Los Trancos Zreek (8-74

Richard F. Ford, Ph.D. Aquatic Environmental Services

4202 POINT LOMA AVENUE SAN DIEGO, CA 92107-3954 (619) 224-8912 FAX (619) 224-8912 e-mail rfford@msn.com

July 11, 2001

Mrs. Hope M. Smythe Environmental Specialist IV California Regional Water Quality Control Board Santa Ana Region 3737 Main Street, Suite 500 Riverside, CA 92501-3339

Dear Mrs. Smythe:

Enclosed are four bound copies and one unbound copy of the document entitled Water Quality and Marine Ecological Monitoring Studies for the Crystal Cove Development Project: Third Quarterly Report for the Period July 1 - September 30, 2000. One of the bound copies, for your agency file, contains the complete laboratory QA/QC documentation in Appendices A and B.

If you should have questions about this report, I will be happy to discuss them with you. I appreciate the continuing opportunity to assist the Regional Board in this project.

Sincerely.

Richard F. Ford, Ph.D. Consultant and Professor Emeritus of Biology San Diego State University

Gerard Thibeault, SARWQCB С Joanne Schneider, SARWQCB 🗸 Roberta Marshall, ICDC Sat Tamaribuchi, TIC

WATER QUALITY AND MARINE ECOLOGICAL MONITORING STUDIES FOR THE CRYSTAL COVE DEVELOPMENT PROJECT:

THIRD QUARTERLY REPORT FOR THE PERIOD JULY 1 – SEPTEMBER 30, 2000

BY

Richard F. Ford, Ph.D. San Diego State University and Hubbs-Sea World Research Institute

Barbara B. Hemmingsen, Ph.D. San Diego State University

Michael A. Shane, M.S. Hubbs-Sea World Research Institute

PREPARED FOR

California Regional Water Quality Control Board Santa Ana Region 3737 Main Street, Suite 500 Riverside, CA 92501-3339

and

Irvine Community Development Company 550 Newport Center Drive Newport Beach, CA 92658-6370

June 18, 2001

TABLE OF CONTENTS

EXECUTIVE SUMMARY	i
INTRODUCTION Project Personnel and Supporting Laboratories	1 2
STUDY DESIGN AND STATION PLACEMENT Basic Design Features Sampling Stations	3 3 3
SAMPLING PROCEDURES Procedures and Timing for Water Quality Sampling During Non-Storm Periods in the Watershed and Surf Zone	4
Procedures and Timing for Water Quality Sampling During Non-Storm Periods at the Subtidal Stations	6
Processing and Documentation of Water Quality Samples	6
WATER QUALITY CRITERIA FOR RUNOFF CONSTITUENTS	7
Criteria for Trace Metals Importance of Employing Only the Most Applicable and Realistic Criteria	7 8
Criteria for Nitrate + Nitrite	10
Criteria for Organophosphorus Pesticides	. 10
RESULTS AND DISCUSSION OF WATER QUALITY	
STUDIES FOR DRY-WEATHER RUNOFF	11
Basic Water Quality Data for Dry-Weather Conditions	11
Evaluation on Water Quality Data For Dry Weather Runoff	11 12
Runoff Flow Velocity	12
Effects of Ocean Salinity and Water Clarity Trace Metals	12
Nutrient Chemicals	12
Organophosphorus Pesticide Compounds	15
Oil and Grease	15
Total Suspended Solids	15
Freshwater Hardnes	15
Comparisons with Other Areas of Southern California	15
General Conclusions	16
INDICATOR BACTERIA	16
Emerald Canyon	16
Muddy Canyon	17
Las Trancos Canyon	17
General Conclusions	18

FRESHWATER TOXICITY TESTING FOR DRY-WEATHER RUNOFF	19
Procedures	19
Results and Discussion of Toxicity Testing	19
Acute Test Results	20
Chronic Test Results	20
Relationship to Concentrations of Runoff Constituents	20
General Conclusions	21
REFERENCES CITED	23
FIGURES	27
TABLES	41

EXHIBIT 1

Results and Interpretation of Toxicity Testing Employing Dry-Weather Runoff Sample of September 12, 2000 Report prepared by the Bioassay Laboratory of Ogden Environmental and Energy Services, Inc., San Diego, CA.

APPENDIX A

Complete laboratory reports of water quality analyses and associated QA/QC documentation prepared by Del Mar Analytical and Subcontractors for samples taken in the Crystal Cove Monitoring Study during the period July 31 – September 30, 2000.

APPENDIX B

Complete laboratory reports of water quality analyses and associated QA/QC documentation prepared by Aqua-Science Environmental Toxicology Consultants for samples taken in the Crystal Cove Monitoring Study on September 12, 2000.

EXECUTIVE SUMMARY

During the period July - September 2000, this monitoring study involved sampling of freshwater runoff at one point upstream and near the downstream end of three watersheds (Los Trancos, Muddy, and Emerald Canyons) and concurrent sampling of seawater at surf zone sites where these watersheds flow into the ocean. Monitoring was conducted at five of the nine station sites during dry-weather flows. No dry-weather runoff was observed in the Muddy Canyon or Emerald Canyon watersheds during July-September, 2000. The primary objectives during this period were to:

- Sample dry-weather runoff from Los Trancos Canyon (and in Muddy and Emerald Canyons if there is flow), with sampling times determined by upstream irrigation schedules, in order to evaluate water quality during such runoff.
- Measure and evaluate data for suspended and dissolved solids, water hardness, oil and grease, concentrations of important inorganic and organic chemical constituents, and pathogen indicator bacteria in the existing freshwater runoff from the three major watersheds.
- Measure and evaluate corresponding levels of these same constituents and ocean salinities where dry-weather runoff enters surf zone.
- Evaluate the above data to compare levels of constituents among station sites .
- Evaluate data for indicator bacteria taken by Orange County (OCEHP) at their coastal station series.
- Obtain and evaluate additional indicator bacteria data from sampling of dry-weather runoff at the monitoring stations of the Crystal Cove Project.
- Conduct laboratory toxicity determinations employing *Ceriodaphnia dubia* exposed to water samples obtained during dry-weather runoff from the lower watershed stations in Los Trancos and Muddy Canyons.
- Evaluate these water quality data and their potential effects on aquatic organisms.
- Continue laboratory work and data analysis associated with quantitative marine ecological studies of benthic invertebrates, algae, and surfgrass epiphytes in rocky intertidal and rocky subtidal habitats adjacent to the control site (Emerald Canyon) and adjacent to Muddy and Los Trancos Canyons.

The major results of this study for the period July - September 2000 were:

- Trace metals in dissolved form did not exceed CTR water quality criteria at any station sampled in the dry-weather runoff on July 31, September 12 and September 29, 2000.
- In the surf zone, total recoverable concentrations of trace metals either were below laboratory detection and reporting units (ND) or were present at levels below appropriate water quality objectives of the California Ocean Plan.
- Comparisons indicated that the concentrations of the physical and chemical constituents of dry-weather runoff in the watershed of Los Trancos Canyon for the July September samples were within the ranges typical of other, similar southern California watersheds. The only exception was a relatively high concentration of the organophosphorus pesticide diazinon at Station LT on September 12, 2000.
- Dry-weather runoff flow had no evident or measurable effects on the concentrations of these constituents in the surf zone.
- In combination, and with the exception of the value for diazinon, these results indicate that the dry-weather runoff on July 31, September 12 and September 29, 2000, had no adverse effects on the water quality of Los Trancos Canyon. They also indicate that this runoff caused no adverse changes in the water quality characteristics of the adjacent surf

zone. Given these conditions, the dry-weather runoff would be expected to have no adverse effects on marine organisms of the Irvine Coast ASBS. Analyses of the continuing monthly sampling series during the period October 2000 – January 2001, will help to determine if these dry-weather runoff conditions remain the same or change over the course of the year.

- Dry-weather samples taken in Los Trancos Canyon contained indicator bacteria in concentrations that were sometimes above the single sample limits for fecal coliforms and enterococci. However, the entry of this runoff into the ocean rapidly dilutes or kills the bacteria to the extent that their numbers fall below the detection limit of the methods used and do not represent a problem.
- Dry weather diversion of these low flows into the Orange County sewer system will help to eliminate potential problems with indicator bacteria.
- Emerald Canyon and Muddy Canyon had no flow or no standing water for most of the period July September 2000. Because of this, the indicator bacteria present in water collected from these creeks did not enter the ocean, and the surf zone samples contained very low numbers of indicator bacteria.
- The results of the toxicity testing of *Ceriodaphnia dubia* exposed to a dry-weather runoff sample taken at Station LT on September 12, 2000, showed significant acute (48 hour) toxic effects on survival and chronic (7 day) toxic effects on survival and reproduction of this test species. Concentrations of all constituents in this runoff sample, except diazinon, were lower than those expected to produce toxic effects on *C. dubia* The relatively high concentration of diazinon was most likely responsible for these toxic effects.
- Because the USEPA is phasing out the use of the insecticide compounds diazinon and chlorpyrifos, potential problems of their toxicity in runoff water will be reduced over time.
- Planned diversion to the sanitary sewer of dry-weather runoff and its constituents in Los Trancos and Muddy Canyons also will help to eliminate potential problems with pesticides there.

WATER QUALITY AND MARINE ECOLOGICAL MONITORING STUDIES FOR THE CRYSTAL COVE DEVELOPMENT PROJECT:

THIRD QUARTERLY REPORT ON WATER QUALITY DATA FOR THE PERIOD JULY 1- SEPTEMBER 30, 2000

Richard F. Ford, Ph.D. San Diego State University and Hubbs-Sea World Research Institute

Barbara B. Hemmingsen, Ph.D. San Diego State University

Michael A. Shane, M.S. Hubbs-Sea World Research Institute

June 18, 2001

INTRODUCTION

This document represents the third quarterly report for 2000 concerning the water quality and marine ecological monitoring studies for the Crystal Cove Development Project conducted during 2000. The purposes and specific approaches employed in the monitoring effort are described in the study plan for the work (Ford 2000), in the first quarterly report dated May 12, 2000 (Ford et al 2000a), and in the analytical report dated June 2, 2000 (Ford et al 2000b).

During July – September 2000, monitoring studies of dry-weather runoff were conducted within and just offshore of the watersheds for the Crystal Cove Development Project, Phases IV-3 and IV-4, and for an adjacent control study area in and just offshore of Emerald Canyon. All subsequent references in this document to the Crystal Cove Project concern those two phases of the Crystal Cove Development Project. The approaches used in the monitoring studies as a whole are intended to provide accurate and pertinent quantitative evidence about the potential effects of storm water runoff and dry-weather flows from these watersheds on freshwater and ocean water quality and on inshore marine habitats and organisms of the Irvine Coast Marine Life Refuge Area of Special Biological Significance.

This third quarterly report includes information on the results of dry-weather sampling for water quality constituents and pathogen indicator bacteria conducted on July 31, September 12, and September 29, 2000. In addition, it describes the related results of toxicity bioassays employing the freshwater crustacean *Ceriodaphnia dubia* exposed to

dry-weather runoff water sampled at Los Trancos Canyon Station LT on September 12, 2000.

Project Personnel and Supporting Laboratories

Dr. Richard F. Ford had overall responsibility for coordination and management of the water quality and marine ecological studies during the reporting period. In addition, he had responsibility for sampling and analyses of water quality constituents and marine ecological data. Dr. Barbara B. Hemmingsen had responsibility for analysis and interpretation of the data for pathogen indicator bacteria. Michael A. Shane and his staff of the Hubbs-Sea World Research Institute in San Diego, CA, were responsible for coordination of ecological field studies, water quality and ecological sampling, sampling at the subtidal stations, data management, and computer-assisted summarization and analyses of the data.

Water quality samples were taken in the watershed and at the surf zone stations during dry-weather runoff by the staff of the Maintenance Department at the Pelican Hill Golf Course, Newport Coast, CA. Richard Swinhart of that Department coordinated this effort. He also planned dry-weather sampling in relation to irrigation schedules. Paul Simpson, a doctoral candidate at the Institute of Marine Science, University of Alaska Fairbanks, was responsible for the studies of algal epiphytes on surfgrass. His continuing work involved laboratory analyses of the samples.

Del Mar Analytical of Irvine and Colton, CA, conducted a majority of the analyses for constituents of runoff and ocean water. James Hatfield of Del Mar Analytical, Irvine, coordinated this effort. Laboratory sub-contractors also conducted some analyses. Sierra Analytical, Inc. of Laguna Hills, CA, did the analyses of nitrate + nitrite and of the indicator bacteria. Sequoia Analytical of Morgan Hill, CA, conducted the analyses of organophosphorus pesticide compounds, as well as some supplementary analyses of trace metals. High accuracy Enzyme-linked Immunosorbant Assay (ELISA) determinations of chlorpyrifos and diazinon were conducted for selected water samples by Aqua-Science of Davis, CA. In addition, the Bioassay Laboratory of Ogden Environmental and Energy Services Company, Inc. in San Diego, CA, conducted acute and chronic toxicity testing under the direction of Chris Stransky. The complete, original data sets and OA/OC documentation provided by these State-certified laboratories form part of the third quarterly report as Exhibit 1 and Appendices A and B. Complete sets of these laboratory documents were provided to the SARWQCB and the Irvine Community Development Company in hard copy form and in Excel computer format with the third quarterly report of June 18, 2000. These data sets are available from the SARWQCB.

STUDY DESIGN AND STATION PLACEMENT

Basic Design Features

The study design employs a modified version of the Before and After Control Impact (BACI) approach (Schmitt and Osenberg 1996). Station placement (figure 1) was planned to sample representative conditions in upper and lower portions of the freshwater watershed, in the surf zone and intertidal area, and at subtidal locations sufficiently close to the shore so that the influences of watershed runoff, if any, might be detected. It is important to recognize that sampling at these stations is intended to provide representative information about conditions existing at the sites where and at the times the samples were taken.

It was not possible to establish stations in the upper reaches of the three canyon watersheds, because of access constraints. However, in Muddy and Emerald Canyons it was possible to place these upper watershed stations far enough upstream so that they received no runoff flow from developed areas of the watershed. Therefore, they are representative of those undeveloped, upstream watershed areas. In Los Trancos Canyon, it was possible to place the upper watershed station far enough upstream so that it received no runoff from the developed portions of the Newport Coast Planned Community Phases IV-1 and IV-2, but not upstream of all other development. Therefore, this station reflects the combined effects of the undeveloped portion of the canyon and of existing development within the watershed.

Standard randomization procedures were employed in both the ecological sampling and toxicity testing to help reduce variability, to assure that the assumptions for use of statistical testing are met, and to obtain ecological data that are representative of the populations and species associations sampled.

Sampling Stations

Three sampling station series (study areas) were established. The locations of these study areas and stations are shown in Figure 1. They were employed in the combined water quality and marine ecological field studies within and just offshore from the watersheds of Emerald Canyon (Control Station Series EC), Muddy Creek/Muddy Canyon (MC Series), and Crystal Cove Creek/Los Trancos Canyon (LT Series). For each, one freshwater watershed station was placed downstream near the point where freshwater storm and dry-weather runoff flows to the ocean (Stations EC, MC, and LT). These stations were established just upstream and adjacent to the arch culverts that carry water under Pacific Coast Highway (PCH) and receive runoff from PCH as well as other sources. Station MC receives runoff from PCH, El Morro School, the Crystal Cove State Park Headquarters, and Laguna Beach County Water District facilities. Station LC receives runoff from PCH, the Pelican Hill Golf Course, existing development, and Los Trancos parking lot. One additional freshwater sampling station was established at an appropriate location farther upstream in each watershed that did not receive runoff from developed areas in Muddy and Emerald Canyons and from the developed portion of

Phase IV in Los Trancos Canyon. Those upstream locations, designated Stations ECU. MCU and LTU, were as follows:

Station	Location
ECU	Emerald Canyon, just upstream of the Swanson Park swimming pool area and all Emerald Bay residences.
MCU	Muddy Canyon, just north of the Crystal Cove State Park Headquarters and upstream of all grading activity.
LTU	Los Trancos Canyon, adjacent to most upstream golf cart bridge of the Pelican Hill Golf Course. This station is affected by existing development within the upstream watershed

Data from the above sites were used to evaluate water quality in upstream segments of these watersheds and to consider possible effects of runoff constituents on freshwater organisms present there.

Water quality and ecological sampling stations were established in the surf zone directly opposite the mouths of these three canyon watersheds (Stations EC-1, MC-1, and LT-1), and in directly adjacent rocky intertidal habitats (Figure 1). Subtidal stations (EC-2, MC-2, and LT-2) were established directly offshore from these intertidal/surf zone sites, at a depth of 20 ft MLLW. These subtidal stations (Figure 1) were situated in rocky subtidal habitats that were ecologically similar among the three station locations, so that direct comparisons of data could be made between them.

The positions of all stations were determined and recorded by using global positioning system receivers. These positions are provided in Ford et al (2000a-b; Table 1). The GPS receiver and underwater markers were used to relocate subtidal stations during subsequent sampling.

SAMPLING PROCEDURES

Procedures and Timing for Water Quality Sampling During Non-Storm Periods in the Watershed and Surf Zone

Over the first year of monitoring, the study plan specified that water quality samples were to be taken once per month during non-storm (dry-weather) runoff conditions at three stations associated with each of the three watersheds, when there was flow at those stations. The nine stations are:

Los Trancos Canyon LTU LT LT-1 Muddy Canyon MCU MC MC-1 Emerald Canyon ECU EC EC-1

Three such sample sets were taken during the third quarter on July 31, September 12, and September 29, 2000, and data from those samples are considered in this report. Timing of the dry-weather flow sampling was coordinated directly with the irrigation schedule for the portion of the Pelican Hill Golf Course that contributes runoff to Los Trancos Canyon. In addition, and to the extent possible, this sampling was coordinated with known watering schedules for residential and roadside landscape areas upstream, that are not part of the Crystal Cove Project, from which substantial amounts of runoff enter Los Trancos Canyon between Stations LTU and LT. The approach was to take dry-weather flow samples early in the morning, following irrigation during the previous night and early morning hours. In this way, the possible effects of irrigation on dry-weather runoff could be evaluated.

Samples for analysis of water quality constituents and salinity were taken once in the early morning on a given dry-weather sampling day at each station where there was flow. The same methods used in the storm water sampling were employed, as described by Ford et al (2000a-b). Measurements of water and air temperatures and observations of cloud cover, color and turbidity of the water, and wave height also were obtained (Ford et al 2000a-c).

At locations where there was flowing water of sufficient depth in the runoff channel, the velocity of runoff water movement was determined. This was done by marking off an exact distance of 10 ft along the axis of runoff flow, using small metal stakes with flags on them. A ping-pong ball was released at the upstream stake and a stopwatch started simultaneously. The number of seconds required for the ping-pong ball to reach the stake 10 ft downstream was recorded. It was not possible to use a current meter, because the depth of the flowing water during dry-weather flow generally was too shallow. These measurements were then converted to current velocity in feet per second. The Pelican Hill staff made three replicate measurements at each station during dryweather flow sampling. Initial trials involving 10-20 replicate measurements showed that this method is accurate to within about 0.1 second. The only conditions under which this might not be the case would be during strong winds.

In addition, those making the velocity measurements always selected a runoff path of fairly uniform water width and depth. They measured and recorded this mean width and mean depth, as a basis for making approximate estimates of flow rate. These data are provided in this report, but flow rates were not calculated based upon them.

If there was no flowing water at a station site, no samples were taken there. Full sets of samples, plus those for salinity, also were taken during each monthly sampling at the three surf zone stations (LT-1, MC-1, and EC-1), whether or not there was flow

upstream in that watershed. This was done to provide comparative data for surf zone sites receiving dry-weather runoff and those not receiving it.

The Environmental Health Division of the Orange County Health Care Agency takes samples frequently at six of the nine watershed and surf zone monitoring stations employed in the Crystal Cove Project as part of their Bacteriological Monitoring Program (OCEHP). Data on pathogen indicator bacteria from this program are used directly in the Crystal Cove monitoring study. The watershed and surf zone (beach) stations employed in this ongoing bacteriological sampling program that are located in closest proximity to the Crystal Cove Development sites are shown in Figure 2. In addition, sampling for indicator bacteria was conducted by the Pelican Hill staff at all dry-weather flow sites where there was runoff. Dr. Barbara Hemmingsen evaluated the data from these stations, together with pertinent sets of data obtained by the Orange County Health Care Agency.

Procedures and Timing for Water Quality Sampling During Non-Storm Periods at the Subtidal Stations

Quarterly sampling is carried out at the three subtidal stations (LT-2, MC-2, and EC-2) to obtain water quality data, including data for indicator bacteria. This work, conducted by staff of the Hubbs-Sea World Research Institute, is done from the "Doctor J," a 25 ft work boat, using the same methods described for the storm event sampling at the subtidal stations (Ford et al 2000a-b). Data on water quality constituents and bacteriological indicators are obtained from both surface and near-bottom water at each of these three stations. Measurements are made of air temperature, surface and bottom water temperatures, Secchi disk depth (water clarity), cloud cover, wave height, and turbidity. Data for the subtidal stations are used to establish levels of chemical constituents present there during non-storm conditions. This information is employed as part of the basis for evaluating potential effects of dry-weather runoff. Quarterly sampling was conducted at the three subtidal stations during dry-weather periods on June 26 - 27, 2000, (data previously evaluated in Ford et al 2000b) and again on October 12, 2000 (data to be evaluated in final report for 2000). Because both these sets of subtidal samples were taken just outside of the July – September third quarter period, the results are not reported in this document.

Processing and Documentation of Water Quality Samples

Water quality samples were taken and held in polyethylene or amber glass bottles, using the standard treatment and refrigeration methods specified by Del Mar Analytical of Irvine, CA. Water samples for analysis of indicator bacteria were taken using sterile plastic containers provided by the laboratory. The field technicians completed chain of custody forms for all samples. A courier from Del Mar Analytical, Irvine then transported these samples and records to that laboratory as soon as possible after sampling and within the established time limits set by the analytical laboratories involved.

The constituents of runoff water and ocean water analyzed in the study are shown in Table 1, together with the specific analytical methods that were used and the reporting

limits attained. Del Mar Analytical and three affiliated laboratories analyzed all but one of the constituents of storm water samples taken at all freshwater watershed and ocean stations. These laboratories are all State-certified. James Zimmer analyzed the salinity samples at San Diego State University. These were measured to the nearest 0.01 ppt, using a Plessey Model 6230N oceanographic laboratory salinometer accurate to ± 0.001 ppt, which compares the sample to standard seawater. This instrument was calibrated prior to each series of sample runs. Standard Quality Assurance/Quality Control (QA/QC) procedures were employed in all of this laboratory work, as documented in Appendices A and B.

Detection limits employed by Del Mar Analytical and affiliated laboratories for analyses of all the chemical constituents were selected to be lower than the chronic toxicity criteria specified in the California Ocean Plan (CSWRCB 1997) and for freshwater in the EPA California Toxics Rule (USEPA 2000a), where reasonably feasible. Selection of the constituents for the baseline study was based in part on information provided in U.S. Environmental Protection Agency guidelines (USEPA 1992, 1996, 2000a-b) and from recommendations by Frank T. Melbourne and others of the Storm Water Group at the San Diego Regional Water Quality Control Board, water quality specialist Bruce Moore of the Orange County Public Facilities and Resources Department (pers. comm.), and Hope Smythe, Joanne Schneider and other staff members of the Santa Ana Regional Water Quality Control Board.

WATER QUALITY CRITERIA FOR RUNOFF CONSTITUENTS

Shown in Tables 2 - 4 are the primary water quality criteria that are used in the monitoring study for the Crystal Cove Development Project. These criteria were specified by the staff of the Santa Ana Regional Water Quality Control Board (SARWQCB) for use as guidance in evaluating dissolved and total recoverable concentrations of trace metals present in freshwater runoff and ocean water.

Criteria for Trace Metals

Two different sets of criteria for trace (heavy) metals were specified by the SARWQCB. For the freshwater watershed, the water quality criteria contained in the recently promulgated EPA California Toxics Rule (USEPA 2000a) are used for guidance.

In this regard, it is essential for the reader to note an important change in the way freshwater quality criteria for trace metals are applied by the EPA California Toxics Rule, effective May 18, 2000 (USEPA 2000a). As indicated on page 31690 of that document, the EPA states:

The Agency received extensive public comment during the development of the NTR regarding the most appropriate approach for expressing the aquatic life metals criteria. The principal issue was the correlation between metals that are measured and metals that are bio-available and toxic to aquatic life. It is now the Agency's policy that the use of dissolved metals to set and measure compliance with aquatic life water quality standards is the recommended approach, because

dissolved metal more closely approximates the bio-available fraction of the metal in the water column than does total recoverable metal.

In addition, the pertinent tables provided in this final version of the California Toxics Rule (CTR) no longer contain acute or chronic water quality criteria based on trace metals in total recoverable form. Only criteria based on dissolved trace metals are included.

Measurements of freshwater hardness are essential in calculating the specific water quality criteria values for protection of aquatic organisms that apply to most trace metals (USEPA 2000a). The primary sources of calcium and magnesium in freshwater are their mineral forms that contain carbonate. Because of this, as water hardness increases there is a corresponding increase in the concentration of carbonate ions (Drever 1997, Moore and Ramamoorthy 1984). These and the resulting bicarbonate and hydroxide ions can form weakly bound molecules, called complexes, with copper, zinc, lead and other trace metal ions. This reduces the concentration of potentially toxic trace metal ions in the water. As a result, the concentrations of these metal ions that are biologically available are reduced, with a corresponding reduction in their potential toxic effects on aquatic organisms. For this reason it is important to know the hardness of a freshwater sample in order to evaluate the possible toxic effects of trace metals it contains (USEPA 2000a).

Concentrations of the seven trace metals cadmium, chromium, copper, lead, nickel, silver, and zinc evaluated in this study are dependent on the hardness of the water in which they occur. Because of this, the CTR (USEPA 2000a) requires the water quality criteria for these trace metals to be adjusted as a function of water hardness. The adjusted criteria for the dissolved fraction of these six trace metals are shown in Tables 2 and 3 for the specific hardness values of the monitoring study samples. These values were calculated by using the standard equations and the constants described in USEPA (2000a). These corrected criteria values were applied to data for the seven hardnessdependent trace metals in this study. The sample measurements for chromium were compared with the CTR criteria for Chromium III (Tables 2B and 3B), as it is the form that makes up all or nearly all of the total chromium measured. There is no evidence that the toxic chromium VI (hexavalent chromium) is present in relatively natural canyon watersheds of this kind. Note that for water with a hardness value of 400 mg/L or greater, the CTR specifies that the criteria be adjusted using 400mg/L as the ceiling value. Therefore, the water quality criteria values for the category > 400 mg/L in Tables 2 and 3 apply to all samples with freshwater hardness values > 400 mg/L. All hardness-corrected values shown in these tables are expressed in mg/L, to allow direct comparison with the water quality data tables in this report. For those data tables, Del Mar Analytical reported all trace metal concentrations in mg/L.

Importance of Employing Only the Most Applicable and Realistic Criteria

In addition, separate freshwater criteria are shown based on acute (Table 2) and chronic (Table 3) levels of toxicity. The almost universally accepted approach is to apply only the acute toxicity criteria (CMC) as guidance in evaluating constituents from storm

water runoff samples taken in southern California. This is because the exposures to chemical constituents during typical storms are of short duration, generally comparable to those of acute toxicity tests. There is no scientific or logical basis for applying chronic toxicity criteria (CCC) to the chemical constituent data obtained from samples of storm water runoff. The reason for this is that these chronic water quality criteria are based on long-term toxicity tests involving exposure of aquatic organisms to the same levels of potentially toxic chemicals for a period of seven days. Because storm runoff from coastal canyons in southern California lasts no more than 2-24 hours at most, the results of such multi-day chronic exposures are a very poor model and have no validity in this case. Using them for evaluations of storm water runoff is, in fact, misleading. For this reason major groups involved, such as URS Corporation and GeoSyntec Consultants, use only acute toxicity criteria in evaluating the constituents of storm water runoff in southern California (Peter Mangarella, URS Corporation, Oakland, CA, pers. comm., April 2000). This same logical convention is being applied in the monitoring studies for the Crystal Cove Development Project. Because the results described in this third quarterly report concern only dry-weather runoff, the acute criteria shown in Table 2 are provided primarily for comparison.

Based on this same reasoning, the chronic toxicity criteria (CCC) are used as guidance in evaluating concentrations of constituents in relatively continuous, dryweather (non-storm) runoff. Acute toxicity criteria are often used in addition for comparative purposes. This convention also is being used in the monitoring study for the Crystal Cove Development Project.

Shown in Table 4 are the water quality criteria or objectives that are being used for guidance in this monitoring study to evaluate trace metals in coastal ocean water at the surf zone and subtidal stations, as specified by the SARWQCB. They are the objectives established by the California Ocean Plan (CSWRCB 1997; Table B). These standard objectives, which require no correction for water hardness, apply only to the total recoverable concentrations of trace metals. Both the instantaneous maximum and daily maximum water quality objectives provided in the California Ocean Plan are being used to evaluate the data for the Crystal Cove Project, as specified by the staff of the Santa Ana Regional Water Quality Control Board.

It is important for the reader to note that values exceeding the above criteria and guidelines do not necessarily indicate that a water quality problem exists, as they are employed only for guidance in the evaluation process (Lee and Jones-Lee 1995). This is particularly true of values for trace metals in un-dissolved form, because in most cases they are not biologically available and exist in non-toxic form (Makepeace et al 1995, Drever 1997, Eisler 1998, Lee et al 1999). Dr. Edward Goldberg, an internationally recognized geochemist specializing in trace metals, stated that water quality criteria for trace metals are not toxic to aquatic organisms (pers. comm., 2000). In addition, he has concluded that, with the exception of mercury, the concern about the toxicity of trace metals in general has been over-emphasized.

Criteria for Nitrate + Nitrite

The California Toxics Rule and the California Ocean Plan do not include criteria for any of the other chemical constituents evaluated in this water quality monitoring study. For purposes of general guidance, criteria established and employed by other agencies have been used to evaluate these other data. Application of these criteria is not specified or required by the SARWQCB.

Nitrogen in the form of nitrate + nitrite is not considered as a toxic pollutant, but rather as a nuisance substance if present in runoff or receiving water at excessive concentrations. The Santa Ana Region (8) Basin Plan (SARWQCB 1995) has established a water quality guidance objective for nitrate + nitrite (as N) of 10 mg/L in freshwater. There is no such guidance objective for ocean water.

Criteria for Organophosphorus Pesticides

Water quality criteria for two of the three organophosphorus pesticide compounds of greatest concern (Table 1), diazinon and chlorpyrifos, were established by the USEPA (1986, 1998). The acute water quality criterion (CMC) established by EPA (1998) for diazinon in freshwater is $0.09 \ \mu g/L$; a chronic water quality criterion (CCC) for diazinon in freshwater has not been established by that agency. The acute water quality criterion (CMC) for chlorpyrifos in freshwater established by USEPA (1986) is $0.083 \ \mu g/L$, while the chronic criterion value (CCC) is $0.041 \ \mu g/L$.

Chlorpyrifos is the compound widely used in the pesticide products Dursban and Lorsban. It is used extensively in products employed to exterminate termites, ants, roaches, fleas and other home and garden pests. In addition, it is employed to control pests on apple trees, grape vines and other agricultural crops.

The USEPA has instituted a phase-out of chlorpyrifos for household and garden use, as well as in schools and other facilities frequented by children. This is because exposure to its residue is considered hazardous to the health of children. Professional exterminators will be prohibited from using these pesticides in all other types of buildings by the end of 2001. The six manufacturers of chloropyrifos-based pesticides have agreed to stop their production for residential use by January 2001. The agency also has instituted a phase-out of diazinon. However, use of both these compounds probably will continue for some time at a lower level until existing supplies are exhausted.

The chronic water quality criterion (CCC) for Demeton in freshwater is 0.10 μ g/L (USEPA 1998). No acute water quality criterion has been established for this compound. Similarly, USEPA (1998) reported acute (CMC) and chronic (CCC) water quality criteria for the organophosphorus pesticide parathion in freshwater of 0.065 μ g/L and 0.013 μ g/L, respectively.

The following is a summary of these criteria for organophosphorus pesticide compounds ($\mu g/L$), as used for guidance in evaluations:

Water Quality Criteria for Freshwater Organisms

Constituent (µg/L)	Acute (CMC)	Chronic (CCC)
Chlorpyrifos	0.083	0.041
Demeton	-	0.10
Diazinon	0.09	-
Malathion	-	0.10
Parathion	0.065	0.013

These are discussed in subsequent sections of this report.

RESULTS AND DISCUSSION OF WATER QUALITY STUDIES FOR DRY-WEATHER RUNOFF

Basic Water Quality Data for Dry-Weather Conditions

The basic water quality constituent data obtained during dry-weather sampling are summarized in Tables 5-15. These include the summaries of field observations made when this sampling was conducted (Tables 5-7) and surf zone salinity data (Table 8). Water quality constituent data obtained from dry-weather sampling are shown for July 31 (Table 10), September 12 (Tables 9 and 11) and September 29, 2000 (Table 12). These same data sets are shown in Tables 13-15 for all five stations on a given date, allowing direct comparisons among stations. Data concerning indicator pathogen bacteria provided by the Orange County program (OCEHP), and taken primarily during dry-weather conditions, are summarized in Table 16. Basic data for indicator bacteria from dryweather sampling in the Crystal Cove monitoring study are shown in Tables 17-19.

Evaluation of Water Quality Data for Dry-Weather Runoff

The concentrations of trace metals in dry-weather samples taken in the freshwater watershed and at the surf zone stations were evaluated by comparison with the appropriate water quality objectives shown in Tables 2 - 4. Those objectives were: 1) the chronic (CCC) criterion for the trace metal in **dissolved form**, present in **freshwater** (California Toxics Rule, USEPA 2000a); 2) the instantaneous maximum criterion for the trace metal in **total recoverable form**, present in **seawater** (Table 4; Calif. Ocean Plan, CSWRCB 1997); and 3) the daily maximum criterion for the trace metal in **total recoverable form**, present in **seawater** (Table 4 and CSWRCB 1997).

The water quality criteria for nitrate + nitrite (as N) and those for the organophosphorus pesticides, as described in the previous section, also were used in these evaluations for guidance. It is important to note that use of these criteria is not required for the Project by the SARWQCB.

Water quality of dry-weather runoff was sampled in the freshwater watershed and surf zone on three dates during this quarter, July 31, September 12, and September 29, 2000. The sampling originally planned for late August 2000, was postponed to September 12th because of changes in the irrigation schedule at the Pelican Hill Golf Course. On all three dates, there was dry-weather flow at the three stations (LTU, LT and LT-1) in the watershed of Los Trancos Canyon, but none at any station in the Muddy Canyon and Emerald Canyon watersheds. Because of this, dry-weather runoff data were obtained at Stations LTU, LT and LT-1; for comparative purposes, these data also were taken at Surf Zone Stations MC-1 and EC-1.

