06 | 0.61 | 5    | 10   | no data  |
|   | 1/20/95 | 6.33 | 18   | 84  | 28 | 0.54 | 2.05 | 1.1 | 1.07 | 1.2  | 5    | 10   | 48       |
|   | 1/22/95 | 3.75 | 16.2 | 93  | 31 | 0.4  | 1.75 | 1.3 | 1.36 | 1.4  | 5    | 10   | 54       |
|   | 1/23/95 | 4.45 | 13.1 | 87  | 29 | 0.43 | 3.24 | 1.2 | 1.09 | 1.22 | 5    | 10   | 50       |
|   | 1/24/95 | 3.46 | 11.8 | 96  | 32 | 0.36 | 1.55 | 1.3 | 1.25 | 1.07 | 5    | 10   | 56       |
|   | 1/25/95 | 4.07 | 12   | 93  | 31 | 0.4  | 2.11 | 1.3 | 1.14 | 1.52 | 5    | 10   | 54       |
|   | 1/26/95 | 4.34 | 17.4 | 87  | 29 | 0.35 | 1.83 | 1.2 | 1.25 | 1.59 | 5    | 10   | 50       |
|   | 1/27/95 | 4.06 | 16.2 | 84  | 28 | 0.46 | 2.28 | 1.1 | 1.18 | 1.08 | 5    | 10   | 48       |

-

Table 17 (cont.). Summary of Metal Concentration Data and Related Water Quality Objectives for Samples Collected from the Sacramento River at Greene's Landing During Water Year 1995.

\_

4

\*

|   | ,       |      |            |             |         |                  |      |     |     |        |            |        |          |
|---|---------|------|------------|-------------|---------|------------------|------|-----|-----|--------|------------|--------|----------|
|   |         |      | NIC        | KEL         |         |                  | LEAD |     |     | ARS    | ENIC       | ·      | HARDNESS |
|   | DATE    | D    | Т          | . <b>C*</b> | C#      | D                | Т    | C*# | D   | Т      | <b>C</b> † | 0'     |          |
|   | 1/28/95 | 4.34 | 15.7       | 84          | 28      | 0.41             | 2.06 | 1.1 | 1   | 1.24   | 5          | 10     | 48       |
|   | 1/29/95 | 3.95 | 10.8       | 78          | 26      | 0.34             | 1.63 | 1.0 | 1.2 | 2 1.13 | 5          | 10     | 44       |
|   | 1/30/95 | 3.11 | 11.3       | 84          | 28      | 0.24             | 1.04 | 1.1 |     | 1.18   | 5          | 10     | 48       |
|   | 1/31/95 | 2.99 | 10.6       | . 84        | 28      | 0.37             | 1.04 | 1.1 |     | 1.54   | 5          | 10     | 48       |
|   | 2/1/95  |      | 6.61       | 87          | 29      | ۰ <sup>د</sup> . | 1.08 | 1.2 |     | •      |            |        | 50       |
|   | 2/2/95  |      | 5.92       | 87          | 29      |                  | 0.86 | 1.2 |     |        |            |        | 50       |
| 2 | 2/3/95  |      | 8.45       | 84          | 28      |                  | 1.33 | 1.1 |     |        |            |        | 48       |
|   | 2/6/95  | 2.44 | 8.63       | 81          | 27      | 0.25             | 1.11 | 1.1 |     |        |            |        | 46       |
|   | 2/10/95 | 2.15 | <b>7.1</b> | • • •       | <br>. · | 0.18             | 0.63 |     |     |        |            | میں بی | no data  |
|   | 2/14/95 |      | 6.71       |             |         |                  | 0.65 |     |     |        |            | ·      | no data  |
|   | 2/17/95 |      | 12.3       |             |         |                  | 1.08 |     |     |        |            |        | no data  |
|   | 2/21/95 |      | 7.04       |             |         |                  | 4.48 |     |     |        |            |        | no data  |
|   | 2/23/95 |      | 6.31       |             |         | `                | 1.56 |     |     |        |            |        | no data  |
|   | 2/24/95 |      | 4.59       |             |         |                  | 6.94 |     |     |        |            |        | no data  |
|   | 2/28/95 |      | 5.85       |             |         |                  | 1.16 |     |     |        |            |        | no data  |
|   | 3/3/95  |      | 5.79       |             |         |                  | 2.86 |     |     |        |            |        | no data  |
|   | 3/5/95  |      | 6.56       |             |         |                  | 0.96 |     |     |        |            |        | no data  |
|   |         |      |            |             |         |                  |      |     | ,   |        |            |        |          |

Table 17 (cont.). Summary of Metal Concentration Data and Related Water Quality Objectives for Samples Collected from the Sacramento River at Greene's Landing During Water Year 1995.

đ

Table 17 (cont.). Summary of Metal Concentration Data and Related Water Quality Objectives for Samples Collected from the Sacramento River at Greene's Landing During Water Year 1995.

.

4

|        |   | NIC  | KEL |    |   | LEAD |     |   | ARS | ENIC |            | HARDNESS |
|--------|---|------|-----|----|---|------|-----|---|-----|------|------------|----------|
| DATE   | D | Т    | C*  | C# | D | Т    | C*# | D | Т   | C†   | <b>o</b> . |          |
| 3/7/95 |   | 6.18 |     |    |   | I    |     |   |     |      |            | no data  |

.

~ ~

Table 18. Number of Dissolved Metal Analyses and Events When Water Quality Objectives or Criteria Were Exceeded for Stations Monitored in the Sacramento/San Joaquin River Delta during Water Years 1993-1995.

| STATION                         | NUMBER OF ANALYSES FOR<br>DISSOLVED METALS | NUMBER OF EVENTS WHEN WATER<br>QUALITY OBJECTIVES/CRITERIA<br>WERE EXCEEDED |
|---------------------------------|--------------------------------------------|-----------------------------------------------------------------------------|
| Sacramento River @ Antioch      | 31                                         | 0                                                                           |
| Duck Slough                     | 34                                         | 0                                                                           |
| French Camp Slough              | 14                                         | 0                                                                           |
| Sacramento River @ Hood         | 57                                         | 0                                                                           |
| Middle River @ Bullfrog Landing | 28                                         | 0                                                                           |
| Mokelumne River                 | 25                                         | 0 '                                                                         |
| Old River @ Tracy Blvd.         | 14                                         | 0                                                                           |
| Paradise Cut                    | 42                                         | 0                                                                           |
| Prospect Slough                 | 42                                         | 0                                                                           |
| Sacramento River @ Rio Vista    | 61                                         | 0                                                                           |
| Skag Slough                     | 0                                          | N/A                                                                         |
| San Joaquin River @ Stockton    | 16                                         | 0                                                                           |
| Ulatis Creek                    | 7                                          | Ō                                                                           |
| San Joaquin River @ Vernalis    | 35                                         | 0                                                                           |
| Greene's Landing                | 143                                        | 0                                                                           |
| ALL STATIONS COMBINED           | 549                                        | 0                                                                           |

. .

í.

|                                                                    | Ceriodaphnia                                        |                                                           | Selenas                                              | trum                                             | Pimephales                                          |                         |  |
|--------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|-------------------------|--|
| Waterway Category                                                  | # Events<br>Exhibiting<br>Toxicity<br>(sample size) | Toxicity Related<br>to (number of<br>events):             | # Events<br>Exhibiting<br>Toxicity•<br>(sample size) | Toxicity<br>Related to<br>(number of<br>events): | # Events<br>Exhibiting<br>Toxicity (sample<br>size) | Toxicity<br>Related to: |  |
| Main River Inputs into the Delta                                   | 2 (29)                                              | diazinon (2) and<br>unknown (1)                           | 0 (26)                                               | N/A                                              | 5 (25)                                              | *                       |  |
| Island Drains                                                      | 1 (49)                                              | no TIE                                                    | 0 (45)                                               | N/A                                              | 2 (41)                                              | *                       |  |
| Back-sloughs and Small Upland<br>Drainages                         | 10 (73)                                             | chlorpyrifos (2)†,<br>carbofuran (2)†,<br>and unknown (9) | 1 (65)                                               | non-polar<br>organic(1)                          | 7 (62)                                              | *                       |  |
| Urban Runoff Receiving Water                                       | 0 (10)                                              | N/A                                                       | 0 (9)                                                | N/A                                              | 0 (8)                                               | N/A                     |  |
| Points Along the Pathways of<br>Water Movement Across the<br>Delta | 3 (76)                                              | no TIE                                                    | 0 (68)                                               | N/A                                              | 3 (63)                                              | *                       |  |
| Total Frequency                                                    | 16 (237)                                            |                                                           | 1 (213)                                              |                                                  | 17 (199)                                            |                         |  |

~

.

Table 19. Summary of 1993-1994 Toxicity Monitoring Results for the Sacramento/San Joaquin River Delta

= "toxic" defined as significantly reduced cell counts relative to a laboratory control
 = linked to toxicity in fixed-date samples and follow-up samples
 \* = no TIEs conducted due to the chronic nature of the observed toxicity

.

- - -

|                                                                    | Ceri                                                | odaphnia                                                                                                 | Selenas                                                   | strum                                                      | Pimepha                                             | les                        |
|--------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------|----------------------------|
| Waterway Category                                                  | # Events<br>Exhibiting<br>Toxicity<br>(sample size) | Toxicity Related to<br>(number of<br>events):                                                            | # Events With<br>Reduced Cell<br>Count• (sample<br>size): | Reduced Cell<br>Count Related<br>to (number of<br>events): | # Events<br>Exhibiting<br>Toxicity (sample<br>size) | Toxicity<br>Related<br>to: |
| Main River Inputs into the Delta                                   | 2 (28)                                              | unknown                                                                                                  | 6 (20)                                                    | unknown                                                    | (0) 14                                              | N/A                        |
| Island Drains                                                      | 1 (32)                                              | carbaryl (1)                                                                                             | 3 (8)                                                     | non-polar<br>organic (1) and<br>unknown (2)                | (0) 1                                               | N/A                        |
| Back-sloughs and Small Upland<br>Drainages                         | 17 (104)                                            | chlorpyrifos (14)†,<br>diazinon (3),<br>metabolically<br>activated pesticides<br>(2), and unknown<br>(8) | 20 (72)                                                   | non-polar<br>organic (2) and<br>unknown                    | (0) 2                                               | N/A                        |
| Urban Runoff Receiving Water                                       | 4 (7)                                               | diazinon (5)† and<br>chlorpyrifos (4)                                                                    | 1 (5)                                                     | no TIE(^)                                                  | N/A                                                 | N/A                        |
| Points Along the Pathways of<br>Water Movement Across the<br>Delta | 0(1)                                                | N/A                                                                                                      | 4 (11)                                                    | unknown                                                    | N/A                                                 | N/A                        |
| Total Frequency                                                    | 24 (172)                                            |                                                                                                          | 29 (116)                                                  |                                                            | (0) 17                                              |                            |

Table 20. Summary of 1994-1995 Toxicity Monitoring Results for the Sacramento/San Joaquin River Delta

(^) = Storm water studies indicate toxicity to algae at Mosher Slough is partially caused by diuron and unknown chemicals

• : cell counts reduced relative to other ambient station sampled on same day

t = linked to toxicity in fixed-date samples and follow-up samples

00

....

 Table 21. Summary of Dissolved Metal Analyses from Samples Collected from 1993 through 1995 and Relationship to Documented

 Effects in the Literature

.

|          |                        |                |                                      | Documented Effec<br>Concentra | ts in the Literature<br>tions Measured in t | # at Highest Metal<br>his Study |
|----------|------------------------|----------------|--------------------------------------|-------------------------------|---------------------------------------------|---------------------------------|
| Metal    | Average Conc.<br>(ppb) | Range<br>(ppb) | Location of Highest<br>Concentration | Fish                          | Invertebrates                               | Algae                           |
| Copper   | 2.64                   | 0.2-9.48       | Greene's Landing                     | Yes                           | Yes                                         | Yes                             |
| Zinc     | 4.39                   | 0.16-70.2      | 5-mile                               | Yes                           | Yes                                         | Yes                             |
| Chromium | 1.34                   | 0.06-5.39      | Duck Slough                          | Yes                           | Yes                                         | Yes                             |
| Lead     | 0.31                   | 0.01-3.87      | 5-mile                               | Yes                           | Yes                                         | No                              |
| Cadmium  | 0.03                   | 0.001-0.55     | Greene's Landing                     | Yes                           | Yes                                         | No                              |
| Nickel   | 2.72                   | 0.13-26        | Greene's Landing                     | No                            | Yes                                         | Yes                             |
| Arsenic  | 1.28                   | 0.13-3.03      | 5-mile                               | No                            | Yes                                         | Yes                             |

# = See Tables 22-42 for description of effect, species exposed, and literature reference.

lĜ

| Species name                               | Chemical      | Duration or test type | Effect/Endpoint                                         | Concentration<br>(µg/L) * | Reference                                                    | Where cited |
|--------------------------------------------|---------------|-----------------------|---------------------------------------------------------|---------------------------|--------------------------------------------------------------|-------------|
| Chlorella rubescens,<br>green algae        | lead          | IC50                  | changes in<br>abundance, growth,<br>biochemical process | between<br>5 and 10       | C. E. Calderon Llanten & H.<br>Greppin, 1993. Ref. No. 16488 | 2           |
| Chlorella pyrenodiosa,<br>green algae      | lead          | 4 d                   | change in cell<br>number                                | 10.35                     | J. L. Stauber & T. M. Florence,<br>1987. Ref. No. 12971      | 2           |
| Aulosira fertilissima,<br>bluc-green algae | lead acetate  | 7 d                   | change in<br>biochemical process                        | 20.7                      | E.F. Shabana et al., 1986. Ref.<br>No. 3385                  | 2           |
| Anabaena sp.,<br>blue green algae          | lead nitrate  | 20 d                  | change in cell<br>number                                | 21                        | V. M. Laube et al., 1980. Ref.<br>No. 9477                   | 1, 2        |
| Scenedesmus quadricauda,<br>green algae    | lead acetate  | 14 d                  | change in<br>chlorophyll content                        | 80                        | M. Pawlaczyk-Szpilowa et al.,<br>1972. Ref. No. 2741         | 2           |
| Haematococcus capensis,<br>green algae     | lead acetate  | 7 d                   | change in cell<br>number                                | 100                       | T. C. Hutchinson, 1973. Ref.<br>No. 8864                     | 2           |
| Hydrodictyon reticulatum,<br>green algae   | lead          | 7 d                   | change in biomass                                       | 100                       | U. N. Rai & P. Chandra, 1992.<br>Ref. No. 8987               | 2           |
| Phytoplankton,<br>mixed freshwater species | lead acetate  | 4 d                   | change in biomass                                       | 100                       | K. Pietilainen, 1975. Ref. No.<br>8184                       | 2           |
| Pediastrum tetras,<br>green algae          | lead          |                       | change in population<br>size                            | 200                       | M. Wettern et al., 1976. Ref.<br>No. 10082                   | 2           |
| Chlamydomonas reinhardtii,<br>green algae  | lead chloride | 1 d                   | change in chlorophyll content                           | 207                       | U. Irmer, et al., 1986. Ref. No.<br>12272                    | 22          |
| Selenastrum capricornutum,<br>green algae  | lead nursue   | 1/d+                  | changes in cell<br>number: physiology                   | 207                       | S Capelo et al., 1993. Ref. No.<br>184 4063                  | 2           |
| Anasystis aeruginosa,<br>bluc-green algae  | lead acetate  |                       | mortality                                               | 250                       | G. Bringmann & R. Kuhn, 1978.<br>Ref. No. 2463               | 2           |
| Scenedesmus acuminatus,<br>green algae     | lead          | 6 d                   | EC50 for change in population size                      | 250                       | P. M. Stokes, 1981. Ref. No.<br>9501                         | 2           |
| Scenedesmus obtusiusculus,<br>green algae  | lead chloride | 7 d                   | 35% growth inhibition                                   | 500                       | T. J. Monahan, 1976                                          | 1, 2        |
| Micrasterias thomasiana,<br>green algae    | lead chloride | 2 hr                  | histological alteration                                 | 621                       | U. Meindl & G. Roderer, 1990.<br>Ref. No. 3151               | 2           |

Table 22. Summary of lead concentrations reported to have adverse effects on sensitive freshwater algal and diatom species

1 - Cited in Lead Criteria Document 1984 (USEPA, 1985A); 2 - Cited in USEPA AQUIRE Database

12

\* Concentration is amount of lead in solution (eg., not as lead acetate); shaded row indicates species used in US EPA Three Species toxicity test protocols

EC50 - median effective concentration; IC50 - mean inhibitory concentration (for growth or a physiological process)

| Species name                                      | Chemical      | Duration or test type | Effect/Endpoint                            | Concentration<br>(mg/L) | Reference                                                   | Where cited |
|---------------------------------------------------|---------------|-----------------------|--------------------------------------------|-------------------------|-------------------------------------------------------------|-------------|
| Tetrahymena pyriformis,<br>ciliate                | lead chloride | 4 min 4               | change in oxygen<br>uptake                 | 0.75                    | J. L. Slabbert & W. S. G. Morgan,<br>1982. Ref. No. 11048   | 2           |
| Hyalella azteca,<br>amphipod                      | lead          | 70 d                  | mortality                                  | 2.6                     | U. Borgmann et al, 1993. Rcf. No.<br>9248                   | 2           |
| Asellus aquaticus,<br>aquatic sowbug              | lead nitrate  | 16 d                  | LT50                                       | 10                      | L. Migliore & M. De Nicola Giudici,<br>1990. Ref. No. 10515 | 2           |
| Lymnaea palustris,<br>marsh snail (freshwater)    | lead nitrate  | 133 d                 | mortality                                  | 12                      | U. Borgmann et al., 1978. Ref. No.<br>8314                  | 2           |
| Daphnia magna,<br>water flea                      | lead acctate  | 1.7 d                 | change in biochemical<br>processes         | 16                      | <b>R. Berglind</b> et al., 1985. Ref. No.<br>10906          | 2           |
| Aeshna cyanea,<br>blue-green dragonfly larvae     | lead nitrate  | 42 d                  | enzyme alterations                         | 20                      | W. Meyer et al., 1986. Ref. No.<br>12306                    | 2           |
| Astacus astacus,<br>European crayfish             | lead          | 14 d                  | changes in enzymes,<br>histological damage | 20                      | W. Meyer et al., 1991. Ref. No. 376                         | 2           |
| Libuella depressa,<br>dragonfly                   | lead nitrate  | 42 d                  | enzyme alterations                         | 20                      | W. Meyer et al., 1986. Ref. No.<br>12306                    | 2           |
| Libuella quadrimaculata, common skimmer dragonfly | lead nitrate  | 42 d                  | enzyme alterations                         | 20                      | W. Meyer et al., 1986. Ref. No.<br>12306                    | 2           |
| Neanthes arenaceodentata,<br>polychaete           | lead chloride | 183 d                 | LOEC for reproductive<br>alterations       | 20                      | D. J. Reish & T. V. Gerlinger, 1984.<br>Ref. No. 4007       | 2           |
| Tubifex tubifex,<br>tubificid worm                | lead nitrate  | 4 d                   | EC50 for immobilization                    | 42                      | B. S. Khangarot, 1991. Ref. No.<br>2918                     | 2           |
| Anodonta grandis,<br>freshwater mussel            | lead nitrate  | 28 d                  | changes in growth,<br>DNA                  | 50                      | M. C. Black et al., 1996. Ref. No.<br>16859                 | 2           |
| Anopheles stephensi,<br>mosquito                  | lead acetate  | 1 d                   | genetic alteration                         | _60                     | G. P. Sharma et al., 1988. Ref. No.<br>5315                 | 2           |
| Caenorhabditis elegans,<br>nematode               | lead nitrate  | 4 d                   | LC50                                       | 60                      | P. L. Williams & D. B. Dusenbery,<br>1990. Ref. No. 3437    | 2           |
| Ceriodaphnia dubia,<br>water flea                 | lead nitrate  | 2 d                   | LC50                                       | 248                     | R. L. Spehar & J. T. Fiandt, 1986.<br>Ref. No. 12093        | 2           |

| Table 23. | Summary of lead concentrations reported to have adverse effects on sensitive freshwater invertebrate specie | es |
|-----------|-------------------------------------------------------------------------------------------------------------|----|
|-----------|-------------------------------------------------------------------------------------------------------------|----|

8

2 - Cited in USEPA AQUIRE database

.

.

\* Concentration is amount of lead in solution (eg., not as lead acetate); shaded row indicates species used in US EPA Three Species toxicity test protocols EC50 - median effective concentration; LC50 - median lethal concentration; LOEC - Lowest observable effect concentration; LT50 - median survival time

88

-

| Species name             | Chemical      | Duration or test<br>type | Effect/Endpoint         | Concentration<br>(µg/L) | Reference                         | Where cited |
|--------------------------|---------------|--------------------------|-------------------------|-------------------------|-----------------------------------|-------------|
| Gasterosteus aculeatus,  |               |                          |                         |                         | J. R. E. Jones, 1938. Ref. No.    |             |
| three-spine stickleback  | lead nitrate  | 4.75                     | LT50                    | 0.2                     | 2657                              | 2           |
| Phoxinus phoxinus,       |               |                          |                         |                         | J. R. E. Jones, 1938. Ref. No.    |             |
| minnow                   | lead nitrate  | 21 d                     | mortality               | 0.5                     | 2657                              | 2           |
| Cyprinus carpio,         |               |                          |                         |                         | H. Nakagawa et al., 1995. Ref.    |             |
| common carp              | lead nitrate  | 20 d                     | enzyme alterations      | 1.1                     | No. 16750                         | 2           |
| Heteropneustes fossilis, |               |                          | changes in enzymes,     |                         | K. C. Singhal, 1994. Ref. no      |             |
| Indian catfish           | lead nitrate  | 60 d                     | biochemical processes   | 6                       | 4448                              | 2           |
| Salmo gairdneri,         |               |                          |                         |                         | P. H. Davies et al., 1976. Ref.   |             |
| rainbow trout            | lead nitrate  | 18 min.                  | physical abnormality    | 7.2                     | No. 2103                          | 2           |
| Carassius auratus,       |               |                          |                         |                         | J. R. E. Jones, 1938. Ref. No.    |             |
| goldfish                 | lead nitrate  | 4.75 d                   | physiological change    | 8                       | 2657                              | 2           |
| Pimephales promelas,     |               |                          | States and the second   |                         | E.K. Biegert & V. Valkovic.       |             |
| fathead minnow           | lead nitrate  | <u>2.94 d</u>            | LT50                    | 10                      | Ref. No. 5302                     | 2           |
| Salvelinus fontinalis,   |               |                          | • · · · ·               |                         | E. S. Adams, 1975. Ref. No.       |             |
| brook trout              | lead          | 21 d                     | impaired locomotion     | 14.3                    | 15675                             | 2           |
| Salmo salar,             |               |                          | change in hatching      |                         | M. Grande & S. Andersen,          |             |
| Atlantic salmon          | lead nitrate  | 15.8 d                   | success                 | 17.2                    | 1983. Ref. No. 10982              | 2           |
| Brachydanio rerio,       |               |                          | no observable effect on |                         | G. Dave & R. Xiu, 1991. Ref.      |             |
| zebrafish                | lead acetate  | 16 d                     | hatching                | 20                      | No. 3680                          | 2           |
| Barbus conchonius,       |               |                          | change in biochemical   |                         | H. Tewari et al., 1987. Ref. No.  |             |
| rosy barb                | lead nitrate  | 30 d                     | process                 | 47.4                    | 12599                             | 2           |
| Salvelinus namaycush ,   |               |                          |                         |                         | S. Sauter, et al., 1976. Ref. No. |             |
| lake trout               | lead nitrate  | 115 d                    | mortality               | 48                      | 8439                              | 2           |
| Lepomis macrochirus,     |               |                          |                         |                         | S. Sauter, et al., 1976. Ref. No. |             |
| bluegill                 | lead nitrate  | 62 d                     | mortality               | 70                      | 8439                              | 2           |
| Tilapia aurea,           |               |                          | changes in biochemical, |                         |                                   |             |
| tilapia                  | lead chloride | 1 d                      | blood parameters        | 100                     | P. Allen, 1993. Ref. No. 16833    | 2           |
| Ictalurus punctatus,     |               |                          | ,                       |                         | S. Sauter, et al., 1976. Ref. No. |             |
| channel catfish          | lead nitrate  | 68 d                     | mortality               | 75                      | 8439                              | 2           |

Table 24. Summary of lead concentrations reported to have adverse effects on sensitive freshwater fish species

1 - Cited in Lead Criteria Document 1984 (USEPA, 1985); 2 - Cited in USEPA AQUIRE Database

ø

\* Concentration is amount of lead in solution (eg., not as lead acetate); shaded row indicates species used in US EPA Three Species toxicity test protocols LC50 - median lethal concentration; LT50 - median time for 50% survival

12
| Species name                              | Chemical                        | Duration or test<br>type | Effect/Endpoint                                      | Concentration<br>(mg/L) | Reference                                                    | Where cited |
|-------------------------------------------|---------------------------------|--------------------------|------------------------------------------------------|-------------------------|--------------------------------------------------------------|-------------|
| Phytoplankton,<br>freshwater species      | arsenic acid,<br>sodium salt    | 109 d                    | EC50 for change in<br>photosynthetic<br>productivity | 1.5                     | S. A. Wangberg et al., 1991. Ref.<br>No. 9419                | 2           |
| Scenedesmus obliquus,<br>green algae      | arsenic acid,<br>disodium salt  | <u>l</u> hr              | change in<br>photosynthetic<br>productivity          | 48                      | O. Hofslagare et al., 1994. Ref. No.<br>16250                | 2           |
| Clorella vulgaris,<br>green algae         | arsenic acid,<br>disodium salt  | 91 d                     | LOEC for population growth                           | 60                      | L. E. Den Dooren de Jong, 1965.<br>Ref. No. 2849             | 2           |
| Chlamydomonas sp .,<br>green algae        | arsenic acid,<br>disodium salt  | 28 d                     | change in population<br>growth                       | 75                      | E. R. Christensen & P. A. Zielski,<br>Ref. No. 9773          | 2           |
| Melosira granulata,<br>diatom             | arsenic acid,<br>trisodium salt | 20 d                     | change in population<br>growth                       | 75                      | D. Planas & F. P. Healey, 1978. Ref.<br>No. 7146             | 1, 2        |
| Ochromonas vallesiaca,<br>phytoplankton   | sodium arsenate                 |                          | decreased growth                                     | 75                      | D. Planas & F. P. Healey, 1978.                              | 1           |
| Ankistrodesmus falcatus,<br>green algae   | arsenic acid,<br>disodium salt  | 14 d                     | EC50 for growth                                      | 256                     | Vocke et al., 1980. Ref. No. 5342                            | 1, 2        |
| Spirogvra sp .,<br>green algae            | arsenic oxide                   | <u>1.83 d</u>            | physiological change                                 | 300                     | E. W. Surber & O. L. Meehan, 1931.<br>Ref. No. 10297         | 2           |
| Selenastrum capricornutum,<br>green algae | arsenic acid,<br>misodium salt  | 4 d                      | EC50 for population<br>growth                        | 690                     | J.E.Richter, 1982                                            | 1,2         |
| Gloetaenium loitesbergeri,<br>green algae | arsenic acid,<br>sodium salt    | 1.54 d                   | physiological change                                 | 800                     | P. V. D. Prasad & Y. B. K.<br>Chowdary, 1981. Ref. No. 15634 | 2           |
| Nostoc sp .,<br>blue-green algae          | arsenic acid,<br>disodium salt  | <u>32 d</u>              | change in biomass                                    | 1000                    | S. Maeda et al., 1987. Ref. No.<br>13296                     | 2           |
| Scenesemus quadricauda,<br>green algae    | arsenic acid,<br>disodium salt  | 7 d                      | change in population<br>growth                       | 2100                    | G. Bringmann & R. Kuhn, 1980.<br>Ref. No. 5303               | 2           |
| Chlamydomonas reinhardtii,<br>green algae | arsenic acid,<br>trisodium salt | 20 d                     | change in population<br>growth                       | 2300                    | D. Planas & F. P. Healey, 1978. Ref.<br>No. 7146             | 1, 2        |
| Cladophora sp .,<br>green algae           | arsenous acid,<br>sodium salt   | 14 d                     | 100% mortality                                       | 2320                    | B. C. Cowell, 1965.                                          | 1           |
| Zygnema sp .,<br>green algae              | arsenous acid,<br>sodium salt   | 14 d                     | 100% mortality                                       | 2320                    | B. C. Cowell, 1965.                                          | 1           |

.

Table 25. Summary of arsenic concentrations reported to have adverse effects on sensitive species of freshwater algae

1 - Cited in Arsenic Criteria Document 1984 (USEPA, 1985B); 2 - Cited in USEPA AQUIRE Database

\* Concentration is amount of arsenic in solution (eg., not as arsenic acid salt); shaded row indicates species used in US EPA Three Species toxicity test protocols

EC50 - median effective concentration; LOEC - lowest observable effect concentration

56

~

.

| Species name             | Chemical       | Duration or test<br>type | Effect/Endpoint       | Concentration<br>(mg/L) | Reference                                | Where cited |
|--------------------------|----------------|--------------------------|-----------------------|-------------------------|------------------------------------------|-------------|
| Daphnia pulex,           |                |                          | EC50 for              |                         |                                          | _           |
| water flea               | arsenic oxide  | 1d                       | immobilization        | 0.5                     | H. Lilius et al., 1995. Ref. No. 16385   | 2           |
| Chironomidae,            |                |                          |                       | i                       | E. W. Surber & O. L. Meehan, 1931.       |             |
| midge species            | arsenic oxide  | 2 d                      | mortality             | 8                       | Ref. No. 10297                           | 2           |
| Bosmina longirostris,    | arsenic acid,  |                          | EC50 for              |                         |                                          |             |
| water flea               | sodium salt    | 4 d                      | immobilization        | 10                      | A. Novak et al., 1980. Ref. No. 2210     | 2           |
| Caenis diminuta,         |                |                          |                       |                         | E. W. Surber & O. L. Meehan, 1931.       |             |
| mayfly larvae            | arsenic oxide  | 2 d                      | mortality             | 16                      | Ref. No. 10297                           | _2          |
| Tetrahymena pyriformis,  |                |                          | change in oxygen      |                         | J. L. Slabbert & J. P. Maree, 1986. Ref. |             |
| ciliate                  | arsenic oxide  | 4.3 min.                 | uptake                | 25                      | No. 12836                                | 2           |
| Paramecium sp .,         |                |                          | change in rate of     |                         | E. W. Surber & O. L. Meehan, 1931.       |             |
| ciliate                  | arsenic oxide  | 2.5 d                    | growth                | 80                      | Ref. No. 10297                           | 2           |
| Gammarus pseudolimnaeus, |                |                          |                       |                         |                                          |             |
| amphipod                 | arsenic oxide  | 14 d                     | mortality             | 88                      | R. L. Spehar et al., 1980. Ref. No. 9783 | 2           |
| Moina macropa,           | arsenic acid,  |                          | mortality, changes in |                         |                                          |             |
| water flea               | disodium salt  | 7 d                      | growth, reproduction  | 100                     | S. Maeda et al., 1990. Ref. No. 3118     | 2           |
| Belestoma elegans.       |                |                          |                       |                         | M. E. Lanzer-DeSouza & N. M. M.          |             |
| water bug                | arsenic oxide  | 1 d                      | mortality             | 100                     | DaSilva, 1988. Ref. No. 13488            | 2           |
| Hvalella knickerbockeri  |                |                          |                       |                         | F W Surber & O I Meehan 1931             |             |
| amphipod                 | arsenic oxide  | 2 d · · ·                | mortality             | 800                     | Ref No 10297                             | 2           |
| Simodophakus sarmulatus  | arsenous acid  |                          |                       |                         |                                          |             |
| Simoaepnaius serruiaius, | arsenous aciu, | acute test               | 1.050                 | 812                     | U O Sanders & O B Cone 1966              | 1           |
|                          | Soutuin san    |                          |                       | 012                     | H. O. Saliders & O. B. Cope, 1900.       |             |
| Daphnia magna,           | arsenic        | 14 4                     | mortality, altered    | 022                     | D. J. Contract al. 1090, DC.Ma. 0702     |             |
| water fiea               | pentoxide      | 14 0                     | reproduction          | 932                     | R. L. Spenar et al., 1980. Ret. No. 9783 | 2           |
| Helisoma campanulatum,   |                | 1.90                     |                       | 0(1)                    |                                          |             |
| ramshorn snail           | arsenic oxide  | 28 a                     | monality              | 961                     | R. L. Spehar et al., 1980. Ref. No. 9783 | 2           |
| Lymnaea emarginata,      |                | 20.1                     |                       | 0.01                    |                                          |             |
| pond snail               | arsenic oxide  | 28 d                     | mortality             | 961                     | R. L. Spehar et al., 1980. Ref. No. 9783 | 2           |
| 😋 Ceriodaphnia dubia,    | arsenic acid,  |                          |                       | 14651 A Same            | R. B-Naddy et al., 1995. Ref. No.        |             |
| water flea               | -sodium salt   | 8d                       | altered reproduction. | 146 1020 F              | 13729                                    | 2 C - 2 C   |

Table 26. Summary of arsenic concentrations reported to have adverse effects on sensitive species of freshwater invertebrates

1 - Cited in Arsenic Criteria Document 1984 (USEPA, 1985B); 2 - Cited in USEPA AQUIRE Database

EC50 - median effective concentration

\* Concentration is amount of arsenic in solution (eg., not as arsenic acid salt); shaded row indicates species used in US EPA Three Species toxicity test protocols

8,

t)

96

e

| Species name                                | Chemical                         | Duration or test<br>type | Effect/Endpoint                             | Concentration<br>(µg/L) | Reference                                            | Where cited |
|---------------------------------------------|----------------------------------|--------------------------|---------------------------------------------|-------------------------|------------------------------------------------------|-------------|
| Oncorhynchus mykiss,<br>rainbow trout       | arsenic acid                     | 1 d                      | physiological change                        | 25                      | A. A. Oladimeji, 1984. Ref. No.<br>10888             | 2           |
| Morone saxatilis,<br>striped bass larvae    | arsenic acid,<br>sodium salt     | 21 d                     | mortality                                   | 80                      | R. J. Klauda, 1985. Ref. No. 4233                    | 2           |
| Carassius aratus,<br>goldfish               | arsenic acid,<br>monosodium salt | 2 d                      | behavioral change                           | 100                     | P. A. Weir & C. H. Hine, 1970. Ref.<br>No. 908       | 2           |
| Lepomis cyanellus,<br>green sunfish         | arsenic acid,<br>disodium salt   | 2 d                      | LC50                                        | 150                     | E. M. B. Sorensen, 1976. Ref. No.<br>5549            | 2           |
| Oncorhynchus kisutch,<br>coho salmon parr   | arsenic oxide                    | 183 d                    | mortality, change in growth & physiology    | 300                     | J. W. Nichols et al., 1984. Ref. No.<br>10236        | 2           |
| Anabas testudineus,<br>climbing perch       | arsenic acid,<br>disodium salt   | 12 hr                    | mortality                                   | 488                     | S. Jana & S. S. Sahana, 1989. Ref.<br>No. 2618       | 2           |
| Clarias batrachus,<br>walking catfish       | arsenic acid,<br>disodium salt   | 13 hr                    | mortality                                   | 488                     | S. Jana & S. S. Sahana, 1989. Ref.<br>No. 2618       | 2           |
| Pimephales promelas;                        | arsenic pentoxide                | 30/d                     |                                             | 530                     | D. L. DeFoe, 1982. Ref. No. 3687                     | 2           |
| Oncorhynchus mykiss,<br>rainbow trout       | arsenic acid,<br>disodium salt   | 77 d                     | mortality                                   | 1400                    | S. M. McGreachy & D. G. Dixon,<br>1990. Ref. No. 273 | 2           |
| Channa punctatus,<br>snake-head catfish     | arsenic acid,<br>disodium salt   | 28 d                     | physiological change                        | 1000                    | K. Ghosh & S. Jana, 1968. Ref. No.<br>814            | 2           |
| Colisa fasciata,<br>giant gourami           | arsenic oxide                    | 30 d                     | change in biological<br>process             | 1500                    | J. P. Shukla & K. Pandey, 1985. Ref.<br>No. 11412    | 2           |
| Heteropneustes<br>fossilis, Indian catfish  | arsenic oxide                    | 30 d                     | change in biological<br>process             | 1500                    | J. P. Shukla et al., 1985. Ref. No.<br>11345         | 2           |
| <i>Jordanella floridae,</i><br>flagfish ELS | arsenous acid,<br>sodium salt    |                          | chronic test                                | 2962                    | Call et al., 1983; Lima et al., 1984                 | 1           |
| Phoxinus phoxinus,<br>minnow                | arsenic acid,<br>disodium salt   | 65 d                     | change in biomass of<br>organism            | 2500                    | R. Reuther, 1992. Ref. No. 6229                      | 2           |
| Thymallus arcticus,<br>arctic grayling      | arsenic acid,<br>disodium salt   | 4 d                      | LC50                                        | 4760                    | K. J. Buhl & S. J. Hamilton, 1990.<br>Ref. No. 334   | 2           |
| Lepomis macrochirus,<br>bluegill larvae     | arsenic oxide                    | 1 <u>d</u>               | obvious stress on<br>physiology or behavior | 5000                    | V. C. Applegate et al., 1957. Ref No.<br>638         | 2           |

.

Table 27. Summary of arsenic concentrations reported to have adverse effects on sensitive freshwater fishes

.

1 - Cited in Arsenic Criteria Document 1984 (USEPA, 1985B); 2 - Cited in USEPA AQUIRE Database

ELS - early life stage; LC50 - median lethal concentration

\* Concentration is amount of arsenic in solution (eg., not as arsenic acid salt); shaded row indicates species used in US EPA Three Species toxicity test protocols

-

| Species Name                                 | Chemical                        | Chemical Duration (days) or<br>test type Effect/ Endpoint Concentration<br>(ug/L) |                                    | Reference | Where Cited                                     |     |
|----------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------|------------------------------------|-----------|-------------------------------------------------|-----|
| Microcystis aeroginosa,<br>blue algae        | Sodium dichromate<br>(Cr VI)    | NR                                                                                | incipient inhibition               | 2         | Bringmann, 1975. Ref.<br>no. 15144              | 2   |
| Anabaena orzae,<br>blue green algae          | Chromic chloride<br>(Cr III)    | 7                                                                                 | change in biomass                  | 5.2       | Shabana et al., 1986.<br>Ref. no. 3385          | 2   |
| Aulosira fertilissama,<br>blue green algae   | Chromium                        | 7                                                                                 | change in population<br>growth     | 5.2       | Shabana at al., 1986.<br>Ref. no. 3046          | 2 · |
| Chlamydomonis reinhardi,<br>green algae      | Potassium dichromate<br>(Cr VI) | NR                                                                                | reduction in growth                | 10        | Zarafonetis & Hampton,<br>1974.                 | ]   |
| Selenastrum capricornutum,                   | Chromiun                        | 0:17                                                                              | change in photosynthesis           | 20        | Pillard et al., 1987 Ref.<br>no. 12639          | 2   |
| Thalassiosira guillardi,<br>diatom           | Chromium                        | 2                                                                                 | change in population<br>growth     | 20        | Wilson & Freeburg,<br>1980. Ref. no. 5557       | 2   |
| Hydrodictyon reticulatum,<br>green algae     | Chromium                        | 0.5                                                                               | change in biomass                  | 100       | Rai & Chandra, 1989.<br>Ref. no. 3348           | 2   |
| Scenedesmus quadricauda,<br>green algae      | Chromium oxide<br>(Cr III)      | 30                                                                                | change in biochemical<br>processes | 100       | Angadi & Mathad, 1994.<br>Ref. no. 17433        | 2   |
| Nitzschia palea,<br>diatom                   | Chromium                        | 4                                                                                 | change in population<br>growth     | 150       | Wium-Anderson, 1974.<br>Ref. no. 15144          | 2   |
| Navicula seminuium,<br>diatom                | Potassium dichromate<br>(Cr VI) | NR                                                                                | 50% growth reduction               | 187       | Academy of Natural<br>Sciences, 1960            | ·1  |
| Nitzschia linearis,<br>diatom                | Potassium dichromate<br>(Cr VI) | - 5                                                                               | LC50                               | 208       | Patrick et. al., 1968                           | 1   |
| Cyclotella meneghiniana,<br>diatom           | Potassium dichromate<br>(Cr Vl) | NR                                                                                | growth inhibition                  | 500       | Cairns and Sheier, 1968                         | 1   |
| Ditylum brightwelli,<br>                     | Chromium chloride<br>(Cr III)   | 5                                                                                 | change in population<br>size       | 2000      | Canterford & Canterford,<br>1980. Ref. No. 6405 | 2   |
| Synechocyotis aquatilis.<br>blue-green algae | Chromium                        | NR                                                                                | change in population<br>growth     | 3000      | Shavrina & Gapochka,<br>1984. Ref. No. 11620    | 2   |
| Chlorella pyrenoidosa,<br>green algae        | Chromium                        | 0.17                                                                              | change in photosynthesis           | 5000      | Wium-Andersen, 1974.<br>Ref. No.15144           | 2   |

È.

· P

Table 28. Summary of chromium concentrations reported to have adverse effects on sensitive freshwater algal and diatom species

1 - Cited in Chromium Criteria Document 1984 (USEPA, 1985C); 2 - Cited in USEPA AQUIRE Database; NR = not reported in AQUIRE database

\* Concentration is amount of chromium in solution; shaded row indicates species used in US EPA Three Species toxicity test protocols

86

6)

.45

| Species Name                                      | Chemical                        | Duration (days) or<br>test type | Effect/ Endpoint                | Concentration<br>(ug/L) | Reference                                                 | Where Cited |
|---------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|-------------------------|-----------------------------------------------------------|-------------|
| <i>Euglena gracilis</i> ,<br>flagellate euglenoid | Chromium oxide<br>(Cr III)      | 0.13                            | mortality                       | 1                       | Yonge, Berrent, &<br>Cairns, 1979. Ref. no.<br>15029      | 2           |
| Daphnia magna,<br>water flea                      | Chromium (3+) salt              | 1                               | LC50                            | 13                      | Dowden & Bennett,<br>1965. Ref. no. 915                   | 2           |
| <i>Glenodium halli,</i><br>dinoflagellate         | Chromium                        | 2                               | change in population<br>growth  | 20                      | Wilson & Freeburg,<br>1980. Ref. no. 5557                 | 2           |
| Tetrahymena pyriformis,<br>ciliate                | Chromium nitrate<br>(Cr 111)    | 0.003                           | change in oxygen<br>consumption | 25                      | Slabbert & Maree, 1986.<br>Ref. no. 12836                 | 2           |
| Simocephalus vetulas,<br>water flea               | Sodium dichromate<br>(Cr VI)    | NR                              | LC50                            | 32.3                    | Mount, 1982                                               | 1           |
| Daphnia pulex,<br>water flea                      | Sodium dichromate<br>(Cr VI)    | NR                              | LC50                            | 36.3                    | Mount, 1982                                               | 11          |
| Anodonta imbeccillis,<br>mussel                   | Chromium                        | 4                               | LC50                            | 39                      | Keller & Zam, 1991.<br>Ref. no. 108                       | 2           |
| Simocephalus serrulatus,<br>cladoceran            | Sodium dichromate<br>(Cr VI)    | NR                              | LC50                            | 40.9                    | Mount, 1982                                               | 1           |
| Ceriodaphnia reticulata,<br>water flea            | Chromium                        | 2                               | LC50                            | 45                      | Mount & Norberg, 1984.<br>Ref. no. 11181                  | 2           |
| Dugesia dorotocephala,<br>turbellarian            | Chromium                        | 0.042                           | change in behavior              | 50                      | Kapu & Schaeffer, 1991.<br>Ref. no. 10582                 | 2           |
| Gymnodium splendons,<br>dinoflagellate            | Chromium                        | 2                               | change in population growth     | 50                      | Wilson & Freeburg,<br>1980. REf. no. 5557                 | 2           |
| Grammararus pseuolimnaeus,<br>amphipod            | Potassium dichromate<br>(Cr VI) | NR                              | LC50                            | 67.1                    | Call et al., 1983                                         | 1           |
| Austropotamobius pallipes,<br>crayfish            | Chromium chloride<br>(Cr III)   | 4                               | LC50                            | 390                     | Vareille-Morel &<br>Chaisemartin, 1982. Ref.<br>no. 15732 | 2           |
| Hyallella azteca,<br>amphipod                     | Potassium chromate<br>(Cr VI)   | NR                              | LC50                            | 650                     | Pardue & Wood, 1980.<br>Ref. No. 6703                     | 2           |
| Plumatella emarginata,<br>bryozoan                | Chromium                        | 4                               | LC50                            | 650                     | Pardue & Wood, 1980.<br>Ref. No. 6703                     | 2           |

Table 29. Summary of chromium concentrations reported to have adverse effects on sensitive species of freshwater invertebrates

,

.

