RWQCB -Santa Ana Region 8 2002 Water Quality Assessment- Data Analyses Notes

4. Chino Creek:

Santa Ana Region 8 .01 WQA/303 D List Update Supporting Data Chino Creek 0735 Page

- Beneficial Uses: REC1, REC2, WARM, LWRM, WILD, RARE
- <u>Hydrologic Unit:</u> 801.21
- Total Water Body Size: 2 miles
- <u>Size Impaired:</u> Unknown at this time
- Extent of Impairment: Unknown at this time
- Data Analyses:
 - Orange County Water District Data:
 - Reach 1 0/1 exceeded the "Avg CTR Contin. Conc. (4-day avg)" Arsenic standard of 150 ug/L
 - Reach 1 0/1 exceeded the "Avg CTR Contin. Conc. (4-day avg)" Cadmium standard of 2.4 ug/L
 - Reach 1 0/1 exceeded the "Avg CTR Contin. Conc. (4-day avg)" Lead standard of 2.8 ug/L
 - Reach 1 0/1 exceeded the "Avg CTR Contin. Conc. (4-day avg)" Copper standard of 9.7 ug/L
 - Reach 1 0/1 exceeded the Cal EPA Tox Rule Criteria Max. Conc. 1 hr Avg nickel standard of 430 ug/L (Based on hardness = 92.6)
 - Reach 1 0/1 exceeded the Cal EPA Tox Rule Criteria Max. Conc. 1 hr Avg nickel standard of 950 ug/L (Based on hardness = 235)
 - Reach 1 0/1 exceeded the Cal EPA Tox Rule Criteria Max. Conc. 1 hr Avg nickel standard of 950 ug/L (Based on hardness = 234)
 - Reach 1 0/1 exceeded the Cal EPA Tox Rule Criteria Max. Conc. 1 hr Avg nickel standard of 910 ug/L (Based on hardness = 220)
 - Reach 1 0/1 exceeded the Cal EPA Tox Rule Criteria Max. Conc. 1 hr Avg nickel standard of 510 ug/L (Based on hardness = 113)
 - Reach 1 0/1 exceeded the Cal EPA Tox Rule Criteria Max. Conc. 1 hr Avg cadmium standard of 3.8 ug/L (Based on hardness = 92.6)
 - Reach 1 0/1 exceeded the Cal EPA Tox Rule Criteria Max.
 Conc. 1 hr Avg cadmium standard of 11 ug/L (Based on hardness = 235)
 - > Reach 1 0/1 exceeded the Cal EPA Tox Rule Criteria Max.
 - Conc. 1 hr Avg cadmium standard of 11 ug/L (Based on hardness = 234)

Chiho Creek

RWQCB -Santa Ana Region 8 2002 Water Quality Assessment- Data Analyses Notes Santa Ana Region 8 2001 WQA/303 D List Update Supporting Data Chino Creek Page 2 OF **3** 5

- Reach 1 0/1 exceeded the Cal EPA Tox Rule Criteria Max.
 Conc. 1 hr Avg cadmium standard of 10 ug/L (Based on hardness = 220)
- Reach 1 0/1 exceeded the Cal EPA Tox Rule Criteria Max. Conc. 1 hr Avg cadmium standard of 4.7 ug/L (Based on hardness = 113)
- Reach 1 0/1 exceeded the Cal EPA Tox Rule Criteria Max. Conc. 1 hr Avg lead standard of 58 ug/L (Based on hardness = 92.6)
- Reach 1 0/1 exceeded the Cal EPA Tox Rule Criteria Max. Conc. 1 hr Avg lead standard of 160 ug/L (Based on hardness = 235)
- Reach 1 0/1 exceeded the Cal EPA Tox Rule Criteria Max. Conc. 1 hr Avg lead standard of 160 ug/L (Based on hardness = 234)
- Reach 1 0/1 exceeded the Cal EPA Tox Rule Criteria Max. Conc. 1 hr Avg lead standard of 150 ug/L (Based on hardness = 220)
- Reach 1 0/1 exceeded the Cal EPA Tox Rule Criteria Max. Conc. 1 hr Avg lead standard of 72 ug/L (Based on hardness = 113)
- Potential Sources: Unknown at this time
- <u>Recommendation:</u> More monitoring due to not enough data points available per parameter to reach a conclusion for impairment and insufficient data to back up results.
- TMDL Priority: None at this time
- TMDL Start Date: Not applicable at this time
- <u>TMDL End Date</u>: Not applicable at this time

Santa Ana Region 8 2001 WQA/303 D List Update Supporting Data Chino Creek Page 3 of § 5

			Pa	ge 3 of
StationName	ParamName	Result_Val	SampDate	SampTime
CK-CHINO-01	Arsenic	2.2	7/28/97	11:35
CK-CHINO-01	Cadmium	0.1	7/28/97	11:35
CK-CHINO-01	Copper	3.2	7/28/97	11:35
CK-CHINO-01	Lead	0.1	7/28/97	11:35
CK-CHINO-03	Arsenic	4.2	8/25/97	14:25
CK-CHINO-03	Arsenic	4.4	8/17/98;	12:30
CK-CHINO-03	Arsenic	4.5	8/23/99	10:30
CK-CHINO-03	Arsenic	5.3	8/22/00	11:40
CK-CHINO-03	Arsenic	1.4	11/14/00	9:50
CK-CHINO-03	Cadmium	0.1	8/25/97	14:25
CK-CHINO-03	Cadmium	0.1	8/17/98	12:30
CK-CHINO-03	Cadmium	0.1	8/23/99	10:30
CK-CHINO-03	Cadmium	0.1	8/22/00	11:40
CK-CHINO-03	Cadmium	0.1	11/14/00	9:50
CK-CHINO-03	Copper	12	8/25/97	14:25
CK-CHINO-03	Copper	5.8	8/17/98	12:30
CK-CHINO-03	Copper	5.2	8/23/99	10:30
CK-CHINO-03	Copper	8.4	8/22/00	11:40
CK-CHINO-03	Copper	3.9	11/14/00	9:50
CK-CHINO-03	Lead	0.1	8/25/97	14:25
CK-CHINO-03	Lead	0.1	8/17/98	12:30
CK-CHINO-03	Lead	0.1	8/23/99	10:30
CK-CHINO-03	Lead	0.1	8/22/00	11:40
CK-CHINO-03	Lead	0.1	11/14/00	9:50
CK-CHINO-03	Nickel	0.1	8/25/97	14:25
CK-CHINO-03	Nickel	31	8/17/98	12:30
CK-CHINO-03	Nickel	3.1	8/23/99	10:30
CK-CHINO-03	Nickel	3.9	8/22/00	11:40
CK-CHINO-03	Nickel	0.1	11/14/00	9:50
			· ·	l
	2	¥ n	•	اب ـ
				1
		, , ,		
þ	•			- J
þ	27			ر
þ		· ·		1
i			10 M m	· · ·
N	ł			
;	·		·	j

o Creek

Otiorv2

Page 1

Santa Ana Region 8 2001 WQA/303 D List Update Supporting Data Chino Creek Page 4 of 5

ORGANICS

-						
=	SampDate	SampTime	ParamName	Result_T	ParamType	ParamGrp
	8/5/97	10:40	Bromodichloromethane	1.5	ORGANIC	601602
	8/13/97	10:15	Bromodichloromethane	1.4	ORGANIC	601602
	8/25/97	14:25	Bromodichloromethane	1.4	ORGANIC	502
	- 8/25/97	14:25	Dibromochloromethane	1.2	ORGANIC	502
	11/12/97	10:45	Bromodichloromethane	3.3	ORGANIC	601602
	2/17/98	14:15	Bromodichloromethane	12.2	ORGANIC	502
	2/17/98	14:15	Dibromochloromethane	2.0	ORGANIC	502
	5/18/98	12:00	Bromodichloromethane	2.9	ORGANIC	524
	5/18/98	12:00	Dibromochloromethane	1.0	ORGANIC	524
	8/17/98	12:30	Bromodichloromethane	3.5	ORGANIC	601602
	11/17/98	12:20	Bromodichloromethane	6.1 ·	ORGANIC	601602
	2/8/99	10:40	Bromodichloromethane	4.9	ORGANIC	524
	2/8/99	10:40	Dibromochloromethane	1.6	ORGANIC	524
	5/17/99	10:15	Bromodichloromethane	5.9	ORGANIC	524
	5/17/99	10:15	Dibromochloromethane	2.0	ORGANIC	524
	8/23/99	10:30	Bromodichloromethane	6.9	ORGANIC	601602
	8/23/99	10:30	Dibromochloromethane	2.6	ORGANIC	601602
	11/16/99	9:55	Bromochloromethane	1.3	ORGANIC	524
	11/16/99	9:55	Bromodichloromethane	6.8	ORGANIC	524
	11/16/99	9:55	Dibromochloromethane	3.3	ORGANIC	524
	2/22/00	9:00	Bromodichloromethane	2.3	ORGANIC	524
	2/22/00	9:00	Dibromochloromethane	0.7	ORGANIC	524
	5/16/00	9:25	Bromodichloromethane	6.7	ORGANIC	524
	5/16/00	9:25	Dibromochloromethane	2.2	ORGANIC	524
	8/22/00	11:40	Bromodichloromethane	6.7	ORGANIC	524
	8/22/00	11:40	Dibromochloromethane	1.9	ORGANIC	524
•	11/14/00	9:50	Bromodichloromethane	2.4	ORGANIC	524

Wednesday, October 10, 2001

Page 1 of 3

Santa Ana Region 8 2001 WQA/303 D List Update Supporting Data Chino Creek Page 5 of 5

۰.