Runoff Flow Velocity

Field observations and velocity measurements of runoff flow made during water quality sampling are shown in Tables 5 - 7. For all three dates, these observations indicate that the runoff water was relatively clear and there was no evidence of turbidity. The flow velocities of this runoff water also were relatively uniform, ranging from a mean of 0.6 ft/sec at Station LTU on September 12 (Table 6B) to a mean of 3.0 ft/sec at Station LTU on September 29, 2000 (Table 7B).

Effects on Ocean Salinity and Water Clarity

The salinities measured in the surf zone at Station LT-1 during this runoff sampling on all three dates were uniformly high (Tables 8 A - 8 C) and showed no evidence of being affected by the dry-weather runoff flow of freshwater. As shown in these three tables, the salinity levels at Station LT-1 were essentially the same as those measured for the same dates and time periods at Stations MC-1 and EC-1, which received no freshwater runoff. In addition, these salinities at Station LT-1 and at the other two stations were determined to be 100% of normal for the project study areas, based on measurements made under dry-weather (non-storm) conditions during the time periods from May - September, 2000, specified in Tables 8 A - 8 C. This indicates that the relatively low flow of freshwater in dry-weather runoff from Los Trancos Canyon had no effect on the salinity of seawater at Surf Zone Station LT-1 on the dates samples were taken.

Trace Metals

As shown in Tables 3 and 10-15, there were no instances for samples of July 31, September 12, and September 29, 2000, in which the concentrations of dissolved trace metals in dry-weather runoff at freshwater watershed Stations LTU and LT exceeded the chronic water quality standards to project aquatic life established by the CTR (USEPA 2000a). This is a significant result, and confirms the findings of earlier dry-weather runoff sampling conducted on during the period February – June 2000 (Ford et al 2000ac), which also showed no values exceeding these CTR standards. There were several instances in which low concentrations of dissolved nickel and zinc were present in runoff water at Station LTU and Station LT on July 31; similarly, low concentrations of nickel or zinc were present in the runoff water at Station LTU and Station LT on September 12. On September 29, low concentrations of dissolved nickel were present at Stations LTU and LT, and low levels of dissolved copper and zinc were present at Station LT (Tables 12 and 15). However, all of these concentrations were well below the chronic water quality criteria specified by the CTR (Table 3 and USEPA 2000a).

As shown in Tables 10-15, almost all of the samples taken at Surf Zone Stations LT-1, MC-1 and EC-1 had concentrations of trace metals in total recoverable form and dissolved form that were below laboratory reporting limits (ND). Concentrations of total copper observed at Surf Zone Stations MC-1 and EC-1 on September 29, 2000, were near the daily maximum water quality objective of the California Ocean Plan (Table 4). However, given that there was no dry-weather runoff to those sites, the concentrations of total copper were not from that source. This indicates that there would be no adverse effects on marine habitats and organisms of the Irvine Coast ASBS caused by trace metals entering the ocean in dry-weather runoff from Los Trancos Canyon.

Nutrient Chemicals

The nutrient chemicals in runoff water containing phosphorus and nitrogen are considered as biostimulatory or "nuisance" constituents in storm runoff, rather than toxic constituents (CRWQCB 1995). Excess nutrient biostimulation can degrade water quality when resulting algal blooms depress the dissolved oxygen concentration of the water; the death of fishes and other aquatic life can occur as a result. Algal blooms also can cause changes in the water such as coloration, increased turbidity, and floating algal mats and scum. This general condition produced by excess nutrients is called eutrophication. It normally occurs in standing or gently flowing bodies of freshwater and in poorly circulated, enclosed bays and estuaries receiving excess nutrient concentrations from runoff water.

It is a commonly held misconception that these effects also occur or are likely to occur in open coastal ocean areas of southern California. While natural phytoplankton (plant plankton) blooms are a regular phenomenon in the coastal ocean, there is no evidence at all in the scientific literature indicating that biostimulatory nutrients in storm runoff produce such blooms or other eutrophication effects on the open coast. Natural nutrient chemical concentrations are relatively low in coastal ocean areas during the winter period of storm runoff; as a result, phytoplankton and bottom-living algae rapidly use any additional nutrients entering coastal ocean water.

As shown in Tables 10-15, concentrations of total and dissolved phosphorus, total Kjeldahl nitrogen and nitrate + nitrite as N were present either at typical, low concentrations or below laboratory reporting limits (ND) in the freshwater watershed and at all surf zone stations for which dry-weather runoff sampling was conducted during the period July 31 – September 29, 2000. The results obtained were very similar to those for

•••••

previous dry-weather runoff sampling conducted during the period February - June 2000 (Ford et al 2000a-c). Values of nitrate + nitrite in the freshwater watershed ranged from 1.5 - 8.5 mg/L on July 31, September 12, and September 29, 2000, all below the water quality guidance objective of 10 mg/L employed in the Santa Ana Region (8) Basin Plan (CRWQCB 1995). Nitrate+ nitrite concentrations were highest on September 29, 2000 (Table 15).

The levels of these nutrient chemical constituents at the surf zone stations all were within typical levels for inshore coastal ocean waters. This indicates that nutrient chemicals entering the ocean in dry-weather runoff through Los Trancos Canyon would have no adverse effects on marine habitats and organisms of the Irvine Coast ASBS.

Organophosphorus Pesticide Compounds

Based on the results of analyses using EPA Method 8141, none of the dry-weather samples taken at the freshwater watershed stations and the adjacent ocean stations had concentrations of the 26 organophosphorus pesticide compounds (Table 1) that were above the laboratory reporting limits (all ND), as shown in Tables 10 - 15. These results are the same as the results reported for dry-weather sampling conducted during the period February – June 2000 (Ford et al 2000a-c). They indicate that dry-weather runoff through Los Trancos Canyon was relatively free of potentially toxic organophosphorus pesticides, at least in concentrations above the laboratory reporting limits used. It further indicates that these pesticides would not be introduced into the Irvine Coast ASBS at levels harmful to marine organisms.

Additional ELISA determinations of higher accuracy (Miller et al 1997) were conducted to measure the concentrations of chlorpyrifos and diazinon in the dry-weather runoff sample taken at Station LT on September 12, 2000. This was done in part to help evaluate the results of toxicity testing in which the daphniid cladoceran crustacean *Ceriodaphnia dubia* was exposed to that water sample. Their relationship to the results of these ELISA determinations also are considered in the section of this report entitled Freshwater Toxicity Testing for Dry-Weather Runoff.

The results of the ELISA determinations are shown in Table 9. The measured value for chlorpyrifos $0.0171\mu g/L$) is lower than the chronic and acute freshwater quality criteria reported by the USEPA (1986, 1998), which are $0.041 \mu g/L$ and $0.083 \mu g/L$, respectively. Concentrations of chlorpyrifos similar to that observed for Station LT are commonly reported in both storm water runoff and dry-weather flows elsewhere in southern California watersheds (Ogden Environmental 1999, 2000; URS Greiner Woodward Clyde 1999; Chris Stransky, Ogden Environmental, pers. comm., May 2000). The result for diazinon ($0.6534 \mu g/L$) is much higher than the established acute freshwater criterion of $0.09 \mu g/L$ reported by the USEPA (1998). The value also is much higher than the chronic freshwater criterion for diazinon of $0.05 \mu g/L$ proposed in an unpublished study by Siepmann and Finlayson (2000). This diazinon concentration of 0.6534 was not detected by EPA method 8141 (Table 11 B). There are no indications that

either chlorpyrifos or diazinon derived from discharges of the Crystal Cove Development Project.

Oil and Grease

As shown in Tables 10 - 15, oil and grease were not present above the laboratoryreporting limit (ND) at any of the freshwater and surf zone stations sampled during the period July 31 – September 29, 2000. This indicates that these constituents were not a major component of the dry-weather runoff and would not affect aquatic life either in the watershed or in the adjacent Irvine Coast ASBS.

Total Suspended Solids

Levels of total suspended solids (TSS) in the freshwater watershed and the surf zone during dry-weather runoff are shown in Tables 10-15. These TSS measurements, taken on July 31, September 12, and September 29, 2000, had the following means and ranges:

<u>Station</u> LTU	<u>Mean (mg/L)</u> 219	<u>Range (mg/L)</u> 18-400
LT .	230	20-430-
LT-1	104	80-140
MC-1	119	88-120
EC-1	115	98-150

Levels of TSS observed in the surf zone were relatively uniform at all three stations. These levels of TSS were generally similar to those measured for dry-weather runoff sampled during the period February - June 2000 (Ford et al 2000a-c).

Freshwater Hardness

Values for freshwater hardness (as calcium carbonate) at Stations LTU and LT ranged from 490 - 2200 mg/L in dry-weather runoff sampled on July 31, September 12, and September 29, 2000 (Tables 10-15). The results are generally similar to those for dry-weather flows sampled in February - June 2000 (Ford et al 2000a-c). Relatively high water hardness values are characteristic of Los Trancos Canyon watershed.

Comparisons with Other Areas of Southern California

Comparisons were made of these physical and inorganic chemical constituent concentrations with data from other similar sites in southern California. The comparative data included dry-water measurements for Orange County coastal watersheds provided by water quality specialist Bruce Moore of the Orange County PFRD, data obtained and evaluated by Ford (2001) for Dana Point Headlands, information for Orange and San Diego Counties in the files of the San Diego Regional Water Quality Control Board, and data reported by Bay and Schiff (1997), Bay et al (1998, 1999), SCCWRP (1999), Ogden Environmental (1999, 2000), and URS Greiner Woodward Clyde (1999). Data for nutrient chemicals also were compared with those reported for Del Mar Inshore Station 93.26 by CalCOFI (Internet web site data for 1997, 1998, 1999).

These comparisons indicated that the concentrations of all physical and chemical constituents of dry-weather runoff in the watershed of Los Trancos Canyon for the July 31, September 12, and September 29 samples were within normal ranges typical of those other, similar southern California watersheds. The comparisons, as well as the data shown in Tables 10-15, also indicate that dry-weather runoff flow had no measurable effects on the concentrations of these constituents in the surf zone. The levels of all constituents at these locations were within typical or normal ranges for inshore ocean waters of southern California.

General Conclusions

With the exception of the diazinon concentration at Station LT on September 12, these results indicate that the dry-weather runoff on July 31, September 12, and September 29, 2000, had no evident detrimental effects on the water quality of Los Trancos Canyon. They also indicate that this runoff caused no adverse changes in the water quality characteristics of the adjacent ocean. Given these conditions, the dry-weather runoff would be expected to have no adverse effects on marine organisms of the Irvine Coast ASBS. Analyses of the continuing monthly sampling series will help to determine if these dry-weather runoff conditions remain the same or change over the course of the year.

INDICATOR BACTERIA

Basic station data employed in this section for total coliforms, fecal coliforms and enterococci obtained in runoff and seawater samples during dry-weather runoff are summarized in Tables 17-19. Shown in Table 16 are data from the Orange County Environmental Health Monitoring Program (OCEHP), which conducts sampling for pathogen indicator bacteria at a large series of stations along the Orange County Coast. These station locations in closest proximity to the three study areas of the Crystal Cove Project are shown in Figure 2. Summary and analytical data are shown in Figures 3-14, as presented and discussed in the following sections.

Emerald Canyon

During the third quarter of 2000 (July – September), no sampling was conducted at freshwater watershed Stations ECU and EC, because there was no dry-weather runoff. No water was present in the Emerald Bay Drain (Figure 2). A primary reason for this is that the Emerald Bay Community diverted runoff water into the sanitary sewer system during the period May – October 2000. Because no flowing or standing water was present at the Emerald Bay Drain, located on the upper beach, OCEHP collected no samples there during the third quarter (Figure 34). However, samples were taken at Station EC-1 in the Emerald Cove surf zone by OCEHP (Table 16) and as part of the Crystal Cove water quality monitoring study (Tables 17 - 19).

The results of this sampling, summarized in Figure 4, show that very low numbers of fecal coliforms were present at Station EC-1 during July – September 2000. With two exceptions, similar low values of enterococci were present in these same water samples (Figure 5). The increased numbers of enterococci on days 208 and 213 (July 26 and 31) were not reflected in the fecal coliform counts. Whatever the reason for these two instances of higher counts, the numbers of enterococci had decreased to <10 MPN/100ml by the next OCEHP sampling the following day on August 1, 2000.

Muddy Canyon

In the third quarter, standing, not flowing water from Muddy Creek was sampled 12 times by OCEHP only. Several times indicator bacteria were present in numbers above the single sample standard (Figures 6 and 7). This is not surprising for a stagnant water body. The lack of dry-weather flow from Muddy Creek into the surf was reflected in the uniformly low numbers of both fecal colliforms and enterococci found in 13 samples collected by OCEHP from the surf zone and the three samples collected at Station MC-1 by the monitoring program for the Crystal Cove Project (Figures 8 and 9).

Los Trancos Canyon

The water quality monitoring program for the Crystal Cove Project takes samples upstream in Los Trancos Canyon (Station LTU), and where the OCEHP does not sample. Indicator bacteria were detected in each of the three samples taken by that monitoring program on March 31, September 12, and September 29, 2000 (Figure 10 and Tables 17 -19). Fecal coliforms were present at or above the standard for single samples, and enterococci exceeded this limit in all three samples. This result is similar to what was observed in the second quarter of 2000.

Downstream data are available from Station LT (Crystal Cove Development Project) and the Crystal Creek upstream site (OCEHP). Counts for most of these samples were above the single sample limit for fecal coliforms, and nearly all were above that limit for enterococci (Figures 11 and 12). Thus, dry-weather flow in Crystal Cove Creek contained bacteria that are viewed as indicators of contamination by feces of warm blooded animals.

It is clear from comparisons with the Crystal Cove surf zone samples that the bacteria in the freshwater runoff are markedly reduced in number when they enter into the surf zone. Both the OCEHP samples and the Crystal Cove Project samples (Station LT-1) in the surf zone showed fecal coliforms and enterococci present, but their number were quite low and almost always below the single sample limit (Figures 13 and 14 and Tables 16 - 19).

General Conclusions

No storms occurred during the third quarter. Because of this, only dry-weather flow would carry bacteria into the ocean. At Emerald Bay, runoff water was diverted into the sanitary sewer, so none flowed into the ocean. There was no flow of water in Muddy Creek, so the bacteria did not enter the ocean from that source. Only Los Trancos Canyon had dry-weather flow. This runoff contained substantial numbers of indicator bacteria. Despite this, the surf zone at Station LT-1 was not unduly contaminated with indicator bacteria, although their numbers there were occasionally higher than in the surf zones of Emerald and Muddy Canyons.

FRESHWATER TOXICITY TESTING FOR DRY-WEATHER RUNOFF

Procedures

Acute and chronic toxicity testing of the daphniid cladoceran crustacean *Ceridaphnia dubia* is conducted by exposing test animals to dry-weather runoff samples taken at Watershed Station LT and, if there is runoff flow, also at Watershed Station MC. The monitoring study plan specifies that this testing be conducted at three or more representative times during a one- year period.

Ford et al (2000b) described the specific procedures employed in the field sampling of the runoff water used in these tests. The full descriptions of laboratory bioassay testing and QA/QC procedures employed by the Bioassay Laboratory of Ogden Environmental and Energy Services are included in this report as Exhibit 1.

Separate acute (48 hr survival) and chronic tests (7 day survival and reproduction) were conducted using replicate groups of C. *dubia*. Those animals were exposed to an undiluted (100%) dry-weather runoff sample taken at Station LT in Los Trancos Canyon on September 12, 2000. In addition, the tests employed a dilution series in order to further evaluate the combined effects of potentially toxic runoff constituents at different levels of dilution or concentration. Pure freshwater was used for these dilutions and for the laboratory controls, as described in Exhibit 1.

Results and Discussion of Toxicity Testing

The complete results of the toxicity test employing the September 12, 2000 sample are included as Exhibit 1 (Bioassay Report dated October 9, 2000). The following table summarizes these test results:

Sample: LT 9/12/00				
Endpoint	Control (% surv.)	100% Sample (% surv.)	NOEC (% sample)	EC/LC50 (% sample)
Acute Survival	100	0*	50 *	70.7
Chronic Survival	100	0*	25*	33.0
	Mean #	of Neonates		
	Control	100% Sample		
Chronic Reproduction	34.6	0.0*	25*	34.7

Toxicity Testing Results Summary - C. dubia

* statistically significantly difference observed

Results for both acute and chronic reference toxicant tests were within internal laboratory control chart limits $(\pm 2 \text{ sd})$

Acute Test Results

Complete mortality of C. dubia (0 % survival) was observed at the highest concentration tested, the full-strength water sample taken at Station LT. Mean survival in the controls (100 percent) exceeded the USEPA acceptability criterion of 90 percent. Therefore, this test was declared valid.

The results of the dilution series indicated that the no observed effect concentration (NOEC) for this acute 48 hr test was 50% of the undiluted runoff sample. The LC₅₀ and EC₅₀ for the acute survival endpoint was 70.7% of the undiluted sample.

Chronic Test Results

For the seven-day chronic test, survival of *C. dubia* exposed to the full strength dry-weather sample from Station LT also was 0 %. Survival of the control animals was 90%, exceeding the minimum acceptability criterion (> 80%) established in the USEPA protocol. Therefore, the test was considered valid.

The results of Fisher's Exact Tests indicated statistically significant differences (p<0.05) in survival data between the control and the treatment groups exposed to both the 50 and 100 % sample concentrations. A comparison of reproduction data similarly indicated statistically significant differences between the control and the treatment groups for these 50 and 100 % sample concentrations. The chronic-no observed effect concentration (NOEC) value for both survival and reproduction was 25% of the undiluted sample. The LCs0 and ECs0 values for survival and reproduction endpoints were 33.0% and 34.7%, respectively, of the undiluted sample. Reproduction in the controls exceeded 15 young per original female and control survival was >80%, as required by the USEPA protocol. Therefore, these tests were declared valid.

Relationship to Concentrations of Runoff Constituents

These bioassay results indicated clearly that there were adverse acute and chronic effects on survival of *C. dubia* exposed to dry-weather runoff water sampled at Station LT on September 12, 2000. Similarly, there was an adverse chronic effect on reproduction.

As shown in Tables 11 B and 14 (Station LT, 07:30 hrs), the trace metals detected in this September 12, 2000, dry-weather flow sample were total cadmium (0.09 mg/L), total copper (0.069 mg/L), total lead (0.012 mg/L), total nickel (0.024 mg/L), dissolved nickel (0.011 mg/L), total zinc (0.043 mg/L), and dissolved zinc (0.089mg/L). These concentrations are relatively low and the values for dissolved nickel and zinc do not exceed CTR chronic toxicity criteria (Table 3). Similarly, the value for total recoverable copper is below that expected to produce toxicity to this species, given that no dissolved

the toxic effects observed. There are no indications that this concentration of diazinon derived from discharges of the Crystal Cove Development Project. Because the USEPA is phasing out the use of the insecticide diazinon, as well as chlorpyrifos, potential problems of their toxicity in runoff water will be reduced over time. In addition, diversion of dry-weather runoff to the sanitary sewer from Los Trancos and Muddy Canyons will help to eliminate potential problems there. copper was detected (Schuabaur-Berigan 1993, Kim et al 1999, USEPA 2000b). Therefore, it is very unlikely that these trace metals contributed to the toxicity effects observed.

Shown in Table 9 are the ELISA measurements (Miller et al 1997) of the organophosphorus pesticide compounds diazinon and chlorpyrifos from analyses of this runoff sample taken at Station LT on September 12, 2000. The concentration of diazinon is relatively high (0.6534 μ g/L), and is greater than the 48 hr LC₅₀ value of 0.44 μ g/L reported for *C. dubia* by Bailey et al (1996,1997). It is also well above the maximum acceptable toxicant concentration (MATC) of 0.34 μ g/L derived for *C. dubia* by Norberg-King (1987). For diazinon, the acute (CMC) and chronic (CCC) water quality criteria to protect aquatic life in freshwater systems are 0.08 and 0.05 μ g/L, respectively (Siepmann and Finlayson 2000). USEPA (1998) established a similar acute criterion for diazinon of 0.09 μ g/L. The diazinon concentration measured for Station LT on September 12, 2000, is also well above all of those criteria values.

The concentration of chlorpyrifos measured in this dry-weather runoff sample from Station LT was 0.0171 μ g/L (Table 9). This concentration is substantially lower than the 48-hour LC₅₀ value of 0.06 μ g/L for *C. dubia* exposed to chlorpyrifos (Bailey et al 1996). It is also well below the maximum acceptable concentration (MATC) value of chlorpyrifos (0.083 μ g/L) derived for *C. dubia*. The acute (CMC) water quality criterion value to protect aquatic life for chlorpyrifos in freshwater systems is 0.083 μ g/L; that for chronic (CCC) toxicity is 0.041 μ g/L (USEPA 1986, 1998). The concentration of chlorpyrifos in the dry-weather runoff sample taken at Station LT on September 12, 2000, (0.0171 μ g/L) is lower than these acute and chronic water quality criteria values.

These results indicate that the relatively high level of diazinon in the September 12 sample from Station LT was responsible for the significant toxic effects on C dubia described above. There is no indication that this diazinon concentration came from runoff of the Crystal Cove Development Project. The low concentration of chlorpyrifos and those of dissolved nickel and zinc in the sample suggest that they did not contribute to the toxicity effects observed.

As indicated above, the USEPA is phasing out the use of diazinon, as well as chlorpyrifos. Once the use of these two insecticides ends, the problem of their toxic effects in freshwater watersheds also will be eliminated. In addition, the planned diversion to the sanitary sewer of dry-weather runoff in Los Trancos and Muddy Canyons will serve to eliminate this potential problem in those watersheds.

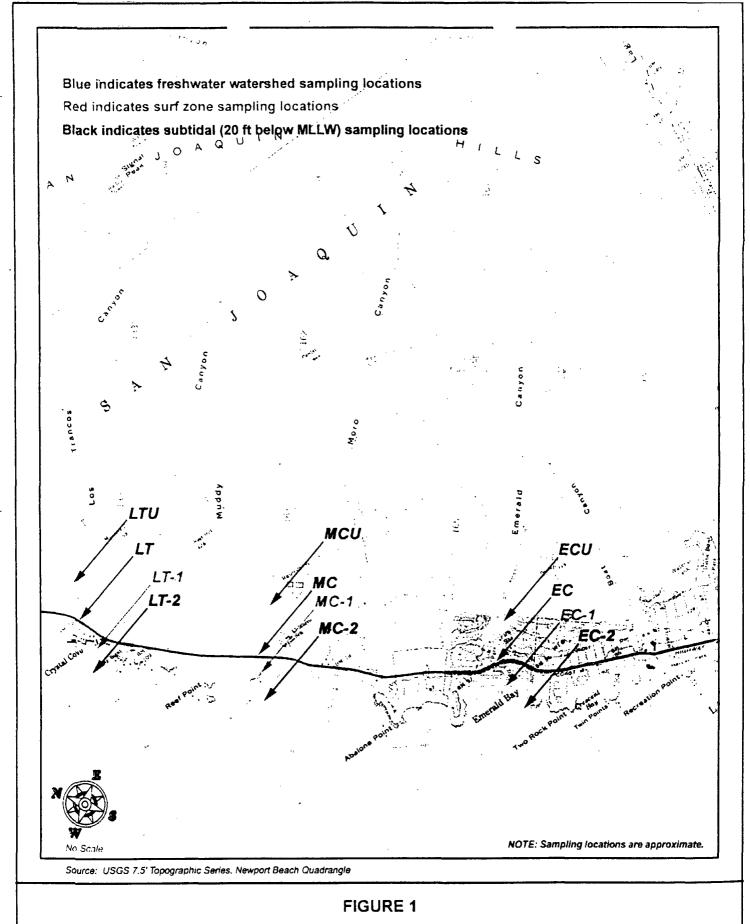
General Conclusions

The results of the toxicity testing for *Ceriodaphnia dubia* exposed to a dryweather runoff sample taken at Station LT on September 12, 2000, showed acute (48 hour) toxic effects on survival and chronic (7 day) toxic effects on both survival and reproduction of this test species. Concentrations of constituents in this runoff sample, except diazinon, were lower than those expected to produce toxic effects on *C. dubia*. The results indicate that the relatively high concentration of diazinon was responsible for

REFERENCES CITED

- American Public Health Association. 1985. Standard methods for the examination of water and wastewater. 16th edition. Washington, D.C. 1268 p.
- Bailey, H.C., E. Giorgio, K. Kroll, J.L. Miller, D.E. Hinton and G. Starrett. 1996.
 Development of procedures for identifying pesticide toxicity in ambient water: Carbofuran, diazinon, chlorpyrifos. Environmental Toxicology and Chemistry. 15: 837-845.
- Bailey, H.D., J.L. Miller, M.J. Miller, L.C. Wigorg, L. Deanovic and T. Shed. 1997. Joint acute toxicity of diazinon and chlorpyrifos to *Ceriodaphnia dubia*. Environmental Toxicology and Chemistry. 16: 2304-2308.
- Bay, S., and K. Schiff. 1997. Impacts of storm water on the nearshore environment of Santa Monica Bay. pp 105-118. <u>In</u>: S. Weisberg, C. Francisco, and D. Hallock (eds.), Southern California Coastal Water Research Project Annual Report 1995-1996. Westminster, CA.
- Bay, S., K. Schiff, D. Greenstein and L. Tiefenthaler. 1998. Stormwater runoff effects on Santa Monica Bay: Toxicity, sediment quality, and benthic community impacts. pp 900-921 <u>In</u>: Stormwater runoff into Santa Monica Bay: Sources and impacts. USC Sea Grant Symposium, California and the World Ocean '97, San Diego, CA. USC Sea Grant publication USCSG-R-01-98.
- Bay, S., B.H. Jones and K. Schiff. 1999. Study of the impact of stormwater discharge on Santa Monica Bay. Executive Summary. Prepared for Los Angeles County Department of Public Works, Alhambra, CA. USC Sea Grant publication USCSG-TR-02-99.
- California Regional Water Quality Control Board, Santa Ana Region. 1995. Water Quality Control Plan, Santa Ana River Basin (8).
- California State Water Resources Control Board. 1997. California Ocean Plan; Water Quality Control Plan, Ocean Waters of California, July 1997.
- Drever, J.I. 1997. The geochemistry of natural waters: Surface and groundwater environments, Third Edition. Prentice Hall, Upper Saddle River, N.J. 436p.
- Eisler, R. 1998. Copper hazards to fish, wildlife, and invertebrates: A synoptic review. US Geological Survey Biological Science Report USGS-BRD-199-0002, January 1998.
- Ford, R.F. 2000. Monitoring studies concerning water quality and marine ecology for the Crystal Cove Development Project, Phases IV-3 and IV-4. Study plan prepared for the Irvine Community Development Company, January 12, 2000.

- Ford, R.F. 2001. Headlands water quality technical report. Part 1: Water quality evaluation. Prepared for the City of Dana Point, June 18, 2001.
- Ford, R.F., B.B. Hemmingsen and M.A. Shane. 2000a. Water quality and marine ecological monitoring studies for the Crystal Cove Development Project: First quarterly report for 2000. Submitted to the California Regional Water Quality Control Board, Santa Ana Region and Irvine Community Development Company, May 12, 2000.
- Ford, R.F., B.B. Hemmingsen and M.A. Shane. 2000b. Water quality and marine ecological monitoring studies for the Crystal Cove Development Project: Analytical report on water quality data for the period January 25-April 3, 2000.
 Submitted to the California Regional Water Quality Control Board. Santa Ana Region and Irvine Community Development Company, June 2, 2000.
- Ford, R.F., B.B. Hemmingsen and M.A. Shane. 2000c. Water quality and marine ecological monitoring studies for the Crystal Cove Development Project: Second quarterly report for the period April 3 – June 27, 2000. Submitted to the California Regional Water Quality Control Board, Santa Ana Region and Irvine Community Development Company, September 28, 2000.
- Helsel, D.R. and R.M. Hirsch. 1992. Statistical methods in water resources. Elsevier Studies in Environmental Science 49. Elsevier, New York. 522 p.
- Kim, S.D., H. Ma, H.E. Allen and D.K. Cha. 1999. Influence of dissolved organic matter on the toxicity of copper to *Ceriodaphnia dubia*: effect of complexation kinetics. Environmental Toxicology and Chemistry 18(11): 2433-2437.
- Lee, G.F. and A. Jones-Lee. 1995. Independent applicability of chemical and biological criteria/standards and effluent toxicity testing. The National Environmental Journal, 5(1): 60-63, Part II, An alternative approach, 5(2): 66-67.
- Lee, G.F., S. Taylor and D. Neiter. 1999. Review of existing water quality characteristics of Upper Newport Bay, Orange County CA and its watershed and results of aquatic life toxicity studies conducted during 1997-98 in the Upper Newport Bay watershed. Draft report prepared for Calif. State Water Resources Control Board, Santa Ana Regional Water Quality Control Board, and Orange County Public Facilities and Resources Department.
- Makepeace, D., D. Smith and S. Stanley. 1995. Urban storm water quality: Summary of contaminant data. Critical Reviews in Environmental Science and Technology, 25(2): 93-139.
- Miller, J., M. Miller. C. Foe and V. DeVlaming. 1997. Selective removal of diazinon and chlorpyrifos from aqueous matrices using antibody-mediated procedures.


Presented at 18th Annual Meeting of the Society of Environmental Toxicology and Chemistry (SETAC), San Francisco, CA.

- Moore, J.W. and S. Ramamoorthy. 1984. Heavy metals in natural waters: Applied monitoring and impact assessment. Springer Verlag Series on Environmental Management, New York. 268p.
- Norberg-King, T.J. 1987. Memorandum to C. Stephan, USEPA, Duluth, Minnesota, August 31, 1987.
- Ogden Environmental and Energy Services, Inc. 1999. Toxicity identification evaluation (TIE) of Chollas Creek storm water using the test organism *Ceriodaphnia dubia*. Ogden Environmental and Energy Services Draft Technical Report to the Port of San Diego, City of San Diego, and the San Diego Regional Water Quality Control Board, June 1999.
- Ogden Environmental and Energy Services, Inc. 2000. Chollas Creek supplemental storm water monitoring draft report, 1999-2000 wet season. Ogden Environmental and Energy Services Inc. Draft technical report to the Port of San Diego, City of San Diego, and the San Diego Water Regional Quality Control Board, May, 2000.
- SCCWRP. 1999. Characterization of storm water toxicity in Chollas Creek, San Diego. Draft Technical Report, Southern California Coastal Water Research Project. Sept 17, 1999.
- Schmitt, R.J. and C.W. Osenberg (eds.) 1996. Detecting ecological impacts: Concepts and applications in coastal habitats. Academic Press, San Diego. 401p.
- Schuabaur-Berigan, M.K. J.R. Dierkes, P.D. Monson and G.T. Ankley. 1993. pH dependent toxicity of Cd, Cu, Ni, Pb, and Zn to Ceriodaphnia dubia, Pimephales, pyromelas, Hyalella azteca, and Lumbriculus variegates. Environmental Toxicology and Chemistry 12: 1261-1266.
- Siepmann, S. and B. Finlayson. Water quality criteria for diazinon and chlorpyrifos. California Department of Fish and Game Pesticides Investigation Unit Technical Memorandum. March, 2000. (Unpublished report on internet web site).
- URS Greiner Woodward Clyde. 1999. 1998-1999 City of San Diego and Co-Permittee NPDES Stormwater Monitoring Report. Prepared for The City of San Diego Engineering & Development Department by URS Greiner Woodward Clyde, August 10, 1999.
- U.S. Environmental Protection Agency. 1986. Ambient water quality criteria for chlorpyrifos. Office of Water Document 440/5-005.

- U.S. Environmental Protection Agency. 1992. Guidance Manual for the Preparation of Part 2 of the NPDES Permit Applications for Discharges from Municipal Separate Storm Sewer Systems. EPA S33-B-92-002, November 1992.
- U.S. Environmental Protection Agency. 1996. Nonpoint Pointers Series. EPA 841-F-96-004.
- U.S. Environmental Protection Agency. 1997. Water Quality Standards; Establishment of Numeric Criteria for Priority Toxic Pollutants in the State of California; Proposed Rule. Environmental Protection Agency 40 CFR Part 131. August 5, 1997.
- U.S. Environmental Protection Agency. 1998. EPA national recommended water quality criteria. Vol. 63 No. 237, December 10, 1998.
- U.S. Environmental Protection Agency. 2000. Water Quality Standards; Establishment of Numerical Criteria for Priority Toxic Pollutants for the State of California; Rule. Environmental Protection Agency 40 FRL Part 131 (FRL-6587-97), pp 31682-31719, May 18, 2000.

