Trans. Am. Fist. Soc 99:70-73 (1970)
 Mississippi Silversides, Menidia audens (Atherinidae), Established in California:

S. F. Соок, Jr.
Deportment of Zoology, University oj Culiornik, Dusk

R. L. Moore

Department of Fish and Game, Ferry Building. Shes Francisco, Culijonin

Abstract

it Menidia athens were introduced into Upper atm lower Blue Takes and in Clear Take, Lake County, during the fall of 1967 , is a result of previous study indicating a high potential for this species as a biological control agent for aquatic midges. and as a forage species far came fishes. Although the species has not as yet been recovered from Upper Blue Lake, it is doing well in Lower Blue Lake, and has already become a prithomisam component of the fish fan na of Clear Lake.

intronciction

For better and for worse, the State of California has long been the recipient of alien fish introductions. Indeed, introduced species comprise about one-half of the total species represented in the fresh waters of this state: The Mississippi silverside, Menidia auden Hay, is the most recent species to join this growing list of piscine immigrants. Under the direct supervision of the senior author: this species was introduced into Blue Lakes and Clear Lake, Lake County, in the fall of 1967. as an outgrowth of a program concerned with the biological control of the Clear Lake "gnat," Chaoborus astictopus, a pestiferous chaoborid midge associated with this body of water: The program, then under the sponsorship of the Lake County Mosquito Abatement District, was ultimately directed toward three ecologically related goals: gnat reduction: planktonic algae reduction, and sport fishery enhancement. Although it appeared from the onset that complete "control" of either the midges of algae was highly unlikely by biological means, nor perhaps desirable from a bio. logical standpoint. any significant reduction in population levels of these organisms rabat perhaps alleviate the problems from an economic standpoint. Were this possible with a

[^0]minimum of risk to the sport fishing interests, perhaps it would also relieve the compulsive tendency of some to resolve all such problems with chemical pesticides.

prefintroduction background

Mach of the background information acquizzed relative to this project has been reported elsewhere (Cook, 1962, 106\% 1965: 1967: 1968: Cook and Moore, 1966; Conk el al. 1064. Briefly, the most important considerations to arise from the studies that preceded the ultimate selection of candidate fish species were. first, the need for species generally adapted to an open-water fie., pelagic, limnetic i existence: it is from this area in lakes and reservoirs that most "nus. sane:" midges and planktonic algae develop. Secondly; they should be highly prolific with a rapid rate of development. Third, they should form a natural extension to the pro-fundal-limnelic food web either as gnat and algae consumers or competitors for nutrient energy (Cook: 1068). In addition they should be well adapted to the environmental conc:lions of Clear Lake, and they must be compartible with existing sport fishing ane ichhyolowical interests.

Four species were ultimately selected for intensive study in escape prosit experimental patios, spatially constructed for this purpose in Cake County. Besides Memidia, attention was also focused ion the brook silverside,

erinidae),

in Cear Lake, Lake 1 high potential for ge species for game se Lake, it-is doing it of the fish fauna
sport fishing interests, relieve the compulsive solve all such problems j.

in background

ound information acproject has been rek, 1962, 1964, 1965, Moore, 1966; Cook et : most important conrom the studies that: selection of candidate ; the need for species an open-water (i.e., sence; it is from this tvoirs that most "nui. nktonic algae develop. se highly prolific with opment. Third, they extension to the proeb either as gnat and mpetitors for nutrient n addition, they should environmental condiid they must be com.
sport fishing and
Itimately selected for pe-proof experimental icted for this purpose es Menidia, attention the brook silverside:

Labidesthes sicculus, the threadfin shad, Dorosoma petencase, and the white litss, Roccus ($=$ Morone) chrysops. Results of experimental pond studies have heen reported elsewhere (Cook, 1906; Ciok and Maore. 1966).