1 - Cited in Chromium Criteria Document 1984 (USEPA, 1985C); 2 - Cited in USEPA AQUIRE Database; NR = not reported in AQUIRE database \* Concentration is amount of chromium in solution; shaded row indicates species used in US EPA Three Species toxicity test protocols

| Species Name                                       | Chemical                              | Duration (days) or<br>test type | Effect/ Endpoint         | Concentration<br>(ug/L) | Reference                                         | Where Cited |
|----------------------------------------------------|---------------------------------------|---------------------------------|--------------------------|-------------------------|---------------------------------------------------|-------------|
| Carassius aurates giblio,<br>carp                  | Chromic chloride<br>(Cr III)          | 9                               | cytogenetic changes      | 0.05                    | Al-Sabtiet al., 1994. Ref. no.<br>2851            | 2           |
| Ctenopharyngodon idella,<br>grass carp             | Chromium                              | NR                              | change in rate of growth | 1.5                     | Mao and Wang, 1990. Ref.<br>no. 9540              | 2           |
| Heteropneustes fossilis,<br>Indian catfish         | Chromium                              | 20                              | change in rate of growth | 10                      | Pandey and Nisha, 1984. Ref.<br>no 2388           | 2           |
| Pimephales promeles,                               | Chromic chloride<br>(Cr III)          | ÷ 30°                           | mortality                |                         | Gendusa, 1990 Ref. no. 4087                       | 2           |
| Salmo gairdner,<br>rainbow trout                   | Cromic nitrate<br>(Cr 111)            | NR                              | Chronic value            | 68.63                   | Stevens and Chapman, 1984                         | 1           |
| Ictalurus punctatus.<br>Channel catfish            | Chromic chloride<br>(Cr III)          | 30                              | mortality                | 154                     | Gendusa, 1991. Ref. no. 4087                      | 2           |
| Oncorhynchus tshawtscha,<br>Chinook salmon         | Chromium potassium<br>salt (Cr IV)    | 84                              | mortality                | 200                     | Olson, 1958. Ref. no. 14123                       | 2           |
| Salvelinus fontinalis,<br>brook trout              | Sodium dichromate<br>(CrVI)           | NR                              | LC50                     | 364.6                   | Benoit, 1976. Ref. no. 4943                       | 2           |
| Oncorhynchus kisutch,<br>Coho Salmon               | Sodium dichromate<br>(CrVI)           | 14                              | Immuno-suppression       | 470                     | Sugatt, 1980.                                     | 1           |
| Carassius auratus,<br>goldfish                     | Chromium                              | 7                               | LC50                     | 660                     | Birge, Black and Westerman,<br>1979. Ref.no. 4943 | 2           |
| Micropterus salmoides,<br>largemouth bass          | Chromic oxide<br>(Cr III)             | 8                               | LC50                     | 1170                    | Birge et al., 1978. Ref. no.<br>6199              | 2           |
| Gasterosteus aculeatus,<br>three spine stickleback | Chromium (3+) salt                    | 10                              | mortality                | 1200                    | Jones, 1939. Ref. no. 2851                        | 2           |
| <i>Tilapia</i> sp.,<br>tilapia                     | Chromic chloride<br>(Cr III)          | 56                              | change in rate of growth | 1760                    | Shiau and Lin, 1993. Ref. no.<br>14617            | 2           |
| Channa punctatus,<br>snake-head catfish            | Chromium                              | 7                               | LC50                     | 2000                    | Jana & Bandyopandhyaya,<br>1988. Ref. no13211     | 2           |
| Poecilia reticulata,<br>guppy                      | Chromic potassium<br>sulfate (Cr III) | 4                               | LC50                     | 3330                    | Pickering and Henderson,<br>1964. Ref. no. 2033   | 2           |

Table 30. Summary of chromium concentrations reported to have adverse effects on sensitive freshwater fish species

1 - Cited in Chromium Criteria Document 1984 (USEPA, 1985C); 2 - Cited in USEPA AQUIRE Database; NR = not reported in AQUIRE database \* Concentration is amount of chromium in solution; shaded row indicates species used in US EPA Three Species toxicity test protocols

33

r,

| Species Name                             | Chemical           | Duration (days) or<br>test type | Effect/ Endpoint               | Concentration<br>(ug/L) | Reference                                                     | Where Cited |
|------------------------------------------|--------------------|---------------------------------|--------------------------------|-------------------------|---------------------------------------------------------------|-------------|
| Anancystis aeruginosa,                   |                    |                                 |                                |                         | Bringmann & Kuhn, 1978.                                       |             |
| blue-green algae                         | Nickelous chloride | 8                               | unreported mortality           | 1.2                     | Ref. no. 2463                                                 | 2           |
| Microcystis aeruginosa,                  |                    |                                 |                                |                         |                                                               |             |
| blue-green algae                         | Nickel chloride    | 8                               | incipient inhibition           | 5                       | Bringmann & Kuhn, 1978                                        | 1           |
| Selenastrum capricornutum,               | Nickelous chloride | 4                               | EC50, change in growth         | 63                      | Bermingham, Man Coillie &<br>Vasseur, 1986. Ref. no.<br>12748 | 2           |
| Clamydomonas reinhardtii                 |                    |                                 | EC30, change in                |                         | Welbourn, 1994. Ref. no.                                      |             |
| green algae                              | Nickelous chloride | 7                               | abundance                      | 6.7                     | 13711                                                         | 2           |
| Chlorella vulgaris,<br>green algae       | Nickelous nitrate  | 91.3                            | NOEC, population growth        | 6.9                     | Den Dooren Jong, 1965.<br>Ref. no. 2849                       | 2           |
| Anacystis nidulans,<br>blue-green algae  | Nickel (2+) salt   | 0.25                            | change in photosynthesis       | 10                      | Azeez & Banerjee, 1987.<br>Ref. no. 12558                     | 2           |
| Chlorella pyrenoidosa,                   |                    |                                 | change in population           |                         | Stauber & Florence, 1987.                                     | -           |
| green algae                              | Nickel             | 4                               | growth                         | 10                      | Ref. no. 12971                                                | 2           |
| Spirulina platensis,<br>blue-green algae | Nickel (2+) salt   | 0.25                            | change in photosynthesis       | 10                      | Azeez & Banerjee, 1987.<br>Ref. no. 12558                     | 2           |
| Anabaena cylindrica,                     | Γ                  |                                 | 13% reduction in doubling      |                         |                                                               |             |
| blue-green algae                         | Nickel sulfate     | 5                               | time                           | 15.1                    | Daday et al., 1985                                            | 1           |
| Thalassioria guillardii,<br>diatom       | Nickel             | 2                               | change in population<br>growth | 50                      | Wilson & Freeburg, 1980.<br>Ref. no. 5557                     | 2           |
| Nostoc linckia,<br>blue-green algae      | Nickelous chloride | 1                               | change in biochemicalprocesses | .50                     | Kumar & Kumar, 1985. Ref.<br>no. 11511                        | 2           |
| Scenedesmus acuminata,<br>green algae    | Nickel nitrate     | 12                              | 54% reduction in growth        | 50                      | Hutchinson & Stokes, 1975.                                    | 1           |
| Navicula pelliculosa,<br>diatom          | Nickelous nitrate  | 7                               | change in population<br>growth | 100                     | Fezy, Spencer & Greene,<br>1979. Ref. no. 8347                | 2           |
| Ankistrodesmus falcatus,<br>green algae  | Nickelous nitrate  | 14                              | change in biomass              | 100                     | Spencer & Greene, 1981.<br>Ref. no. 15439                     | 2           |
| Pediastrum tetras,<br>green algae        | Nickelous nitrate  | 14                              | change in biomass              | 100                     | Spencer & Greene, 1981.<br>Ref. no. 15439                     | 2           |

.

Table 31. Summary of nickel concentrations reported to have adverse effects on sensitive freshwater algal and diatom species

1 - Cíted in Nickel Criteria Document 1986; 2 - Cited in USEPA AQUIRE Database

.

£

\* Concentration is amount of nickel in solution; shaded row indicates species used in US EPA Three Species toxicity test protocols

| Species Name                                 | Chemical           | Duration (days) or<br>test type | Effect/ Endpoint                        | Concentration<br>(ug/L) | Reference                                       | Where Cited |
|----------------------------------------------|--------------------|---------------------------------|-----------------------------------------|-------------------------|-------------------------------------------------|-------------|
| Ceriodaphnia dubia,<br>water flea            | Nickelous nitrate  | ан - <sup>1</sup> 2 - 2         | unspecified mortality                   | 3.8                     | Kszos, Stewart & Taylor, 1992<br>Ref. no. 5920  | 2           |
| Culex pipiens,<br>mosquito                   | Nickelous chloride | 7.29                            | ET50, emergence from<br>larvae to adult | 4.5                     | Suzuki, 1959. Ref. no. 2701                     | 2           |
| Tubifex tubifex,<br>tubificid worm           | Nickel sulfate     | 2                               | LC50                                    | 7                       | Brkovic-Popovic and Popovic,<br>1977            | 1           |
| Asellus aquaticus,<br>aquatic sowbug         | Nickelous chloride | 27                              | LC50                                    | 10                      | Migliore & Guidici, 1990.<br>Ref. no. 10515     | 2           |
| Moina macrocopa,<br>water flea               | Nickelous chloride | 8.5                             | LC50                                    | 10                      | Wong, 1993. REf. no. 6973                       | 2           |
| Daphnia magna,<br>water flea                 | Nickelous chloride | 42                              | mortality                               | 40                      | Munziger, 1990. Ref. no. 3063                   | 2           |
| Uronema pardnez,<br>protozoan                | Nickel chloride    | 0.833                           | incipient inhibition                    | 42                      | Bringmann and Kuhn, 1981                        | 1           |
| Microregma heterostoma,<br>paramecium        | Nickel chloride    | 1.16                            | incipient inhibition                    | 50                      | Bringmann & Kuhn, 1959b                         | 1           |
| Biophalaria glabrata,<br>snail               | Nickel (2+) salt   | <u> </u>                        | physiological stress<br>observed        | 100                     | Harry & Aldrich, 1963. Ref.<br>no. 2853         | 2           |
| Entosiphon sulcatum,<br>flagellate euglenoid | Nickelous chloride | 3                               | change in population<br>growth          | 140                     | Bringmann and Kuhn, 1980.<br>Ref. no. 5303      | 2           |
| Anocystis imbecillis,<br>mussel              | Nickel (2+) salt   | 4                               | LC50                                    | 190                     | Keller & Zam, 1991. Ref. no.<br>108             | 2           |
| Chilomas paramecium,<br>cryptomonad          | Nickelous chloride | 2                               | change in population<br>growth          | 200                     | Bringham, Kuhn & Winter,<br>1980. Ref. no. 5719 | 2           |
| Juga plicifera,<br>snail                     | Nickelous chloride | 21                              | LC50                                    | 204                     | Chapmen, 1986. Ref. no.<br>11982                | 2           |
| Orconectes limosus,<br>crayfish              | Nickelous chloride | 30                              | - LC50                                  | 450                     | Boutet & Chaisemartin, 1973.<br>Ref. no. 5421   | 2           |
| Daphnia pulicaria,<br>water flea             | Nickel             | 2                               | LC50                                    | 697                     | Lind, Alto & Chatterton, 1978.<br>Ref. no. 5081 | 2           |

¢,

12

Table 32. Summary of nickel concentrations reported to have adverse effects on sensitive species of freshwater invertebrates

1 - Cited in Nickel Criteria Document 1986; 2 - Cited in USEPA AQUIRE Database

\* Concentration is amount of nickel in solution; shaded row indicates species used in US EPA Three Species toxicity test protocols

102

ιċ:

L)

| Species Name                                       | Chemical           | Duration (days) or<br>test type | Effect/ Endpoint      | Concentration<br>(ug/L) | Reference                                        | Where Cited |
|----------------------------------------------------|--------------------|---------------------------------|-----------------------|-------------------------|--------------------------------------------------|-------------|
| Salmo gairdner,<br>rainbow trout                   | Nickel chloride    | early life stage                | Chronic value         | <35                     | Nebeker et al. 1985                              | 1           |
| Lepomis macrochirus,<br>bluegill                   | Tetracyanonickel   | >0.42                           | acute mortality       | 75                      | Broderius, T.C. 1973. Ref. no.<br>8778           | 2           |
| Salmo salar,<br>atlantic salmon                    | Nickelous nitrate  | <100                            | unspecified mortality | 104                     | Grande & Anderson, 1983.<br>Ref. no. 10982       | 2           |
| Pimephales promeles,<br>fathead minnow             | Nickel             | 30                              | unspecified mortality | 433.5                   | Lind, Alto & Chatterton, 1978.<br>Ref. no. 5081  | .2          |
| Ictalurus punctatus,<br>Channel catfish            | Nickel chloride    | 7                               | EC50                  | 710                     | Birge et al., 1981                               | 1           |
| <i>Cyprinus carpio,</i><br>common carp             | Nickel sulfate     | 10.7                            | LC50                  | 750                     | Blaylock & Frank, 1979                           | 1           |
| Gasterosteus aculeatus,<br>three spine stickleback | Nickelous nitrate  | 10                              | 100% mortality        | 800                     | Jones, 1939. Ref. no. 2851                       | 2           |
| Oncorhynchus mykiss,<br>rainbow trout              | Nickel (2+) salt   | 0.021                           | impaired reproduction | 1000                    | Shaw & Brown, 1971. Ref. no.<br>9428             | 2           |
| Tilapia nilotica,<br>Nile tilapia                  | Nickelous chloride | 4                               | change in behavior    | 1500                    | Alkahem, 1994. Ref. no.<br>16861                 | 2           |
| Micropterus salmoides,<br>largemouth bass          | Nickelous chloride | 8                               | LC50                  | 2020                    | Birge et al., 1978. Ref. no.<br>6199             | 2           |
| Carassius auratus.<br>goldfish                     | Nickelous chloride | 7                               | LC50                  | 2140                    | Birge, 1978. Ref. no. 5305                       | 2           |
| Ambloplites rupestris,<br>rock bass                | Nickel             | 4                               | LC50                  | 2480                    | Lind, Alto, & Chatterton, 1978.<br>Ref. no. 5081 | 2           |
| Morone saxatilis,<br>stripped bass                 | Nickelous chloride | 4                               | LC50                  | 3900                    | Palawski, Hunn & Dwyer,<br>1985. Ref. no. 11334  | 2           |
| Poecilia reticulata,<br>guppy                      | Nickelous chloride | 4                               | LC50                  | 4450                    | Pickering & Henderson, 1960.<br>Ref. no. 2033    | 2           |
| Oncorynchus kisutch,<br>Coho salmon                | Nickel (2+) salt   | 14                              | unspecified mortality | 4500                    | Becker & Wolford, 1980. Ref.<br>no. 478          | 2           |

,

•

Table 33. Summary of nickel concentrations reported to have adverse effects on sensitive freshwater fishes

1 - Cited in Nickel Criteria Document 1986; 2 - Cited in USEPA AQUIRE Database

.

٠

\* Concentration is amount of nickel in solution; shaded row indicates species used in US EPA Three Species toxicity test protocols

| Table 34. | Summary of copper concentrations r | eported to have adverse effects on 15 freshw | ater fish species |
|-----------|------------------------------------|----------------------------------------------|-------------------|
|-----------|------------------------------------|----------------------------------------------|-------------------|

| Species Name                                    | Chemical                                  | Duration<br>or test type <sup>1</sup> | Effect/<br>Endpoint                                       | Concentration<br>(µg/L) | Hardness<br>(mg/L as CaCO3) | Reference                  | Where<br>Cited |
|-------------------------------------------------|-------------------------------------------|---------------------------------------|-----------------------------------------------------------|-------------------------|-----------------------------|----------------------------|----------------|
| Salmo gairdneri * (fry)<br>rainbow trout        |                                           | l hr                                  | avoidance                                                 | 0.1                     |                             | Folmar, 1976               | 3              |
| Ictalarus fontinalis<br>channel catfish         |                                           | · .                                   | Increased albinism                                        | 0.5                     |                             | Westerman & Birge, 1978    | 3              |
| Oncorhynchus Mykiss<br>steelhead trout          |                                           | 4                                     | Increased susceptibility to<br>Yersinia ruckeri infection | 2                       | 30-60                       | Knittel, 1980              |                |
| Thymallus arcticus<br>arctic grayling           | copper<br>sulfate                         | 4                                     | LC 50-MOR                                                 | 2.58                    | 41.3                        | Buhl & Hamilton, 1990      | 1              |
| Salvelinus fontinalis<br>brook trout            | copper<br>sulfate                         | ELS                                   | Chronic value                                             | 3.873                   | 37.5                        | Sauter et al., 1976        | 3              |
| Salmo gairdneri * (fry)<br>rainbow trout        | copper spiked ambeint<br>water (pH = 6.0) | ` 168 hr                              | LC 50                                                     | 5.1                     | 38 +/- 3                    | Welsh <i>et al.</i> , 1998 |                |
| Pimephales promelas<br>fathcad minnow           | copper<br>murate                          | 32                                    | матс                                                      | 6.2                     | 43.9                        | Spehar & Fiandt, 1986      | 2              |
| Oncorhynchus tshawytscha<br>chinook salmon      | copper<br>chloride                        | ELS                                   | Chronic value                                             | <7.4                    |                             | Chapman, 1975, 1982        | 3              |
| Pimephales notatus<br>bluntnosc minnow          | copper<br>sulfate                         | . LC                                  | Chronic value                                             | 8.793                   | 194                         | Horning & Neiheisel, 1979  | 3              |
| Oncorhynchus tshawytscha<br>chinook salmon      | ambient mixed waste<br>(including Cu)     | 96 hr                                 | LC 50                                                     | 13 +/- 3                | 39-40                       | Finlayson & Wilson, 1989   |                |
| Oncorhynchus Mykiss<br>steelhead trout          | ambient mixed waste<br>(including Cu)     | 96 hr                                 | LC 50                                                     | 14 +/- 4                | 39-40                       | Finlayson & Wilson, 1989   |                |
| Oncorhynchus kisutch<br>coho salmon             | copper<br>sulfate                         | 4                                     | LC50 MOR                                                  | 15.1                    | 41.3                        | Buhl. & Hamilton, 1990     | 2              |
| Salmo clarki<br>cutthroat trout                 | copper<br>chloride                        |                                       | LC50 or EC50                                              | 15.7                    | 26                          | Chakoumakos et al., 1979   | 3              |
| Salmo gairdneri * (fry)<br>rainbow trout        | copper spiked ambeint<br>water (pH = 8.0) | 168 hr                                | LC 50                                                     | 15.9                    | 37 +/- 2                    | Welsh <i>et al.</i> , 1998 |                |
| Ptychocheilus oregonensis<br>northern squawfish | copper<br>chloride                        |                                       | LC50 or EC50                                              | 18.                     | 52-56                       | Andros & Garton, 1980      | 3              |
| Catostomus commersoni<br>white sucker           | copper<br>sulfate                         | ELS                                   | Chronic value                                             | 20.88                   | 45.4                        | McKim <i>et al.</i> , 1978 | 3              |

¢.

-e)

1.

. .

Duration given in days unless otherwise noted. Test Types: LC-Life Cycle, ELS-Early Life Stage. Cited in AQUIRE database. Cited in Copper Criteria document, (USEPA, 1984a). 2. 3.

ũψ

\$7

\* Salmo gairdneri = Oncorhynchus mykiss Shading Pimephales promelas

\_

| Species Name                          | Chemical        | Duration<br>or test type <sup>1</sup> | Effect/<br>Endpoint | Concentration<br>(µg/L) | Hardness<br>(mg/L as CaCO <sub>3</sub> ) | Reference                              | Where<br>Cited |
|---------------------------------------|-----------------|---------------------------------------|---------------------|-------------------------|------------------------------------------|----------------------------------------|----------------|
| <i>Daphnia magna</i><br>water flea    |                 | 21                                    | LC50                | 1.4                     |                                          | Dave, 1984                             | 3              |
| <i>Daphnia similis</i><br>water flea  | copper sulfate  | 4                                     | LC50 MOR            | 4.1                     |                                          | Soundrapandian &<br>Venkataraman, 1990 | 2              |
| Asellus aquaticus<br>aquatic sowbug   | copper sulfate  | 1530                                  | REP, MOR            | 5                       | 300                                      | DcNícola Guidici <i>et al.</i> , 1988  | 2              |
| <i>Daphnia pulex</i><br>water flea    |                 | 2                                     | LC50                | 5.6                     |                                          | Cairus, 1978                           | 3              |
| Moina macrocopa<br>water flea         | copper sulfate  | 2                                     | LC50 MOR            | 5.9                     |                                          | Hatakeyama & Sugaya, 1989              | 2              |
| Insect community                      | copper          | 14                                    | POP                 | 6                       | 88g/m <sup>3</sup>                       | Clementes et al., 1989                 | 2              |
| Gammarus pseudolimnaeus<br>amphipod   | copper sulfate  | LC                                    | Chronic Value       | 6.066                   | 45                                       | Arthur & Leonard, 1970                 | 3              |
| Ceriodaphnia dubia<br>water flea      | copper          | 7                                     | NOEL REP            | 6.3                     | 94.1                                     | Belanger et al., 1989                  | 2              |
| Daphnia pulicaria<br>water flea       |                 |                                       | LC50 or EC50        | 7.24                    | 48                                       | Lind et al., manuscript                | 3              |
| <i>Daphnia lumholzi</i><br>water flea | copper          | 4                                     | LC50 MOR            | 9.4                     | 200                                      | Vardia <i>et al.</i> , 1988            | 2              |
| Corbicula manilensis<br>Asíatic clam  |                 | 70                                    | ILC                 | <10                     |                                          | Harrison et al., 1981, 1984            | 3              |
| Proasselus coxalis<br>isopod          | copper sulfate  | 21.3                                  | LT50 MOR            | 10                      |                                          | DcNicola Guidici et al., 1987          | 2              |
| Clistornia magnifica<br>caddisfly     | copper chloride | LC                                    | Chronic Value       | 10.39                   | 26                                       | Nebeker et al., 1984b                  | 3              |
| Compeloma decisum<br>snail            | copper sulfate  | LC                                    | Chronic Value       | 10.88                   | 35-55                                    | Arthur & Leonard, 1970                 | 3              |
| Physa integra<br>snail                | copper sulfate  | LC                                    | Chronic Value       | 10.88                   | 35-55                                    | Arthur & Leonard, 1970                 | 3              |

-

٠

.

in a factor concentrations reported to have adverse effects on 15 freshwater invertebrate species T 11- 75 0

ŧ

.

1.

Duration given in days unless otherwise noted. Test Types: LC-Life Cycle, ELS-Early Life Stage. Cited in AQUIRE database. Cited in Copper Criteria document, (USEPA, 1984a). 2 3

Ceriodaphnia dubia Shading .

.

-

- -

| Species Name                                    | Chemical       | Duration<br>or test type <sup>1</sup> | Effect/<br>Endpoint                     | Concentration<br>(µ/L) | Hardness<br>(mg/L as<br>CaCO3) | Reference                              | Where<br>Cited |
|-------------------------------------------------|----------------|---------------------------------------|-----------------------------------------|------------------------|--------------------------------|----------------------------------------|----------------|
| Chlorella pyrenoidosa<br>green algae            |                |                                       | lag in growth                           | 1                      |                                | Steeman-Nielsen & Wium-Anderse<br>1970 | n, 3           |
| Mixed periphyton algae                          |                | 2.5                                   | photosynthesis                          | 2.5                    |                                | Leland & Carter, 1984                  | 4              |
| Algae mixed culture                             |                |                                       | significant reduction in photosynthesis | 5                      |                                | Elder & Horne, 1978                    | 3              |
| Nitzchia palea<br>diatom                        |                |                                       | complete growth inhibition              | 5                      |                                | Steeman-Nielsen & Wium-Anderse<br>1970 | , 3            |
| Scenedesmus quadricuada<br>grccn algac          |                |                                       | metabolism                              | 5                      |                                | Peterson et al., 1984                  | 4              |
| Chlamydomonas reinhardtii<br>green algae        | copper sulfate | 3                                     | NOEC-LOEC                               | 5.9                    | 76                             | Garvey et al., 1991                    | 2              |
| <i>Chlorella</i> sp<br>green algae              |                |                                       | photosynthesis inhibited                | 6.3                    | ·.                             | Gachter et al., 1973                   | 3              |
| Phytoplankton mixed species                     |                | 5.2                                   | reduced rate of primary<br>production   | 10                     |                                | Cote, 1983                             | • 3            |
| <i>Selenastrum capricornutum</i><br>green algae | copper sulfate | 3                                     | EC50 GRO                                | 10                     |                                | Vasseur et al., 1988                   | 1              |
| Uroglena sp<br>crysophyte                       | copper sulfate | 14.35                                 | PGR                                     | 19.7                   | 102                            | Moore & Winner, 1989                   | <b>2</b> .     |
| Chlorella regularis<br>green algae              |                |                                       | lag in growth                           | 20                     |                                | Sakaguchi et al., 1977                 | 3              |
| Haematococcus sp<br>green algae                 |                | 4                                     | inhibited growth                        | .50                    |                                | Pcarlmutter & Buchheim, 1983           | 3              |
| Chlorella vulgaris<br>grccn algac               |                | 4                                     | IC50                                    | 62                     |                                | Ferard et al., 1983                    | 2              |
| Anabeana strain 7120<br>algac                   |                |                                       | lag in growth                           | 64                     |                                | Laube et al., 1980                     | 2              |
| Anubcana nidulans<br>algac                      |                |                                       | growth inhibition                       | 100                    |                                | Young & Lisk, 1972                     | 2              |

ud ta hava advarca affaata on 15 frash Table 36

Duration given in days unless otherwise noted. Test Types: LC-Life Cycle, ELS-Early Life Stage. Cited in AQUIRE database.

2. 3. 4.

Cited in Copper Criteria document (USEPA, 1984a). Cited in Table II-10 (Lillebo *et al.*, 1988).

Shading Sclenastrum capricornutum

106

i ÉÌ

| Species Name                                 | Chemical        | Duration<br>or test<br>type <sup>1</sup> | Effect/<br>Endpoint            | Concentration<br>(µg/L) | Hardness<br>(mg/L<br>as CaCO3) | Reference .                                 | Where<br>Cited |
|----------------------------------------------|-----------------|------------------------------------------|--------------------------------|-------------------------|--------------------------------|---------------------------------------------|----------------|
| Salmo gairdneri<br>rainbow trout             | zinc sulfate    | 10 minutes                               | Avoidance                      | 5.6                     | 13-15                          | Sprague, 1964b                              | 2              |
| <i>Jordanella floridea</i><br>flagfish       | zinc sulfate    | LC                                       | Chronic Value                  | 36.41                   | 44                             | Spchar, 1976a,b                             | 2              |
| Salmo salar<br>Atlantic salmon (parr)        | zinc sulfate    | 4 hours                                  | EC50 avoidance                 | 49.88                   | 18                             | Sprague, 1964b                              | 2              |
| Oncorhynchus tshawytscha<br>chinook salmon   | zinc sulfate    |                                          | acute toxicity                 | 84                      | 21                             | Finlayson & Verrue, 1982                    | 2              |
| Salmo clarki<br>cutthroat trout (fingerling) | zinc sulfate    |                                          | acute toxicity                 | 90                      |                                | Rabe & Sappington, 1970                     | 2              |
| Morone saxatilis<br>striped bass (larvae)    |                 |                                          | acute mortality                | 100                     | 38                             | Hughes, 1973                                | 4              |
| Pimephales promelas<br>fathcad minnow        | zinc sulfate    | LC                                       | Chronic value                  | 106.3                   | 46                             | Benoit & Holcombe, 1978                     | 2              |
| <i>Thymallus arcticus</i><br>arctic grayling |                 | 4                                        | LC50 MOR                       | 112                     | 41.3                           | Buhl & Hamilton, 1990                       | 3              |
| Salmo trutta<br>brown trout                  | zinc chloride   | 48 hr                                    | LC 50                          | 164                     | 102                            | Marr et al., 1995                           |                |
| Oncorhynchus mykiss<br>steelhead trout       | acid mine waste | 96 hr                                    | LC 50                          | 167                     | 52                             | Finlayson and Wilson, 1989                  |                |
| Poecilia reticulata<br>guppy                 | zinc sulfate    | LC                                       | Chronic value                  | <173                    | 30                             | Picrson, 1981                               | 2              |
| Oncorhynchus tshawytscha<br>chinook salmon   | acid mine waste | 96 hr                                    | LC 50                          | 178                     | 52                             | Finlayson and Wilson, 1989                  |                |
| Salmo trutta<br>brown trout                  | zinc chloride   | 48 hr                                    | LC 50                          | 164                     | 102                            | Mart <i>et al.</i> , 1995                   |                |
| <i>Lepomis macrochirus</i><br>blucgill (fry) | zinc sulfate    | 3                                        | lethal                         | 235                     | 51                             | Cairns & Sparks, 1971: Sparks et al., 1972b | 2              |
| Oncorhynchus kisutch<br>coho salmon (fry)    | zinc sulfate    | 1                                        | decreased white<br>blood cells | 500                     | 3-10                           | McLeay, 1975                                | 2              |

.

٠

Table 37 Summary of zine concentrations reported to have adverse effects on 14 freshwater fish species

٠

1.

Duration given in days unless otherwise noted. Test Types: LC-Life Cycle, ELS-Early Life Stage. Cited in Zinc Criteria document, (USEPA, 1987). Cited in AQUIRE database. Cited in Table II-12 (Lillebo et al., 1988).

2. 3. 4.

Salmo gairdneri = Oncorhynchus mykiss; Shading = Pimephales promelas

Summary of zinc concentrations reported to have adverse effects on 15 freshwater invertebrate species Table 38.

| Species Name                                       | Chemical      | Duration or<br>Test Type <sup>1</sup> | Effect/<br>Endpoint                         | Concentration<br>(µg/L) | Hardness<br>(mg/L as CaCO3) | Reference                                          | Where<br>Cited |
|----------------------------------------------------|---------------|---------------------------------------|---------------------------------------------|-------------------------|-----------------------------|----------------------------------------------------|----------------|
| Asellus aquaticus<br>aquatic sowbug                | zinc sulfate  | . 18                                  | LT50 MOR                                    | 10                      | 240                         | Migliore & DeNicola Guidici,<br>1990               | 3              |
| Daphnia magna<br>water fica                        | zinc sulfate  | . 50                                  | REP                                         | 25                      | 51.9                        | Paulauskis & Winner, 1988                          | 3              |
| Ceriodaphnia reticulata<br>water flea              | zinc chloride |                                       | acute toxicity                              | 32                      | 45                          | Carlson & Roush, 1985                              | 2              |
| Tanytarsus dissimilis<br>midge (embryo-3rd instar) | zinc chloride | 10                                    | LC50                                        | 36.8                    | 46.8                        | Anderson et al., 1980                              | 2              |
| <i>Corbicula</i> sp.<br>clam                       | zinc sulfate  | 5-30                                  | GRO, ENZ                                    | 34-1130                 |                             | Farris <i>et.al.</i> , 1989                        | 3              |
| Ceriodaphnia dubia<br>water Nca                    | zinc          | 7                                     | NOECLOEC                                    | <b>&lt;25-25</b>        | 46                          | UCD Aquatic Toxicology<br>Lab(unpublished results) |                |
| Tropocyclops prasinus<br>copepod                   | zinc chloride | 2                                     | EC50 motility                               | 52                      | 10                          | Lalande & Pinel-Alloul, 1986                       | 2              |
| Ancylus fluviatilis<br>river limpet                | zinc sulfate  | 100                                   | LC50 MOR                                    | 80                      |                             | Willis, 1988                                       | 3              |
| Zooplankton<br>(mixed species)                     | zinc chloride | 3 weeks                               | reduced crustacean density<br>and diversity | 100                     |                             | Marshall et al., 1981                              | 2              |
| Daphnia pulex<br>wäter fica                        |               |                                       | acute toxicity                              | . 117                   | . 45                        | Mount & Norberg, 1984                              | · .·· 2 .      |
| Anodonta imbecilis<br>mussel                       | zinc sulfate  | 4                                     | LC50 MOR                                    | 268                     |                             | Keller & Zam, 1991                                 | 3              |
| Physa heterostropha<br>snail (young)               | zinc sulfate  |                                       | acute toxicity                              | 303                     | 20                          | Wurtz, 1962                                        | 2              |
| Daphnia lumholzi<br>water fica                     | zinc          | 4                                     | LC50 MOR                                    | 437.5                   |                             | Vardia et al., 1988                                | 3              |
| Aedes aegypti<br>mosquito (pupa)                   | zinc sulfate  | 3                                     | 20% mortality                               | 500                     | 4                           | Abbasi et al.,1985                                 | 2              |
| Biomphalaria glabrata<br>snail                     | zinc chloride | 33                                    | REP                                         | 500                     | 61-61.8                     | Munzinger & Guarducci, 1988                        | 3              |

ŧ۶.

ą.

Duration given in days unless otherwise noted. Cited in Zinc Criteria document SEPA, 1987). Cited in AQUIRE database. t.

2. 3.

Ceriodaphnia dubia Shading

\*)

**4**)

**R**)

| Table 39. | Summary of a | zinc | concentrations | reported | to I | have adverse | effects on | 10 freshw | ater algal sp | ecies |
|-----------|--------------|------|----------------|----------|------|--------------|------------|-----------|---------------|-------|
|           |              |      |                |          |      |              |            |           |               |       |

.

| Species Name                             | Chemical      | Duration or<br>Test Type <sup>1</sup> | Effect/<br>Endpoint            | Concentration<br>(µg/L) | Hardness<br>(mg/L<br>as CaCO3) | Reference                    | Where<br>Cited |
|------------------------------------------|---------------|---------------------------------------|--------------------------------|-------------------------|--------------------------------|------------------------------|----------------|
| Ankistrodesmus falcatus<br>grccn algae   | zinc chloride | I                                     | PGR                            | 5-30                    |                                | Wong & Chau, 1990            | 3              |
| Navicula pelliculosa<br>diatom           | zinc chloride | 1                                     | PGR                            | 5-30                    |                                | Wong & Chau, 1990            | 3              |
| Scenedesmus quadricauda<br>grccn algac   | zinc chloride | 1                                     | PGR                            | 5-30                    |                                | Wong & Chau, 1990            | 3              |
| Selenastrum capricornutum<br>grccn algac | zinc chloride | 7                                     | incipient growth<br>inhibition | 30                      |                                | Bartlett et al., 1974        | 2              |
| Chlamydomonas variabilis<br>green algae  |               | 6                                     | 30% reduction in division rate | 503                     |                                | Balcs et al., 1983           | 2              |
| Algac<br>mixed species                   | zinc sulfate  | 5-30                                  | BMS                            | 540                     |                                | Genter et al., 1988          | 3              |
| Navicula seminulum<br>diatom             | zinc chloride | 5                                     | EC50 growth                    | 1320                    |                                | Acad. of Nat. Sci., 1960     | 2              |
| Chlorella vulgaris<br>green algae        | zinc sulfate  | 4                                     | EC50 growth                    | 2400                    |                                | Rachlin & Farran, 1974       | 2              |
| Chlorella saccarophila<br>green algae    | zinc chloride | 4                                     | EC50                           | 7100                    |                                | Rachlin <i>et al.</i> , 1982 | 2              |
| Navicula incerta<br>diatom               | zinc chloride | 4                                     | EC50                           | 10000                   |                                | Rachlin et al., 1983         | 2              |

4

٠

Duration given in days unless otherwise noted. Cited in Zinc Criteria document (USEPA, 1987). Cited in AQUIRE database.

1. 2. 3.

Selenastrum capricornutum Shading

| Species Name                                          | Chemical         | Duration<br>or test type <sup>1</sup> | Effect/<br>Endpoint | Concentration<br>(µg/L) | Hardness<br>(mg/L as CaCO <sub>3</sub> ) | Reference                  | Where<br>Cited |
|-------------------------------------------------------|------------------|---------------------------------------|---------------------|-------------------------|------------------------------------------|----------------------------|----------------|
| Salmo guirdneri<br>rainbow trout                      |                  | 18 months                             | reduced survival    | 0.2                     | 112                                      | Birgc <i>et al.</i> , 1981 | 2              |
| Ictalurus punctatus<br>catfish                        | cadmium chloride |                                       | increased albinism  | 0.5                     |                                          | Westerman & Birge, 1978    | 2              |
| Morone saxatilis<br>striped bass                      | cadmium chloride |                                       | LC50 or EC50        | 1                       | 34.5                                     | Hughes, 1973               | 2              |
| Oncorhynchus tshawytscha<br>Chinook salmon (juvenile) |                  |                                       | acute mortality     | 1.1                     | 20-22                                    | Finlayson & Verrue, 1982   | 3              |
| Salmo trutta<br>brown trout                           |                  |                                       | acute montality     | 1.4                     | 39.48                                    | Spchar & Carlson, 1984     | 3              |
| Salvelinus fontinalis<br>brook trout                  |                  |                                       | acute montality     | <1.5                    | 42                                       | Carrol et al., 1979        | 3              |
| Oncorhynchus mykiss<br>steelhead trout (fry)          | acid mine waste  | 96 hr                                 | LC 50               | 1.6                     | 52                                       | Finlayson and Wilson, 1989 |                |
| Oncorhynchus tshawytscha<br>Chinook salmon (fry)      | acid mine waste  | 96 hr                                 | LC 50               | 1.9                     | 52                                       | Finlayson and Wilson, 1989 |                |
| Oncorhynchus kisutch<br>coho salmon (juvenile)        | cadmium chloride | 9                                     | LC50                | 2.0                     | 22                                       | Chapman & Stevens, 1978    | 2              |
| <i>Salmo sulur</i><br>Atlantic salmon                 | cadmium chloride | 70                                    | reduced growth      | 2.0                     | 13                                       | Peterson, 1983             | 2              |
| <i>Jordanella floridea</i><br>flagfish                | cadmium chloride | LC                                    | Chronic value       | 4.4161                  | 44-51                                    | Carlson et al., 1982       | 2              |
| Catostomus commersoni<br>white sucker                 | cadmium chloride | ELS                                   | Chronic value       | 7.099                   | 44                                       | Eaton et al., 1978         | 2              |
| Salvelinus namaycush<br>lake trout                    | cadmium chloride | ELS                                   | Chronic value       | 7.357                   | 44                                       | Eaton et al., 1978         | 2              |
| Esox lucius<br>nothern pike                           | cadmium chloride | ELS                                   | Chronic value       | 7.361                   | 44                                       | Eaton <i>et al.</i> , 1978 | 2              |
| Micropterus dolomieui<br>smallmouth bass              | cadmium chloride | ELS                                   | Chronic value       | 7.390                   | 44                                       | Eaton <i>et al.</i> , 1978 | 2              |

<sup>+</sup> Table 40 concentrations reported to have adverse effects on 15 freshwater fish species Sur m. of and

Duration given in days unless otherwise noted. Test Types: LC-Life Cycle, ELS-Early Life Stage. Cited in Cadmium Criteria document, (USEPA, 1984b). Cited in Table 11-7 (Lillebo et al., 1988).

ŕ

÷

2. 3.

• Salmo gairdneri = Oncorhynchus mykiss Shading Pimephales promelas

| Species Name                            | Chemical         | Duration<br>or test type <sup>1</sup> | Effect/<br>Endpoint   | Concentration<br>(µg/L) | Hardness<br>(mg/L as CaCO <sub>3</sub> ) | Reference                       | Where<br>Cited |
|-----------------------------------------|------------------|---------------------------------------|-----------------------|-------------------------|------------------------------------------|---------------------------------|----------------|
| Daphnia magna                           | cadmium chloride | LC                                    | Chronic value         | 0.1523                  | 53                                       | Chapman et al., manuscript      | 3              |
| Ceriodaphnia reticulata<br>water flea   | cadmium chloride | 7                                     | LOEC REP              | 0.2                     | 240                                      | Elnabarawy <i>et al.</i> , 1986 | 2              |
| Moina macrocopa<br>water flea           | cadmium chloride | 20                                    | reduced survival      | 0.2                     | 80-84                                    | Hatakeyama & Yasuno,<br>1981b   | 3              |
| Acanthocyclops viridis<br>copepod       | cadmium chloride | 3                                     | LC50                  | 0.5                     |                                          | Braginsky & Scherban, 1978      | 3              |
| Hyalella azteca<br>scud                 | cadmium          | 42                                    | LC50*MOR              | 0.53                    | 130                                      | Borgmann <i>et al.</i> , 1991   | 2              |
| Ceriodaphnia dubia<br>water flea        | cadmium sulfate  | 7                                     | GRO, REP              | 1                       | 90                                       | Winner, 1988                    | 2              |
| Daphnia pulex<br>water flea             | cadmium chloride | 140                                   | reduced reproduction  | 1                       | 57                                       | Bertram & Hart, 1979            | 3              |
| Polypedilum nubifer<br>midge            | cadmium chloride | 8                                     | DVP                   | 1                       |                                          | Hatakcyama, 1987                | 2              |
| Gammarus fasciatus<br>scud              | cadmium          | 42                                    | MOR                   | 1.49                    |                                          | Borgmann et al., 1989           | 2              |
| Astacus astacus<br>European crayfish    | cadmium          | 14-70                                 | ENZ, HIS              | 2                       |                                          | Mcycr et al., 1991              | 2              |
| <i>Ephemerella</i> sp<br>mayfly         | cadmium chloride | 28                                    | LC50                  | <3                      | 44-48                                    | Spchar <i>et al.</i> , 1978     | 3              |
| Aplexa hypnorum<br>snail                | cadmium chloride | LC                                    | Chronic value         | 3.460                   | 45.3                                     | Holcombe et al., 1984           | 3              |
| Tanytarsus dissimilis<br>midge          | cadmium chloride | 10                                    | LC50                  | 3.8                     | 47                                       | Anderson et al., 1980           | 3              |
| Daphnia galvata menilotae<br>cladoceran | cadmium chloride | 22 weeks reduced biomass 4.0 Ma       |                       | Marshall, 1978a         | 3                                        |                                 |                |
| Cambarus latimus<br>¢rayfish            | cadmium chloride | 5 months                              | significant mortality | 5                       | 11.1                                     | Thorp <i>et al.</i> , 1979      | 3              |

•

· · ·

Table 41. Summary of cadmium concentrations reported to have adverse effects on 15 freshwater invertebrate species

. .

1. Duration given in days unless otherwise noted. Test Types: LC-Life Cycle, ELS-Early Life Stage.

2. Cited in AQUIRE database.

3. Cited in Cadmium Criteria document (USEPA, 1984b).

Shading

.