26

U.S. Environmental Protection Agency. 2000b. ECOTOX online database. http://www.epa.gov/ecotox/

STATION LOCATIONS FOR WATER QUALITY AND MARINE ECOLOGICAL MONITORING FOR THE CRYSTAL COVE DEVELOPMENT PROJECT

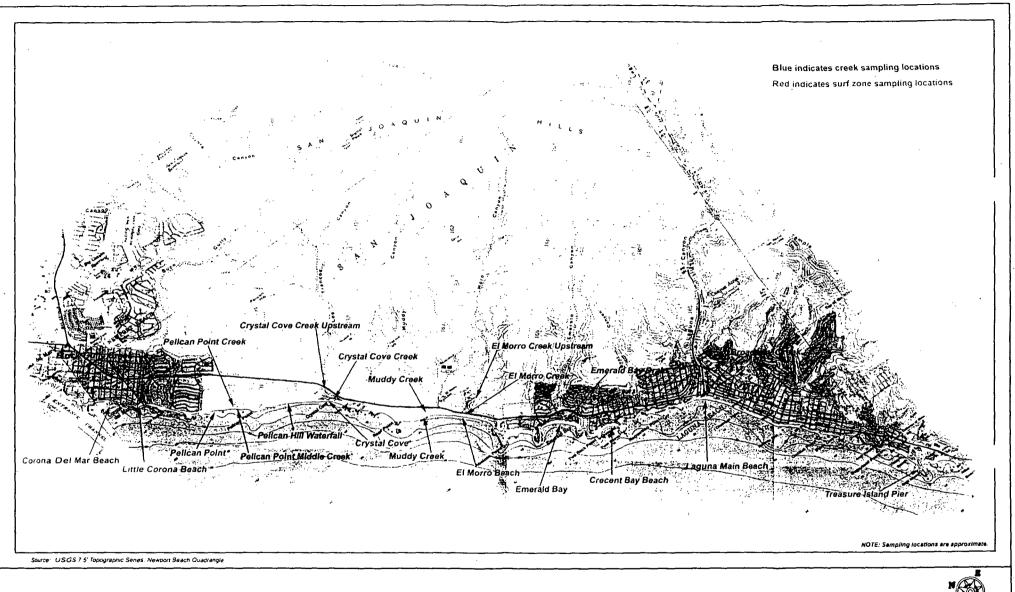


FIGURE 2 COUNTY OF ORANGE SAMPLING STATIONS FOR BACTERIOLOGICAL INDICATORS

No Scale

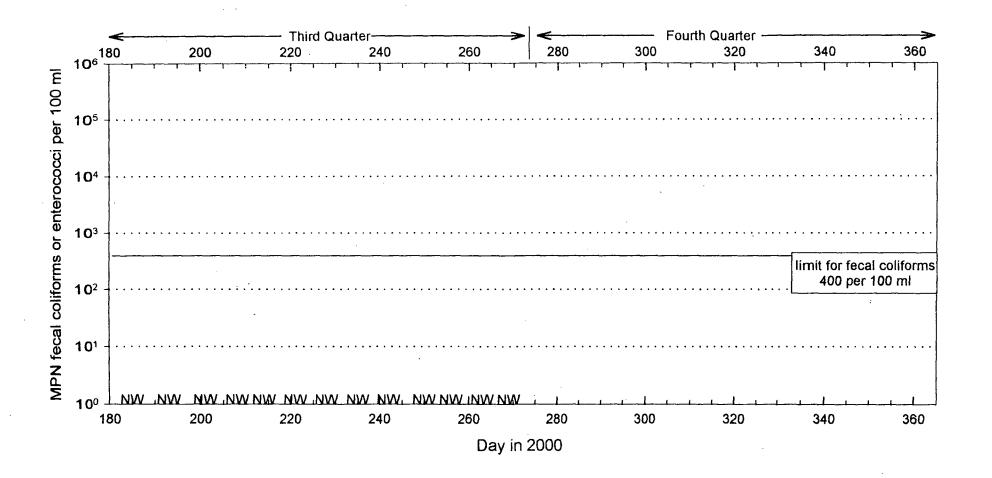


Figure 3. Fecal coliforms and enterococci in water draining from Emerald Canyon during the 3rd quarter of 2000. NW = no water reported by OCEHP. No samples taken by the Crystal Cove Development Project.

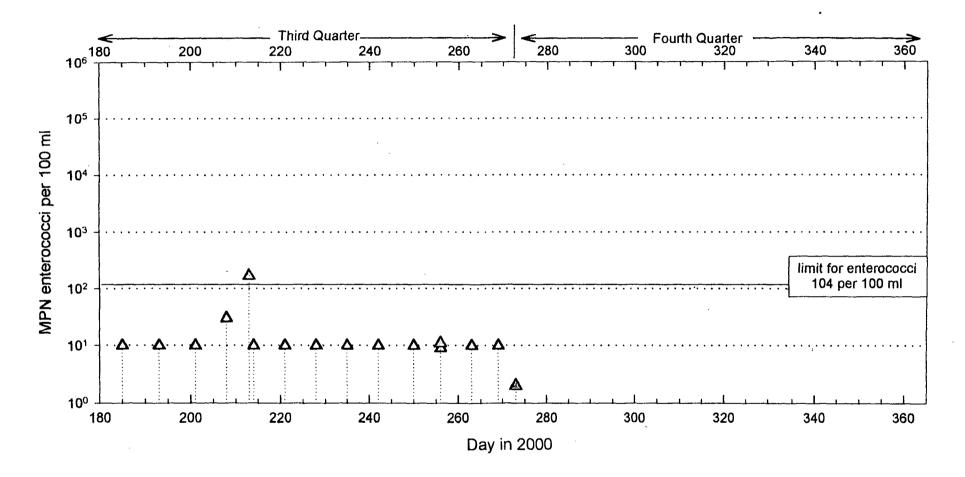


Figure 5. Enterococci in Emerald Canyon surf zone during the third quarter of 2000. Open triangles: OCEHP data from the Emerald Bay surf zone (with one exception, all values less than 10). Closed triangles: values obtained for the Crystal Cove Development Project at station EC-1 (surf zone).

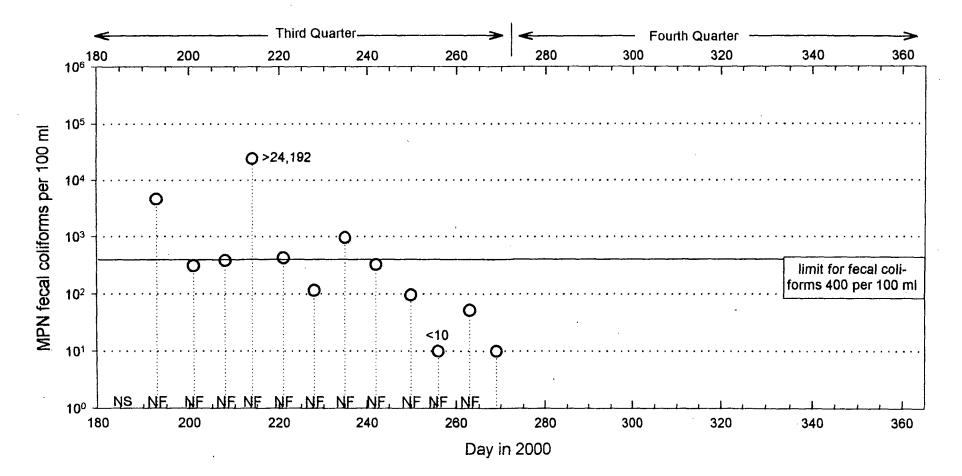


Figure 6. Fecal coliforms in water in Muddy Creek during the third quarter of 2000. Open circles: OCEHP data from Muddy Creek. No samples were taken for the Crystal Cove Development Project at station MC. NF = no flow. NS = no sample taken.

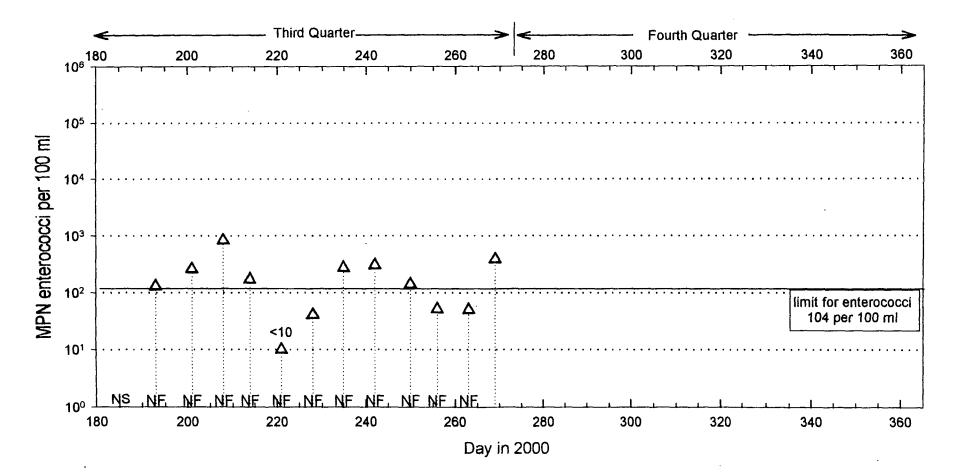


Figure 7. Enterococci in Muddy Creek during the third quarter of 2000. Open triangles: OCEHP data from Muddy Creek. No samples were taken for the Crystal Cove Development Project at station MC. NF = no flow; NS = no sample taken.

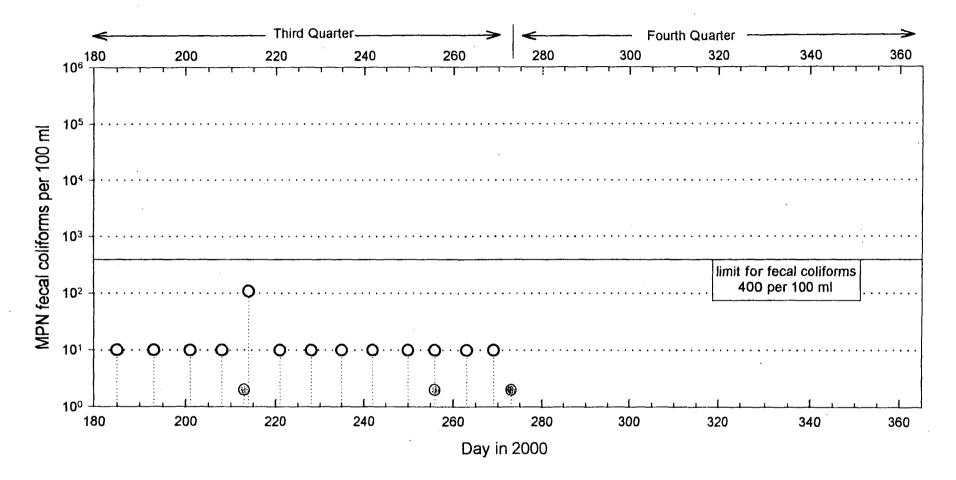


Figure 8. Fecal coliforms in Muddy Creek surf zone during the third quarter of 2000. Open circles: OCEHP data from the Muddy Creek surf zone (most values <10). Closed circles: values (<2) obtained for the Crystal Cove Development Project at station MC-1 (surf zone).

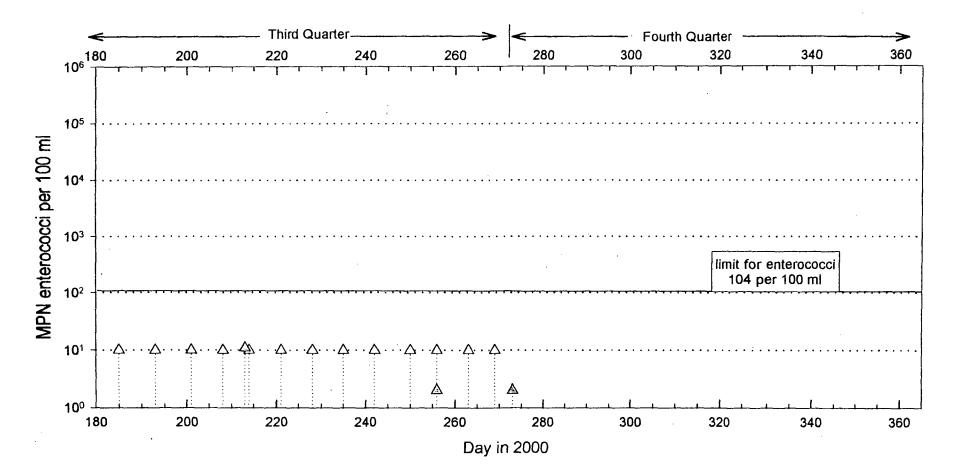


Figure 9. Enterococci in Muddy Creek surf zone during the third quarter of 2000. Open triangles: OCEHP data from the Muddy Creek surf zone (most values <10). Closed triangles: values obtained for the Crystal Cove Development Project at station MC-1 (surf zone).

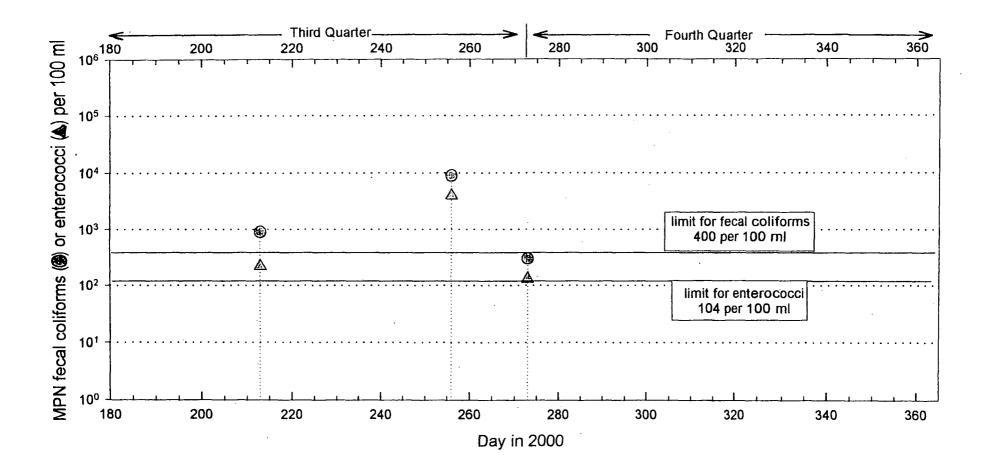


Figure 10. Enterococci and fecal coliforms per 100 ml of Crystal Cove Creek water (Los Trancos Canyon upstream) station LTU of the Crystal Cove Development Project during the third quarter of 2000. No OCEHP samples. Closed circles: fecal coliforms. Closed triangles: enterococci.

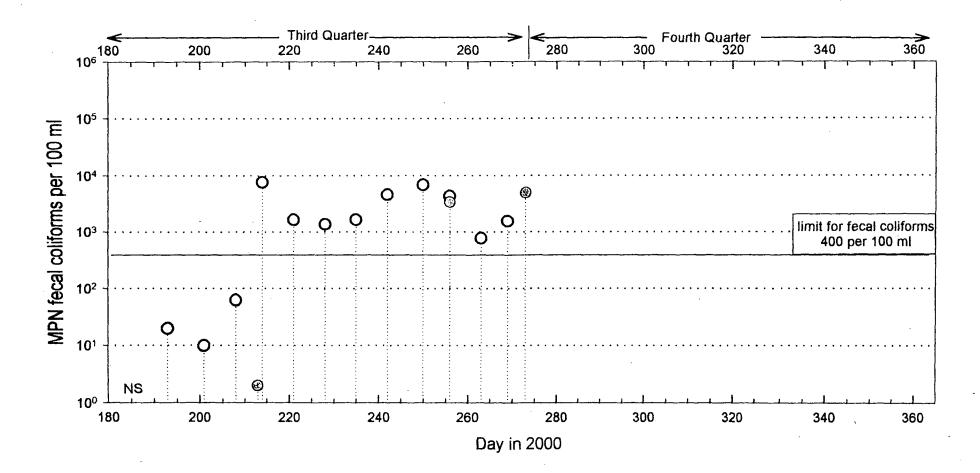


Figure 11. Fecal coliforms in Crystal Cove Creek (Los Trancos Canyon) during the third quarter of 2000. Open circles: OCEHP data from Crystal Cove Creek upstream. Closed circles: values obtained for the Crystal Cove Development Project at station LT. NS = no sample taken by OCEHP.

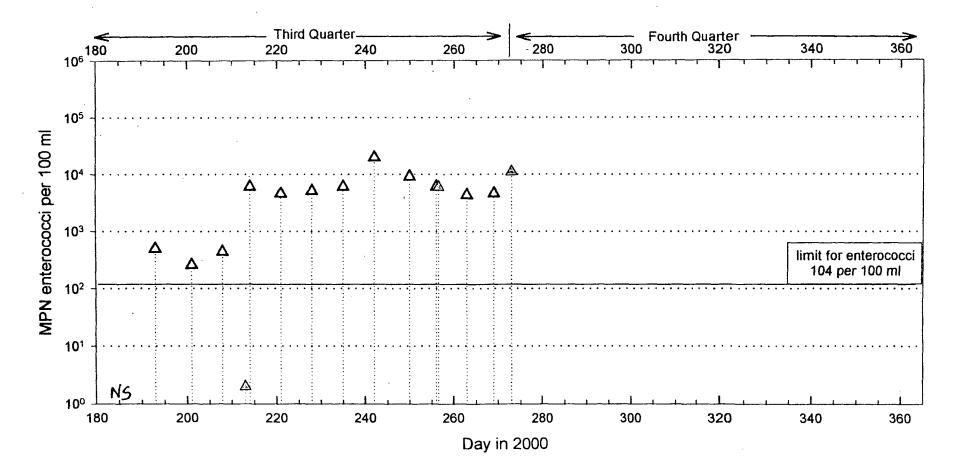


Figure 12. Enterococci in Crystal Cove Creek (Los Trancos Canyon) during the third quarter of 2000. Open triangles: OCEHP data from Crystal Cove Creek upstream. Closed triangles: values obtained for the Crystal Cove Development Project at station LT. NS = no sample taken by OCEHP.

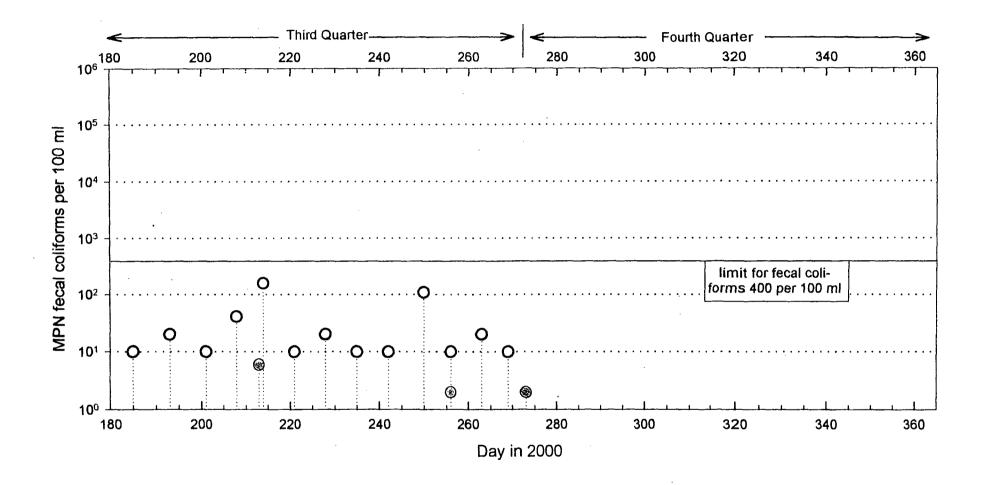


Figure 13. Fecal coliforms in Crystal Cove surf zone water during the third quarter of 2000. Open circles: OCEHP data from the Crystal Cove surf zone; 5 samples had <10 fecal coliforms per 100 ml. Closed circles: values obtained for the Crystal Cove Development Project at Station LT-1 (surf zone).

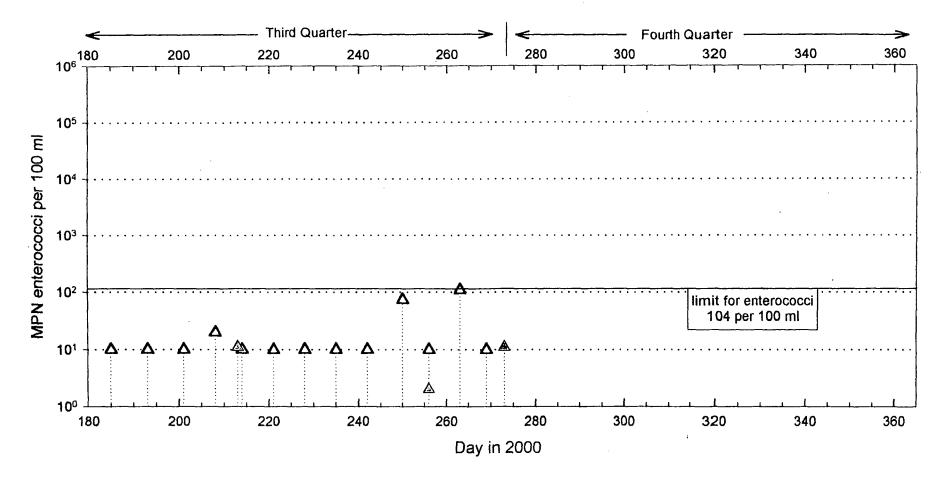


Figure 14. Enterococci in Crystal Cove surf zone during the third quarter of 2000. Open triangles: OCEHP data from Crystal Cove surf zone; 5 samples had <10 enterococci per 100 ml. Closed triangles: values obtained for the Crystal Cove Development Project at stations LT-1 (surf zone).

TABLE 1

Constituents analyzed for freshwater runoff and seawater in the water quality monitoring studies for the Crystal Cove Development Project during 2000. Analytical methods used and laboratory reporting limits for those methods are shown.

PHYSICAL CONSTITUENTS CONSTITUENT

REPORTING LIMIT

METHOD

EPA 160.1

EPA 160.2

Total Dissolved Solids (TDS) Total Suspended Solids (TSS) Freshwater Hardness

10.0 mg/L 10.0 mg/L 4.0 mg/L

CHEMICAL CONSTITUENTS CONSTITUENT

Salinity (Seawater)

Oil and Grease Total Phosphorus **Dissolved** Phosphorus Total Kjeldahl Nitrogen (TKN) Nitrate + Nitrite (as N)

DISSOLVED TRACE METALS Cadimum (Cd) Chromium, Total (Cr) Copper (Cu) Lead (Pb) Nickel (Ni) Silver (Ag) Zinc (Zn)

TOTAL RECOVERABLE

TRACE METALS Cadimum (Cd) Chromium, Total (Cr) Copper (Cu) Lead (Pb) Nickel (Ni) Silver (Ag) Zinc (Zn)

0.01 ppt
1.0 mg/L
0.050 mg/L
0.050 mg/L
0.5 mg/L
0.01 mg/l

0.005 mg/L

0.005 mg/L 0.010 mg/L

0.005 mg/L

0.010 mg/L

0.010 mg/L

0.020 mg/L

0.005 mg/L 0.005 mg/L

0.010 mg/L 0.005 mg/L

0.010 mg/L 0.010 mg/L

0.020 mg/L

REPORTING LIMIT

EPA 130.2

METHOD

Comparison with Standard Seawater EPA 413.2 EPA 365.3 EPA 365.3 SM 4500 EPA 353.3

ALL EPA 6010B

ALL EPA 6010B

	TABLE 1 (Cont'd)	
CHEMICAL CONSTITUENTS		
CONSTITUENT	REPORTING LIMIT	METHOD
ORGANOPHOSPHORUS PESTICIDES		ALL EPA 8141A
Azinphos methyl	1.0 μg/L	
Bolstar .	0.500 μg/L	
Chlorpyrifos	0.500 µg/L	
Coumaphos	1.0 μg/L	
Demeton	0.500 µg/L	
Diazinon	0.500 μg/L	
Dichlorvos	0.500 μg/L	
Disulfoton	0.500 μg/L	
Ethion	0.500 μg/L	
Ethoprop	0.500 μg/L	
EPN	0.500 µg/L	
Fensulfothion	0.500 µg/L	
Fenthion	0.500 µg/L	
Malathion	0.500 μg/L	
Merphos	0.500 µg/L	
Mevinphos	0.500 µg/L	
Monocrotophos	0.500 μg/L	
Naled	1.00 μg/L	
Parathion-ethyl	0.500 μg/L	
Parathion-Methyl	0.50 µg/L	
Phorate	0.500 µg/L	
Ronnel	0.500 μg/L	
Stirophos	1.00 μg/L	
Sulfotep	0.500 μg/L	
Tokuthion (Prothiofos)	0.500 µg/L	
Trichloronate	0.500 μg/L	
Chlorpyrifos	0.01 µg/L	ELISA*
Diazinon	0.01 μg/L	ELISA*
PATHOGEN INDICATOR BACTERIA		

CONSTITUENT	REPORTING LIMIT	METHOD
Total Coliforms (MPN/100ml)	2/100 ml	SM 9221B
Fecal Coliforms (MPN/100ml)	2/100 ml	SM 9221E
Enterococci (MPN/100ml)	2/100 ml	SM 9230B

,

-

* Enzyme-Linked Immunosorbant Assay (Miller et al 1997)

TABLE 2

Acute (CMC) freshwater aquatic life criteria applied in the monitoring study for the Crystal Cove Development Project, as specified by the California Regional Water Quality Control Board, Santa Ana Region. Shown are calculated values of acute freshwater quality criteria for the hardness-dependent dissolved trace metals cadmium, chromium III, copper, lead, nickel, silver and zinc, expressed in mg/L. Based on the EPA California Toxics Rule (USEPA, May 18, 2000). Criteria values are shown for each 1 mg/L increment of freshwater hardness in the table columns. Calculations provided by PBS&J, San Diego, December 8, 2000.

FRESHWATER AQUATIC LIFE CRITERION MAXIMUM CONCENTRATIONS (ACUTE CRITERIA) STATE OF CALIFORNIA (40 CFR 131.38)

CADMIUM

Hardness (mg/L)				Criterion	Maximum (Concentrati	on (mg/L)			
,	0	1	2	3	4	5	6	7	8	9
					· · · · · · · · · · · · · · · · · · ·					
20	0.00074	0.00078	0.00082	0.00087	0.00091	0.00095	0.00099	0.00100	0.00110	0.00110
30	0.00120	0.00120	0.00120	0.00130	0.00130	0.00140	0.00140	0.00150	0.00150	0.00150
40	0.00160	0.00160	0.00170	0.00170	0.00180	0.00180	0.00180	0.00190	0.00190	0.00200
50	0.00200	0.00210	0.00210	0.00210	0.00220	0.00220	0.00230	0.00230	0.00240	0.00240
60	0.00250	0.00250	0.00250	0.00260	0.00260	0.00270	0.00270	0.00280	0.00280	0.00290
70	0.00290	0.00290	0.00300	0.00300	0.00310	0.00310	0.00320	0.00320	0.00330	0.00330
80	0.00330	0.00340	0.00340	0.00350	0.00350	0.00360	0.00360	0.00370	0.00370	0.00380
90	0.00380	0.00390	0.00390	0.00390	0.00400	0.00400	0.00410	0.00410	0.00420	0.00420
100	0.00430	0.00430	0.00440	0.00440	0.00440	0.00450	0.00450	0.00460	0.00460	0.00470
110	0.00470	0.00480	0.00480	0.00490	0.00490	0.00500	0.00500	0.00510	0.00510	0.00510
120	0.00520	0.00520	0.00530	0.00530	0.00540	0.00540	0.00550	0.00550	0.00560	0.00560
130	0.00570	0.00570	0.00580	0.00580	0.00590	0.00590	0.00600	0.00600	0.00600	0.00610
140	0.00610	0.00620	0.00620	0.00630	0.00630	0.00640	0.00640	0.00650	0.00650	0.00660
150	0.00660	0.00670	0.00670	0.00680	0.00680	0.00690	0.00690	0.00700	0.00700	0.00700
160	0.00710	0.00710	0.00720	0.00720	0.00730	0.00730	0.00740	0.00740	0.00750	0.00750
170	0.00760	0.00760	0.00770	0.00770	0.00780	0.00780	0.00790	0.00790	0.00800	0.00800
180	0.00810	0.00810	0.00820	0.00820	0.00830	0.00830	0.00840	0.00840	0.00840	0.00850
190	0.00850	0.00860	0.00860	0.00870	0.00870	0.00880	0.00880	0.00890	0.00890	0.00900
200	0.00900	0.00910	0.00910	0.00920	0.00920	0.00930	0.00930	0.00940	0.00940	0.00950
210	0.00950	0.00960	0.00960	0.00970	0.00970	0.00980	0.00980	0.00990	0.00990	0.01000
220	0.01000	0.01000	0.01000	0.01000	0.01000	0.01000	0.01000	0.01000	0.01000	0.01000
230	0.01100	0.01100	0.01100	0.01100	0.01100	0.01100	0.01100	0.01100	0.01100	0.01100
240	0.01100	0.01100	0.01100	0.01100	0.01100	0.01100	0.01100	0.01100	0.01100	0.01100
250	0.01200	0.01200	0.01200	0.01200	0.01200	0.01200	0.01200	0.01200	0.01200	0.01200
260	0.01200	0.01200	0.01200	0.01200	0.01200	0.01200	0.01200	0.01200	0.01200	0.01200
270	0.01200	0.01300	0.01300	0.01300	0.01300	0.01300	0.01300	0.01300	0.01300	0.01300
280	0.01300	0.01300	0.01300	0.01300	0.01300	0.01300	0.01300	0.01300	0.01300	0.01300
290	0.01400	0.01400	0.01400	0.01400	0.01400	0.01400	0.01400	0.01400	0.01400	0.01400
300	0.01400	0.01400	0.01400	0.01400	0.01400	0.01400	0.01400	0.01400	0.01400	0.01400
			•							
310	0.01500	0.01500	0.01500	0.01500	0.01500	0.01500	0.01500	0.01500	0.01500	0.01500
320	0.01500	0.01500	0.01500	0.01500	0.01500	0.01500	0.01500	0.01500	0.01500	0.01500
	0.01600	0.01600	0.01600	0.01600	0.01600	0.01600	0.01600	0.01600	0.01600	0.01600
340	0.01600	0.01600	0.01600	0.01600	0.01600	0.01600	0.01600	0.01600	0.01600	0.01600
350	0.01700	0.01700	0.01700	0.01700	0.01700	0.01700	0.01700	0.01700	0.01700	0.01700
360	0.01700	0.01700	0.01700	0.01700	0.01700	0.01700	0.01700	0.01700	0.01700	0.01800
370	0.01800	0.01800	0.01800	0.01800	0.01800	0.01800	0.01800	0.01800	0.01800	0.01800
380	0.01800	0.01800	0.01800	0.01800	0.01800	0.01800	0.01800	0.01800	0.01800	0.01900
390	0.01900	0.01900	0.01900	0.01900	0.01900	0.01900	0.01900	0.01900	0.01900	0.01900
400	0.01900	0.01900	0.01900	0.01900	0.01900	0.01900	0.01900	0.01900	0.02000	0.02000

Note:

1. Water-effect ratio is assumed to be 1.

2. Criteria are expressed in terms of the dissolved fraction of the metal in the water column.

3. Criteria do not apply to Sacramento River (and tributaries) above Hamilton City. (CFR131.38(b)(1) Footnote (x) to Table)

FRESHWATER AQUATIC LIFE CRITERION MAXIMUM CONCENTRATIONS (ACUTE CRITERIA) STATE OF CALIFORNIA (40 CFR 131.38) CHROMIUM (III)

Hardness (mg/L)				Criterion I	Maximum (Concentratio	on (mg/L)			
	0	1	2	3	4	5	6	7	8	9
										0.00
20	0.15	0.15	0.16	0.16	0.17	0.18	0.18	0.19	0.19	0.20
30	0.20	0.21 ,	0.22	0.22	0.23	0.23	0.24	0.24	0.25	0.25
40	0.26	0.26	0.27	0.27	0.28	0.29	0.29	0.30	0.30	0.31
50	0.31	0.32	0.32	0.33	0.33	0.34	0.34	0.35	0.35	0.36
60	0.36	0.37	0.37	0.38	0.38	0.39	0.39	0.40	0.40	0.40
70	0.41	0.41	0.42	0.42	0.43	0.43	0.44	0.44	0.45	0.45
80	0.46	0.46	0.47	0.47	0.48	0.48	0.48	0.49	0.49	0.50
90	0.50	0.51	0.51	0.52	0.52	0.53	0.53	0.54	0.54	0.54
100	0.55	0.55	0.56	0.56	0.57	0.57	0.58	0.58	0.58	0.59
110	0.59	0.60	0.60	0.61	0.61	0.62	0.62	0.62	0.63	0.63
120	0.64	0.64	0.65	0.65	0.65	0.66	0.66	0.67	0.67	0.68
130	0.68	0.68	0.69	0.69	0.70	0.70	0.71	0.71	0.71	0.72
140	0.72	0.73	0.73	0.74	0.74	0.74	0.75	0.75	0.76	0.76
150	0.76	0.77	0.77	0.78	0.78	0.79	0.79	0.79	0.80	0.80
160	0.81	0.81	0.81	0.82	0.82	0.83	0.83	0.84	0.84	0.84
170	0.85	0.85	0.86	0.86	0.86	0.87	0.87	0.88	0.88	0.88
180	0.89	0.8 9	0.90	0.90	0.90	0.91	0.91	0.92	0.92	0.92
190	0,93	0.93	0.94	0.94	0.94	0.95	0.95	0.96	0.96	0.96
200	0.97	0.97	0.98	0.98	0.98	0.99	0.99	1.00	1.00	1.00
210	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
220	1.00	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10
230	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10
240	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.20	1.20	1.20
250	1.20	1.20	1.20	1.20	1.20	- 1.20	1.20	1.20	1.20	1.20
260	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20
270	1.20	1.20	1.20	:1.20	1.30	1.30	1.30	1.30	1.30	1.30
280	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30
290	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30
300	1.30	1.40	1.40	1:40	1.40	1.40	1.40	1.40	1.40	1.40
310	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40
320	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.50	1.50
330	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
340	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
350	1.50	1.50	1.50	1.50	1.50	1.50	1.60	1.60	1.60	1.60
360	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.60
370	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.60
380	1.60	1.60	1.60	1.60	1.70	1.70	1.70	1.70	1.70	1.70
390	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70
400	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70

.