ORGANIC

	11/14/00
StationName	

CK-CHINO-07

SampDate	Samp	Time	ParamName	Result_T	ParamType	ParamGrp
10/3/97	13:15 Dibromochloromethane		0.6	ORGANIC	502	

9:50 Dibromochloromethane 0.9

LCG Chino Creek @ Pine Ave. 10/15/93 Arrived at site: 1:50 pim. Took samples @ 1:55 pim. Foam evident downstream of culvert Odornoted after sample collected - smelled like "cow" - after sampling was completed, we saw manure trucks travelling down Pihe Ave, Make copy, Could not check pH per Put one in mino Cl. file an in Millie, o pH: 7.9 EC: 810 400 Mill Creek @ Chino-Corona Rd. 2;30 p.m. Arrived at site! Heavier -bam noted, especially between rocks Took sample @ 2:30 pimi pH: 10,3 EC: 780 yT Tec: 271 °C

This sampling was initiated because heavy toom was noted during the 10/12/93 & 10/13/93 Prado sampling. The toan was thick and heavy downstream of a "water-fall" created by a weir just downstream of the U.S.G.S. gaging station. The foam was reminiscient of what occurs at a treatment plant, so we sa had the samples analyzed for coliform and streptococcus. The foam could be evident of effluent from either treatment plant effluent or dairy waste water,

10/15/

.

LCG

10/15/93

On 10/13, DCB drove around the Chino area to look at waterbodies upstream of the dam for evidence of toam. He noted foan at Chino Creek @ Pine Ave. and Mill Creek @ Chino-Corona Rdi

On 10/15 DAB and I drove to the two areas where foan had been spotted. At the Chino Cki site, the foam was fairly light but noticeable downstream of the understreet conduit. At the Mill Ck. site, the toan was heavier and was building up between rocks, again downstream of the conduit. The sites were sampled and analyzed for BOD, COD, nutrie-ts, coliform, and streptococcus, · · ·

--

 4066
 E. Mission Blvd., Pomona, CA 91766

 Tel: (909) 622-5148
 Fax: (909) 622-3199

Submitted to:

CRWQCB: Santa Ana Region Attention: Nancy Olson-Martin 2010 Iowa Avenue, Suite 100 Riverside, CA 92507 Tel: (909)782-4130 Fax: (909)781-6288

Analysis of Water

APCL Analytical Report

Service ID #: 801-934411 Collected by: Linda Garcia Collected on: 10/15/93 Sample description: Water Samples

Project: Chino/Mill Ck. Sampling

Received : 10/15/93 Tested : 10/16-25/93 Reported : 10/27/93

Page 1 of 1

801-934411

				Con	centration
				LCG-CMC-01/02	LCG-CMC-03/04
Component Analyzed	Method	\mathbf{Unit}	\mathbf{PQL}	Chino Ck@Pine	Mill Ck@Chino-Corona
				93-4411-1/3	93-4411-2/4
Biological Oxygen Demand (BOD)	405.1	mgO_2/L	10	N.D.	N.D.
Chemical Oxygen Demand (COD)	410.1	mgO_2/L	10	47	N.D.
Orthophosphate, Phosphorus	365.2/365.	mg/L	0.01	2.67	0.52
Total Phosphorus, Phosphorus	365.2/365.	mg/L	0.01	2.75	0.62
Total Kjeldahl Nitrogen (TKN)	351.3	mg/L	0.05	0.92	1.53
Ammonia Nitrogen (NH ₃)	350.2	mg/L	0.05	0.24	0.31
Organic Nitrogen	Calc	mg/L	0.05	0.68	1.22
Nitrate Nitrogen (N-NO $\overline{3}$)	353.3	mg/L	0.01	7.27	9.24
Nitrite Nitrogen (N-NO $_2^-$)	354.1	mg/L	0.01	0.06	0.11
Coliform, total, 5 tubes	SM9221B	MPN/100mL	2	240	500
Coliform, fecal, 5 tubes	SM9221C	MPN/100mL	2	240	500
Enterococci	SM9221C	MPN/gram	·2	40	50

PQL : Practical Quantitation Limit

SM : Standard Methods for Examination of Water and Waste Water, 17th edition.

N.D.: Not Detected or less than the quantitation limit.

Note : Microbiological analyses subcontracted to Silliker Laboratories.

Respectfully submitted,

del. 6

Shu-Teh Pan Lab Manager Applied P & Ch Laboratory

	oplied P & (6 E. Mission Blvd., Po (909) 622-5148 Fa	<u>h Labo</u> mona CA 9 c: (909) 622-	<u>pratory</u> 1766 3199	Sub	ocontract Chain	of Cu Please	ISTODY Print in pen of
TO: SUINE Taba	ratorys	Conta	ict Mr	1:50	Tel: 510)637-71-2Fax	::()	
Address 1/ 29 F /	DOMERQUES	, City	Corse	3n	State Cyp Zip	code	
APCL Project Title/Code		Samp	ler		Sample disposition: Date	Clie	ent; APCL
Bill to (if different from above)			-		P.C).#	
Due date []regular []rush		Clier	it signature		Dat	te	
Sample Description	Date Time Collected	Matrix	Pres. Y/N	Filtered Y/N	Analysis items	Remark	APCL Lab-ID
	10-15.92 3:30		[·			Υ.	ittert!
LCG CMC-01				· (· · ·	Fotal Coli. Facel-Co	FF	4411
					Facal STREP		, , , , , , , , , , , , , , , , , , , ,
LCG. CMC 03	7		ļ		total Colin facul Ch	*=	44.11
					Facel STREP	<u> </u>	
		<u> </u>		<u> </u>	· · · · · · · · · · · · · · · · · · ·	↓ /	
			<u> </u>	``		¥	
		·		· · · · · · · · · · · · · · · · · · ·			
					1	<u> </u>	
		<u> </u>				+	
						1	
		······	1				
			1				
						T	
•							
				 	[
Sample Conditions: Seal 🗌 Int	act 🗌 Broken 🗌 N	lone; Temp	erature C	old 🗌 Room	; Other		
Relinquished by APC	<u>ζ</u> Date/		15-93	Received	by Hlberto FDat	e/Time <u>(</u> 0	<u>-15-93 5</u>
Relinquished by	Date/	Time		Received	by 'Dat	e/Time	
Relinquished by	Date/	Time		Received	by Dat	e/Time]
Relinquished by	Date/	Time		Received	by Dat	e/Time	

``..

PETE WILSON, Governor

CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD

ANTA ANA REGION 010 IOWA AVENUE, SUITE 100 IVERSIDE, CA 92507-2409 HONE: (714) 782-4130 AX: (714) 781-8288

CHAIN OF CUSTODY RECORD Data 10/15/83 Page _1 of

LABORATORY		میں ہوتی ہی اور ایک ایک ایک میں ہوتی ہیں ہے۔ ایک 25 میں ایک		PROJE	CT MAN	AGER	Gar	-cia	الاستاني خوندر بين من المراجع المراجع المراجع المراجع				
SECTION	Planaica			- PHONE NUMBER (9009) - 782-4469									
PROJECT NAM	AE TRANSPORT		nal P	BAMPL	EAS: (8)	gnature)	_ <u></u> (2100	3.1				
Chino/Mill Ck. Sampling					1/2	Care	14 4	1) Singe	Usta c.	1			
BAMPLE NUMBER	LOCATION DESCRIPTION	DATE	TIME	8A WA Comp.	MPLE TY TER Grab	AIR	BOLID	NO. OF CNTNR8		TESTS REQUIRED			
CG-CMC-OI	Chirock. @ P.Le	10/15/9:	1:5500					. 1	Total col Fergi	i, tecal coli diop			
G-CMC-02	Chiho Ck. C. P.ho.	10/15/93	LEEpan					1.	P.C. CaD	Nettile tos			
S-CMC-03	Mill CL. @ Chino-Corona	101:593	1:30-1.t.		V			I,	Total coll, Fleur chi Fecul trep				
26-CMC-04	Mill Chiedin Coron	10/15/93	:2:30,~		/			-1	Corrig C C	D. Mitich: #			
	· · · · · · · · · · · · · · · · · · ·							·		·			
						-							
Relinquished b	2 ancia 3,3	0,0,2	Fleceived by:	(Signature) 7	-	46	471'	~/~	Date/Time			
Relinguished b	y: (Signature)	:	Fléceived by:	(Ślgnature)	· · · · · · · · · · · · · · · · · · ·				Date/Time			
Relinguished b	y: (Signature)		Received by (Signature)	Mobile Lai	boratory	lor field a	inalysia:			Date/Time			
Dispatched by: (Signature) Disto/Time				Received	for Labo	ratory by	<i>r</i> :	·····		Date/Time			
Mathod of Ship	ment			L									
Boecial Instruct	lone:	ldre l ;	1 4		1	7				TASK CODE			
<u> </u>	-plas must for TH	rior a ip	inor f	n Una	<u>"1751-</u>	<	······································			ESTIMATED COST			