Ceriodaphnia dubia

| Table 42. | Summary of cadmium | concentrations r | reported to have | adverse effects | on 15 | freshwater algal species |
|-----------|--------------------|------------------|------------------|-----------------|-------|--------------------------|
|           | -                  |                  |                  |                 |       | ~ I                      |

| Species Name                                | Chemical         | Duration<br>or test type <sup>1</sup> | Effect/<br>Endpoint                 | Concentration<br>(µg/L) | Hardness<br>(mg/L as CaCO3) | Reference                    | Where<br>Cited |
|---------------------------------------------|------------------|---------------------------------------|-------------------------------------|-------------------------|-----------------------------|------------------------------|----------------|
| Asterionella formosa<br>diatom              |                  |                                       | factor of 10 growth rate decrease   | 2                       |                             | Conway, 1978                 | 3              |
| Algae mixed species                         | cadmium chloride |                                       | significant reduction in population | 5                       |                             | Gicsy et al., 1979           | 2              |
| Scenedesmus quadricauda<br>green algae      | cadmium chloride |                                       | reduction in cell count             | 6.1                     |                             | Klass <i>et al.</i> , 1974   | 3              |
| Chlamydomonas reinhardtii<br>green algae    | cadmium chloride | 6.7                                   | PGR                                 | 7.5-40                  |                             | Lawrence et al., 1989        | 2              |
| Selenastrum capricornutum<br>green algae    | cadmium chloride | 4.0                                   | PGR                                 | 8                       |                             | Thompson et al., 1987        | 2              |
| Chara vulgaris                              | cadmium sulfate  | 14                                    | IC50 GRO                            | 9.5                     |                             | Heumann, 1987                | 2              |
| Scenedesmus hijugatus                       | cadmium sulfate  | 1-12                                  | physiological                       | 10 .                    |                             | Sathya & Balakrishnan, 1987  | 2              |
| Chlorella vulgaris<br>green algae           |                  |                                       | reduction in growth                 | 50                      |                             | Hutchinson & Stokes, 1975    | 3              |
| <i>Scenedesmus dimorphus</i><br>green algae | cadmium nitrate  | 2                                     | EC50*IMM                            | 63                      |                             | Ghosh et al., 1990           | 2              |
| Scenedesmus subspicatus<br>green algae      | cadmium chloride | 3                                     | EC50 BMS                            | 100                     |                             | Kuhn & Pattard, 1990         | 2              |
| Algae                                       | cadmium          | 14                                    | BMS                                 | 100                     | -                           | Kerrison et al., 1988        | 2              |
| Chlorella saccharophila<br>green algae      | cadmium chloride | . 4                                   | EC50                                | 105                     |                             | Rachlin <i>et al.</i> , 1984 | 3 1            |
| Anabeana flos-aquae                         | cadmium chloride | 4                                     | EC50                                | 120                     |                             | Rachlin et al., 1984         | 3              |
| Chlorella pyrenoidosa                       | cadmium chloride |                                       | reduction in growth                 | 250                     |                             | Hart & Scalfe, 1977          | 3              |
| Navicula incerta<br>diatom                  | cadmium chloride |                                       | EC50                                | 310                     |                             | Rachlin <i>et al.</i> , 1982 | 3              |

Duration given in days unless otherwise noted. Test Types: LC-Life Cycle, ELS-Early Life Stage. Cited in AQUIRE database. Cited in Cadmium Criteria document (USEPA, 1984b). 2. 3.

14

ίŧ,

Shading Selenastrum capricornutum

|                                    | Сор                | per           | Zir           | nc            | Chror         | nium          | Le            | ad            | Cadn          | nium          | Nic           | kel           | Ars           | enic          |
|------------------------------------|--------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Year and Method                    | Total<br>(kg)      | Daily<br>Avg. | Total<br>(kg) | Daily<br>Avg. | Total<br>(kg) | Daily<br>Avg. | Total<br>(kg) | Daily<br>Avg. | Total<br>(kg) | Daily<br>Avg. | Total<br>(kg) | Daily<br>Avg. | Total<br>(kg) | Daily<br>Avg. |
| 1994<br>Average                    |                    |               |               |               |               | ·             |               |               |               | , , ,         |               |               |               |               |
| Concentration<br>Method            | 20,900             | 174           | 50,700        | 423           | 14,700        | 123           | 3,240         | 27            | 698           | 6             | 19,800        | 165           |               |               |
| Model                              | 16,500             | 141†          | 37,900        | 323†          | 10,500        | 89†           | 2,290         | 20†           | *             | *             | 13,700        | 117†          |               |               |
| 1995                               |                    |               |               |               |               |               |               |               |               |               |               |               |               |               |
| Average<br>Concentration<br>Method | 144,000            | 1360^         | 394,000       | 3720^         | 155,000       | 1,460^        | 54,400        | 513^          | 1,660         | 16^           | #######       | 1,900^        | 20,800        | 196^          |
| Model                              | *                  | *             | *             | *             | *             | *             | *             | *             | *             | *             | *             | *             | *             | *             |
| % Increase                         | % Increase 872 (1) |               | 1040          | (1)           | 1476          | (1)           | 2,37          | 6 (1)         | 237           | (2)           | 1,467         | / (1)         | N/            | A             |

Table 43. Comparison of Metal Load Estimates in the Sacramento River at Greene's Landing from January Through April During a Dry Year (1994) and Wet Year (1995).

£.

1

(1) = % increase from 1994 model calculation to 1995 average concentration method

(2) = % increase from 1994 average concentration method to 1995 average concentration method

\* = Model could not be applied due to insignificant relationship between total metal concentrations and flow

 $\dagger$  = Daily average based on 117 days when flows were recorded

^ = Daily average based on 106 days when flows were recorded

The number of significant figures for load estimates was set at three due to uncertainties in flow measurements and regression analyses.

Table 44. Comparison of Metal Loads to the Delta Contributed by Sources Which Drain Into the Yolo Bypass and Sacramento River During High Flows From January Through April 1995

| METAL    | CONTRIBUTION  | BYPASS  | RIVER   | TOTAL     |
|----------|---------------|---------|---------|-----------|
| Copper   | Total (kg)    | 296,000 | 144,000 | 440,000   |
|          | Daily Average | 2,850*  | 1,360†  | 4,210     |
|          | Percent       | 67      | 33      | 100       |
| Zinc     | Total (kg)    | 727,000 | 394,000 | 1,120,000 |
|          | Daily Average | 6,990*  | 3,720†  | 10,700    |
|          | Percent       | 65      | 35      | 100       |
| Chromium | Total (kg)    | 472,000 | 155,000 | 627,000   |
|          | Daily Average | 4,540*  | 1,460†  | 6,000     |
|          | Percent       | 74      | 26      | 100       |
| Lead     | Total (kg)    | 64,700  | 54,400  | 119,000   |
|          | Daily Average | 622*    | 513†    | 1,140     |
|          | Percent       | 54      | 46      | 100       |
| Cadmium  | Total (kg)    | 1,550   | 1,660   | 3,210     |
|          | Daily Average | 15*     | 16†     | 31        |
|          | Percent       | 48      | 52      | 100       |
| Nickel   | Total (kg)    | 911,000 | 201,000 | 1,110,000 |
|          | Daily Average | 8,760*  | 1,900†  | 10,700    |
|          | Percent       | 82      | 18      | 100       |
| Arsenic  | Total (kg)    | 22,400  | 20,800  | 43,200    |
|          | Daily Average | 215*    | 196†    | 410       |
|          | Percent       | 52      | 48      | 100       |

\* = Yolo Bypass daily average based on 104 days when USGS gage station #11453000 was functional

† = Sacramento River daily average based on 106 days when flows were recorded

The number of significant figures for load estimates was set at three due to uncertainties in flow measurements and regression analyses.

II (

Table 45. Comparison of Metal Load Estimates in the Sacramento River at River Mile 44 from January Through April of a Dry Year (1994) and Wet Year (1995) Based on Metal Analyses Conducted for the Sacramento Coordinated Water Quality Monitoring Program's Ambient Monitoring Program

.

.

|                                                    | Copp          | )er   | Zir     | 10    | Chror   | nium  | Lea     | ad    | Cadn  | nium    | Nicl    | kel   | Arse   | enic     |
|----------------------------------------------------|---------------|-------|---------|-------|---------|-------|---------|-------|-------|---------|---------|-------|--------|----------|
|                                                    | Total         | Daily | Total   | Daily | Total   | Daily | Total   | Daily | Total | Daily   | Total   | Daily | Total  | Daily    |
| Year and Method                                    | (k <u>g</u> ) | Avg.  | (kg)    | Avg.  | (kg)    | Avg.  | (kg)    | Avg.  | (kg)  | Avg.    | (kg)    | Avg.  | (kg)   | Avg.     |
| 1994                                               |               |       |         |       |         | -*    |         |       |       | <b></b> |         |       |        |          |
|                                                    |               |       |         |       |         |       |         |       |       |         |         |       |        |          |
| Average Concentration                              | 12 000        | 100   | 20 000  | 241   | 5 5 9 0 | 47    | 1 6 4 0 | 14    | 172   | 1       | 0.440   | 70    | 7 000  | (5       |
| Method**                                           | 12,000        | 100   | 20,000  | 241   | 5,580   | 47.   | 1,040   | 14    | 125   | 1       | 9,440   | 19    | /,800  | 03       |
| % of BPTCP estimates                               |               |       |         |       |         |       |         |       |       |         |         |       |        |          |
| (same method)                                      | 57            |       | 57      |       | 38      |       | 51      |       | 18    | 3       | 48      |       | N/.    | A        |
| Model (estimated by                                |               |       |         |       |         |       |         |       |       |         |         |       |        |          |
| regression)                                        | 12,600        | 108†  | 30,700  | 262†  | 7,020   | 60†   | 1,680   | 14†   | 193   | 2†      | 10,300  | 88†   | 6,680  | 57†      |
|                                                    |               |       |         |       |         |       |         |       |       |         |         |       |        |          |
| % of BPTCP estimates                               |               |       |         |       |         |       |         |       |       |         |         |       |        |          |
| (same method)                                      | 76            |       | 81      |       | 67      |       | 73      |       | N/    | A       | 75      |       | N/.    | <u>A</u> |
| 1995                                               |               |       |         |       |         |       |         |       |       |         |         |       |        |          |
| Average Concentration                              |               | ~~~   |         |       | 46 700  |       | 10.000  | 100   | 000   | 0       | 100.000 |       |        |          |
| Method**                                           | 95,100        | 897   | 198,000 | 1,860 | 46,700  | 441   | 19,300  | 182   | 998   | 9       | 102,000 | 966   | 21,300 | 201      |
| % of BPTCP estimates                               |               |       |         |       |         |       |         |       |       |         |         |       |        |          |
| (same method)                                      | 66            |       | 50      |       | 30      | )     | 36      |       | 60    | )       | 51      |       | 102    | 2        |
| Model (estimated by                                |               |       |         |       |         |       |         |       |       |         | -       | -     | -      |          |
| regression)                                        | 116,000       | 1090^ | 190,000 | 1790^ | 58,800  | 555^  | 20,600  | 194^  | 1,830 | 17^     | 149,000 | 1400^ | 28,100 | 265^     |
|                                                    |               |       |         |       |         |       |         |       |       |         |         |       |        |          |
| % of BPTCP estimates                               |               |       |         |       |         |       |         |       |       |         |         |       |        |          |
| (same method)                                      | N/A           | 4     | N/.     | A     | N/      | A     | N/.     | Α     | N/    | A       | Ŋ/A     | 4     | N/.    | 4        |
| Minimum % Increase<br>in load from WY94 to<br>WY95 | 792           |       | 619     | )     | 83      | 7     | 1,18    | 80    | 81    | 1       | 1,08    | 0     | 42(    | )        |

t = Daily average based on 117 days when flows were recorded

.

^ = Daily average based on 106 days when flows were recorded

The number of significant figures for load estimates was set at three due to uncertainties in flow measurements and regression analyses.

\*\* = values reported as non-detectable were set at zero for the purposes of obtaining an average concentration.

Note: AMP model estimates were provided by Klauss Suverkropp of Larry Walker Associates

\_ \_ \_

|                  |            | Total  | Dis.   | Total  | Dis.   | Total    | Dis.   | Total  | Dis.          | Total  | Dis.  | Total  | Dis.       | Total  | Dis.   |
|------------------|------------|--------|--------|--------|--------|----------|--------|--------|---------------|--------|-------|--------|------------|--------|--------|
|                  |            | Cu     | Cu     | Zn     | Zn     | Cr       | Cr     | Pb     | Pb            | Cd     | Cd    | Ni     | Ni         | As     | As     |
|                  |            | (μg/l) | (μg/l) | (μg/l) | (µg/l) | · (μg/l) | (μg/l) | (µg/l) | <u>(μg/l)</u> | (µg/l) | μg/l) | (µg/l) | (µg/l)     | (µg/l) | (µg/l) |
| 1993             |            | :      |        |        |        |          |        |        |               |        |       |        |            |        |        |
| (norma           | ıl)        |        |        |        |        |          |        |        |               |        |       |        |            |        |        |
|                  | Mean       | 5.56   | 1.83   | 9.61   | 1.94   | 4.65     | 0.60   | 2.81   | 0.11          | 0.06   | 0.02  | 6.90   | 1.37       |        |        |
|                  | SD         | 5.85   | 0.58   | 6.56   | 1.10   | 6.07     | 0.36   | 8.88   | 0.07          | 0.10   | 0.01  | 8.83   | 0.85       |        |        |
|                  | Max.       | 28.3   | 2.91   | 26.8   | 5.02   | 26.8     | 1.42   | 39.4   | 0.26          | 0.456  | 0.03  | 38.8   | 4.15       |        |        |
|                  | Min.       | 1.98   | 0.32   | 4.12   | 0.7    | 0.007    | 0.09   | 0.2    | 0.03          | 0.007  | 0.009 | 0.75   | 0.31       |        |        |
|                  | n =        | 19     | 19     | 19     | 19     | 19       | 19     | 19     | 16            | 19     | 14    | 19     | 19         |        |        |
| 1994             |            |        | · .    |        |        |          |        |        |               |        |       |        |            |        |        |
| (critica<br>dry) | illy       |        |        |        |        |          | ۰<br>۲ |        |               |        |       |        |            |        |        |
| • •              | Mean       | 4.54   | 2.45   | 10.03  | 3.40   | 3.71     | 1.00   | 0.97   | 0.24          | 0.09   | 0.04  | 5.39   | 1.97       | 1.72   | 1.38   |
|                  | SD         | . 3.11 | 1.32   | 8.21   | 2.79   | 4.79     | 1.20   | 1.42   | 0.26          | 0.14   | 0.08  | 6.94   | 1.71       | 0.91   | 0.61   |
|                  | Max.       | 14.9   | 9.48   | 39     | 18.5   | 23.1     | 5.39   | 8.98   | 1.38          | 0.74   | 0.55  | 35.8   | 8.52       | 3.98   | 2.4    |
|                  | Min.       | 0.75   | 0.2    | 0.08   | 0.16   | 0.19     | 0.06   | 0.01   | 0.01          | 0.006  | 0.001 | 0.52   | 0.13       | 0.11   | 0.24   |
|                  | n =        | 111    | 86     | 116    | 85     | 110      | 86     | 112    | 78 ່          | 113    | 79    | 111    | 8 <u>6</u> | 25     | 24     |
| 1995             |            |        |        |        |        |          |        |        |               |        | -     |        |            |        |        |
| (wet)            |            |        |        |        |        |          |        |        |               |        |       |        |            |        |        |
|                  | Mean       | 21.20  | 3.48   | 57.61  | 7.74   | 33.76    | 2.45   | 5.82   | 0.55          | 0.13   | 0.03  | 63.50  | 5.02       | 1.49   | 1.19   |
|                  | SD         | 31.77  | 0.95   | 75.23  | 11.20  | 63.37    | 1.18   | 8.03   | 0.59          | 0.13   | 0.02  | 141.17 | 4.50       | 0.83   | 0.49   |
|                  | Max.       | 162    | 5.4    | 333    | 70.2   | 312      | 4.78   | 41.2   | 3.87          | 0.568  | 0.11  | 653    | 26         | 4.41   | 3.03   |
|                  | Min.       | 1.15   | 1.84   | 3.2    | 1.98   | 0.73     | 0.39   | 0.28   | 0.09          | 0.012  | 0.002 | 0.83   | 1.33       | 0.3    | 0.13   |
|                  | <u>n</u> = | 113    | 39     | 97     | 39     | 113      | 39     | 113    | 38            | 113    | 38    | 113    | 39         | 43     | 26     |

•

١ε.

Table 46. Total Recoverable and Dissolved (0.45 µm) Metal Concentrations (µg/l) in Samples Collected from All Stations Monitored during water years 1993, 1994, and 1995.

|      | <u> </u> |        |        |        |        |        |        |        |        |               |       |        |        |        |         |
|------|----------|--------|--------|--------|--------|--------|--------|--------|--------|---------------|-------|--------|--------|--------|---------|
|      |          | Total  | Dis.   | Total  | Dis.   | Total  | Dis.   | Total  | Dis.   | Total         | Dis.  | Total  | Dis.   | Total  | Dis.    |
|      |          | Cu     | Cu     | Zn     | Zn     | Cr     | Cr     | Pb     | Pb     | Cd            | Cđ    | Ni     | Ni     | As     | As      |
|      |          | (µg/l) | (μg/l) | (µg/l) | (μg/l) | (µg/l) | (μg/l) | (µg/l) | (µg/l) | <u>(μg/l)</u> | μġ/l) | (µg/l) | (µg/l) | (µg/l) | _(μg/l) |
| 1993 |          |        |        |        |        |        |        |        |        |               |       |        |        |        |         |
|      | Mean     | 3.92   | 2.91   | 6.20   | 2.10   | 1.54   | 0.29   | 0.29   | 0.08   | 0.05          | 0.03  | 1.85   | 0.75   |        |         |
|      | SD       | 0.41   |        | 0.14   |        | 0.88   |        | 0.12   |        | 0.01          |       | 0.36   |        |        |         |
|      | Max.     | 4.21   | 2.91   | 6.3    | 2.1    | 2.16   | 0.29   | 0.37   | 0.08   | 0.05          | 0.03  | 2.1    | 0.75   |        |         |
|      | Min.     | 3.63   | 2.91   | 6.1    | 2.1    | 0.92   | 0.29   | 0.2    | 0.08   | 0.04          | 0.03  | 1.59   | 0.75   |        |         |
|      | n=       | 2      | 1      | 2      | 1      | 2      | 1      | 2      | 1      | 2             | 1     | 2      | 1      |        |         |
| 1994 |          |        |        |        |        |        |        |        |        |               |       |        |        |        |         |
|      | Mean     | 5.08   | 2.93   | 12.35  | 4.53   | 3.57   | 1.15   | 0.79   | 0.25   | 0.17          | 0.05  | 4.83   | 1.87   |        |         |
|      | SD       | 3.05   | 1.70   | 9.01   | 3.29   | 3.30   | 0.81   | 0.50   | 0.15   | 0.19          | 0.12  | 4.36   | 1.05   |        |         |
|      | Max.     | 14.29  | 9.48   | 39     | 18.5   | 14.9   | 3.78   | 2.15   | 0.53   | 0.74          | 0.55  | 19.5   | 4.62   |        |         |
|      | Min.     | 1.29   | 1.32   | 0.11   | 1.4    | 0.26   | 0.31   | 0.01   | 0.01   | 0.01          | 0.01  | 0.52   | 0.64   |        |         |
|      | n=       | 46     | 30     | 49     | 30     | 46     | 30     | .48    | 29     | 48            | 27    | 46     | 30     |        |         |
| 1995 |          |        |        |        |        |        |        |        |        |               |       |        |        |        |         |
|      | Mean     | 8.64   | 3.44   | 23.68  | 5.63   | 9.34   | 2.76   | 3.27   | 0.51   | 0.10          | 0.03  | 12.10  | 5.51   | 1.25   | 1.09    |
|      | SD       | 5.40   | 0.82   | 17.16  | 3.93   | 6.17   | 1.03   | 4.39   | 0.22   | 0.08          | 0.02  | 6.95   | 5.20   | 0.58   | 0.22    |
|      | Max.     | 28.4   | 5.05   | 71.8   | 22.4   | 29     | 4.78   | 28.7   | 0.99   | 0.474         | 0.11  | 28.3   | 26     | 2.97   | 1.41    |
|      | Min.     | 2.76   | 1.89   | 3.98   | 1.98   | 1.67   | 1.28   | 0.39   | 0.18   | 0.027         | 0.002 | 2.71   | 2.15   | 0.3    | 0.45    |
|      | n=       | 47     | 27     | 37     | 27     | 47     | 27     | 47     | 27     | 47            | 27    | 47     | 27     | 24     | 20      |

Table 47. Total Recoverable and Dissolved (0.45  $\mu$ m) Metal Concentrations ( $\mu$ g/l) in Samples Collected at Greene's Landing from January Through March of 1993, 1994, and 1995.

- -

ŧ

٠

.

.

|                 | Cu           | Zn                   | Cr            | Pb           | Cd            | Ni           | As  |
|-----------------|--------------|----------------------|---------------|--------------|---------------|--------------|-----|
|                 | n=36         | n=36                 | n=31          | n=33         | n=38          | n=37         | n=1 |
| Total vs. Diss. | r2 = 0.24    | r2 = 0.19            | r2 = 0.22     | r2 = 0.15    | $r^2 = 0.13$  | r2 = 0.26    |     |
|                 |              |                      |               |              |               |              |     |
|                 | n=56         | n=63                 | n=54          | n=58         | n=58          | n=56         |     |
| Total vs. Flow  | r2 = 0.56*   | $\tau 2 = 0.52^{+1}$ | r2 = 0.64*    | r2=0.58*     | r2 = 0.027    | r2 = 0.6*    |     |
|                 | P<.001       | P≤.001               | P<.001        | P≤001        |               | P<.001       |     |
|                 | n=47         | n=46                 | n=41          | n=43         | n=45          | n=46         |     |
| Diss. vs. Flow  | r2 = 0.3*    | r2 = 0.24            | r2=0.34*      | r2 = 0.12    | r2 = 0.11     | r2 = 0.37*   |     |
|                 | P<.05        |                      | <u>P≤.05</u>  |              |               | P<.02        |     |
|                 | n=30         | n=32                 | n=29          | n=29         | n=30          | n=29         |     |
| Total vs. TSS   | $r2 = 0.7^*$ | <u>1</u> 2=0.64*     | r2=0.72*      | r2=0.61*     | r2 = 0.023    |              |     |
|                 | P<:001 ∓     |                      | P≤.001*       | P<.001.      |               | ₩4 P<.001    |     |
|                 | n=31         | n=32                 | n=27          | n=27         | n=30          | n=29         |     |
| Diss. vs TSS    | $r_2 = 0.1$  | $r_2 = 0.065$        | $r^2 = 0.047$ | $r^2 = 0.25$ | $r^2 = 0.015$ | $r^2 = 0.14$ |     |
|                 |              |                      |               |              |               |              |     |

Table 48. Bay Protection Toxic Cleanup Program: Summary of regression coefficients for total recoverable and dissolved (0.45 µm) metals, flow, and TSS for the Sacramento River at Greene's Landing during water year 1994.

\* = significant relationship

|                 | Cu                            | Zn                            | Cr                        | Pb                                         | Cd                        | Ni                  | As                  |
|-----------------|-------------------------------|-------------------------------|---------------------------|--------------------------------------------|---------------------------|---------------------|---------------------|
| Total vs. Diss. | n= 26<br>r2 = 0.59*<br>P<:002 | n= 26<br>r2 =0.022            | n=26<br>$r^{2}=0.37$      | $n \equiv 26$<br>$r^2 = 0.41$ *<br>P < .05 | n=31<br>r2=0.029          | n=29<br>r2 = 0.099  | n=17<br>r2 =0.004   |
| Total vs. Flow  | n=51<br>$r^2 = 0.12$          | n=39<br>r2=0.06               | n=51<br>$r^{2}=0.18$      | n=49<br>r2 = 0.0054                        | n=50<br>r2=0.077          | n=52<br>r2 =0.23    | n=24<br>r2=0.042    |
| Diss. vs. Flow  | n= 28<br>r2 = 0.0026          | n=27<br>r2=0.011              | n=27<br>r2 =0.14          | n=26<br>r2 = 0.0000069                     | n= 33<br>r2 =0.016        | n=29<br>r2=0.051    | n=19<br>r2 =0.00082 |
| Total vs. TSS   | n=31<br>r2 =0.85*<br>P<.001   | n= 30<br>+r2 =0.52*<br>P< 005 | n=31<br>r2=0.78*<br>P<001 | n= 29<br>r2 =0.16                          | n=30<br>r2=0.92*<br>P<001 | n=31<br>r2 =0.081   | n=21<br>r2=0.0013   |
| Diss. vs TSS    | n=23<br>r2 = 0.43*<br>P<.05   | n=22<br>r2=0.000051           | n=22<br>$r^2 = 0.12$      | n=21<br>r2=0.47*<br>P<.05                  | n= 28<br>r2 = 0.0087      | n=23<br>r2 = 0.0042 | n= 16<br>r2 =0.012  |

1

.

Table 49. Bay Protection Toxic Cleanup Program: Summary of regression coefficients for total recoverable and dissolved (0.45 µm) metals, flow, and TSS for the Sacramento River at Greene's Landing during water year 1995.

1

\* = significant relationship

**.** -

|                 | Cu         | Zn         | Cr         | Pb                                   | Cd         | Ni                | As           |
|-----------------|------------|------------|------------|--------------------------------------|------------|-------------------|--------------|
|                 | n= 62      | n=60       | n=56       | n=59 s                               | n=67       | n=69              | n=18         |
| Total vs. Diss. | r2 = 0.32* | r2 =0.11   | r2 = 0.55* | r2 = 0.46*                           | r2 =0.12   | * r2 = 0.29*      | r2 = 0.014   |
|                 | P<.02      |            | P<:001     | P<.001                               |            | P≤.02             |              |
|                 | n= 107     | - n= 102   | n=105      | n= 107                               | n=108      | n=108             | n=25         |
| Total vs. Flow  | r2 = 0.26* | r2=0.24*   | r2=0.38*   | r2 = 0.15                            | r2 =0.018  | r2 = 0.45*        | r2 =0.063    |
|                 | P<.01      | P<.02      | P<:001     |                                      |            | P<.001            |              |
|                 | n=75       | n= 73      | n= 68      | n=69                                 | n= 78      | n=75 ∔            | n=20         |
| Diss. vs. Flow  | r2 = 0.11  | r2 = 0.078 | r2=0.58*   | r2=052*                              | r2 = 0.039 | • <b>1</b> =0.28* | $r^2 = 0.14$ |
|                 |            |            | P<:001     | P≪01                                 |            | P< 02             |              |
|                 | – n= 61    | n=62       | n=60       | n=58                                 | n=60       | n=60              | n=21         |
| Total vs. TSS   | r2=0.83*   | r2=0.6*    | r2=0.81*   | r2 =0.22                             | r2 =0.039  | $r2 = 0.3^{*}$    | r2 = 0.0013  |
|                 | P<001      | - P<001    | P<:001     |                                      |            | P<02 ↓            |              |
|                 | n=54       | n=54       | n= 49      | n=48                                 | n= 58      | n=52              | n=16         |
| Diss. vs TSS    | r2 =0.17   | r2 =0.023  | r2 =0.28   | 2=256                                | r2 =0.069  | r2 =0.087         | r2 =0.012    |
|                 |            | ·          |            | <sup>4</sup> P≤1001 <sup>4</sup> a** |            |                   |              |

Table 50. Bay Protection Toxic Cleanup Program: Summary of regression coefficients for total recoverable and dissolved (0.45 µm) metals, flow, and TSS for the Sacramento River at Greene's Landing for the combined water years 1994 and 1995.

\* = significant relationship

4

120

|                 | Cu           | Zn          | Cr                | Pb         | Cd                                                                         | Ni                                            | As         |
|-----------------|--------------|-------------|-------------------|------------|----------------------------------------------------------------------------|-----------------------------------------------|------------|
|                 | n=22         | n= 22       | n= 31             | n=22       | n= 22                                                                      | n=14                                          | n=22       |
|                 | r2 =0.19     | r2 =0.0012  | N/A: all values   | r2 =0.0053 | r2 = 0.036                                                                 | r2 =0.62*                                     | r2 =0.70*  |
| Total vs. Diss. |              |             | < detection limit |            |                                                                            | .01 <p<.02< th=""><th>P&lt;.001</th></p<.02<> | P<.001     |
|                 | n=22         | n=22        | n=22              | n=22       | n=22                                                                       | n=14                                          | n=22       |
|                 | $r^2 = 0.35$ | r2 = 0.2072 | r2 = 0.011        | r2 =0.12   | r2 = 0.076                                                                 | r2 =0.68*                                     | r2 = 0.14  |
| Total vs. Flow  |              |             |                   |            |                                                                            | .005< P<.01                                   |            |
|                 | n=22         | n=22        | n=22              | n=22       | n=22                                                                       | n=14                                          | n=22       |
|                 | r2 =0.024    | r2 =0.15    | N/A: all values   | r2 =0.056  | r2 =0.10                                                                   | r2 =0.51                                      | r2 = 0.23  |
| Diss. vs. Flow  |              |             | < detection limit |            |                                                                            |                                               |            |
|                 | n=22         | n=22        | n=22              | n=22       | n=22                                                                       | _n=14                                         | n=22       |
|                 | r2 =0.84     | r2 =0.323   | r2 =0.17          | r2 =0.20   | r2 = 46                                                                    | r2 = 0.74                                     | r2 =0.0132 |
| Total vs. TSS   | P<.001       |             |                   |            | .02 <p<.05< th=""><th>.002<p<.005< th=""><th></th></p<.005<></th></p<.05<> | .002 <p<.005< th=""><th></th></p<.005<>       |            |
|                 | n=22         | n=22        | n=22              | n=22       | n=22                                                                       | r.=14                                         | n=22       |
|                 | r2 =.096     | r2 =0.015   | N/A: all values   | r2 =0.012  | r2 =0.056                                                                  | r2 =0.45                                      | r2 =0.075  |
| Diss. vs TSS    |              |             | < detection limit |            |                                                                            |                                               |            |

Table 51. Ambient Monitoring Program: Summary of regression coefficients for total recoverable and dissolved metals, flow, and TSS for the Sacramento River at River Mile 44 for WY94. Sampling dates ranged from 10/4/93 - 9/13/94.

.

.

\* = significant relationship

|                 | Cu          | Zn             | Cr          | Pb             | Cd                | Ni            | As                        |
|-----------------|-------------|----------------|-------------|----------------|-------------------|---------------|---------------------------|
|                 | n=24        | n=24           | n=24        | n= 24          | n= 24             | n = 12        | n=22                      |
|                 | r2 =0.20    | r2 =0.33       | r2 =0.00013 | r2 =0.0085     | N/A: all values   | r2 =0.053     | r2 =0.32                  |
| Total vs. Diss. |             |                |             |                | < detection limit |               |                           |
|                 | n=21        | n=21           | n=21        | n=21           | n=21              | n=10          | n=19                      |
|                 | r2 =0.13    | r2 =0.080      | r2 = 0.069  | r2 = 0.22      | r2 = 0.071        | r2 = 0.00034  | r2 = 0.16                 |
| Total vs. Flow  |             |                |             |                | -                 |               |                           |
|                 | n=21        | n=21           | n=21        | n=21           | n=21              | n=10          | n=21                      |
|                 | r2 = 0.059  | r2 = 0.0002    | r2 = 0.0032 | r2 = 0.021     | N/A: all values   | r2 = 0.0035   | $-r2 = 0.51^{*}$          |
| Diss. vs. Flow  |             |                |             |                | < detection limit |               | .01 <p<02< th=""></p<02<> |
|                 |             | n=24           | n=24        | n=24.          | n=24              | n=12          | n=22                      |
|                 | r2 = 0.72*. | r × r2 = 0.54* | r2=0.47*    | r2(≡ 0.69*     | r2=0.74*          | $r^2 = 0.431$ | $r^2 = 0.001032$          |
| Total vs. TSS   | P<.001      | -:005< P<:01   |             |                | - P<001           |               |                           |
|                 | n=24        | n=24           | n=24        | n=24           | n=24              | n=12          | n=24                      |
| -               | r2 = 0.096  | r2 = 0.628     | r2 = 0.019  | r2 = 0.0003005 | r2 = 5X10(-16)    | r2 =0.067     | r2 =0.085                 |
| Diss. vs TSS    |             |                | <u> </u>    |                |                   |               | <u> </u>                  |

Table 52. Ambient Monitoring Program: Summary of regression coefficients for total recoverable and dissolved metals, flow, and TSS for the Sacramento River at River Mile 44 for WY95. Sampling dates ranged from 10/25/94 - 9/25/95.

\* = significant relationship

|                       | Cu         | Zn                                                                        | Cr           | Pb                                                                               | Cd          | Ni                                      | As                          |
|-----------------------|------------|---------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------------|-------------|-----------------------------------------|-----------------------------|
|                       | n=46       | n=46                                                                      | n=46         | n=46                                                                             | n=46        | n= 26                                   | n= 44                       |
|                       | r2 = 0.088 | r2 =0.060                                                                 | r2 = 0.010   | r2 = 0.042                                                                       | r2 = 0.0034 | r2 = 0.20                               | r2=0.52*                    |
| Total vs. Diss.       |            |                                                                           |              |                                                                                  |             |                                         | P<.001                      |
|                       | n=43       | n=43                                                                      | n=43         | n=43                                                                             | n=43        | n=24                                    | n=41                        |
|                       | r2 =0.27   | r2 = 0.015                                                                | r2 = 0.27    | r2 =0.31*                                                                        | r2 =0.072   | r2 =0.24                                | r2=0.36                     |
| Total vs. Flow        |            |                                                                           |              | .02 <p<.05< th=""><th></th><th></th><th>.02<p<.05< th=""></p<.05<></th></p<.05<> |             |                                         | .02 <p<.05< th=""></p<.05<> |
|                       | n=43       | n=43                                                                      | n=43         | n=43                                                                             | n=43        | n=24                                    | n=43                        |
|                       | r2 =0.0053 | r2 =0.024                                                                 | r2 =0.032    | r2 =0.0048                                                                       | r2 =0.031   | r2 =0.11                                | r2=0.56*                    |
| Diss. vs. Flow        |            |                                                                           |              |                                                                                  |             |                                         | P<.001                      |
|                       | n= 46      | n= 46                                                                     | n= 46        | n=46                                                                             | n= 46       | n= 26                                   | n=44                        |
|                       | r2 =0.75*  | r2 =0.15                                                                  | r2=0.50*     | r2=0.66*                                                                         | r2=0.61     | r2 =0.46                                | r2 =0.062                   |
| Total vs. T <u>SS</u> | - P<.001   |                                                                           | P<.001       | P<:001                                                                           | P<:001      | .001 <p<.002< th=""><th></th></p<.002<> |                             |
|                       | n= 46      | n=46                                                                      | n= 46        | n= 46                                                                            | n= 46       | n= 26                                   | n= 46                       |
|                       | r2 =0.024  | r2=0.39                                                                   | r2 =0.000031 | r2 =0.024                                                                        | r2 =0.018   | r2 =0.15                                | r2 =0.19                    |
| Diss. vs TSS          |            | .005 <p<.01< th=""><th></th><th></th><th></th><th></th><th></th></p<.01<> |              |                                                                                  |             |                                         |                             |

Table 53. Ambient Monitoring Program: Summary of regression coefficients for total recoverable and dissolved metals, flow, and TSS for the Sacramento River at River Mile 44 fof WY94-WY95. Sampling dates ranged from 10/4/93 - 9/25/95.

•

.

\* = significant relationship

•

•

Table 54. Bay Protection Toxic Cleanup Program: Summary of total recoverable metals regressed against other metals for samples collected from the Sacramento River at Greene's Landing during the critically dry Water Year 1994 (upper right) and wet Water Year 1995 (lower left).

|           | Total Cu                | Total Zn                | Total Cr                | Total Pb                   | Total Cd            | Total Ni                    |
|-----------|-------------------------|-------------------------|-------------------------|----------------------------|---------------------|-----------------------------|
|           |                         | n=54                    | n=54                    | n=54                       | n=54                | n=54                        |
| l'otal Cu |                         | P≤.005                  | $P_{2} = 0.38^{+}$      | $r2 = 0.78^{-1}$<br>P<.001 | P>0.50              | r2 = 0.84*<br>P< 001        |
| Total Zn  | n=37<br>r2 =0.69*       |                         | n=54<br>r2 =0.84*       | n=56<br>r2=0.80*           | n=56<br>r2 =0.10    | n=54<br>$r^2 = 0.84 *$      |
|           | P<.001                  | a the second            | P≤.001                  | P< 001                     | 0.50>P>0.20         | P<.001                      |
|           | n=48                    | n=37                    |                         | n=54                       | n=43                | n= 54                       |
| I otal Cr | r2 ≡0.83*<br>P<.001     | P≤.001                  |                         | r2 =0.51*<br>P<.001        | $P_{P>0.50}$        | r2 =0.9/*<br>P<:001         |
|           | n=48                    | n=37                    | n=48                    |                            | n=56                | n=54                        |
| Total Pb  | r2 =0.14<br>0.50>P>0.20 | r2 =0.28<br>0.10>P>0.05 | r2 =0.14<br>0.50>P>0.20 |                            | r2 =0.027<br>P>0.50 | r2=0.83*<br>P<001           |
|           | n=48                    | n=37                    | n=48                    | n=48                       |                     | n=54                        |
| Total Cd  | r2 =0.82*               | r2 =0.61*               | r2 =0.54*               | r2 = 0.12                  |                     | r2 = 0.072                  |
| L         | P<.001                  | P<.001                  | P<.001                  | 0.50>P>0.20                |                     | P>0.50                      |
|           | n=48                    | n=37.                   | n=48                    | n=48                       | n=48                |                             |
|           | r2 =0.45*               | r2=0.41*                | r2 =0.51*               | r2 =.026                   | r2 = 0.18           | Martin - See                |
| Total Ni  | P<.002                  | P<.02                   | P<.001                  | P>0.50                     | 0.50>P>0.20         | States of the second second |

1

\* = significant relationship

Table 54 (cont). Bay Protection Toxic Cleanup Program: Summary of total recoverable metals regressed against other metals for samples collected from the Sacramento River at Greene's Landing during the combined 1994 and 1995 Water Years.

.

.

|          | Total Cu | Total Zn                    | Total Cr                      | Total Pb                      | Total Cd                         | Total Ni                      |
|----------|----------|-----------------------------|-------------------------------|-------------------------------|----------------------------------|-------------------------------|
| Total Cu |          | n=94<br>r2 =0.77*<br>P<:001 | n=102<br>r2 = 0.85*<br>P<.001 | n=102<br>r2=0.22*<br>P<.05    | n=102<br>r2 =0.012<br>P>0.50     | n=102<br>r2=0.59*<br>P<:001   |
| Total Zn |          |                             | n=94<br>r2 =0.79*<br>P<.001   | n= 94<br>r2 = 0.34*<br>P<.001 | n=94<br>r2 =0.00002<br>P>0.50    | n=94<br>r2 = 0.57 *<br>P<.001 |
| Total Cr |          |                             |                               | n=102<br>r2 =0:25*<br>P<.02   | n= 102<br>r2 = 0.00058<br>P>0.50 | n= 102<br>r2 =0.69*<br>P<.001 |
| Total Pb |          |                             |                               |                               | n=104<br>r2 =0.00079<br>P>0.50   | n=102<br>r2 = 0.80*<br>P<.001 |
| Total Cd |          |                             |                               |                               |                                  | n=102<br>r2 =0.01<br>P>0.50   |
| Total Ni |          |                             |                               |                               |                                  |                               |

\* = significant relationship



Figure 1. Map of the Sacramento-San Joaquin River Delta and its major tributaries. Numbers refer to stations sampled during the Delta studies and are described in Appendix A. Sample dates are identified in Table 1.





Figure 3. Regression of flow versus total copper concentration in water samples collected from the Sacramento River at Greene's Landing during Water Year 1994.



Figure 4. Regression of flow versus total recoverable zinc concentration in water samples collected from the Sacramento River at Greene's Landing during Water Year 1994.



Figure 5. Regression of flow versus total recoverable chromium concentration in water samples collected from the Sacramento River at Greene's Landing during Water Year 1994.

16-


Figure 6. Regression of flow versus total recoverable lead concentration in water samples collected from the Sacramento River at Greene's Landing during Water Year 1994.

-



Figure 7. Regression of flow versus total recoverable nickel concentration in water samples collected from the Sacramento River at Greene's Landing during Water Year 1994.



Figure 8. Regression of TSS versus total recoverable copper concentration in water samples collected from the Sacramento River at Greene's Landing during Water Year 1994.



Figure 9. Regression of TSS versus total recoverable zinc concentration in water samples collected from the Sacramento River at Greene's Landing during Water Year 1994.



Figure 10. Regression of TSS versus total recoverable chromium concentration in water samples collected from the Sacramento River at Greene's Landing during Water Year 1994.







Figure 12. Regression of TSS versus total recoverable nickel concentration in water samples collected from the Sacramento River at Greene's Landing during Water Year 1994.



Figure 13. Regression of flow versus dissolved (0.45 µm) copper concentration in water samples collected from the Sacramento River at Greene's Landing during Water Year 1994.



Figure 14. Regression of flow versus dissolved (0.45 µm) chromium concentration in water samples collected from the Sacramento River at Greene's Landing during Water Year 1994.



Figure 15. Regression of flow versus dissolved (0.45 µm) nickel concentration in water samples collected from the Sacramento River at Greene's Landing during Water Year 1994.



Figure 16. Regression of TSS versus dissolved (0.45 µm) copper concentration in water samples collected from the Sacramento River at Greene's Landing during Water Year 1994.



Figure 17. Regression of TSS versus dissolved (0.45  $\mu$ m) chromium concentration in water samples collected from the Sacramento River at Greene's Landing during Water Year 1994.



Figure 18. Regression of TSS versus dissolved (0.45 µm) nickel concentration in water samples collected from the Sacramento River at Greene's Landing during Water Year 1994.



Figure 19. Regression of total recoverable chromium versus dissolved (0.45  $\mu$ m) chromium in water samples collected from the Sacramento River at Greene's Landing during Water Year 1994.



Figure 20. Regression of total recoverable lead versus dissolved (0.45 µm) lead in water samples collected from the Sacramento River at Greene's Landing during Water Year 1994.



Figure 21. Regression of flow versus total recoverable copper concentration in water samples collected from the Sacramento River at Greene's Landing during Water Year 1995.



Figure 22. Regression of flow versus dissolved (0.45 µm) copper concentration in water samples collected from the Sacramento River at Greene's Landing during Water Year 1995.



Figure 23. Regression of flow versus total recoverable zinc concentration in water samples collected from the Sacramento River at Greene's Landing during Water Year 1995.



Figure 24. Regression of flow versus dissolved (0.45 µm) zinc concentration in water samples collected from the Sacramento River at Greene's Landing during Water Year 1995.

]49



Figure 25. Regression of flow versus total recoverable chromium concentration in water samples collected from the Sacramento River at Greene's Landing during Water Year 1995.



Figure 26. Regression of flow versus dissolved (0.45 µm) chromium concentration in water samples collected from the Sacramento River at Greene's Landing during Water Year 1995.







Figure 28. Regression of flow versus dissolved (0.45  $\mu$ m) lead concentration in water samples collected from the Sacramento River at Greene's Landing during Water Year 1995.



Figure 29. Regression of flow versus total recoverable cadmium concentration in water samples collected from the Sacramento River at Greene's Landing during Water Year 1995.



Figure 30. Regression of flow versus dissolved (0.45  $\mu$ m) cadmium concentration in water samples collected from the Sacramento River at Greene's Landing during Water Year 1995.

.







Figure 32. Regression of flow versus dissolved (0.45 µm) nickel concentration in water samples collected from the Sacramento River at Greene's Landing during Water Year 1995.



Figure 33. Regression of flow versus total recoverable arsenic concentration in water samples collected from the Sacramento River at Greene's Landing during Water Year 1995.

• ·



Figure 34. Regression of flow versus dissolved (0.45 µm) arsenic concentration in water samples collected from the Sacramento River at Greene's Landing during Water Year 1995.



Figure 35. Regression of TSS versus total recoverable copper concentration in water samples collected from the Sacramento River at Greene's Landing during Water Year 1995.



Figure 36. Regression of TSS versus total recoverable zinc concentration in water samples collected from the Sacramento River at Greene's Landing during Water Year 1995.



Figure 37. Regression of TSS versus total recoverable cadmium concentration in water samples collected from the Sacramento River at Greene's Landing during Water Year 1995.



Figure 38. Regression of flow versus total recoverable cadmium concentration in water samples collected from the Sacramento River at Greene's Landing during Water Year 1994.

163

**-** -



Figure 39. Regression of total recoverable copper versus dissolved (0.45 µm) copper concentration in water samples collected from the Sacramento River at Greene's Landing during Water Year 1995.



Figure 40. Regression of total recoverable lead versus dissolved (0.45  $\mu$ m) lead concentration in water samples collected from the Sacramento River at Greene's Landing during Water Year 1995.



Figure 41. Regression of TSS versus total recoverable copper concentration in water samples collected from the Sacramento River at Greene's Landing during Water Years 1994 and 1995.


¢

Figure 42. Regression of TSS versus total recoverable zinc concentration in water samples collected from the Sacramento River at Greene's Landing during Water Years 1994 and 1995.

÷



Figure 43. Regression of TSS versus total recoverable chromium concentration in water samples collected from the Sacramento River at Greene's Landing during Water Years 1994 and 1995.



Figure 44. Regression of TSS versus total recoverable nickel concentration in water samples collected from the Sacramento River at Greene's Landing during Water Years 1994 and 1995.



Flow (cfs)

Figure 45. Regression of flow versus total recoverable copper concentration in water samples collected from the Sacramento River at Greene's Landing during Water Years 1994 and 1995.



Figure 46. Regression of flow versus total recoverable zinc concentration in water samples collected from the Sacramento River at Greene's Landing during Water Years 1994 and 1995.