Note:

1. Water-effect ratio is assumed to be 1.

FRESHWATER AQUATIC LIFE CRITERION MAXIMUM CONCENTRATIONS (ACUTE CRITERIA) STATE OF CALIFORNIA (40 CFR 131.38) COPPER

Hardness (mg/L)				Criterion	Maximum (Concentrati	on (mg/L)			
	0	1	2	3	4	5	6	7	_ 8	9
······································										
20	0.0029	0.0031	0.0032	0.0034	0.0035	0.0036	0.0038	0.0039	0.0041	0.0042
30	0.0043	0.0045	0.0046	0.0047	0.0049	0.0050	0.0051	0.0053	0.0054	0.0055
40	0.0057	0.0058	0.0059	0.0061	0.0062	0.0063	0.0065	0.0066	0.0067	0.0069
50	0.0070	0.0071	0.0073	0.0074	0.0075	0.0077	0.0078	0.0079	0.0080	0.0082
60	0.0083	0.0084	0.0086	0.0087	0.0088	0.0090	0.0091	0.0092	0.0093	0.0095
70	0.0096	0.0097	0.0099	0.0100	0.0100	0.0100	0.0100	0.0110	0.0110	0.0110
80	0.0110	0.0110	0.0110	0.0110	0.0110	0.0120	0.0120	0.0120	0.0120	0.0120
90	0.0120	0.0120	0.0120	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130
100	0.0130	0.0140	0.0140	0.0140	0.0140	0.0140	0.0140	0.0140	0.0140	0.0150
110	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0160	0.0160	0.0160
120	0.0160	0.0160	0.0160	0.0160	0.0160	0.0170	0.0170	0.0170	0.0170	0.0170
130	0.0170	0.0170	0.0170	0.0180	0.0180	0.0180	0.0180	0.0180	0.0180	0.0180
140	0.0180	0.0190	0.0190	0.0190	0.0190	0.0190	0.0190	0.0190	0.0190	0.0200
150	0.0180	0.0190	0.0200	0.0200	0.0190	0.0190	0.0200	0.0190	0.0210	0.0200
160	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0220	0.0220	0.0220
170	0.0210	0.0210	0.0210	0.0230	0.0210	0.0220	0.0220	0.0220	0.0220	0.0230
180	0.0220	0.0220	0.0220	0.0230	0.0230	0.0230	0.0230	0.0230	0.0230	0.0240
	1								0.0240	0.0240
190	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250		
200	0.0260	0.0260	0.0260	0.0260	0.0260	0.0260	0.0270	0.0270	0.0270	0.0270
210	0.0270	0.0270	0.0270	0.0270	0.0280	0.0280	0.0280	0.0280	0.0280	0.0280
220	0.0280	0.0280	0.0280	0.0290	0.0290	0.0290	0.0290	0.0290	0.0290	0.0290
230	0.0290	0.0300	0.0300	0.0300	0.0300	0.0300	0.0300	0.0300	0.0300	0.0310
240	0.0310	0.0310	0.0310	0.0310	0.0310	0.0310	0.0310	0.0320	0.0320	0.0320
250	0.0320	0.0320	0.0320	0.0320	0.0320	0.0320	0.0330	0.0330	0.0330	0.0330
260	0.0330	0.0330	0.0330	0.0330	0.0340	0.0340	0.0340	0.0340	0.0340	0.0340
270	0.0340	0.0340	0.0350	0.0350	0.0350	0.0350	0.0350	0.0350	0.0350	0.0350
280	0.0350	0.0360	0.0360	0.0360	0.0360	0.0360	0.0360	0.0360	0.0360	0.0370
290	0.0370	0.0370	0.0370	0.0370	0.0370	0.0370	0.0370	0.0370	0.0380	0.0380
300	0.0380	0.0380	0.0380	0.0380	0.0380	0.0380	0.0390	0.0390	0.0390	0.0390
310	0.0390	0.0390	0.0390	0.0390	0.0390	0.0400	0.0400	0.0400	0.0400	0.0400
320	0.0400	0.0400	0.0400	0.0410	0.0410	0.0410	0.0410	0.0410	0.0410	0.0410
330	0.0410	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420	0.0420
340	0.0430	0.0430	0.0430	0.0430	0.0430	0.0430	0.0430	0.0430	0.0440	0.0440
350	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0440	0.0450	0.0450	0.0450
360	0.0450	0.0450	0.0450	0.0450	0.0450	0.0460	0.0460	0.0460	0.0460	0.0460
370	0.0460	0.0460	0.0460	0.0460	0.0470	0.0470	0.0470	0.0470	0.0470	0.0470
380	0.0400	0.0400	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480
390	0.0470	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0490	0.0500
400	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0510	0.0510
400	1 0.0500	0.0500	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0010	0.0010

Note:

1. Water-effect ratio is assumed to be 1.

2. Criteria are expressed in terms of the dissolved fraction of the metal in the water column.

3. Criteria do not apply to Sacramento River (and tributaries) above Hamilton City: (CFR131.38(b)(1) Footnote (x) to Table)

FRESHWATER AQUATIC LIFE CRITERION MAXIMUM CONCENTRATIONS (ACUTE CRITERIA) STATE OF CALIFORNIA (40 CFR 131.38) LEAD

Hardness (mg/L)				Criterion I	Maximum (Concentrati	on (mg/L)			
	. 0	· 1	2	3	4	5 .	6	7	8	9
								ħ	-	
20	0.011	0.011	0.012	0.013	0.013	0.014	0.015	0.015	0.016	0.016
30	0.017	0.018	0.018	0.019	0.020	0.020	0.021	0.022	0.022	0.023
40	0.024	0.024	0.025	0.025	0.026	0.027	0.027	0.028	0.029	0.029
50	0:030	0.031	0.031	0.032	0.033	0.033	0.034	0.035	0.036	0.036
60	0.037	0.038	0.038	0.039	0.040	0.040	0.041	0.042	0.042	0.043
70	0.044	0.044	0.045	0.046	0.046	0.047	0.048	0.049	0.049	0.050
80	0.051	0.051	0.052	0.053	0.053	0.054	0.055	0.055	0.056	0.057
90	0.058	0.058	0.059	0.060	0.060	0.061	0.062	0.062	0.063	0.064
100	0.065	0.065	0.066	0.067	0.067	0.068	0.069	0.070	0.070	0.071
110	0.072	0.072	0.073	0.074	0.074	0.075	0.076	0.077	0.077	0.078
120	0.079	0.079	0.080	0.081	0.082	0.082	0.083	0.084	0.084	0.085
130	0.086	0.087	0.087	0.088	0.089	0.089	0.090	0.091	0.092	0.092
140	0.093	0.094	0.094	0.095	0.096	0.097	0.097	0.098	0.099	0.099
150	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.110	0.110	0.110
160	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110
170	0.110	0.120	0.120	0.120	0.120	0.120	0.120	0.120	0.120	0.120
180	0.120	0.120	0.120	0.120	0.120	0.130	0.130	0.130	0.130	0.130
190	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.140
200	0.140	0.140	0.140	0.140	0.140	0.140	0.140	0.140	0.140	0.140
210	0.140	0.140	0.140	0.150	0.150	0.150	0.150	0.150	0.150	0.150
220	0.140	0.150	0.150	0.150	0.150	0.150	0.150	0.160	0.160	0.160
220	0.150	0.160	0.160	0.160	0.160	0.160	0.160	0.160	0.160	0.160
240	0.170	0.170	0.170	0.170	0.100	0.100	0.170	0.170	0.170	0.170
250	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.180
260	0.170	0.180	0.170	0.180	0.180	0.180	0.180	0.180	0.190	0.190
270	0.190	0.190	0.190	0.190	0.190	0.190	0.190	0.190	0.190	0.190
280	0.190	0.190	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200
290	0.200	0.200	0.200	0.200	0.200	0.200	0.210	0.210	0.210	0.210
300	0.210	0.210	0.210	0.210	0.210	0.210	0.210	0.210	0.210	0.220
240	0.000	0.000	0 000	0.000	0.000	0.000	0.220	0.220	0.220	0.220
310	0.220	0.220	0.220	0.220	0.220	0.220	0.220	0.220	0.220	0.220
320	0.220	0.220	0.220	0.230	0.230	0.230	0.230	0.230	0.230	
330	0.230	0.230	0.230	0.230	0.230	0.230	0.230	0.240	0.240	0.240
340	0.240	0.240	0.240	0.240	0.240	0.240	0.240	0.240	0.240	0.240
350	0.240	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250
360	0.250	0.250	0.250	0.250	0.250	0.260	0.260	0.260	0.260	0.260
370	0.260	0.260	0.260	0.260	0.260	0.260	0.260	0.260	0.260	0.270
380	0.270	0.270	0.270	0.270	0.270	0.270	0.270	0.270 0.280	0.270 0.280	0.270 0.280
390	0.270	0.270	0.280	0.280	0.280	0.280	0.280	0.280	0.280	0.280
400	0.280	0.280	0.280	0.280	0.280	0.280	0.290	0.290	0.290	0.290

Note:

1. Water-effect ratio is assumed to be 1.

• 51

FRESHWATER AQUATIC LIFE CRITERION MAXIMUM CONCENTRATIONS (ACUTE CRITERIA) STATE OF CALIFORNIA (40 CFR 131.38) NICKEL

Hardness (mg/L)					Maximum (on (mg/L)			
	0	1	2.	3	4	5	6	7	8	9
20	0.12	0.13	0.13	0.14	0.14	0.14	0.15	0.15	0.16	0.16
30	0.12	0.13	0.13	0.14	0.14	0.14	0.15	0.15	0.18	0.18
40	0.17	0.17	0.18	0.18	0.19	0.19	0.20	0.20	0.25	0.21
50	0.22	0.22	0.22	0.23	0.23	·· 0.24	0.24	0.25	0.25	0.20
60	0.20	0.20	0.31	0.32	0.28	0.28	0.23	0.25	0.30	0.30
70	0.35	0.31	0.31	0.32	0.32	0.33	0.33	0.33	0.34	0.34
80	0.35	0.35	0.35	0.30	0.38	0.37 0.41	0.37	0.38	0.38	0.30
90	0.39	0.39	0.40	0.40	0.40	0.41	0.41	0.42	0.42	0.42
	0.43	0.43	0.44						0.48	
100	0.47	0.47	0.48	0.48	0.48	0.49	0.49	0.50	0.50	0.50
110	0.51	0.51	0.52	0.52	0.52	0.53	0.53	0.53	0.54	0.54
120	0.55	0.55	0.55	0.56	0.56	0.57	0.57	0.57	0.58	0.58
130	0.58	0.59	0.59	0.60	0.60	0.60	0.61	0.61	0.61	0.62
140	0.62	0.63	0.63	0.63	0.64	0.64	0.64	0.65	0.65	0.66
150	0.66	0.66	0.67	0.67	0.67	0.68	0.68	0.69	0.69	0.69
160	0.70	0.70	0.70	0.71	0.71	0.72	0.72	0.72	0.73	0.73
170	0.73	0.74	0.74	0.74	0.75	0.75	0.76	0.76	0.76	0.77
180	0.77	0.77	0.74	0.74	0.78	0.79	0.79	0.80	0.80	0.80
190	0.81	0.81	0.78	0.78	0.78	0.79	0.79	0.80	0.80	0.80
200			0.81						0.83	
200	0.84	0.85	0.05	0.85	0.86	0.86	0.86	0.87	0.07	0.87
210	0.88	0.88	0.88	0.89	0.89	0.89	0.90	0.90	0.91	0.91
220	0.91	0.92	0.92	0.92	0.93	0.93	0.93	0.94	0.94	0.94
230	0.95	0.95	0.95	0.96	0.96	0.96	0.97	0.97	0.98	0.98
240	0.98	0.99	0.99	0.99	1.00	1.00	1.00	1.00	1.00	1.00
250	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
260	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10
270	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10
280	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10
290	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20
300	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20
310	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20
320	1.30	1.20	1.20	1.20	1.30	1.30	1.30	1.30	1.30	1.30
330			1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30
	1.30	1.30								
340	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30
350	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40
360	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40
370	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40
380	1.40	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
390	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
400	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50

Note:

1. Water-effect ratio is assumed to be 1.

FRESHWATER AQUATIC LIFE CRITERION MAXIMUM CONCENTRATIONS (ACUTE CRITERIA) STATE OF CALIFORNIA (40 CFR 131.38) SILVER

• -

Hardness (mg/L)					Maximum (on (mg/L)			
<u></u>	0	1	2	3	4	5	6	7	8	9
20	0.00022	0.00024	0.00026	0.00028	0.00030	0.00032	0.00034	0.00036	0.00039	0.00041
30	0.00043	0.00046	0.00049	0.00051	0.00054	0.00057	0.00060	0.00062	0.00065	0.00068
40	0.00071	0.00074	0.00078	0.00081	0.00084	0.00087	0.00091	0.00094	0.00098	0.00100
50	0.00100	0.00110	0.00110	0.00120	0.00120	0.00120	0.00130	0.00130	0.00140	0.00140
60	0.00140	0.00150	0.00150	0.00160	0.00160	0.00160	0.00170	0.00170	0.00180	0.00180
70	0.00190	0.00190	0.00200	0.00200	0.00210	0.00210	0.00220	0.00220	0.00230	0.00230
80	0.00240	0.00240	0.00250	0.00250	0.00260	0.00260	0.00270	0.00270	0.00280	0.00280
90	0.00290	0.00290	0.00300	0.00300	0.00310	0.00320	0.00320	0.00330	0.00330	0.00340
100	0.00340	0.00350	0.00360	0.00360	0.00370	0.00380	0.00380	0.00390	0.00390	0.00400
110	0.00410	0.00410	0.00420	0.00430	0.00430	0.00440	0.00450	0.00450	0.00460	0.00470
120	0.00470	0.00480	0.00490	0.00490	0.00500	0.00510	0.00510	0.00520	0.00530	0.00530
130	0.00540	0.00550	0.00560	0.00560	0.00570	0.00580	0.00590	0.00590	0.00600	0.00610
140	0.00620	0.00620	0.00630	0.00640	0.00650	0.00650	0.00660	0.00670	0.00680	0.00690
150	0.00690	0.00700	0.00710	0.00720	0.00730	0.00730	0.00740	0.00750	0.00760	0.00770
160	0.00770	0.00780	0.00790	0.00800	0.00810	0.00820	0.00820	0.00830	0.00840	0.00850
. 170	0.00860	0.00870	0.00880	0.00890	0.00890	0.00900	0.00910	0.00920	0.00930	0.00940
180	0.00950	0.00960	0.00970	0.00980	0.00980	0.00990	0.01000	0.01000	0.01000	0.01000
190	0.01000	0.01100	0.01100	0.01100	0.01100	0.01100	0.01100	0.01100	0.01100	0.01100
200	0.01100	0.01100	0.01200	0.01200	0.01200	0.01200	0.01200	0.01200	0.01200	0.01200
210	0.01200	0.01200	0.01300	0.01300	0.01300	0.01300	0.01300	0.01300	0.01300	0.01300
220	0.01300	0.01300	0.01400	0.01400	0.01400	0.01400	0.01400	0.01400	0.01400	0.01400
230	0.01400	0.01500	0.01500	0.01500	0.01500	0.01500	0.01500	0.01500	0.01500	0.01500
240	0.01600	0.01600	0.01600	0.01600	0.01600	0.01600	0.01600	0.01600	0.01600	0.0170
250	0.01700	0.01700	0.01700	0.01700	0.01700	0.01700	0.01700	0.01700	0.01800	0.0180
260	0.01800	0.01800	0.01800	0.01800	0.01800	0.01800	0.01900	0.01900	0.01900	0.0190
270	0.01900	0.01900	0.01900	0.01900	0.02000	0.02000	0.02000	0.02000	0.02000	0.0200
280	0.02000	0.02000	0.02100	0.02100	0.02100	0.02100	. 0.02100	0.02100	0.02100	0.0210
290	0.02200	0.02200	0.02200	0.02200	0.02200	0.02200	0.02200	0.02200	0.02300	0.0230
300	0.02300	0.02300	0.02300	0.02300	0.02300	0.02300	0.02400	0.02400	0.02400	0.02400
310	0.02400	0.02400	0.02400	0.02500	0.02500	0.02500	0.02500	0.02500	0.02500	0.0250
320	0.02600	0.02600	0.02600	0.02600	0.02600	0.02600	0.02600	0.02600	0.02700	0.0270
330	0.02700	0.02700	0.02700	0.02700	0.02700	0.02800	0.02800	0.02800	0.02800	0.0280
340	0.02800	0.02800	0.02900	0.02900	0.02900	0.02900	0.02900	0.02900	0.02900	0.0300
350	0.03000	0.03000	0.03000	0.03000	0.03000	0.03000	0.03100	0.03100	0.03100	0.0310
360	0.03100	0.03100	0.03200	0.03200	0.03200	0.03200	0.03200	0.03200	0.03200	0.0330
370	0.03300	0.03300	0.03300	0.03300		0.03400	0.03400	0.03400	0.03400	0.0340
380	0.03400	0.03400	0.03500	0.03500	0.03500	0.03500	0.03500	0.03500	0.03600	0.0360
390	0.03600	0.03600	0.03600	0.03600	0.03600	0.03700	0.03700	0.03700	0.03700	0.03700
400	0.03700	0.03800	0.03800	0.03800	0.03800	0.03800	0.03800	0.03900	0.03900	0.03900

Note:

1. Water-effect ratio is assumed to be 1.

FRESHWATER AQUATIC LIFE CRITERION MAXIMUM CONCENTRATIONS (ACUTE CRITERIA) STATE OF CALIFORNIA (40 CFR 131.38) ZINC

Hardness (mg/L)	Criterion Maximum Concentration (mg/L)										
(ing/2)	0	1	2	3	4	5	6 6	7	8	9	
20	0.030	0.031	0.032	0.034	0.035	0.036	0.037	0.039	0.040	0.041	
30	0.042	0.043	0.045	0.046	0.047	0.048	0.049	0.050	0.052	0.053	
40	0.054	0.055	0.056	0.057	0.058	0.060	0.061	0.062	0.063	0.064	
50	0.065	0.066	0.067	0.068	0.070	0.071	0.072	0.073	0.074	0.075	
60	0.076	0.077	0.078	0.079	0.080	0.081	0.082	0.083	0.085	0.086	
70	0.087	0.088	0.089	0.090	0.091	0.092	0.093	0.094	0.095	0.096	
80	0.097	0.098	0.099	0.100	0.100	0.100	0.100	0.100	0.110	0.110	
90	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.120	0.120	
100	0.120	0.120	0.120	0.120	0.120	0.120	0.120	0.120	0.130	0.130	
110	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.140	
120	0.140	0.140	0.140	0.140	0.140	0.140	0.140	0.140	0.140	0.150	
130	0.150	0.150	0.150	0.150	0.150	0.150	0.150	0.150	0.150	0.150	
140	0.160	0.160	0.160	0.160	0.160	0.160	0.160	0.160	0.160	0.160	
150	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	
160	0.170	0.170	0.170	0.170	0.170	0.170	0.180	0.170	0.180.	0.180	
170	0.170	0.180	0.190	0.190	0.190	0.190	0.190	0.190	0.190	0.190	
180	0.180	0.190	0.190	0.190	0.200	0.200	0.200	0.200	0.200	0.200	
190	0.190	0.190	0.190	0.200	0.200	0.200	0.200	0.200	0.200	0.200	
200	0.200	0.200	0.200	0.200	0.210	0.210	0.210	0.210	0.210	0.220	
200	0.210	0.210	0.210	0.210	0.210	0.220	0.220	0.220	0.220	0.220	
210	0.220	0.220	0.220	0.220	0.220	0.220	0.230	0.230	0.230	0.230	
220	0.230	0.230	0.230	0.230	0.230	0.230	0.230	0.230	0.240	0.240	
230	0.240	0.240	0.240	0.240	0.240	0.240	0.240	0.240	0.240	0.250	
240	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	
250	0.250	0.260	0.260	0.260	0.260	0.260	0.260	0.260	0.260	0.260	
260	0.260	0.260	0.270	0.270	0.270	0.270	0.270	0.270	0.270	0.270	
270	0.270	0.270	0.270	0.270	0.280	0.280	0.280	0.280	0.280	0.280	
280	0.280	0.280	0.280	0.280	0.280	0.280	0.290	0.290	0.290	0.290	
290	0.290	0.290	0.290	0.290	0.290	0.290	0.290	0.290	0.300	0.300	
300	0.300	0.300	0.300	0.300	0.300	0.300	0.300	0.300	0.300	0.300	
310	0.310	0.310	0.310	0.310	0.310	0.310	0.310	0.310	0.310	0.310	
320	0.310	0.310	0.320	0.320	0.320	0.320	0.320	0.320	0.320	0.320	
330	0.320	0.320	0.320	0.320	0.330	0.330	0.330	0.330	0.330	0.330	
340	0.330	0.330	0.330	0.330	0.330	0.330	0.340	0.340	0.340	0.340	
. 350	0.340	0.340	0.340	0.340	0.340	0.340	0.340	0.340	0.350	0.350	
360	0.350	0.350	0.350	0.350	0.350	0.350	0.350	0.350	0.350	0.350	
370	0.360	0.360	0.360	0.360	0.360	0.360	0.360	0.360	0.360	0.360	
380	0.360	0.360	0.360	0.370	0.370	0.370	0.370	0.370	0.370	0.370	
390	0.370	0.370	0.370	0.370	0.370	0.380	0.380	0.380	0.380	0.380	
400	0.380	0.380	0.380	0.380	0.380	0.380	0.380	0.380	0.390	0.390	
700	1 0.000	0.000	0.000	0.000	0.000	0.000	0.000	9.900	0.000	0.000	

Note:

1

1. Water-effect ratio is assumed to be 1.

2. Criteria are expressed in terms of the dissolved fraction of the metal in the water column.

3. Criteria do not apply to Sacramento River (and tributaries) above Hamilton City. (CFR131.38(b)(1) Footnote (x) to Table)

PBS&J

		b _A	CF(1)	CF(2)		
Cadmium	1.128	-3.6867	1.136672	0.041838		
Copper	0.9422	-1.700	0.960	0		
Chromium (III)	0.8190	3.688	0.316	0		
Lead	1.273	-1.460	1.46203	0.145712		
Nickel	0.8460	2.255	0.998	0		
Silver	1.72	-6.52	0.85	0		
Zinc	0.8473	0.884	0.978	0		

.

TABLE 3

Chronic (CCC) freshwater aquatic life criteria applied in the monitoring study for the Crystal Cove Development Project, as specified by the California Regional Water Quality Control Board, Santa Ana Region. Shown are calculated values of chronic freshwater quality criteria for the hardness-dependent dissolved trace metals cadmium, chromium III, copper, lead, nickel, silver and zinc, expressed in mg/L. Based on the EPA California Toxics Rule (USEPA, May 18, 2000). Criteria values are shown for each 1 mg/L increment of freshwater hardness in the table columns. Calculations provided by PBS&J, San Diego, December 8, 2000.

FRESHWATER AQUATIC LIFE CRITERION CONTINUOUS CONCENTRATIONS (CHRONIC CRITERIA) STATE OF CALIFORNIA (40 CFR 131.38) CADMIUM

Hardness (mg/L)				Criterion C	Continuous	Concentrat	ion (mg/L)			
	0	1	2	3	4	5	6	7	8	9
	r									
20	0.00068	0.00070	0.00073	0.00075	0.00078	0.00080	0.00083	0.00085	0.00087	0.00089
30	0.00092	0.00094	0.00096	0.00098	0.00100	0.00100	0.00110	0.00110	0.00110	0.00110
40	0.00110	0.00120	0.00120	0.00120	0.00120	0.00120	0.00130	0.00130	0.00130	0.00130
50	0.00130	0.00140	0.00140	0.00140	0.00140	0.00140	0.00150	0.00150	0.00150	0.00150
60	0.00150	0.00160	0.00160	0.00160	0.00160	0.00160	0.00160	0.00170	0.00170	0.00170
. 70	0.00170	0.00170	0.00180	0.00180	0.00180	0.00180	0.00180	0.00180	0.00190	0.00190
. 80	0.00190	0.00190	0.00190	0.00190	0.00200	0.00200	0.00200	0.00200	0.00200	0.00210
90	0.00210	0.00210	0.00210	0.00210	0.00210	0.00220	0.00220	0.00220	0.00220	0.00220
100	0.00220	0.00230	0.00230	0.00230	0.00230	0.00230	0.00230	0.00240	0.00240	0.00240
110	0.00240	0.00240	0.00240	0.00240	0.00250	0.00250	0.00250	0.00250	0.00250	0.00250
120	0.00260	0.00260	0.00260	0.00260	0.00260	0.00260	0.00270	0.00270	0.00270	0.00270
130	0.00270	0.00270	0.00270	0.00280	0.00280	0.00280	0.00280	0.00280	0.00280	0.00290
140	0.00290	0.00290	0.00290	0.00290	0.00290	0.00290	0.00300	0.00300	0.00300	0.00300
150	0.00300	0.00300	0.00300	0.00310	0.00310	0.00310	0.00310	0.00310	0.00310	0.00320
160	0.00320	0.00320	0.00320	0.00320	0.00320	0.00320	0.00330	0.00330	0.00330	0.00330
170	0.00330	0.00330	0.00330	0.00340	0.00340	0.00340	0.00340	0.00340	0.00340	0.00340
180	0.00350	0.00350	0.00350	0.00350	0.00350	0.00350	0.00350	0.00360	0.00360	0.00360
190	0.00360	0.00360	0.00360	0.00360	0.00370	0.00370	0.00370	0.00370	0.00370	0.00370
200	0.00370	0.00370	0.00380	0.00380	0.00380	0.00380	0.00380	0.00380	0.00380	0.00390
210	0.00390	0.00390	0.00390	0.00390	0.00390	0.00390	0.00400	0.00400	0.00400	0.00400
220	0.00400	0.00400	0.00400	0.00400	0.00410	0.00410	0.00410	0.00410	0.00410	0.00410
230	0.00410	0.00420	0.00420	0.00420	0.00420	0.00420	0.00420	0.00420	0.00420	0.00430
240	0.00430	0.00430	0.00430	0.00430	0.00430	0.00430	0.00430	0.00440	0.00440	0.00440
250	0.00440	0.00440	0.00440	0.00440	0.00450	0.00450	0.00450	0.00450	0.00450	0.00450
260	0.00450	0.00450	0.00460	0.00460	0.00460	0.00460	0.00460	0.00460	0.00460	0.00460
270	0.00470	0.00470	0.00470	0.00470	0.00470	0.00470	0.00470	0.00470	0.00480	0.00480
280	0.00480	0.00480	0.00480	0.00480	0.00480	0.00480	0.00490	0.00490	0.00490	0.00490
290	0.00490	0.00490	0.00490	0.00490	0.00500	0.00500	0.00500	0.00500	0.00500	0.00500
300	0.00500	0.00500	0.00510	0.00510	0.00510	0.00510	0.00510	0.00510	0.00510	0.00510
310	0.00520	0.00520	0.00520	0.00520	0.00520	0.00520	0.00520	0.00520	0.00530	0.00530
320	0.00530	0.00530	0.00530	0.00520	0.00520	0.00530	0.00540	0.00540	0.00540	0.00540
330	1									0.00550
	0.00540	0.00540	0.00540	0.00540	0.00540	0.00550	0.00550	0.00550	0.00550	
340	0.00550	0.00550	0.00550	0.00560	0.00560	0.00560	0.00560	0.00560	0.00560	0.00560
350	0.00560	0.00570	0.00570	0.00570	0.00570	0.00570	0.00570	0.00570	0.00570	0.00570
360	0.00580	0.00580	0.00580	0.00580	0.00580	0.00580	0.00580	0.00580	0.00590	0.00590
370	0.00590	0.00590	0.00590	0.00590	0.00590	0.00590	0.00590	0.00600	0.00600	0.00600
380	0.00600	0.00600	0.00600	0.00600	0.00600	0.00600	0.00610	0.00610	0.00610	0.00610
390	0.00610	0.00610	0.00610	0.00610	0.00620	0.00620	0.00620	0.00620	0.00620	0.00620
400	0.00620	0.00620	0.00620	0.00630	0.00630	0.00630	0.00630	0.00630	0.00630	0.00630

Note:

1. Water-effect ratio is assumed to be 1.

FRESHWATER AQUATIC LIFE CRITERION CONTINUOUS CONCENTRATIONS (CHRONIC CRITERIA) STATE OF CALIFORNIA (40 CFR 131.38) CHROMIUM (III)

Hardness (mg/L)	.) Criterion Continuous Concentration (mg/L)									
	0	1	2	3	4	5	່ 6	7	8	9
<u></u>										
20	0.048	0.050	0,052	0.053	0.055	0.057	0.059	0.061	0.063	0.065
30	0.066	0.068	0.070	0.072	0.074	0.075	0.077	0.079	0.081	0.082
40	0.084	0.086	0.087	0.089	0.091	0.093	0.094	0.096	0.098	0.099
50	0.100	0.100	0.100	0.110	0.110	0.110	0.110	0.110	0.110	0.120
60	0.120	0.120	0.120	0.120	0.120	0.130	0.130	0.130	0.130	0.130
70	0.130	0.130	0.140	0.140	0.140	0.140	0.140	0.140	0.150	0.150
80	0.150	0.150	0.150	0.150	0.150	0.160	0.160	0.160	0.160	0.160
·90	0.160	0.160	0.170	, 0.170	0.170	0.170	0.170	0.170	0.180	0.180
100	0.180	0.180	0.180	0.180	0.180	0.190	0.190	0.190	0.190	0.190
110	0.190	0.190	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.210
120	0.210	0.210	0.210	0.210	0.210	0.210	0.220	0.220	0.220	0.220
130	0.220	0.220	0.220	0.220	0.230	0.230	0.230	0.230	0.230	0.230
140	0.230	0.240	0.240	0.240	0.240	0.240	0.240	0.240	0.250	0.250
150	0.250	0.250	0.250	0.250	0.250	0.250	0.260	0.260	0.260	0.260
160	0.260	0.260	0.260	0.270	0.270	0.270	0.270	0.270	0.270	0.270
170	0.270	0.280	0.280	0.280	0.280	0.280	0.280	0.280	0.290	0.290
180	0.290	0.290	0.290	0.290	0.290	0.290	0.300	0.300	0.300	0.300
190	0.300	0.300	0.300	0.310	0.310	0.310	0.310	0.310	0.310	0.310
200	0.310	0.320	0.320	0.320	0.320	0.320	0.320	0.320	0.320	0.330
		0.020								
210	0.330	0.330	0.330	0.330	0.330	0.330	0.330	0.340	0.340	0.340
220	0.340	0.340	0.340	0.340	0.340	0.350	0.350	0.350	0.350	0.350
230	0.350	0.350	0.350	0.360	0.360	0.360	0.360	0.360	0.360	0.360
240	0.360	0.370	0.370	0.370	0.370	0.370	0.370	0.370	0.370	0.380
250	0.380	0.380	0.380	0.380	0.380	0.380	0.380	0.390	0.390	0.390
260	0.390	0.390	0.390	0.390	0.390	0.400	0.400	0.400	0.400	0.400
270	0.400	0.400	0.400	0.410	0.410	0.410	0.410	0.410	0.410	0.410
280	0.410	0.410	0.420	0.420	0.420	0.420	0.420	0.420	0.420	0.420
290	0.430	0.430	0.430	0.430	0.430	0.430	0.430	0.430	0.440	0.440
300	0.440	0.440	0.440	0.440	0.440	0.440	0.440	0.450	0.450	0.450
310	0.450	0.450	0.450	0.450	0.450	0.460	0.460	0.460	0.460	0.460
320	0.460	0.460	0.460	0.470	0.470	0.470	0.470	0.470	0.470	0.470
330	0.400	0.400	0.480	0.480	0.480	0.480	0.480	0.480	0.480	0.480
						0.480		0.480	0.490	0.500
340	0.480	0.490	0.490	0.490	0.490		0.490	0.490	0.490	0.500
350	0.500	0.500	0.500	0.500	0.500	0.500	0.500			
360	0.510	0.510	0.510	0.510	0.510	0.510	0.520	0.520	0.520	0.520
370	0.520	0.520	0.520	0.520	0.520	0.530	0.530	0.530	0.530	0.530
380	0.530	0.530	0.530	0.530	0.540	0.540	0.540	0.540	0.540	0.540
390	0.540	0.540	0.540	0.550	0.550	0.550	0.550	0.550	0.550	0.550
400	0.550	0.560	0.560	0.560	0.560	0.560	0.560	0.560	0. 56 0	0.560

Note:

1. Water-effect ratio is assumed to be 1.

FRESHWATER AQUATIC LIFE CRITERION CONTINUOUS CONCENTRATIONS (CHRONIC CRITERIA) STATE OF CALIFORNIA (40 CFR 131.38) COPPER

Hardness (mg/L)											
_	0	1	2	3	4 ·	5	6	7	8	9	
			·								
20	0.0023	0.0024	0.0025	0.0026	0.0026	0.0027	0.0028	0.0029	0.0030	0.0031	
[~] 30	0.0032	0.0033	0.0034	0.0035	0.0036	0.0037	0.0037	0.0038	0.0039	0.0040	
40	0.0041	0.0042	0.0043	0.0044	0.0044	0.0045	0.0046	0.0047	0.0048	0.0049	
50	0.0050	0.0050	0.0051	0.0052	0.0053	0.0054	0.0055	0.0055	0.0056	0.0057	
60	0.0058	0.0059	0.0060	0.0060	0.0061	0.0062	0.0063	0.0064	0.0064	0.0065	
70	0.0066	0.0067	0.0068	0.0068	0.0069	0.0070	0.0071	0.0072	0.0072	0.0073	
80	0.0074	0.0075	0.0076	0.0076	0.0077	0.0078	0.0079	0.0080	0.0080	0.0081	
90	0.0082	0.0083	0.0083	0.0084	0.0085	0.0086	0.0086	0.0087	0.0088	0.0089	
100	0.0090	0.0090	0.0091	0.0092	0.0093	0.0093	0.0094	0.0095	0.0096	0.0096	
110	0.0097	0.0098	0.0099	0.0099	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	
120	0.0100	0.0110	0.0110	0.0110	0.0110	0.0110	0.0110	0.0110	0.0110	0.0110	
130	0.0110	0.0110	0.0110	0.0110	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	
140	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0130	0.0130	
150	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	0.0130	
160	0.0130	0.0130	0.0140	0.0140	0.0140	0.0140	0.0140	0.0140	0.0140	0.0140	
170	0.0140	0.0140	0.0140	0.0140	0.0140	0.0140	0.0150	0.0150	0.0150	0.0150	
180	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	0.0150	
190	0.0150	0.0160	0.0160	0.0160	0.0160	0.0160	0.0160	0.0160	0.0160	0.0160	
200	0.0160	0.0160	0.0160	0.0160	0.0160	0.0170	0.0170	0.0170	0.0170	0.0170	
210	0.0170	0.0170	0.0170	0.0170	0.0170	0.0170	0.0170	0.0170	0.0170	0.0170	
220	0.0180	0.0180	0.0180	0.0180	0.0180	0.0180	0.0180	0.0180	0.0180	0.0180	
230	0.0180	0.0180	0.0180	0.0180	0.0190	0.0190	0.0190	0.0190	0.0190	0.0190	
240	0.0190	0.0190	0.0190	0.0190	0.0190	0.0190	0.0190	0.0190	0.0190	0.0200	
250	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	
260	0.0200	0.0200	0,0200	0.0200	0.0210	0.0210	0.0210	0.0210	0.0210	0.0210	
270	0.0210	0.0210	0.0210	0.0210	0.0210	0.0210	0.0210	0.0210	0.0210	0.0220	
280	0.0220	0.0220	0.0220	0.0220	0.0220	0.0220	0.0220	0.0220	0.0220	0.0220	
290	0.0220	0.0220	0.0220	0.0220	0.0230	0.0230	0.0230	0.0230	0.0230	0.0230	
300	0.0230	0.0230	0.0230	0.0230	0.0230	0.0230	0.0230	0.0230	0.0230	0.0230	
310	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	0.0240	
320	0.0240	0.0240	0.0240	0.0240	0.0240	0.0250	0.0250	0.0250	0.0250	0.0250	
330	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	0.0250	
340	0.0250	0.0260	0.0260	0.0260	0.0260	0.0260	0.0260	0.0260	0.0260	0.0260	
350	0.0260	0.0260	0.0260	0.0260	0.0260	0.0260	0.0270	0.0270	0.0270	0.0270	
360	0.0270	0.0270	0.0270	0.0270	0.0270	0.0270	0.0270	0.0270	0.0270	0.0270	
370	0.0270	0.0270	0.0280	0.0280	0.0280	0.0280	0.0280	0.0280	0.0280	0.0280	
380	0.0280	0.0280	0.0280	0.0280	0.0280	0.0280	0.0280	0.0280	0.0290	0.0290	
390	0.0290	0.0290	0.0290	0.0290	0.0290	0.0290	0.0290	0.0290	0.0290	0.0290	
400	0.0290	0.0290	0.0290	0.0290	0.0300	0.0300	0.0300	0.0300	0.0300	0.0300	

2

Note:

· .