4066 E. Mission Blvd., Pomona, CA 91766

Tel: (909) 622-5148 Fax: (909) 622-3199

APCL Analytical Report

Submitted to: CRWQCB: Santa Ana Region Attention: Nancy Olson-Martin 2010 Iowa Avenue, Suite 100 Riverside, CA 92507 Tel: (909)782-4130 Fax: (909)781-6288

Analysis of Water

Service ID #: 801-934364 Collected by: Linda Garcia Collected off: 10/13/93 Sample description: Received : 10/13/93 Tested : 10/13-22/93 Reported : 10/26/93

Water from SAR @ Prado Dam & @ "Waterfall" Project: Prado Sampling (Planning)

801-934364 Page 1 of 1

				Conce	ntration
Component Analyzed	Method	Unit	PQL	LCG-SAR-19/20 93-4364-1/3	$\begin{array}{r} \text{1tration} \\ \text{LCG-SAR-21/22} \\ \hline 33.4364-2/4 \\ \hline \\ \geq 1600 \\ \geq 1600 \\ \geq 1600 \\ \text{N.D.} \\ 24 \\ 0.99 \\ 1.02 \\ 6.4 \\ 0.09 \\ 1.16 \\ 0.12 \\ 1.04 \\ \hline \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$
Coliform, total, 5 tubes	SM9221B	MPN/100mL	2	_	≥1600
Coliform, fecal, 5 tubes	SM9221C	MPN/100mL	2	· _	≥1600
Fecal Streptococci	SM9221C	MPN/100mL	2	<u> </u>	≥1600
Biological Oxygen Demand (BOD)	405.1	mgO_2/L	10	N.D.	N.D.
Chemical Oxygen Demand (COD)	410.1	mgO_2/L	10	N.D.	24
Nutrients		•		•	
Orthophosphate, Phosphorus	365.2/365.	mg/L	0.01	1.03	0.99
Total Phosphorus, Phosphorus	365.2/365.	mg/L	0.01	1.06	1.02
Nitrate Nitrogen (N-NO3)	353.3	mg/L	0.01	5.4	6.4
Nitrite Nitrogen $(N-NO_2)$	354.1	mg/L	0.01	0.09	0.09
Total Kjeldahl Nitrogen (TKN)	351.3	mg/L	0.05	1.30	1.16
Ammonia Nitrogen (NH3)	350.2	mg/L	0.05	0.27	0.12
Organic Nitrogen	Calc	mg/L	0.05	1.03	1.04
General Minerals					
Alkalinity	310.1	mg/L	1	223	— .
Bicarbonate	SM2330B	mg/L	1	272	
Calcium, Ca	215.1/7140	mg/L	0.05	86.9	-
Carbonate	SM2330B	mg/L	1	N.D.	—
Chloride Cl	325.3	mg/L	1	127	
Copper, Cu	220.1/7210	mg/L	0.02	0.06	_
Electric conductivity	120.1	$\mu S/cm$	± 1	1,120	
Hardness (Ca and Mg)	130.1	mgCaCO ₃ /L	1	303	-
Hydroxide	SM2330B	mg/L	1	N.D.	
Iron, by AAS	236.1/7380	mg/L	0.03	0.48	-
Magnesium, Mg	242.1/7450	mg/L	0.05	4.58	
Manganese, by AAS	243.1/7460	mg/L	0.04	0.15	
Potassium, K	258.1/7610	mg/L	0.02	17	
Sodium, Na	273.1	mg/L	0.003	110	. —
Sulfate (SO_4^{-})	375.4	mg/L	1	129	-
Surfactants (MBAS)	425.1	mg/L	0.03	0.26	
Total Dissolved Solids (TDS)	160.1	mg/L	10	1,190	-
Zinc, Zn	289.1/7950	mg/L	0.005	0.04	
pH	150.1/9045	pH unit	± 0.01	8.19	

PQL : Practical Quantitation Limit

SM : Standard Methods for Examination of Water and Waste Water, 17th edition.

N.D.: Not Detected or less than the quantitation limit.

Notes: (1) Microbiological analyses subcontracted to Clinical Lab, ELAP#1088. (2) Samples filtered prior to analysis.

Respectfully submitted, Shu-Teh Pan

CADHS ELAP CERTIFICATION NUMBER 1431

4066 E. Mission Blvd., Pomona, CA 91766 Tel: (909) 622-5148 Fax: (909) 622-3199

Submitted to:

CRWQCB: Santa Ana Region Attention: Nancy Olsen-Martin 2010 Iowa Avenue, Suite 100 Riverside, CA 92507 Tel: (909)782-4130 Fax: (909)781-6288

Analysis of Waste Water

APCL Analytical Report

Service ID #: 801-931651 Received Collected by: D.Brown/L.Alford Tested : Collected on: 02/23/93 Reported Sample description:

Received : 02/23/93 Tested : 02/24-03/10/93 Reported : 03/10/93

Water Samples from Dairy Sampling

801-931651 Page 1 of 1

					Concentration						
Component	Method	Unit	MDL	Grove	Chino Creek	Сургева	Grove	Mill Creek	Grove		
				@ Riverside	Q Pine	Q Pine	Q Pine	Q Chino Corona	QReg Park		
				93-1651-1	93-1651-2	93-1651-3	93-1651-4	93-1651-5	93-1651-6		
Coliform, total, 3×5 tube	SM9221B	MPN/100mL	2	1,600	500	>1,600	>1,600	>1,600	>1,600		
Coliform, Fecal, 3×5 tube	SM9221B	MPN/100mL	2	90	500	>1,600	>1,600	>1,600	>1,600		
Total Kjeldahl Nitrogen	351.3	mg/L	0.02	0.73	1.12	129	105	5.4	27		
Nitrite (NO_2^-)	354.1	mg/L	0.01	1.13	0.26	N.D.	0.06	0.23	0.64		
Nitrate (NO_3^{-})	353.3	mg/L	0.01	14.7	42.6	3.28	3.27	10.4	11.3		
Ammonia (NH ₄ ⁺)	350.2	mg/L	0.02	0.25	0.43	93.1	77.9	3.79	14.7		
Biological Oxygen Demand	405.1	mgO_2/L	2	3	N.D.	244	297	N.D.	19		
Total Dissolved Solids	160.1	mg/L	10	555	922	1,770	1,016	281	668		
Total Suspended Solids	160.2	mg/L	4	22	16	756	820	76	204		
Electric conductivity	120.1	$\mu s/cm$	±1 -	- 1,019	1,422	2,856	2,410	460	1,156		
Chemical Oxygen Demand	410.1	mgO_2/L	5	13	N.D.	1,449	757	N.D.	200		
Cadmium, Cd	213.1/713	o mg/L	0.002	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.		
Copper, Cu	220.1/721	o mg/L	0.004	0.048	0.025	0.215	0.134	0.144	0.058		
Lead, total	239.1/742	o mg/L	0.03	N.D.	N.D.	0.053	N.D.	N.D.	N.D.		

MDL : Method Detection Limit

SM : Standard Methods for Examination of Water and Waste Water, 17th edition.

N.D.: Not Detected in this analysis, or less than the method detection limit.