Figure 48. Regression of flow versus total recoverable nickel concentration in water samples collected from the Sacramento River at Greene's Landing during Water Years 1994 and 1995.



Figure 49. Regression of TSS versus dissolved (0.45  $\mu$ m) chromium concentration in water samples collected from the Sacramento River at Greene's Landing during Water Years 1994 and 1995.



Figure 50. Regression of TSS versus dissolved (0.45  $\mu$ m) lead concentration in water samples collected from the Sacramento River at Greene's Landing during Water Years 1994 and 1995.



Figure 51. Regression of TSS versus dissolved (0.45 µm) nickel concentration in water samples collected from the Sacramento River at Greene's Landing during Water Years 1994 and 1995.



Figure 52. Regression of flow versus dissolved (0.45 µm) chromium concentration in water samples collected from the Sacramento River at Greene's Landing during Water Years 1994 and 1995.



Figure 53. Regression of flow versus dissolved (0.45 µm) lead concentration in water samples collected from the Sacramento River at Greene's Landing during Water Years 1994 and 1995.



Figure 54. Regression of flow versus dissolved (0.45  $\mu$ m) nickel concentration in water samples collected from the Sacramento River at Greene's Landing during Water Years 1994 and 1995.



Figure 55. Regression of total recoverable copper and total recoverable zinc concentrations in water samples collected from the Sacramento River at Greene's Landing during Water Year 1994.



Figure 56. Regression of total recoverable copper and total recoverable chromium concentrations in water samples collected from the Sacramento River at Greene's Landing during Water Year 1994.







Figure 58. Regression of total recoverable copper and total recoverable nickel concentrations in water samples collected from the Sacramento River at Greene's Landing during Water Year 1994.

**] 8**3



Figure 59. Regression of total recoverable zinc and total recoverable chromium concentrations in water samples collected from the Sacramento River at Greene's Landing during Water Year 1994.



Figure 60. Regression of total recoverable zinc and total recoverable lead concentrations in water samples collected from the Sacramento River at Greene's Landing during Water Year 1994.







Figure 62. Regression of total recoverable chromium and total recoverable lead concentrations in water samples collected from the Sacramento River at Greene's Landing during Water Year 1994.



Figure 63. Regression of total recoverable chromium and total recoverable nickel concentrations in water samples collected from the Sacramento River at Greene's Landing during Water Year 1994.

1.88



Figure 64. Regression of total recoverable lead and total recoverable nickel concentrations in water samples collected from the Sacramento River at Greene's Landing during Water Year 1994.







.

Figure 66. Flow and total suspended solids (TSS) pattern in the Sacramento River at Greene's Landing during low flow conditions from January through March of 1994.



Figure 67. Regression of total recoverable copper and total recoverable zinc concentrations in water samples collected from the Sacramento River at Greene's Landing during Water Year 1995.



Figure 68. Regression of total recoverable copper and total recoverable chromium concentrations in water samples collected from the Sacramento River at Greene's Landing during Water Year 1995.



Figure 69. Regression of total recoverable copper and total recoverable cadmium concentrations in water samples collected from the Sacramento River at Greene's Landing during Water Year 1995.



e

Figure 70. Regression of total recoverable copper and total recoverable nickel concentrations in water samples collected from the Sacramento River at Greene's Landing during Water Year 1995.



Figure 71. Regression of total recoverable zinc and total recoverable chromium concentrations in water samples collected from the Sacramento River at Greene's Landing during Water Year 1995.



¢

1

Figure 72. Regression of total recoverable zinc and total recoverable cadmium concentrations in water samples collected from the Sacramento River at Greene's Landing during Water Year 1995.



Figure 73. Regression of total recoverable zinc and total recoverable nickel concentrations in water samples collected from the Sacramento River at Greene's Landing during Water Year 1995.

Q.



ł

Figure 74. Regression of total recoverable chromium and total recoverable cadmium concentrations in water samples collected from the Sacramento River at Greene's Landing during Water Year 1995.



Figure 75. Regression of total recoverable chromium and total recoverable nickel concentrations in water samples collected from the Sacramento River at Greene's Landing during Water Year 1995.



۰.

Figure 76. Regression of flow versus total suspended solids in water samples collected from the Sacramento River at Greene's Landing during Water Year 1995. Solid arrow represents a first flush event with very high suspended solids which was preceeded by a low flow period (open arrows).





ø


¢

,

Figure 78. Flow and total suspended solids (TSS) pattern in the Sacramento River at Greene's Landing during high flow conditions from January through March of 1995.

203

į.

.



Figure 79. Regression of flow versus total suspended solids in water samples collected from the Sacramento River at Greene's Landing during Water Year 1995 without first flush and pre-first flush values.

(1



Figure 80. Regression of total recoverable copper and total recoverable zinc concentrations in water samples collected from the Sacramento River at Greene's Landing during Water Years 1994 and 1995.



Figure 81. Regression of total recoverable copper and total recoverable chromium concentrations in water samples collected from the Sacramento River at Greene's Landing during Water Years 1994 and 1995.

)



Figure 82. Regression of total recoverable copper and total recoverable lead concentrations in water samples collected from the Sacramento River at Greene's Landing during Water Years 1994 and 1995.





Figure 83. Regression of total recoverable copper and total recoverable nickel concentrations in water samples collected from the Sacramento River at Greene's Landing during Water Years 1994 and 1995.



Figure 84. Regression of total recoverable zinc and total recoverable chromium concentrations in water samples collected from the Sacramento River at Greene's Landing during Water Years 1994 and 1995.



Figure 85. Regression of total recoverable zinc and total recoverable lead concentrations in water samples collected from the Sacramento River at Greene's Landing during Water Years 1994 and 1995.



Figure 86. Regression of total recoverable zinc and total recoverable nickel concentrations in water samples collected from the Sacramento River at Greene's Landing during Water Years 1994 and 1995.







Figure 88. Regression of total recoverable chromium and total recoverable nickel concentrations in water samples collected from the Sacramento River at Greene's Landing during Water Years 1994 and 1995.

ł



Figure 89. Regression of total recoverable lead and total recoverable nickel concentrations in water samples collected from the Sacramento River at Greene's Landing during Water Years 1994 and 1995.



Figure 90. Regression of flow versus total suspended solids in water samples collected from the Sacramento River at Greene's Landing during Water Years 1994 and 1995.

#### **APPENDIX A:**

.

ł

1

## List of Site Locations

Site numbers correspond to numbers in Figure 1.

<u>Sacramento River @ Greene's Landing (site 1)</u>: Sacramento River sampled from end of the U.S. Bureau of Reclamation water quality pier off Randall Island Road. Site is about three miles downstream of Hood. Samples collected at outgoing tide.

<u>Sacramento River (a) Hood (site 2)</u>: Sacramento River samples collected by boat from mid channel off steps on east bank of River upstream of Hood. Samples collected at outgoing tide.

<u>Mokelumne River (site 3)</u>: Samples collected from shore approximately one mile downstream of confluence of Cosumnes River off New Hope Road. Samples collected at outgoing tide.

<u>Ulatis Creek (site 4)</u>: Samples collected from mid channel under bridge at Brown Road. Ulatis Creek discharges into Cache Slough.

<u>Skag Slough (site 5)</u>: Sampled from middle of Liberty Island Road bridge. Skag Slough is the secondary channel draining the Yolo Bypass. Samples collected at outgoing tide.

**Prospect Slough (site 6)**: Sampled by boat at junction of Prospect Slough and Toe drain. Prospect Slough is the main channel draining the Yolo Bypass. Samples collected at outgoing tide.

**Duck Slough (site 7)**: Samples collected from middle of drain off discharge pump platform. Drain discharges into Miners Slough at Five Points Marina.

Sacramento River @ Rio Vista (site 8): Sacramento River samples collected at low tide in mid channel by boat about one mile downstream of HWY 12 bridge.

San Joaquin River @ Vernalis (site 9): San Joaquin River samples collected off middle of Airport Way Bridge (County Road J3).

<u>**Paradise Cut (site 10)</u>**: Samples collected from middle of south channel off Paradise Road bridge.</u>

Old River @ Tracy Blvd (site 11): Samples collected in mid channel off Tracy Blvd. bridge.

**French Camp Slough (site 12)**: Samples collected from mid channel off Manthey Road bridge. Slough is discharged into the San Joaquin River about one mile upstream of Highway 4 Bridge.

San Joaquin River @ City of Stockton (site 13): San Joaquin River samples collected by boat off entrance to McLeod Lake.

<u>Middle River @ Bullfrog (site 14)</u>: Middle River samples collected on an incoming tide at mid channel off Bacon Island Road Bridge.

San Joaquin River @ Point Antioch (site 15): San Joaquin River samples collected from boat in mid channel at low tide off Point Beenar. Site is about five miles upstream of confluence of Sacramento River.

<u>Chipps Island</u>: Sacramento River samples collected from boat in mid channel off Chipps Island at lower low tide.

Grizzly Bay: Sample collected by boat at lower low tide in mid Bay off pilings.

<u>Martinez</u>: Samples collected by boat at lower low tide in mid channel about two miles downstream of HWY 680 bridge.

### **APPENDIX B:**

# **Raw Metal Analysis Data**

.

1

1

.

|          |          | 1           |                           | Total    | Dis  | Total | Dis      | Total    | Dis  | Total |
|----------|----------|-------------|---------------------------|----------|------|-------|----------|----------|------|-------|
| Date     | Hour     | Station #   | Station Name              | Cu       | Cu   | Zn    | Zn       | Cr       | Cr   | Pb    |
| 1/11/93  |          | GL 22       | Greene's Landing          | 4 2 1    |      | 61    |          | 2.16     |      | 037   |
| 1/13/93  | <u> </u> | GL 23       | Greene's Landing          | -1.2.1   | 2 91 | - 0.1 | 21       | 2.10     | 0.29 | 0.57  |
| 1/14/93  |          | GL 24       | Greene's Landing          | 3.63     |      | 63    |          | 0.92     | 0.27 | 02    |
| 3/23/93  | 1030     | 3           | Sac R denth 1             | 9.92     |      | 26.8  |          | 111      |      | 1 53  |
| 3/23/93  | 1030     | 1           | Sac R - surface 1         | 85       |      | 243   |          | 7 28     |      | 13    |
| 3/23/93  | 1030     | 2           | Sac R - surface 2         |          | 2 34 |       | 2.63     | /.20     | 1.01 |       |
| 3/23/03  | 1030     | 4           | Sac R - denth 2           |          | 2.21 |       | 3.63     |          | 1 42 |       |
| 4/13/03  | 1700     | 36          | Sac River @ Delta         |          | 0.32 |       | 1 34     |          | 1 13 |       |
| 7/7/03   | 1510     | 135         | Middle R @ Bullfrog I dg  | 2 54     | 0.52 | 677   | 1,54     | 0.007    | 1.15 | 0.46  |
| 7/7/03   | 1510     | 136         | Middle R. @ Bullfrog Ldg. |          | 1.67 | 0.77  | 1 15     | 0.007    | 0.45 | 0.40  |
| 7/7/03   | 1750     | 140         | S I River @ Vernalis      | 638      | 1.07 | 16.1  | 1.15     | 838      | 0.45 | 1 43  |
| 7/7/35   | 1750     | 150         | S.J. River @ Vernalis     | 0.56     | 1.62 | 10.1  | 1.52     | 0.00     | 0.62 | 1.45  |
| 7/10/02  | 1020     | 150         | S.J. River @ Antioch      | 1.65     | 1.05 | 0.00  | 1.54     | 1.00     | 0.05 | 0.05  |
| 7/19/93  | 1038     | 151         | S.J. River @ Antioch      | 4.05     | 2.22 | 9.98  | 2.06     | 4.09     | 0.70 | 0.03  |
| 7/19/95  | 1030     | 152         | S.J. River @ Hood         | 26       |      | 6.46  | 2.00     | 205      | 0.78 | 2.05  |
| 7/19/93  | 1300     | 155         | Sac, River @ Hood         | 3.0      | 1 42 | 0.40  | 1.12     | 2.85     | 0.22 | 2.85  |
| 7/19/93  | 1300     | 134         | Sac, River @ Hood         | 2.51     | 1.42 | 6.06  | 1.12     | 2.62     | 0.32 | 0.00  |
| 7/20/93  |          |             | Sac R. @ Rio Vista        | 3.51     | 1.50 | 0.90  | 1 21     | 2.03     | 0.41 | 0.62  |
| 7/20/93  |          |             | Sac R. @ Rio Vista        |          | 1.30 |       | 1.31     |          | 0.41 |       |
| 1/20/93  | 1011     | F3          | Sac R. @ RIO VIsta        | 1.00     | 1.45 |       | 0.7      | 0.00     | 0.5  |       |
| 8/3/93   | 1311     | 193         | Mokelumne River           | 1.98     |      | 0.15  | 0.40     | 0.00     | 0.00 | 0.3   |
| 8/3/93   | 1311     | 194<br>E 11 | Mokelumne River           |          | 1.62 |       | 2.49     |          | 0.09 |       |
| 8/3/93   |          | [F-1]       | Sac R. @ Rio Vista        |          | 2.4  | 1.55  | 2.64     | 0.00     | 1.14 |       |
| 8/3/93   |          | F-12        | Sac R. @ Rio Vista        | 3.17     |      | 4.55  |          | 2.06     |      | 0.32  |
| 8/3/93   | ļ        | F-10/QC     | Sac. River @ Hood         | 3.77     |      | 5.91. |          | 3.25     | 0.0/ | 0.61  |
| 8/3/93   | ,x       | F-8         | Sac. River @ Hood         |          | 1.61 |       | 1.47     |          | 0.36 |       |
| 8/3/93   |          | F-9         | Sac. River @ Hood         | 4.18     |      | 7.41  |          | 3.27     |      | 0.53  |
| 8/17/93  | 1200     | 207         | Middle R. @ Bullfrog Ldg. | 28.3     |      | 6.66  |          | 26.8     |      | 39.4  |
| 8/17/93  | 1200     | 208         | Middle R. @ Bullfrog Ldg. |          | 1.73 |       | 1.31     |          | 0.58 |       |
| 8/17/93  | 1450     | 221         | S.J. River @ Vernalis     | 4.49     |      | 11.1  |          | 5.7      |      | 1.13  |
| 8/17/93  | 1450     | 222         | S.J. River @ Vernalis     |          | 1.5  |       | 0.96     |          | 0.64 |       |
| 9/14/93  | 1200     | 246         | Mokelumne River           | 3.19     |      | 4.84  |          | 1.08     |      | 0.45  |
| 9/14/93  | 1200     | 247         | Mokelumne River           | 2.8      |      | 4.12  |          | 1.51     |      | 0.5   |
| 9/14/93  | 1200     | 248         | Mokelumne River           |          | 1.6  |       | 3.16     |          | 0.09 |       |
| 9/14/93  |          | 13 CF       | Sac R. @ Rio Vista        | 2.98     |      | 6.08  |          | 2.11     |      | 0.21  |
| 9/14/93  |          | 14 CF       | Sac R. @ Rio Vista        |          | 1.97 |       | 1.4      |          | 0.56 |       |
| 9/14/93  |          | 15 CF       | Sac R. @ Rio Vista        |          | 1.86 |       | 0.88     |          | 0.59 |       |
| 9/14/93  |          | 16 CF       | Sac. River @ Hood         | 3.76     |      | 16    |          | 2.52     |      | 0.3   |
| 9/14/93  |          | 17 CF       | Sac. River @ Hood         |          | 2    |       | 5.02     |          | 0.36 |       |
| 10/4/93  | 2030     | 269         | Sac. River @ Freeport     |          | 2.26 |       | 3.84     |          | 0.99 |       |
| 10/4/93  | 2030     | 270         | Sac. River @ Freeport     | 1.69     |      | 1.26  |          | 1.08     |      | 0.45  |
| 10/4/93  | 1100     | 272         | Sac. River @ Freeport     | 2.34     |      | 4.67  |          | 1.04     |      | 0.18  |
| 10/4/93  |          | 271         |                           | 2.24     |      | 3.25  |          | 1.14     |      | 0.18  |
| 10/4/93  |          | 273         |                           | 2.7      |      | 2.99  |          | 1.14     |      | 0.22  |
| 10/14/93 | 1251     | 298         | Mokelumne River           | 1.77     |      | 3.37  |          | 0.54     |      | 0.26  |
| 10/14/93 | 1251     | 299         | Mokelumne River           |          | 1.37 |       | 1.24     |          | 0.11 |       |
| 10/14/93 |          | 18 CF       | Sac R. @ Rio Vista        | 3.48     | -    | 12.5  |          | 2.36     | _    | 0.27  |
| 10/14/93 |          | 19 CF       | Sac R. @ Rio Vista        |          | 1.91 |       | 2.64     |          | 0.3  |       |
| 10/14/93 | ļ        | 20 CF       | Sac. River @ Hood         | 2.71     | ,    | 8.55  |          | 1.57     |      | 0.31  |
| 10/14/93 | t        | 21 CF       | Sac. River @ Hood         |          | 1.38 | [     | 1.29     |          | 0.22 |       |
| 10/14/93 | <u> </u> | 22 CF       | Sac. River @ Hood         |          | 1.39 |       | 0.95     | 1        | 0.34 |       |
| 10/29/93 | 1030     | 312         | Middle R. @ Bullfrog Ldg. | 1.59     |      | 1.34  | <u> </u> | 0.41     |      | 0.13  |
| 10/29/93 | 1030     | 313         | Middle R. @ Bullfrog Ldg. |          | 1.47 |       | 0.62     |          | 0.24 |       |
| 10/29/93 | <u> </u> | 23 CF       | S.J. River @ Antioch      | 2.72     |      | 4.99  |          | 1.34     |      | 0.03  |
| 10/29/93 | <u> </u> | 24 CF/OC    | S.J. River @ Antioch      | 1.72     | l    | 1.68  |          | 0.19     |      |       |
| 10/29/93 | 1        | 25 CF/QC    | S.J. River @ Antioch      | <u>-</u> | 2.73 |       | 3.18     | <u> </u> | 2.62 |       |

| D        |          | Ct. 1: #  |                           | Total    | Dis    | Total | Dis        | Total    | Dis  | Total    |
|----------|----------|-----------|---------------------------|----------|--------|-------|------------|----------|------|----------|
| Date     | Hour     | Station # | Station Name              | Cu       | Cu     | Zn    | Zn         | Cr       | Cr   | Pb       |
| 10/29/93 |          | 26 CF     | S.J. River @ Stockton     | 2.85     |        | 5.55  |            | 0.83     |      | 1.18     |
| 10/29/93 |          | 27 CF     | S.J. River @ Stockton     | 2.66     |        | 4.96  |            | 1.16     |      | 1.36     |
| 10/29/93 |          | 28 CF     | S.J. River @ Stockton     |          | 1.98   |       | 4.5        |          | 0.15 |          |
| 10/29/9? |          | 323       | S.J. River @ Vernalis     | 2.83     |        | 9.48  |            | 2.62     |      | 0.14     |
| 10/29/93 |          | 324       | S.J. River @ Vernalis     |          | 1.09   |       | 0.47       |          | 0.2  |          |
| 11/10/93 |          | 29 CF     | Greene's Landing          | 5.16     |        | 5.5   |            | 1.19     |      | 0.28     |
| 11/10/93 |          | 30 CF A   | Greene's Landing          |          | 1.62   |       | 1.6        |          | 0.63 |          |
| 11/10/93 | ·        | 30 CF B   | Greene's Landing          |          | 1.81   |       | 1.4        |          | 0.71 |          |
| 11/11/93 |          | 31 CF     | Greene's Landing          | 2.18     |        | 5.3   |            | 1.1      |      | 0.26     |
| 11/11/93 |          | 32 CF     | Greene's Landing          |          | 1.43   |       | 1.4        |          | 0.3  |          |
| 11/11/93 |          | 33 CF     | Greene's Landing          | 2.44     |        | 4.9   |            | 0.83     |      | 0.52     |
| 11/11/93 |          | 34 CF     | Greene's Landing          |          | 2.04   |       | 6          |          | 0.38 |          |
| 11/11/93 |          | 35 CF     | Greene's Landing          | 2.94     |        | 6     |            | 1.15     |      | 0.62     |
| 11/11/93 |          | 36CF      | Greene's Landing          |          | 1.77   |       | 4.4        |          | 0.33 |          |
| 11/12/93 |          | 37 CF A   | Greene's Landing          | 3.45     |        | 7.8   |            | 1.13     |      | 0.58     |
| 11/12/93 |          | 37 CF B   | Greene's Landing          | 2.62     |        | 6.4   |            | 1.21     |      | 0.51     |
| 11/12/93 |          | 38 CF     | Greene's Landing          | 3.09     |        | 9.9   |            | 1.16     |      | 0.54     |
| 11/12/93 |          | 39 CF     | Greene's Landing          |          | 1.72   |       | 2.1        |          | 0.32 |          |
| 11/29/93 |          | 40 CF     | S.J. River @ Antioch      | 2.69     |        | 2.3   |            | 1.86     |      | 0.07     |
| 11/29/93 |          | 41 CF     | S.J. River @ Stockton     | 2.66     |        | 8.2   |            | 0.98     |      | 0.95     |
| 12/13/93 | [        | 42 CF     | Sac R. @ Rio Vista        | 2.97     | 1.50   | 4.6   |            | 1.56     |      | 0.36     |
| 12/13/93 | <u> </u> | 43 CF     | Sac R. @ Rio Vista        |          | 1.58   |       | 0.71       | 2.00     | 0.72 |          |
| 12/13/93 |          | 44 CF     | Sac. River @ Hood         | 4.38     |        | 1.5   |            | 3.99     |      | 0.64     |
| 12/13/93 |          | 44 CF     | Sac. River @ Hood         | 4.35     | 0.16   | /.6   | 0.00       | 3.4      | 0.10 | 0.63     |
| 12/13/93 |          | 45 CF     | Sac. River @ Hood         |          | 2.16   |       | 0.38       |          | 0.19 |          |
| 1/10/94  |          | GL 21     | Greene's Landing          | 2 (0     | 1.40   | 10.5  | 4.5        | 2.25     | 0.32 | 0.41     |
| 1/10/94  | ļ        | 40 CF     | S.J. River @ Antioch      | 3.08     | 2 02   | 10.5  | <u> </u>   | 3.33     | 0.12 | 0.41     |
| 1/10/94  |          | 47 CF     | S.J. River @ Antioch      | 2.06     | 3.82   | 10.2  | 2          | 0.20     | 0.12 | 01       |
| 1/10/94  |          | 40 CF     | S.J. River @ Stockton     | 2.90     |        | 10.5  |            | 0.30     |      | 0.1      |
| 1/10/94  |          | 48 CF     | S.J. River @ Stockton     | 2.70     | 267    | 10.0  | 10         | 0.34     | 0.00 | 0.74     |
| 1/10/94  | 014      | 49 CF     | S.J. River @ Slockton     | 2.04     | 2.07   |       | 10         | 0.56     | 0.08 | 0.11     |
| 1/11/94  | 914      | 410       | Middle R. @ Builfog Ldg.  | 2.00     |        | 2.2   |            | 0.30     |      | 0.11     |
| 1/11/94  | 914      | 411       | Middle R. @ Bullfrog Ldg. | 0.75     | 2.01   | 1.7   | 1.2        | 0.24     | 0.30 | 0.05     |
| 1/11/94  | 914      | 412       | Middle R. @ Builfog Ldg.  |          | 2.01   |       | 1.2        |          | 0.39 |          |
| 1/11/94  | 914      | 423       | S.J. River @ Vernalis     |          | 2.47   |       | 0.39       |          | 0.17 |          |
| 1/11/94  | 914      | 420       | S.J. River @ Vernalia     | 1.51     | 1.95   | 2.5   | 0.5        | 1 10     | 0.74 | 0.06     |
| 1/11/94  | 714      | 421       | Groopo's Londing          | 1.51     | 1.01   |       | 82         | 1.19     | 2 40 | 0.00     |
| 1/13/94  | <u> </u> | 65 4      | Greene's Landing          | 6 11     | 4.01   | 101   | 0.2        | 18       | 2.49 | 1 23     |
| 1/13/94  |          | 65 B      | Greene's Landing          | 6.64     |        | 11.2  |            | 4.0      |      | 1.25     |
| 1/18/04  |          | 25        | Greene's Landing          | 1 20     |        | 37    |            | 0.26     |      | 0.02     |
| 1/10/04  |          | 23        | Greene's Landing          | 2.96     |        | 103   |            | 0.20     | ·    | 0.02     |
| 1/23/94  |          | 27        | Greene's Landing          | 2.90     | 1 32   | 10.5  | 18         | 0.00     | 0.48 | 0.10     |
| 1/24/94  | +        | 26        | Greene's Landing          | 271      | 1.52   | 133   | 1.0        | 1 45     | 0.40 | 0.67     |
| 1/24/94  | ·····    | 120       | Greene's Landing          | 2.71     | 1.33   | 10.0  | 1.4        |          | 0.37 |          |
| 1/25/94  |          | 128       | Greene's Landing          | 2.01     |        | 9.5   |            | 1.45     |      | 0.56     |
| 1/26/94  |          | 30        | Greene's Landing          | 3 53     |        | 12.5  |            | 2.54     |      | 1.14     |
| 1/26/94  |          | 31        | Greene's Landing          | 1 2.25   | 1.79   | 1     | 8.5        |          | 0.72 | t        |
| 1/27/94  | <u> </u> | 33        | Greene's Landing          | <u> </u> | 2.11   | 1     | 3.9        |          | 0.81 | <u> </u> |
| 1/28/94  | +        | 32        | Greene's Landing          | 632      |        | 18    |            | 4.61     |      | 1.08     |
| 1/28/94  | +        | 35        | Greene's Landing          | 7.74     |        | 136   |            | 5.43     |      | 0.93     |
| 1/28/94  |          | 36        | Greene's Landing          |          | 36     | 1.5.0 | 48         | - 0.40   | 1.54 |          |
| 1/20/04  | 900      | 40        | Greene's Landing          |          | 3 18   | +     | 26         | <u> </u> | 1.24 | +        |
| 1/30/94  | 200      | 38        | Greene's Landing          | 6.21     | 1 2.10 | 13.4  | +- <u></u> | 3.95     |      | 0.87     |
| 1/30/94  | 1000     | 42        | Greene's Landing          |          | 3.27   | 1     | 4.2        | 1        | 1.32 | +        |

| -       | · 1  |           |                  | Total | Dis         | Total | Dis  | Total | Dis      | Total |
|---------|------|-----------|------------------|-------|-------------|-------|------|-------|----------|-------|
| Date    | Hour | Station # | Station Name     | Cu    | Cu          | Zn    | Zn   | Cr    | Cr       | Pb    |
| 1/31/94 |      | 41        | Greene's Landing | 5.31  |             | 20.3  |      | 3.31  |          | 0.78  |
| 2/1/94  |      | 44        | Greene's Landing | 3.43  |             | 11.2  |      | 1.87  |          | 0.31  |
| 2/1/94  |      | 48        | Greene's Landing |       | 4.94        |       | 3    |       | 0.94     |       |
| 2/2/94  |      | 43        | Greene's Landing | 4.09  |             | 4.3   |      | 2.14  |          | 0.51  |
| 2/5/94  | 1700 | 55        | Greene's Landing |       | 1.92        |       | 5.6  |       | 0.86     |       |
| 2/7/94  |      | 50        | Greene's Landing | nd    |             | 0.14  |      | nd    |          | nd    |
| 2/7/94  |      | 53        | Greene's Landing |       | 1.84        |       | 2.5  |       | 0.48     |       |
| 2/8/94  |      | 51        | Greene's Landing | 0.16  |             | 0.16  |      | nd    |          | nd    |
| 2/8/94  |      | 52        | Greene's Landing | 3.04  |             | 11.8  |      | 1.64  |          | 0.51  |
| 2/9/94  |      | 54        | Greene's Landing | 5.76  |             | 16.8  |      | 4.25  |          | 1.58  |
| 2/10/94 |      | 56        | Greene's Landing | 13.34 |             | 39    |      | 14.85 |          | 2.15  |
| 2/10/94 | 930  | 58        | Greene's Landing |       | 5.33        |       | 7.3  |       | 2.58     |       |
| 2/11/94 | 1000 | 61        | Greene's Landing |       | 6.12        |       | 18.5 |       | 2.64     |       |
| 2/11/94 | 1600 | 62        | Greene's Landing | nd    |             | nd    |      | nd    |          | nd    |
| 2/12/94 |      | 60        | Greene's Landing | 10.16 |             | 28.8  |      | 7.91  |          | 1.63  |
| 2/16/94 | 700  | 63        | Greene's Landing | 6.67  |             | 24.7  |      | 5.31  |          | 0.88  |
| 2/16/94 | 700  | 64        | Greene's Landing |       |             |       |      |       |          |       |
| 2/17/94 |      | 67        | Greene's Landing | 4.05  |             | 19.8  |      | 2.78  |          | 1.07  |
| 2/17/94 |      | 68        | Greene's Landing |       | 2.23        |       | 4.6  |       | 1.07     |       |
| 2/18/94 | 1200 | 70        | Greene's Landing | 1     | 1.94        |       | 3.2  |       | 0.67     |       |
| 2/19/94 |      | 69        | Greene's Landing | 4.09  |             | 11.9  |      | 3.02  |          | 0.87  |
| 2/19/94 | 1400 | 72        | Greene's Landing | 1     | 2.26        |       | 2.9  |       | 0.86     |       |
| 2/19/94 | 1400 | 71 A      | Greene's Landing | 5.05  |             | 17.3  |      | 4.28  |          | 0.8   |
| 2/19/94 | 1400 | 71 B      | Greene's Landing | 6.63  |             | 13.6  |      | 3.96  |          | 0.95  |
| 2/20/94 | 1550 | 74        | Greene's Landing |       | 2.11        |       | 3    |       | 0.98     |       |
| 2/21/94 |      | 73        | Greene's Landing | 7.12  |             | 21.8  |      | 5.64  |          | 1.16  |
| 2/21/94 | 1600 | 76        | Greene's Landing |       | 3.05        |       | 6.4  |       | 1.5      |       |
| 2/22/94 |      | 75        | Greene's Landing | 14.29 |             | 22.5  |      | 6.65  |          | 1.39  |
| 2/22/94 |      | 77        | Greene's Landing | 10.74 | 1           | 28.8  |      | 10.24 |          | 1.84  |
| 2/22/94 | 1600 | 79        | Greene's Landing |       | 3.14        |       | 4.5  |       | 1.49     |       |
| 2/23/94 |      | 81        | Greene's Landing | 12.05 | 1           | 33.4  |      | 14.9  |          | 2.02  |
| 2/23/94 | 1700 | 82        | Greene's Landing |       | 3.01        |       | 3.7  |       | 0.31     |       |
| 2/24/94 | 1    | 83        | Greene's Landing | 7.16  |             | 19.7  | ,    | 6.68  |          | 1.04  |
| 2/24/94 | 1700 | 84        | Greene's Landing | 1     | 9.48        |       | 8.4  |       | 3.78     |       |
| 2/25/94 |      | 85        | Greene's Landing | 5.94  |             | 14.6  |      | 4.5   |          | 0.82  |
| 2/25/94 | 1800 | 86        | Greene's Landing |       | 2.56        |       | 3.8  |       | 1.81     |       |
| 2/27/94 |      | 87        | Greene's Landing | 6.74  | 1           | 20.3  |      | 5.73  |          | 1.28  |
| 2/28/94 |      | 89        | Greene's Landing | 4.86  |             | 11.7  |      | 4.02  |          | 0.71  |
| 2/28/94 | 1200 | 90        | Greene's Landing |       | 2.29        |       | 3.8  |       | 1.19     |       |
| 3/1/94  |      | 91        | Greene's Landing | 4.24  |             | 10.1  |      | 2.76  |          | 0.73  |
| 3/1/94  |      | 93        | Greene's Landing |       | 3.03        |       | 3.4  |       | 0.87     |       |
| 3/4/94  |      | 95        | Greene's Landing | 4.61  |             | 11.2  |      | 3.1   |          | 0.61  |
| 3/4/94  | 1200 | 96        | Greene's Landing |       | 2.32        |       | 2.3  |       | 0.6      |       |
| 3/9/94  | 1130 | 100       | Greene's Landing | T     |             | 0.23  |      |       |          | 0.01  |
| 3/9/94  | 1130 | 101       | Greene's Landing |       |             | 0.02  |      |       |          |       |
| 3/9/94  | 1130 | 102       | Greene's Landing | 1     |             | 1.62  |      |       |          | 0.02  |
| 3/9/94  | 1130 | 103       | Greene's Landing |       | 1           | 1.88  |      | 1     |          | 0.01  |
| 3/9/94  | 1130 | 104       | Greene's Landing | 1.99  |             | 2.8   |      | 0.87  |          | 0.34  |
| 3/9/94  | 1130 | 107       | Greene's Landing | 2.4   |             | 2.9   |      | 0.97  |          | 0.41  |
| 3/9/94  | 1130 | 105a      | Greene's Landing | 2.44  | †# <u>.</u> | 3.4   |      | 0.94  |          | 0.43  |
| 3/9/94  | 1130 | 105b      | Greene's Landing | 2.39  | 12          | 3.1   |      | 0.91  |          | 0.33  |
| 3/9/94  | 1130 | 106a      | Greene's Landing | 2.44  | 1           | 34    |      | 0.91  | ļ        | 0.43  |
| 3/9/94  | 1130 | 106b      | Greene's Landing | 2.34  | 1           | 3.2   |      | 0.86  | <u> </u> | 0.32  |
| 3/10/94 | 1.00 | 108       | Greene's Landing | 3.46  | 1           | 8.2   |      | 2.04  |          | 0.42  |
| 3/10/94 | 1800 | 109       | Greene's Landing | +     | 1.79        |       | 2    | +     | 0.48     |       |

|          |      |                |                           | Total    | Dis                                   | Total    | Dis      | Total | Dis      | Total    |
|----------|------|----------------|---------------------------|----------|---------------------------------------|----------|----------|-------|----------|----------|
| Date     | Hour | Station #      | Station Name              | Cu       | Cu                                    | Zn       | Zn       | Cr    | Cr       | Pb       |
| 3/15/94  |      | 110            | Greene's Landing          |          |                                       | 0.11     |          |       |          |          |
| 3/15/94  | L    | 111            | Greene's Landing          | 2.75     |                                       | 3.8      |          | 0.9   |          | 0.5      |
| 3/15/94  |      | 112            | Greene's Landing          | 1.44     |                                       | 4.4      |          | 0.44  |          | 0.26     |
| 3/15/94  |      | 113            | Greene's Landing          | 3.97     |                                       | 4.9      |          | 1.24  |          | 0.58     |
| 3/15/9-7 |      | 113            | Greene's Landing          | 4.2      |                                       | 4.6      |          | 1.34  |          | 0.76     |
| 3/15/94  | 1800 | 115            | Greene's Landing          |          | 1.5                                   |          | 1.7      |       | 0.33     |          |
| 3/16/94  |      | 114            | Greene's Landing          | 3        |                                       | 12.3     |          | 1.36  |          | 0.46     |
| 3/16/94  | 1100 | 116            | Greene's Landing          | 0.14     |                                       | 0.03     |          |       |          | 0.01     |
| 3/16/94  |      | 117            | Greene's Landing          |          |                                       | 0.43     |          |       |          | L        |
| 3/16/94  |      | 118            | Greene's Landing          |          | 0.26                                  |          | 0.58     |       | 0.02     |          |
| 3/16/94  |      | 119            | Greene's Landing          | 3.26     |                                       | 3.2      |          | 0.95  |          | 0.51     |
| 3/16/94  |      | 120            | Greene's Landing          | 2.66     |                                       | 3        |          | 0.88  |          | 0.49     |
| 3/16/94  | <br> | 121            | Greene's Landing          |          | 2.4                                   |          | 2.9      |       | 0.86     |          |
| 3/16/94  |      | 122            | Greene's Landing          |          | 2.59                                  |          | 2.8      |       | 0.85     |          |
| 3/23/94  |      | aa33           | French Camp Slough        | 2.72     |                                       | 9.24     |          | 4     |          | 2.26     |
| 3/23/94  | ļ    | aa34           | French Camp Slough        |          | 2.83                                  |          | 3.59     |       | 0.81     |          |
| 3/23/94  |      | aa31           | Ulatis Creek              | 4.23     |                                       | 9.56     |          | 3.87  |          | 0.46     |
| 3/23/94  |      | aa32           | Ulatis Creek              |          | 2.98                                  |          | 5.55     |       | 1.71     |          |
| 4/12/94  | 1400 | 414            | Mokelumne River           | 2.21     |                                       | 4.2      |          | 1.49  |          | 0.34     |
| 4/12/94  | 1400 | 475            | Mokelumne River           |          | 1.29                                  |          | 0.75     |       | 0.2      |          |
| 4/12/94  | 1200 | 104CF          | Sac R. @ Rio Vista        | 2.98     | 1.00                                  | 4.02     |          | 1.77  | 0.00     | 0.26     |
| 4/12/94  | 1200 | 105CF          | Sac R. @ Rio Vista        |          | 1.88                                  |          | 1.06     |       | 0.37     | 0.04     |
| 4/12/94  | 900  | 100CF          | Sac. River @ Hood         | 2.89     |                                       | 4.62     |          | 1.34  |          | 0.24     |
| 4/12/94  | 900  | TUTCF          | Sac. River @ Hood         | 2.94     | - 10                                  | 3.81     | 0.04     | 1.03  |          | 0.24     |
| 4/12/94  | 900  | 102CF          | Sac. River @ Hood         |          | 2.12                                  |          | 2.30     |       | 0.4      |          |
| 4/12/94  | 1900 | 103CF          | Sac. River @ Hood         | 20       | 2.17                                  | 1.07     | 1.72     | 0.00  | 0.34     | 0.16     |
| 4/2/194  | 1300 | 497            | Middle R. @ Builfrog Ldg. | 2.38     | 2.07                                  | 1.97     | 0.16     | 0.08  | 0.20     | 0.10     |
| 4/2/194  | 1300 | 498            | Middle R. @ Builfrog Ldg. | 472      | 2.07                                  | 7.04     | 0.10     | 2 27  | 0.28     | 0.66     |
| 4/2/194  | 1900 | 100CF          | S.J. River @ Antioch      | 4.12     |                                       | 7.00     |          | 3.27  |          | 0.00     |
| 4/2/194  | 900  | 10/CF          | S.J. River @ Antioch      | 4.83     | 2.71                                  | 0.48     | 1.46     | 2.82  | 0.01     | 0.95     |
| 4/2/194  | 1900 | 108CF          | S.J. River @ Antioch      |          | 2.71                                  |          | 1.40     |       | 0.61     |          |
| 4/2/194  | 900  | 109 CI         | S.J. River @ Antioch      | 1 25     | 2.75                                  | 12       | 1.23     | 0.6   | 0.05     | 0.83     |
| 4/2/194  | 900  | 11UCF          | S.J. River @ Stockton     | 4.2.5    | 2.00                                  | 15       | 6.65     | 0.0   | 0.2      | 0.05     |
| 4/2/194  | 1900 | 111CF          | S.J. River @ Stockton     |          | 2.99                                  | 0.00     | 0.05     |       | 0.2      |          |
| 4/2/194  | 1930 | 400            | S.J. River @ Vernalis     | <u> </u> |                                       | 0.06     | <u> </u> |       |          |          |
| 4/2/194  | 020  | 401            | S.J. River @ Vernalis     | 2.50     |                                       | 0.24     |          | A A   |          | 0.70     |
| 4/2/194  | 020  | 402            | S.J. River @ Vernalis     | 5.56     | 117                                   | 9.24     | 0.48     | 4.4   | 04       | 0.72     |
| 4/2/194  | 930  | 403            | S.J. River @ Vernalis     |          | 0.69                                  |          | 0.40     |       | 0.4      |          |
| 4/2/194  | 930  | 484            | Deredice Cut              |          | 0.08                                  | <b>\</b> | 0.54     |       | 0.34     | <b> </b> |
| 5/10/04  |      |                | Duck Slough               | 12       | 1.19                                  | 26       | 0.85     | 187   | 0.21     | 22       |
| 5/10/94  |      | 1227           | Duck Slough               | 12       | 10                                    |          | 776      | 10.7  | 5 30     | <u> </u> |
| 5/10/94  | 020  |                | Creana's Landing          | +        | 4.9                                   |          | 2 20     |       | 0.45     |          |
| 5/10/94  | 930  | 0L 201         | Greene's Landing          | 071      | 1.95                                  | 214      | 2.59     | 5.95  | 0.45     | 1 41     |
| 5/10/94  |      | 1 <u>g1200</u> | Greene's Landing          | 0./1     | 1.05                                  | 21.4     | 230      | 5.85  | 0.45     | 1.41     |
| 5/10/94  | 1200 | 1541           | Mokolumna Diver           | 2 42     | 1.95                                  | 4.51     | 2.55     | 0.04  | 0.45     | 032      |
| 5/10/94  | 1200 | 541/0          | Mokelumne River           | 2.42     | · · · · · · · · · · · · · · · · · · · | 2.01     |          | 1.06  |          | 0.32     |
| 5/10/04  | 1200 | 1293           | Paradise Cut              | 3 47     |                                       | 4.86     |          | 2 13  |          | 033      |
| 5/10/94  | +    | 445            | Paradise Cut              | <u></u>  | 219                                   | 4.00     | nd       |       | 0.06     | 10.35    |
| 5/10/94  |      |                | Sac P @ Rio Vista         | 207      |                                       | 5.07     | 110      | 2.05  | 0.00     | 0.29     |
| 5/10/04  | +    | 115cf          | Sac R @ Rio Vista         | 2.31     | 10                                    | 5.07     | 1 75     | 2.05  | 0.52     | +        |
| 5/10/04  | +    | 112cf          | Sac River @ Hood          | 2.63     | +                                     | 5 14     | 1.15     | 1 52  |          | 0.29     |
| 5/10/04  | +    | 11201          | Sac River @ Hood          | 2.05     | +                                     | 3.14     | <u> </u> | 1.52  | <u> </u> | 034      |
| 5/10/04  | +    | 112cf          | Sac River @ Hood          | +        | 1.84                                  | - 5.0    | 1 33     | +     | 0.55     | + 0.5 -  |
| 5/25/04  |      | 2210           | Old River @ Tracy Rlvd    |          | 1.04                                  | +        | 1 99     |       | +0.37    | +        |
| 15125194 |      | 14410          | Toto Kitor @ Tracy Divu.  | 1        | 1 1 1 7 7                             |          | 1        | 1     | 1        | J        |