1. Water-effect ratio is assumed to be 1.

FRESHWATER AQUATIC LIFE CRITERION CONTINUOUS CONCENTRATIONS (CHRONIC CRITERIA) STATE OF CALIFORNIA (40 CFR 131.38)

LEAD

Hardness (mg/L)				Criterion C	ontinuous	Concentrat	ion (mg/L)			
	0	1	2	3	4	5	6	7	88	9
	0.000.00	0.00044	0 000 47	0.00040	0.00050	0.0005.4	0.00057	0 00050	0.00004	0.00004
20	0.00042	0.00044	0.00047	0.00049 0.00074	0.00052 0.00076	0.00054	0.00057	0.00059	0.00061	0.00064 0.00089
30	0.00066	0.00069 0.00094	0.00071 0.00097		0.00078	0.00079	0.00081 0.00110	0.00084 0.00110	0.00087 0.00110	0.00089
40	0.00092			0.00099	0.00100	0.00100	0.00110	0.00110	0.00110	0.00140
50	0.00120	0.00120	0.00120	0.00130	0.00150	0.00130	0.00130	0.00140	0.00140	0.00140
60	0.00140	0.00150	0.00150	0.00150	0.00150	0.00160		0.00180	0.00180	0.00170
70	0.00170	0.00170	0.00180	0.00180	0.00180	0.00180	0.00190 0.00210	0.00190	0.00190	0.00190
80	0.00200	0.00200	0.00200	0.00210		0.00210			0.00220	
90	0.00220	0.00230	0.00230	0.00230	0.00240	0.00240	0.00240	0.00240		0.00250
100	0.00250	0.00250	0.00260	0.00260	0.00260	0.00270	0.00270	0.00270	0.00270	0.00280
110	0.00280	0.00280	0.00280	0.00290	0.00290	0.00290	0.00300	0.00300	0.00300	0.00300
120	0.00310	0.00310	0.00310	0.00320	0.00320	0.00320	0.00320	0.00330	0.00330	0.00330
130	0.00330	0.00340	0.00340	0.00340	0.00350	0.00350	0.00350	0.00350	0.00360	0.00360
140	0.00360	0.00370	0.00370	0.00370	0.00370	0.00380	0.00380	0.00380	0.00380	0.00390
150	0.00390	0.00390	0.00400	0.00400	0.00400	0.00400	0.00410	0.00410	0.00410	0.00420
160	0.00420	0.00420	0.00420	0.00430	0.00430	0.00430	0.00430	0.00440	0.00440	0.00440
170	0.00450	0.00420	0.00450	0.00450	0.00460	0.00460	0.00460	0.00470	0.00470	0.00470
180	0.00470	0.00480	0.00480	0.00480	0.00490	0.00490	0.00490	0.00490	0.00500	0.00500
190	0.00500	0.00510	0.00510	0.00510	0.00510	0.00520	0.00520	0.00520	0.00520	0.00530
200	0.00530	0.00530	0.00540	0.00540	0.00540	0.00540	0.00550	0.00550	0.00550	0.00560
210	0.00560	0.00560	0.00560	0.00570	0.00570	0.00570	0.00580	0.00580	0.00580	0.00580
220	0.00590	0.00590	0.00590	0.00600	0.00600	0.00600	0.00600	0.00610	0.00610	0.00610
230	0.00620	0.00620	0.00620	0.00620	0.00630	0.00630	0.00630	0.00630	0.00640	0.00640
240	0.00640	0.00650	0.00650	0.00650	0.00650	0.00660	0.00660	0.00660	0.00670	0.00670
250	0.00670	0.00670	0.00680	0.00680	0.00680	0.00690	0.00690	0.00690	0.00690	0.00700
260	0.00700	0.00700	0.00710	0.00710	0.00710	0.00710	0.00720	0.00720	0.00720	0.00730
270	0.00730	0.00730	0.00730	0.00740	0.00740	0.00740	0.00750	0.00750	0.00750	0.00750
280	0.00760	0.00760	0.00760	0.00760	0.00770	0.00770	0.00770	0.00780	0.00780	0.00780
290 ·	0.00780	0.00790	0.00790	0.00790	0.00800	0.00800	0.00800	0.00800	0.00810	0.00810
300	0.00810	0.00820	0.00820	0.00820	0.00820	0.00830	0.00830	0.00830	0.00840	0.00840
310	0.00840	0.00840	0.00850	0.00850	0.00850	0.00860	0.00860	0.00860	0.00860	0.00870
320	0.00840	0.00870	0.00870	0.00880	0.00880	0.00880	0.00890	0.00890	0.00890	0.00890
	0.00900	0.00900	0.00870	0.00910	0.00910	0.00880	0.00910	0.00920	0.00920	0.00920
330			0.00930	0.00930	0.00940	0.00940	0.00940	0.00950	0.00950	0.00950
340	0.00930	0.00930 0.00960	0.00930	0.00930	0.00940	0.00940	0.00940	0.00930	0.00990	0.00980
350	0:00950	0.00960	0.00960	0.00980	0.00970	0:01000	0.01000	0.01000	0.01000	0.01000
360	0.00980			0.00990	0.00990	0.01000	0.01000	0.01000	0.01000	0.01000
370	0.01000	0.01000	0.01000 0.01000			0.01000	0.01000	0.01000	0.011000	0.01100
380	0.01000	0.01000	0.01000	0.01000 0.01100	0.01000	0.01100	0.01100	0.01100	0.01100	0.01100
390	0.01100	0.01100 0.01100	0.01100	0.01100	0.01100	0.01100	0.01100	0.01100	0.01100	0.01100
400	1 0.01100	0.01100	0.01100	0.01100	0.01100	0.01100	0.01100	0.01100	0.01100	0.01100

Note:

1. Water-effect ratio is assumed to be 1.

2. Criteria are expressed in terms of the dissolved fraction of the metal in the water column.

.

FRESHWATER AQUATIC LIFE CRITERION CONTINUOUS CONCENTRATIONS (CHRONIC CRITERIA) STATE OF CALIFORNIA (40 CFR 131.38) NICKEL

Hardness (mg/L)	Criterion Continuous Concentration (mg/L)									
	0	1	2	3	4	5	6	7	8	9
						*				
20	0.013	0.014	0.014	0.015	0.016	0.016	0.017	0.017	0.018	0.018
30	0.019	0.019	0.020	0.020	0.021	0.021	0.022	0.022	0.023	0.023
40	0.024	0.024	0.025	0.025	0.026	0.026	0.027	0.027	0.028	0.028
50	0.029	0.029	0.030	0.030	0.031	0.031	0.032	0.032	0.033	0.033
60	0.034	0.034	0.035	0.035	0.036	0.036	0.037	0.037	0.038	0.038
70	0.038	0.039	0.039	[,] 0.040	0.040	0.041	0.041	0.042	0.042	0.043
. 80	0.043	0.044	0.044	0.044	0.045	0.045	0.046	0.046	0.047	0.047
90	0.048	0.048	0.048	0.049	0.049	0.050	0.050	0.051	0.051	0.052
100	0.052	0.052	0.053	0.053	0.054	0.054	0.055	0.055	0.056	0.056
110	0.056	0.057	0.057	0.058	0.058	0.059	0.059	0.059	0.060	0.060
120	0.061	0.061	0.062	0.062	0.062	0.063	0.063	0.064	0.064	0.065
130	0.065	0.065	0.066	0.066	0.067	0.067	0.067	0.068	0.068	0.069
140	0.069	0.070	0.070	0.070	0.071	0.071	0.072	0.072	0.072	0.073
150	0.073	0.074	0.074	0.075	0.075	0.075	0.076	0.076	0.077	0.077
160	0.077	0.078	0.078	0.079	0.079	0.079	0.080	0.080	0.081	0.081
170	0.081	0.082	0.082	0.083	0.083	0.083	0.084	0.084	0.085	0.085
180	0.086	0.086	0.086	0.087	0.087	0.088	0.088	0.088	0.089	0.089
190	0.090	0.090	0.090	0.091	0.091	0.092	0.092	0.092	0.093	0.093
200	0.093	0.094	0.094	0.095	0.095	0.095	0.096	0.096	0.097	0.097
200	0.035	0.034	0.034	0.035	0.035	0.035	0.030	0.000	0.007	0.007
210	0.097	0.098	0.098	0.099	0.099	0.099	0.100	0.100	0.100	0.100
220	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100
230	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110
240	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110
250	0.110	0.110	0.110	0.110	0.110	0.110	0.120	0.120	0.120	0.120
260	0.110	0.120	0.120	0.120	0.120	0.120	0.120	0.120	0.120	0.120
270	0.120	0.120	0.120	0.120	0.120	0.120	0.120	0.120	0.120	0.120
280	0.120	0.120	0.130	0.130	0.130	0.130	0.130	0.130	0.120	0.130
290	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130
300	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.140
	0.100	0.100	000		0.100	0.700				
310	0.140	0.140	0.140	0.140	0.140	0.140	0.140	0.140	0.140	0.140
320	0.140	0.140	0.140	0.140	0.140	0.140	0.140	0.140	0.140	0.140
330	0.140	0.140	0.140	0.140	0.140	0.140	0.140	0.150	0.150	0.150
340	0.150	0.150	0.150	0.150	0.150	0.150	0.150	0.150	0.150	0.150
350	0.150	0.150	0.150	0.150	0.150	0.150	0.150	0.150	0.150	0.150
360	0.150	0.150	0.150	0.150	0.160	0.160	0.160	0.160	0.160	0.160
370	0.160	0.160	0.160	0.160	0.160	0.160	0.160	0.160	0.160	0.160
380	0.160	0.160	0.160	0.160	0.160	0.160	0.160	0.160	0.160	0.160
390	0.160	0.160	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.100
400	0.160	0.160	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170
400	1 0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170

Note:

1. Water-effect ratio is assumed to be 1.

2. Criteria are expressed in terms of the dissolved fraction of the metal in the water column.

PBS&J

FRESHWATER AQUATIC LIFE CRITERION CONTINUOUS CONCENTRATIONS (CHRONIC CRITERIA) STATE OF CALIFORNIA (40 CFR 131.38)

ZINC

	1			Critorian	Santinuoun.	Canaantrat	ion(mall)			
Hardness (mg/L)	0	1	2			Concentrat		7	0	0
	0	1		3	4	5	6	/	8	9
20	0.030	0.031	0.033	0.034	0.035	0.036	0.038	0.039	0.040	0.041
30	0.043	0.044	0.045	0.046	0.000	0.049	0.050	0.051	0.052	0.053
40	0.054	0.056	0.057	0.058	0.059	0.060	0.061	0.062	0.063	0.065
50	0.066	0.067	0.068	0.069	0.070	0.071	0.072	0.073	0.074	0.076
60	0.077	0.078	0.079	0.080	0.081	0.082	0.083	0.084	0.085	0.086
70	0.087	0.088	0.089	0.090	0.092	0.093	0.094	0.095	0.096	0.097
80	0.098	0.099	0.100	0.100	0.100	0.100	0.100	0.100	0.110	0.110
90	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.120	0.120	0.120
100	0.120	0.120	0.120	0.120	0.120	0.120	0.120	0.130	0.130	0.130
	0.120	0.120	0.120	0.120	0.120	0	0			
110	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.140	0.140
120	0.140	0.140	0.140	0.140	0.140	0.140	0.140	0.140	0.150	0.150
130	0.150	0.150	0.150	0.150	0.150	0.150	0.150	0.150	0.160	0.160
140	0.160	0.160	0.160	0.160	0.160	0.160	0.160	0.160	0.160	0.170
150	0.170	0.170	0:170	0.170	0.170	0.170	0.170	0.170	0.170	0.170
160	0.170	0.180	0.180	0.170	0.170	0.180	0.180	0.180	0.180	0.180
170	0.180	0.180	0.190	0.180	0.180	0.190	0.180	0.190	0.100	0.180
180	0.190	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200
190	0.200	0.200	0.210	0.210	0.210	0.210	0.210	0.210	0.210	0.210
200	0.210	0.200	0.210	0.220	0.220	0.220	0.220	0.220	0.220	0.220
-00	0.2.0	0.210	0.210	0.220	0.220	0.220	0.220	0.220	0.220	0.000
210	0.220	0.220	0.220	0.220	0.230	0.230	0.230	0.230	0.230	0.230
220	0.230	0.230	0.230	0.230	0.230	0.230	0.240	0.240	0.240	0.240
230	0.240	0.240	0.240	0.240	0.240	0.240	0.240	0.250	0.250	0.250
240	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.260	0.260
250	0.260	0.260	0.260	0.260	0.260	0.260	0.260	0.260	0.260	0.260
260	0.270	0.270	0.270	0.270	0.270	0.270	0.270	0.270	0.270	0.270
270	0.270	0.270	0.280	0.280	0.280	0.280	0.280	0.280	0.280	0.280
280	0.280	0.280	0.280	0.290	0.290	0.290	0.290	0.290	0.290	0.290
290	0.290	0.290	0.290	0.290	0.290	0.300	0.300	0.300	0.300	0.300
300	0.300	0.300	0.300	0.300	0.300	0.300	0.300	0.310	0.310	0.310
310	0.310	0.310	0.310	0.310	0.310	0.310	0.310	0.310	0.310	0.320
320	0.320	0.320	0.320	0.320	0.320	0.320	0.320	0.320	0.320	0.320
330	0.320	0.330	0.330	0.330	0.330	0.330	0.330	0.330	0.330	0.330
340	0.330	0.330	0.330	0.340	0.340	0.340	0.340	0.340	0.340	0.340
350	0.340	0.340	0.340	0.340	0.340	0.350	0.350	0.350	0.350	0.350
360	0.350	0.350	0.350	0.350	0.350	0.350	0.350	0.360	0.360	0.360
370	0.360	0.360	0.360	0.360	0.360	0.360	0.360	0.360	0.360	0.370
380	0:370	0.370	0.370	0.370	0.370	0.370	0.370	0.370	0.370	0.370
390	0.370	0.380	0.380	0.380	0.380	0.380	0.380	0.380	0.380	0.380
400	0.380	0.380	0.380	0.380	0.390	0.390	0.390	0.390	0.390	0.390
	•				,					

Note:

1. Water-effect ratio is assumed to be 1.

	m _c	b _c	CF(1)	CF(2)	
Cadmium	0.7852	-2.715	1.101672	0.041838	
Copper	0.8545	-1.702	0.960	0	
Chromium (III)	0.8190	1.561	0.860	0	
Lead	1.273	-4.705	1.46203	0.145712	
Nickel	0.8460	0.0584	0.997	0	
Silver	EPA has n	ot published	d àn aquatio	lifé criterion	value
Zinc	0.8473	0.884	0.986	0	

· .

TABLE 4

Water quality objectives applied in the monitoring study for the Crystal Cove Development Project, as required by the California Regional Water Quality Control Board, Santa Ana Region. Shown are the objectives for ocean waters (expressed in µg/L and mg/L), specified by the California Ocean Plan (CSWRCB 1997). See footnote for details.

		Celifornie Ocea	n Plan Water Qua	lily Objectives ²
Parameter	Units	6-monih Median	Delly Meximum	Instantaneous Meximum
Arsenio	tg/L	8 (2)	32 (2)	80 (2)
Cedmlum	1g/L	1 (2)	4 (2)	10 (2)
Hexavelent Chromium	tg/L	2 [2]	8 (2)	20 (2)
Copper	1g/L	3 (2)	12 (2)	30 (2)
Lesd	1g/L	2 (2)	8 (2)	20 (2)
Mercury	tg/L'	0.04 (2)	0.16 (2)	0.4 (2)
Nickel	1g/L	5 (2)	20 (2)	50 (2)
Selenium	10/L	15 (2)	60 (2)	150 (2)
Silver	1 p/L	0.7 (2)	2.8 (2)	7 (2)
Zino	10/L	20 (2)	80 (2)	200 (2)
Chlorine (Total residuel)	10/L	2		60
Ammonia (expressed as N)	tø/L	800	2400	8000
Total Nilrata-Nilrite (expressed as N)	tg/L	· · · · · · · · · · · · · · · · · · ·		·
Chronic Toxicily	Tuo		·	·
Phenolic Compounds (non-chlorinsted)	1 ₀ /L	30	120	300
Chlorineled phenolics	to/L	1	44	10
Endosulfen	tor	0.009	0.018	0.027
Endrin	10/1	0.002	0.004	0.006
Phosphorus (Total)	<u>mg/L</u>	<u> </u>	·	·
pH			·	6.9

California Ocean Plan Criteria for total recoverable concentrations of trace metal expressed in mg/L

Parameter (2)	Daily	Instantaneous
	Maximum	Maximum
Cadmium	0.004	0.010
Chromium	0.008	0.020
Copper	0.012	0.030
Lead	0.008	0.020
Nickel	0.020	0.050
Silver	0.0028	0.007
Zinc	0.080	0.200

(2) Expressed as total recoverable concentrations.

TABLE 5 A

Field data for dry-weather flow sampling on July 31, 2000, at Watershed and Surf Zone Stations, following irrigation during the night and early morning of July 30-31, 2000, in upstream areas of Los Trancos Canyon watershed. There was no dry-weather flow in Muddy canyon or Emerald Canyon.

DATE	TIME	STATION	WATER	AIR	CLOUD	RUNOFF	WATÊR	SURF
	(hrs)		TEMP	TEMP	COVER		TURBIDITY	Ht
			(°C)	(°C)	(%)	COLOR		(ft)
7/31/00	0730	LTU	20	20	100	Lt Brown	None	
7/31/00	0800	LT	20	20	100	Clear	None	
7/31/00	0830	LT-1	18	19	100	Clear	None	2
7/31/00	0915	MCU	NO	RUNOFF	FLOW	AT	STATION	
7/31/00	0920	MC	NO	RUNOFF	FLOW	AT	STATION	
7/3.1/00	0930	MC-1	20	232	100		None	2
7/31/00	0950	ECU	NO	RUNOFF	FLOW	AT	STATION	
7/31/00	0955	EC	NO	RUNOFF	FLOW	AT	STATION	
7/31/00	1000	EC-1	20	23	100		None	2

TABLE 5 B

Current velocities of dry-weather flow measured during sampling in Los Trancos Canyon watershed on July 31, 2000. Mean velocity (ft/sec) is based on three replicate measurements, with range shown. Cross sectional dimensions of water flow path are indicated. For description of methods, see text.

Station LTU	0730 hrs
Mean flow velocit	ty at Station = 0.94 ft/sec
Range: 0.8 – 1.0	ft/sec
Dimensions:	Mean flow width $= 30$ "
	Maximum flow depth $= 3$ "
	<u>,</u>

Station LT 0910 hrs Mean flow velocity at Station = 1.1 ft/sec Range: 0.9 - 1.2 ft/sec Dimensions: Mean flow width = 24" Maximum flow depth = 3"

Station LT-1

0830 hrs

Flow over upper beach to surf zone Mean flow velocity = 2.17 ft/sec Range: 2.0 - 2.5 ft/sec Dimensions: Mean flow width = 26" Maximum flow depth = 2"

TABLE 6 A

Field data for dry-weather flow sampling on September 12, 2000, at Watershed and Surf Zone Stations, following irrigation during the night and early morning of September 11 - 12, 2000, in upstream areas of Los Trancos Canyon watershed. There was no dry-weather flow in Muddy canyon or Emerald Canyon.

DATE	TIME	STATION	WATER	AIR	CLOUD	RUNOFF	WATER	SURF
	(hrs)		TEMP	TEMP	COVER	COLOR	TURBIDITY	Ht
			(°C)	(°C)	(%)			(ft)
9/12/00	0630	LTU	15	16	0	Clear	None	
9/12/00	0730	· LT	16	13	0	Clear	None	
9/12/00	0745	LT-1	18	19	0	Clear	None	2
9/12/00	0810	MCU	NO	RUNOFF	FLOW	AT	STATION	
9/12/00	0815	MC	NO	RUNOFF	FLOW	AT	STATION	
9/12/00	0830	MC-1	18	26	0		None	2
9/12/00	0920	ECU	NO	RUNOFF	FLOW	AT	STATION	
9/12/00	0935	EC	NO	RUNOFF	FLOW	AT	STATION	
9/12/00	900	EC-1	18	22	0		None	2

TABLE 6 B

Current velocities of dry-weather flow measured during sampling in Los Trancos Canyon watershed on September 12, 2000. Mean velocity (ft/sec) is based on three replicate measurements, with range shown. Cross sectional dimensions of water flow path are indicated. For description of methods, see text.

Station LTU 0630 hrs Mean flow velocity at Station = 0.61 ft/sec Range: 0.8 - 1.0 ft/sec Dimensions: Mean flow width = 48" Maximum flow depth = 3"

Station LT 0730 hrs Mean flow velocity at Station = 1.17 ft/sec Range: 1.0 - 1.2 ft/sec Dimensions: Mean flow width = 60" Maximum flow depth = 2"

Station LT-1

0800 hrs

Flow over upper beach to surf zone Mean flow velocity = 1.17 ft/sec Range: 1.0 - 1.2 ft/sec Dimensions: Mean flow width = 24" Maximum flow depth = 2"

TABLE 7 A

Field data for dry-weather flow sampling on September 29, 2000, at Watershed and Surf Zone Stations, following irrigation during the night and early morning of September 28 - 29, 2000, in upstream areas of Los Trancos Canyon watershed. There was no dry-weather flow in Muddy canyon or Emerald Canyon.

DATE	TIME	STATION	WATER	AIR	CLOUD	RUNOFF	WATER	SURF
	(hrs)]	TEMP	TEMP	COVER	COLOR	TURBIDITY	Ht
			(°C)	(°C)	(%)			(ft)
9/29/00	0610	LTU	19	17	50	Clear	None	
9/29/00	0645	LT	20	19	50	Clear	None	
9/29/00	0715	LT-1	20	18	50	Clear	None	2
9/29/00	0750	MCU	NO	RUNOFF	FLOW	AT	STATION	
9/29/00	0755	MC	NO	RUNOFF	FLOW	AT	STATION	
9/29/00	0800	MC-1	19	21	50		None	2
9/29/00	0920	ECU	NO	RUNOFF	FLOW	AT	STATION	
9/29/00	0850	EC	NO	RUNOFF	FLOW	AT	STATION	
9/29/00	0820	EC-1	20	20	50		None	2

TABLE 7 B

Current velocities of dry-weather flow measured during sampling in Los Trancos Canyon watershed on September 29, 2000. Mean velocity (ft/sec) is based on three replicate measurements, with range shown. Cross sectional dimensions of water flow path are indicated. For description of methods, see text.

Station LTU	0610 hrs
Mean flow veloci	ty at Station = 3.0 ft/sec
Range: 2.5 – 3.3	ft/sec
Dimensions:	Mean flow width = 14"
	Maximum flow depth = 5 "

Station LT	0645 hrs
Mean flow velocit	ty at Station = 1.2 ft/sec
Range: 1.1 – 1.2	ft/sec
Dimensions:	Mean flow width = 6" Maximum flow depth = 3"
	Maximum now depth 5

Station LT-10715 hrsFlow over upper beach to surf zoneMean flow velocity = 1.0 ft/secRange: 1.0 - 1.1 ft/secDimensions:Dimensions:Mean flow width = 5"Maximum flow depth = 3"

TABLE 8 A

Salinities (ppt) measured at Surf Zone Stations LT-1, MC-1 and EC-1 during dry-weather sampling on July 31, 2000. Sampling followed irrigation of upstream locations in Los Trancos Canyon watershed during the preceding night and early morning hours of July 30-31, 2000. There was no dry-weather runoff flow in the Muddy Canyon and Emerald Canyon watersheds. Station locations are shown in Figure 1. Also shown is the percentage of mean normal, dry-weather salinity (33.3ppt) each value represents, based on non-storm data for the period May - June, 2000.

STATION	TIME	SALINITY (ppt)	PERCENT	SAMPLE
	(hrs)		OF NORMAL	DATE
LT-1	0830	33.27	100.0	7/31/00
MC-1	0845	33.26	100.0	7/31/00
EC-1	0900	33.25	100.0	7/31/00

TABLE 8 B

Salinities (ppt) measured at Surf Zone Stations LT-1, MC-1 and EC-1 during dry-weather sampling on September 12, 2000. Sampling followed irrigation of upstream locations in Los Trancos Canyon watershed during the preceding night and early morning hours of September 11-12, 2000. There was no dry-weather runoff flow in the Muddy Canyon and Emerald Canyon watersheds. Station locations are shown in Figure 1. Also shown is the percentage of mean normal, dry-weather salinity (33.4ppt) each value represents, based on non-storm data for the period June - July, 2000.

STATION	TIME	SALINITY (ppt)	PERCENT	SAMPLE
	(hrs)		OF NORMAL	DATE
LT-1	0800	33.35	100.0	9/12/00
MC-1	0830	33.37	100.0	9/12/00
EC-1	0900	33.38	100.0	9/12/00

TABLE 8 C

Salinities (ppt) measured at Surf Zone Stations LT-1, MC-1 and EC-1 during dry-weather sampling on September 29, 2000. Sampling followed irrigation of upstream locations in Los Trancos Canyon watershed during the preceding night and early morning hours of September 28- 29, 2000. There was no dry-weather runoff flow in the Muddy Canyon and Emerald Canyon watersheds. Station locations are shown in Figure 1. Also shown is the percentage of mean normal, dry-weather salinity (33.5ppt) each value represents. based on non-storm data for the period June - September, 2000.

STATION	TIME (hrs)	SALINITY (ppt)	PERCENT OF NORMAL	SAMPLE DATE
LT-1	0715	33.46	100.0	9/29/00
MC-1	0845	33.57	100.0	9/29/00
EC-1	0900	33.56	100.0	9/29/00

TABLE 9

Values of the Organophosphorus pesticides chlorpyrifos and diazinon determined by the high accuracy Enzyme-linked Immunosorbant Assay (ELISA) method for dry-weather runoff sampled at Station LT on September 12, 2000. Water sample was employed in acute and chronic toxicity testing of the daphniid crustacean *Ceriodaphnia dubia*

Chlorpyrifos	<u>Station LT</u>	<u>Units</u>	<u>Date</u>	<u>Time (hrs)</u>
	0.0171.	µg/L	9/12/00	0800
Diazinon	0.6534	μg/L	9/12/00	0800

Water quality constituent data for dry-weather runoff on July 13, September 12, and September 29, 2000, shown separately for each watershed and surf zone station sampled. Laboratory reporting limits (RL) and detection limits (DL) are indicated. ND indicates that the constituent was not present at a concentration above the laboratory detection limit.

SAMPLE SITE	DATE	TIME	IAR	SAMPLE ID		
LTU	7/31/00	7:30 AM		G0910-01	-	
					10.070	
ANALYTE	RESL		RL	DL	UNITS	
otal Dissolved Solids	4500		10	10	mg/l	
otal Suspended Solids	400		10	10	mg/l	
lardness (as CaCO3)	2000		4.0	4.0	mg/l	
Cadmium, Total	0.012		0.005	0.0010	mg/l	
Cadmium, Dissolved	ND		0.005	0.0010	mg/l	
Chromium, Total	ND		0.005	0.0010	mg/l	
Chromium, Dissolved	ND		0.005	0.0010	mg/i	
Copper, Total	0.010		0.010	0.0022	mg/i	
Copper, Dissolved	ND		0.010	0.0022	. mg/l	
.ead, Total	ND		0.005	0.0013	mg/l	
ead, Dissolved	ND		0.005	0.0013	mg/l	
lickel, Total	0.023		0.010	0.0015	mg/l	
lickel, Dissolved	0.012		0.010	0.0015	mg/l	
iilver, Total	ND		0.010	0.0010	mg/i	
ilver, Dissolved	ND		0.010	0.0010	mg/l	
inc, Total	0.034		0.020	0.0042	mg/l	
inc, Dissolved	ND		0.020	0.0042	mg/l	
)il & Grease	ND		1.0	0.094	mg/l	
hosphorus, Total	0.91		0.050	0.0074	mg/l	
hosphorus, Dissolved	NR		0.050	0.0074	mg/l	
otal Kjeldahl Nitrogen	ND		0.50	0.089	mg/l	
litrate/Nitrite	3.04		0.05	0.05	mg/l	
zinphos methyl	ND		1.00	0.330	ug/l	
loistar	ND		0.500	0.130	ug/l	
hlorpyrifos	ND		0.500	0.280	ug/l	
oumaphos	ND		1.00	0.210	ug/l	
Demeton	ND		0.500	0.220	ug/l	
Diazinon	ND		0.500	0.160	ug/l	
Dichlorvos	ND		0.500	0.110	ug/l	
Disulfoton	ND		0.500	0.150	ug/l	
PN	ND		0.500	0.190	ug/t	
Ethion	ND		0.500	0.150	ug/l	
Ethoprop	ND		0.500	0.130	ug/l	
ensulfothion	ND		0.500	0.320	ug/l	
Fenthion	ND		0.500	0.100	ug/i	
Aalathion	ND		0.500	0.250	ug/l	
ferphos	ND		0.500	0.400	ug/l	
levinphos	ND		0.500	0.330	ug/t	
Aonocrotophos	ND		0.500	0.0600	ug/l	
laled .	ND		1.00	0.220	ug/l	
arathion-ethyl	ND		0.500	0.150	ug/l	
arathion-methyl	NO		0.500	0.130	ug/l	
Phorate	ND		0.500	0.140	ug/l	
Ronnel	ND		0.500	0.120	ug/l	
Stirophos	ND		1.00	0.140	ug/l	
Sulfotep	ND		0.500	0.240	ug/l	
okuthion (Prothiofos)	ND		0.500	0.140	ug/l	
richloronate	ND		0.500	0.130	ug/l	

•

-

,

•

•

TABLE 10 E	WATER QUALITY DATA FOR DR JULY 31, 2000	WEATHER SAMELING ON

LT	7/31/00	8:00 AM	1	[JG0910-02	
ANALYTE	RESU		RL .	DL	UNITS
Total Dissolved Solids	1400		10	10	 mg/l
Total Suspended Solids	430		10	10	mg/l
Hardness (as CaCO3)	490		4.0	4.0	mg/l
Cadmium, Total	0.0053	3	0.005	0.0010	mg/l
Cadmium, Dissolved	ND		0.005	0.0010	mg/l
Chromium, Total	ND		0.005	0.0010	mg/l
Chromium, Dissolved	ND		0.005	0.0010	mg/l
Copper, Total	0.025		0.010	0.0022	mg/l
Copper, Dissolved	ND		0.010	0.0022	mg/l
Lead, Total	ND		0.005	0.0013	mg/l
Lead, Dissolved	ND		0.005	0.0013	mg/l
Nickel, Total	0.017		0.010	0.0015	mg/l
Nickel, Dissolved	ND		0.010	0.0015	mg/l
Silver, Total	ND		0.010	0.0010	mg/l
Silver, Dissolved	ND		0 010	0.0010	mg/l ,
Zinc, Total	0.10		0.020	0.0042	mg/l
Zinc, Dissolved	0.031		0.020	0.0042	mg/l
Oil & Grease	ND		1.0	0.094	mg/l
Phosphorus, Total	0.78		0.050	0.0074	mg/l
Phosphorus, Dissolved	NR		0.050	0.0074	mg/l
Total Kjeldahl Nitrogen	22		0.50	0.089	mg/l
Nitrate/Nitrite	3.1	•	0.05	0.05	mg/l
Azinphos methyl	ND		1.00	0.330	ug/l
Boistar	ND		0.500	0.130	ug/l
Chlorpyrifos	ND		0.500	0.280	ug/l
Coumaphos	ND		1.00	0.210	ug/l
Demeton	ND		0.500	0.220	ug/l
Diazinon	• ND		0.500	0.160	ug/l
Dichlorvos	ND		0.500	0.110	ug/l
Disulfoton	ND		0.500	0.150	ug/l
EPN	ND		0.500	0.190	ug/l
Ethion	ND		0.500	0.150	ug/l
Ethoprop	· ND		0.500	0.130	ug/l
Fensulfothion	ND		0.500	0.320	ug/l
Fenthion	ND	•	0 500	0.100	ug/l
Malathion	ND		0.500	0.250	ug/l
Merphos	ND		0.500	0.400	ug/i
Mevinphos	ND		0.500	0.330	ug/l
Monocrotophos	ND		0.500	0.0600	ug/t
Naled	ND		1.00	0.220	ug/l
Parathion-ethyl	NO		0.500	0.150	ug/l
Parathion-methyl	ND		0.500	0.130	ug/l
Phorate	ND		0.500	0.140	ug/l
Ronnel	ND		0.500	0.120	ug/l
Stirophos	ND		1.00	0.140	ug/l
Sulfotep	ND		0 500	0.240	ug/l
Tokuthion (Prothiofos)	ND		0.500	0.140	ug/l
Trichloronate	ND		0.500	0.130	ug/l

	TABLE 10 C	WATER QU JULY 31, 20		DATA I	FOR DRY	. EATHER S	AMPLING (
	SAMPLE SITE	DATE	TIME	LAB	SAMPLE ID		
	LT-1	7/31/00	8:30 AM	IJ	G0910-03	-	
	ANALYTE	RESUL	LT	RL	DL	UNITS	
	Total Dissolved Solids	35000		10	10	mg/l	
	Total Suspended Solids	140		10	10	mg/l	
	Cadmium, Total	ND		0.010	0.0020	mg/l	
	Cadmium, Dissolved	ND		0.010	0.0020	mg/l	
	Chromium, Total	ND		0.010	0.0020	mg/l	
	Chromium, Dissolved	ND		0.010	0.0020	mg/l	
	Copper, Total	ND		0.020	0.0044	mg/l	
	Copper, Dissolved	ND		0.020	0.0044	mg/l	
	Lead, Total	ND		0.010	0.0026	mg/l	
• - '	Lead, Dissolved	ND		0.010	0.0026	mg/t	
	Nickel, Total	ND		0.020	0.0030	mg/l	
	Nickel, Dissolved	ND		0.020	0.0030	mg/l	
	Silver, Total	ND		0.020	0.0020	mg/l	
	Silver, Dissolved	ND		0.020	0.0020	mg/i	
	Zinc, Total	ND		0.040	0.0084	mg/l	
	Zinc, Dissolved	ND		0.040	0.0084	mg/l	
	Oil & Grease	ND		1.0	0.094	mg/l	
	Phosphorus, Total	ND		0.050	0.0074	mg/l	
	Phosphorus, Dissolved	ND		0.050	0.0074	mg/l	
						-	
	Total Kjeldahl Nitrogen	0.67		0.50	0.089	mg/l	
	Nitrate/Nitrite	2.02		0.05	0.05	mg/l	
	Azinphos methyl	ND		1.00	0.330	ug/i	•
	Bolstar	ND		0.500	0.130	ug/l	
	Chlorpyrifos	ND		0.500	0.280	ug/l	
	Coumaphos	ND		1.00	0.210	ug/l	
	Demeton	ND		0.500	0.220	ug/i	
	Diazinon	ND		0.500	0.160	ug/l	
	Dichlorvos	ND		0.500	0.110	ug/î	
	Disulfoton	ND		0.500	0.150	ug/l	
	EPN	ND		0.500	0.190	ug/l	
	Ethion	ND		0.500	0.150	ug/l	
	Ethoprop	ND		0.500	0.130	ug/l	·
	Fensulfothion	ND		0.500	0.320	ug/l	
	Fenthion	ND		0.500	0.100	ug/l	
	Malathion	ND		0.500	0.250	ug/l	
	Merphos	ND		0.500	0.400	ug/î	
	Mevinphos	ND		0.500	0.330	ug/i	
	Monocrotophos	ND		0.500	0.0600	ug/l	
د	Naled	ND		1.00	0.220	ug/l	
	Parathion-ethyl	ND		0.500	0.150	ug/l	
	Parathion-methyl	ND		0.500	0.130	ug/l	
	Phorate	ND		0.500	0.140	ug/l	
	Ronnel	ND		0.500	0.120	ug/l	
	Stirophos	ND		1.00	0.140	ug/l	
	Sulfotep	ND		0.500	0.240	ug/l	
	Tokuthion (Prothiofos)	ND		0.500	0.140	ug/l	
	Trichloronate	ND		0.500	0.130	ug/l	