MAR 19 415 hom

Respectfully submitted,

Jack Y. Zha Director

Applied P & Ch Laboratory

4066 E. Mission Blvd., Ponsons, CA 91766 Tel: (808) 622-5148 Fax: (909) 622-3199

Submitted to:

CRWQCB: Santa Ana Region Attention: Nancy Olsen-Martin 2010 Iowa Avenue, Suite 100 Riverside, CA 92507 Tel: (909)782-4130 Fax: (909)781-6288

Analysis of Water

7m 3/12/93

APCL Analytical Report

Service ID #: 801-931650 Collected by: JIS, AH Collected on: 02/23/93

Water Grab Samples

Sample description:

Received : 02/23/93 Tested : 2/25-3/10/93 Reported : 03/11/93

Project: Dairy Sampling Task Code 273-02

801-931650 Page 1 of

	*			Concentration				
Component Analyzed	Method	Unit	MDL	Chino Creek	Cypress	Cypress	Grove .	Cucamonaga
•				@ Schaeffer	Q Edison	• Kimbali	Q Merrill	a Merrill
•				93-1680-1	98-1650-2	93-1650-8	98-1650-4	93-1650-5
Coliform, total, 5 tubes	3M9221B	MPN/100mL	2	>1,600	>1,600	>1,600	>1,600	500
Coliform, Facal, 5 tubes	SM9221B	MPN/100mL	2	>1,500	>1,800	>1,600	>1,800	90
Total Kjeldahi Nitrogen	351.3	mg/L	0.02	3.27	144	154	126	1.07
Nitrite (NO ₂)	354.1	mg/L	0.01	1.03	0.25	0.34	0.24	0.11
Nitrate (NO3)	353.3	mg/L	0.01	15.8	2.72	2.42	1.94	13.8
Ammonia (NH ⁺)	360.2	mg/L	0.02	4.21	104	106	80	0.3
Biological Oxygen Demand	405.1	mgO_2/L	2	N.D.	439	520	624	N.D.
Total Dissolved Solids	160.1	mg/L	10	619	2,450	2,540	1,610 .	270
Total Suspended Solids	160.2	mg/L	4	32	453	840	1,110	16
Meetric conductivity	120.1	μs/cm	±1	944	2,877	3,096	2,489	437
Chemical Oxygen Demand	410.1	mgO_2/L	5	N.D.	2,090	2,205	1,380	N.D.
Cadmium, Cd	213.1/7150	mg/L	0.002	N.D.	N.D.	0.006	0.005	N.D.
Copper, Cu	220.1/7210	mg/L	0.004	0.035	0.189	0.305	0.269	N.D.
Lead, total	239.1/7420	mg/L	0.03	N.D.	N.D.	0.05	0.04	N.D.

MDL : Method Detection Limit

SM : Standard Methods for Examination of Water and Waste Water, 17th edition.

N.D. : Not Detected in this analysis, or less than the method detection limit.

Respectfully submitted,

Jack Y. Zhang, Ph.⁻D., Director Applied P & Ch Laboratory

Applied P & Ch Laboratory 4068 E. Milesion Blvd, Pomone, CA 91786

Tel: (909) 822-5148

APCL Analytical Report

Submitted to: CRWQCB: Santa Ana Region Attention: Nancy Olsen-Martin

2010 Iowa Avenue, Suite 100 Riverside, CA 92507

Tel: (909)782-4130 Fax: (909)781-6288

Fau: (909) 622-3199

Analysis of Wastewater

Service ID #: 801-931649 Collected by: Michelle Courtier Collected on: 92/23/93 Collected on: 92/23/93 Reported : 03/05/93 Sample description: Water Grab Samples

Project: Dairy Sampling Task Code 273-02

801-931649 Page 1 of 1

		······································		Concentration					
Component	Method	Unit	MDL	Cucamonga	Cucumonga	Riverside	Riverside		
				GBaseline	gRP#1	Cucamonga	GCucamongs Eff		
•				98-1849-1	98-1649-3	98-1649-3	93-1649-4		
Coliform, iotal, 5×3 inbes	SM9221B	MPN/100mL	2	23	>1,600	>1,600	900		
Caliform, Pecal, 5×3 tubes	SM9221B	MPN/100mL	2	13	>1,600	>1,600	240		
Total Kjeldahl Nitregen	361.3	mgN/L	0.02	1.59	0.39	0.90	0.92		
Nitrite (NO2)	384.1	mgN/L	0.01	0.05	0.09	0.06	0.03		
Nitrate (NO3)	353.3	mgN/L	0.01	0.91	2.25	0.69	6.73		
Ammonia (NH ⁺)	360.2	mgN/L	0.02	0.56	0.12	0.49	0.44		
Organic Nitrogen	Calc	mgN/L		1.03	0.27	0.41	0.48		
Biological Oxygen Demand	405.1	mgO_2/L	2	N.D.	N.D.	N.D.	N.D.		
Total Dissolved Selids	160.1	mg/L	10	145	146	154	384		
Tatal Suspended Solids	160.2	mg/L	4	N.D.	16	16	4		
Electric conductivity	120.1	μ s /cm	±0.1	243.5	243.5	233.2	632.2		
Chemical Oxygen Demand	410.1	mgO ₂ /L	5	N.D.	N.D.	N.D.	N.D.		
Cadmium, Cd	213.1/7130	mg/L	0.002	N.D.	N.D.	N.D.	N.D.		
Copper, Cu	220.1/7210	mg/L	0.004	N.D.	N.D.	N.D.	N.D.		
Lond, total	739.1/7420	mg/L	0.03	N.D.	N.D.	N.D.	N.D.		

MDL : Method Detection Limit

SM : Standard Methods for Examination of Water and Waste Water, 17th edition.

N.D. : Not Detected in this analysis, or less than the method detection limit.

Respectfully submitted,

Jack Y. Zhang.

Director Applied P & Ch Laboratory

Chino Creek Sampled: 5-5-83 Analysis by: Western Analytical Laboratories, Inc Sample Data (stations listed in descending (upstream -> downstream) order) Site# Location Nitrate Ammonia Filtered Nitrite Total Organic Nitrogen Nitrogen Organic Nitrogen Nitrogen Nitrogen (mg/e) (mg/e)(mg/l) (mg/e) (mg/e) Central Ave 0.09 5,18 0.13 1,28 0.37 100 yds_upstream_____ . 2 of Chino RP#2 0.98 3.30 0.11 0.63 0.32 3 Chino RP#2 outfall 0.12 14.3 0.001 0,38 0.37 -----4 Pine Ave 0.96 6.66 0.10 0.37 0.30 5 Euclid Ave 0,52 7,28 0.02 0.82 0.29

Chinc reek Sampling Run 5 May, 15

```
Site 1: Los Serranos (Central Ave Bridge)
      Time: 1233-1300 hours
      Weather: Partially cloudy with sun, 70°F, Cool wind
      Site Description: Muddy and Rocky bottom, water contained
                         dairy effluent
      Estimated
               Average Depth: 3 to 12 inches
Rate: Very slow; stagnant
                        Width: 50 ft to 5ft.
      DO kit: 8.9 mg/L
      DO meter: Could not use
      EC: 1010micromhos/cm
      Temperature: 23.5 C
      pH paper: 7.0-7.5
      pH kit: 8.4
      picture number: 19 and 20
Site 2: 100 yds. upstream of CBMWD outfall (RP#2),
      Time: 0944-1020 hours
      Weather: Partially cloudy, 65°F
      Site Description: Small rock and mud bottom, sample taken
                         from shallow fast moving water
      Estimated
               Average Depth: 3-4 inches
                        Rate: 40ft/ 17sec ~16 ft3/sec
                        Width: 20 ft.
      DO kit: 7.9mg/L
      DO meter: 3.6 mg/L
      EC: 1800micromhos/cm
      Temperature: 17 C
      pH paper: 7.0
      pH kit 8.2
      picture number: 14
Site 3: CBMWD Discharge (RP=2)
      Time: 1030-1100hours
      Weather: Partially cloudy, 65-70°F
      Estimated
               Average Depth: 3.0+ ft. at discharge site
                        Rate: 2million gallons/day from 30 inch pipe
                        Width: 20ft. at discharge site
      DO kit: 7.0mg/L
      DO meter: 7.6 mg/L
      EC: 825 micromhos/cm
      Temperature: 21.5 C
      pH paper: 6.5-7.0
      pH kit: 7.0
     picture number: 15
```

5-5-83 Site 4: Pine Bridge Time: 1115-1140 hours Weather: Partially cloudy, 70°F Site Description: Rocky bottom Estimated Average Depth: 8-12 inches ~6,5 ft 3/sec Rate: 50ft/40sec Width: 14ft. DO kit: 7.0mg/L DO meter: 4.4mg/L EC: 1910 micromhos/cm Temperature: 19 C pH paper 7.0 pH kit: 8.0 Picture number: 16 Site 5: Euclid Ave Bridge Time: 1150-1215 hours Weather: Partially cloudy, 70°F, gusty winds Site Description: Muddy bottom Estimated Average Depth: 4-ft. Rate: Stagnant Width: 30 ft. DO kit: 8.0mg/L DO meter: 5.7 mg/L EC: 1010 micromhos/cm Temperature: 19.5 C pH paper: 7.0 pH kit: 7.8 Picture number: 17 and 18

LAEDRATORIES, INC. Western Analytical

13744 MONTE VISTA AVENUE

CHINO, CALIFORNIA 91710

(714) 627-3628

CUSTOMER CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD Santa Ana Region

DATE RECEIVED 5-5-83

WAL NO. 3050281-285

ATTENTION James Anderson

DATE OF REPORT 5-12-83

Chino Creek SAMPLE IDENTIFICATION: _

Sampled by Joanne Snyder,

_____GALLONS____ TANK NO.___

5-5-83 SAMPLED

	ANALYS	IS	STAN	IDARD	RESULTS			
L #	SAMPLE	AMMONIUM NITROGEN (mg/l)	NITRATE NITROGEN (mg/l)	NITRITE NITROGEN .(mg/1)	TOTAL ORGANIC NITROGEN	FILTERED ORGANIC NITROGEN		
(31k 50281	Pine Ave.	0.96	6.66	0.10	0.37	0.30		
・50282 (ろ!た ¹	Hooyds. # lupstream of #2)-) Chino RP#2 out	0.98	3.30	0.11	0.63	0.32		
50283	Euclid	0.52	7.28	0.02	0.82	0.29		
•50284 (≾ıte#	1-> Serveral A	к. 0.09	5.18	0.13	1.28	0.37		
150285 (sik #	Chino RP#2 [±] 3)→Outfall	0.12	14.3	0.001	0.38	0.37		

Laboratory Director

RESULTS PHONED 杠 TO WHOM J. Snyder

DATE 5-9 2:30 pm

WESTERN ANALYTICAL LABORATORIES, IDC.