,

|          |       |           |                         | Total | Dis      | Total  | Dis    | Total | Dis      | Total  |
|----------|-------|-----------|-------------------------|-------|----------|--------|--------|-------|----------|--------|
| Date     | Hour  | Station # | Station Name            | Cu    | Cu       | Zn     | Zn     | Cr    | Cr       | Pb     |
| 5/25/94  |       | aa9       | Old River @ Tracy Blvd. | 2.43  |          | 7.18   |        | 2.33  |          | 3.06   |
| 5/25/94  |       | aa35      | Paradise Cut            |       | 1.01     |        | 2.07   |       | 0.25     |        |
| 5/25/94  |       | aa8       | Paradise Cut            |       | 1.81     |        | 1.43   |       | 0.08     |        |
| 6/3/94   |       | aa11      | Old River @ Tracy Blvd. | 3.84  |          | 9.26   |        | 3.2   |          | - 1.92 |
| 6/3/94   |       | aa12      | Old River @ Tracy Blvd. |       | 1.74     |        | 1.99   |       | 0.25     |        |
| 6/3/94   |       | aal4      | Paradise Cut            | 4.3   |          | 7.3    |        | nd    |          | 0.64   |
| 6/3/94   |       | aa15      | Paradise Cut            |       | 2.41     |        | 2.54   |       | 0.08     |        |
| 7/12/94  |       | aa21      | Duck Slough             | 12.6  |          | 32.3   |        | 19.6  |          | 4.28   |
| 7/12/94  |       | aa22      | Duck Slough             |       | 4.41     |        | 7.17   |       | 4.78     |        |
| 7/12/94  |       | aa19      | Paradise Cut            | 4.88  |          | 8.95   |        | 4.72  |          | 0.6    |
| 7/12/94  |       | aa20      | Paradise Cut            |       | 0.2      |        | 3.55   |       | 0.2      |        |
| 7/12/94  |       | aa23      | Prospect Slough         | 8.29  | 1        | 16.6   |        | 10.8  |          | 1.24   |
| 7/12/94  |       | aa24      | Prospect Slough         |       | 3.52     |        | 6.83   | ·     | 3.06     |        |
| 7/21/94  |       | aa25a     | Mokelumne River         |       | 1.25     |        | 5.65   |       | 0.16     |        |
| 7/21/94  |       | aa25b/QA  | Mokelumne River         |       | 1.14     |        | 5.57   |       | 0.11     |        |
| 7/21/94  |       | aa26a     | Mokelumne River         | 2.01  |          | 5.32   |        | 0.72  |          | 0.3    |
| 7/21/94  |       | aa26b/QA  | Mokelumne River         | 1.88  |          | 6.34   |        | 0.57  |          | 0.25   |
| 8/9/94   |       | bp 27     | Duck Slough             | 12.5  |          | 27.5   |        | 22.4  |          | 8.98   |
| 8/9/94   |       | bp 28     | Duck Slough             |       | 4.52     |        | 6.75   |       | 5        |        |
| 8/9/94   |       | bp 29     | Prospect Slough         | 7.7   |          | 12.1   |        | 11    |          | 1.24   |
| 8/9/94   | 1     | bp 30     | Prospect Slough         | 1     | 4.1      |        | 4.03   |       | 3.83     |        |
| 9/2/94   |       | bp1       | Duck Slough             | 13.5  |          | 29.6   |        | 23.1  |          | 8.56   |
| 9/2/94   |       | bp1/OA    | Duck Slough             | 14.9  |          | 30.7   |        | 21.9  |          | 7.39   |
| 9/2/94   |       | bp2       | Duck Slough             | +     | 3.58     |        | 4.56   |       | 4.08     |        |
| 9/2/94   |       | bp5       | French Camp Slough      | 6.17  |          | 13.3   |        | 3.64  |          | 1.58   |
| 9/2/94   |       | bp6       | French Camp Slough      |       | 2.94     |        | 2.27   |       | 0.99     |        |
| 9/2/94   |       | bp3       | Prospect Slough         | 8.16  |          | 13.3   |        | 9.58  |          | 2.24   |
| 9/2/94   |       | bp3/OA    | Prospect Slough         | 8.49  |          | 12.2   |        | 9.84  |          | 2.06   |
| 9/2/94   |       | bp4       | Prospect Slough         |       | 4.22     |        | 3.97   |       | 3.52     |        |
| 10/5/94  |       | bp36      | 5 mile                  |       | 5.12     |        | 70.2   |       | 1.01     |        |
| 10/5/94  |       | bp96      | Greene's Landing        | 4.99  |          |        |        | 4.16  |          | 4.48   |
| 10/19/94 |       | aa36      | Mokelumne River         | 2.15  |          | 7.29   |        | 0.73  |          | 0.28   |
| 11/4/94  |       | aa27      | S.J. River @ Antioch    | 3.69  |          | 7.23   |        | 2.31  |          | 0.36   |
| 11/4/94  |       | aa28      | S.J. River @ Antioch    |       | 2.19     |        | 2.97   |       | 0.71     |        |
| 12/13/94 | 1245  | 400       | Mokelumne River         | 3.97  |          | 52.8   |        | 3.54  |          | 0.67   |
| 12/13/94 | 1245  | 401       | Mokelumne River         |       | 1.84     |        | 4.1    |       | 0.72     |        |
| 12/13/94 | 1245  | 402       | Mokelumne River         |       | 1.89     |        | 2      |       | 0.77     |        |
| 12/13/94 |       | 122       | Ulatis Creek            | 211   |          | 573    |        | 131   |          | 518    |
| 17/13/94 |       | 2230      | Ulatis Creek            | +     | 3.89     |        | 185    |       | 0.65     |        |
| 1/6/95   | 1500  | hp44      | Greene's Landing        | 5 54  |          | 10.2   |        | 3.71  |          | 1.2    |
| 1/6/95   | 1500  | bp45      | Greene's Landing        |       | 299      |        | 32     |       | 1.28     |        |
| 1/7/95   | 1.500 | bp46      | Greene's Landing        | 9.02  | 4.77     | 179    |        | 72    |          | 3.48   |
| 1/7/95   |       | bp47      | Greene's Landing        |       | 3.93     |        | 3.75   |       | 1.98     |        |
| 1/8/95   | 1330  | bn48      | Greene's Landing        | 106   | 3.33     | 197    |        | 114   |          | 3 91   |
| 1/8/95   | 1330  | bp49      | Greene's Landing        | 10.0  | 4 91     |        | . 5 50 |       | 2.94     |        |
| 1/0/05   | 1330  | bp53      | Duck Slough             | +     | 3 30     |        | 275    |       | 2.24     |        |
| 1/10/05  |       | bp52      | Greene's Landing        | 28.4  | - 3.37   | 62.9   | 4.15   | 20    |          | 112    |
| 1/10/05  |       | bn53      | Greene's Landing        | 0,4   | 40       | 02.9   | 5 00   | 47    | 7        | 11.6   |
| 1/10/05  |       | lbn54     | Prospect Slough         | 124   |          | 270    |        | 242   | <u> </u> | 28.4   |
| 1/10/05  |       | bn54/04   | Prospect Slough         | 162   |          | 328    |        | 271   |          | 412    |
| 1/11/05  | 1420  | 10057/QA  | Greene's Landing        | 272   | <u> </u> | 600    |        | 26.9  |          | 6.65   |
| 1/11/05  | 1430  | bp55      | Greene's Landing        | -1.5  | 5.05     | 07.7   | 502    | 20.0  | 215      | -0.05  |
| 1/11/05  | 1620  | 10050     | Prospect Slough         | 86.0  |          | 172    |        | 160   | 5.45     | 16     |
| 1/12/05  | 1400  | 10p39     | Greene's Londing        | 17 4  |          | 221    | ·      | 100   |          | 2 40   |
| 1/12/95  | 1400  | bp62/0 4  | Greene's Landing        | 20    | +        | 222    |        | 19.5  |          | 6 20   |
| 11112175 | 11400 | TOPOSIQA  | La conce a canality     | 1 40  | 1        | 1 22.2 | 1      | 1 17  | 1        | 1 0.40 |

|         |       |           |                  | Total    | Dis      | Total | Dis      | Total    | Dis   | Total |
|---------|-------|-----------|------------------|----------|----------|-------|----------|----------|-------|-------|
| Date    | Hour  | Station # | Station Name     | Cu       | Cu       | Zn    | Zn       | Cr       | Cr    | Pb    |
| 1/12/95 | 1400  | bp63      | Greene's Landing |          | 3.35     |       | 2.86     |          | 3.2   |       |
| 1/12/95 | 1400  | bp64/QA   | Greene's Landing |          | 4.9      |       | 4.11     |          | 3.04  |       |
| 1/12/95 | 1030  | bp60      | Prospect Slough  | 34.4     |          | 66.3  |          | 57.6     |       | 7.81  |
| 1/13/95 | 1500  | bp65      | Greene's Landing | 14.2     |          | 32.5  |          | 21       |       | 4.02  |
| 1/13/95 | 1500  | bp66      | Greene's Landing |          | 3.67     |       | 6.32     |          | 4.78  |       |
| 1/13/95 | 1000  | bp67      | Prospect Slough  | 17.9     |          | 42.4  |          | 32.7     |       | 3.65  |
| 1/14/95 | 1300  | bp69      | Greene's Landing | 15.2     |          | 71.8  |          | 21.3     |       | 2.66  |
| 1/14/95 | 1300  | bp70      | Greene's Landing |          | 3.94     |       | 11.2     |          | 4.42  |       |
| 1/14/95 | 1000  | bp68      | Prospect Slough  | 40.3     |          | 84    |          | 58       |       | 13.5  |
| 1/15/95 | 1400  | bp71      | Greene's Landing | 10.7     |          | 44.8  |          | 12.2     |       | 2.55  |
| 1/15/95 | 1400  | bp72      | Greene's Landing | 10.9     |          | 48.2  |          | 13.3     |       | 28.7  |
| 1/15/95 | 1400  | bp77      | Greene's Landing |          | 3.62     |       | 7.93     |          | 3.05  |       |
| 1/15/95 | 1000  | bp74      | Prospect Slough  | 29.8     |          | 128   |          | 42.3     | ····· | 6.54  |
| 1/15/95 | 1000  | bp75      | Prospect Slough  | 28.9     |          | 128   |          | 42.5     |       | 6.15  |
| 1/17/95 | 1400  | bp78      | Greene's Landing | 9.39     |          | 18.4  |          | 11.6     |       | 1.57  |
| 1/17/95 | 1400  | bp79      | Greene's Landing |          | 3.6      |       | 9.4      |          | 3.4   |       |
| 1/17/95 | 1000  | bp80      | Prospect Slough  | 19       |          | 78.9  |          | 27.1     |       | 2.95  |
| 1/18/95 | 1400  | bp82      | Greene's Landing | 10.3     |          | 46.9  |          | 13.3     |       | 7.42  |
| 1/18/95 | 1400  | bp83      | Greene's Landing |          | 3.68     |       | 4.68     |          | 3.83  |       |
| 1/18/95 | 1100  | bp81      | Prospect Slough  | 24.3     |          | 103   |          | 32.9     |       | 4.82  |
| 1/20/95 | 1600  | bp86      | Greene's Landing | 9.68     |          | 19.5  |          | 12.6     |       | 2.05  |
| 1/20/95 | 1600  | bp87      | Greene's Landing |          | 4.28     |       | 4.84     |          | 3.43  |       |
| 1/22/95 | 1430  | bp90      | Greene's Landing | 9.98     |          | 23.3  |          | 12       |       | 1.75  |
| 1/22/95 | 1430  | bp91      | Greene's Landing |          | 3.35     |       | 4.25     |          | 2.5   |       |
| 1/22/95 | 1200  | bp89      | Prospect Slough  | 13.3     |          | 26.3  |          | 18.7     |       | 2.49  |
| 1/22/95 | 1100  | bp88      | Skag Slough      | 11.9     |          | 26.3  |          | 22.7     |       | 2.52  |
| 1/23/95 | 1500  | cf500     | Greene's Landing | 9.43     |          | 25.4  |          | 8.57     |       | 3.24  |
| 1/23/95 | 1500  | cf501     | Greene's Landing |          | 3.42     |       | 4.41     |          | 2.52  |       |
| 1/23/95 | 1200  | cf502     | Prospect Slough  | 14.9     |          | 39.3  |          | 17.4     |       | 3     |
| 1/23/95 | 1000  | cf503     | Skag Slough      | 14.6     |          | 45.6  |          | 24.3     |       | 3.9   |
| 1/24/95 | 1600  | cf504     | Greene's Landing | 8.27     |          | 11.3  |          | 8.44     | -     | 1.55  |
| 1/24/95 | 1600  | cf505     | Greene's Landing |          | 3.09     |       | 22.4     |          | 2.68  |       |
| 1/25/95 | 1500  | cf506     | Greene's Landing | 7.07     |          | 20.9  |          | 8.27     |       | 2.11  |
| 1/25/95 | 1500  | cf507     | Greene's Landing |          | 2.88     |       | 5.06     |          | 4.43  |       |
| 1/25/95 | 1000  | cf508     | Prospect Slough  | 9.06     |          | 28.3  |          | 9.56     |       | 1.26  |
| 1/25/95 | 1000  | cf509     | Prospect Slough  | ·        | 3.48     |       | 5.69     |          | 2.51  |       |
| 1/26/95 | 1400  | cf512     | Greene's Landing | 9.9      |          | 24,4  |          | 11       |       | 1.83  |
| 1/26/95 | 1500  | cf513     | Greene's Landing |          | 3.16     |       | 4.86     |          | 2.07  |       |
| 1/26/95 | 1600  | cf510     | Prospect Slough  | 15       |          | 36.3  |          | 21.6     |       | 2.53  |
| 1/26/95 | 1600  | cf511     | Prospect Slough  |          | 4.78     |       | 8.17     |          | 4.08  |       |
| 1/27/95 | 1000  | cf514     | Greene's Landing | 8.82     |          | 22.3  |          | 10.6     |       | 2.28  |
| 1/27/95 | 1000  | cf515     | Greene's Landing |          | 3.27     |       | 6.06     |          | 4.46  |       |
| 1/27/95 | 1530  | cf516     | Prospect Slough  | 12.3     |          | 31.9  |          | 19.2     |       | 2.07  |
| 1/28/95 | 1500  | cf517     | Greene's Landing | 8.11     |          | 21.7  |          | 9.84     |       | 2.06  |
| 1/28/95 | 1500  | cf518     | Greene's Landing |          | 2.77     |       | 5.9      |          | 2.07  |       |
| 1/28/95 | 1200  | cf519     | Prospect Slough  | 12.5     |          | 32.8  | <u> </u> | 17.6     |       | 2.11  |
| 1/28/95 | 1200  | cf520     | Prospect Slough  | 1        | 4.51     |       | 7.87     | +        | 3.69  |       |
| 1/28/95 | 11000 | cf521     | Skag Slough      | 13       |          | 30.3  |          | 20.1     |       | 2,19  |
| 1/29/95 | 1100  | bp92      | Greene's Landing | 7.34     | <u> </u> | 17.8  |          | 7.75     |       | 1.63  |
| 1/29/95 | 1100  | bp93      | Greene's Landing |          | 2.89     |       | 4.34     | t        | 2.13  |       |
| 1/29/95 | +     | bn94      | Greene's Landing | <u> </u> | 3        |       | 4.58     | <u> </u> | 2.17  |       |
| 1/30/95 | 1700  | cf600     | Greene's Landing | 679      | †        | 144   |          | 7.17     |       | 1.04  |
| 1/30/95 | 1700  | cf601     | Greene's Landing | +        | 2.87     | +     | 2.47     | +        | 1.75  | 1     |
| 1/31/95 | 1600  | cf602     | Greene's Landing | 7.02     | <u> </u> | 14.6  |          | 6.77     |       | 1.04  |
| 1/31/95 | 1600  | ct'603    | Greene's Landing | 0.02     | 1        | 0.599 | <u> </u> | 0.09     |       | nd    |

×

|         |      |           |                             | Total | Dis         | Total | Dis         | Total | Dis      | Total |
|---------|------|-----------|-----------------------------|-------|-------------|-------|-------------|-------|----------|-------|
| Date    | Hour | Station # | Station Name                | Cu    | Cu          | Zn    | Zn          | Cr    | Cr       | Pb    |
| 1/31/95 | 1600 | cf604     | Greene's Landing            | 7.04  | -           | 16.7  |             | 6.27  |          | 1.31  |
| 1/31/95 | 1600 | cf605/QA  | Greene's Landing            | 7.36  |             | 12    |             | 6.41  |          | 1.99  |
| 1/31/95 | 1600 | cf607     | Greene's Landing            | 0.18  |             | 1.81  |             | 0.2   |          | nd    |
| 1/31/95 | 1600 | cf610     | Greene's Landing            |       | 1.89        |       | 3.98        |       | 1.59     |       |
| 1/31/95 | 1600 | cf611     | Greene's Landing            | 2.76  |             | 3.98  |             | 1.67  |          | 0.39  |
| 1/31/95 | 1200 | cf606     | Prospect Slough             | 9.73  |             | 23.3  |             | 11.5  |          | 1.45  |
| 2/1/95  | 1300 | cf608     | Greene's Landing            | 3.53  |             | 12.2  |             | 5.02  |          | 1.08  |
| 2/1/95  | 1600 | cf609     | Greene's Landing            |       |             |       |             |       |          |       |
| 2/2/95  | 1600 | cf612     | Greene's Landing            | 5.9   |             | 13.3  |             | 4.88  |          | 0.86  |
| 2/3/95  | 1400 | cf613     | Greene's Landing            | 6.57  |             | 14.3  |             | 6.03  |          | 1.33  |
| 2/3/95  | 1000 | cf614     | Prospect Slough             | 8.69  |             | 19.9  |             | 10    |          | 1.12  |
| 2/5/95  | 1500 | cf615     | Chipps Island               | 7.96  |             | 16.2  |             | 7     |          | 1.18  |
| 2/5/95  | 1500 | cf625     | Chipps Island               |       | 3.13        |       | 4.37        |       | 1.7      |       |
| 2/5/95  | 1300 | cf616     | Grizzly Bay                 | 6.58  |             | 13.4  |             | 5.94  |          | 0.95  |
| 2/5/95  | 1300 | cf623     | Grizzly Bay                 |       | 3.29        |       | 4.84        |       | 2.26     |       |
| 2/5/95  | 1600 | cf617     | Martinez                    | 7.15  |             | 17.9  |             | 6.69  |          | 1.01  |
| 2/5/95  | 1000 | cf624a    | Martinez                    | 3.09  |             | 4.21  |             | 1.86  |          | 0.36  |
| 2/5/95  | 1000 | cf624b/OA | Martinez                    | 3.77  |             | 3.2   |             | 2.05  |          | 0.64  |
| 2/6/95  | 1600 | cf619     | Greene's Landing            | 6.45  |             | 14.5  |             | 5.78  |          | 1.11  |
| 2/6/95  | 1600 | cf622     | Greene's Landing            |       | 2.37        |       | 3.6         |       | 1.68     |       |
| 2/6/95  | 1400 | cf618     | Prospect Slough             | 14.7  |             | 29.2  |             | 14.3  |          | 1.95  |
| 2/10/95 | 1600 | cf701a    | Greene's Landing            | 495   |             | 10.6  |             | 4 4 7 |          | 0.63  |
| 2/10/95 | 1600 | cf701b/0A | Greene's Landing            | 54    |             | 8 38  |             | 3.95  |          | 1.04  |
| 2/10/95 | 1600 | cf702a    | Greene's Landing            |       | 2 49        | 0.50  | 2 4 1       | 5.75  | 1 4 1    |       |
| 2/10/95 | 1300 | cf702b/0A | Greene's Landing            |       | 2.42        |       | 1 98        |       | 1 37     |       |
| 2/10/05 | 1400 | cf700     | Prospect Slough             | 734   | 2.34        |       | 1.70        | 7.65  | 1.57     | 0.76  |
| 2/10/95 | 1600 | of703     | Greene's Londing            | 5.07  | · · · · · · |       | ····        | 1.65  |          | 0.70  |
| 2/14/95 | 1200 | cf704     | Brospect Slough             | 8 22  |             |       |             | 10.5  |          | 4.2   |
| 2/14/95 | 1000 | lof705    | Flog Slough                 | 2.00  |             |       |             | 574   |          | 4.2   |
| 2/14/95 | 1250 | of706     | Greene's Londing            | 73    |             |       |             | 9 70  |          | 1.09  |
| 2/17/95 | 1330 | 101700    | Brospost Slough             | 572   |             |       | ~- <u>.</u> | 0.79  | <u> </u> | 0.75  |
| 2/1//93 | 1100 | 101/07    | Groopo'a Londing            | 3.72  |             |       |             | 0.00  |          | 4 49  |
| 2/21/95 | 1400 | 10090     | Greene's Landing            | 4.99  |             |       |             | 4.10  |          | 4.40  |
| 2/21/95 | 930  | 101/08    | Greene's Landing            | 3.31  |             |       |             | 2.02  |          | 1.55  |
| 2/23/95 | 1000 |           | Greene's Landing            | 4.78  |             |       |             | 3.93  |          | 1.30  |
| 2/24/95 | 900  |           | Greene's Landing            | 4.08  |             |       |             | 2.9   |          | 0.94  |
| 2/28/95 | 2030 | CT/12     | Greene's Landing            | 4.14  |             |       |             | 3.97  |          | 1.10  |
| 2/28/95 | 1800 | CI/15     | Prospect Slough             | 0.39  |             |       |             | 14.5  |          | 2.95  |
| 3/3/95  | 1530 | CT/14     | Greene's Landing            | 4.75  |             |       |             | 4.44  |          | 2.80  |
| 3/3/95  | 1600 |           | Greene's Landing            | 4.94  |             |       |             | 5.02  |          | 0.90  |
| 3/ 1/95 | 1220 |           | Greene's Landing            | 3.73  |             | 100   |             | 4.94  |          | 200   |
| 3/10/95 | 1330 | bp102     | Cottonwood Creek            | 89.8  |             | 189   |             | 170   |          | 20.9  |
| 3/10/95 | 1330 | 16p102    | Cottonwood Creek            | 95    |             | 151   |             | 130   |          | 18.9  |
| 3/10/95 |      | bp114     | East Yolo Bypass            | 121   |             | 333   |             | 303   |          | 33.3  |
| 3/10/95 | 1115 | bp106     | Little Cow Cr. @ Dersch Br. | 11.6  |             | 36.7  |             | 8.47  |          | 6.65  |
| 3/10/95 | 1115 | bp106     | Little Cow Cr. @ Dersch Br. | 13.2  | · .         | 29.3  |             | 6.3   |          | 1.14  |
| 3/10/95 | 1240 | [bp108    | Putah Creek @ Mace Blvd.    | 76.9  | ļ           | 253   |             | 98.4  |          | 28    |
| 3/10/95 | 1430 | bp105     | Sac R. @ Bend Bdg           | 28.8  |             | 68.8  |             | 39.6  |          | 7.68  |
| 3/10/95 | 2000 | bp100     | Sac R. @ Colusa Bdg         | 58.1  |             | 129   |             | 94.8  |          | 12.1  |
| 3/10/95 | 1000 | bp97      | Sac R. @ Cypress Bdg        | 8.23  |             | 18.7  |             | 2.03  |          | 0.83  |
| 3/10/95 | 1830 | bp98      | Sac R. @ Old Ferry          | 46.8  |             | 97.2  |             | 75.7  |          | 10.2  |
| 3/10/95 | 1550 | bp99      | Sac R. @ Road a-8           | 70.4  |             | 157   |             | 150   |          | 15.7  |
| 3/10/95 | 1700 | bp107     | Sac R. @ Road a-9           | 56.6  |             | 134   |             | 99.6  |          | 12.9  |
| 3/10/95 | 800  | bp103     | Sac R. @ Shasta Dam         | 1.23  |             | 4.6   |             | 1.44  |          | 2.68  |
| 3/10/95 | 1230 | bp104     | Sac R. @ Balls Ferry Bdg    | 10.7  |             | 29.6  |             | 6.5   |          | 4.32  |
| 3/10/95 | 2230 | bp101     | Sacramento Slough           | 73.2  |             | 173   |             | 122   |          | 17.5  |

| Date    | Hour | Station # | Station Name               | Total<br>Cu | Dis<br>Cu | Total<br>Zn | Dis<br>Zn | Total<br>Cr | Dis<br>Cr | Total<br>Pb |
|---------|------|-----------|----------------------------|-------------|-----------|-------------|-----------|-------------|-----------|-------------|
| 3/10/95 | 1    | bp112     | Skag Slough                | 5.22        |           | 15.3        |           | 4.82        |           | 4.66        |
| 3/10/95 |      | bp113     | West Yolo bypass           | 43          |           | 144         |           | 90          |           | 15.6        |
| 3/11/95 | 1530 | bp110     | American River @ Sac State | 1.15        |           | 3.87        |           | 1.28        |           | 0.44        |
| 3/11/95 | 1200 | bp109     | Cache Creek 102            | 130         |           | 311         |           | 312         |           | 30          |
| 3/11/95 | 1200 | bp109     | Cache Creek 102            | 151         |           | 266         |           | 270         |           | 31.2        |
| 3/11/95 | 1630 | bplll     | Feather River @ Hwy 99     | 4.54        |           | 6.29        |           | 3.14        |           | 0.72        |
| 3/11/95 | 1300 | CF 800    | Greene's Landing           | 8.6         |           | 19.8        |           | 13.8        |           | 3.04        |
| 3/11/95 | 1500 | CF 801    | Mokelumne River            | 4.31        |           | 16.1        |           | 2.41        |           | 4.66        |
| 3/11/95 | 1500 | CF 801    | Mokelumne River            | 4.79        |           | 6.27        |           | 3.86        |           | 3.19        |
| 3/11/95 | 1600 | CF 802    | S.J. River @ Vernalis      | 34.1        |           | 107         |           | 69.1        |           | 17.6        |
| 3/13/95 | 1100 | CF 803    | Sutter Bypass              | 12          |           | 24.8        |           | 17.6        |           | 4.88        |
| 3/13/95 |      | bp117     | Sycamore                   |             | 5.4       |             | 18.4      |             | 0.39      |             |
| 3/14/95 |      | bp115     | Greene's Landing           | 6.92        |           | 11          |           | 8.87        |           | 2.86        |
| 3/21/95 | 1800 | CF 807    | Prospect Slough            | 10          |           | 20.5        |           | 13.3        |           | 3.45        |
| 3/22/95 | 1700 | CF 808    | Greene's Landing           | 3.54        |           | 7.92        |           | 6.4         |           | 2.96        |
| 3/22/95 | 1700 | CF 811    | Greene's Landing           | 4.79        |           | 6.27        |           | 3.86        |           | 3.19        |
| 3/22/95 | 1000 | CF 809    | Mokelumne River            | 4.26        |           | 18.2        |           | 2.1         |           | 0.89        |
| 3/22/95 | 1000 | CF 809    | Mokelumne River            | 4.72        |           | 13.3        |           | 1.93        |           | 1.3         |
| 3/22/95 | 1400 | CF 810    | S.J. River @ Vernalis      | 2.89        |           | 5.87        |           | 2.11        |           | 5.43        |

)

}

| Date Hom Station Value FD Cu Cu Nu   1/11/93 GL 22 Greene's Landing 0.04 2.1   1/13/93 GL 23 Greene's Landing 0.02 0.02 | 0.75     |          |                                       |
|-------------------------------------------------------------------------------------------------------------------------|----------|----------|---------------------------------------|
| 1/11/93 OL 22 Olcene's Landing 0.04 2.1                                                                                 | 0.75     | 1        |                                       |
|                                                                                                                         | 1 0.75   |          |                                       |
| 1112/25 OL 25 Olectic's Landing 0.00 0.05                                                                               |          |          |                                       |
| 1/14/95 OL 24 Oleene's Landing 0.05 1.55                                                                                |          | l        | · · · · · · · · · · · · · · · · · · · |
| 3/23/93 1030 3 Sac R depin 1 0.12 17.4                                                                                  | ·        |          |                                       |
| 3/23/93 1030 1 Sac Rsurface 1 0.099 11.0                                                                                | 1.65     |          |                                       |
| 3/23/93 1030 2 Sac R- surface 2 0.21 0.009                                                                              | 1.05     | <u> </u> |                                       |
| 3/23/93 1030 4 Sac. R depth 2 0.26 0.02                                                                                 | 2.15     |          |                                       |
| 4/13/93 1700 36 Sac. River @ Delta 0.02                                                                                 | 4.15     | 1        |                                       |
| 7/7/93 1510 135 Middle R. @ Bullfrog Ldg. 0.007 2.62                                                                    |          |          |                                       |
| 7/7/93 1510 136 Middle R. @ Bullfrog Ldg. 0.1                                                                           | 1.04     |          | · · · · · · · · · · · · · · · · · · · |
| 7/7/93 1750 149 S.J. River @ Vernalis 0.015 11.7                                                                        |          |          |                                       |
| 7/7/93   1750   150   S.J. River @ Vernalis                                                                             | 2.23     |          |                                       |
| 7/19/93 1038 151 S.J. River @ Antioch 0.03 5.9                                                                          |          |          |                                       |
| 7/19/93 1038 152 S.J. River @ Antioch 0.08 0.013                                                                        | 1.47     |          |                                       |
| 7/19/93 1300 153 Sac. River @ Hood 0.041 4.19                                                                           |          |          |                                       |
| 7/19/93 1300 154 Sac. River @ Hood 0.06 nd                                                                              | 0.7      |          |                                       |
| 7/20/93 F1 Sac R. @ Rio Vista 0.04 4.9                                                                                  |          |          |                                       |
| 7/20/93 F2 Sac R. @ Rio Vista 0.1 0.01                                                                                  | 1.35     |          |                                       |
| 7/20/93 F3 Sac R. @ Rio Vista 0.08 0.015                                                                                | 1.02     | 1        |                                       |
| 8/3/93 1311 193 Mokelumne River 0.022 0.75                                                                              | 5        |          |                                       |
| 8/3/93 1311 194 Mokelumne River 0.08 0.013                                                                              | 0.31     | 1        |                                       |
| 8/3/93 F-11 Sac R. @ Rio Vista 0.18 0.024                                                                               | 1.71     | 1        |                                       |
| 8/3/93 F-12 Sac R. @ Rio Vista 0.031 2.80                                                                               |          | 1        |                                       |
| 8/3/93 F-10/OC Sac River @ Hood 0.039 4.3                                                                               |          |          |                                       |
| 8/3/93 F-8 Sac River @ Hood 0.05 0.015                                                                                  | 0.84     |          |                                       |
| 8/3/93 F-9 Sac River @ Hood 0.037 48                                                                                    |          |          |                                       |
| $\frac{375793}{8/17/93}$ 1200 207 Middle R @ Bullfrog L dg 0.456 38 5                                                   |          |          |                                       |
| $\frac{8/17/93}{1200}$ 1200 208 Middle R @ Bullfrog Ldg 0.22                                                            | 1 22     |          | ·                                     |
| 8/17/03 1450 221 S L Piver @ Vernalis 0.011 80                                                                          |          |          |                                       |
| 8/17/02 1450 222 S. J. River @ Vernalis 0.011 0.7                                                                       | 17       |          |                                       |
| $\frac{0/11/95}{0/14/02}$ 1200 246 Makalumna Divar                                                                      | 1.7      |          |                                       |
| 9/14/95 1200 240 Mokelumine River 0.051 1.2.                                                                            | <u> </u> |          |                                       |
| 9/14/93 1200 247 Mokelumie River 0.1                                                                                    | 0.20     |          |                                       |
| 9/14/93 1200 248 Mokelumne River 0.1 0.011                                                                              | 0.39     | <u> </u> |                                       |
| 9/14/93 13 CF Sac R. @ Rio Vista 0.035 3.24                                                                             |          |          |                                       |
| 9/14/93 14 CF Sac R. @ Rio Vista 0.03 0.017                                                                             | 1.22     |          |                                       |
| 9/14/93   15 CF   Sac R. @ Rio Vista   0.09   0.014                                                                     | 1.1      | ļ        |                                       |
| 9/14/93 16 CF Sac. River @ Hood 0.038 3.76                                                                              |          | ļ        |                                       |
| 9/14/93 17 CF Sac. River @ Hood 0.03 0.026                                                                              | 0.96     |          |                                       |
| 10/4/93 2030 269 Sac. River @ Freeport 0.13 0.029                                                                       | 1.62     | ļ        |                                       |
| 10/4/93 2030 270 Sac. River @ Freeport 0.015 0.54                                                                       | ,        |          |                                       |
| 10/4/93 1100 272 Sac. River @ Freeport 0.044 1.7                                                                        |          |          |                                       |
| 10/4/93 271 0.022 1.5                                                                                                   |          | 1        |                                       |
| 10/4/93 273 0.036 1.8                                                                                                   |          |          |                                       |
| 10/14/93 1251 298 Mokelumne River 0.017 0.92                                                                            | 2        |          |                                       |
| 10/14/93 1251 299 Mokelumne River 0.07 0.01                                                                             | 0.31     |          |                                       |
| 10/14/93 18 CF Sac R. @ Rio Vista 0.035 3.6                                                                             | 2        |          |                                       |
| 10/14/93 19 CF Sac R. @ Rio Vista 0.04 0.025                                                                            | 0.85     | 1        |                                       |
| 10/14/93 20 CF Sac. River @ Hood 0.036 2.3                                                                              |          | 1        |                                       |
| 10/14/93 21 CF Sac. River @ Hood nd 0.012                                                                               | 0.63     |          | 1.                                    |
| 10/14/93 22 CF Sac. River @ Hood 0.06 0.014                                                                             | 0.67     | 1        | 1                                     |
| 10/29/93 1030 312 Middle R. @ Bullfrog Ldg 0.01 1.0                                                                     | 7        | +        |                                       |
| 10/29/93 1030 313 Middle R @ Bullfrog Ldg 0.005                                                                         | 0.71     | +        | 1                                     |
| 10/29/93 23 CF S I River @ Antioch 0.014 3.2                                                                            |          | +        |                                       |
| 10/29/93 24 CF/OC SI River @ Antioch 0.017 1.6                                                                          |          | +        |                                       |
| 10/29/93 25 CF/OC S L River @ Antioch 0.25 0.018                                                                        | 2 73     |          |                                       |

| Dete     |              | C4-41     | Citation N                | Dis      | Total    | Dis      | Total    |          | Total       |                |
|----------|--------------|-----------|---------------------------|----------|----------|----------|----------|----------|-------------|----------------|
| Date     | Hour         | Station # | Station Name              | Pb       | Cd       | Cd       | Ni       | Dis Ni   | As          | Dis As         |
| 10/29/93 |              | 26 CF     | S.J. River @ Stockton     |          | 0.009    |          | 1.66     |          |             |                |
| 10/29/93 |              | 27 CF     | S.J. River @ Stockton     |          | 0.014    |          | 1.71     |          |             |                |
| 10/29/93 | l            | 28 CF     | S.J. River @ Stockton     | 0.23     |          | 0.006    |          | 1.29     |             |                |
| 10/29/93 |              | 323       | S.J. River @ Vernalis     |          | 0.02     |          | 4.03     |          |             |                |
| 10/29/93 |              | 324       | S.J. River @ Vernalis     | 0.04     |          | 0.008    |          | 1.13     |             |                |
| 11/10/93 |              | 29 CF     | Greene's Landing          |          | 0.04     |          | 2.43     |          |             |                |
| 11/10/93 |              | 30 CF A   | Greene's Landing          | 0.13     |          | 0.15     |          | 0.87     |             |                |
| 11/10/93 |              | 30 CF B   | Greene's Landing          | 0.16     |          | 0.14     |          | 0.86     |             |                |
| 11/11/93 |              | 31 CF     | Greene's Landing          |          | 0.05     |          | 1.79     |          |             |                |
| 11/11/93 |              | 32 CF     | Greene's Landing          | 0.17     |          | 0.1      |          | 0.76     |             |                |
| 11/11/93 |              | 33 CF     | Greene's Landing          |          | 0.06     |          | 1.54     |          |             |                |
| 11/11/93 |              | 34 CF     | Greene's Landing          | 0.72     |          | 0.35     |          | 3.36     |             |                |
| 11/11/93 |              | 35 CF     | Greene's Landing          |          | 0.05     |          | 2.22     |          |             |                |
| 11/11/93 |              | 36CF      | Greene's Landing          | 0.2      |          | 0.04     |          | 0.9      |             |                |
| 11/12/93 |              | 37 CF A   | Greene's Landing          |          | 0.05     |          | 2.65     |          |             |                |
| 11/12/93 |              | 37 CF B   | Greene's Landing          |          | 0.05     |          | 2.35     |          |             |                |
| 11/12/93 |              | 38 CF     | Greene's Landing          |          | 0.15     |          | 2.17     |          |             |                |
| 11/12/93 |              | 39 CF     | Greene's Landing          | 0.13     |          | 0.04     |          | 0.13     |             |                |
| 11/29/93 |              | 40 CF     | S.J. River @ Antioch      |          | 0.02     |          | 2.97     |          |             |                |
| 11/29/93 |              | 41 CF     | S.J. River @ Stockton     |          | 0.03     |          | 1.94     |          |             |                |
| 12/13/93 |              | 42 CF     | Sac R. @ Rio Vista        |          | 0.03     |          | 2.88     |          | · · · · · · |                |
| 12/13/93 |              | 43 CF     | Sac R. @ Rio Vista        | 0.04     | 0.02     | 0.01     | 2.00     | 0.87     |             |                |
| 12/13/93 |              | 44 CF     | Sac River @ Hood          | - 0.0 .  | 0.08     | 0.01     | 4 52     |          |             |                |
| 12/13/93 |              | 44 CF     | Sac River @ Hood          |          | 0.07     |          | 4.81     |          |             |                |
| 12/13/93 |              | 45 CF     | Sac River @ Hood          | 0.04     | 0.07     | 0.01     | 1.01     | 0.87     |             |                |
| 1/10/94  |              | GL 21     | Greene's Landing          | 0.01     |          | nd       |          | 0.64     |             |                |
| 1/10/94  |              | 46 CF     | S L River @ Antioch       | 0.01     | 0.02     |          | 3 4 2    | 0.04     |             |                |
| 1/10/94  |              | 47 CF     | S I River @ Antioch       | 0.04     | 0.02     | 0.04     | 5.44     | 0.98     |             | <u> </u>       |
| 1/10/94  |              | 48 CF     | S I River @ Stockton      | 0.01     | 0.02     | 0.01     | 2 52     | 0.20     |             |                |
| 1/10/94  |              | 48 CF     | S I River @ Stockton      |          | 0.02     |          | 23       |          |             |                |
| 1/10/94  | <u> </u>     | 49 CF     | S I River @ Stockton      |          | 0.02     |          | 4.5      | 2 07     |             |                |
| 1/11/94  | 914          | 410       | Middle R @ Bullfrog I dg  |          | 0.02     |          | 2 16     | 2.07     |             |                |
| 1/11/94  | 914          | 411       | Middle R @ Bullfrog I dg  |          | 0.01     |          | 0.84     |          |             |                |
| 1/11/94  | 914          | 412       | Middle R. @ Bullfrog Ldg. | 0.06     | 0.01     | 0.02     | 0.04     | 1.52     |             |                |
| 1/11/04  | 014          | 425       | S L River @ Vernalis      | 0.00     |          | 0.02     |          | 0.05     |             |                |
| 1/11/04  | 01/          | 425       | S I River @ Vernalis      | 0.15     |          | 0.001    |          | 1 03     |             |                |
| 1/11/04  | 01/          | 420       | S.J. River @ Vernalis     | 0.15     | 0.01     | 0.001    | 2        | 1.95     |             | ┟┥             |
| 1/13/04  | 714          | 66        | Greene's Landing          | 0.47     | 0.01     | 0.03     | <u>ت</u> | 36       |             | <u>  </u>      |
| 1/13/94  |              | 65 A      | Greene's Landing          | 0.47     | 0.00     | 0.05     | 672      | 5.0      |             | <b>├</b> ────┤ |
| 1/13/94  |              | 65 D      | Greene's Landing          |          | 0.09     |          | 65       |          |             |                |
| 1/15/94  | <u>.</u>     | 25        | Greene's Landing          |          | 0.09     |          | 0.5      |          |             | ┨────┤         |
| 1/10/94  |              | 23        | Greene's Landing          |          | 0.01     | <u> </u> | 1 20     |          |             | <u>├</u>       |
| 1/19/94  |              | 24        | Greene's Landing          | 0.06     | 0.05     | 0.02     | 1.59     | 0.76     |             |                |
| 1/25/94  |              | 27        | Greene's Landing          | 0.00     | 0.00     | 0.02     | 2.62     | 0.70     |             | <u> </u>       |
| 1/24/94  | ·            | 20        | Greene's Landing          | 0.07     | 0.08     | nd       | 2.05     | 0 47     |             |                |
| 1/24/94  |              | 27        | Greene's Landing          | 0.07     | 0.04     | 110      | 2.24     | 0.07     | <u> </u>    | +              |
| 1/26/04  |              | 20        | Greene's Landing          |          | 0.04     |          | 2.24     | <u> </u> | ļ           | +              |
| 1/20/94  | +            | 21        | Greene's Landing          | 0.22     | 0.05     | 0.01     | 5./1     | 117      | <u>}</u>    | <u> </u>       |
| 1/20/94  |              | 122       | Greene's Landing          | 0.23     |          |          |          | 1.17     |             | <del> </del>   |
| 11/2/194 |              | 22        | Greene's Landing          | 0.22     | 1 0.00   | 0.01     | 675      | 1.21     | ļ           | <u> </u>       |
| 11/28/94 |              | 32        | Greene's Landing          | <u> </u> | 0.09     |          | 0.33     | <u> </u> | <b> </b>    | <b></b>        |
| 1/28/94  | <del> </del> | 33        | Greene's Landing          | 0.00     | 0.1      | 0.00     | 1.59     |          |             | <u> </u>       |
| 1/28/94  | 000          | 130       | Greene's Landing          | 0.26     | <u> </u> | 0.02     |          | 2.3      | ļ           | <b></b>        |
| 1/29/94  | 1900         | 40        | Greene's Landing          | 0.22     | - 0.02   | 0.01     | 6 22     | 1.89     | <b> </b>    |                |
| 1/30/94  | 1.000        | 38        | Greene's Landing          | 0.00     | 0.06     |          | 5.33     | 1 2 00   |             | l              |
| 1/30/94  | 1000         | 42        | Greene's Landing          | 0.25     |          | 0.01     |          | 2.09     | 1           |                |

