Sorrento Valley

As described in the attached email conversation, the sampling at Sorrento Valley took place in the stormwater conveyance system for the City of San Diego. Since this is obviously not a natural occurring water body, and has no beneficial uses for that matter, the attached data is not analyzed for 303(d) listing.
Brennan,
California stands for California Street downtown. The sampling station is located in a manhole for the City of San Diego's storm water conveyance system. The Sorrento Valley station was supposed to be located on Los Penasquitos Creek. There has been some controversy about whether it actually is located on the creek or on a tributary to the creek. Dave Gibson has the info on that sampling station. I'm not sure what the final determination was. I hope this helps,
-Phil

>>> Brennan Ott 08/06/01 03:58PM >>>
I'm working on the 303(d) lists and came across something that I was told you might be able to help me with. The City of San Diego Co-Permitte NPDES Stormwater Monitoring Program Report lists Sorrento Valley as station SV1 and provides water quality data for it from 1997-2000. The basin plan, however, does not list it anywhere. Does it go by a different name or something? The same thing goes for station SD13 in the same report by the City of San Diego. It lists SD13 as California. Is this the entire state?

Any help will be much appreciated. Thanks.

CC:
Gibson, David

I talked to Dave. They sampled a stormwater channel from the freeway, not the actual creek.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SVI</td>
<td></td>
<td>TEMPERATURE</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVI</td>
<td>EPA 413.2</td>
<td>pH</td>
<td>UNITS</td>
<td>6.48</td>
<td>--</td>
<td>6.34</td>
</tr>
<tr>
<td>SVI</td>
<td>EPA 9050/SM 2510-B</td>
<td>OIL AND GREASE</td>
<td>MGL</td>
<td>1.11</td>
<td>--</td>
<td>< 0.5</td>
</tr>
<tr>
<td>SVI</td>
<td></td>
<td>ELECTRICAL CONDUCTIVITY</td>
<td>UMHOS/CM</td>
<td>203</td>
<td></td>
<td>141</td>
</tr>
</tbody>
</table>

SVI

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SM 9223</td>
<td></td>
<td>TOTAL COLIFORM</td>
<td>MPN/100ML</td>
<td>141360</td>
<td>--</td>
<td>98000</td>
</tr>
<tr>
<td>SM 9221/EMO-MUG</td>
<td>Fecal Coliform</td>
<td>Fecal Streptococci</td>
<td>MPN/100ML</td>
<td>> 1600</td>
<td>--</td>
<td>> 1600</td>
</tr>
<tr>
<td>SM 9230</td>
<td></td>
<td></td>
<td>MPN/100ML</td>
<td>30</td>
<td></td>
<td>130</td>
</tr>
</tbody>
</table>

COMPOSITE SAMPLES

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SM 5210-B</td>
<td></td>
<td>BOD</td>
<td>MGL</td>
<td>37.0</td>
<td>4.0</td>
<td>11.0</td>
</tr>
<tr>
<td>SM 5220-C</td>
<td></td>
<td>CHEMICAL OXYGEN DEMAND</td>
<td>MGL</td>
<td>39.0</td>
<td>19.0</td>
<td>59.0</td>
</tr>
<tr>
<td>SM 2340-B</td>
<td></td>
<td>TOTAL HARDNESS</td>
<td>MGL</td>
<td>151</td>
<td>41.0</td>
<td>102</td>
</tr>
<tr>
<td>SM 5540-C</td>
<td></td>
<td>SURFACTANTS (MBAS)</td>
<td>MGL</td>
<td>0.21</td>
<td>0.19</td>
<td>0.16</td>
</tr>
<tr>
<td>SM 4500 NH₃-C</td>
<td></td>
<td>AMMONIA AS NITROGEN</td>
<td>MGL</td>
<td>0.3</td>
<td>0.71</td>
<td>0.79</td>
</tr>
<tr>
<td>SM 4500 NO₂-E</td>
<td></td>
<td>NITRATE-N</td>
<td>MGL</td>
<td>1.96</td>
<td>0.93</td>
<td>0.98</td>
</tr>
<tr>
<td>SM 4500 NO₃-B</td>
<td></td>
<td>NITRITE-N</td>
<td>MGL</td>
<td>0.12</td>
<td>0.07</td>
<td>< 0.05</td>
</tr>
<tr>
<td>SM 4500 P-E</td>
<td></td>
<td>DISSOLVED PHOSPHOROUS</td>
<td>MGL</td>
<td>1.39</td>
<td>0.09</td>
<td>0.08</td>
</tr>
<tr>
<td>SM 4500 P-E</td>
<td></td>
<td>TOTAL PHOSPHORUS</td>
<td>MGL</td>
<td>1.61</td>
<td>0.09</td>
<td>0.24</td>
</tr>
<tr>
<td>SM 4500 H-B</td>
<td></td>
<td>pH</td>
<td>UNITS</td>
<td>7.63</td>
<td>7.36</td>
<td>7.11</td>
</tr>
<tr>
<td>SM 2540-C</td>
<td></td>
<td>TOTAL DISSOLVED SOLIDS</td>
<td>MGL</td>
<td>1624</td>
<td>125</td>
<td>249</td>
</tr>
<tr>
<td>SM 4500 NH₄-C</td>
<td></td>
<td>TOTAL KJELDAHL NITROGEN</td>
<td>MGL</td>
<td>< 0.01</td>
<td>0.16</td>
<td>1.70</td>
</tr>
<tr>
<td>SM 2540-D</td>
<td></td>
<td>TOTAL SUSPENDED SOLIDS</td>
<td>MGL</td>
<td>349</td>
<td>276</td>
<td>116</td>
</tr>
<tr>
<td>SM 2130 B</td>
<td></td>
<td>TURBIDITY</td>
<td>NTU</td>
<td>22.0</td>
<td>40.0</td>
<td>26.0</td>
</tr>
</tbody>
</table>