TABLE 10 D	WATER Q JULY 31, 2		DATA	FOR DRY	<i>¥</i> EATHE
SAMPLE SITE	DATE	TIME	_ LAB	SAMPLE ID	_
MC-1	7/31/00	9:30 AM	IJ	G0910-04	_
ANALYTE	RESU	'LT	RL	DL	UNITS
Total Dissolved Solids	36000		10	10	mg/l
Total Suspended Solids	150		10	10	mg/l
Cadmium, Total	ND		0.010	0.0020	mg/l
Cadmium, Dissolved	ND		0.015	0.0030	mg/l
Chromium, Total	ND		0.010	0.0020	mg/l
Chromium, Dissolved	ND		0.015	0.0030	mg/i
Copper, Total	ND		0.020	0.0044	mg/l
Copper, Dissolved	ND		0.030	0.0066	mg/l
Lead, Total	ND		0.010	0.0026	mg/l
Lead, Dissolved	ND		0.015	0.0039	mg/i
Nickel, Total	ND		0.020	0.0030	mg/l
Nickel, Dissolved	ND		0.030	0.0045	mg/l
Silver, Total	ND		0.020	0.0020	mg/l
Silver, Dissolved	ND		0.030	0.0030	mg/l
Zinc, Total	ND		0.040	0.0084	mg/l
Zinc, Dissolved	ND		0.060	0.013	mg/l
Oil & Grease	ND		1.0	0.094	mg/l
Phosphorus, Total	ND		0.050	0.0074	mg/l
Phosphorus, Dissolved	ND		0.050	0.0074	mg/l
Total Kjeldahl Nitrogen	0.84		0.50	0.089	mg/l
Nitrate/Nitrite	1.65		0.05	0.05	mg/l
Azinphos methyl	ND		1.00	0.330	ug/l
Bolstar	ND		0.500	0.130	ug/l
Chlorpyrifos	ND		0.500	0.280	ug/l
Cournaphos	ND		1.00	0.210	ug/l
Demeton	ND		0.500	0.220	ug/l
Diazinon	ND		0.500	0.160	ug/l
Dichlorvos	ND		0.500	0.110	ug/l
Disulfoton	ND		0.500	0.150	ug/l
EPN	ND		0.500	0.190	ug/l
Ethion	ND	1	0.500	0.150	ug/l
Ethoprop	ND .		0.500	0.130	ug/l
Fensulfothion	ND		0.500	0.320	ug/l
Fenthion	ND		0.500	0.100	ug/l
Malathion	ND		0.500	0.250	ug/l
Merphos	ND		0.500	0.400	ug/l
Mevinphos	ND		0.500	0.330	ug/l
Monocrotophos	ND		0.500	0.0600	ug/l
Naled	ND		1.00	0.220	ug/l
Parathion-ethyl	ND		0.500	0.150	ug/l
Parathion-methyl	ND		0.500	0.130	ug/l
Phorate	ND		0.500	0.130	ug/i
			0.500	0.140	ug/l
Ronnel	ND ND	,		0.120	ug/i ∽ug/i
Stirophos	ND ND		1.00		-
Sulfotep	ND		0.500	0.240	ug/l
Tokuthion (Prothiofos)	ND		0.500	0.140	ug/l
Trichloronate	ND		0.500	0.130	ug⁄l

TABLE 10 EWATER QUALITY DATA FOR DRYEATHER SAMPLING ONJULY 31, 2000

SAMPLE SITE	DATE	TIME	LAB S	AMPLE ID	
EC-1	7/31/00	10:00 AM	IJG	0910-05	-
ANALYTE	RESI	ULT	RL	DL	UNITS
Total Dissolved Solids	35000)	10	10	mg/l
Total Suspended Solids	150		10	10	mg/l
Cadmium, Total	ND		0.010	0.0020	mg/l
Cadmium, Dissolved	ND		0.015	0.0030	mg/l
Chromium, Total	ND		0.010	0.0020	mg/l
Chromium, Dissolved	ND		0.015	0.0030	mg/l
Copper, Total	ND		0.020	0.0044	mg/l
Copper, Dissolved	ND		0.030	0.0066	mg/l
Lead, Total	ND		0.010	0.0026	mg/l
Lead, Dissolved	ND		0.015	0.0039	mg/l
Nickel, Total	ND		0.020	0.0030	mg/l
Nickel, Dissolved	ND	,	0.030	0.0045	mg/l
Silver, Total	ND		0.020	0.0020	mg/l
Silver, Dissolved	ND		0.030	0.0030	mg/l
Zinc, Total	ND		0.040	0.0084	mg/i
Zinc, Dissolved	ND		0.060	0.013	mg/l
Dil & Grease	ND		1.0	0.094	mg/l
Phosphorus, Total	ND		0.050	0.0074	mg/l
Phosphorus, Dissolved	ND		0.050	0.0074	mg/l
	0.56		0.50	0.089	-
fotal Kjeldahl Nitrogen					mg/l
Nitrate/Nitrite	1.71 ND		0.05 1.00	0.05	mg/l
Azinphos methyl	ND		0.500	0.330	ug/l
Bolstar	ND		0.500	0.280	ug/i
Chlorpyrifos					ug/l
	ND		1.00	0.210	ug/l
Demeton	ND		0.500	0.220	ug/l
Diazinon	ND		0.500	0.160	ug/l.
Dichlorvos	ND		0.500	0.110	ug/l
Disulfoton	ND		0.500	0.150	ug/l
EPN	ND		0.500	0.190	ug/l
Ethion	ND		0.500	0.150	ug/l
Ethoprop	, ND		0.500	0.130	ug/l
ensulfothion	ND		0.500	0.320	ug/l
Fenthion	ND		0.500	0.100	ug/l
dalathion	ND		0.500	0.250	ug/l
derphos	ND		0.500	0.400	ug/î
levinphos	ND		0.500	0.330	ug/l
lonocrotophos	ND		0.500	0.0600	ug/l
laled	ND		1.00	0.220	ug/l
arathion-ethyl	ND		0.500	0.150	ug/1
arathion-methy!	ND		0.500	0.130	ug/i
horate	ND		0.500	0.140	ug/l
Ronnel	ND		0.500	0.120	ug/l
Stiraphos	ND		1.00	0.140	ug/l
Sulfotep	ND		0.500	0.240	ug/i
okuthion (Prothiofos)	ND		0.500	0.140	ug/l
frichloronate	ND		0.500	0.130	ug/l

		BER 12, 20	00				
SAMPLE SITE	DATE	TIME	LAI	B SAMPLE ID			
LTU	9/12/00	6:30 AM		IJ10347-03	-		
ANALYTE	RESU	ULT	RL	DL	UNITS		
Total Dissolved Solids	2800		10	10	mg/l	•	
otal Suspended Solids	240		10	10	mg/l		
lardness (as CaCO3)	1400		4.0	4.0	mg/l		
admium, Total	ND		0.005	0.0010	mg/l		
admium, Dissolved	ND		0.005	0.0010	mg/l		
hromium, Total	ND		0.005	0.0010	mg/l		
hromium, Dissolved	ND		0.005	0.0010	mg/l		
Copper, Total	0.025		0.010	0.0022	mg/l		
Copper, Dissolved	ND		0.010	0.0022	mg/l		
ead, Total	ND		0.005	0.0013	mg/l		
ead, Dissolved	ND	·	0.005	0.0013	mg/l		
lickel, Total	ND		0.010	0.0015	mg/L		
lickel, Dissolved	ND		0.010	0.0015	mg/l		
ilver, Total	ND		0.010	0.0010	mg/l		
ilver, Dissolved	ND		0.010	0.0010	mg/l		
inc, Total	0.043		0.020	0.0042	mg/l		
inc, Dissolved	0.022		0.020	0.0042	mg/l		
)il & Grease	ND		1.0	0.094	mg/l		
hosphorus, Total	1.4		0.050	0.0074	mg/l		
hosphorus, Dissolved	ND		0.050	0.0074	mg/l		
otal Kjeldahl Nitrogen	ND		0.50	0.089	mg/l		
litrate/Nitrite	2.08		0.05	0.05	mg/l		
zinphos methyl	ND		1.00	0.330	ug/l		
oistar	ND		0.500	0.130	ug/l		
hlorpyrifos	ND		0.500	0.280	ug/l		
Coumaphos	ND		1.00	0.210	ug/l		
)emeton	ND		0.500	0.220	ug/l		
Diazinon	ND		0.500	0.160	ug/l		
Dichlorvos	ND		0.500	0.110	ug/i		
Disulfoton	ND		0.500	0.150	ug/l		
PN	ND		0.500	0.190	ug/l		
thion	ND		0.500	0.150	ug/l		
Ithoprop	ND		0.500	0.130	ug/l		
ensulfothion	ND		0.500	0.320	ug/l		
enthion	ND		0.500	0.100	ug/l		
falathion	ND		0.500	0.250	ug/l		
lerphos	ND		0.500	0.400	ug/l		
fevinphos	ND		0.500	0.330	ug/í		
lonocrotophos	ND		1.25	0.0600	ug/i		
aled	ND		1.00	0.220	ug/l		
arathion-ethyl	ND		0.500	0.150	ug/I	•	
arathion-methyl	ND		0.500	0.130	ug/l		
horate	ND		0.500	0.140	ug/l		
lonnel	ND		0.500	0.120	ug/l	•	
itirophos	ND		1.00	0.140	ug/l		
ulfotep	ND		0.500	0.240	ug/l		
okuthion (Prothiofos)	NO		0.500	0.140	ug/I	,	
richloronate	ND		0.500	0.130	ug/I		

TABLE 11 B	WATER Q SEPTEMB			FOR DR'	/EATHE	R SAMPLING ON
SAMPLE SITE	DATE	TIME	LAI	B SAMPLE ID		
LT	9/12/00	7:30 AM		IJI0347-01		
ANALYTE	RESU	LT	RL	DL	UNITS	
Total Dissolved Solids	2500		10	10	mg/l	•
Total Suspended Solids	260		10	10	mg/l	
Hardness (as CaCO3)	.1300		4.0	4.0	mg/l	
Cadmium, Total	0.0090		0.005	0.0010	mg/l	
Cadmium, Dissolved	ND		0.005	0.0010	mg/l	
Chromium, Total	0.0052		0.005	0.0010	mg/l	
Chromium, Dissolved	ND		0.005	0.0010	mg/l	
Copper, Total	0.069		0.010	0.0022	mg/l	
Copper, Dissolved	ND		0.010	0.0022	mg/l	
Lead, Total	0.012		0.005	0.0013	mg/l	
Lead, Dissolved	ND		0.005	0.0013	mg/l	
Nickel, Total	0.024		0.010	0.0015	mg/l	
Nickel, Dissolved	. 0.011		0.010	0.0015	- mg/l	
Silver, Total	ND		0.010	0.0010	mg/l	
Silver, Dissolved	ND		0.010	0.0010	mg/l	
Zinc, Total	0.15		0.020	0.0042	mg/l	
Zinc, Dissolved	0.089		0.020	0.0042	mg/l	
Oil & Grease	ND		1.0	0.094	mg/l	
Phosphorus, Total	1.1		0.050	0.0074	mg/l	
Phosphorus, Dissolved	0.48	,	0.050	0.0074	mg/l	
Total Kjeldahl Nitrogen	1.7		0.50	0.089	mg/l	
Nitrate/Nitrite	4		0.05	0.05	mg/l	
Azinphos methyl	ND		1.00	0.330	ug/l	
Bolstar	ND		0.500	0.130	ug/l	
Chlorpyrifos	ND		0.500	0.280	ug/l	
Coumaphos	ND		1.00	0.210	ug/l	
Demeton	ND		0.500	0.220	ug/l	
Diazinon	ND		0.500	0.160	ug/l	
Dichlorvos	ND		0.500	0.110	ug/l	
Disulfoton	ND		0.500	0,150	ug/l	
EPN '	ND		0.500	0.190	ug/l	
Ethion	ND		0.500	0.150	ug/l	
Ethoprop.	ND		0.500	0.130	ug/l	
Fensulfothion	ND		0.500	0.320	ug/l	
Fenthion	ND		0.500	0.100	ug/l	
Malathion	ND		0.500	0.250	ug/i	
Merphos	ND		0.500	0.400	ug/l	
Mevinphos	ND		0.500	0.330	ug/l	
Monocrotophos	ND		1.25	0.0600	ug/l	
Naled	ND		1.00	0.220	ug/i	
Parathion-ethyl	ND		0.500	0.150	ug/l	
Parathion-methyl	ND		0.500	0.130	ug/l	
Phorate	ND		0.500	0.140	ug/i	
Ronnel	ND		0.500	0.120	ug/l	
			1.00	0.140	-	
Stirophos Sulfato-	ND		0.500	0.740	ug/l	

ND

ND

ND

Sulfotep

Trichloronate

Tokuthion (Prothiolos)

0.240

0.140

0.130

ug/l

ug/l

ug/l

0.500

0.500

TABLE 11 CWATER QUALITY DATA FOR DRWEATHER SAMELING ON
SEPTEMBER 12, 2000

SAMPLE SITE	DATE	TIME	LAB	SAMPLE ID	_
LT-1	9/12/00	8:00 AM	I	JI0347-02	
ANALYTE	RESU	LT	RL	DL	UNITS
Total Dissolved Solids	35000		10	10	mg/l
Total Suspended Solids	80		10	10	mg/l
Cadmium, Total	ND		0.010	0.0020	mg/ł
Cadmium, Dissolved	ND		0.010	0.0020	mg/l
Chromium, Total	ND		0.010	0.0020	mg/l
Chromium, Dissolved	ND		0.010	0.0020	mg/l
Copper, Total	ND		0.020	0.0044	mg/i
Copper, Dissolved	ND		0.020	0.0044	mg/l
Lead, Total	ND		0.010	0.0026	mg/l
Lead, Dissolved	ND		0.010	0.0026	mg/l
Nickel, Total	ND		0.020	0.0030	mg/i
Nickel, Dissolved	ND		0.020	0.0030	mg/l
Silver, Total	ND		0.020	0.0020	mg/l
Silver, Dissolved	ND		0.020	0.0020	mg/l
Zinc, Total	ND		0.040	0.0084	mg/l
Zinc, Dissolved	ND		0.040	0.0084	mg/l
Oil & Grease	ND		1.0	0.094	mg/l
Phosphorus, Total	ND		0.050	0.0074	mg/l
Phosphorus, Dissolved	ND		0.050	0.0074	mg/l
Total Kjeldahl Nitrogen	ND		0.50	0.089	mg/l
Nitrate/Nitrite	1.1		0.05	0.05	mg/l
Azinphos methyl	ND		1.00	0.330	ug/l
Bolstar	ND		0.500	0.130	ug/l
Chlorpyrifos	ND		0.500	0.280	ug/l
Coumaphos	ND		1.00	0.210	ug/l
Demeton	ND		0.500	0.220	ug/l
Diazinon	ND		0.500	0,160	ug/l
Dichlorvos	ND		0.500	0.110	ug/l
Disulfoton	. ND		0.500	0,150	ug/l
EPN	ND	,	0.500	0.190	ug/l
Ethion	ND		0.500	0.150	ug/l
Ethoprop	ND		0.500	0,130	ug/l
Fensulfothion	ND		0.500	0.320	ug/l
Fenthion	ND		0.500	0.100	ug/i
Malathion		,	0.500	0.250	ug/l
	ND		0.500	0.400	ug/l
Merphos	ND		0.500	0.330	ug/i
Mevinphos			1.25	0.0600	-
Monocrotophos Nalod	ND ND		1.25	0.0800	ug/l ug/l
Naled			0.500	0.220	ug/l
Parathion-ethyl	ND	,			
Parathion-methyl	ND		0.500	0.130	ug/l
Phorate	DN		0.500	0,140	ug/l
Ronnel	ND		0.500	0.120	ug/l
Stirophos	ND		1.00	0.140	· ug/l
Sulfotep	ND		0.500	0.240	ug/l
Tokuthion (Prothiofos)	ND		0.500	0.140	ug/i
Trichloronate	. DИ		0.500	0.130	ug/l

SAMPLE SITE	DATE	TIME	LA	B SAMPLE ID	-	
MC-1	9/12/00	8:30 AM		IJI0347-04		
ANALYTE	RESU	JLT	RL	DL	UNITS	
Total Dissolved Solids	35000)	10	10	mg/l	
Total Suspended Solids	88		10	10	mg/l	
Cadmium, Total	ND		0.010	0.0020	mg/l	
Cadmium, Dissolved	ND		0.010	0.0020	mg/l	
Chromium, Total	ND		0.010	0.0020	mg/l	
Chromium, Dissolved	ND		0.010	0.0020	mg/l	
Copper, Total	ND		0.020	0.0044	mg/l	
Copper, Dissolved	ND		0.020	0.0044	mg/l	
Lead, Total	. ND		0.010	0.0026	mg/l	
Lead, Dissolved	ND		0.010	0.0026	mg/l	
Nickel, Total	ND		0.020	0,0030	mg/l	
Nickel, Dissolved	ND		0.020	0.0030	mg/l	
Silver, Total	ND		0.020	0.0020	mg/l	
Silver, Dissolved	ND		0.020	0.0020	mg/l	
Zinc, Total	ND		0.040	0.0084	mg/l	
Zinc, Dissolved	ND		0.040	0.0084	mg/l	
Oil & Grease	ND		1.0	0.094	mg/l	
Phosphorus, Total	0.055		0.050	0.0074	mg/l	
Phosphorus, Dissolved	ND		0.050	0.0074	mg/l	
Total Kjeldahl Nitrogen	ND		0.50	0.089	mg/l	
Nitrate/Nitrite	2.43		0.05	0.05	mg/l	
Azinphos methyl	ND		1.00	0.330	ug/l	
Bolstar	ND		0.500	0.130	ug/l	
Chlorpyrifos	ND		0.500	0.280	ug/l	
Coumaphos	ND		1.00	0.210	ug/l	
Demeton	ND		0.500	0.220	ug/l	
Diazinon	ND		0.500	0.160	ug/l	
Dichlorvos	ND		0.500	0,110	ug/l	
Disulfoton	ND		0.500	0.150	ug/i	
EPN	ND		0.500	0.190	ug/l	
Ethion	ND		0.500	0.150	ug/l	
Ethoprop	ŃD		0.500	0.130	ug/l	
Fensulfothion	ND		0.500	0.320	ug/l	
Fenthion	ND		0.500	0.100	ug/l	
Malathion	ND		0.500	0.250	ug/l	
Merphos	ND		0.500	0.400	ug/l	
Mevinphos	ND		0.500	0.330	ug/l	
Monocrotophos	ND		1.25	0.0600	ug/i	
Naled	ND		1.00	0.220	ug/l	
Parathion-ethyl	ND		0.500	0 150	ug/l	
	ND		0.500	0.130	ug/l	
Parathion-methyl Rhorata	ND		0.500	0.140	ug/l	
Phorate				0.120	-	
Ronnel	ND		0.500		ug/l	
Stirophos	ND		1.00	0.140	ug/t	
Sulfotep	ND		0.500	0.240	ug/l	
Tokuthion (Prothiofos)	ND		0.500	0.140	ug/l	

TABLE 11 E	TA	۱B	LE	11	E
------------	----	----	----	----	---

.....

WATER QUALITY DATA FOR DR VEATHER SAMPLING ON SEPTEMBER 12, 2000

مديده د

SAMPLE SITE	DATE	TIME	LAB	SAMPLE ID	-
EC-1	9/12/00	9:00 AM	I	JI0347-05	
ANALYTE	RES	ULT	RL	DL	UNITS
Total Dissolved Solids	3500	00	10	10	mg/l
Total Suspended Solids	98		10	10	mg/l
Cadmium, Total	ND		0.010	0.0020	mg/l
Cadmium, Dissolved	ND		0.010	0.0020	mg/l
Chromium, Total	ND		0.010	0.0020	mg/l
Chromium, Dissolved	ND		0.010	0.0020	mg/l
Copper, Total	ND		0.020	0.0044	mg/l
Copper, Dissolved	ND		0.020	0.0044	mg/l
Lead, Total	ND		0.010	0.0026	mg/l
Lead, Dissolved	ND		0.010	0.0026	mg/l
Nickel, Total	ND		0.020	0.0030	mg/l
Nickel, Dissolved	ND		0.020	0.0030	mg/l
Silver, Total	ND		0.020	0.0020	mg/l
Silver, Dissolved	ND		0.020	0.0020	mg/l
Zinc, Total	ND		0.040	0.0084	mg/l
Zinc, Dissolved	ND		0.040	0.0084	mg/l
Oil & Grease	ND		1.0	0.094	mg/i
Phosphorus, Total	ND		0.050	0.0074	mg/l
Phosphorus, Dissolved	ND		0.050	0.0074	mg/l
Total Kjeldahl Nitrogen	1.1-		0.50	0.089	mg/l
Nitrate/Nitrite	2.67		0.05	0.05	mg/l
Azinphos methyl	2.07 ND		1.00	0,330	ug/l
Bolstar	ND ND		0.500	0.130	ug/l
Chlorpyrifos	ND		0.500	0.280	ug/l
	ND		1.00	0.200	ug/l
Coumaphos Demeton	ND		0.500	0.220	ug/l
Diazinon	ND		0.500	0.220	ug/l
	ND			0.100	-
Dichlorvos Disulfoton	ND		0.500		ug/l
	ND		0.500	0.150	ug/l
EPN			0.500	0.190	ug/i
Ethion	ND		0.500	0.150	ug/l
Ethoprop	ND		0.500	0.130	ug/l
Fensulfothion	ND		0.500	0.320	ug/l
Fenthion	ND		0.500	0.100	ug/l
Malathion			0.500	0.250	ug/l
Merphos	ND		0.500	0.400	ug/l
Mevinphos	ND		0.500	0.330	ug/l
Monocrotophos	ND		1.25	0.0600	ug/1
Naled	ND		1.00	0.220	ug/l
Parathion-ethyl	ND		0.500	0.150	ug/l
Parathion-methyl	ND		0.500	0.130	ug/l
Phorate	ND		0,500	0.140	ug/i
Ronnel	ND		0.500	0.120	ug/l
Stirophos	ND		1.00	0.140	ug/l
Sulfotep	ND		0.500	0.240	ug/l
Tokuthion (Prothiofos)	ND		0.500	0.140	ug/l
Trichloronate	ND		0.500	0.130	ug/i

TABLE 12 A	WATER QUALITY DATA FOR DR	/EATHER SAMPLING ON
	SEPTEMBER 29, 2000	

<u>SAMPLE SITE</u> LTU	<i>DATE</i> 9/29/00	<i>TIME</i> 6:10 AM		<u>B SAMPLE ID</u> IJI0989-01	-	
					1121170	
ANALYTE	RESU		RL	DL	UNITS	
Total Dissolved Solids	4100		10	10	mg/i	
Total Suspended Solids			,10	10	mg/l	
Hardness (as CaCO3)	2200		4.0	4.0	mg/l	
Cadmium, Total	ND		0.005	0.0010	mg/l	
Cadmium, Dissolved	ND		0.005	0.0010	mg/i	
Chromium, Total	ND		0.005	0.0010	mg/l	
Chromium, Dissolved	ND		0.005	0.0010	mg/l	
Copper, Total	ND		0.010	0.0022	mg/l	
Copper, Dissolved	ND		0.010	0.0022	mg/l	
Lead, Total	ND		0.005	0.0013	mg/l	
Lead, Dissolved	ND		0.005	0.0013	mg/l	
Nickel, Total	0.016		0.010	0.0015	mg/l	
Nickel, Dissolved	0.014		0.010	0.0015	mg/l	
Silver, Total	ND		0.010	0.0010	mg/l	
Silver, Dissolved	ND		0.010	0.0010	mg/l	
Zinc, Total	ND		0.020	0.0042	mg/l	
Zinc, Dissolved	ND		0.020	0.0042	mg/l	
Oil & Grease	ND		1.0	0.094	mg/l	
Phosphorus, Total	ND		0.050	0.0074	mg/I	
Phosphorus, Dissolved	ND		0.050	0.0074	mg/l	
Total Kjeldahl Nitrogen	ND		0.50	0.089	mg/l	
Nitrate/Nitrite	5		0.05	0.05	mg/l	•
Azinphos methyl	ND		1.00	0.330	ug/l	
Bolstar	ND		0.500	0.130	ug/l	
Chlorpyrifos	ND		0.500	0.280	ug/l	
Coumaphos	ND		1.00	0.210	ug/l	
Demeton	ND		0.500	0.220	ug/l	•
Diazinon	ND		0.500	0.160	ug/l	
Dichlorvos	ND		0.500	0.110	ug/l	
Disulfoton	ND		0.500	0.150	ug/l	
EPN	ND		0.500	0.190	ug/l	
Ethion	ND		0.500	0.150	ug/l	
Ethoprop	ND		0.500	0.130	ug/l	
Fensulfothion	ND		0.500	0.320	ug/l	
Fenthion	ND		0.500	0.100	ug/l	
Malathion	ND		0.500	0.250	ug/l	
Merphos	ND		0.500	0.400	ug/l	
Mevinphos	ND		0.500	0.330	ug/l	
Monocrotophos	ND		0.500	0.0600	ug/l	
Naled	ND		1.00	0.220	ug/l	
Parathion-ethyl	ND		0.500	0.150	ug/l	
Parathion-methyi	ND		0.500	0.130	ug/l	
Phorate	ND		0.500	0.140	ug/l	
Ronnel	ND		0.500	0.120	ug/l	
Stirophos	ND		1.00	0.140	ug/l	
Sulfotep	ND		0.500	0.240	ug/l	
Tokuthion (Prothiofos)	ND		0.500	0.140	ug/l	
Trichloronate	ND		0.500	0.130	ug/l	
	•					

TABLE 12 BWATER QUALITY DATA FOR DR'EATHER SAMPLING ON
SEPTEMBER 29, 2000

SAMPLE SITE	DATE	TIME	Lou	B SAMPLE ID	-
LT	9/29/00	6:45 AM		IЛ09 89-02	
ANALYTE	RESU	'LT	RL	DL	UNITS
Total Dissolved Solids	2600		10	10	mg/l
Total Suspended Solids	20		10	10	mg/l
Hardness (as CaCO3)	1300		4.0	4.0	mg/l
Cadmium, Total	ND		0.005	0.0010	mg/I
Cadmium, Dissolved	ND		0.005	0.0010	mg/i
Chromium, Total	ND	,	0.005	0.0010	mg/l
Chromium, Dissolved	ND		. 0.005	0.0010	mg/l
Copper, Total	0.014		0.010	0.0022	mg/l
Copper, Dissolved	0.013		0.010	0.0022	mg/l
Lead, Total	ND		0.005	0.0013	mg/l
Lead, Dissolved	ND		0.005	0.0013	mg/l
Nickel, Total	0.014		0.010	0.0015	mg/l
Nickel, Dissolved	0.014		0.010	0.0015	mg/l
Silver, Total	ND		0.010	0.0010	mg/l
Silver, Dissolved	ND		0.010	0.0010	mg/l
Zinc, Total	0.044		0.020	0.0042	mg/l
Zinc, Dissolved	0.043		0.020	0.0042	mg/l
Oil & Grease	ND		1.0	0.094	mg/l
Phosphorus, Total	1.0		0.050	0.0074	mg/l
Phosphorus, Dissolved	1.1		0.050	0.0074	mg/l
Total Kjeldahl Nitrogen	ND		0.50	0.089	mg/l
Nitrate/Nitrite	8.5		0.05	0.05	mg/l
Azinphos methyl	ND		1.00	0.330	ug/I
Bolstar	· ND		0.500	0.130	ug/l
Chlorpyrifos	ND		0.500	0.280	ug/l
Coumaphos	ND		1.00	0.210	ug/l
Demeton	ND		0.500	0.220	ug/l
Diazinon	. ND		0.500	0.160	ug/l
Dichlorvos	ND		0.500	0.110	ug/l
Disulfoton	ND		0.500	0.150	ug/l
EPN	ND .		0.500	0.190	ug/ł
Ethion	ND		0.500	0.150	ug/l
Ethoprop	ND		0.500	0.130	ug/l
Fensulfothion	ND		0.500	0.320	ug/ł
Fenthion	ND		0.500	0.100	ug/l
Malathion	ND		0.500	0.250	ug/i
Merphos	ND		0.500	0.400	ug/l
Mevinphos	ND		0.500	0.330	ug/l
Monocrotophos	ND		0.500	0.0600	ug/l
Naled	ND		1.00	0.220	ug/l
Parathion-ethyl	ND		0.500	0.150	ug/l
Parathion-methyl	ND		0.500	0.130	ug/l
Phorate	ND		0.500	0.140	ug/l
Ronnel	ND		0.500	0.120	ug/l
Stirophos	ND		1.00	0.140	ug/l
Sulfotep	ND		0.500	0.240	ug/l
Tokuthion (Prothiofos)	ND		0.500	0.140	ug/l
Trichloronate	ND		0.500	0.130	ug/l

. :

	•	
TABLE 12 C	WATER QUALITY DATA FOR DRY	EATHER SAMPLING ON
	SEPTEMBER 29, 2000	

•

LT-1	9/29/00	7:15 AM	I	Л0989-03	
ANALYTE	RESU	LT	RL	DL	UNITS
Total Dissolved Solids	34000		10	10	mg/l
Total Suspended Solids	93		10	10	mg/l
Hardness (as CaCO3)	6200		4.0	4.0	mg/l
Cadmium, Total	ND		0.005	0.0010	mg/l
Cadmium, Dissolved	ND		0.005	0.0010	mg/l
Chromium, Total	ND		0.005	0.0010	mg/1
Chromium, Dissolved	ND		0.005	0.0010	mg/l
Copper, Total	ND		0.010	0.0022	mg/l
Copper, Dissolved	ND		0.010	.0.0022	mg/l
Lead, Total	ND		0.005	0.0013	mg/l
Lead, Dissolved	ND		0.005	0.0013	mg/l
Nickel, Total	ND		0.010	0.0015	mg/l
Nickel, Dissolved	ND		0.010	0.0015	mg/l
Silver, Total	ND		0.010	0.0010	mg/l
Silver, Dissolved	ND		0.010	0.0010	mg/l
Zinc, Total	ND		0.020	0.0042	mg/l 、
Zinc, Dissolved	ND		0.020	0.0042	mg/l
Oil & Grease	ND		1.0	0.094	mg/l
Phosphorus, Total	0.77		0.050	0.0074	mg/i
Phosphorus, Dissolved	ND		0.050	0.0074	mg/l
Total Kjeldahl Nitrogen	ND		0.50	0.089	mg/l
Nitrate/Nitrite	4.5		0.05	0.05	mg/l
Azinphos methyl	DN		1.00	0.330	ug/i
Bolstar	ND		0.500	0.130	ug/l
Chlorpyrifos	ND		0.500	0.280	ug/I
Coumaphos	ND		1.00	0.210	ug/l
Demeton	ND		0.500	0.220	ug/l
Diazinon	ND		0.500	0.160	ug/l
Dichlorvos	ND		0.500	0.110	ug/l
Disulfoton	ND		0.500	0.150	ug/l
EPN	ND		0.500	0.190	ug/l
Ethion	ND		0.500	0.150	ug/l
Ethoprop	ND		0.500	0.130	ug/I
Fensulfothion	ND		0.500	0.320	ug/l
Fenthion	ND		0.500	0.100	ug/l
Malathion	ND		0.500	0.250	ug/l
Merphos	ND		0.500	0.400	ug/l
Mevinphos	ND		0.500	0.330	ug/i
Monocrotophos	ND		0.500	0.0600	ug/l
Naled	ND		1.00	0.220	ug/l
Parathion-ethyl	ND		0.500	0.150	ug/l
Parathion-methyl	ND		0.500	0.130	ug/l
Phorate	ND		0.500	0.140	ug/l
Ronnel	ND		0.500	0.120	ug/l
Stirophos	ND		1.00	0.140	ug/i
Sulfotep	ND		0.500	0.240	ug/l
Tokuthion (Prothiolos)	ND		0.500	0.140	ug/l
Trichloronate	ND		0.500	0.130	ug/l

. '

1

TABLE 12 DWATER QUALITY DATA FOR DRYEATHER SAMPLING ON
SEPTEMBER 29, 2000

SAMPLE SITE	DATE	TIME	LA	-		
MC-1	9/29/00	8:00 AM		IЛ0989-05		
ANALYTE	RESU	LT	RL	DL	UNITS	
Total Dissolved Solids	35000		10	10	mg/l	
Total Suspended Solids	120		10	10	mg/l	
Hardness (as CaCO3)	6200		4.0	4.0	mg/l	
Cadmium, Total	ND		0.005	0.0010	mg/l	
Cadmium, Dissolved	ND		0.005	0.0010	mg/l	
Chromium, Total	ND		0.005	0.0010	mg/i	
Chromium, Dissolved	ND		0.005	0.0010	mg/l	
Copper, Total	0.011		0.010	0.0022	mg/l	
Copper, Dissolved	ND		0.010	0.0022	mg/ł	
ead, Total	ND		0.005	0.0013	mg/l	
ead, Dissolved	0.0062		0.005	0.0013	mg/l	
lickel, Total	ND		0.010	0.0015	mg/l	
lickel, Dissolved	ND		0.010	0.0015	mg/l	
Silver, Total	ND		0.010	0.0010	mg/l	
Silver, Dissolved	ND		0.010	0.0010	mg/l	
Zinc, Total	ND		0.020	0.0042	mg/t	
Zinc, Dissolved	ND		0.020	0.0042	mg/l	
Dil & Grease	ND		1.0	0.094	mg/l	
Phosphorus, Total	0.078		0.050	0.0074	mg/l	
hosphorus, Dissolved	ND		0.050	0.0074	mg/l	
Total Kjeldahl Nitrogen	ND		0.50	0,089	- mg/l	
Vitrate/Nitrite	4.4		0.05	0.05	mg/l	
Azinphos methyl	ND		1.00	0.330	ug/l	
Bolstar	ND		0.500	0.130	ug/i	
 Chlorpyrifos	ND		0.500	0.280	ug/l	
Coumaphos	ND		1.00	0.210	ug/l	
Demeton	ND		0.500	0.220	ug/l	
Diazinon	ND		0.500	0,160	ug/l	
Dichlorvos	ND		0.500	0.110	ug/i	
Disulfoton	ND		0.500	0.150	ug/l	
PN	ND		0.500	0.190	ug/l	
Ithion	ND		0.500	0,150	ug/1	
thoprop	ND		0.500	0.130	ug/l	
ensulfothicn	ND		0.500	0.320	ug/l	
enthion	ND		0.500		-	
Aalathion	ND		0.500	0.100 0.250	ug/l ug/l	
/erphos	ND		0.500	0.400	-	
/evinphos	ND		0.500	0.330	ug/l ug/l	
Aenocrotochos	ND		0.500	0.0600	ug/l	
laled	ND		1.00	0.220		
arathion-ethyl	ND ND				ug/l	
arathion-ethyl	ND		0.500	0.150	ug/l	
•	•		0.500	0.130	ug/l	
Phorate Ronnel	ND		0.500	0.140	ug/l	
	ND		0.500	0.120	ug/l	
tirophos	ND		1.00	0.140	ug/l	
ulfotep	ND		0.500	0.240	ug/l	
okuthion (Prothiofos)	ND		0.500	0.140	ug/l	
richloronate	ND		0.500	0.130	ug/l	

. .