÷

|         |       |           |                   | Dis      | Total    | Dis      | Total     |          | Total         |               |
|---------|-------|-----------|-------------------|----------|----------|----------|-----------|----------|---------------|---------------|
| Date    | Hour  | Station # | Station Name      | Pb       | Cd       | Cd       | Ni        | Dis Ni   | As            | Dis As        |
| 1/31/94 |       | 41        | Greene's Landing  |          | 0.06     |          | 4.18      |          |               |               |
| 2/1/94  |       | 44        | Greene's Landing  |          | 0.02     |          | 2.56      |          |               |               |
| 2/1/94  |       | 48        | Greene's Landing  | 0.14     |          | 0.01     |           | 1.61     |               |               |
| 2/2/94  |       | 43        | Greene's Landing  |          | 0.05     |          | 2.97      |          |               |               |
| 2/5/94  | 1700  | 55        | Greene's Landing  | 0.39     |          | 0.01     |           | 1.36     |               |               |
| 2/7/94  | ļ     | 50        | Greene's Landing  |          | nd       |          | nd        |          |               |               |
| 2/7/94  |       | 53        | Greene's Landing  | 0.12     |          | nd       |           | 0.87     |               |               |
| 2/8/94  |       | 51        | Greene's Landing  |          | nd       |          | nd        |          |               |               |
| 2/8/94  |       | 52        | Greene's Landing  |          | 0.04     |          | 2.2       |          |               |               |
| 2/9/94  |       | 54        | Greene's Landing  |          | 0.09     |          | 5.77      |          |               |               |
| 2/10/94 |       | 56        | Greene's Landing  |          | 0.19     |          | 19.5      |          | ····          |               |
| 2/10/94 | 930   | 58        | Greene's Landing  | 0.46     |          | 0.04     |           | 3.79     |               |               |
| 2/11/94 | 1000  | 61        | Greene's Landing  | 0.46     | <u> </u> | 0.03     | <u> </u>  | 4.01     |               |               |
| 2/11/94 | 1600  | 62        | Greene's Landing  |          | nd       |          | nd        |          |               |               |
| 2/12/94 | 1200  | 60        | Greene's Landing  |          | 0.12     |          | 10.8      |          |               |               |
| 2/16/94 | 700   | 63        | Greene's Landing  |          | 0.07     |          | 7.09      |          |               |               |
| 2/16/94 | 1/00  | 64        | Greene's Landing  |          |          |          |           |          |               |               |
| 2/17/94 |       | 67        | Greene's Landing  |          | 0.06     |          | 4         |          |               |               |
| 2/17/94 | 1000  | 68        | Greene's Landing  | 0.21     |          | 0.02     |           | 1.89     |               |               |
| 2/18/94 | 1200  | 70        | Greene's Landing  | 0.2      | 0.05     | 0.02     |           | 1.39     |               |               |
| 2/19/94 | 1100  | 69        | Greene's Landing  | 0.10     | 0.05     | 0.00     | 4.52      |          |               |               |
| 2/19/94 | 1400  | 72        | Greene's Landing  | 0.18     | 0.05     | 0.02     | - <u></u> | 1.85     |               |               |
| 2/19/94 | 1400  | / I A     | Greene's Landing  |          | 0.07     |          | 5.91      |          |               |               |
| 2/19/94 | 1400  | /1 B      | Greene's Landing  | 0.10     | 0.07     | 0.00     | 5.55      | 1.00     |               |               |
| 2/20/94 | 1550  | 74        | Greene's Landing  | 0.18     | - 01     | 0.03     | 0.41      | 1.98     | - <del></del> |               |
| 2/21/94 | 1(00  | 73        | Greene's Landing  | 0.26     | 0.1      | 0.00     | 8.41      |          |               |               |
| 2/21/94 | 1600  | /0        | Greene's Landing  | 0.35     | ···-     | 0.02     |           | 3.4      |               | ·             |
| 2/22/94 |       | 75        | Greene's Landing  |          | 0.1      |          | 9.4       |          |               | <b>  </b>     |
| 2/22/94 | 1600  | 70        | Greene's Landing  | 0.24     | 0.15     | 0.01     | 15.7      |          |               |               |
| 2/22/94 | 1000  | 01        | Greene's Landing  | 0.54     | 0.12     | 0.01     | 10        | - 2      |               | ·             |
| 2/23/94 | 1700  | 01        | Greene's Landing  |          | 0.13     | 0.02     | 19        | 2.02     |               |               |
| 2/25/94 | 1700  | 02        | Greene's Landing  |          | 0.02     | 0.03     | 1 62      | 2.02     |               | ·             |
| 2/24/94 | 1700  | 0.0       | Greene's Landing  | 0.52     | 0.05     | 0.02     | 4.02      | 4.62     |               |               |
| 2/24/94 | 1700  | 04        | Greene's Landing  | 0.52     | 0.07     | 0.05     | 7.4       | 4.02     |               |               |
| 2/25/94 | 1900  | 85        | Greene's Landing  | 0.2      | 0.07     | 0.07     | 1.4       | 2.21     |               |               |
| 2/25/94 | 1800  | 00        | Greene's Landing  | 0.5      | - 01     | 0.02     | 0.25      | 2.31     |               |               |
| 2/2/194 |       | 0/        | Greene's Landing  |          | 0.1      |          | 9.25      |          |               | <b>├</b> ──── |
| 2/20/94 | 1200  | 00        | Greene's Landing  | 0.25     | 0.00     | 0.07     | 3.09      | 1.02     |               |               |
| 2/28/94 | 1200  | 90        | Greene's Landing  | 0.25     | 0.05     | 0.03     | 2 72      | 1.92     |               |               |
| 3/1/94  |       | 91        | Greene's Landing  | 0.16     | 0.05     | 0.02     | 3.73      | 1.50     | ·             |               |
| 3/1/94  |       | 95        | Greene's Landing  | 0.10     | 0.04     | 0.02     | 4.07      | 1.39     |               |               |
| 2/4/94  | 1200  | 95        | Greene's Landing  | 0.1      | 0.00     | 0.02     | 4.07      | 112      |               |               |
| 2/0/04  | 11200 | 90        | Greene's Landing  | 0.1      |          | 0.03     |           | 1.15     |               |               |
| 2/0/04  | 1130  | 100       | Greene's Landing  |          |          |          | <u> </u>  |          |               |               |
| 3/0/04  | 1120  | 102       | Greene's Landing  |          | 0.01     | <u> </u> |           |          |               | ┥────┤        |
| 3/9/94  | 1130  | 102       | Greene's Landing  |          | 0.01     | ·        |           |          |               |               |
| 3/0/04  | 1120  | 105       | Greene's Londing  |          | 0.24     |          | 1 12      |          |               |               |
| 3/0/04  | 1130  | 107       | Greene's Landing  |          | 0.50     |          | 0.06      |          |               | <u> </u>      |
| 3/0/04  | 1120  | 105       | Greene's Landing  |          | 0.41     |          | 1 1       |          |               | ╆┉┉┉┥         |
| 3/0/04  | 1130  | 1056      | Greene's Landing  | <b> </b> | 0.42     |          | 0.00      | <u> </u> |               | ┥────┥        |
| 2/0/04  | 1130  | 1050      | Greene's Landing  | <u> </u> | 0.43     |          | 1.05      |          |               | <u> </u>      |
| 3/9/94  | 1130  | 1066      | Greene's Landing  | <b> </b> | 0.42     |          | 1.05      | <u> </u> |               | ┥────┤        |
| 2/10/04 | 1130  | 1000      | Greene's Landing  |          | 0.42     |          | 2.40      |          | ļ             | ┥────┤        |
| 2/10/94 | 1000  | 108       | Greene's Landing  | 0.00     | 0.04     | 0.01     | 3.49      | 1.25     |               | ┿╾────┤       |
| 10/94   | 11800 | 109       | Joreene's Landing | 1 0.08   | 1        | 0.01     | 1         | 1.20     |               | 1             |

|          |      |              |                           | Dis   | Total  | Dis    | Total    |          | Total    |        |
|----------|------|--------------|---------------------------|-------|--------|--------|----------|----------|----------|--------|
| Date     | Hour | Station #    | Station Name              | Pb    | Cd     | Cd     | Ni       | Dis Ni   | As       | Dis As |
| 3/15/94  |      | 110          | Greene's Landing          |       | 0.01   |        |          |          |          |        |
| 3/15/94  |      | 111          | Greene's Landing          |       | 0.52   |        | 1.03     |          |          |        |
| 3/15/94  |      | 112          | Greene's Landing          |       | 0.26   |        | 0.52     |          |          |        |
| 3/15/94  |      | 113          | Greene's Landing          |       | 0.68   |        | 1.6      |          |          |        |
| 3/15/94  |      | 113          | Greene's Landing          |       | 0.74   |        | 1.54     |          |          |        |
| 3/15/94  | 1800 | 115          | Greene's Landing          | 0.06  |        | 0.02   |          | 0.94     |          |        |
| 3/16/94  |      | 114          | Greene's Landing          |       | 0.06   |        | 2.4      |          |          |        |
| 3/16/94  | 1100 | 116          | Greene's Landing          |       |        |        |          |          |          |        |
| 3/16/94  | L    | 117          | Greene's Landing          |       | 0.01   |        | 0.32     |          |          |        |
| 3/16/94  |      | 118          | Greene's Landing          | 0.02  |        | 0.01   |          |          |          |        |
| 3/16/94  |      | 119          | Greene's Landing          |       | 0.54   |        | 0.99     |          |          |        |
| 3/16/94  |      | 120          | Greene's Landing          |       | 0.54   |        | 1.03     |          |          |        |
| 3/16/94  |      | 121          | Greene's Landing          | 0.53  |        | 0.55   |          | 0.92     |          |        |
| 3/16/94  | L    | 122          | Greene's Landing          | 0.36  |        | 0.41   |          | 0.84     |          |        |
| 3/23/94  |      | aa33         | French Camp Slough        |       | 0.044  |        | 3.33     |          | 1.49     |        |
| 3/23/94  | L    | aa34         | French Camp Slough        | 0.41  |        | 0.011  |          | 1.29     |          | 1.33   |
| 3/23/94  | L    | aa31         | Ulatis Creek              |       | 0.027  |        | 5.69     |          | 1.78     |        |
| 3/23/94  |      | aa32         | Ulatis Creek              | 0.07  |        | 0.018  |          | 3.65     |          | 1.62   |
| 4/12/94  | 1400 | 474          | Mokelumne River           |       | 0.013  |        | 1.73     |          |          |        |
| 4/12/94  | 1400 | 475          | Mokelumne River           | 0.1   |        | 0.005  |          | 0.55     |          |        |
| 4/12/94  | 1200 | 104CF        | Sac R. @ Rio Vista        |       | 0.024  |        | 2.99     |          |          |        |
| 4/12/94  | 1200 | 105CF        | Sac R. @ Rio Vista        | 0.08  |        | 0.019  |          | 1.21     |          |        |
| 4/12/94  | 900  | 100CF        | Sac. River @ Hood         |       | 0.027  |        | 2:02     |          |          |        |
| 4/12/94  | 900  | 101CF        | Sac. River @ Hood         |       | 0.033  |        | 1.64     |          |          |        |
| 4/12/94  | 900  | 102CF        | Sac. River @ Hood         | 0.07  |        | 0.015  |          | 0.92     |          |        |
| 4/12/94  | 900  | 103CF        | Sac. River @ Hood         | 0.075 |        | 0.015  |          | 0.75     |          |        |
| 4/27/94  | 1300 | 497          | Middle R. @ Bullfrog Ldg. |       | 0.01   | 0.00   | 1.98     |          |          |        |
| 4/27/94  | 1300 | 498          | Middle R. @ Bullfrog Ldg. | 0.06  | 0.001  | 0.007  |          | 1.41     |          |        |
| 4/2/194  | 900  | 106CF        | S.J. River @ Antioch      |       | 0.031  |        | 5.15     |          |          |        |
| 4/27/94  | 900  | 107CF        | S.J. River @ Antioch      |       | 0.029  | 0.010  | 4.15     |          |          |        |
| 4/27/94  | 900  | 108CF        | S.J. River @ Antioch      | 0.12  |        | 0.013  |          | 1.98     |          |        |
| 4/27/94  | 900  | 109 cf       | S.J. River @ Antioch      | 0.13  | 0.001  | 0.016  |          | 1.43     |          |        |
| 4/27/94  | 900  | 110CF        | S.J. River @ Stockton     | 0.16  | 0.021  | 0.01   | 2.17     | 1.04     |          |        |
| 4/2/194  | 900  |              | S.J. River @ Stockton     | 0.16  |        | 0.01   |          | 1.84     |          |        |
| 4/2/194  | 930  | 480          | S.J. River @ Vernalis     |       |        |        |          |          |          |        |
| 4/2/194  | 930  | 481          | S.J. River @ Vernalis     |       | 0.014  |        | 5.53     |          |          |        |
| 4/2/194  | 930  | 482          | S.J. River @ Vernalis     | 0.07  | 0.014  |        | 5.55     | 0.07     |          |        |
| 4/2/194  | 930  | 483          | S.J. River @ Vernalis     | 0.07  |        | 0.000  |          | 0.97     |          |        |
| 4/2//94  | 930  | 484          | S.J. River @ Vernalis     | 0.09  | 1      | 0.002  |          | 0.88     |          | 1.24   |
| 4/30/94  |      | aal          | Paradise Cut              | nd    | 0.000  | 0.008  | 24.1     | 2.07     | 2.06     | 1.24   |
| 5/10/94  |      | aab          | Duck Slough               | 1.05  | 0.069  | 0.010  | 24.1     | 0.50     | 2.00     | 1.00   |
| 5/10/94  | 020  | aa /         | Duck Slough               | 1.05  | ļ      | 0.012  |          | 8.52     |          | 1.09   |
| 5/10/94  | 930  | GL 201       | Greene's Landing          | 0.1   | 0.104  | 0.032  | 0.07     | 1.23     | 0.02     | 0.71   |
| 5/10/94  |      | <u>g1200</u> | Greene's Landing          |       | 0.104  | 0.020  | 9.27     | 1.00     | 0.83     | 0.71   |
| 5/10/94  | 1200 | g1201        | Greene's Landing          | 0.1   | 0.012  | 0.032  | 1.40     | 1.23     | 1.27     | 0.71   |
| 5/10/94  | 1200 | 541          | Mokelumne River           |       | 0.012  |        | 1.48     | <u> </u> | 1.27     |        |
| 5/10/94  | 1200 | 1541/QA      | Depending Cut             | +     | 0.000  |        | 1.19     |          | 0.11     |        |
| 5/10/94  |      | 1223         | Paradise Cut              |       | 10.018 | 0.000  | 3.79     | 1 02     | 0.11     | 0.24   |
| 5/10/94  |      | 11405        | Paradise Cut              | na    | 0.020  | 0.008  | 2 45     | 1.83     | 22       | 0.24   |
| 5/10/94  |      | 114CI        | Sac K. W KIO VISIA        | 0.00  | 0.028  | 0.015  | 5.45     | 1 42     | 2.2      | 10     |
| 5/10/94  |      |              | Sac K. @ KIO Vista        | 0.09  | 0.027  | 10.015 | 1 2 24   | 1.43     | 1 72     | 1.9    |
| 5/10/94  |      | 1112ct       | Sac. River @ Hood         |       | 0.036  |        | 1.02     |          | 1.72     |        |
| 5/10/94  |      | 112ct/QA     | Sac. Kiver @ Hood         | 1000  | 0.026  | 0.016  | 1.83     | 1        | 1.01     | 1 94   |
| 5/10/94  |      |              | Old Diver @ Hood          | +0.09 | +      | 0.010  | <b> </b> | 2 01     | <b> </b> | 1.84   |
| 13/23/94 |      | aaru         | JOIG KIVER @ IFACY BIVD.  | 0.12  |        | 0.014  | 1        | 1 3.01   | 1        | 1.1    |

)

}

|          |      |           |                         | Dis  | Total    | Dis   | Total | <b>D:</b> N | Total    |               |
|----------|------|-----------|-------------------------|------|----------|-------|-------|-------------|----------|---------------|
| Date     | Hour | Station # | Station Name            | Pb   | Cd       | Cd    | Ni    | Dis Ni      | As       | Dis As        |
| 5/25/94  |      | aa9       | Old River @ Tracy Blvd. |      | 0.02     |       | 2.82  |             | 0.98     |               |
| 5/25/94  |      | aa35      | Paradise Cut            | 0.04 |          | 0.009 |       | 2.12        |          | 1.4           |
| 5/25/94  |      | aa8       | Paradise Cut            | nd   |          | nd    |       | 2.29        |          | 1.34          |
| 6/3/94   |      | aall      | Old River @ Tracy Blvd. |      | 0.023    |       | 3.28  |             | 0.81     |               |
| 6/3/94   |      | aa12      | Old River @ Tracy Blvd. | 0.05 |          | 0.008 |       | 1           |          | 1.58          |
| 6/3/94   |      | aal4      | Paradise Cut            |      | 0.019    |       | 4.75  |             | 1.74     |               |
| 6/3/94   |      | aal5      | Paradise Cut            | 0.07 |          | 0.008 |       | 2.38        |          | 1             |
| 7/12/94  |      | aa21      | Duck Slough             |      | 0.081    |       | 28.8  |             | 1.58     |               |
| 7/12/94  |      | aa22      | Duck Slough             | 0.88 |          | 0.035 |       | 6.85        |          | 1.32          |
| 7/12/94  |      | aa19      | Paradise Cut            |      | 0.025    |       | 8.59  |             | 3.15     |               |
| 7/12/94  |      | aa20      | Paradise Cut            | 0.05 |          | 0.007 |       | 2.16        |          | 2.27          |
| 7/12/94  |      | aa23      | Prospect Slough         |      | 0.035    |       | 15.3  |             | 1.06     |               |
| 7/12/94  |      | aa24      | Prospect Slough         | 0.4  |          | 0.017 |       | 5.36        |          | 1             |
| 7/21/94  |      | aa25a     | Mokelumne River         | 0.08 |          | 0.017 |       | 0.44        |          | 0.6           |
| 7/21/94  |      | aa25b/QA  | Mokelumne River         | 0.1  |          | 0.008 |       | 0.47        |          | 0.45          |
| 7/21/94  |      | aa26a     | Mokelumne River         |      | 0.024    | -     | 0.68  |             | 0.5      |               |
| 7/21/94  |      | aa26b/QA  | Mokelumne River         |      | 0.022    |       | 0.63  |             | 0.63     |               |
| 8/9/94   |      | bp 27     | Duck Slough             |      | 0.066    |       | 31.4  |             | 2.4      |               |
| 8/9/94   |      | bp 28     | Duck Slough             | 1.38 |          | 0.011 |       | 8           | ·        | 2.05          |
| 8/9/94   |      | bp 29     | Prospect Slough         |      | 0.03     |       | 15.7  |             | 1.67     |               |
| 8/9/94   |      | bp 30     | Prospect Slough         | 0.41 |          | 0.023 |       | 7.04        |          | 1.93          |
| 9/2/94   |      | bpl       | Duck Slough             |      | 0.071    |       | 35.8  |             | 2.21     |               |
| 9/2/94   |      | bp1/OA    | Duck Slough             |      | 0.064    |       | 34.3  |             | 3.98     |               |
| 9/2/94   |      | bp2       | Duck Slough             | 1.08 |          | 0.021 |       | 5.16        |          | 2.17          |
| 9/2/94   |      | bp5       | French Camp Slough      |      | 0.038    |       | 2.15  |             | 2.71     |               |
| 9/2/94   |      | hn6       | French Camp Slough      | 0.37 |          | 0.014 |       | 0.99        |          | 24            |
| 9/2/94   |      | bn3       | Prospect Slough         |      | 0.036    |       | 183   |             | 21       |               |
| 9/2/94   |      | bp3/OA    | Prospect Slough         |      | 0.031    |       | 18.5  |             | 3.24     | <u>├</u>      |
| 9/2/94   |      | hn4       | Prospect Slough         | 0.73 | 0.001    | 0.021 |       | 6.12        |          | 2.04          |
| 10/5/94  |      | bp36      | 5 mile                  | 3.87 | · ·      | 0.081 |       | 5 29        |          | 3.03          |
| 10/5/94  |      | bp96      | Greene's Landing        | 5.07 | 0.048    | 0.001 | 7.04  | 5.25        |          |               |
| 10/19/94 |      | 2236      | Mokelumpe River         |      | 0.019    |       | 0.83  |             |          |               |
| 11/4/94  |      | aa27      | S L River @ Antioch     |      | 0.012    |       | 4 2   |             | 0.41     |               |
| 11/4/94  |      | aa28      | S I River @ Antioch     | 0.09 | 4.012    | 0.014 | 1.4   | 212         | 011      | 013           |
| 12/13/94 | 1245 | 400       | Mokelumne River         | 0.07 | 0.02     | 0.011 | 3 34  |             |          |               |
| 12/13/94 | 1245 | 401       | Mokelumne River         | 0.18 | 0.02     | 0.01  | 2.24  | 1 34        |          | <u>+</u>      |
| 12/13/94 | 1245 | 402       | Mokelumne River         | 0.18 | <u> </u> | 0.01  |       | 1 33        |          |               |
| 12/13/04 |      | 102       | Illatis Creek           | 0.10 | 0.126    | 0.01  | 16.2  | 1.55        | 1 22     | <u>  </u>     |
| 12/13/04 |      | 2230      | Ulatis Creek            | 0.2  | 0.120    | 0.043 | 10.2  | 3.45        | 1.22     | 1 30          |
| 1/6/05   | 1500 | bp44      | Greene's Londing        | 0.2  | 0.063    | 0.045 | 6.02  | 5.45        | 1.52     |               |
| 1/6/05   | 1500 | bp45      | Greene's Landing        | 0.45 | 0.005    | 0.028 | 0.02  | 210         | 1.54     | 1 41          |
| 1/7/05   | 1500 | bp45      | Greene's Londing        | 0.45 | 0110     | 0.020 | 10.5  | 2.17        | 1 2      |               |
| 1/7/05   |      | bp40      | Greene's Landing        | 0.79 | 0.118    | 0.028 | 10.5  | 2.07        | 1.2      | {             |
| 1/8/05   | 1330 | bp48      | Greene's Landing        | 0.78 | 0.108    | 0.028 | 16    | 2.91        | 03       |               |
| 1/8/05   | 1330 | bp40      | Greene's Landing        | 0.77 | 0.106    | 0.038 | 10    | 4.51        | 0.5      | 0.45          |
| 1/0/05   | 1220 | bp53      | Duck Slough             | 0.77 | <u> </u> | 0.038 |       | 6 25        |          | 0.40          |
| 1/9/93   |      | bp55      | Creana's Landing        | 0.57 | 0 474    | 0.021 | 216   | 0.35        |          |               |
| 1/10/95  |      | 10µ02     | Greene's Landing        | 0.01 | 0.4/4    | 0.020 | 3.10  | 4 21        | <u> </u> | 1 27          |
| 1/10/95  |      | lbp54     | Prospect Slough         | 0.81 | 0.569    | 0.039 | 601   | 4.51        | 06       | 1.2/          |
| 1/10/95  |      | 10p54     | Prospect Slough         |      | 0.508    |       | 507   | <u> </u>    | 0.0      | <del>  </del> |
| 1/11/05  | 1420 | 10004/QA  | Greene's Londing        |      | 0.52     |       | 201   |             | 2.07     | <u> </u>      |
| 1/11/95  | 1450 | 10055     | Greene's Landing        | 0.00 | 0.329    | 0.045 | 28.3  | 2.07        | 2.97     | 1.            |
| 1/11/95  | 1430 | 10050     | Dreene's Landing        | 0.99 | 0 220    | 0.045 | 417   | 3.91        | 1.46     | 0.88          |
| 1/11/95  | 1030 |           | Crospect Slougn         |      | 0.229    |       | 41/   | <u> </u>    | 1.40     | <b> </b>      |
| 1/12/95  | 1400 |           | Greene's Landing        | ļ    | 0.184    | ļ     | 2/.1  | <u> </u>    | 1.32     | <u> </u>      |
| 1/12/95  | 1400 | opo2/QA   | Greene's Landing        |      | 0.19     |       | 23.7  | 1           | i        |               |

....

|         |                     |           |                  | Dis       | Total  | Dis    | Total    |          | Total |          |
|---------|---------------------|-----------|------------------|-----------|--------|--------|----------|----------|-------|----------|
| Date    | Hour                | Station # | Station Name     | Pb        | Cd     | Cd     | Ni       | Dis Ni   | As    | Dis As   |
| 1/12/95 | 1400                | bp63      | Greene's Landing | 0.53      |        | 0.034  |          | 8.5      |       | 1.19     |
| 1/12/95 | 1400                | bp64/QA   | Greene's Landing | 0.99      |        | 0.04   |          | 4.85     |       |          |
| 1/12/95 | 1030                | bp60      | Prospect Slough  |           | 0.181  |        | 103      |          | 1.5   |          |
| 1/13/95 | 1500                | bp65      | Greene's Landing |           | 0.166  |        | 23.6     |          | 1.09  |          |
| 1/13/95 | 1500                | bp66      | Greene's Landing | 0.65      |        | 0.035  |          | 4.78     |       | 1.14     |
| 1/13/95 | 1000                | bp67      | Prospect Slough  |           | 0.163  |        | 38       |          | 1.63  |          |
| 1/14/95 | 1300                | bp69      | Greene's Landing |           | 0.167  |        | 26.9     |          | 2.45  |          |
| 1/14/95 | 1300                | bp70      | Greene's Landing | 0.8       |        | 0.018  |          | 6.02     |       | 0.84     |
| 1/14/95 | 1000                | bp68      | Prospect Slough  |           | 0.224  |        | 79.2     |          | 1.2   |          |
| 1/15/95 | 1400                | bp71      | Greene's Landing |           | 0.114  |        | 13.8     |          | 0.9   |          |
| 1/15/95 | 1400                | bp72      | Greene's Landing |           | 0.124  |        | 14.9     | 10.1     | 0.31  | 0.01     |
| 1/15/95 | 1400                | bp77      | Greene's Landing | 0.48      | 0.000  | 0.031  |          | 19.1     |       | 0.91     |
| 1/15/95 | 1000                | bp74      | Prospect Slough  |           | 0.203  |        | 53.7     |          | 2.48  |          |
| 1/15/95 | 1000                | bp75      | Prospect Slough  |           | 0.197  |        | 62.8     |          | 2.27  |          |
| 1/1//95 | 1400                | bp /8     | Greene's Landing |           | 0.087  |        | 24.8     |          | 0.72  |          |
| 1/17/95 | 1400                | bp79      | Greene's Landing | 0.49      | 0.00-  | 0.002  | ~~~~~    | 26       |       | 1.12     |
| 1/1//95 | 1000                | bp80      | Prospect Slough  |           | 0.087  |        | 36.6     |          | 3.32  |          |
| 1/18/95 | 1400                | bp82      | Greene's Landing | 0.50      | 0.09   |        | 23.7     |          | 0.61  |          |
| 1/18/95 | 1400                | bp83      | Greene's Landing | 0.52      | 0.13   | 0.033  |          | 6.21     |       | 1.06     |
| 1/18/95 | 1100                | bp81      | Prospect Slough  |           | 0.17   |        | 45.1     |          | 4.41  |          |
| 1/20/95 | 1600                | 6086      | Greene's Landing | 0.54      | 0.089  | 0.11   | 18       | 6 22     | 1.2   | 1.07     |
| 1/20/95 | 1600                | bp87      | Greene's Landing | 0.54      | 0.005  | 0.11   | 160      | 0.33     | 1.4   | 1.07     |
| 1/22/95 | 1430                | bp90      | Greene's Landing | 0.4       | 0.095  | 0.025  | 10.2     | 275      | 1.4   | 1.26     |
| 1/22/95 | 1430                | 10091     | Greene's Landing | 0.4       | 0.000  | 0.025  |          | 3.75     | 1.07  | 1.30     |
| 1/22/95 | 11200               | 10089     | Prospect Slough  |           | 0.092  |        | 27.3     |          | 1.07  |          |
| 1/22/95 | 1100                | 0088      | Skag Slougn      |           | 0.008  |        | 33.9     |          | 2.54  |          |
| 1/23/95 | 1500                | C1500     | Greene's Landing | 0.42      | 0.087  | 0.004  | .13.1    |          | 1.22  | 1.00     |
| 1/23/95 | 1500                | CT501     | Greene's Landing | 0.43      | 0.104  | 0.024  | - 20.0   | 4.45     | 1.10  | 1.09     |
| 1/23/95 | 1200                | c1502     | Prospect Slough  |           | 0.104  |        | 20.0     |          | 1.18  |          |
| 1/23/95 | 1600                | c1505     | Grappo's Londing |           | 0.008  |        | 41.9     |          | 3.08  |          |
| 1/24/95 | 1600                | c1304     | Greene's Landing | 0.26      | 0.064  | 0.027  | 11.0     | 3.46     | 1.07  | 1 25     |
| 1/24/93 | 1500                | c1505     | Greene's Landing | 0.30      | 0.08   | 0.027  | 12       | 3.40     | 1.52  | 1.25     |
| 1/25/95 | 1500                | cf507     | Greene's Landing | 0.4       | 0.06   | 0.025  | 12       | 4.07     | 1.52  | 1 14     |
| 1/25/95 | 1000                | cf508     | Brospect Slough  | 0.4       | 0.075  | 0.025  | 16.7     | 4.07     | 1 8 1 | 1.14     |
| 1/25/95 | 1000                | cf509     | Prospect Slough  | 0.38      | 0.075  | 0.023  | 10.7     | 4 39     | 1.01  | 1 43     |
| 1/26/95 | 1400                | cf512     | Greene's Landing | 0.50      | 0111   | 0.025  | 174      | 4.57     | 1 59  | 1.45     |
| 1/26/95 | 1500                | cf513     | Greene's Landing | 035       | 0.111  | 0.032  |          | 4 34     | 1.57  | 1 25     |
| 1/26/95 | 1600                | cf510     | Prospect Slough  | - <u></u> | 0.107  | 0.002  | 36.6     |          | nd    |          |
| 1/26/95 | 1600                | cf511     | Prospect Slough  | 0.57      | 0.107  | 0.064  | 50.0     | 7.28     |       | 1 51     |
| 1/27/95 | 1000                | cf514     | Greene's Landing | 0.57      | 0.08   | 0.004  | 162      |          | 1.08  |          |
| 1/27/95 | 1000                | cf515     | Greene's Landing | 0.46      | 0.00   | 0.033  | 10.2     | 4.06     |       | 1.18     |
| 1/27/95 | 1530                | cf516     | Prospect Slough  |           | 0.096  | 0.000  | 28.3     | 1.00     | 1.48  |          |
| 1/28/05 | 1500                | cf517     | Greene's Landing | <u> </u>  | 0.082  |        | 157      | <u> </u> | 1.24  |          |
| 1/28/95 | 1500                | cf518     | Greene's Landing | 041       | 10.002 | 0.073  |          | 4.34     |       | 1        |
| 1/28/95 | 1200                | cf519     | Prospect Slough  | 0.41      | 0.111  | 0.01.  | 293      |          | 0.99  | <u> </u> |
| 1/28/95 | 1200                | cf520     | Prospect Slough  | 0.57      | +      | 0.064  |          | 6.75     |       | 1.45     |
| 1/28/05 | 1000                | cf521     | Skag Slough      |           | 0.12   | 0.001  | 37.2     | +        | 1.48  | 1        |
| 1/20/95 | 1100                | hn92      | Greene's Landing |           | 0.105  |        | 10.8     |          | 1.13  | <u>†</u> |
| 1/29/95 | $\frac{1100}{1100}$ | bn93      | Greene's Landing | 0.34      | +      | 0.034  |          | 3.95     | +     | 1.22     |
| 1/20/05 | +                   | bp94      | Greene's Landing | 0.41      | †      | 0.039  |          | 3.72     |       | 0.94     |
| 1/30/95 | 1700                | cf600     | Greene's Landing |           | 0.054  | 10.000 | 11.3     | +        | 1.18  | +        |
| 1/30/95 | 1700                | cf601     | Greene's Landing | 0.24      | +      | 0.021  | <u>-</u> | 3.11     | 1     |          |
| 1/31/95 | 1600                | cf602     | Greene's Landing |           | 0.104  |        | 10.6     | +        | 1.54  | <u>+</u> |
| 1/31/95 | 1600                | cf603     | Greene's Landing |           | nd     | +      | 0.18     | 1        | nd    | +        |
| 1       |                     | - t       | 1                |           |        |        |          |          |       |          |

|          |      | 0         |                              | Dis     | Total | Dis   | Total |          | Total       |               |
|----------|------|-----------|------------------------------|---------|-------|-------|-------|----------|-------------|---------------|
| Date     | Hour | Station # | Station Name                 | Pb      | Cd    | Cd    | Ni    | Dis Ni   | As          | Dis As        |
| 1/31/95  | 1600 | cf604     | Greene's Landing             |         | 0.057 |       | 10.6  |          | 1.54        |               |
| 1/31/95  | 1600 | cf605/QA  | Greene's Landing             | <u></u> | 0.05  |       | 10    |          |             |               |
| 1/31/95  | 1600 | cf607     | Greene's Landing             |         | 0.008 |       | 0.91  |          |             |               |
| 1/31/95  | 1600 | cf610     | Greene's Landing             | 0.37    |       | 0.02  |       | 2.99     |             |               |
| 1/31/95  | 1600 | cf611     | Greene's Landing             |         | 0.027 |       | 2.71  |          |             |               |
| 1/31/95  | 1200 | cf606     | Prospect Slough              |         | 0.065 |       | 14.8  |          |             |               |
| 2/1/95   | 1300 | cf608     | Greene's Landing             |         | 0.07  |       | 6.61  |          |             |               |
| 2/1/95   | 1600 | cf609     | Greene's Landing             |         |       |       |       |          |             |               |
| 2/2/95   | 1600 | cf612     | Greene's Landing             |         | 0.042 |       | 5.92  |          |             |               |
| 2/3/95   | 1400 | cf613     | Greene's Landing             |         | 0.062 |       | 8.45  |          |             |               |
| 2/3/95   | 1000 | cf614     | Prospect Slough              |         | 0.07  |       | 13.5  |          |             |               |
| 2/5/95   | 1500 | cf615     | Chipps Island                |         | 0.065 |       | 11.5  |          |             |               |
| 2/5/95   | 1500 | cf625     | Chipps Island                | 0.43    |       | 0.039 |       | 2.67     |             |               |
| 2/5/95   | 1300 | cf616     | Grizzly Bay                  |         | 0.045 |       | 9.64  |          |             |               |
| 2/5/95   | 1300 | cf623     | Grizzly Bay                  | 0.31    |       | 0.024 |       | 3.27     |             |               |
| 2/5/95   | 1600 | cf617     | Martinez                     |         | 0.056 |       | 10.9  |          |             |               |
| 2/5/95   | 1000 | cf624a    | Martinez                     |         | 0.035 |       | 3.12  |          |             |               |
| 2/5/95   | 1000 | cf624b/QA | Martinez                     |         | 0.03  |       | 3.88  |          |             |               |
| 2/6/95   | 1600 | cf619     | Greene's Landing             |         | 0.051 |       | 8.63  |          |             |               |
| 2/6/95   | 1600 | cf622     | Greene's Landing             | 0.25    |       | 0.032 |       | 2.44     |             |               |
| 2/6/95   | 1400 | cf618     | Prospect Slough              |         | 0.082 |       | 21.3  |          |             |               |
| 2/10/95  | 1600 | cf701a    | Greene's Landing             |         | 0.057 |       | 7.1   |          |             |               |
| 2/10/95  | 1600 | cf701b/QA | Greene's Landing             |         | 0.04  |       | 6.33  |          |             |               |
| 2/10/95  | 1600 | cf702a    | Greene's Landing             | 0.18    | · ·   | 0.012 |       | 2.23     |             |               |
| 2/10/95  | 1300 | cf702b/QA | Greene's Landing             | 0.29    |       | 0.02  |       | 2.15     |             |               |
| 2/10/95  | 1400 | cf700     | Prospect Slough              |         | 0.068 |       | 11.4  |          |             |               |
| 2/14/95  | 1600 | cf703     | Greene's Landing             |         | 0.056 |       | 6.71. |          |             |               |
| 2/14/95  | 1300 | cf704     | Prospect Slough              |         | 0.084 |       | 15.8  |          |             |               |
| 2/14/95  | 1000 | cf705     | Skag Slough                  |         | 0.026 |       | 11.1  |          |             |               |
| 2/17/95  | 1350 | cf706     | Greene's Landing             |         | 0.11  |       | 12.3  |          | <u></u>     |               |
| 2/17/95  | 1100 | cf707     | Prospect Slough              |         | 0.036 |       | 13.8  |          |             |               |
| 2/21/95  | 1400 | bn96      | Greene's Landing             |         | 0.048 |       | 7 04  |          |             | I             |
| 2/21/95  | 930  | cf708     | Greene's Landing             |         | 0.069 |       | 7 49  |          |             |               |
| 2/23/95  | 1600 | bn97      | Greene's Landing             |         | 0.053 |       | 631   |          |             |               |
| 2/24/95  | 900  | ct711     | Greene's Landing             |         | 0.057 |       | 4 59  |          |             |               |
| 2/28/95  | 2030 | ct712     | Greene's Landing             | ~       | 0.037 |       | 5.85  |          |             |               |
| 2/28/95  | 800  | cf713     | Prospect Slough              |         | 0.045 |       | 283   |          |             |               |
| 3/3/95   | 1530 | cf714     | Greene's Landing             |         | 0.066 |       | 5 79  |          |             |               |
| 3/5/95   | 1600 | cf715     | Greene's Landing             |         | 0.076 |       | 6 56  |          |             |               |
| 3/7/95   |      | cf716     | Greene's Landing             |         | 0.052 |       | 6.18  |          |             |               |
| 3/10/95  | 1330 | bp102     | Cottonwood Creek             |         | 0.032 |       | 233   |          |             |               |
| 3/10/95  | 1330 | bp102     | Cottonwood Creek             |         | 0.29  |       | 189   |          | · · · · · · |               |
| 3/10/95  | 1000 | bp114     | East Yolo Bypass             |         | 0438  |       | 600   |          |             |               |
| 3/10/95  | 1115 | bp106     | Little Cow Cr. @ Dersch Br.  |         | 0.123 |       | 7 98  |          |             |               |
| 3/10/95  | 1115 | bp100     | Little Cow Cr. @ Dersch Br.  |         | 0.125 |       | 62    |          |             |               |
| 3/10/95  | 1240 | bp108     | Putah Creek @ Mace Blvd      |         | 0.105 |       | 88 1  |          | ·           | <b>├</b> ──── |
| 3/10/05  | 1430 | bp105     | Sac R @ Bend Rdg             |         | 0.7/  |       | 52    |          |             |               |
| 3/10/05  | 2000 | bp100     | Sac R. @ Coluce Bdg          |         | 0 400 |       | 266   |          |             |               |
| 3/10/95  | 1000 | bp07      | Sac R. @ Cupress Pdg         |         | 0.409 |       | 200   |          |             | <u>├</u>      |
| 3/10/95  | 1000 | bp08      | Sac P. @ Old Formu           |         | 0.11  |       | 251   |          |             |               |
| 3/10/95  | 1630 | bo00      | Sac R. @ Dood a <sup>0</sup> |         | 0.290 |       | 102   |          |             | <u>├</u>      |
| 2/10/93  | 1330 | bp107     | Sac R. W ROad a-8            |         | 0.3/1 |       | 492   | <b></b>  |             | <b>  </b>     |
| 2/10/95  | 1700 | bp107     | Sac K. W KOad a-9            |         | 0.311 |       | 112   |          |             | <b> </b>      |
| 2/10/95  | 1000 | bp103     | Sac R. @ Shasta Dam          |         | 0.020 |       | 2.30  | <b> </b> |             | <b>  </b>     |
| 2/10/95  | 1230 | bp104     | Sac K. @ Dalls Ferry Bug     |         | 0.154 |       | 1.41  |          |             | <b>├</b>      |
| [3/10/93 | 2230 | ισρισι    | Sacramento Stougn            |         | 0.433 | 1     | 120   | I        |             | 1 1           |

|         |      |           |                            | Dis      | Total | Dis | Total |        | Total |        |
|---------|------|-----------|----------------------------|----------|-------|-----|-------|--------|-------|--------|
| Date    | Hour | Station # | Station Name               | Pb       | Cđ    | Cđ  | NI    | DIS NI | AS    | Dis As |
| 3/10/95 |      | bp112     | Skag Slough                |          | 0.057 |     | 14.1  |        |       |        |
| 3/10/95 |      | bp113     | West Yolo bypass           |          | 0.311 |     | 165   |        |       |        |
| 3/11/95 | 1530 | bp110     | American River @ Sac State |          | 0.017 |     | 2.17  |        |       |        |
| 3/11/95 | 1200 | bp109     | Cache Creek 102            |          | 0.495 |     | 651   |        |       |        |
| 3/11/95 | 1200 | bp109     | Cache Creek 102            |          | 0.311 |     | 653   |        |       |        |
| 3/11/95 | 1630 | bp111     | Feather River @ Hwy 99     | <u>.</u> | 0.026 |     | 4.06  |        |       |        |
| 3/11/95 | 1300 | CF 800    | Greene's Landing           |          | 0.16  |     | 13.2  |        |       |        |
| 3/11/95 | 1500 | CF 801    | Mokelumne River            |          | 0.066 |     | 2.61  |        |       |        |
| 3/11/95 | 1500 | CF 801    | Mokelumne River            |          | 0.033 |     | 5.72  |        |       |        |
| 3/11/95 | 1600 | CF 802    | S.J. River @ Vernalis      |          | 0.169 |     | 128   |        |       |        |
| 3/13/95 | 1100 | CF 803    | Sutter Bypass              |          | 0.068 |     | 20.4  |        |       |        |
| 3/13/95 |      | bp117     | Sycamore                   |          |       |     |       | 2.86   |       |        |
| 3/14/95 |      | bp115     | Greene's Landing           |          | 0.056 |     | 11.1  |        |       |        |
| 3/21/95 | 1800 | CF 807    | Prospect Slough            |          | 0.072 |     | 19.3  |        |       |        |
| 3/22/95 | 1700 | CF 808    | Greene's Landing           |          | 0.029 |     | 5.76  |        |       |        |
| 3/22/95 | 1700 | CF 811    | Greene's Landing           |          | 0.033 |     | 5.72  |        |       |        |
| 3/22/95 | 1000 | CF 809    | Mokelumne River            |          | 0.095 |     | 2.47  |        |       |        |
| 3/22/95 | 1000 | CF 809    | Mokelumne River            |          | 0.084 |     | 1.72  |        |       |        |
| 3/22/95 | 1400 | CF 810    | S.J. River @ Vernalis      |          | 0.024 |     | 3.97  |        |       |        |

| <u></u>  | <u> </u>                                   | [         | l                          | Total    | Dis            | Total | 1                                     |          |
|----------|--------------------------------------------|-----------|----------------------------|----------|----------------|-------|---------------------------------------|----------|
| Date     | Hour                                       | Station # | Station Name               | Ag       | Ag             | Fe    | Dis Fe                                | Hardness |
| 1/1/1/93 | har an | GL 22     | Greene's Landing           |          | 0.013          |       |                                       |          |
| 1/13/93  | <u> </u>                                   | GL 23     | Greene's Landing           | 1        | 0.008          |       |                                       |          |
| 1/14/93  |                                            | GL 24     | Greene's Landing           | 0.014    | -              |       |                                       | (        |
| 3/23/93  | 1030                                       | 3         | Sac R depth 1              |          |                | 4600  |                                       |          |
| 3/23/93  | 1030                                       | 1 .       | Sac R surface 1            |          |                | 3600  |                                       |          |
| 3/23/93  | 1030                                       | 2         | Sac R surface 2            |          |                |       | 410                                   |          |
| 3/23/93  | 1030                                       | 4         | Sac. R depth 2             |          |                |       | 600                                   |          |
| 4/13/93  | 1700                                       | 36        | Sac. River @ Delta         |          |                |       |                                       |          |
| 717193   | 1510                                       | 135       | Middle R. @ Bullfrog Ldg.  | 0.013    | · ·            |       |                                       | 74       |
| 7/7/93   | 1510                                       | 136       | Middle R. @ Bullfrog Ldg.  |          | 0.005          |       |                                       | 74       |
| 7/7/93   | 1750                                       | 149       | S.J. River @ Vernalis      | 0.015    |                |       |                                       | 146      |
| 7/7/93   | 1750                                       | 150       | S.J. River @ Vernalis      |          |                |       |                                       | 146      |
| 7/19/93  | 1038                                       | 151       | S.J. River @ Antioch       | 0.01     |                |       |                                       | 78       |
| 7/19/93  | 1038                                       | 152       | S.J. River @ Antioch       |          |                |       |                                       | 78       |
| 7/19/93  | 1300                                       | 153       | Sac. River @ Hood          | 0.009    | 1              |       |                                       | 48       |
| 7/19/93  | 1300                                       | 154       | Sac. River @ Hood          |          | 0.003          |       |                                       | 48       |
| 7/20/93  |                                            | Fl        | Sac R. @ Rio Vista         | 0.009    |                | i     |                                       | -44      |
| 7/20/93  |                                            | F2        | Sac R. @ Rio Vista         |          | nd             |       |                                       | 44       |
| 7/20/93  |                                            | F3        | Sac R. @ Rio Vista         |          | < 0.002        |       |                                       | 44       |
| 8/3/93   | 1311                                       | 193       | Mokelumne River            | 0.003    | ·, · · · · · · |       |                                       | 36       |
| 8/3/93   | 1311                                       | 194       | Mokelumne River            |          | nd             |       |                                       | 36       |
| 8/3/93   |                                            | F-11      | Sac R. @ Rio Vista         |          | 0.006          |       |                                       | 64       |
| 8/3/93   |                                            | F-12      | Sac R. @ Rio Vista         | 0.007    | i              |       |                                       | 64       |
| 8/3/93   |                                            | F-10/QC   | Sac. River @ Hood          |          |                |       |                                       | 66       |
| 8/3/93   |                                            | F-8       | Sac. River @ Hood          |          | 0.004          |       |                                       | 66       |
| 8/3/93   |                                            | F-9       | Sac. River @ Hood          | 0.011    |                |       |                                       | 66       |
| 8/17/93  | 1200                                       | 207       | Middle R. @ Bullfrog Ldg.  | \        | ·              |       |                                       | 48       |
| 8/17/93  | 1200                                       | 208       | Middle R. @ Bullfrog Ldg.  |          |                |       |                                       | 48       |
| 8/17/93  | 1450                                       | 221       | S.J. River @ Vernalis      |          |                |       |                                       | 136      |
| 8/17/93  | 1450                                       | 222       | S.J. River @ Vernalis      |          |                |       |                                       | 136      |
| 9/14/93  | 1200                                       | 246       | Mokelumne River            |          |                |       |                                       | 32       |
| 9/14/93  | 1200                                       | 247       | Mokelumne River            |          |                |       |                                       | 32       |
| 9/14/93  | 1200                                       | 248       | Mokelumne River            | 0.000    |                |       |                                       | 32       |
| 9/14/93  |                                            | 13 CF     | Sac R. @ Rio Vista         | 0.006    |                |       |                                       | 64       |
| 9/14/93  | · .                                        | 14 CF     | Sac R. @ Rio Vista         | na       | 0.000          |       |                                       | 64       |
| 9/14/93  | }                                          | IS CF     | Sac R. @ RIO VISta         | <b> </b> | <0.002         | ·     |                                       | 04       |
| 9/14/93  |                                            | 10 CF     | Sac. River @ Hood          | ļ        |                |       |                                       | 64       |
| 9/14/93  | 2010                                       | 17 CF     | Sac. River @ Hood          | l        |                |       |                                       | 04       |
| 10/4/93  | 2030                                       | 209       | Sac. River @ Freeport      | <u> </u> |                |       |                                       | 80       |
| 10/4/93  | 1100                                       | 270       | Sac. River @ Freeport      | <u> </u> |                |       |                                       | 80       |
| 10/4/95  | 1100                                       | 271       | Sac. River & Fleepolt      |          |                | ····  |                                       | 0        |
| 10/4/93  |                                            | 273       |                            |          |                | ·     | · · · · · · · · · · · · · · · · · · · |          |
| 10/4/95  | 1251                                       | 275       | Makelumne Diver            | ļ        |                |       |                                       |          |
| 10/14/93 | 1251                                       | 290       | Mokelumne River            |          | ·              |       |                                       | 24       |
| 10/14/93 | 11231                                      | 1299      | See P. @ Pie Viete         | 0.000    |                |       | }                                     | 56       |
| 10/14/93 |                                            |           | Sac R. @ Rio Vista         | 0.008    | nd             | ļ     |                                       | 56       |
| 10/14/93 |                                            | 19 CF     | Sac N. W. KIU VISLA        | <u> </u> | <u>nu</u>      |       |                                       | - 30     |
| 10/14/93 |                                            | 20 CF     | Sac, River @ Hood          |          |                |       |                                       | 40       |
| 10/14/93 |                                            | 121 CF    | Sac. River @ Hood          | <u> </u> | <u> </u>       |       |                                       | 40       |
| 10/14/93 | 1020                                       | 2205      | Middle D. @ Dullfrog I do  | <u> </u> |                |       |                                       | 40       |
| 10/20/02 | 0201                                       | 212       | Middle P. @ Duillfrog Ldg. | ┟────    |                |       | <u> </u>                              | 62       |
| 10/20/02 | 1030                                       | 22 CE     | S I Diver @ Antioch        | <u> </u> |                | 760   |                                       | 676      |
| 10/29/93 | <u> </u>                                   | 23 CF     | S.J. River @ Antioch       |          |                | 75    |                                       | , 020    |
| 10/20/02 |                                            | 124 CFIQU | S.J. River @ Antioch       | <u> </u> |                | 13    | 810                                   | 626      |
| 10/22/23 |                                            | LAJ UF/QU | DI ANU CANUCI              | L        | L              | ŀ     | 010                                   | 020      |