13744 MONTE VISTA AVENUE

CHINO, CALIFORNIA 91710

(714) 627~3628

CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD Santa Ana Region CUSTOMER_

5-5-83 DATE RECEIVED

DATE OF REPORT 5-12-83

WAL NO. 3050281-285

ATTENTION James Anderson

SAMPLE IDENTIFICATION: _

Chino Creek

Sampled by Joanne Snyder,

TANK NO._

GALLONS

SAMPLED 5-5-83

	ANALYS	IS	STAN	NDARD	RESULTS		
AL	# SAMPLE	AMMONIUM NITROGEN (mg/l)	NITRATE NITROGEN (mg/l)	NITRITE NITROGEN (mg/1)	TOTAL ORGANIC NITROGEN	FILTERED ORGANIC NITROGEN	
05	(311e 4/) 0281 Pine Ave.	0.96	6.66	0.10	0.37	0.30	
٥5	·looyds. 0282 # lupstream of (31K ^{II} Z)→) Chino RP#2 out	0.98 fall	3.30	0.11	0.63	0.32	
05	0283 Euclid	0.52	7.28	0.02	0.82	0.29	
05	0284 Los Central Av (31k #157 Semistras	۰.09	5.18	0.13	1.28	0.37	
05 (0285 Chino RP#2 (소년 ^변 3)-> Outfall	0.12	14.3	0.001	0.38	0.37	

بصيرة المرجعة المرجعة المنافقة المرجعة المعود المسينية المستقدمة المنافقة المرجعة المعادة

Laboratory Director

X YES RESULTS PHONED NО TO WHOM J. Snyder

DATE 5-9 2:30 pm

		· : *					Chi	no Creek	5-5-	-83	(
iite#	Location	Flow (MGD)	Water- Temp. ⁸ C	pH paper kit	Electrical Conductivity (micromhas/cm)	Dissolued Oxygen (% saturation)	NH3-nitrogen (mg/e)	Noz" nitrogen (mgle)	NOs nitrogen (mg/le)	Total organic nitrogen (mg12)	Filtericl organic nitrogen (mole)	Total. nitrogen (mole)
1	Central Ave	stagnant	23.5	 20- 75- 8.4	1010	100	0.09	0,13	5,18	1.28	0.37	6.68
æ	100 yals upstroom of Chino Basin Regional Plant #2: outfall	•~3. 8	17	7.6 8.2	1800	82	0.98	0.11	3,30	0.63	0.32	5.02
3	Chino Regional Plant #2 audfall effluent sampled	S	21.5	6.5- 7.0 7.0	825	19	0.12	0.00)	.14.3	0.38	0.37	14,801
4	Pine Ave	n=16	19	7.0 8.0	19110	75-	0.96	0.16	6.66	a. 37	Ø. 30	8.09
5	Euclid Ave	stagnant	19:5	7.0 7.8	1010	87	0.52	0.02	7.28	0.82	0.29	8.64

:

Na (30) 0/13

Wet Weath T (B.U. same as Reach 5 City Creek 42

Beneficial Uses MUN AGR GWR REC 1 REC 2 WARM WILD RARE

Program I.D. No.		WW97-0109	WW97-0209	WW97-0309	WW98-0109	WW98-0209	WW98-0309	WW98-0409	WW 99-0109	0	0
Sample I.D. No.		L22873-015	L23600-016	L24196-015	C7111680	L37151-016	L38045-016	L39880-016	L47 907-012	L50660-014	L51332-016
Sample Date		10/30/96	11/21/96	12/9/96	11/26/97	1/9/98	2/3/98	3/25/98	1 1/8/98	1/0/00	1/0/00
Constituent	Units	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results
BOD	mg/L	ND	ND	ND	• 33	ND	5	. ND	ND	10	ND
COD	mg/L	ND	ND	ND	2100	16	11	11	14	. 10	25
TDS	mg/L	250	200	210	280	220	230	160	180	170	180
TSS	mg/L	ND	ND	ND	66000	7	33	23	5	5	ND
Cd, tr	mg/L	· ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cu, tr	mg/L	ND	ND	ND	0.32	ND	ND	ND	ND	ND	ND
Pb, tr	mg/L	ND	ND	ND	1.1	ND	ND	ND	ND	ND	ND
Zn, tr	mg/L	ND	ND	ND	0.80	ND	ND	ND	ND	• ND	ND
P-Ortho	mg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
P-Total	mg/L	ND	ND	ND	3.90	ND	0.19	ND	0.17	ND	ND
NO2-N	mg/L	ND	ND	ND	0.29	ND	NÐ	ND	ND	ND	ND
NO3-N	mg/L	0.5	ND	0.3	10.00	0.40	0.50	0.60	0.80	0.30	0.40
TKN	mg/L	0.4	0.7	0.2	65.00	0.30	0.20	0.30	0.50	0.40	0.30
pH	units	8	7.9	8.1	7.6	7.1	8.2	8.2	8.3	8.1	8.2
EC	µmho/cm	390	340	330	220	320	290	220	270	260	250
O&G	mg/L	3	ND	ND	1.6	ND	ND	ND	ND	ND	ND
As, tr	mg/L	ND	ND	ND	0.084	ND	ND	ND	ND	ND	ND
Ba, tr	mg/L	ND	ND	ND	5.6	ND	ND	ND	ND	ND	ND
B, tr	mg/L	ND	ND	ND	0.29	ND	ND	ND	ND	ND	ND
Cr, tr	mg/L	ND	ND	ND	0.36	ND	ND	ND	ND	ND	ND
Fe, tr	mg/L	· 0.12	0.13	0.03	200.00	0.29	0.27	0.35	0.21	0.16	0.07
Mn, tr	mg/L	0.01	· ND	ND	42.00	. 0.07	0.06	0.02	0.03	0.03	ND
Hg, tr	mg/L	ND	ND	ND	0.0014	ND	ND	ND	ND	ND	ND
Se, tr	mg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ag, tr	mg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Hardness as CaCO ₃	mg/L	130	120	110	• 1500	120	110	73	90	83	83
Са	mg/L	38	34	32	350	34	31	21	26	24	25
Mg	mg/L	9	8	7	150	. 7	7	5	6	5	5
Na	mg/L	25	25	23	12	21	18	13	16	15	15
К	mg/L	3	3	2	48	2	2	2	2	2	1
Total Alkalinity as CaCO ₃	mg/L	130	120	120	710	120	110	90	95	93	95
ОН	mg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CO ₃	mg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
HCO3	mg/L	160	150	· 150	710	150	140	110	120	110	120
SO ₄	mg/L	45	30	24	33.00	17.00	15.00	12.00	14.00	14.00	12.00
CI	mg/L	13	16	14	7.70	11.00	10.00	8.00	10.00	9.00	10.00

Smplsmry00

F	mg/L	1	0.7	0.6	1.40	0.60	0.50	0.40	0.30	0.30	0.30
NH ₄ -N	mg/L	ND	ND	ND	1.60	ND	ND	. ND	0.10	ND	0.20
N-Total	mg/L	0.9	0.7	0.5	• 75.00	0.70	0.70	0.90	1.30	0.70	0.60
Acenapthene	μg/L	ND	ND	ND	ND	• ND	ND	ND	ND	ND	ND
Acenaphthylene	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	μg/L	ND	ND	ND	ŇD	ND	ND	ND	ND	ND	ND
Benzo(a)anthrancene	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	μg/L	ND	ND	ND	ND	ND	ND	ND	. ND	ND	ND
Benzo(a)pyrene	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(ghl)perylene	μg/L	ND	ND	ND	ND	ND	ND	. ND	ND	ND	ND
2-Chloronaphthalene	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene	μg/L	[×] ND	ND	ND	, ND	ND	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	μg/L	ND	ND	ND	ND	ND	.ND	ND	ND	ND	ND
Fluorene	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Napthalene	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	μg/L	ND	ND	· ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	μg/L	ND	ND	ND	ND	. ND	ND	ND	ND	ND	ND

€.