TABLE 12 E	WATER QUALITY DATA FOR DRY	EATHER SAMPLING ON
	SEPTEMBER 29, 2000	

•

SAMPLE SITE	DATE	TIME	LAB	SAMPLE ID	_	
EC-1	9/29/00	8:30 AM	Ī	J10989-04	_	
ANALYTE	RESU	LT	RL	DL	UNITS	
Total Dissolved Solids	35000		10	10	mg/l	
Total Suspended Solids	98		10	10	mg/l	
Hardness (as CaCO3)	6200		4.0	4.0	mg/l	
Cadmium, Total	ND		0.005	0.0010	mg/l	
Cadmium, Dissolved	ND		0.005	0.0010	mg/l	
Chromium, Total	ND		0.005	0.0010	mg/i	
Chromium, Dissolved	ND		0.005	0.0010	mg/l	
Copper, Total	0.013		0.010	0.0022	mg/l	
Copper, Dissolved	ND		0.010	0.0022	mg/l	
Lead, Total	0.0058		0.005	0.0013	mg/l	
Lead, Dissolved	NO		0.005	0.0013	mg/l	
Nickel, Total	ND		0.010	0.0015	mg/l	
Nickel, Dissolved	ND		0.010	0.0015	mg/l	
Silver, Total	ND		0.010	0.0010	mg/l	
Silver, Dissolved	ND		0.010	0.0010	mg/l	
Zinc, Total	ND		0.020	0.0042	mg/l	
Zinc, Dissolved	ND		0.020	0.0042	mg/l	
Oil & Grease	ND		1.0	0.094	mg/l	
Phosphorus	ND		0.050	0.0074	mg/i	
Phosphorus, Dissolved	ND		0.050	0.0074	mg/l	
Total Kjeldahl Nitrogen	ND		0.50	0.089	mg/l	
Nitrate/Nitrite	7.5		0.05	0.05	mg/l	
Azinphos methyl	ND		1.00	0.330	ug/l	
Bolstar	ND		0.500	0.130	ug/l	
Chlorpyrifos	ND		0.500	0.280	ug/i	
Coumaphos	ND		1.00	0.210	ug/l	
Demeton	ND		0.500	0.220	ug/l	
Diazinon	ND	i -	0.500	0.160	ug/i	
Dichlorvos	ND		0.500	0.100	-	
Disulfoton	, ND ND		0.500	0.110	ug/l	
EPN	ND		0.500	0.190	ug/l ug/l	
Ethion	ND		0.500	0,150	•	
Ethoprop	ND		0.500	0.130	ug/î ug/l	
Fensulfothion	ND		0.500	0.320	ug/l	
Fenthion	ND		0.500	0.320	ug/l	
Malathion	ND		0.500	0.250	ug/l	
Merphos	ND		0.500	0.230	ug/l	
Mevinphos	ND		0.500	0.400	ug/l	
Monocrotophos		;	0.500	0.0600	ug/l	
Naled	ND	•	1.00	0.0000	ug/l	
	ND		0.500		•	
Parathion-ethyl Parathion-methyl				0,150	ug/l	
Parathion-methyl	ND		0.500	0.130	ug/l	
Phorate	ND	• •	0.500	0.140	ug/l	
Ronnel	ND		0.500	0.120	ug/l	
Stirophos	ND		1.00	0.140	ug/l	
Sulfotep	ND		0.500	0.240	ug/ł	
Tokuthion (Prothiofos)	ND		0.500	0.140	ug/l	
Trichloronate	ND		0.500	0.130	ug/l	

1

Water quality constituent data for dry-weather runoff on July 31, September 12, and September 29, 2000, shown in comparative format for all stations sampled on a given date. ND indicates that the constituent was not present at a concentration above the laboratory detection limit. TABLE 13

WATER QUALITY DATA FOR DRY-WEATHER SAMPLING ON JULY 31, 2000

	LTU	LT	LT-1	MC-1	EC-1
ANALYTE	(7:30 AM)	(8:00 AM)	(8:30 AM)	(9:30 AM)	(10:00 AM)
Total Dissolved Solids	4500	1400	35000	36000	35000
Total Suspended Solids	400	430	140	150	150
Hardness (as CaCO3)	2000	490			
Cadmium, Total	0.012	0.0053	ND	ND	ND
Cadmium, Dissolved	ND	ND	ND	ND	ND
Chromium, Total	ND	ND	ND	ND	ND
Chromium,Dissolved	ND	ND	ND	ND	ND
Copper, Total	0.01	0.025	ND	ND	ND
Copper, Dissolved	ND	ND	ND	ND	ND
Lead, Total	ND	ND	ND	ND	ND
Lead, Dissolved	ND	ND	ND	ND	ND
Nickel, Total	0.023	0.017	ND	ND	ND
Nickel, Dissolved	0.012	ND	ND	ND	ND
Silver, Total	ND	ND	ND	ND	ND
Silver, Dissolved	ND	ND	ND	ND	ND
Zinc, Total	0.034	0.1	ND	ND	ND
Zinc, Dissolved	ND	0.031	ND	ND	ND
Oil & Grease	ND	ND	ND	ND	ND
Phosphorus, Total	0.91	0.78	ND	ND	ND
Phosphorus, Dissolved	NR	NR	ND	ND	ND
Total Kieldahl Nitrogen	ND	22	0.67	0.84	0.56
Nitrate/Nitrite	3.04	3.1	2.02	1.65	1.71
Azinphos methyl	ND	ND	ND	ND	ND
Bolstar	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND
Chlorpyrifos	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND
Demeton					
Diazinon	ND	ND	ND	ND	ND
Dichlorvos	ND	ND	ND	ND	ND
Disulfoton		ND	ND	ND	ND
EPN		ND	ND	ND	ND
Ethion	ND	ND	ND	ND	ND
Ethoprop	ND	ND	ND	ND	ND
Fensulfothion	ND	ND	ND	ND	ND
Fenthion	ND	ND	ND	ND	ND
Malathion	ND	ND	ND	ND	ND
Merphos	ND	ND	ND	ND	ND ·
Mevinphos	ND	ND	ND	ND	ND
Monocrotophos	ND	ND	ND	ND	ND
Naled	ND	ND	ND	ND	ND
Parathion-ethyl	ND	ND	ND	ND	ND
Parathion-methyl	ND	ND	ND	ND	ND
Phorate	ND	ND	ND	ND	ND
Ronnel	ND	ND	ND	ND	ND
Stirophos	ND	ND	ND	ND	ND
Sulfotep	ND	ND	ND	ND	ND
Tokuthion (Prothiofos)	ND	ND	ND	ND	ND
Trichloronate	ND	ND	ND	ND	ND

TABLE 14WATER QUALITY DATA FOR DRY-WEATHER SAMPLING ON
SEPTEMBER 12, 2000

- ----

and a second of the

ANALYTE	LTU (6:30 AM)	LT (7:30 AM)	LT-1 (8:00 AM)	MC-1 (8:30 AM)	EC-1 (9:00 AM)
Total Dissolved Solids	2800	2500	35000	35000	35000
Total Suspended Solids	240	260	80	88	98
Hardness (as CaCO3)	1400	1300			
Cadmium, Total	ND	0.009	NÐ	ND	ND
Cadmium, Dissolved	ND	ND	ND	ND	ND
Chromium, Total	ND	0.0052	ND	ND	ND
Chromium, Dissolved	ND	ND	ND	ND	ND
Copper, Total	0.025	0.069	ND	ND	ND
Copper, Dissolved	ND	ND	ND	ND	ND
Lead, Total	ND	0.012	ND	ND	ND
Lead, Dissolved	ND	ND	ND	ND	ND
Nickel, Total	ND	0.024	ND	ND	ND
Nickel, Dissolved	ND	0.011	ND	ND	ND
Silver, Total	ND	ND	ND	ND	ND
Silver, Dissolved	ND	ND	БN	ND	ND
Zinc, Total	0.043	0.15	NĎ	ND	ND
Zinc, Dissolved	0.022	0.089	ND	ND	ND
Oil & Grease	ND	ND	ND	ND	ND
Phosphorus, Total	1.4	1.1	ND	0.055	ND
Phosphorus, Dissolved	ND	0.48	ND	ND	ND
Total Kjeldahl Nitrogen	ND	1.7	ND	ND	1.1
Nitrate/Nitrite	2.08	4	1.1	2.43	2.67
Azinghos methyl	ND	ND	ND	ND	ND
Bolstar	ND	ND	ND	ND	ND
Chlorpyrifos	ND	ND	ND	ND	ND
Coumaphos			ND	ND	ND
Demeton	ND	ND	NĢ	ND	ND
Diazinon	ND	ND	ND	'ND	ND
Dichlorvos	ND	ND	ND	ND	ND
Disulfoton	ND	ND	ND	ND	ND
EPN	ND	ND	ND	ND	ND
Ethion	ND	ND	ND	ND	ND
Ethoprop	ND	ND	ND	ND	ND
Fensulfothion	ND	ND	ND	ND	ND
Fenthion	ND	ND	ND	ND	ND
Malathion	ND	ND	ND	ND	ND
Merphos	ND	ND	ND	ND	ND
Mevinphos	ND	ND	ND	ND	ND
Monocrotophos	ND	ND	ND	ND	ND
Naled	ND	ND	ND	ND	ND
Parathion-ethyl	ND	ND	ND	ND	ND
Parathion-methyl	ND	ND	ND	ND	ND
Phorate	ND	ND	ND	ND	ND
Ronnel	ND	ND	ND	ND	ND
Stirophos	ŃD	ND	ND	ND	ND
Sulfotep	ND	ND .	ND	ND	ND
Tokuthion (Prothiofos)	ND	• ND ••• •	ND	ND	ND
Trichloronate	ND	ND	ND	ND	ND

TABLE 15

WATER QUALITY DATA FOR DRY-WEATHER SAMPLING ON SEPTEMBER 29, 2000

ANALYTE	LTU (6:10 AM)	LT (6:45 AM)	LT-1 (7:15 AM)	MC-1 (8:00 AM)	EC-1 (8:30 AM)
Total Dissolved Solids	4100	2600	34000	35000	35000
Total Suspended Solids	18	20	93	120	98
Hardness (as CaCO3)	2200	1300	6200	6200	6200
Cadmium, Total	ND	ND	ND	ND	ND
Cadmium, Dissolved	ND	ND	ND	ND	ND
Chromium, Total	ND	ND	ND	ND	ND
Chromium, Dissolved	ND	ND	ND	ND	ND
Copper, Total	ND	0.014	ND	0.011	0.013
Copper, Dissolved	ND	0.013	ND	ND	ND
Lead, Total	ND	ND	ND	ND	0.0058
Lead, Dissolved	ND	ND	ND	0.0062	ND
Nickel, Total	0.016	0.014	ND	ND	ND
Nickel, Dissolved	0.014	0.014	ND	ND	ND
Silver, Total	ND	ND	ND	ND	ND
Silver, Dissolved	ND	ND	ND	ND	ND
Zinc, Total	ND	0.044	ND	ND	ND
Zinc, Dissolved	ND	0.043	ND	ND	ND
Oil & Grease	ND	ND	ND	ND	ND
Phosphorus, Total	ND	1	0.77	0.078	ND
Phosphorus, Dissolved	ND	1.1	ND	ND	ND
Total Kjeldahl Nitrogen	ND	ND	ND	ND	ND
Nitrate/Nitrite	5	8.5	4.5	4.4	7.5
Azinphos methyl	ND	ND	ND	ND	ND
Bolstar	ND	ND	ND	ND	ND
Chlorpyrifos	ND	ND	ND	ND	ND
Coumaphos	ND	ND	ND	ND	ND
Demeton	ND	ND	ND	ND	ND
Diazinon	ND	ND	ND	ND	ND
Dichlorvos	ND	ND	ND	ND	ND
Disulfoton	ND	ND	ND	ND	ND
EPN	ND	ND	ND	ND	ND
Ethion	ND	ND	ND	ND	ND
Ethoprop	ND	ND	ND	ND	ND
Fensulfothion	ND	ND	ND	ND	ND
Fenthion	ND	ND	ND	ND	ND
Malathion	ND	ND	ND	ND	ND
Merphos	ND	ND	ND	ND	ND
	ND	ND	ND	ND	
Mevinphos Monocrotophos			ND		ND
Naled	ND ND	ND ND	ND	ND ND	ND ND
Parathion-ethyl	ND	ND	ND	ND	ND
Parathion-methyl	ND	ND	ND	ND	ND
Phorate	ND	ND	ND	ND	ND
Ronnel	ND	ND	ND	ND	ND
Stirophos	ND	ND	ND	ND	ND
Sulfotep	ND	ND	ND	ND	ND
Tokuthion (Prothiofos)	ND .	ND	ND	ND	ND
Trichloronate	ND	ND	ND	ND	ND

TABLE 16

Indicator data for total coliforms, *E. Coli* (fecal coliforms) and enterococci obtained by the Environmental Health Division Bacteriological Monitoring Program of the Orange County Health Care Agency. Data are shown for the period June 20 – October 17, 2000. Sampling station locations in creeks and in the surf zone are shown in Figure 2. Data are expressed as most probable number (MPN) per 100 ml sample.

EXHIBIT 1

Results and interpretation of toxicity testing employing the dry-weather runoff sample of September 12, 2000, taken at Station LT. Report prepared by the Bioassay Laboratory of Ogden Environmental and Energy Services, Inc., San Diego, CA. Complete laboratory QA/QC documentation of these results is included.

Ogden Environmental and Energy Services Company, Inc.

Bioassay Laboratory 5550 Morehouse Drive, Suite B San Diego, CA 92121 (858) 458-9044

BIOASSAY REPORT

Crystal Cove Monitoring Project

to

Dr. Richard Ford

On behalf of The Irvine Company 4204 Point Loma Avenue San Diego, CA 92107

September 12, 2000 Dry Weather Monitoring

Prepared: 9 October 2000

Verification of laboratory results: 10 October 300	

INTRODUCTION

Acute and chronic bioassays using the freshwater cladoceran *Ceriodaphnia dubia* (*C. dubia*) were performed using dry weather flow samples collected from Los Trancos Canyon in Newport Coast, California. Testing was undertaken as part of the Crystal Cove Monitoring Study. Sample collection and transport were coordinated under the supervision of Dr. Richard Ford. The test series was conducted between September 13 and 20, 2000 at the Ogden Bioassay Laboratory in San Diego, California. The sample tested during this period was identified as LT.

METHODS AND MATERIALS

Materials and methods used for *C. dubia* acute and chronic testing during this period were identical to those described in the monitoring report dated January 26, 2000. A summary of final results for the samples received September 12, 2000 is outlined in this report. Test specifications and results are listed in Table 1.

RESULTS

Raw test data and statistical summaries for acute survival and chronic survival and reproduction are contained in Appendix A.

Results for both acute and chronic reference toxicant tests were within internal laboratory control chart limits (± 2 sd).

Ceriodaphnia dubia - Acute

Complete mortality was observed at the highest concentration tested. Mean survival in the controls (100 percent) exceeded the EPA acceptability criterion of 90 percent, therefore this test was declared valid. An LC50 value of 70.7 was calculated for these data.

Ceriodaphnia dubia - Chronic

Fisher's Exact Test indicated significant differences in survival data between the control and the 50 and 100 percent concentration data for Sample LT. A comparison of reproduction data similarly indicated statistically significant differences between the control and 50 and 100 percent sample data. The no observed effect concentration (NOEC) value for both survival and reproduction was 25 percent sample. The LC50 and EC50 values for survival and reproduction endpoints were 33.0 and 34.7, respectively.

Reproduction in the controls exceeded 15 young per original female and control survival was \geq 80 percent (as are required by the EPA protocol), therefore, these tests were declared valid.

Summary Table 1. Sample LT Collected September 12, 2000

Sample Information

Sample Date: Sample Time: Laboratory Receipt Date: Test Material Matrix: Sampling Method: Sample Container Size: September 12, 2000 0730 September 12, 2000 Dry weather runoff Grab 4-liter poly cubitainers

Toxicity Testing Specifications

Ogden Test ID Nos.: Test Series Initiation Date: Test Series Termination Date: Test Organism: Test Organism Source: Acute Organism Age: Chronic Organism Age: Dilution Water: Test Concentrations: Protocol Used: Statistical Analysis Software: 0009-056 (acute); 0009-057 (chronic) September 13, 2000 September 20, 2000 Ceriodaphnia dubia Odgen in-house culture < 24 hrs < 24 hrs EPA 8:2 (DI and Perrier) 100, 50, 25, 12.5, and 6.25% sample EPA 1993 (Acute); EPA 1989 (Chronic) TOXCALC, version 5.0

Sample: LT 9/12/00		· · · · · · · · · · · · · · · · · · ·		
Endpoint	Control	100% Sample	NOEC	EC/LC50
	(% surv.)	(% surv.)	(% sample)	(% sample)
Acute Survival	100	0*	50*	70.7
Chronic Survival	100	0*	25*	33.0
	Mean #	of Neonates	* = **** ** <u>****</u> **	
**	Control	100% Sample	•	
Chronic Reproduction	34.6	0.0*	25*	34.7

Toxicity Testing Results Summary - C. dubia

* statistically significantly difference observed

References

EPA, 1993. Methods for measuring the acute toxicity of effluents to freshwater and marine organisms. EPA/600/4-90/027F, August 1993.

EPA, 1994. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms. Third Edition; EPA/600/4-91/002, July 1994.

Tidepool Scientific Software, 1992-1994. TOXCALC Comprehensive Toxicity Data Analysis and Database Software, Version 5.0.

4

Appendix A

Test Data and Statistical Summaries

.

-

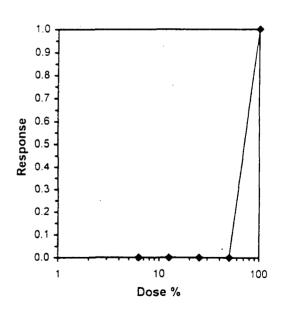
.

C. dubia Acute – Sample LT

.

. .

				Daphnia Acute Survival E	lioassay-48 Hr 🗇 🤉	vival	
Start Date:	09/13/200	0	Tes. J:	0009-057	Sample ID:	IRVINE CO + ID:LT	
End Date:	09/15/200	0	Lab ID:	CAOEE-Ogden Bioassay	Sample Type:	OTH-Other sample type	
Sample Date:	09/12/200	0	Protocol:	EPAA 91-EPA Acute	Test Species:	CD-Ceriodaphnia dubia	
Comments:							
Сопс-%	1	2 ·	3	4			
L-Lab Control	1.0000	1.0000	1.0000	1.0000			
6.25	1.0000	1.0000	1.0000	1.0000			
12.5	1.0000	1.0000	1.0000	1.0000			
25	1.0000	1.0000	1.0000	1.0000			
50	1.0000	1.0000	1.0000	1.0000			
100	0.0000	0.0000	0.0000	0.0000			


			Tr	ansform:	Arcsin Sc	uare Root	2	Rank	1-Tailed	Number	Total
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	Resp	Number
L-Lab Control	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	4			0	20
6.25	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	4	18.00	10.00	0	20
12.5	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	4	18.00	10.00	0	20
25	1.0000	1.0000	1.3503	1.3453	1.3652	0.739	4	20.00	10.00	0	21
50	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	4	18.00	10.00	0	20
100	0.0000	0.0000	0.2255	0:2255	0.2255	0.000	4			20	20

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates non	normal dis	stribution	(p <= 0.01)		0.5089	0.868	2.79623	11.6732
Equality of variance cannot be co	onfirmed							
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				
Steel's Many-One Rank Test	50	100	70.7107	2				

Graphica	l Method
----------	----------

Trim Level

EC50 70.711

				Daphnia Acute Survival Bi	oassay-48 Hr 🤄	vival
Start Date: End Date: Sample Date: Comments:	09/13/2000 09/15/2000 09/12/2000	0		0009-057 CAOEE-Ogden Bioassay EPAA 91-EPA Acute	Sample ID: Sample Type: Test Species:	IRVINE CO → I) : cr OTH-Other sample type CD-Ceriodaphnia dubia
Conc-%	1	2	3	4		
L-Lab Control	1.0000	1.0000	1.0000	1.0000		
6.25	1.0000	1.0000	1.0000	1.0000		
12.5	1.0000	1.0000	1.0000	1.0000		
25	1.0000	1.0000	1.0000	1.0000		

1.0000

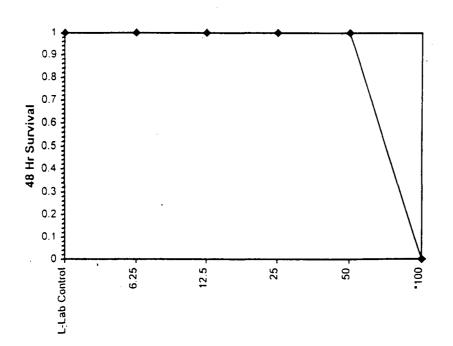
0.0000

1.0000

0.0000

50

100


1.0000

0.0000

1.0000

12.5			Tra	ansform:	Arcsin So	uare Roof	2	Rank	1-Tailed		
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	 	
L-Lab Control	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	4				
6.25	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	4	18.00	10.00	-	
12.5	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	4	18.00	10.00		
25	1.0000	1.0000	1.3503	1.3453	1.3652	0.739	4	20.00	10.00		
50	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	4	18.00	10.00		
*100	0.0000	0.0000	0.2255	0.2255	0.2255	0.000	4	10.00	10.00		

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates nor	-normal dis	stribution	(p <= 0.01)	· · · · · · · · · · · · · · · · · · ·	0.46508	0.884	3.02059	13.9892
Equality of variance cannot be co								
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ĊhV	ΤU				
Steel's Many-One Rank Test	50	100	70.7107	2			····	

Freshwater Acute

48 Hour Toxicity Test Data Sheet - Ogden Bioassay Laboratory

Client:	Tryine Co.	
Sample ID:	LT	
Contact:	Dr. Ford	
Test #:	0009-057	

Start Date & Time: 9 13 00 1400 End Date & Time: 400 1400 9/15/00 Test Organisms: (evidentification of the start of the st

Concentration		N	umber	of	Disso	olved O	xygen	I	pH		Co	nducti	vity	Te	mperat	ure		
or .	Rep	Live	Organ		1	(mg/L)	.	L	(units)			mhos-c	:m)		(°C)		Percent	
Percent		0	24	48	0	24	48	0	24	48		24	-48	0	24	48	Survival	
CONMOL	Α	5	5	5	7.7	-	8.1	7.92	-	8.35	190 200 2555	~	260	14.7	243	24.1	100	
	В	5	5	r													100	
	С	5	5	S													100	
	D	5	5	2													00	
(e.251).	Α	5	5	5	7.6	-	8.1	7.71	-	8.45	444	/	443	14.7	43	24.1	100	
	В	5	15	5													100	
	С	5	5	5													(00]
	D	5	15	J						19. A							100	
12-5-1.	Α	5	5	5	7.8	~	8.1	7.72	-	8.49	735	-	702	447	243	24.1	100	
	В	5	5	5													100	Ì
	С	5	Š	5													100	l
	D	5.	ĩ	5													100	
Technician Initi	ials	MB	JR	JR													a <u>L</u> ~	•
	Alka	linity*	Hard	ness*	Chl	orine R	esid.]					· ,					`
Conc.		'(mg/L	, as CaC	CO ₃)]	(mg/L)	Samp	le Desc	ription	: () f	Im	Sh	hn1	F.d	wdr	1 SON	Ne debri
Control	6	1	74	ł		ND											1-1	
Highest conc.	26	\dot{O}_{c}		10		0.04]										
Comments:	- 0 hrs:																	
	24 hrs	·										-		Ogde	n Bioas	say Lat	oratory	
48 hrs.										-		•			, Suite B			
-	-					•			,			-				A 9212	-	•
Reviewed: <u>BC5</u>	10/0	4/00		_		QA ch	eck: 🖌	2 9/1	2/2						458-904			
								'	•									

•

Freshwater Acute

48 Hour Toxicity Test Data Sheet - Ogden Bioassay Laboratory

Client:	INVIAL (D.	
Sample ID:	LT	
Contact:	Dr. Ford	
Test #:	0009-057	

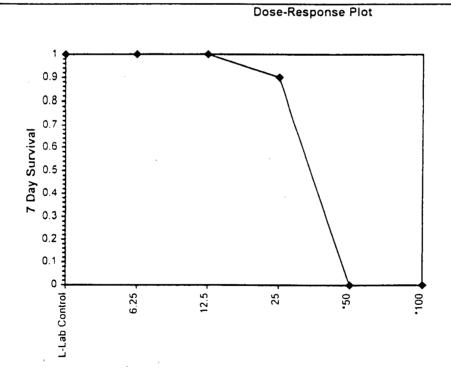
Start Date & Time:	9-13-00 1400
End Date & Time:	9/15/00 1400
Test Organisms:	Cidubia
Test Protocol:	EPA 91 Acute

Concentration		N	umber	of	Disso	lved O	kygen	[pH		Co	nductiv	vity	Te	mperal		
or	Rep	Live	Organ	isms		(mg/L)		I	(units)		(μι	mhos-c	<u>m)</u>		(°C)		Percent
Percent	l	0	24	48	0	_24	48	0	24	48	0	24		0	24	48	Survival
251.	Α	VIIIS	5	J	<u>8</u> .	~	8.1	7.84		8.52	1088		1005	24.7	243	24.1	001
	В	5	5	5						1.1.14							100
	С		2	5													100
	D	\$56	56	6													(00
50.1.	A	5	5	2	8.1)	8.1	7.69	~	8.62	1884	-	7257	21.5	24.3	24.1	100
	В	5	5	5													[00
	С	5	5	5													100
	D	5	5	5												a	100
100.1.	Α	5	4	0	89	-	8.1	7.72	-	8.72	3480	-	3200	24-8	243	24.1	0
	B	5	5	0													0
	С	5	4	0													0
	D	5	<u> </u>	0				-1975,860									0
Technician Init	ials	MB	JR	JR													
	Alka	linity⁴	Hard	ness*	Chi	orine R	esid.]					i	1	1		A
Conc.		•(mg/L	as Ca	CO3)		(mg/L)	Samp	le Desc	ription	:_ve	las t	mt.c	Jono	ly_	Same	e debris
Control	6		7	4		QL		}			/		/		17		
Highest conc.	260	0	119	0	0	.04]									
Comments:	0 hrs																

nments:	0 hrs:	
	24 hrs.	
	48 hrs	

Reviewed: BCS 10/04/00

QA check: 2 9/27/00

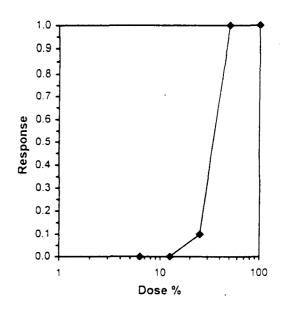

Ogden Bioassay Laboratory 5550 Morehouse Dr., Suite B San Diego, CA 92121 (858) 458-9044

C. dubia Chronic – Sample LT

			C od	aphnia Su	rvival and	Reprod	uction Tes	it- Tay S	Survival		
Start Date:	09/13/2000)	TeL. D:	0009-056	009-056			D:	IRVINE CO ID: LT		
End Date:	09/20/2000	C	Lab ID:	CAOEE-C	CAOEE-Ogden Bioassay			ype:	OTH-Other sample type		
Sample Date:	09/12/2000	כ	Protocol:	EPAF 89-	EPAF 89-EPA Freshwater C		Test Species:		CD-Ceriodaphnia dubia		
Comments:											
Conc-%	1	2	3	4	· 5	6	7	8	9	10	
L-Lab Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
6.25	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
12.5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
25	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
50	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	

					_	Fisher's	1-Tailed		
Conc-%	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	
L-Lab Control	1.0000	1.0000	0	10	10	10			
6.25	1.0000	1.0000	0	10	10	10	1.0000	0.0500	
12.5	1.0000	1.0000	0	10	10	10	1.0000	0.0500	
25	0.9000	0.9000	1	9	10	10	0.5000	0.0500	
•50	0.0000	0.0000	10	0	10	10	0.0000	0.0500	
*100	0.0000	0.0000	10	0	10	10	0.0000	0.0500	

Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU
Fisher's Exact Test	25	50	35.3553	4


			C nda	aphnia Sui	vival and	Reprod	uction Tes	st-" `ay S	Survival		
Start Date:	09/13/2000)	Tes. J:	0009-056			Sample IC):	IRVINE C	O ID: LT	
End Date:	09/20/2000)	Lab ID:	CAOEE-O	gden Bioa	assay	Sample Ty	/pe:	OTH-Othe	r sample type	
Sample Date:	09/12/2000)	Protocol:	EPAF 89-1	EPA Frest	nwater C	Test Spec	ies:	CD-Cerioo	laphnia dubia	
Comments:											
Conc-%	1	2	- 3	4	5	6	7	8	9	10	
L-Lab Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
6.25	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
• 12.5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
25	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
50	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	

				Not			Fisher's	1-Tailed	Number	Total
Conc-%	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	Resp	Number
L-Lab Control	1.0000	1.0000	0	10	10	10			0	10
6.25	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
12.5	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
25	0.9000	0.9000	1	9	10	10	0.5000	0.0500	1	10
50	0.0000	0.0000	10	0	10	10			10	10
100	0.0000	0.0000	10	0	10	10			10	10

Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	
Fisher's Exact Test	25	50	35.3553	4	

Trimmed Spearman-Karber

Trim Level	EC50	95%	CL	
0.0%	32.988	28.922	37.624	
5.0%	33.730	28.623	39.748	
10.0%	34.020	31.367	36.897	
20.0%	34.020	31.367	36.897	
Auto-0.0%	32.988	28.922	37.624	

			່ C ່ ວd	aphnia Su	rvival and	Reproc	luction Tes	st-' iro	duction			
Start Date:	09/13/200	0	Tes. J:	0009-056			Sample ID): —	IRVINE C	O ID: LT		
End Date:	09/20/200	0	Lab ID:	CAOEE-O	gden Bioa	assay	Sample Ty	/pe:	OTH-Othe	H-Other sample type		
Sample Date:	09/12/200	0	Protocol:	EPAF 89-I	EPA Frest	nwater C	Test Spec	ies:	CD-Cerioo	taphnia dubia		
Comments:												
Conc-%	1	2	3	4	5	6	7	8	9	10		
L-Lab Control	33.000	33.000	37.000	33.000	36.000	32.000	34.000	38.000	37.000	31.000 ⁻		
6.25	.36.000	29.000	33.000	29.000	30.000	35.000	27.000	32.000	25.000	34.000		
12.5	31.000	32.000	30.000	32.000	36.000	33.000	33.000	25.000	2.000	35.000		
25	35.000	36.000	0.000	30.000	37.000	35.000	35.000	30.000	34.000	17.000		
50	6.000	4.000	0.000	6.000	0.000	6.000	0.000	12.000	9.000	6.000		

0.000

0.000

0.000

0.000

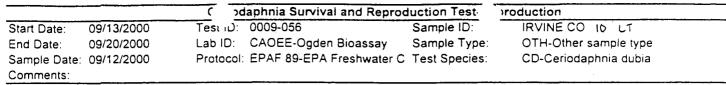
0.000

0.000

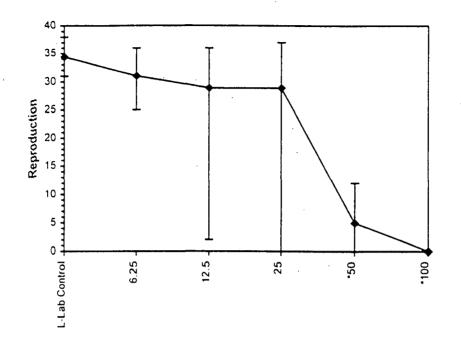
				Transform	n: Untran	sformed		Rank	1-Tailed		
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	Mean	N-Mean
L-Lab Control	34.400	1.0000	34.400	31.000	38.000	7.014	10			34.400	0.0000
6.25	31.000	0.9012	31.000	25.000	36.000	11.581	10	78.00	75.00	31.000	0.0988
12.5	28.900	0.8401	28.900	2.000	36.000	34.311	10	78.00	75.00	28.900	0.1599
25	28.900	0.8401	28.900	0.000	37.000	40.499	10	93.00	75.00	28.900	0.1599
*50	4.900	0.1424	4.900	0.000	12.000	81.887	10	55.00	75.00	4.900	0.8576
*100	0.000	0.0000	0.000	0.000	0.000	0.000	10	55.00	75.00	0.000	1.0000

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Kolmogorov D Test indicates non	-normal dis	stribution	(p <= 0.01)		1.54568	1.035	-2.8384	10.826
Equality of variance cannot be co	nfirmed							
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	ΤU				
Steel's Many-One Rank Test	25	50	35.3553	4				

				Maxin	num Likeliho	od-Probit					
Parameter	Value	SE	95% Fidu	cial Limits	Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope	6.73678	2.12804	-0.0356	13.5092	0	18.3737	7.81472	3.7E-04	1.54222	0.14844	9
Intercept	-5.3896	3.28349	-15.839	5.05991							
TSCR						1.0 -				·····	
Point	Probits	%	95% Fidu	cial Limits							
EC01	2.674	15.7363				0.9				▲	
EC05	3.355	19.8638				0.8 -					
EC10	3.718	22.4901				0.7				/	
EC15	3.964	24.4555				··· ']					
EC20	4.158	26.1393				ອ <u>ດ</u> 0.6 -					
EC25	4.326	27.6759				a 0.6 0.5 0.5 0.4					
EC40	4.747	31.9607				ds i					
EC50	5.000	34.8516				e ^{20.4}					
EC60	5.253	38.004				0.3 -				1	
EC75	5.674	43.8877				0.2			/		
EC80	5.842	46.4678				0.2 -			• •		
EC85	6.036	49.6672				0.1 -		٠			
EC90	6.282	54.0076				0.0					
EC95	6.645	61.1481				U.U T 1		10	· · ·	100	
EC99	7.326	77.1868				,		Dose	0/	100	


EC997.32677.1868Significant heterogeneity detected (p = 3.68E-04)

100


0.000

0.000

0.000

Dose-Response Plot

Ogden Environmental and Energy Services Bioassay Laboratory 5550 Morehouse Dr. Suite B San Diego, CA 92121

Client: June (O. Sample ID. INVING (LT)

Raw Data Sheet Initial and Final Chemistries Seven Day Chronic Bioassay Test Species: <u>Caular</u>

Test Date: 4113/00

Test No: 10009-056

	Days													
Concentration		0		1		2		3		4		5	(\mathcal{A})	6
CONIT	init.	final	init.	final										
pH	7.92	8.22	7.93	8.06	83	8.19	801	8.08	6.02	802	9.23	(F)		3.11
DO (mg/l)	7.7	7.8	7.2	7.9	83	ર.સ	えき	7.9	6.3	79	7.9			7.7
Cond. (µmhos-cm)	2355	267	198	222	192	210	197	208	273	264	246		VZ	260
Temperature (°C)	24.7	242	24.8	14.4	25.0	2+3	3.1	24.3	24.7	124.2	24,7	V		242

	Days													
Concentration		0		1		2		3		4		5	A	6
2.5.1.	init.	final	indt.	final										
pH	7.44	8:20	7.97	8.30	6.09	3.26	307	0.21	7.93	8.14	8.04	(A)		8.19
DO (mg/l)	8.1	7.6	7.5	8.0	8-10	6.0	30	6.0	8.6	7.6	8.6			7.5
Cond. (µmhos-cm)	1020	10+3	1774	1270	1202	11BS	1085	1076	1484	1379	1305		N/	1247
Temperature (°C)	24.10	24.2	24.7	19.4	25.1	2+3	2.0	24,2	24.B	24.2	25.1	V		77.2

1001.		Days												
Concentration		0		1		2		3		4		5		6
	init.	final												
pH	7.72	8.61	7.88	8.57	7.96				21		1			
DO (mg/l)	3.9	74	83	8.1	9.7						291	-/		
Cond. (µmhos-cm)	2490	3320	3490	3780	3490									
	24.7				29.9									

	Control	a	b	С
Alkalinity*	6	260		
Hardness	74	1190		
Initial Chlorine†	ND	40.0		
STS added (g)	-			
Final Chlorine †	-			

Analysts:

* mg/L as CaCO3; † mg/L; ND: no chlorine detected

Sample Description	". Vellowish that, cloud,	1 some det	Zinc
Animal Source:	INKUNGÉ	Date Rec	eived: <u>NA</u>
Comments:	"A'somple to be used	throughout	test. A No revenel done
Reviewed:	<u></u>		ON day 6-sumple ran out.