| Date     | Hour     | Station # | Station Name              | Total<br>Ag | Dis<br>Ag | Total<br>Fe | Dis Fe   | Hardness |
|----------|----------|-----------|---------------------------|-------------|-----------|-------------|----------|----------|
| 10/29/93 |          | 26 CF     | S.J. River @ Stockton     |             |           |             |          | 74       |
| 10/29/93 |          | 27 CF     | S.J. River @ Stockton     |             |           |             |          | 74       |
| 10/29/93 |          | 28 CF     | S.J. River @ Stockton     |             |           | · · ·       |          | 74       |
| 10/29/93 |          | 323       | S.J. River @ Vernalis     |             |           |             |          | 128      |
| 10/29/93 |          | 324       | S.J. River @ Vernalis     |             |           |             |          | 128      |
| 11/10/93 |          | 29 CF     | Greene's Landing          |             |           |             |          | 60       |
| 11/10/93 |          | 30 CF A   | Greene's Landing          |             |           |             |          | 60       |
| 11/10/93 |          | 30 CF B   | Greene's Landing          |             |           |             |          | 60       |
| 11/11/93 |          | 31 CF     | Greene's Landing          |             |           |             |          | 60       |
| 11/11/93 |          | 32 CF     | Greene's Landing          |             |           |             |          | 60       |
| 11/11/93 |          | 33 CF     | Greene's Landing          |             |           |             |          | 60       |
| 11/11/93 | <u> </u> | 34 CF     | Greene's Landing          |             |           |             |          | 60       |
| 11/11/93 | <u> </u> | 35 CF     | Greene's Landing          |             |           |             |          | 60       |
| 11/11/93 |          | 36CF      | Greene's Landing          |             |           |             |          | 60       |
| 11/12/03 |          | 37 CF A   | Greene's Landing          |             |           |             |          | 60       |
| 11/12/03 | }        | 137 CF R  | Greene's Landing          |             |           |             |          | 60       |
| 11/12/93 |          | 137 CF B  | Greene's Landing          |             |           |             |          | 60       |
| 11/12/93 |          | 30 CF     | Greene's Landing          |             |           | <u>-</u>    |          |          |
| 11/12/93 |          | 139 CF    | Greene's Landing          | 0.014       |           |             | ļ        | 60       |
| 11/29/93 |          | 40 CF     | S.J. River @ Antioch      | 0.014       |           |             |          | 010      |
| 11/29/93 |          | 41 CF     | S.J. River @ Stockton     | 0.012       |           |             |          | 188      |
| 12/13/93 |          | 42 CF     | Sac R. @ Rio Vista        | 0.01        | 0.000     |             |          | 70       |
| 12/13/93 | <u> </u> | 43 CF     | Sac R. @ Rio Vista        | 0.010       | 0.002     |             |          | /6       |
| 12/13/93 |          | 44 CF     | Sac. River @ Hood         | 0.012       |           |             |          | 54       |
| 12/13/93 | ļ        | 44 CF     | Sac. River @ Hood         | ļ           |           |             | ļ        | 54       |
| 12/13/93 | ļ        | 45 CF     | Sac. River @ Hood         |             | 0.002     |             |          | 54       |
| 1/10/94  | L        | GL 21     | Greene's Landing          | 0.002       |           |             |          | 64       |
| 1/10/94  | ļ        | 46 CF     | S.J. River @ Antioch      | 0.004       |           |             | <br>     | 262      |
| 1/10/94  |          | 47 CF     | S.J. River @ Antioch      |             |           |             | L        | 262      |
| 1/10/94  |          | 48 CF     | S.J. River @ Stockton     | L           |           |             | ļ        | 204      |
| 1/10/94  | <u> </u> | 48 CF     | S.J. River @ Stockton     |             |           |             |          | 204      |
| 1/10/94  |          | 49 CF     | S.J. River @ Stockton     |             |           |             |          | 204      |
| 1/11/94  | 914      | 410       | Middle R. @ Bullfrog Ldg. |             |           |             |          | 88       |
| 1/11/94  | 914      | 411       | Middle R. @ Bullfrog Ldg. |             |           |             |          | 88       |
| 1/11/94  | 914      | 412       | Middle R. @ Bullfrog Ldg. |             |           |             |          | 88       |
| 1/11/94  | 914      | 425       | S.J. River @ Vernalis     |             |           |             |          | 156      |
| 1/11/94  | 914      | 426       | S.J. River @ Vernalis     |             |           |             |          | 156      |
| 1/11/94  | 914      | 427       | S.J. River @ Vernalis     |             |           |             |          | 156      |
| 1/13/94  |          | 66        | Greene's Landing          |             |           |             |          | 66       |
| 1/13/94  | 1        | 65 A      | Greene's Landing          |             |           |             |          | 66       |
| 1/13/94  | 1        | 65 B      | Greene's Landing          | 1           | 1         | 1           |          | 66       |
| 1/18/94  | 1        | 25        | Greene's Landing          | 1           |           | <u> </u>    | 1        | 60       |
| 1/19/94  | 1        | 24        | Greene's Landing          | 1           |           | [           | 1        | 60       |
| 1/23/94  | 1        | 27        | Greene's Landing          | 1           | 1         |             | 1        | 80       |
| 1/24/94  | +        | 26        | Greene's Landing          | +           | <u> </u>  | t           | 1        | 88       |
| 1/24/94  | 1        | 29        | Greene's Landing          | +           | 1         | t           | 1        | 88       |
| 1/25/94  | +        | 28        | Greene's Landing          | <u> </u>    | 1         | 1           | +        | 76       |
| 1/26/94  | +        | 30        | Greene's Landing          | 1           |           | <u>+</u>    |          | 88       |
| 1/26/04  | +        | 131       | Greene's Landing          |             | <u> </u>  |             |          | 88       |
| 1/27/04  |          | 133       | Greene's Landing          | +           | 1         | 1           | +        | 88       |
| 1/29/04  | +        | 32        | Greene's Landing          | +           | +         | 1           |          | 64       |
| 1/20/94  |          | 35        | Greene's Landing          | +           | +         | ·           | +        | 64       |
| 1/20/94  |          | 26        | Greene's Landing          | +           | +         | +           | <u> </u> | 64       |
| 1/28/94  | -000     | 30        | Greene's Landing          | +           |           | +           | +        | 66       |
| 1/29/94  | 900      | 140       | Greene's Landing          |             | +         |             |          | 66       |
| 1/30/94  | 1000     | 38        | Greene's Landing          |             |           | +           |          | 4 60     |
| 1/30/94  | 1000     | 42        | Greene's Landing          |             |           |             |          | 00       |

.

|         | 1          | T         | ·                 | Total | Dis              | Total        | <u></u>  | <u> </u> |
|---------|------------|-----------|-------------------|-------|------------------|--------------|----------|----------|
| Date    | Hour       | Station # | Station Name      | Ag    | Ag               | Fe           | Dis Fe   | Hardness |
| 1/31/94 |            | 41        | Greene's Landing  | 8     |                  |              |          | 66       |
| 2/1/94  |            | 44        | Greene's Landing  |       | <del></del>      |              |          | 72       |
| 2/1/94  |            | 48        | Greene's Landing  |       |                  |              |          | 72       |
| 2/2/94  | 1          | 43        | Greene's Landing  |       | ,                | }            |          | 72       |
| 2/5/94  | 1700       | 55        | Greene's Landing  |       | <u></u>          |              |          | 60       |
| 2/7/94  |            | 50        | Greene's Landing  |       |                  |              |          | 68       |
| 2/7/94  |            | 53        | Greene's Landing  |       | -                |              |          | 68       |
| 2/8/94  | 1.         | 51        | Greene's Landing  |       | -                |              |          | 72       |
| 2/8/94  | +          | 52        | Greene's Landing  |       | - <del>: +</del> |              |          | 72       |
| 2/9/94  |            | 54        | Greene's Landing  |       |                  | ·            |          | 80       |
| 2/10/94 |            | 56        | Greene's Landing  |       | 7.6.             |              |          | 54       |
| 2/10/94 | 930        | 58        | Greene's Landing  |       |                  | <u> </u>     |          | 54       |
| 2/11/94 | 1000       | 61        | Greene's Landing  |       |                  | 1            |          | 60       |
| 2/11/94 | 1600       | 62        | Greene's Landing  |       |                  |              |          | 60       |
| 2/12/94 | - <u> </u> | 60        | Greene's Landing  |       |                  | ·            |          | 64       |
| 2/16/94 | 700        | 63        | Greene's Landing  |       |                  |              |          |          |
| 2/16/94 | 700        | 64        | Greene's Landing  |       | ,                | · · · · ·    |          |          |
| 2/17/94 | 1          | 67        | Greene's Landing  |       |                  | ·            |          | 80       |
| 2/17/94 |            | 68        | Greene's Landing  |       |                  |              |          | 80       |
| 2/18/94 | 1200       | 70        | Greene's Landing  |       |                  |              |          | 80       |
| 2/19/94 |            | 69        | Greene's Landing  |       | ,                |              |          | 86       |
| 2/19/94 | 1400       | 72        | Greene's Landing  |       |                  |              |          | 86       |
| 2/19/94 | 1400       | 71 A      | Greene's Landing  |       |                  |              |          | 86       |
| 2/19/94 | 1400_      | 71 B      | Greene's Landing  |       |                  |              |          | 86       |
| 2/20/94 | 1550       | 74        | Greene's Landing  |       |                  |              |          | 72       |
| 2/21/94 |            | 73        | Greene's Landing  |       |                  |              |          | 66       |
| 2/21/94 | 1600       | 76        | Greene's Landing  |       | <u>.</u>         |              |          | · 66     |
| 2/22/94 | <u> </u>   | 75        | Greene's Landing  |       |                  |              |          | 56       |
| 2/22/94 | 1          | 77        | Greene's Landing  |       | ·                | L            |          | 56       |
| 2/22/94 | 1600       | 79        | Greene's Landing  |       |                  |              |          | 56       |
| 2/23/94 |            | 81        | Greene's Landing  |       |                  |              |          | 58       |
| 2/23/94 | 1700       | 82        | Greene's Landing  |       | ·                |              |          | 58       |
| 2/24/94 |            | 83        | Greene's Landing  |       |                  |              |          | 62       |
| 2/24/94 | 1700       | 84        | Greene's Landing  |       |                  |              |          | 62       |
| 2/25/94 |            | 85        | Greene's Landing  |       |                  |              |          | 66       |
| 2/25/94 | 1800       | 86        | Greene's Landing  |       |                  | ļ            | []       | 66       |
| 2/27/94 |            | 87        | Greene's Landing  |       |                  |              |          | 80       |
| 2/28/94 | 1.000      | 89        | Greene's Landing  |       |                  | <u> </u>     |          | 82       |
| 2/28/94 | 1200       | 90        | Greene's Landing  |       |                  | Į            |          | 82       |
| 3/1/94  |            | 191       | Greene's Landing  |       |                  |              |          | 84       |
| 3/1/94  |            | 93        | Greene's Landing  |       |                  | <u> </u>     | <br>     | 84       |
| 3/4/94  | 1200       | 195       | Greene's Landing  |       |                  |              |          | 88       |
| 3/4/94  | 1200       | 196       | Greene's Landing  |       |                  |              |          | 88       |
| 3/9/94  | 1130       | 100       | Greene's Landing  |       | ~ <u></u>        |              |          |          |
| 3/9/94  | 1130       | 101       | Greene's Landing  |       | ·                |              |          |          |
| 2/0/04  | 1120       | 102       | Greene's Landing  |       |                  | <u> </u>     |          |          |
| 3/0/04  | 1120       | 103       | Greene's Landing  |       |                  | <del> </del> |          |          |
| 3/0/0/  | 1120       | 104       | Greene's Landing  |       |                  | ┢────        |          |          |
| 3/9/94  | 1120       | 107       | Greene's Landing  |       |                  |              |          |          |
| 2/0/04  | 1120       | 1056      | Greene's Landing  |       | ·,               | ·            |          |          |
| 3/0/04  | 1130       | 1050      | Greene's Landing  |       |                  |              | <u> </u> |          |
| 2/0/04  | 1120       | 1004      | Greene's Landing  |       |                  | <u> </u>     |          |          |
| 3/10/04 | 1130       | 1000      | Greene's Landing  |       |                  |              |          | 76       |
| 3/10/94 | 1800       | 100       | Greene's Landing  |       | ,                |              |          | 76       |
| 5/10/94 | 1000       | 107       | Loreene s Landing |       |                  | 1            | 1        | /0       |

•

â

....

÷

I

,
|           |          |           | [                         | Total    | Dis      | Total      |        | le la |
|-----------|----------|-----------|---------------------------|----------|----------|------------|--------|-------------------------------------------|
| Date      | Hour     | Station # | Station Name              | Ap       | Ag       | Fe         | Dis Fe | Hardness                                  |
| 3/15/94   |          | 110       | Greene's Landing          |          |          |            |        | 72                                        |
| 3/15/94   |          | 111       | Greene's Landing          |          |          | <u> </u>   |        | 72                                        |
| 3/15/94   |          | 112       | Greene's Landing          |          |          |            |        | 72                                        |
| 3/15/94   |          | 113       | Greene's Landing          |          |          |            |        | 72                                        |
| 3/15/04 - |          | 113       | Greene's Landing          |          |          |            |        | 72                                        |
| 3/15/04   | 1800     | 115       | Greene's Landing          |          |          | ┼────      |        | 72                                        |
| 3/16/04   | 1000     | 114       | Greene's Londing          |          |          |            |        | 72                                        |
| 3/16/04   | 1100     | 114       | Greene's Landing          |          |          |            |        | 72                                        |
| 2/16/04   | 1100     | 117       | Greene's Landing          |          |          |            |        |                                           |
| 2/16/04   |          | 117       | Greene's Landing          |          |          | <i>↓ ·</i> |        |                                           |
| 2/16/94   |          | 110       | Greene's Landing          |          |          | <u> </u>   |        | 72                                        |
| 2/16/94   |          | 119       | Greene's Landing          |          |          |            |        |                                           |
| 2/16/94   |          | 120       | Greene's Landing          |          |          |            |        | 72                                        |
| 2/16/94   |          | 121       | Greene's Landing          |          |          |            |        | 72                                        |
| 3/10/94   | <u> </u> | 122       | Greene's Landing          |          |          | ļ          |        | 12                                        |
| 3/23/94   |          | aa33      | French Camp Slough        | <u> </u> |          |            |        | 44                                        |
| 3/23/94   |          | aa34      | French Camp Slough        |          |          | ļ          |        | 44                                        |
| 3/23/94   |          | 22        | Ulatis Creek              |          |          | ļ          |        | 304                                       |
| 3/23/94   | 1 400    | 122       | Ulatis Creek              |          |          | <u> </u>   |        | 304                                       |
| 4/12/94   | 1400     | 4/4       | Mokelumne River           |          |          | ļ          |        | 32                                        |
| 4/12/94   | 1400     | 475       | Mokelumne River           |          |          |            |        | 32                                        |
| 4/12/94   | 1200     | 104CF     | Sac R. @ Rio Vista        | L        |          |            |        | 76                                        |
| 4/12/94   | 1200     | 105CF     | Sac R. @ Rio Vista        |          |          | Į,         |        | 76                                        |
| 4/12/94   | 900      | 100CF     | Sac. River @ Hood         |          |          |            |        | 70                                        |
| 4/12/94   | 900      | 101CF     | Sac. River @ Hood         |          |          |            |        | 70                                        |
| 4/12/94   | 900      | 102CF     | Sac. River @ Hood         |          |          |            |        | 70                                        |
| 4/12/94   | 900      | 103CF     | Sac. River @ Hood         |          |          |            |        | 70                                        |
| 4/27/94   | 1300     | 497       | Middle R. @ Bullfrog Ldg. |          |          |            |        | 124                                       |
| 4/27/94   | 1300     | 498       | Middle R. @ Bullfrog Ldg. |          |          |            |        | 124                                       |
| 4/27/94   | 900      | 106CF     | S.J. River @ Antioch      |          |          |            |        | 154                                       |
| 4/27/94   | 900      | 107CF     | S.J. River @ Antioch      |          |          |            |        | 154                                       |
| 4/27/94   | 900      | 108CF     | S.J. River @ Antioch      |          |          |            |        | 154                                       |
| 4/27/94   | 900      | 109 cf    | S.J. River @ Antioch      |          |          |            |        | 154                                       |
| 4/27/94   | 900      | 110CF     | S.J. River @ Stockton     |          |          |            |        | 172                                       |
| 4/27/94   | 900      | 111CF     | S.J. River @ Stockton     |          |          |            |        | 172                                       |
| 4/27/94   | 930      | 480       | S.J. River @ Vernalis     |          |          |            |        | 84                                        |
| 4/27/94   | 930      | 481       | S.J. River @ Vernalis     |          |          |            |        | 84                                        |
| 4/27/94   | 930      | 482       | S.J. River @ Vernalis     |          |          | 1          | [      | 84                                        |
| 4/27/94   | 930      | 483       | S.J. River @ Vernalis     |          |          | 1          |        | 84                                        |
| 4/27/94   | 930      | 484       | S.J. River @ Vernalis     | 1        |          |            |        | 84                                        |
| 4/30/94   |          | aal       | Paradise Cut              | 1        |          |            | 1      | 432                                       |
| 5/10/94   | 1        | laa6      | Duck Slough               |          |          |            |        | 98                                        |
| 5/10/94   |          | aa7       | Duck Slough               | 1        |          |            |        | 98                                        |
| 5/10/94   | 930      | GL 201    | Greene's Landing          | 1        |          |            | 1      | 66                                        |
| 5/10/94   |          | g1200     | Greene's Landing          | 1        | 1        | 1          | 1      | 66                                        |
| 5/10/94   |          | gl201     | Greene's Landing          | 1        | 1        | 1          |        | 66                                        |
| 5/10/94   | 1200     | 541       | Mokelumne River           | 1        |          | 1          | 1      | 30                                        |
| 5/10/94   | 1200     | 541/QA    | Mokelumne River           | 1        | <u> </u> | 1          | 1      | 30                                        |
| 5/10/94   | 1200     | 1223      | Paradise Cut              | 1        |          |            | 1      | 396                                       |
| 5/10/94   | +        | 122       | Paradise Cut              |          | 1        |            |        | 396                                       |
| 5/10/04   | +        | 114cf     | Sac R @ Rio Vista         | +        | 1        |            | 1      | 62                                        |
| 5/10/04   | +        | 115cf     | Sac R @ Rio Vista         | +        | 1        | -          | 1      | 62                                        |
| 5/10/04   | +        | 112cf     | Sac River @ Hood          | +        | +        |            |        | 54                                        |
| 5/10/04   | +        | 112cf/0A  | Sac River @ Hood          |          | +        |            | +      | 54                                        |
| 5/10/94   | +        | 11201/QA  | Sac Diver @ Hood          | +        | +        | -+         | +      | 54                                        |
| 5/25/04   |          |           | Old Piver @ Trocy Plud    | +        | <u> </u> |            | +      | 152                                       |
| 15125194  | 1        | 10010     | JUIU KIVEI @ HACY DIVU.   |          | 1        | 1          | I      | 1.7                                       |

| Date     | Hour     | Station # | Station Name            | Total<br>Ag | Dis<br>Ag                                        | Total<br>Fe | Dis Fe       | Hardness |
|----------|----------|-----------|-------------------------|-------------|--------------------------------------------------|-------------|--------------|----------|
| 5/25/94  |          | aa9       | Old River @ Tracy Blvd. |             |                                                  |             |              | 152      |
| 5/25/94  |          | aa35      | Paradise Cut            |             |                                                  |             |              | 398      |
| 5/25/94  |          | aa8       | Paradise Cut            |             |                                                  |             |              | 398      |
| 6/3/94   |          | aall      | Old River @ Tracy Blvd. |             |                                                  |             |              | 238      |
| 6/3/94   |          | aal2      | Old River @ Tracy Blvd. |             |                                                  |             |              | 238      |
| 6/3/94   |          | aa14      | Paradise Cut            |             |                                                  |             |              | 384      |
| 6/3/94   |          | aal5      | Paradise Cut            |             |                                                  |             |              | 384      |
| 7/12/94  |          | aa21      | Duck Slough             |             | <del>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</del> |             |              | 72       |
| 7/12/94  |          | aa22      | Duck Slough             |             |                                                  |             |              | 72       |
| 7/12/94  |          | aa19      | Paradise Cut            |             |                                                  |             |              | 400      |
| 7/12/94  |          | aa20      | Paradise Cut            | -           |                                                  |             |              | 400      |
| 7/12/94  |          | aa23      | Prospect Slough         |             | ÷                                                |             |              | 84.3     |
| 7/12/94  |          | aa24      | Prospect Slough         |             |                                                  |             |              | 84.3     |
| 7/21/94  |          | aa25a     | Mokelumne River         |             | 0.008                                            |             |              |          |
| 7/21/94  |          | aa25b/OA  | Mokelumne River         |             |                                                  |             |              |          |
| 7/21/94  |          | aa26a     | Mokelumne River         | 0.008       |                                                  |             |              |          |
| 7/21/94  |          | aa26b/OA  | Mokelumne River         |             |                                                  |             |              |          |
| 8/9/94   |          | bp 27     | Duck Slough             | •           | <u> </u>                                         |             |              | 68       |
| 8/9/94   |          | bp 28     | Duck Slough             |             |                                                  |             | <u> </u>     | 68       |
| 8/9/94   |          | bp 29     | Prospect Slough         |             | * * • • • •                                      |             |              | 72       |
| 8/9/94   |          | bp 30     | Prospect Slough         |             |                                                  |             |              | 72       |
| 9/2/94   |          | bp 30     | Duck Slough             |             | 4                                                |             |              | 70       |
| 9/2/94   |          |           | Duck Slough             |             |                                                  |             |              | 70       |
| 0/2/04   |          | hp?       | Duck Slough             |             |                                                  |             |              | 70       |
| 0/2/04   |          | bp2       | French Camp Slough      |             |                                                  |             |              | 82       |
| 0/2/04   |          | bp6       | French Camp Slough      |             |                                                  |             |              | 82       |
| 0/2/04   |          | hp3       | Prospect Slough         | -           |                                                  |             |              | 86       |
| 0/2/04   |          | bp3/QA    | Prospect Slough         |             |                                                  |             |              | 86       |
| 0/2/94   |          | bp3/QA    | Prospect Slough         |             |                                                  |             |              | 86       |
| 10/5/04  |          | bp36      | 5 mile                  |             | ÷                                                |             | ┼────        | 80       |
| 10/5/94  |          | 10030     | Groopola Londing        |             |                                                  |             |              | <u> </u> |
| 10/3/94  | ļ        | 10036     | Mokolumno Divor         |             |                                                  |             |              |          |
| 11/4/04  |          | 10027     | S L Diver @ Antioch     | 0.012       | · · ·                                            |             | ·            |          |
| 11/4/94  |          | 10029     | S.J. River @ Antioch    | 0.012       | 0.004                                            |             |              |          |
| 12/12/04 | 1245     | 400       | S.J. River @ Andoch     |             | 0.004                                            |             |              |          |
| 12/13/94 | 1245     | 400       | Mokelumne River         |             |                                                  |             | <u> </u>     |          |
| 12/13/94 | 1245     | 401       | Makalumna Divar         |             |                                                  |             |              |          |
| 12/13/94 | 1245     | 402       | Wokelumne River         |             |                                                  |             | <u> </u>     |          |
| 12/13/94 |          | aa29      | Ulatis Creek            |             |                                                  |             |              |          |
| 12/13/94 | 1.500    | aa30      | Ulatis Creek            |             | <del></del>                                      |             |              | 02       |
| 1/0/95   | 1500     | 10p44     | Greene's Landing        |             | <i></i>                                          |             |              | 92       |
| 1/6/95   | 1500     | 16p45     | Greene's Landing        |             |                                                  |             | <u> </u>     | 92       |
| 1///95   | <u> </u> | 10040     | Greene's Landing        |             |                                                  |             |              | 00       |
| 1/1/95   | 1000     | 10047     | Greene's Landing        |             |                                                  |             | <del> </del> | 00       |
| 1/8/95   | 1330     | 0048      | Greene's Landing        |             | . <u></u>                                        |             | <u> </u>     | 00       |
| 1/8/95   | 1330     | 10049     | Greene's Landing        |             |                                                  |             | <u> </u>     | 00       |
| 1/9/95   |          | 0023      | Duck Slough             |             |                                                  |             | <u> </u>     | 234      |
| 1/10/95  | ļ        | bp52      | Greene's Landing        |             | <u> </u>                                         |             | l            | 52       |
| 1/10/95  | ļ        | 0053      | Greene's Landing        |             |                                                  |             | <u> </u>     | 52       |
| 1/10/95  |          | 10p54     | Prospect Slough         |             |                                                  |             |              | 82       |
| 1/10/95  |          | bp54/QA   | Prospect Slough         |             | <u> </u>                                         |             | ļ            | 82       |
| 1/11/95  | 1430     | bp55 .    | Greene's Landing        |             |                                                  |             | ļ            | 44       |
| 1/11/95  | 1430     | bp56      | Greene's Landing        |             | ļ                                                |             | <u> </u>     | 44       |
| 1/11/95  | 1630     | bp59      | Prospect Slough         |             |                                                  |             | <u> </u>     | 88       |
| 1/12/95  | 1400     | bp61      | Greene's Landing        |             |                                                  |             |              | 42       |
| 1/12/95  | 1400     | bp62/QA   | Greene's Landing        | 1           |                                                  |             | 1            | 42       |

|         | T    |           |                  | Total    | Dis  | Total | 1      |          |
|---------|------|-----------|------------------|----------|------|-------|--------|----------|
| Date    | Hour | Station # | Station Name     | Ag       | Ag   | Fe    | Dis Fe | Hardness |
| 1/12/95 | 1400 | bp63      | Greene's Landing |          |      |       |        | 42       |
| 1/12/95 | 1400 | bp64/QA   | Greene's Landing | 1        |      |       |        | 42       |
| 1/12/95 | 1030 | bp60      | Prospect Slough  |          |      |       |        | 62       |
| 1/13/95 | 1500 | bp65      | Greene's Landing |          |      |       |        | 58       |
| 1/13/95 | 1500 | bp66      | Greene's Landing |          |      |       |        | 58       |
| 1/13/95 | 1000 | bp67      | Prospect Slough  |          |      |       |        | 58       |
| 1/14/95 | 1300 | bp69      | Greene's Landing | 1        | ···  |       |        | 40       |
| 1/14/95 | 1300 | bp70      | Greene's Landing |          |      |       |        | 40       |
| 1/14/95 | 1000 | bp68      | Prospect Slough  |          |      |       |        | 82       |
| 1/15/95 | 1400 | bp71      | Greene's Landing | <u> </u> |      |       |        | 44       |
| 1/15/95 | 1400 | bp72      | Greene's Landing |          |      |       |        | 44       |
| 1/15/95 | 1400 | bp77      | Greene's Landing |          |      |       | 1      | 44       |
| 1/15/95 | 1000 | bp74      | Prospect Slough  |          |      |       |        | 60       |
| 1/15/95 | 1000 | bp75      | Prospect Slough  |          |      |       |        | 60       |
| 1/17/95 | 1400 | bp78      | Greene's Landing |          |      |       |        | 44       |
| 1/17/95 | 1400 | bp79      | Greene's Landing |          |      |       |        | 44       |
| 1/17/95 | 1000 | bp80      | Prospect Slough  |          | ···· |       |        | 48       |
| 1/18/95 | 1400 | bp82      | Greene's Landing |          |      |       |        | 44       |
| 1/18/95 | 1400 | bp83      | Greene's Landing |          |      |       |        | 44       |
| 1/18/95 | 1100 | bp81      | Prospect Slough  |          |      |       |        |          |
| 1/20/95 | 1600 | bp86      | Greene's Landing |          |      |       |        | 48       |
| 1/20/95 | 1600 | bp87      | Greene's Landing |          |      |       | ·      | 48       |
| 1/22/95 | 1430 | bp90      | Greene's Landing |          |      |       |        | 54       |
| 1/22/95 | 1430 | bp91      | Greene's Landing |          |      |       |        | 54       |
| 1/22/95 | 1200 | bp89      | Prospect Slough  | 1        |      |       |        | 64       |
| 1/22/95 | 1100 | bp88      | Skag Slough      |          |      |       |        | 116      |
| 1/23/95 | 1500 | cf500     | Greene's Landing |          |      |       |        | 50       |
| 1/23/95 | 1500 | cf501     | Greene's Landing |          |      | -     |        | 50       |
| 1/23/95 | 1200 | cf502     | Prospect Slough  |          |      |       |        | 60       |
| 1/23/95 | 1000 | cf503     | Skag Slough      |          |      |       |        | 124      |
| 1/24/95 | 1600 | cf504     | Greene's Landing |          |      |       |        | 56       |
| 1/24/95 | 1600 | cf505     | Greene's Landing |          |      |       |        | 56       |
| 1/25/95 | 1500 | cf506     | Greene's Landing |          |      |       |        | 54       |
| 1/25/95 | 1500 | cf507     | Greene's Landing |          |      |       |        | 54       |
| 1/25/95 | 1000 | cf508     | Prospect Slough  |          |      |       |        | 64       |
| 1/25/95 | 1000 | cf509     | Prospect Slough  |          |      |       |        | 64       |
| 1/26/95 | 1400 | cf512     | Greene's Landing |          |      |       |        | 50       |
| 1/26/95 | 1500 | cf513     | Greene's Landing |          |      |       |        | 50       |
| 1/26/95 | 1600 | cf510     | Prospect Slough  |          |      |       |        | 56       |
| 1/26/95 | 1600 | cf511     | Prospect Slough  |          |      | 1     | 1      | 56       |
| 1/27/95 | 1000 | cf514     | Greene's Landing |          |      |       |        | 48       |
| 1/27/95 | 1000 | cf515     | Greene's Landing |          |      |       |        | 48       |
| 1/27/95 | 1530 | cf516     | Prospect Slough  |          |      |       |        | 60       |
| 1/28/95 | 1500 | cf517     | Greene's Landing |          |      |       | L      | 48       |
| 1/28/95 | 1500 | cf518     | Greene's Landing |          |      |       |        | 48       |
| 1/28/95 | 1200 | cf519     | Prospect Slough  |          |      |       |        | 60       |
| 1/28/95 | 1200 | cf520     | Prospect Slough  |          |      |       |        | 60       |
| 1/28/95 | 1000 | cf521     | Skag Slough      |          |      |       |        | 104      |
| 1/29/95 | 1100 | bp92      | Greene's Landing |          |      |       |        | 44       |
| 1/29/95 | 1100 | bp93      | Greene's Landing |          |      |       |        | 44       |
| 1/29/95 |      | bp94      | Greene's Landing |          |      |       |        | 44       |
| 1/30/95 | 1700 | cf600     | Greene's Landing |          |      |       |        | 48       |
| 1/30/95 | 1700 | cf601     | Greene's Landing |          |      |       |        | 48       |
| 1/31/95 | 1600 | cf602     | Greene's Landing |          |      |       |        | 48       |
| 1/31/95 | 1600 | cf603     | Greene's Landing |          | 1    |       |        | 48       |

| [       | 1    |           |                             | Total | Dis                                     | Total    |          | ]        |
|---------|------|-----------|-----------------------------|-------|-----------------------------------------|----------|----------|----------|
| Date    | Hour | Station # | Station Name                | Ag    | Ag                                      | Fe       | Dis Fe   | Hardness |
| 1/31/95 | 1600 | cf604     | Greene's Landing            |       |                                         | 1        |          | 48       |
| 1/31/95 | 1600 | cf605/QA  | Greene's Landing            |       |                                         |          |          | 48       |
| 1/31/95 | 1600 | cf607     | Greene's Landing            |       |                                         |          |          | 48       |
| 1/31/95 | 1600 | cf610     | Greene's Landing            |       |                                         |          |          | 48       |
| 1/31/95 | 1600 | cf611     | Greene's Landing            |       |                                         |          |          | 48       |
| 1/31/95 | 1200 | cf606     | Prospect Slough             |       |                                         |          |          | 68       |
| 2/1/95  | 1300 | cf608     | Greene's Landing            |       |                                         |          |          | 50       |
| 2/1/95  | 1600 | cf609     | Greene's Landing            |       |                                         |          |          | 50       |
| 2/2/95  | 1600 | cf612     | Greene's Landing            |       |                                         | <u> </u> |          | 50       |
| 2/3/95  | 1400 | cf613     | Greene's Landing            |       |                                         |          |          | 48       |
| 2/3/95  | 1000 | cf614     | Prospect Slough             |       |                                         |          |          | 68       |
| 2/5/95  | 1500 | cf615     | Chipps Island               |       | •                                       | 1        |          | 62       |
| 2/5/95  | 1500 | cf625     | Chipps Island               |       | - i i i i i i i i i i i i i i i i i i i | 1        |          | 62       |
| 2/5/95  | 1300 | cf616     | Grizzly Bay                 |       |                                         |          |          | 66       |
| 2/5/95  | 1300 | cf623     | Grizzly Bay                 |       |                                         |          |          | 66       |
| 2/5/95  | 1600 | cf617     | Martinez                    |       |                                         |          |          | 72       |
| 2/5/95  | 1000 | cf624a    | Martinez                    |       |                                         |          | · · ·    | 72       |
| 2/5/95  | 1000 | cf624b/OA | Martinez                    |       |                                         | 1        |          | 72       |
| 2/6/95  | 1600 | cf619     | Greene's Landing            |       |                                         |          |          | 46       |
| 2/6/95  | 1600 | cf622     | Greene's Landing            |       | 1                                       | 1        |          | 46       |
| 2/6/95  | 1400 | cf618     | Prospect Slough             |       |                                         |          |          | 46       |
| 2/10/95 | 1600 | cf701a    | Greene's Landing            |       |                                         |          |          | 52       |
| 2/10/95 | 1600 | cf701b/OA | Greene's Landing            |       | ·                                       |          |          | 52       |
| 2/10/95 | 1600 | cf702a    | Greene's Landing            |       |                                         |          |          | 52       |
| 2/10/95 | 1300 | cf702b/OA | Greene's Landing            |       |                                         | 1        |          | 52       |
| 2/10/95 | 1400 | cf700     | Prospect Slough             |       |                                         |          |          | 66       |
| 2/14/95 | 1600 | cf703     | Greene's Landing            |       |                                         |          |          | 62       |
| 2/14/95 | 1300 | cf704     | Prospect Slough             |       |                                         | <u> </u> |          | 80       |
| 2/14/95 | 1000 | cf705     | Skag Slough                 |       |                                         | †        |          | 192      |
| 2/17/95 | 1350 | cf706     | Greene's Landing            |       |                                         |          | •        | 56       |
| 2/17/95 | 1100 | cf707     | Prospect Slough             |       |                                         |          |          | 148      |
| 2/21/95 | 1400 | bp96      | Greene's Landing            |       |                                         | 1        |          | 56       |
| 2/21/95 | 930  | cf708     | Greene's Landing            |       |                                         |          |          | 56       |
| 2/23/95 | 1600 | bp97      | Greene's Landing            |       |                                         | 1        |          | 64       |
| 2/24/95 | 900  | cf711     | Greene's Landing            |       |                                         |          | 1        | 64       |
| 2/28/95 | 2030 | cf712     | Greene's Landing            |       |                                         | 1        |          | 64       |
| 2/28/95 | 800  | cf713     | Prospect Slough             |       |                                         | 1        |          | 244      |
| 3/3/95  | 1530 | cf714     | Greene's Landing            |       | 1                                       |          |          | 58       |
| 3/5/95  | 1600 | cf715     | Greene's Landing            |       | ,                                       |          |          | 50       |
| 3/7/95  |      | cf716     | Greene's Landing            |       |                                         | 1        |          | 46       |
| 3/10/95 | 1330 | bp102     | Cottonwood Creek            |       |                                         |          |          | 60       |
| 3/10/95 | 1330 | bp102     | Cottonwood Creek            |       |                                         | 1        |          | 60       |
| 3/10/95 | 1    | bp114     | East Yolo Bypass            |       | -                                       | 1        |          | 148      |
| 3/10/95 | 1115 | bp106     | Little Cow Cr. @ Dersch Br. |       |                                         | 1        |          | 36       |
| 3/10/95 | 1115 | bp106     | Little Cow Cr. @ Dersch Br. |       |                                         |          | <u> </u> | 36       |
| 3/10/95 | 1240 | bp108     | Putah Creek @ Mace Blvd.    |       | ,                                       | 1        |          | 112      |
| 3/10/95 | 1430 | bp105     | Sac R. @ Bend Bdg           |       |                                         | 1        | <u> </u> | 36       |
| 3/10/95 | 2000 | bp100     | Sac R. @ Colusa Bdg         |       | 1                                       | 1        | 1        | 48       |
| 3/10/95 | 1000 | bp97      | Sac R. @ Cypress Bdg        | İ     |                                         | 1        | 1        | 40       |
| 3/10/95 | 1830 | bp98      | Sac R. @ Old Ferry          |       | 1                                       | 1        | 1        | 48       |
| 3/10/95 | 1550 | bp99      | Sac R. @ Road a-8           |       |                                         |          | 1        | 54       |
| 3/10/95 | 1700 | bp107     | Sac R. @ Road a-9           |       | ·                                       | 1        |          | 136      |
| 3/10/95 | 800  | bp103     | Sac R. @ Shasta Dam         |       |                                         | 1        | 1        | 46       |
| 3/10/95 | 1230 | bp104     | Sac R. @ Balls Ferry Bdg    | 1     |                                         | 1        |          | 38       |
| 3/10/95 | 2230 | bp101     | Sacramento Slough           |       | 1                                       |          | 1        | 108      |

÷,

|         |      |           |                            | Total | Dis | Total |        | · ]      |
|---------|------|-----------|----------------------------|-------|-----|-------|--------|----------|
| Date    | Hour | Station # | Station Name               | Ag    | Ag  | Fe    | Dis Fe | Hardness |
| 3/10/95 |      | bp112     | Skag Slough                |       |     |       |        | 220      |
| 3/10/95 |      | bp113     | West Yolo bypass           |       |     |       |        | 62       |
| 3/11/95 | 1530 | bp110     | American River @ Sac State |       |     |       |        | 28       |
| 3/11/95 | 1200 | bp109     | Cache Creek 102            |       |     |       |        | 128      |
| 3/11/95 | 1200 | bp109     | Cache Creek 102            |       |     |       |        | 128      |
| 3/11/95 | 1630 | bp111     | Feather River @ Hwy 99     |       |     |       |        | 28       |
| 3/11/95 | 1300 | CF 800    | Greene's Landing           |       | 1   |       |        | 30       |
| 3/11/95 | 1500 | CF 801    | Mokelumne River            |       |     |       |        | 22       |
| 3/11/95 | 1500 | CF 801    | Mokelumne River            |       |     |       |        | 22       |
| 3/11/95 | 1600 | CF 802    | S.J. River @ Vernalis      |       |     |       |        | 114      |
| 3/13/95 | 1100 | CF 803    | Sutter Bypass              |       |     |       |        | 46       |
| 3/13/95 |      | bp117     | Sycamore                   |       |     |       |        | 128      |
| 3/14/95 |      | bp115     | Greene's Landing           |       |     |       |        | 30       |
| 3/21/95 | 1800 | CF 807    | Prospect Slough            |       |     |       |        | 56       |
| 3/22/95 | 1700 | CF 808    | Greene's Landing           |       |     |       |        | 56       |
| 3/22/95 | 1700 | CF 811    | Greene's Landing           |       |     |       |        | 56       |
| 3/22/95 | 1000 | CF 809    | Mokelumne River            |       |     |       |        | 36       |
| 3/22/95 | 1000 | CF 809    | Mokelumne River            |       |     |       |        | 36       |
| 3/22/95 | 1400 | CF 810    | S.J. River @ Vernalis      |       |     |       |        | 84       |

# **APPENDIX C:**

Quality Assurance/Quality Control Methods and Results

#### METHODS

#### METAL ANALYSES

*Field* The field portion of the QA program consisted of collecting blanks and field duplicates. Field blanks were collected to insure that samples were not contaminated by any aspect of the collecting procedure. A five gallon carboy of ultra pure water was brought to a field site. Water was pumped from the carboy following the same procedures which were used when a routine field sample was collected.

On 64 occasions duplicate water samples were collected from randomly selected sites to characterize field variability and the reproducibility of the measurements performed by the Trace Metal Laboratory and the Mussel Watch Laboratory. Field duplicates consisted of collecting two samples with a ten minute lapse between samples. This field duplicate collection method does not allow precision to be evaluated rigorously, for any observed variability could be a combination of inter-laboratory variability and real changes in the system during the ten minute lag in sample collection. Therefore, the measured variability could be considered a maximum with the true inter-laboratory precision being lower.

The laboratory component of the OA program was focused toward characterizing Laboratorv contamination of sampling equipment and assessing measures of precision and accuracy. Laboratory blanks were collected to insure that the sampling equipment was not contaminated. This procedure consisted of pumping ultra pure water (18 megaohm deionized) water through the peristaltic tubing and filter apparatus into an analysis bottle. Precision is a measure of the reproducibility of a test method when it is repeated under controlled conditions. As described in the QA/QC documents (Goetzl et al., 1994; 1995), precision was evaluated by two methods: (1) inter-laboratory analyses of field duplicates (see sample collection description above) between the Trace Metal Laboratory and Mussel Watch Laboratory, and 2) an intra-laboratory repeated analysis of the standard reference materials (SRMs) by the Mussel Watch Laboratory. The agreement between the amount of a component measured by the test method and the amount actually present is a measure of accuracy of the test method. To measure accuracy, one SRM was run for approximately every 25 samples analyzed. The standard reference materials used were Riverine Water SLRS-2 and SLRS-3 (for 1993-94 samples and 1994-95 samples, respectively) from the National Research Council of Canada. Certified values for the SRMs used in this study can be found in the QA/QC reports (Goetzl et al., 1994, 1995).

#### TOXICITY ASSESSMENT

Standard procedures were followed in all aspects of the toxicity assessment. Monthly reference toxicant tests, consisting of five to six known concentrations of NaCl in laboratory control water, were conducted for each species. Chronic  $LC_{50}$  and  $EC_{50}$  concentrations were calculated to ascertain changes in animal sensitivity throughout the time period of the study. A complete description of quality assurance measures can be found in the Delta Monitoring Quality Assurance Project Plans (Connor *et al.*, 1995; Nielsen *et al.*, 1995).

#### RESULTS

#### METAL ANALYSES

**Field** On nine occasions field blanks were collected; twice for dissolved metals and seven times for total recoverable metals (Table C-1). Contamination was negligible with no metals detected above 1  $\mu$ g/l. This finding is consistent with the minimal contamination reported when the technique was applied to quantify metal concentrations in Central Valley reservoir releases (Goetzl and Stephenson, 1993). Field duplicates were collected on 64 occasions with a resulting average difference between the two laboratories of 16% (Table C-2; Goetzl *et al.*, 1995). Differences between the two laboratories were found to be random, with neither laboratory consistently higher or lower than the other. This value incorporates both a measure of the ten minute lag in sample collection of the duplicates and inter-laboratory variability. Values not detected by either laboratory or very close to the detection limit (e.g., cutoff point at 5x the detection limit) were not included.