. .

						_	
Program I.D. No.		0	0	WW00-0109	WW00-0209	WW00-0309	WW00-0409
Sample I.D. No.		L52565-016	L53514-016	L64804-014	L66218-010	L66478-016	L68386-016
Sample Date		1/0/00	1/0/00	1/25/00	2/27/00	3/4/00	4/17/00
Constituent	Units	Results	Results	Results	Results	Results	Results
BOD	mg/L	5	ND	7	ND	12	9
COD	mg/L	ND	ND	ND	16	•38	• 36
TDS	mg/L	170	150	170	180	150	160
TSS	mg/L	ND	8	5	s 240	120	52
Cd, tr	mg/L	ND	ND	ND	ND	ND	ND
Cu, tr	mg/L	ND	ND	ND	ND	ND	ND
Pb, tr	mg/L	ND	ND	ND	ND	ND	ND
Zn, tr	mg/L	ND	ND	0.08	0.04	0.03	0.05
P-Ortho	mg/L	ND	ND	ND	ND) ND	ND
P-Total	mg/L	ND	ND	ND	ND	0.08	0.09
NO2-N	mg/L	ND	ND	ND	ND	ND	ND
NO3-N	mg/L	0.30	0.30	0.30	1.50	1.40	0.50
TKN	mg/L	0.50	0.30	0.30	0.40	1.30	1.00
pH	units	. 8.2	8.1	8.0	- 8.1	8.0	8.1
EC	µmho/cm	290	240	240	240	190	230
0&G	mg/L	ND	1	ND	ND	ND	ND
As, tr	mg/L	ND	ND	ND	ND	ND	ND
Ba, tr	mg/L	ND	ND	ND	ND	ND	ND
B, tr	mg/L	ND	ND	ND	ND	ND	ND
Cr, tr	mg/L	ND	ND	ND	ND	ND	ND
Fe, tr	mg/L	0.10	0.08	0.38	0.32	1.40	0.63
Mn, tr	mg/L	0.01	0.01	ND	0.01	0.06	0.05
Hg, tr	mg/L	· ND	ND	ND	ND	ND	ND
Se, tr	mg/L	ND	ND	ND	ND	ND	ND
Ag, tr	mg/L	ND	ND	ND	ND	ND	- ND
Total Hardness as CaCO ₃	mg/L	92	85	95	81	67	73
Са	mg/L	27	25	29	24	20	22
Mg	mg/L	6	5	5	5	4	5
Na	mg/L	16	16	24	18	14	15
к	mg/L	1	1	2	. 1	1	1
Total Alkalinity as CaCO ₃	mg/L	98	95	110	85	67	90
ОН	ma/l	ND	ND	ND	ND	ND	ND
CO ₃	ma/L	ND	ND	ND	ND	ND	ND
HCO ₃	ma/l	120	120	130	100	82	110
SQ,	ma/l	14 00	13.00	100 8 5	11 0	82	7 /
	mg/L	10.00	10.00	10	11.0	10	1.4
UI IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	HIU/L	10.00	10.00	10	11	10	101

Smplsmry00

.

Page 5

F	mg/L	0.40	0.40	0.70	0.50	0.40	0.50
NH₄-N	mg/L	ND	ND	ND	ND	ND	0.10
N-Total	mg/L	0.80	0.60	0.60	1.90	2.70	1.50
Acenapthene	μg/L	ND	ND				
Acenaphthylene	μg/L	ND	ND	, -		•	
Anthracene	μg/L	ND	ND	•			
Benzo(a)anthrancene	μg/L.	ND	ND				
Benzo(b)fluoranthene	μg/L	ND	ND				
Benzo(k)fluoranthene	μg/L	ND	ND				
Benzo(a)pyrene	μg/L	ND	ND				
Benzo(ghl)perylene	μg/L	ND	ND				
2-Chloronaphthalene	μg/L	ND	ND				
Chrysene	μg/L	ND	ND	•			
Dibenzo(a,h)anthracene	μg/L	ND	ND				
Fluoranthene	μg/L	ND	ND				
Fluorene	μg/L	ND	ND				
Indeno(1,2,3-cd)pyrene	μg/L	ND	ND				
Napthalene	μg/L	ND	ND				
Phenanth rene	μg/L	ND	ND				
Pyrene	μg/L	ND	ND				

12/4/01

1 -

City Creek - Dry Weather B 7. = same an Reach 3 (0) (25) 町 % Benficial Uses TPS (300) MUN AGR 0/2 GWR REC 1 Na (30) REC 2 WARM 6/2 WILD 504 (60) RARE 0/2 $\begin{array}{c} (20) \\ 0/2 \end{array}$ TGT N (5) 6/2 Herd (190) 0/2

city Creek

Program I.D. No.		DW94-0109	DW94-0209	DW94-0309	DW95-0109	DW95-0209	DW96-0109	DW97-0109	DW98-0109
Sample I.D. No.		0	0	L2438-002	L8196-002	L9920-002	L19857-008	L323 83-007	L44330-009
Sample Date		6/8/94	8/16/94	11/1/94	6/6/95	8/14/95	7/30/96	8/20/97	7/29/98
Constituent	Units	Results	Results	Results	Results	Results	Results	Results	Results
BOD	mg/L	NR	NR	8	ND	ND	ND	ND	ND
COD	mg/L	NR	NR	ND	10	25	ND.		ND
TDS	mg/L	NR	NR	210	170	180	250	270	170
TSS	mg/L	NR	NR	5	ND	ND	ND	8	ND
Cd, tr	mg/L	NR	NR	ND	ND	ND	ND	ND	ND
Cu, tr	mg/L	NR	NR	ND ND	ND	ND	ND	ND	ND
Pb, tr	mg/L	NR	NR	ND	ND	ND	ND	ND	ND
Zn, tr	mg/L	NR	NR	ND	ND	ND	ND	ND	ND
P-Ortho	mg/L	NR	NR	ND	ND	ND	ND	ND	ND
P-Total /	mg/L	NR	NR	ND	ND	ND	ND	ND	ND
NO2-N	mg/L	NR	NR	ND	ND	ND	ND	ND	ND
NO3-N	mg/L	NR	NR	0.4	0.5	0.8	0.4	ND	0.60
TKN ·	mg/L	NR	NR	ND	0.3	ND	0.7	0.30	0.60
рН	units	NR	NR	8.2	8.2	8.4	8	7.9	8.3
EC	µmho/cm	NR	NR		230	270	380	430	230
O&G	mg/L	NR	NR	210	170	180	250	ND	1
As, tr	mg/L	NR	NR	ND	ND	ND	ND	ND	ND
Ba, tr	mg/L	NR	NR	ND	ND	ND	ND	ND	ND
B, tr	mg/L	NR	NR	ND	ND ND	ND	0.1	0.1	ND
Cr, tr	mg/L	NR	NR	ND	ND	ND	ND	ND	ND
Fe, tr	mg/L	NR	NR	0.5	0.02	0.08	0.05	0.03	0.05
Mn, tr	mg/L	NR	NR	ND	ND	ND	ND	ND	ND
Hg, tr	mg/L	NR	NR	ND	ND	ND	<u>ND</u>	ND	ND
Se, tr	mg/L	NR	NR	ND	ND	ND	ND	ND	ND
Ag, tr	mg/L	NR	NR	ND	ND	ND	ND	ND	ND
Total Hardness as CaCO ₃	mg/L	NR	NR	107	78	90	130	150	81
Са	mg/L	NR	NR	31	23	26	36	43	24
Mg	mg/L	NR	NR	7	5	6	9	10	5
Na	. mg/L	NR	NR	20	14	18	24	27	16
К	mg/L	NR	NR	2	1	2	2	2	2
Total Alkalinity as CaCO ₃	mg/L	NR	NR	115	90	98	130	130	90
OH	mg/L	NR	NR	ND	ND	ND	ND	ND	ND
CO ₃	ma/L	NR	NR	3	ND	ND	ND	ND	ND
HCO ₃	mg/L	NR	NR	134	110	113	160	160	110
SO4 L	mg/L	NR	NR	25	14	18	38	56.00	11.00
	mg/L	NR	NR	11	_ 10	9	11	13.00	9.00
F	mg/L	NR	NR	0.6	0.4	0.6	0.8	0.90	0.50
NH ₄ -N	mg/L	NR	NR	ND	0.1	ND	0.1	ND	0.20
N-Total	ma/L	NR	NR	0.4	0.8	0.8	1.1	0.30	1.20
Acenapthene	μg/L	NR	NR	ND	ND	ND	ND	ND	ND