Results of these studies superiniposed upon what is known of fish/midge relationships elsewhere indicated an assemblage of species might lest serve the interests of this program. In order to evaluate this hypothesis, however: it was necessary to put the program to test in a larger and more natural environment. Consequently, a formal request was directed th the California Fish and Game Commission for authorization to introduce Menidia, along with the threadfin shad and white bass into Upper and Lower Blue Lakes, Lake County. Both of these small natural lakes lie directly in the Clear Lake watershed. Permission was granted for the introduction of Menidiat in August, 1967, while the introduction of the other two species was denied until such time that their impact upon the sport fishery could be more thoroughly investigated. None of these species was then extant within the Clear Lake watershed, while the introduction of Menidia represented its initial release into California waters.

STOCKING RESLILTS

Although the numbers of Menizia stocked were not individually counted. it was estimated that approximately 6000 fish were put into Upper Blue Lake, and about 3000 in both Lower Blue Lake and Clear Iake. All the fish were young-ofthe-year in a size ranee of $50-$ 70 mm . Several plantings were made in Blue Lakes during September, 1967. while those stocked into Clear Lake were roleasel in earm October of that year.

Upper Blue Lake is a faity dec] $150-55 \mathrm{ft}$ maximuml lake of 105 surface acres. formed in a steep-sided cangoin with a unilom sharp drop-off to deep water. Since there is a very narrow littoral zone; it is clifficult to seine. Attempts to seine this lake duriby the early part of the summer of 106% produced no Menidia. Also, no sibeersides were seen during many hours of ohservation with face mask and smorkle.

On the other hand, Menidia seem to be doing well in Lower Blue Lake, as they were taken commonly during the summer of 1966. Although seining in this shallow ($15-20 \mathrm{ft}$) 50 acre lake is not much easier than its upstream sister lake, several dozen were taken in individual seine hauls from this body of water during this time.

On 23 July 1.968, 5 young-of-the-year Mendia were seined off the eastern shore of Clear Lake. The fish were recovered from a single seine haul by Mr. Rion Carrett while collecting fish for pesticidel residue analyses in conjunction with a study emanating from the University of California at Davis on the western grebe. Because of the potential significance of this introduction to the grebe populations, a more intensive sampling program was initiated as a corollary to this study to determine the extent to which Mississippi silversides had established in Clark Lake.

The introduction of these fish into Clear Lake was an afterthought, done without the afficial endorsement of the Galifornin Department of Fish and Game. Neverthelcss; the recovery of Menidia from Clear Lake came as a complete surpise. Clear Lake has a surface area of 42,000 acres with over 75 miles of shoreline. It seemed incredible that the introduction of approximately 3000 of these fish into a lake this size could produce recoverable numbers of progeny in less than one vear.

Although accurate records are not available on exactly "where, when, and how many Menidia were introduced into Clear lake, it is known that they were introduced in late Sep. Lember or early October, i967, in at least three localities in the main body of the lake: the southwestern and northwestern "cormers:" and on the eastern shore near the point of initial recovery. These were boung-of-the-year fish similar to those stocked into Blue Lakes.

On 4 September 1068, two more scine hauls were taken from the beach of original discovery. These yjelded 203 and 305 silversides. On 5 September, six more hals were taken along a 6 -mile stretch of the eastern shore; these contained Mendia in numbers ranging from 5 individuals to an estimated 2500 in one sample. Using a $75 \mathrm{ft} \times 4 \mathrm{ft}$ seine with $1 / 4$-inch mesh. Mr. Carrott deseribed this large haul as
containing a solicl mass of Menidia 4-5 ft \times 8 -10 inches $\times 6$ inches deep!

On the basis of this information, it appeared. that the species was well established along the eastern shore of Clear Lake. The next step was to determine the extent to which they were distributed throughout the lake as a whole.

On 18-10 September 1968, an attempt was made to sample strategic points around the entire 75 miles circumference of Clear Lake: This sampling indicated the presence of silversides the entire length of Clear Lake, although at no locality' were they found in large numbers. They were, however, taken in 75% of the seine hauls, and were the most albundant species taken during the two days of sampling. In view of this, and the numbers taken subsequently:(through March, 1969), there appears little doubt that Menidia auderis is now well established throughout Clear Lake.