*Laboratory* Laboratory blanks were collected on 11 occasions with 65% of the individual metals data quantified as below the detection limits from the method (Table C-3). Contamination was negligible with only one metal detected above 1  $\mu$ g/l on one occasion when metals were detected in the laboratory blanks. These findings were consistent with those in Goetzl and Stephenson (1993), indicating the sampling gear was relatively free of metal contamination. Laboratory blanks were also collected to determine if filtration of samples prior to conducting toxicity tests resulted in contamination (Table C-4). Of three laboratory blanks tested for filtration effects, there was no consistent pattern of removal or contamination for the seven metals. Although 0.45  $\mu$ m filtration of field samples may have removed colloids and possibly resulted in sorption of metals on the membrane. Since filtration effects were not assessed for field samples, the concentrations reported for metals in this study are conservative estimates and may somewhat underestimate the actual values.

Intra-laboratory precision was assessed between five and 11 times depending on the metal. The average difference between the certified and mean detected values ranged from 2 to 20% (Goetzl *et al.*, 1994; 1995). All values were between the 99% confidence limits for the SRMs (Goetzl *et al.*, 1994; 1995). Inter-laboratory precision, which incorporated a measure of inter-laboratory and field variability, was shown to be within an average of 14% and 18% of each other for the 1993-94 and 1994-95 samples, respectively (Table C-2; Goetzl *et al.*, 1995). Values that were not detected by either lab or values that were very close to the detection limit (i.e., cutoff point at 5x the detection limit) were not included in the precision calculation. In addition, the calculation did not include values that differed between labs by a large amount (e.g., outliers). Those values were highlighted in the reports (Goetzl and Stephenson, 1993; Goetzl *et al.*, 1995). Single-laboratory precision was analyzed using the SRM SLRS-2 and SRM SLRS-3 for the 1993-94 and 1994-95 samples, respectively. All of the values for the elements were within the 99% confidence limits of the SRMs.

Approximately one standard reference material (SRMs) was analyzed for every 25 samples to address the accuracy of the evapoconcentration method. The SRM metal values were all greater than ten times the detectable limits with the exception of silver (1993-94 and 1994-95 samples) and lead (1994-95 samples) (Goetzl et al., 1994; 1995). All of the 1993-94 SRMs were within the warning limits, which are  $\pm 15\%$  greater than the 95% SRM confidence limits. All of the 1994-95 SRMs were within the warning limits, with the exception of lead. The SRM for lead used with the 1994-95 samples was considerably lower than the lead SRM used with the 1993-94 samples. The 1994-1995 value was very close to the detection limit, making it difficult to analyze. All values (in both years) were within the warning and control limits ( $\pm 20\%$  greater than the 95% SRM confidence limits) with the exception of lead. All but one lead SRM value in the 1994-95 document was between the warning and control limits. These results indicate, with few exceptions, a high level of accuracy and precision were associated with the evapoconcentration method utilized in this program. Analysis of SRMs can be used to describe the expected accuracy of field samples if the certified SRM values are similar to mean ambient metal concentrations. The certified SRM values in this study ranged from 31% to 99% lower than the mean metal concentrations measured in field samples collected from 1993 to 1995. Obtaining similar certified SRM values and mean field concentrations was inhibited by the nature of sampling which occurred over a wide spatial and temporal scale. This resulted in considerable spatial and temporal differences in metal concentrations over the course of the study.

## TOXICITY ASSESSMENT

Between test variability was assessed for this study with reference toxicant tests. USEPA (1994) recommends reference toxicant testing to ascertain whether changes in animal sensitivity occurred. Of particular interest are the detection of outlier values exceeding the upper or lower 95 percent confidence limits of the long term mean or of general trends in changing animal sensitivity. During the 1993-1994 phase of testing, neither were noted in the control charts of any of the test species (Deanovic et al., 1996). One outlier occurred in the LC<sub>50</sub> chart for Pimephales mortality. In this particular case, the fathead minnow was less sensitive to NaCl. All quality control measurements showed acceptable characteristics suggesting toxicity test data were reliable. One outlying value each occurred in the Ceriodaphnia reproduction and survival test, the Selenastrum and Pimephales growth assays, and the fish mortality data during the 1994-1995 phase of testing (Deanovic et al., 1998). The USEPA (1994) suggests one outlying value may be expected to occur by chance when 20 or more events are compared. Twenty-one to twenty-four data points were presented in the control charts, therefore, quality control measurements were acceptable and indicated the bioassay data were reliable. A more complete description of the Quality Assurance information for the toxicity studies can be found in the toxicity reports (Deanovic et al., 1996; 1998).

| Sample ID                 | Cu   | Zn    | Cr     | Pb   | Cd    | Ni   | As  |
|---------------------------|------|-------|--------|------|-------|------|-----|
| dissolved (cf630)         | <.04 | 0.04  | <.05   | <.01 | 0.011 | 0.25 |     |
| total recoverable (cf805) | <.04 | <.01  | · <.05 | <.01 | <.002 | <.02 |     |
| total recoverable (cf603) | 0.02 | 0.599 | 0.09   | <.01 | <.002 | 0.18 | <.1 |
| total recoverable (cf804) | <.04 | 0.01  | <.05   | <.02 | <.002 | <.02 |     |
| total recoverable (51)    | 0.16 | 0.16  | <.05   | <.01 | <.002 | <.02 |     |
| total recoverable (110)   | <.04 | 0.11  | <.05   | <.01 | 0.01  | <.02 |     |
| total recoverable (117)   | <.04 | 0.43  | <.05   | <.01 | 0.01  | 0.32 |     |
| total recoverable (481)   | <.04 | 0.24  | <.05   | <.01 | <.002 | <.02 |     |
| dissolved (cf105)         | 0.07 | 0.09  | 0.08   | <.01 | 0.003 | 0.1  |     |

Table C-1. Summary of field blanks (18 megaohm deionized water) run through field sampling equipment at various sampling sites. Values are expressed as  $\mu g/l$ . Sample sites are in parentheses.

ю

|                  | Metal Species |    |     |    |          |    |    |
|------------------|---------------|----|-----|----|----------|----|----|
| Station Code     | Cu            | Zn | Cr  | Pb | Cd       | Ni | As |
| 1994             |               |    |     |    |          |    |    |
| F9/F10 (TR)      | 10            | 2  | 1   | 13 | 5        | 11 |    |
| F2/F3 (D)        | 7             | 47 | 18  | 20 | 33       | 24 |    |
| 246/247 (TR)     | 12            | 15 | 29  | 10 | 16       | 10 |    |
| 270/271 (TR)     | 25            |    | _   |    | 32       |    |    |
| 272/273 (TR)     | 13            | 36 | 9   | 18 | 18       | 5  |    |
| 14CF/15CF (D)    | 6             | 37 | 5   | 67 | 17       | 10 |    |
| 21CF/22CF (D)    | 1             | 26 | 35  | 13 | 14       | 6  |    |
| 26CF/27CF (TR)   | 77            | 11 | 28  | 13 | 36       | 3  |    |
| 44CFA/44CFB (TR) | 1             | 1  | 15  | 2  | 13       | 6  |    |
| 48CFA/48CFB (TR) | 7             | 5  | 30. |    | 0        | 9  |    |
| 401/402 (D)      | 3             |    | 6   | 0  | 0        | 1  |    |
| 410/411 (TR)     |               | 23 | 57  | 73 | 50       |    |    |
| 425/426 (D)      | 30            | 23 |     |    |          |    |    |
| 30CFA/30CFB (D)  | 11            | 13 | 11  | 19 | 7        | 1  |    |
| 37CFA/37CFB (TR) | 24            | 18 | 7   | 12 | 0        | 11 |    |
| 25/25B (D)       | 1             |    | 28  | 67 | 0        | 29 |    |
| 30/30B (TR)      | 2             | 30 | 12  | 1  | 0        | 8  |    |
| 33/34 (D)        | 1             |    | 19  | 15 | 50       | 12 |    |
| 38/39 (TR)       | 14            |    | 2   | 7  | 14       | 11 |    |
| 44/45 (TR)       | 8             |    | 4   | 24 | 33       | 2  |    |
| 46A/46B (TR)     | 14            | 20 | 10  | 0  | 5        | 7  |    |
| 47A/47B (TR)     | 9             | 33 | 11  | 9  | <u> </u> | 13 |    |

Table C-2. Percent Difference Between Duplicate Analyses for Total Recoverable and Dissolved Concentrations of Seven Metals in Field Samples Collected from the Sacramento/San Joaquin Delta Estuary. (D) = dissolved; (TR) = total recoverable.

.

.

٠

.

Table C-2 (cont.). Percent Difference Between Duplicate Analyses for Total Recoverable and Dissolved Concentrations of Seven Metals in Field Samples Collected from the Sacramento/San Joaquin Delta Estuary. (D) = dissolved; (TR) = total recoverable.

|                  | Metal Species |     |     |    |    |      |                                       |
|------------------|---------------|-----|-----|----|----|------|---------------------------------------|
| Station Code     | Cu            | Zn  | Cr  | Pb | Cd | Ni   | As                                    |
| 48/49 (D)        | 6             | 27  | 0 . | 36 | 50 | 12   |                                       |
| 56/57 (TR)       | 9             | 27  | 5   | 41 | 10 | 1    |                                       |
| 58/59 (D)        | 3             | 4   | 10  | 28 | 20 | 1    |                                       |
| 65A/65B (TR)     | 3             | 41  | 1   | 7  | 0  | 3    |                                       |
| 71A/71B (TR)     | 24            | 21  | 8   | 16 | 0  | 6    |                                       |
| 77/78 (TR)       | 4             | 15  | 6   | 15 | 13 | 2    |                                       |
| 79/80 (D)        | 2             | 22  | 3   | 6  | 50 | 5    | х.<br>х                               |
| 91/92 (TR)       | 6             | 34  | 8   | 18 | 0  | 1    |                                       |
| 93/94 (D).       | 29            | 18  | 7   | 20 | 0  | 13   |                                       |
| 105A/105B (TR)   | 2             | 9   | . 3 | 23 | 23 | 2    |                                       |
| 106A/106B (TR)   | 4             | 6   | 6   | 26 | 0  | 10   |                                       |
| 111A/111B (TR)   | 4             | 24  | 7   | 20 | 12 | 5    |                                       |
| 113/113QC (TR)   | 6             | 6   | 8   | 24 | 8  | 4    |                                       |
| 121/121QC (D)    | 7.            | 4   | 1   | 5  | 26 | 9    |                                       |
| GL131/GL132 (D)  | 8             | 28  | -3  | 0  | 16 | 13   | · · · · · · · · · · · · · · · · · · · |
| 483/484 (D)      | 42            | 11  | 15  | 22 |    | 9    |                                       |
| 100CF/101CF (TR) | 2             | 18  | 23  | 0  | 18 | - 19 |                                       |
| 102CF/103CF (D)  | 2             | 27  | 15  | 7  | 0  | 19   |                                       |
| CF106/CF107 (TR) | 3             | 8   | 14  | 29 | 6  | 19   |                                       |
| CF108/CF109 (D)  | 2             | 16  | 22  | 8  | 19 | 28   |                                       |
| bpl (TR)         | 9             | . 4 | 5   | 14 | 10 | 4    | 45                                    |
| bp3/bp32 (TR)    | 5             | 8   | 3   | 8  | 14 | 11   | 35                                    |

Table C-2 (cont.). Percent Difference Between Duplicate Analyses for Total Recoverable and Dissolved Concentrations of Seven Metals in Field Samples Collected from the Sacramento/San Joaquin Delta Estuary. (D) = dissolved; (TR) = total recoverable.

.

.

.

.

|                    | Metal Species |    |    |    |    |    |    |
|--------------------|---------------|----|----|----|----|----|----|
| Station Code       | Cu            | Zn | Cr | Pb | Cd | Ni | As |
| bp10/bp11 (TR)     | 11            | 14 | 12 | 13 | 18 | 21 | 20 |
| bp15/bp16 (TR)     | 15            | 20 | 14 | 21 | 9  | 13 | 15 |
| 112cf (TR)         | 11            | 26 | 11 | 15 | 28 | 22 | 6  |
| 541 (TR)           | 15            | 36 | 11 | 16 | 50 | 20 | 14 |
| 380/381 (TR)       | 1             | 27 | 1  | 4  | 23 | 18 | 20 |
| aa25a/aa25b (D)    | 9             | 2  | 31 | 0  | 53 | 6  | 25 |
| aa26a/aa26b (TR)   | 7             | 16 | 21 | 17 | 8  | 7  | 21 |
| bp51 (TR)          | 20            | 0  | 1  | 22 | 8  | 18 |    |
| bp54 (TR)          | 24            | 18 | 11 | 31 | 9  | 2  |    |
| bp61/bp62 (TR)     | 13            | 1  | 2  | 41 | 3  | 5  |    |
| bp63/bp64 (D)      | 32            | 31 | 5  | 47 | 15 | 43 |    |
| cf604/cf605 (TR)   | 4             | 28 | 2  | 34 | 12 | 6  |    |
| cf624a/cf624b (D)  | 18            | 24 | 9  | 44 | 14 | 20 |    |
| cf701A/cf701B (TR) | 18            | 21 | 12 | 40 | 30 | 12 |    |
| cf702A/cf702B (D)  | 2             | 12 | 3  | 38 | 40 | 4  |    |
| bp102 (TR)         | 5             | 20 | 24 | 10 | 30 | 19 |    |
| bp106 (TR)         | 12            | 20 | 26 | 7  | 15 | 22 |    |
| bp109 (TR)         | 14            | 15 | 14 | 4  | 37 | 0  |    |
| cf801 (TR)         | 10            | 61 | 38 | 32 | 50 | 54 |    |
| cf809 (TR)         | 10            | 27 | 7  | 32 | 12 | 30 |    |
| Mean % Difference  | 10            | 19 | 13 | 20 | 17 | 11 | 31 |
| SD                 | 9             | 13 | 12 | 17 | 16 | 11 | 11 |

Mean % Difference WY94 = 14%; Mean % Difference WY95 = 18%; Overall Mean% Difference WY94 & WY95 = 16%

| Sample ID                 | Cu   | Zn   | Cr   | Pb     | Cd    | Ni   | As    |
|---------------------------|------|------|------|--------|-------|------|-------|
| total recoverable (bp7)   | <.04 | 0.05 | <.05 | <.01   | <.002 | 0.02 | <.03  |
| total recoverable (bp32)  | 0.13 | 0.22 | <.05 | 0.03   | 0.002 | 0.04 | <.03  |
| total recoverable (bp26)  | <.04 | 0.04 | <.05 | . <.01 | <.002 | <.02 | 0.12  |
| dissolved (cf628)         | <.04 | 0.39 | <.05 | <.01   | 0.009 | 0.24 |       |
| total recoverable (50)    | < 04 | 0.14 | <.05 | <.01   | <.002 | <.02 |       |
| total recoverable (cf607) | 0.18 | 1.81 | 0.2  | <.01   | 0.008 | 0.91 |       |
| total recoverable (62)    | <.04 | <.01 | <.05 | <.01   | <.002 | <.02 |       |
| total recoverable (cf804) | <.04 | <.01 | <.05 | <.01   | <.002 | <.02 |       |
| total recoverable (116)   | 0.14 | 0.03 | <.05 | 0.01   | <.002 | <.02 |       |
| total recoverable (480)   | <.04 | 0.08 | <.05 | <.01   | <.002 | <.02 | · · · |
| dissolved (cf104)         | <.04 | <.01 | 0.08 | <.01   | 0.005 | <.02 |       |

Table C-3. Summary of laboratory blanks (18 megaohm deionized water) run through field sampling equipment. Values are expressed as  $\mu g/l$ . Sample numbers are in parentheses.

| #            | Cu   | Zn   | Cr | Pb   | Cd    | Ni   | As   |
|--------------|------|------|----|------|-------|------|------|
| 1 Unfiltered | 0.09 | 0.2  | nd | nd   | nd    | nd   | 0.18 |
| 1 Filtered   | 0.06 | 0.36 | nd | nd   | nd    | nd   | 0.18 |
| 2 Unfiltered | nd   | 0.08 | nd | nd   | 0.01  | 0.11 | 0.14 |
| 2 Filtered   | 0.02 | 0.28 | nd | 0.06 | nd    | nd   | nd   |
| 3 Unfiltered | nd   | 0.84 | nd | nd   | 0.009 | nd   |      |
| 3 Filtered   | nd   | 0.26 | nd | nd   | nd    | nd   |      |

Table C-4. Summary of toxicity study blanks (deionized water) analyzed to assess potential addition of metals via filtration. Filtered treatments were passed through a through 0.45  $\mu$ m filter. Values are expressed as  $\mu$ g/l. nd = non-detect

.

.

é

## APPENDIX D

J

.

•

-

## **Metals Source Pilot Study**

#### INTRODUCTION

÷

Water samples were collected for a one-time pilot study during a major storm event in March 1995 to assess the relative metal load contribution from sources upstream of the Delta, primarily in the Sacramento River Watershed. The study was designed to assess metal loads, therefore only total recoverable concentrations were quantified. No toxicity samples were collected and the lack of dissolved metals analyses prohibited an assessment of water quality objective exceedances. Although the objective of the pilot study was to track sources of metals during a high flow event, the data could not be used to quantify the load contribution from mines in the area of Lake Shasta and Keswick Reservoir because discharges from the reservoirs were maintained at low levels to minimize downstream flooding. This resulted in samples downstream of the reservoirs which were negligibly affected by runoff from this mining region.

#### MATERIALS AND METHODS

Sample collection and metal analyses followed the ultra-clean methods described in the main body of this report. Load calculations were point estimates because samples were only collected once. Loads were calculated by simply multiplying the total recoverable metal concentrations by flow measurements.

#### Sample Locations

A special study was undertaken from 10 March to 13 March 1995 to track sources of metals into the Delta. Samples were collected from 22 stations including nine Sacramento River stations downstream of Shasta Dam, four western valley drainages (i.e., Cottonwood Creek, Putah Creek, Cache Creek, and Skag Slough), four major river inputs (i.e., Feather, American, Mokelumne, and San Joaquin), and the Yolo and Sutter Bypass (Fig. D-1; Table D-1).

#### RESULTS

#### HYDROLOGICAL CONDITIONS

The samples were collected during the largest storm of the year when combined outflows from the basin peaked on 13 March at 297,000 CFS (Fig. D-2). Discharges from Shasta Dam were maintained at low levels during this special study (e.g., 2,300 CFS on 10 March), to minimize downstream flooding. Peak releases of approximately 68,000 CFS from Shasta Dam did not occur until 17 March (Markham *et al.*, 1996). This was also true for Keswick Reservoir which had a mean daily release of 16,100 CFS on 10 March and did not reach the peak release for WY95 of 74,800 until 17 March (Markham *et al.*, 1996). Therefore, potentially substantial metal loading, especially of cadmium, copper, and zinc, from historic mines above Shasta Dam and from the historic mines which drain into Keswick Reservoir would not have been represented in the Sacramento River for this study.

Results from this study characterize a temporal period when the basin is rapidly filling with water (Table D-2). Flows were low on the Sacramento River from Shasta Dam and Keswick Dam but increased downstream and peaked at 129,000 CFS at the Ord Ferry Bridge. The majority of river volume originated between Bend Bridge (Site 6) and Woodsen Bridge (Site 8). Sources of water in this region include several undammed creeks such as Spring (near the town of Bend), Willow, Reeds, Red Bank, Elder, Paynes, Antelope, and Mill (Table D-2). Over approximately the next 80 river miles flows decreased reaching 42,000 CFS at the City of Colusa where a weir diverts water into the Sutter Bypass. The decrease in volume from Ord Ferry to Colusa is primarily accounted for by the timing of sample collection; the pulse of water at Ord Ferry had not yet reached the Colusa site.

### METAL CONCENTRATIONS

Both metal concentrations and flow estimates are need to calculate loads. A description of metal concentrations is provided below to provide a picture, independent of flow, of the total concentration of each metal from each sampling location. The following section then combines the concentration data with flow measurements to provide an estimate of loads.

The highest total recoverable metal concentrations in the upper Sacramento River Watershed were seen in Cottonwood Creek approximately four miles upstream of the confluence with the Sacramento River. (Table D-2; Figs. D-3 to D-8). Montoya and Pan (1992) was the only reference found which indicates historic mineral activity in this watershed. Chromium was extracted from the Round Bottom mine while gold was mined from the Midas mine site. Trace metal analyses were performed on one sample collected downstream from each mine in July 1989 when flows ranged from a slow seep to less than two liters per minute (Montoya and Pan, 1992). Total concentrations of cadmium, chromium, and nickel in the Round Bottom sample were 1.2, 16, and 54  $\mu$ g/l, respectively (Montoya and Pan, 1992). Only trace concentrations of arsenic were detected at the Midas Mine (Montoya and Pan, 1992). By comparison, total recoverable cadmium, chromium, and nickel concentrations measured near the confluence of Cottonwood Creek and the Sacramento River in this study were 0.35, 150, 211  $\mu$ g/l. However there is not enough information in the literature to definitively identify the mines as the source of the high metal concentrations. Increased drainage from the mine(s) and erosion of metal rich geological deposits are other potential sources of metal enrichment measured during this storm event.

Concentrations decreased from the confluence of Cottonwood Creek and the Sacramento River to the Bend Bridge station, with an associated increased river volume (Figs. D-3 to D-8). However, concentrations increased again at Road a-8 which is near the input of many of the undammed creeks mentioned above. These data indicate the undammed creeks may be an important source of metal enrichment in the river during high flows. Concentrations of all metals measured except nickel decreased downstream from Road a-8 then increased again at the Colusa Bridge station where values were close to the those at Road a-8. This again points to undammed creeks, such as Deer and Big Chico, as potential sources for metal enrichment.

Other studies reported unknown sources of metals upstream of Sacramento were responsible for increased metal concentrations in the lower Sacramento River (Larry Walker & Associates, 1997; Alpers, written comm.; Foe and Croyle, 1998). Larry Walker & Associates (1997) reported the largest loads of mercury in the Sacramento River occurred during storm events and originated from above the Feather River. Alpers (written comm.) conducted a metals transport study during both wet and dry weather and consistently noted an increase in mercury load in the Sacramento River between Redding and Colusa. Increased loads of other metals, such as lead and copper, were noted for the Sacramento River between Keswick Dam and Bend Bridge (Charlie Alpers, written comm.). However, neither study identified the source(s). In addition, it is not clear from these studies if other metals are enriched along this stretch of river. To address this question, one must compare the results of this study with those of Foe and Croyle (1998). Samples for both studies were collected at the same time for the metals source components. Mercury followed the same pattern in upper Sacramento River, with enrichment between Bend Bridge and Ord Ferry (Foe and Croyle, 1998). Detailed follow-up studies are needed to identify the major source(s) of these metals along this stretch of river.

During high flow conditions, a weir is opened on the Sacramento River near the Colusa station. River water enters the Sutter Bypass which eventually drains into the Yolo Bypass. Samples collected from the Sutter Bypass downstream of the Colusa station had greatly reduced metal concentrations, suggesting a dilution effect or settling (Table D-2; Figs. D-9 to D-14). However, Sacramento Slough which runs parallel to the Bypass had concentrations as high as those measured in Cottonwood Creek. Both the Sutter Bypass and Sacramento Slough are not well mixed at the sample stations during high flow events and can contain water from the Sacramento River, the Colusa Basin Drain, and several small creeks and sloughs. The complex hydrology in the Sutter Bypass and Sacramento Slough during high flows makes interpretation of metal concentrations at these stations difficult.

Several stations which discharge into the Yolo Bypass, and eventually the north Delta, were monitored for total recoverable metals. Cache Creek was sampled a short distance upstream of where it discharges into the Bypass. Concentrations of all metals were 150% to approximately 300% higher than at Cottonwood Creek (Table D-2; Figs. D-9 to D-14). Concentrations in Putah Creek prior to discharging into the Bypass were much higher than most main river stations. The west and east side of the Yolo Bypass was monitored near Interstate 80 in the region receiving water from Cache Creek, Putah Creek, Colusa Basin Drain, the Sacramento River, and the Sutter Bypass. Concentrations on the east side were consistently higher than those on the west side, indicating the Bypass is not well mixed during such high flow events. Concentrations on the east side were by far the highest concentrations measured during this survey.

One station was selected to quantify metal concentrations entering the Delta from the San Joaquin River. Metal concentrations in the San Joaquin River at Vernalis were moderately high when compared to those in the upper Sacramento River and Yolo Bypass (Table D-2; Figs. D-9 to D-14).

The pattern of total recoverable metal concentrations was quite different in the lower Sacramento River. The Feather and American Rivers are the primary tributaries which enter the Sacramento River in the lower watershed. Metal concentrations in the Feather and American Rivers were much lower than the upper Sacramento River (Table D-2; Figs. D-9 to D-14). Water from the Sacramento River above the Feather and American Rivers begins to enter the Yolo Bypass when flows exceed 60,000 CFS. All additional water in the river is diverted into the Bypass when flows reach 100,000 CFS. The combined discharges of the Feather and American River was approximately 112,000 CFS on 11 March. Therefore, most of the water reaching Greene's Landing during this study is expected to have come from these two watersheds while most water in the upper Sacramento River would flow into the Bypass. For reasons which are unclear, metal concentrations at Greene's Landing were greater than those in the Feather and American Rivers. Possible explanations include, but are not limited to, a sediment bedload source during high flows, urban runoff from storm drains in Sacramento and West Sacramento, and/or municipal sewage treatment plants along the Sacramento River, although municipal sources were unlikely to be of sufficient magnitude.

### METAL LOADS

Load calculations were point estimates for the load tracking study because a one time analysis of metals was performed at each station.

Overall conclusions for load estimates in this study may be limited or incomplete due to the lack of measured flows at several stations. In addition, flows out of Shasta Dam and Keswick Reservoir were maintained at low levels during the storm event which resulted in an incomplete description of metal loading from mines which drain into these two water bodies. However, similar patterns determined for the metal analysis component of the source study emerged when metal loads were assessed. A significant sources of metal load to the upper Sacramento River during the storm was Cottonwood Creek (Table D-2; Figs. D-3 to D-8). Additional significant sources of metal loads entered the river between Bend Bridge and the Ord Ferry Road Bridge, again pointing toward undammed creeks as sources along this stretch of river. Cache Creek contributed significant loads to the lower stretches of the watershed (Table D-2; Figs. D-9 to D-14). In fact, Cache Creek loads exceeded those of Cottonwood Creek. These results confirm that Cache Creek is a major source of metals during high flow years. Although metal concentrations in Putah Creek were among the highest measured in the study, loads were relatively low due to low flows when compared to other stations. Many of the load estimates measured during the short sampling period for the metal source study exceeded the average daily loads entering the Delta during WY95 (Table 57 & 59). Data obtained from this study indicate major storm events can contribute significant metal loads to the river. However, stations monitored for the metals source study did not provide an assessment of metal loads in the entire Sacramento River Watershed because samples were not collected from sites where metal loads are most heavily influenced by upstream sources of metals such as historic base-metal mining. Additional studies should be performed to identify sources of loads between Bend Bridge and the Ord Ferry Road Bridge. In addition, this study should be repeated over a wider temporal period, should include flow

measurements at all stations to better characterize loads into the system, and incorporate stations which would permit a characterization of metal loading from mining activities.

### SUMMARY OF RECOMMENDATIONS

2

1. Repeat the metals source study on the Sacramento River from Shasta Dam to Greene's Landing and the Yolo Bypass during major rain events to better characterize metal and sediment loads in the system. Incorporate flow measurements at all stations where such studies are performed to permit calculations of loads. In addition, apply more rigorous load calculation methods such as those in Cohn *et al.*, (1989). Measurements of dissolved metals should be incorporated into future studies in this region to permit an assessment of compliance with water quality objectives. Furthermore, a toxicity assessment should be incorporated into the overall study design.

2. Conduct a special study on the Sacramento River downstream from the Bend River Bridge to the Ord Ferry Bridge during major storm events to characterize the sources of increased flows, metal concentrations, and loads. Monitoring should include stations in undammed creeks including Spring (near the town of Bend), Reeds, Red Bank, Elder, Paynes, Antelope, and Mill. Dissolved metal concentrations should be measured as well to permit an assessment of water quality objective exceedances. Load calculations should follow current methods which are more rigorous than those applied in this report.

3. Conduct a special study on the Sacramento River downstream from County Road A-8 to Colusa during major storm events to characterize sources of enriched metal concentrations along this stretch of the Sacramento River. Samples should be collected from Big Chico and Mill Creeks which are sources of water to the river in this area. Dissolved metal concentrations should be measured as well to permit an assessment of water quality objective exceedances.

4. Additional studies should be performed during high flow years when the Yolo Bypass is operational to better characterize the source(s) of elevated metal concentrations at Greene's Landing reported in this study when compared to concentrations in the American and Feather River.

## **DESCRIPTION OF SAMPLING LOCATIONS**

Sacramento River @ Shasta Dam (site 1): Sample collected from east bank below Shasta Dam at Powerhouse.

Sacramento River @ Cypress Bridge (site 2): Sample collected in mid channel from Cypress Avenue bridge.

Little Cow Creek (site 3): Sample collected from mid channel off the Dersch Road Bridge outside of Anderson.

Sacramento River @ Balls Ferry (site 4): Sample collected in mid channel from Balls Ferry Road bridge.

<u>Cottonwood Creek (site 5)</u>: Sample collected in mid channel off HWY 5 frontage road bridge about one mile south of the town of Cottonwood.

Sacramento River @ Bend (site 6): Sample collected in mid channel from Bend bridge Park.

Sacramento River @ Road a-8 (site 7): Sample collected in mid channel off County Road A8 bridge near Tehema and the Mills Creek Recreation Area.

<u>Sacramento River @ Road a-9 (site 8)</u>: Sample collected in mid channel from South Avenue bridge at Woodson State Recreation Area.

Sacramento River @ Ord Ferry (site 9): Sample collected in mid channel from Ord Ferry Road bridge.

Sacramento River @ Colusa (site 10): Sample collected on west side of channel off River Road bridge.

<u>Sutter Bypass (site 11)</u>: Sample collected about one third of way across Bypass on north side of channel off HWY 113 bridge.

Sacramento Slough (site 12): Sampled from the Reclamation District pumphouse at Karnack.

**Feather River (site 13)**: Sample collected by wading off intersection of Garden Highway and Lee Road.

American River (site 14): American River sample collected in mid channel off bridge at Sacramento State University in the City of Sacramento.

| Site Name                 | Date Sampled |
|---------------------------|--------------|
| American R. Sac State     | 3/11/95      |
| Cache Creek @ Road 102    | 3/11/95      |
| Cache Creek @ Road 102    | 3/11/95      |
| Cottonwood Creek          | 3/10/95      |
| Cottonwood Creek          | 3/10/95      |
| East Yolo bypass          | 3/10/95      |
| Feather R. @ Highway 99   | 3/11/95      |
| Little Cow Cr. Dersch Br. | 3/10/95      |
| Little Cow Cr. Dersch Br. | 3/10/95      |
| Mokelumne River           | 3/11/95      |
| Mokelumne River           | 3/11/95      |
| Putah Creek @ Mace Blvd.  | 3/10/95      |
| Sac R. @ Shasta Dam       | 3/10/95      |
| Sac R. @ Balls Ferry Br.  | 3/10/95      |
| Sac R. @ Bend Bridge      | 3/10/95      |
| Sac R. @ Colusa Bridge    | 3/10/95      |
| Sac R. @ Cypress Bridge   | 3/10/95      |
| Sac R. @ Ord Ferry        | 3/10/95      |
| Sac R. @ Road a-8         | 3/10/95      |
| Sac R. @ Road a-9         | 3/10/95      |
| Sacramento Slough         | 3/10/95      |
| Skag Slough               | 3/10/95      |
| Sutter Bypass             | 3/13/95      |
| S.J. River @ Vernalis     | 3/11/95      |
| West Yolo Bypass          | 3/10/95      |

Table D-1. Sites and Dates of Sampling for the Metals Source Study

¢,

|         |      |           |                               |            | Total Cu | Cu Load  | Total Zn | Zn Load  | Total Cr | Cr Load  |
|---------|------|-----------|-------------------------------|------------|----------|----------|----------|----------|----------|----------|
| Date    | Hour | Station # | Station Name                  | Flow (cfs) | (μg/l)   | (kg)     | (µg/l)   | (kg)     | (µg/l)   | (kg)     |
| 3/10/95 | 800  | bp103     | Sac. River @ Shasta Dam       | 2300       | 1.23     | 6.92     | 4.6      | 25.87    | 1.44     | 8.10     |
| 3/10/95 | 1000 | bp97      | Sac. River @ Cypress Br.      | 18000      | 8.23     | 362.20   | 18.7     | 822.99   | 2.03     | 89.34    |
| 3/10/95 | 1115 | bp106     | Little Cow Creek @ Dersch Br. | 10000      | 12.4     | 303.18   | 33       | 806.85   | 7.39     | 180.56   |
| 3/10/95 | 1230 | bp104     | Sac. River @ Balls Ferry Br.  |            | 10.7     |          | 29.6     |          | 6.5      |          |
| 3/10/95 | 1330 | bp102     | Cottonwood Creek              | 21000      | 92.4     | 4744.28  | 170      | 8728.65  | 150      | 7701.75  |
| 3/10/95 | 1430 | bp105     | Sac. River @ Bend Br.         | 67000      | 28.8     | 4717.87  | 68.8     | 11270.47 | 39.6     | 6487.07  |
| 3/10/95 | 1550 | bp99      | Sac. River @ Road a-8         |            | 70.4     |          | 157      |          | 150      |          |
| 3/10/95 | 1700 | bp107     | Sac. River @ Road a-9         | 102000     | 56.6     | 14115.47 | 134      | 33418.26 | 99.6     | 24839.24 |
| 3/10/95 | 1830 | bp98      | Sac. River @ Ord Ferry        | 129000     | 46.8     | 14760.95 | 97.2     | 30657.37 | 75.7     | 23876.16 |
| 3/10/95 | 2000 | bp100     | Sac. River @ Colusa Br.       | 42000      | 58.1     | 5966.29  | 129      | 13247.01 | 94.8     | 9735.01  |
| 3/11/95 | 1630 | bp111     | Feather R. Highway 99         | 34500      | 4.54     | 382.96   | 6.29     | 530.58   | 3.14     | 264.87   |
| 3/11/95 | 1530 | bp110     | American R. @ Sac. State      | 77800      | 1.15     | 218.75   | 3.87     | 736.16   | 1.28     | 243.48   |
| 3/11/95 | 1300 | CF 800    | Sac. River @ Greene's Landing | 99000      | 8.6      | 2081.67  | 19.8     | 4792.69  | 13.8     | 3340.36  |
| 3/11/95 | 1500 | CF 801    | Mokelumne River               |            | 4.55     |          | 11.19    |          | 3.14     |          |
| 3/13/95 | 1100 | CF 803    | Sutter Bypass                 |            | 12       |          | 24.8     |          | 17.6     |          |
| 3/10/95 | 2230 | bp101     | Sacramento Slough             |            | 73.2     |          | 173      |          | 122      |          |
| 3/11/95 | 1200 | bp109     | Cache Creek @ Road 102        | 17500      | 140.5    | 6011.64  | 288.5    | 12344.19 | 291      | 12451.16 |
| 3/10/95 | 1240 | bp108     | Putah Creek @ Mace Blvd.      | 682        | 76.9     | 128.23   | 253      | 421.87   | 98.4     | 164.08   |
| 3/10/95 |      | bp114     | East Yolo Bypass              |            | 121      |          | 333      |          | 303      |          |
| 3/10/95 |      | bp113     | West Yolo Bypass              |            | 43       |          | 144      |          | 90       |          |
| 3/10/95 |      | bp112     | Skag Slough                   |            | 5.22     |          | 15.3     |          | 4.82     |          |
| 3/11/95 | 1600 | CF 802    | Vernalis                      | 7830       | 34.1     | 652.82   | 107      | 2048.45  | 69.1     | 1322.87  |

~

Table D-2. Total recoverable metal concentrations, metal loads, and flows in the Sacramento River Watershed during the largest storm event of the year in March 1995.

10

.

.

.

| Date    | Hour | Station # | Station Name                  | Flow<br>(cfs) | Total Pb<br>(µg/l) | Pb Load<br>(kg) | Total Cd<br>(µg/l) | Cd Load<br>(kg) | Total Ni<br>(µg/l) | Ni Load<br>(kg) |
|---------|------|-----------|-------------------------------|---------------|--------------------|-----------------|--------------------|-----------------|--------------------|-----------------|
| 3/10/95 | 800  | bp103     | Sac. River @ Shasta Dam       | 2300          | 2.68               | 15.07           | 0.026              | 0.15            | 2.36               | 13.27           |
| 3/10/95 | 1000 | bp97      | Sac. River @ Cypress Br.      | 18000         | 0.83               | 36.53           | 0.11               | 4.84            | 2.3                | 101.22          |
| 3/10/95 | 1115 | bp106     | Little Cow Creek @ Dersch Br. | 10000         | 6.9                | 168.71          | 0.114              | 2.79            | 7.09               | 173.35          |
| 3/10/95 | 1230 | bp104     | Sac. River @ Balls Ferry Br.  |               | 4.32               |                 | 0.154              |                 | 7.41               |                 |
| 3/10/95 | 1330 | bp102     | Cottonwood Creek              | 21000         | 19.9               | 1021.77         | 0.353              | 18.12           | 211                | 10833.80        |
| 3/10/95 | 1430 | bp105     | Sac. River @ Bend Br.         | 67000         | 7.68               | 1258.10         | 0.2                | 32.76           | 52                 | 8518.38         |
| 3/10/95 | 1550 | bp99      | Sac. River @ Road a-8         |               | 15.7               |                 | 0.371              |                 | 492                |                 |
| 3/10/95 | 1700 | bp107     | Sac. River @ Road a-9         | 102000        | 12.9               | 3217.13         | 0.377              | 94.02           | 112                | 27931.68        |
| 3/10/95 | 1830 | bp98      | Sac. River @ Ord Ferry        | 129000        | 10.2               | 3217.13         | 0.296              | 93.36           | 251                | 79166.66        |
| 3/10/95 | 2000 | bp100     | Sac. River @ Colusa Br.       | 42000         | 12.1               | 1242.55         | 0.409              | 42.00           | 266                | 27315.54        |
| 3/11/95 | 1630 | bp111     | Feather R. Highway 99         | 34500         | 0.72               | 60.73           | 0.026              | 2.19            | 4.06               | 342.47          |
| 3/11/95 | 1530 | bp110     | American R. @ Sac. State      | 77800         | 0.44               | 83.70           | 0.017              | 3.23            | 2.17               | 412.78          |
| 3/11/95 | 1300 | CF 800    | Sac. River @ Greene's Landing | 99000         | 3.04               | 735.85          | 0.16               | 38.73           | 13.2               | 3195.13         |
| 3/11/95 | 1500 | CF 801    | Mokelumne River               |               | 3.93               |                 | 0.05               |                 | 4.17               |                 |
| 3/13/95 | 1100 | CF 803    | Sutter Bypass                 |               | 4.88               |                 | 0.068              |                 | 20.4               |                 |
| 3/10/95 | 2230 | bp101     | Sacramento Slough             |               | 17.5               |                 | 0.433              |                 | 120                |                 |
| 3/11/95 | 1200 | bp109     | Cache Creek @ Road 102        | 17500         | 30.6               | 1309.30         | 0.403              | 17.24           | 652                | 27897.45        |
| 3/10/95 | 1240 | bp108     | Putah Creek @ Mace Blvd.      | 682           | 28                 | 46.69           | 0.47               | 0.78            | 88.1               | 146.91          |
| 3/10/95 |      | bp114     | East Yolo Bypass              |               | 33.3               |                 | 0.438              |                 | 600                |                 |
| 3/10/95 |      | bp113     | West Yolo Bypass              |               | 15.6               |                 | 0.311              |                 | 165                |                 |
| 3/10/95 |      | bp112     | Skag Slough                   |               | 4.66               |                 | 0.057              |                 | 14.1               |                 |
| 3/11/95 | 1600 | CF 802    | Vernalis                      | 7830          | 17.6               | 336.94          | 0.169              | 3.24            | 128                | 2450.48         |

Table D-2 (cont). Total recoverable metal concentrations, metal loads, and flows in the Sacramento River Watershed during the largest storm event of the year in March 1995.

÷.

Ð



Figure D-1. Map of the Sacramento River Watershed and its major tributaries. Numbers refer to sample stations described in Appendix A.



Figure D-2. Precipitation and flow pattern in the Sacramento Basin during the winter and spring of 1995. Arrow indicates sampling for the metals source study.



Figure D-2. Precipitation and flow pattern in the Sacramento Basin during the winter and spring of 1995. Arrow indicates sampling for the metals source study.

,



Figure D-3. Schematic of copper loads, total recoverable concentrations, and water flow in the upper Sacramento River during the largest storm event of the year in March 1995. Small circles with numbers represent stations described in Appendix A. Results suggest an unknown riverine cadmium source between Bend (site 6) and Woodson Bridge (site 8).



Figure D-4. Schematic of zinc loads, total recoverable concentrations, and water flow in the upper Sacramento River during the largest storm event of the year in March 1995. Small circles with numbers represent stations described in Appendix A. Results suggest an unknown riverine cadmium source between Bend (site 6) and Woodson Bridge (site 8).



Figure D-5. Schematic of chromium loads, total recoverable concentrations, and water flow in the upper Sacramento River during the largest storm event of the year in March 1995. Small circles with numbers represent stations described in Appendix A. Results suggest an unknown riverine cadmium source between Bend (site 6) and Woodson Bridge (site 8).



Figure D-6. Schematic of lead loads, total recoverable concentrations, and water flow in the upper Sacramento River during the largest storm event of the year in March 1995. Small circles with numbers represent stations described in Appendix A. Results suggest an unknown riverine cadmium source between Bend (site 6) and Woodson Bridge (site 8).



Figure D-7. Schematic of cadmium loads, total recoverable concentrations, and water flow in the upper Sacramento River during the largest storm event of the year in March 1995. Small circles with numbers represent stations described in Appendix A. Results suggest an unknown riverine cadmium source between Bend (site 6) and Woodson Bridge (site 8).



c

Figure D-8. Schematic of nickel loads, total recoverable concentrations, and water flow in the upper Sacramento River during the largest storm event of the year in March 1995. Small circles with numbers represent stations described in Appendix A. Results suggest an unknown riverine cadmium source between Bend (site 6) and Woodson Bridge (site 8).



¢

Figure D-9. Schematic of copper loads, total recoverable concentrations, and water flow in the lower Sacramento River during the largest storm event of the year in March 1995. Small circles with numbers represent stations described in Appendix A. Results suggest enrichment of cadmium at Cache Creek (site 16), Putah Creek (site 17), and the Sacramento River at Greene's Landing (site 15).



Figure D-10. Schematic of zinc loads, total recoverable concentrations, and water flow in the lower Sacramento River during the largest storm event of the year in March 1995. Small circles with numbers represent stations described in Appendix A. Results suggest enrichment of cadmium at Cache Creek (site 16), Putah Creek (site 17), and the Sacramento River at Greene's Landing (site 15).

. . .


e

Figure D-11. Schematic of chromium loads, total recoverable concentrations, and water flow in the lower Sacramento River during the largest storm event of the year in March 1995. Small circles with numbers represent stations described in Appendix A. Results suggest enrichment of cadmium at Cache Creek (site 16), Putah Creek (site 17), and the Sacramento River at Greene's Landing (site 15).



Figure D-12. Schematic of lead loads, total recoverable concentrations, and water flow in the lower Sacramento River during the largest storm event of the year in March 1995. Small circles with numbers represent stations described in Appendix A. Results suggest enrichment of cadmium at Cache Creek (site 16), Putah Creek (site 17), and the Sacramento River at Greene's Landing (site 15).



e

Figure D-13. Schematic of cadmium loads, total recoverable concentrations, and water flow in the lower Sacramento River during the largest storm event of the year in March 1995. Small circles with numbers represent stations described in Appendix A. Results suggest enrichment of cadmium at Cache Creek (site 16), Putah Creek (site 17), and the Sacramento River at Greene's Landing (site 15).



Figure D-14. Schematic of nickel loads, total recoverable concentrations, and water flow in the lower Sacramento River during the largest storm event of the year in March 1995. Small circles with numbers represent stations described in Appendix A. Results suggest enrichment of cadmium at Cache Creek (site 16), Putah Creek (site 17), and the Sacramento River at Greene's Landing (site 15).