Smplsmry00

Page 1

Acenaphthylene	μg/L	NR	NR	ND	ND	ND	ND	ND	ND
Anthracene	μg/L	NR	NR	ND	ND	ND	ND	ND	ND
Benzo(a)anthrancene	μg/L	NR	NR	ND	ND	ND	ND	ND	* ND
Benzo(b)fluoranthene	μg/L	NR	NR	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	μg/L	· NR	NR	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene>	μg/L	NR	NR	ND	ND	ND	ND	ND	ND
Benzo(ghl)perylene	μg/L	NR	NR	ND	ND	ND	ND	ND	ND
2-Chloronaphthalene	μg/L	NR	NR	ND	ND	ND	ND	ND	ND
Chrysene ·	μg/L	NR	NR	ND	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	μg/L	NR	NR	ND	ND	ND	ND	ND	ND
Fluoranthene	μg/L	NR	NR	ND	ND	ND	ND	ND	ND
Fluorene	μg/L	NR	NR	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	μg/L	NR	NR	ND	ND	ND	ND	ND	ND
Napthalene	μg/L	NR	NR	ND	ND	ND	ND	ND	ND
Phenanthrene	μg/L	NR	NR	ND	ND	ND	ND	ND	ND
Pyrene	μg/L	NR	NR	ND	ND	ND	ND	· ND	ND

24

REGIONAL WATER QUALITY CONTROL BOARD

Parameter Benchmark Values

Parameter Name	Benchmark Value
pH	6.5-8.5 su
Total Suspended Solids	100 mg/L
Specific Conductivity	200 µmhos/cm
Total Dissolved Solids	500 mg/L
Oil & Grease	20.0 mg/L
Total Organic Carbon	100 mg/L
Biochemical Oxygen Demand	30.0 mg/L
Chemical Oxygen Demand	100 mg/L
Nitrate + Nitrite - Nitrogen	.680 mg/L
MBAS	.500 mg/L
Total Petroleum Hydrocarbons	.100 mg/L
Benzene	.001 mg/L
Toluene	010 mg/L
Ethylbenzene	1.010 mg/L
Xylenes (o, m, p)	1.010 mg/L
Ammonia	19.0 mg/L
Butylbenzyl Phthalate	3.00 mg/L
	049 mg/L
Fluoranmene	1.00 mp/l
	010 mg/L
Y lables albudan	
Irichioroethylene	2.70 µg/L
PCB-1016 (c)	.127 μg/
PCB-1221 (c)	.100 mg/L
PCB-1232 (c)	.318 µg/L
PCB-1242 (c)	200 µg/L
PCB-1248 (c)	2.54 µg/L
PCB-1254 (c)	.100 mg/L
PCB-1260 (c)	.477 µg/L
Aluminum-Total	.750 mg/L
Antimony-Total	.636 mg/L
Arsenic-Total	.169 mg/L
Beryllium-Total	130 mg/L
Cadmium-Total	.010 mg/L
Chloride	860 mg/L
Chloride-Residual	.050 mg/L
Chromium-Total	.050 mg/L
Copper-Total	.020 mg/L
Fluoride	1.80 mg/L
Iron-Iotal	1.00 mg/L
Lead-Total	.050 mg/L
Manganese	1.00 mg/L
Mercury-Total	.002 mg/L
Nickel-Total	1.41 mg/L
Phosphorus-Total	2.00 mg/L
Selenium-Total	.239 mg/L
Silver-Total	.032 mg/L
Zinc-Total	100 mg/L

MEMORANDUM

Date:	September 19, 1994
From:	Allan Bacon
То:	Planning Files
Subject:	CITY CREEK SAMPLING

Purpose

City Creek was sampled on August 3, 1994 as part of the Planning Section's ambient sampling program. The sampling was performed by Bob Whitaker of the Storm Water Investigation section, Brad Nelson of the Land Disposal Section, and Allan Bacon of the Planning Section.

A total of four locations were sampled. The locations were chosen based on safe access and areas that would be representative of the creek's natural habitat or water quality. Samples were taken in the East and West forks of City Creek and at their confluence. All three locations were mountain locations, and all were within 1 mile of each other. The terrain was similar, with a rock substrate, and wooded riparian habitat. The soils in the upland area are partially clay, part sand. The fourth sample location was taken from City Creek in the western San Bernardino Valley. The four locations show both a mountain and valley type result for city creek. Each location was analyzed for total coliform, standard minerals and general nutrients.

There is a need to have one more sample location established further downstream, nearer to where City Creek joins East Warm Creek. The locations would then represent the full geographic range of City Creek, including mountain and rural valley, as well a sample in the urbanized valley section of City Creek. Due to lack of flow in the valley portion an urban sample could not be taken. A winter sample taken, possibly in conjunction with the storm water program, might be the best opportunity to provide water quality data.

Sample Locations

C1--City Creek at the confluence of the East and West Forks of City Creek (See Map)

Access to the creek is limited to a short hike down a slight slope. Park on the turnout prior to the "Narrow Bridge" sign of the bridge that crosses the West Fork of City Creek, and just after the San Bernardino Road Marker numbered 32-37 along north bound Highway 330. The sample was taken below an old bridge that is not used. (The bridge is difficult to see from the road.)

The riparian area is older, with groves of larger diameter trees (>5 inches). There were several pools between natural rock impediments. Several fish, up to 4 inches long, were seen in these pools. There were beer cans and bottles strewn on the ground as well as some other dumped items; however, there was no trash in the creek itself. Some rocks were tagged with graffiti.

The flow at this location was estimated to be 1 cfs. The water was very clear. The substrate was primarily rock. There were two springs on the slope on the opposite side of the creek. The flow from each spring was only enough to wet the slopes. The results show violations of two objectives. Total coliform was measured at 500 mpn/100ml, which violates the drinking water standard for MUN designated waters of 100 mpn/100ml. Total inorganic nitrogen (TIN) was 1.7 mg/l which violated the basin plan objective of 1 mg/l. The chloride level was at the basin plan objective of 10 mg/l.

WF2--West Fork City Creek at truck trail crossing.

This location is accessed by a "truck trail" that crosses the West Fork of City Creek. The truck trail begins at the forest service station. The Forest Service Station is just north of the West Fork City Creek Bridge on the north (left side of Highway 330). Follow the truck trail north (through the Forest Service Station) to the creek crossing. The truck trail does not cross the creek at any other locations.

This area was much like downstream. Rocks were the primary substrate. Large trees made up most of the riparian habitat. This location is also heavily used by people as evidenced by the carving in the trees.

The flow at this location is estimated at 1 cfm. There was a slight anaerobic odor in the water, but there were no algae or other problems. Only two parameters exceeded of the basin plan objectives. Fluoride was measured at 3.5 mg/l exceeding the 1 mg/l objective, and sodium was measured at 35 mg/l exceeding the 30 mg/l objective.

EF3--East Fork City Creek

Across the street from the forest station are two old closed roads. The road to the right (west) led directly to and crossed the east fork. A quick hike (1/4 mile) down the cement paved road is an excellent location to sample.

The area was less wooded and shaded than C1 and WF2, but it may be due to the road. In addition, like the other two locations the substrate is mainly rock, but in this location the rocks are much larger. The sample was taken downstream of the road. There was some algae in stagnant areas, especially where the areas received sunlight. In free flowing portions, the water was clear and flow was <1 cfm.

City Creek/8-3-94

At this location two parameters exceeded the basin plan objective. Chloride was measured at 11 mg/l which exceeded the 10 mg/l objective, and TIN was measured at 1.2 mg/l exceeding the 1 mg/l objective.

C4--City Creek at Highland Ave. (San Bernardino Valley)

A small road, west of Highway 330, allows room to park near the stream.

The area was more coastal sage scrub. The creek bed in this area is concrete lined and riprapped for flood control, and is operated and maintained by San Bernardino County Flood Control. There were not many trees or other type of riparian habitat. There was a large amount of trash in the area. During sampling, a horse back rider with his two dogs came down the channel. They rode through the length of the channel.

The water was partially clear, there was a large amount of algae in the sunlit areas. The flow was much less than that of C1. In some of the deeper areas there were several small fish (<2 inches long). This is the last accessible sample location which contains water in the summer. Within one mile the creek bed is completely dry. At Pacific Ave. (the next road crossing) the soil is damp, but there is no flow, and no flow reaches the percolation ponds at Boulder Ave.

At this location several water quality parameter exceeded either the basin plan objectives, or the objectives established for MUN designated waters. Total coliform was measured at 240 mpn/100ml, exceeding the 100 mpn/100ml MUN objective. Chloride was measured at 18 mg/l exceeding the 10 mg/l Basin Plan objective. Sulfate was measured at 32 mg/l exceeding a 20 mg/l Basin Plan objective. TDS was measured at 233 mg/l exceeding a 200 mg/l Basin Plan objective, hardness was measured at 136 mg/l exceeding 115 mg/l Basin Plan objective, and TIN was measured at 2.7 mg/l exceeding the 1 mg/l Basin Plan objective. The sodium was measured at 30 mg/l equaling the basin plan objective concentration.