DISCUSSION

Although not a great deal is known of the biology of Menidia audens, studies in recent years have contributed substantially to this, knowledge (Riggs and Bonn, 1959) : Saunders. 1959; Mense, 10671. With this information superimposed upon the observations made in conjunction with this study, it may be possible to suggest some explanation for the rapid irruption of these fish in Clear Lake and what might be anticipated from their establishment.

According to Mense (op. cil.), Menidia commence to spawn in Lake Texoma in late March or early April and continue to spawn at least through mid-July. . Small fish could be taken from this lake, however, throughout the summer, and no completely spent female was ever collected. The mean number of mature egigs per female was determined to be 98%. with a range from 3841-1600.

Judging from the appearance of free-swim: ming fry in Lake County experimental ponds. spawning commenced about the same time here as in Lake Texoma. Small fry, however, were noted as late as mid-September. In any: case, both observations indicate a very high reproductive potential for this speries. It was suspected that emly season progeny may have reached sexual maturity during the same season they were spawned. If this were the case,
it is possible that some of those fish introduced into Clear lake lad time to spawn sucressfully before the onset of winter, thereby increasing the reproductive slock for the next year. Several fish examined from those seined on 5 September 1960° appeared to contain ripe ova.

Ironically, no Wcnidia have as yet been recovered from Lipper Blue Lake where the largest numbers were introduced, although they have been taken from adjacent Lower Blue Lake where they appear to be doing well. They may, of course, have lrecome established in the upper lake and not been recovered as yel. Nevertheless, in view of their irruplion in Lower. Blue Lake and in Clear Lake, one would expect some recovery if they were present in comparable numbers.

Differences in predation pressure is one explanation that could acenunt for the apparent failure of Menidia to take hold in Upper Blue Lake. Although there are no inflow streams of significance for the natural reproduction of trout, this lake is capable of maintaining a sizeable population of annually stocked "catchalale-size" rainbow trout. while the other two lakes are not. These fish are restricted during the sumnier to a narrow stratum of water below the warm epilimnion and above the anoxic hypolimnion. In this zone there is little natural food except the zooplankton and chaoborid midge larve. As the surface waters cool in the fall, the trout are able to move upward and are frequently seen feeding at the surface. They could at this time make serious inroards in a recently introduced population of small Meridia audens. Also, it is at this lime of year that the typically wammater piscivores in these lakes are slowing down their fond intake.

Athough Eipper: Blue Lake is different in many respects from the other two lakes of concern here, it is more difficult to reconcile the apparent failure of Menidia to establish in this lake on the basis of any other of these differences. Although Lower Blue. Lake and Clear Lake are richer and more productive than Lipper Blue Take, this bony of water would have be be chassified as no less than "mesolrophic" in its nutricat output. At least from what is known of the feeding habits of

Menidia, Upper Blue maintain a fair popt (Saunders, 1059).

To what degree sih grated from Lipper Bl Lake, and perhaps fre is unknown. It is pos reproductive stock in mented by some of t duced into Blue Lakes.

Prior to the recent, Clear Lake, it was felt could not be expected. the gnat and algae pro Lake. Perhaps it can manner in which this "taking off" in Clear encouragernent. The 1 a forage fish for exi fisheries in Californi mized- These small a acteristics that should desirable in this resp shad. Clear Lake has forage species for ma some previous opinion do not serve this funct expected. According Mense (1967), the 1 one of the most impo: piscivorous fishes inh. surface waters of Lake ing to contemplate ho dance of forage will aff sport fishes of Clear Li

ACKNOWL
The authors wish gratitude the coopera Department of Fish
ome of those fish introduced d time to spawn successfully f winter, thereby increasing tock for the next year. Seved from those seined on 3 appeared to contain ripe

Menidia have as yet been pper Blue Lake where the were introduced, although aken from adjacent Lower rey appear to be doing well. se, have become established and not been recovered as in view of their irruption in and in Clear Lake, one, recovery if they were pres. numbers.
predation pressure is one sould account for the apenidia to take hold in Upper ugh there are no inflow ance for the natural reprois lake is capable of main. s population of annually -size". rainbow trout, while s are not. These fish are the summer to a narrow eelow the warm epilimnion oxic hypolimnion. In this \geq natural food except the haoborid midge larve. As cool in the fall, the trout spward and are frequently se surface. They could at ious inroads in a recently ution of small Menidia : at this time of year that water piscivores in these lown their food intake.
Blue Lake is different in in the other two lakes of more difficult to reconcile e of Menidia to establish basis of any other of these agh Lower Blue Lake and sher and more productive Lake, this body of wate: classified as no less than is nutrient output. At least in of the feeding halits of

Menidia, Upper Blue Lake should be able to maintain a fair population of this species (Saunders, 1959).