Ogden Environmental and Energy Services, Inc. **Bioassay Laboratory**

5550 Morehouse Dr., Suite B San Diego, CA 92121

Client/Sample ID:) ()) A Test Number:

(LT MTT 0009-056 ant

Start Date: Start Time:

End Date: 9-20-00 End Time: 1600

				Daily I	Reprodu	ction/ S	urvival					
Conc.	Rep	1	2	3	161 4 - 11	5	6	7	8	Total	QA	<u>ا</u> ر ا
LUNT.	1	0	<u></u>	8	0	11	i4	V		33	15	W
	2	0	<u> </u>	0	7	12	14	V		33		
	3	<u> </u>	0	Ð	7	13	17	V		37		i i
	4	0	0	8	0	13	12	V		33		
	5		_0_	0	6	13	14	V		36		
	6	0	0	4	3	11	14	V		32		
	7	0	_Ŏ_	5	Q	13	110	V		34		
	8	0	<u> </u>	8	0	13	17	V		38		
	9	0	0	5	1	13	10			37		
	10	0	Ŭ	5	0	12	14	V		31		
Ai. st	MB	JR	B12	17	MB	AR.	1,415	50]		•
Commen	its:					70-	-			-		

					Daily I	Reprodu	ction/S	urvival				
Λ	Conc.	Rep	1	2	3	1. 1 (7)	S 5 S	6	্য	8	Total	.24
"(251	١		0	D	136	1	18	V		35	TF
		2	_0	\mathcal{O}	<u> </u>	105	14	17	\checkmark		36	
		3	0	°/d	-	-	-	1	•	-	O/d	
		4	0	U U	0	0	9	21	V		30	
		5	0	Q	0	0	14	23	V		37	
		6	0	Ü	6	\$80		16	V		35	
		7	0	0	0	2	14	19	~		35	
		8	0	0	0	6	2	22	V		30	
		9	0	U	0	5	IV	17	V		34	
		10	0	\Box	0	0		6	1		17	
	Analyst			BB			ate	JUB3	Se			
	•						-70				-	

	:			Daily I	Reprodu	ction/S	urvival				
Conc.	Rep		2	ંગ્રે	4	5	6	2	8	Totat	QA
6161	1	D	C	4	0	12	10			36	
	2	Ō	\mathcal{L}	O	0	111	10			29	
	3	6	$\Box O$	1	0	12	\mathcal{W}			33	21
	4	0	0	0	ν	12	15	~		29	
	5	Ö	\mathcal{O}	0	1	10	19	~		30	
	6	_0_	<u> </u>	0	0	13	22			35	
	7	0	<u> </u>	\underline{Q}	5	4	10	~		27	
	8	<u> </u>	\underline{v}	<u> </u>	0	12	20	1		32	
	9	υ	<u> </u>	0	0	2	17_	V		25	
	10	0	0	0	0	3	21	V		34	
Analyst			BIL			t					
Commen	ts:					-8[<u></u>	_	·		

				Daily I	Reprodu	ction/S	urvival				
Conc.	Rep	1	2	3	4	5	6	1	8	Total	QA
SD-1	1	0	0	0	6/0		-		_	6K	
	2	0	\mathcal{O}	0	Ha	-		-	1	412	
	3	0	\Box	0	OIA					O/d	
	4	Ō	6_	0	612					10d	
	5	0	0	0	oa			·		OL	
	6	U	0	0	Gld					64	
	7	0	Ö	2	Ò	0D				SD	
	8	_0	0	0	0	12/12	-		-	12'I D	
	9	<u> </u>	0	5	entres of the	4/P				9 D	
	10	<u> </u>	0	0	61					6/2	
Analyst			RR	I	` ·						

,				Daily I	Reprodu	ction/S	urvival				
Conc.	Rep	۳. (۲	2	3		5	6	1	8	Total	QA
1251	1	0	Ü	0	0	13	18	レ		3	
	2	0	0	0	Ŭ	11	21	~		32	
	3	0	\mathcal{O}	Ω	0	A	6	~		30	
	4	0	0	0	0	i	1	/		32	1
	5	0	0	2	100	3	21	V		36	Í
	6		0	<u> </u>	3	10	20	1		33	í
올랐다.	7	e	0		0	14	10_	1		33	I
	8	_0	0	0	6	<u> </u>	19			25	I
	9	2	0	<u> </u>	0	2	<u>o</u>	V		2	
	10	<u></u>	0	2	10	<u>Si</u>	21	~		35	12
Analyst			1YR)	UB)	•

		[Daily	Reprodu	ction/ S	urvival				
Conc.	Rep	81.	2	3		5	6	3	8	Total	QA
100%	1	C	10/d	_		~	-		-	old !	
	2	0	107 2	-	-	-			-	c/d	
	3	U	0/d		-				-	old	
	4	D	20	-	-	-				0/2	
	5	0	?/d.		<u> </u>	-				0/d	
	6	D	$\mathcal{O}(d)$	-	-		~		-	0/d	1
	7	O	∂/d	-	-	-				0/d	
	8	0	07 d.	·	-					0/8	
	9	0	0/q					-	.~	0/8_	
	10	0	0/d		-					0/2	
Analyst		l	1.87_1		L	l	<u> </u>]	

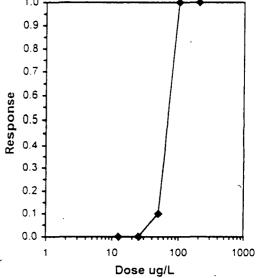
Comments:

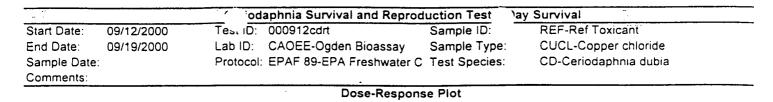
Time Fed (day): (0) 1345 (1) 1030 (2) 200 (3) 2950 (4) 1060 (5) 13 15 (6) 160 (7) (8)

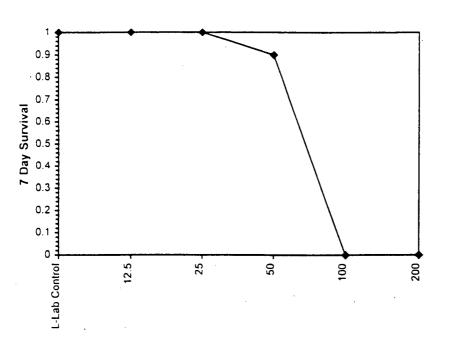
Reviewed/Date: BCS 10/04/00

and for glanlos

C. dubia Chronic – Reference Toxicant


.


				aphnia Su	vival and	кергоа	uction les	it- ay :	Survival		
Start Date:	09/12/2000)	Te⊾J:	000912cd	rt		Sample ID):	REF-Ref 1	Toxicant	
End Date:	09/19/2000	1	Lab ID:	CAOEE-O	gden Bioa	assay	Sample Ty	ype:	CUCL-Co	oper chloride	
Sample Date:			Protocol:	EPAF 89-1	EPA Frest	nwater C	Test Spec	ies:	CD-Cerioo	taphnia dubia	
Comments:							·				
Conc-ug/L	1	2	3	4	5	6	7	8	9	10	
L-Lab Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
12.5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
25	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
50	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	
100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
200	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	


				Not			Fisher's	1-Tailed	Number	Total
Conc-ug/L	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	Resp	Number
L-Lab Control	1.0000	1.0000	0	10	10	10	<u> </u>		0	10
12.5	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
25	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
50	0.9000	0.9000	. 1	9	10	10	0.5000	0.0500	1	10
100	0.0000	0.0000	10	0	10	10			10	10
200	0.0000	0.0000	10	0	10	10			10	10

Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	
Fisher's Exact Test	50	100	70.7107		

				Trimmed Spearman-Karber	
frim Level	EC50	95%	CL		
0.0%	65.975	57.845	75.249		· · ·
5.0%	67.460	57.246	79.495		
10.0%	68.040	62.734	73.794	1.0	·····
20.0%	68.040	62.734	73.794		
Auto-0.0%	65.975	57.845	75.249	0.9 -	
				0.8 -	

Reviewed by 100

			iod	aphnia Su	rvival and	Reproc	luction Tes	st pro	duction	
Start Date: End Date: Sample Date: Comments:	09/12/2000 09/19/2000	-	Test ID: Lab ID: Protocol:	000912cd CAOEE-O EPAF 89-I	gden Bioa	•	Sample ID Sample Ty Test Spec	/pe:		loxicant pper chloride Iaphnia dubia
Conc-ug/L	1	2	3	4	5	6	7	8	9	10
L-Lab Control	43.000	34.000	35.000	31.000	37.000	35.000	37.000	39.000	39.000	35.000
12.5	33.000	39.000	0.000	29.000	34.000	38.000	33.000	25.000	32.000	35.000
25	31.000	44.000	34.000	15.000	46.000	36.000	18.000	34.000	12.000	18.000
50	35.000	36.000	4.000	28.000	34.000	0.000	19.000	26.000	0.000	31.000
100	2.000	14.000	0.000	1.000	0.000	2.000	3.000	0.000	5.000	5.000

0.000

0.000

0.000

200

0.000

0.000 0.000

0.000

0.000

0.000

0.000

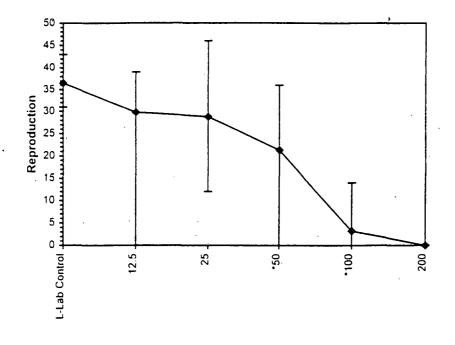
				Transform	n: Untrar	sformed		Rank	1-Tailed		
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	Mean	N-Mean
L-Lab Control	36.500	1.0000	36.500	31.000	43.000	9.064	10			36.500	0.0000
12.5	29.800	0.8164	29.800	0.000	39.000	37.661	10	78.00	76.00	29.800	0.1836
25	28.800	0.7890	28.800	12.000	46.000	42.425	10	83.50	76.00	28.800	0.2110
*50	21.300	0.5836	21.300	0.000	36.000	68.895	10	65.50	76.00	21.300	0.4164
*100	3.200	0.0877	3.200	0.000	14.000	132.419	10	55.00	76.00	3.200	0.9123
200	0.000	0.0000	0.000	0.000	0.000	0.000	10			0.000	1.0000

Auxiliary Tests					Statistic	Critical	Skew	Kurt	
Shapiro-Wilk's Test indicates nor	mal distribu	ition (p >	0.01)		0.93588	0.93	-0.9057	1.18466	
Bartlett's Test indicates unequal	variances (p = 1.03E	-04)		23.4577	13.2767			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	<u></u>				
Steel's Many-One Rank Test	25	50	35.3553						

				Ma	kimum Likeliho	od-Probit					
Parameter	Value	SE	95% Fidu	icial Limits	Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope	2.93258	0.53867	1.87679	3.98838	0	7.40806	7.81472	0.06	1.68261	0.341	10
Intercept	0.0656	0.91562	-1.729	1.86022							
TSCR						1.0					
Point	Probits	ug/L	95% Fidu	cial Limits		0.9 -			•		
EC01	2.674	7.75063	2.6927	12.9468		0.9 -		•	1		
EC05	3.355	13.235	6.14241	19.4089	1	0.8 -					
EC10	3.718	17.6039	9.49264	24.1891	•	0.7				}	
EC15	3.964	21.3399	12.6906	28,157		0.7				Ì	
EC20	4.158	24.867	15.9335	31.8715		ფ 0.6 -			/		
EC25	4.326	28.354	19.3018	35.5691		asuodsay 0.5 0.4			/		
EC40	4.747	39.466	30.4897	48.1401		ds		l			
EC50	5.000	48.1519	38.9135	59.576				ſ			
EC60	5.253	58.7495	48.1637	76.0261		0.3 -					
EC75	5.674	81.7734	65.1942	120.078		0.2					
EC80	5.842	93.2403	72.7596	145.458		0.2		• /			
EC85	6.036	108.651	82.3598	182.624		0.1 -		· /			
EC90	6.282	131.71	95.8716	244.145		0.0		<u></u>			
EC95	6.645	175.187	119.485	377.302		1		10	100	1000	
EC99	7.326	299.151	179.125	860.667				Dose u	· · · ·		

Reviewed by 10/6/00

.


production

REF-Ref Toxicant CUCL-Copper chloride CD-Ceriodaphnia dubia

Dose-Response Plot

Sample ID:

Sample Type:

Reviewed by 1 4 00

Appendix B

Chain-of-Custody Form

0	IGE	E	N	ENVIRONMENTAL AND ENERGY SERVICES
e				

7

Ogden Bioassay Laboratory - San Diego 5550 Morehouse Drive, Suite B San Diego, CA 92121 858-458-9044

Chain of Custody

Date 5,13,00 Page 1 of 1

COMPANY Dr. F)	-2	CLEMIC			AN	ALYS	IS RE	QUIF	RED				PHOJECT MANAGER (Ogden)
ADDRESS					र्भ	C											SAMPLERS (SIGNATURE)
CITY					5	<u>, 7</u>											
PHONE NO		<u></u>		······	Deriverinia - Acch	Cerodaphin		-									PHOJECT MANAGER (Ogden)
SAMPLE ID	DATE	ТІМЕ	MATRIX	CONTAINER TYPE	13	ŝ											CONCENTRATIONS/COMMENTS
ZT	9.13.00	0730	H2O	Cubitin 42	X									·			
						-											
										-							
	-		-														
÷ 1																	
PROJECT INFORMA	TION		SAM	PLE RECE	IPT	l	R	ELINO	UISHE	DBY	1	I	l	1	1	Ll	RELINQUISHED BY
CLIENT		TOTAL	NO. OF CC	NTAINERS		1											
P.O. NO.		CHAIN	OF CUSTO	DY SEALS				Signature	·							(Time)	
	OLD			Printed N						:		(Date)	(Printed Name) (D.				
SHIPPED VIA: Courter - Dr. Fr CONFORMS TO RECORD							((Compan	y)								(Company)
SPECIAL INSTRUCTIONS/COMMENTS:							- A	ECEIVI	ED BY								RECEIVED BY (LABORATORY)
NO COCFI	om	Pr.	Foro	2			(5	Signature	e)							(Time)	Bignature) Robson 1130 (Signature) Robson 9.13.
							(8	Printed N	lame)							(Date)	(Da
							Ū.	Compan	y)								Ogden Bloassay Lab Log In No. CO - 0 764

DISTRIBUTION: WHITE, CANARY - Ogden Bioassay Lab, PINK - Originator

									1000	a la bodh o		71		STV 35 AC	OL COSLO	RIVI15		IN Cd
) (•m)	MES)		$\overline{\mathbf{n}}$	h	7	A	to	212	7	(ana)	26	1			NO' OL CO			TABIO
ionizhto RA		Q	V		74	S/		Ae	() 3HSI	NONTE	7			IT HECEN			NOUV	NOTECT INTOWN
		1	Ţ	\sim			 1	ŗ				1						
				}		┨───			ļ	 		 				<u> </u>	} ∔⊷	
				1			İ.					}]					
			╉╾╸							1		 ·		·	}		<u> </u>	
		_	<u>.</u>	ļ		_			L							L	┟───┝─	
				1]								ļ					
			1					† ·	1	1		 					1	
				·}	1				 	· ·			<u></u> +'		∤		┼───╀╾	
	{				 			 	 			 	Į		·		<u> </u>	
							{	[([[
			1									r	X	c. Meiter	02H	osto	9. A. P	1
CONCENTRATIONS/COMMENTS	1	\uparrow	1	†			1					Condephis			XIATAM	эмп	19110	OI J I JIWYS
												dop	Denstehnu					ONENO
i NAHVIAN BACAHJ	-			1	}				1			E.	S.					()N 31(
(BUILLENDER SUB WAAR	- 1			1	ł	{		l	ļ			1	12A		'dIZ	JIAI	S	
HEIDTE CT MANAGER ((09 Ber)								1		!	}	Chen	ß					ss=H
The Steanship	-			-l	L		1			<u> </u>	L	-1 2	P	·	(24:	VZ)	7000	JE WAG
						7850 1()] 		VNV			· · · · · ·			<u> </u>	<i>ا</i> حد		
Disting 00,51,2 and															o Bayo	nae - Ya A w	/ 35156 19 DUAN' SAY	826 458-904 244 Diego, Ci 2630 Mai enou 264 Diego, Ci
oleuD to nisdD															SEDINUE	s a dhan	H OMA JATN	EMIRONME

(/uediaeg)

(annouges)

(fueduo)

(mail being

LE COADON

Ø 61

B 104354

ó

10:41A

Oct-04-00

(al=0)

00.51.6

1130

DISTRIBUTION: WRITE, CAMARIY - Ogden Bloasery Lab, PMK - Originator

105902

CARDO

INSOLVEGOVA AB OBABOSH

(SHI AN DONNE)

ME

(/wechary))

Lou m

(see)

h760-00

STORE INSTRUCTIONSNOT

italia vi

CUCTION Pr. Ford

OHOUSH OF EMPORINOD

REC D. COOD CONDUICHNCOLD

Verten creates are about

_0N

Oct. 64 2000 12:00PM Ч,

••

1 FROM

APPENDIX A

Complete laboratory reports of water quality analyses and associated QA/QC documentation prepared by Del Mar Analytical and subcontracting laboratories for samples taken in the Crystal Cove Monitoring Study during the period July 31 - September 29, 2000.

Copies on file with the Regional Water Quality Control Board, Santa Ana Region and the Irvine Community Development Company.

4 de 162

APPENDIX B

Complete laboratory reports of ELISA pesticide analyses and associated QA/QC documentation prepared by Aqua-Science, Davis, CA, for samples taken on September 12, 2000, at Station LT in the monitoring study for the Crystal Cove Project.

Copies on file with the Regional Water Quality Control Board, Santa Ana Region and the Irvine Community Development Company.

8-74 (Table 16)

_

He in Care Agency / Environmental Health Bacteriological Monitoring Program Total Coliform (TC), *E.coli* (EC), Enterococcus (ENT) Most Probable Number / 100 ml Sample

STATION	Location Description	+	6/13/00	6/20/00	6/27/00	7/3/00	7/11/00	7/19/00	7/26/00	8/1/00	8/8/00	8/15/0
NEWPORT	COAST (surfzone)		1	· · ·	· ·							
ONB29	Corona Del Mar State Beach	YC	20	<20	<20	<20	<20		40	70	<20	
		EC	<10	<10	20	10	<10	10				
		ENT	<10	<10	10	20	31	<10	<10	31	<10	
ONB31	Little Corona Beach	TC	<20	<20	80	<20	90	20				
		EC	<10 <10	<10 <10	31	31	63	10				
ONB35	Pelican Point	TC	20	20		10 <20	301 130	<10				
		EC	<10	10	10	<10	41	109				
		ENT	<10	<10	<10	10	20	10	85	10	<10	
ONB39	Crystal Cove	TC	<20	<20	<20	<20	20					
	· · · · · · · · · · · · · · · · · · ·	EC ENT	<10 <10	<10 <10	<10 <10	10 <10	20	10 <10				
ONB43	Muddy Creek	TC	<20	<20	<20	<20	20	<20			_	-
011040		EC	<10	<10		<10	<10	10				
		ENT	10	<10	<10	<10	<10	<10	<10	<10		
ONB45	El Morro Beach	TC	<20	<20	<20	20	<20	20				
		EC	<10	<10	10	10	<10	<10				
UT UDODT	COAST (creeks) All Creeks Flow	ENT	<10	<10	<10	<10	<10	<10	<10	<10	<10) <
CNBBG	COAST (creeks) All Creeks Flow Buck Gully Creek		24192	>24192	>24192	NS	>24192	>24192	>74192	>24192	>24192	>241
0,000		EC	52	52	419	NS	691	723				
	· · · · · · · · · · · · · · · · · · ·	ENT	195	404	683	NS	638	457	613	712	145	
CNBPP	Pelican Point Creek	٠ŤC	>24192	>24192	>24192	NS	>24192	>24192				Anna a se
		EC	4884	7701	2247	NS NS	10463	5794				
CNBPM	Peilcan Point Middle Creek	TC	12033	3654 *4106	1935	NS	12997	9208 1043			1507 no water	
CNBPM	Pelican Point Middle Greek	EC	368	<10	<10	NS	275	<10			no water	no wat
	······································	ENT	62	382	97	NS	53	63	41 20 <10	no water	no water	no wat
CNBPW	Pelican Hill Waterfall	TC	19863	>24192	>24192	NS	>24192	>24192		>24192	17329	129
		EC	95	122	231	NS	464	185		120		
		ENT	41	443	84	NS	278	41			1	
CNBCC	Crystal Cove Creek	TC EC	>24192	>24192	>24192	NS NS	>24192 2613	>24192 1785			>24192 4352	
		ENT	>24192	738	2282	NS	836	148		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1
CNBCU	Crystal Cove Upstream	TC	>24192	>24192	>24192	NS	>24192	>24192		>24192	1	
		EC	663	199	1664	NS	20	10		7701	1664	13
		ENT	>24192	1334	5745	NS	495	256		6131	4611	51
CNBMC	Muddy Creek	TC	*>24192	*>24192	*>24192	NS	*>24192	*>24192				
		EC	246 62	10 288	10 2700	NS NS	4611	309 262			422	1
CNB45	El Morro Creek	TC	19863	12033	24192	NS	15531	19663			>24192	
		T EC	13000	12000	209	NS	96	689			173	L
		ENT	771	1076	1483	NS	594	1106		169	852	5
CNBEU	El Morro Creek Upstream	TC	9208	4611	8664	NS	19863	9804		>24192	1	104
		EC	520	63	121	NŠ	160	169		426		
		ENT	14136	776	1396	NS	776	4034	1294	1785	714	3
Laguna Be	ach (surfzone)											
OLB10	Emerald Bay	TC	-<20	<20		<20	<20	<20				
		EC	<10	<10		<10	<10	<10	10 <10	<10	1	
		ENT	<10	<10		<10		<10	_	10 8 <10		
OLB05	Crescent Bay Beach	TC	<20	<20		<20	<20	<20	_	L		
		EC	<10	<10	<10	10	<10	20				
01.800	Laguas Mais Prost		<10 20	<10 <20	<10 110	10 70	<10 20	<10 <20				<u> </u>
OLB00	Laguna Main Beach	EC	<10	<20	41	41		<10		10		
	+	ENT		<10		10	<10	<10				
OSL12	Treasure Island Pier	TC	<20	<20	<20	<20	. NS	NS		NS	NS	,
	(construction on site -	EC	<10	<10	<10	<10	NS	NS		NS	NS	N
	no access)	ENT	<10	_	<10	<10	NS	NS	NS	NS	NS	١
Laguna Be	ach (creeks) All Creeks Flowing	Uniess'	1				. <u>.</u> .					
CLBEB	Emerald Bay Drain	TC	no water	no water	no water	no water	no water	no water		no water	no water	no wat
		EC		no water	no water	no water	no water	no water		no water	no water	no wat
			no water	no water	no water	no water	no water	no water			no water	no wat
CLBBC	Broadway Creek		no water	no water	no water	no water	no water	no water			no water no water	no wat
		EC ENT	no water	no water no water	no water no water	no water no water	no water	no water	no water		no water	no wat
	1	1671	I IN MOTEL	I IO HOLET	I IO WOLCT	HO March	. TO HOLD	water				

STATION	Location Description	T	8/15/00	8/22/00	8/29/00	9/6/00	9/12/00	9/19/00	9/25/00	10/4/00	10/11/00	10/17/00
	COAST (surfzone)	 _	1					1				
		$\frac{1}{2}$								L	RAIN	
ONB29	Corona Del Mar State Beach	TC EC	<20 10								130	<20 <10
· · ·		ENT	<10								31	<10
ONB31	Little Corona Beach	TC	<20	<20	20	<20	20	<20	<20	70	300	40
<u>.</u>		EC	<10	<10							122	10
011025	Deliese Deint	ENT	<10 40								243	20 <20
ONB35	Pelican Point	EC	20								74	<10
		ENT	20							1	72	<10
ONB39	Crystal Cove	TC	<20								80	
		EC ENT	20	<10 <10					<10		41	20 <10
ONB43	Muddy Creek	TC	<20	1		1				·	<20	-
0110-0		EC	<10								10	
		ENT	<10		<10	<10	<10	<10	<10		10	<10
ONB45	El Morro Beach	TC	<20								40	
	· · · · · · · · · · · · · · · · · · ·	EC ENT	<10 <10					<u> </u>			41	<10
NEWPORT	COAST (creeks) All Creeks Flow			1 10	<10	2014			10	20	52	<10
	Buck Gully Creek	TC	>24192	>24192	19863	12997	17327	17329	17329	,11199	>24192	10462
		EC	156	341	96	161	169		336	110	6488	134
		ENT	488	465	472				759	408	24192	171
CNBPP	Pelican Point Creek	TC EC	>24192	>24192	>24192		>24192 3873		>24192	>24192 457	>24192 4352	*>24192
		ENT	15531	2909	2359			8664	1597	9208	7701	1222
CNBPM	Peilcan Point Middle Creek	TC	no water	no water	*>24192	1	1	*8164	*24192	NS	NS	NS
		EC	no water	no water .	10		328		131	NS	NS	NŠ
		ENT	no water	no water	169	1		1	314	NS	NS E170	NS
CN8PW	Pelican Hill Waterfall	TC	12997 240	12997	15531				24192	3873	5172 31	3130
		ENT	74	199	158		303	733	327	74	121	74
CNBCC	Crystal Cove Creek	TC	>24192	>24192	>24192	1	>24192	>24192	>24192	>24192	>24192	141.36
		EC	6867	341	816	>24192	1445		6131	839	15531	203
		ENT	2909	2187	2143	>24192	1918		9804	738	>24192	830
CNBCU	Crystal Cove Upstream	TC	>24192	>24192	>24192	>24192			>24192	>24192 738	>24192	>24192
		EC	5172	6131	4611	6867 9208	4352	776 4352	1565 4611	2987	>24192	1785
CNBMC	Muddy Creek	TC	*>24192	>24192	*>24192		*>24192		*>24192	*>24192	*>24192	>24192
		EC	116	958	323	96	<10	52	10	<10	14136	10
		ENT	- 41	275	305	142	52		388	3725	14136	571
CNB45	El Morro Creek	TC	*>24192	>24192	>24192		and the second s		>24192	>24192	>24192	15531
		EC	336 512	1054 878	581	8164	1616 1313		175 763	8164	3448 9208	110 379
CNBEU	El Morro Creek Upstream	TC	10463	>24192	>24192	A			>24192	15531	>24192	>24192
		EC	31	1467	985	1071	211	238	213	3076	12997	2105
		ENT	350	6131	2359	2282	323	529	NS	1246	14136	14136
Laguna Bea	ch (surfzone)											
OLB10	Emerald Bay	ТС	<20	<20		<20			<20	<20	220	<20
		EC	<10	<10					<10	<10	30	20
		ENT	<10	<10	<10				<10	<10	96	<10
OLB05	Crescent Bay Beach	TC	80	<20		<20	<20		<20	<20	300	40 52
<u>`</u>		EC ENT	85 <10	<10 10	<u><10</u> 10		<10 <10		<10 <10	<10 <10	52 74	52 10
OLB00	Laguna Main Beach	TC	80	<20	80	_	20		20	40	16000	~20
00000		EC	<10	20		10	213		10	10	2851	10
		ENT	41	<10	31	379	20		<10	20	1529	31
OSL12	Treasure Island Pier	TC	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	(construction on site -	EC	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	no access)	ÉNT	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	ch (creeks) All Creeks Flowing L	_										10762
CLBEB	Emerald Bay Drain	TC	no-water	no water	no water	no water		no water	no water	*>24192	*>24192	·2755 52
		EC ENT	no water no water	no water no water	no water no water	no water		no water no water	no water no water	1246	24192	
	<u></u>		no water	no water	no water	no water		no water	no water	*>24192	>24192	•>24192
CLBBC	Broadway Creek	TC										
CLBBC	Broadway Creek	EC	no water	no water	no water	no water		no water	no water	816	11199	3654 1515

Health Care Agency / Environmental Health Bacteriological Monitoring Program Total Coliform (TC), *E.coli* (EC), Enterococcus (ENT) Most Probable Number / 100 ml Sample

TABLE 17BACTERIOLOGICAL INDICATOR DATA FOR DRY-WEATHER SAMPLING ON
JULY 31, 2000

SAMPLE TOTAL FECAL RL UNITS LAB SAMPLE ID DATE TIME SITE COLIFORM COLIFORM ENTEROCOCCUS 2 IJG0910-01 7/31/00 7:30 AM LTU 1,600 900 220 mpn 2 2 IJG0910-02 mpn 7/31/00 8:00 AM LT 300 <2 2 IJG0910-03 LT-1 110 6 11 mpn 7/31/00 8:30 AM IJG0910-04 30 <2 11 2 mpn MC-1 7/31/00 9:30 AM 2 IJG0910-05 EC-1 <2 170 mpn 11 7/31/00 10:00 AM

TABLE 18BACTERIOLOGICAL INDICATOR DATA FOR DRY-WEATHER SAMPLING ON
SEPTEMBER 12, 2000

		SAMPLE	TOTAL	FECAL				
DATE	TIME	SITE	COLIFORM	COLIFORM	ENTEROCOCCUS	RL	UNITS	LAB SAMPLE ID
9/12/00	6:30 AM	LTU	17,000	9,000	4,000	2	mpn	IJI0347-03
9/12/00	7:30 AM	LT	13,000	3,400	6,000	2	mpn	IJI0347-01
9/12/00	8:00 AM	LT-1	<2	<2	<2	2	mpn	IJ10347-02
9/12/00	8:30 AM	MC-1	<2	<2	<2	· 2	mpn	IJI0347-04
9/12/00	9:00 AM	EC-1	4	<2	11 .	2	mpn	IJ10347-05

TABLE 19BACTERIOLOGICAL INDICATOR DATA FOR DRY-WEATHER SAMPLING ON
SEPTEMBER 29, 2000

,

DATE	TIME	SAMPLE SITE	TOTAL COLIFORM	FECAL COLIFORM	ENTEROCOCCUS	RL	UNITS	LAB SAMPLE ID
9/29/00	6:10 AM	LTU	1,700	300	130	2	mpn	IJI0989-01
9/29/00 -	6:45 AM	LT	24,000	5,000	11,000	2	mpn	IJ10989-02
9/29/00	7:15 AM	LT-1	300	<2	11	2	mpn	IJI0989-03
9/29/00	8:00 AM	MC-1	. 11	<2	<2	2	mpn	IJ10989-05
9/29/00	8:30 AM	EC-1	30	<2	<2	2	mpri	IJI0939-04