The high values in the valley reach are probably due to two factors. The first is that in the valley, temperatures are very high in the summer and the substrate is very porous, so water both quickly evaporates and percolates. This tends to concentrate constituents in the water. The second problem is the location is often used for recreational purposes. This recreation was evident by the horse back riding. This location is also used as an illegal dumping location.

CITY CREEK

	C1	WF2	EF3	C4	BPO
Constituent					
Total Coliform	500	30	30	240	100
Fecal Coliform	140	23	23	240	
Ammonia	0.3	0	0.3	0	
TKN-Nitrogen	0.9	1	0.7	1.3	
Nitrite	0	0	0	0	
Nitrate	1.4	0.9	0.9	2.7	10
TIN	1.7	0.9	1.2	2.7	1
Orthophosphate	0	0.03	0.05	0.02	
Total Phosphate	0.02	0.04	0.06	0.05	
Alkalinity	128	109	115	126	
Bicarbonate	157	133	141	138	
Boron	0	0.1	0	0	0.75
Calcium	31	22	32	37	
Carbonate	0	0	0	8	
Chloride	10	9	11	18	10
Electric Conductivity	303	285	280	383	
Fluoride	0.6	3.5	0.6	0.8	1
Iron	0	0	0	0.2	
Magnesium	·6	4.1	5.9	9	
ЪЧ	8.24	8.1	8.24	8.52	•
Potassium	1.5	1.2	1.4	2.6	
Sodium	24	35	18	30	30
Hydroxide	0	0	0	0	
Sulfate	11	15	8	32	20
TDS	193	187	177	233	200
Total Anions	3.11	2.76	2.8	3.48	
Total Cations	. 3.13	2.99	2.9	3.96	s
Hardness	108	74	110	136	115

٠٠.

Note: 0 (zero) is used to replace ND (non-detect) in order to have a number for statistical purposes.

-shotal = flood (still @ Water (where city Greek and's ant Photo 2 - City Crede & Before flood Control @ Dalm and 300

City (reek dong Highney 330 flow ~ 2-3 rds C/-Clear thavy is wooded Aina - No alga - Spring near onteropping =) Rodon East Side Fish Seen Bottles (Beer) seen Nea forming 9:50 (in Turnout - 58D 32-37 Just Betare "Narro- Bridse" Sign -Conflorence of Gast and heat finh 10:35 cts

Cacator 2 WEFER - East form along truch Trail @ Bridge - (Enter Through Flow ~ Josefs foresty station very dear much like On fluer flow = 1 cfm 7=10:38 Slight odor to nate - no Abae < thomas Non on Both 2FS- access through 2d accros from IS. Station - Rd (rosses East forh No Algar - Clear. that LI CFM Bre Alson in soperanted Dondis T= 11:15 All deep Valleys both Zus & (KImi) mystrom & Confluence

4 - City (ræk @ Hiland Are Last wetter Samplable Are In Bon Valley Time = 1(:40 OP C opported as flood Control

Cast of City Creek Just about Bouder Anne - :- High Pere. Volume

4066 E. Mission Blvd., Pomona, CA 91766

Tel: (909) 622-5148

Fax: (909) 622-3199

Submitted to:

CRWQCB: Santa Ana Region Attention: Nancy Olson-Martin 2010 Iowa Avenue, Suite 100 Riverside, CA 92507 Tel: (909)782-4130 Fax: (909)781-6288

Analysis of Water

APCL Analytical Report

Service ID #: 801-943507Received : 08/03/94Collected by: Dennis Allan Baron Tested : 08/03-16/94Collected on: 08/03/94Reported : 08/17/94Sample description:

Page 1 of

1

Water

Project: City Creek

801-943507

				Concentration					
Component Analyzed	Method	Unit	\mathbf{PQL}	C1	WF2	EF3	C4		
				94-3507-1	94-3507-4	94-3507-3	94-3507-2		
Total Coliform, MTF, 3X5 tubes	SM9221B	MPN/100mL	2	500	30	30	240		
Fecal Coliform, MTF, 3X5 tubes	SM9221C	MPN/100mL	2	140	23	23	240		
Ammonia (NH_4^+-N)	350.2	mg/L	0.2	0.3	N.D.	0.3	N.D.		
Nitrogen, Total Kjeldahl (TKN)	351.3	mg/L	0.2	0.9	1.0	0.7	1.3		
Nitrite $(NO_2^ N)$	• 354.1	m mg/L	0.02	N.D.	N.D.	N.D.	N.D.		
Phosphorus, Total	365.2/365.3	mg/L	0.02	0.02	0.04	0.06	0.05		
Alkalinity	310.1	mg/L	2	128	109	115	126^{+}		
Bicarbonate	SM2330B	mg/L	2	157	133	141	138		
Boron, by colorimetry	212.3	mg/L	0.1	N.D.	0.1	N.D.	N.D.		
Calcium, Ca	215.1	mg/L	0.02	31	22	32	37		
Carbonate	SM2330B	mg/L	2	N.D.	N.D.	N.D.	8		
Chloride Cl	325.3/9252	mg/L	1	10	9	11	18		
Electric conductivity	120.1/9050	$\mu S/cm$	[′] 1	303	285	280	383		
Fluoride, Total F^-	340.2	mg/L	0.1	0.6	3.5	0.6	0.8		
Iron	236.1/7380	mg/L	0.1	N.D.	N.D.	N.D.	0.2		
Magnesium, Mg, by AA	242.1/7450	m mg/L	0.002	6.0	4.1	5.9	9:0		
pH	150.1/9040	pH Unit	0.01	8.24	8.10	8.24	8.52		
Potassium, K, by AA	258.1/7610	mg/L	0.01	1.5	1.2	1.4	2.6		
Sodium, Na, by AA	273.1/7770	mg/L	0.003	24	35	18	30		
Hydroxide	SM2330B	mg/L	2	N.D.	N.D.	N.D.	N.D.		
Sulfate (SO_4^{-})	375.4/9038	mg/L	2	11	15	8	32		
Solids, Total Dissolved (TDS)	169 1	mg/L	10	193	187	177	233		
Total Anions	Calc.	meq/L		3.11	2.76	2.80	3.48		
Total Cations	Calc.	m meq/L		3.13	2.99	2.90	3.96		
Hardness by Titration	130.2	$mgCaCO_3/L$	1	108	74	110	136		
Phosphorus, Orthophosphate	365.2/365.3	mg/L	0.01	N.D.	0.03	0.05	0.02		
Nitrate (NO3-N)	SM4500NO3D	mg/L	0.5	1.4	0.9	0.9	2.7		

PQL : Practical Quantitation Limit

SM : Standard Methods for Examination of Water and Waste Water.

N.D.: Not Detected or less than the quantitation limit.

Respectfully submitted, Director

Director Applied P & Ch Laboratory

CADHS ELAP CERTIFICATION NUMBER 1431

and the second s	1		- · ·	·				CHAINO		
CALIFORNIJ SANTA ANA 1010 IOWA AVENI NIVERSIDE, CA 92 140NE: (714) 782	A REGIONAL WATER QUALIT REGION UE, SUITE 100 2507-2409 14130	Y CONTROL	BOARD				Date_	8-3-9	9Page	
ABORATORY	1. H	751		PROJECT	MANAGER		Nu	- M	er ti	
ECTION	<u> </u>	000	/ K is	PHONE NU	IMBER 7	7 8·2 -	4137)		
ROJECT NAN	City Creek			SAMPLER	S: (Signature)	al	la .	Bacon	(782	2-4962)
SAMPLE NUMBER	LOCATION DESCRIPTION	DATE	TIME	SAMPL WATER Comp. Gat		BOLID	NO. OF CNTNRS		TESTS REQUIRED	<u> </u>
CI	City Creek althey 330	8/3/94	9:50	λ			3	Total (o Std.	liform Ge Minerals	neral Nutrie.
WFZ	West fork	x/2/97	(0:33	X	2		3		fry	
9F3	East forh	8/3/14	11:15	×			- 3		Ч :	
C4	City Geck @ Highland	8/3/94	11:45	y y	2		3	1		
e esta Sec						·				
						,				
-inquished b	mi Ale BCc	ฑ	Received by:	(Signature)			·		Date B-3-94	4:00
HINQUISHED D	Aunquished by: (Signature)				(Signatura)				Pate	I/Time
inguished h	slinguished by: (Signature) Received by A (Signature)			Mobile Laboratory for lield analysis:					Date	Time
spatched by:	spatched by: (Signature) Date/Time		Received for Laboratory by:						Date	//ime
ethod of Ship	muni.			<u> </u>		······································				
Hecial Instructions;									TASK CODE	
					1				ESTIMATED	COST

ць Н

Ľ,