To what degree silversides may have emi. grated from Cpper Blue Lake to Lower Blue Lake, and perhaps from there to Clear Lake is unknown. It is possible, however, that the reproductive stock in Clear Lake was aus. mented by some of those individuals introduced into Blue Lakes.

Prior to the recent discovery of Menidia in Clear Lake, it was felt that this species alone could not be expected to alleviate significantly the gnat and algae problems inherent in Clear Lake. Perhaps it can not. Nevertheless, the manner in which this species appears to be "taking off" in Clear Lake offers unexected. encouragement. The potential of Menidia as a forage fish for existing and future sport fisheries in California should not be minimized. These small atherinids possess characteristics that should make them even more desirable in this respect than the threadfin shad. Clear Lake has been in need of such a forage species for many years; contrary to some previous opinion: the native erprinids do not serve this function as well as might be expected. According to data presented by Mense (1967), the Mississippi silverside is one of the most important forage species for piscivorous fishes inhabiting the littoral and surface waters of Lake Texoma. It is interesting to contemplate how a year-round abundance of forage will affect the more pistivnotus sport fishes of Clear Lake.

ACKNOWLEDCMENTS

The authors wish to acknowledge with gratitude the cooperation of the California Department of Fish and Game during the
course of these investigations. Also, the Oklahoma Fisheries Research Lab and Department of Wildife Conservation, and the Ohio Division of Wildlife, were most coopera. tive in the procurement of experimental fishes. We are further indebted to S. G. Herman, R. L. Garrett, and R. I. Rudd, University of Colifornia, Davis, for their interest and cooperation during the latter phases of this work. We also extend our thanks to Dr. R. L. Rudd for his review of the manuscript.

Literature cited

Cook, S. F., Jr. 1962. Feeding studies of the deneus catfish, Corydoris aeneus, on aquatic midges. J, Econ. Entomol. 55: 1.55-157. 1904. The potential of two native california fishes in the biolocical control of chironomid midges (Diptera: Chirmomidat). Mosquito News 24: 332-333.

- - 1065. The Clear Late anat: Its control, past, prestrit, and fuate California Vector Views 12: 43-18.
————195\%. The increasing chaoborid inidge problem in California. Galifornia Vector Views 14: 39-44.
-1208. The potential role of fishery management in the reduction of chanborid midge papula. lions and water quality abhancement. California Veetor Vicws 15: 63-70.
——avd R. L. Monze. 1066 . Population fluctuations of threadfin shad, Clear Lake gnat larvae. and plankion in a Lake County farm pand 1961-1065. Proc. California Mosquito Control Assoc. 33: 60-61.
- R. L. Moore. and J. D. Conners. 1964. The impact of the fishery upon the midge popula. tions of Clear Lake, Lake County, California, Annals Entomol: Soc. Amer. 57: 701-707.
Mrives, J. B. 1967. Ecolady of the Mississippi silversides, Wenidion audens Hay, in Lake Tex. ama, Oklahoma Fishery Res. Lalu., Bull. 6: 1-32.
Ricics, C. D., and E. W. Bronn. 1959 . An annotated list of the fishes of Lake Texoma. Oklahoma and Texas. Southwest Naturilist 1: 157-168.
Salnoters, R. 1 . 1959 . A study of the food of the Mississippi silversides. Menidik autens Hay, in Lake Texoma. M.S. Thesis, University of Okia. homa, Norman, 42 pp. iunpuhlished).

[^0]: ${ }^{1}$ This work was supported in part by a research contract (14-16-0008-881) from the Bureau of Sport Fisheries and Wildlife, R. I.. Rudd, Principal Investgator.