INORGANIC - METALS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA 200.7</td>
<td></td>
<td>ARSENIC</td>
<td>MGL</td>
<td>0.006</td>
<td>0.0012</td>
<td>0.002</td>
</tr>
<tr>
<td>EPA 200.7</td>
<td></td>
<td>CADMIUM</td>
<td>MGL</td>
<td>0.016</td>
<td>< 0.00025</td>
<td>< 0.00025</td>
</tr>
<tr>
<td>EPA 200.7</td>
<td></td>
<td>CHROMIUM</td>
<td>MGL</td>
<td>< 0.005</td>
<td>0.023</td>
<td>0.02</td>
</tr>
<tr>
<td>EPA 200.7</td>
<td></td>
<td>COPPER</td>
<td>MGL</td>
<td>< 0.005</td>
<td>< 0.005</td>
<td>0.022</td>
</tr>
<tr>
<td>EPA 200.7</td>
<td></td>
<td>NICKEL</td>
<td>MGL</td>
<td>0.006</td>
<td>0.088</td>
<td>0.018</td>
</tr>
<tr>
<td>EPA 200.7</td>
<td></td>
<td>LEAD</td>
<td>MGL</td>
<td>0.01</td>
<td>0.009</td>
<td>0.039</td>
</tr>
<tr>
<td>EPA 200.7</td>
<td></td>
<td>ANTIMONY</td>
<td>MGL</td>
<td>< 0.0015</td>
<td>< 0.0015</td>
<td>< 0.0015</td>
</tr>
<tr>
<td>EPA 200.7</td>
<td></td>
<td>SELENIUM</td>
<td>MGL</td>
<td>0.005</td>
<td>< 0.001</td>
<td>< 0.001</td>
</tr>
<tr>
<td>EPA 200.7</td>
<td></td>
<td>ZINC</td>
<td>MGL</td>
<td>< 0.025</td>
<td>< 0.025</td>
<td>0.15</td>
</tr>
</tbody>
</table>

ORGANOCHLORINE PESTICIDES & PCB'S

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA 8141</td>
<td></td>
<td>DIAZINON</td>
<td>UGL</td>
<td>0.23</td>
<td>< 0.50</td>
<td>< 0.50</td>
</tr>
<tr>
<td>EPA 8141</td>
<td></td>
<td>CHLORPYRILOS</td>
<td>UGL</td>
<td>< 0.05</td>
<td></td>
<td>< 0.50</td>
</tr>
</tbody>
</table>

The red and black text indicates a handwritten note on the paper.
Table 5-1
CONVENTIONAL, BIOLOGICAL AND ORGANIC COMPOUNDS
AT MASS LOADING STATIONS (AH1, SD5, SD8, SD13, SV1), 1999/2000

Parameter	Units	AH1 1/25/00	2/20/00	3/25/00	4/17/00	1/25/00	2/20/00	3/25/00	4/17/00	1/25/00	2/20/00	3/25/00	4/17/00			
Grab Samples General/Physical/Organic																
Field pH	units	3.2	3.5	2.28	2.98	2.54	2.10	4.16	1.56	2.96	1.92	2.04	1.48	1.76	1.76	5.60
Oil and Grease	mg/l	2160	1172	1194	463	312	120	746	823	792	186	187	185	118	107	98.0
Electrical Conductivity	umhos/cm	193	208	220	233	240	250	260	270	280	290	300	310	320	330	340
Bacteriological																
Total Coliform	mpn/100ml	>1600	>1600	300	--	>1600	300	240	>1600	900	500	>1600	>1600	>1600	>1600	>1600
Fecal Coliform	mpn/100ml	>1600	>1600	<2.0	--	>1600	240	<2.0	>1600	<2.0	<2.0	>1600	>1600	>1600	>1600	>1600
Fecal Streptococci	mpn/100ml	>1600	>1600	<2.0	--	>1600	230	<2.0	>1600	<2.0	<2.0	>1600	>1600	>1600	>1600	>1600
Composite Samples Inorganic - Wet Chemistry																
Laboratory pH	units	7.50	7.30	7.51	6.73	6.75	7.06	7.50	7.10	7.50	7.52	6.90	7.20	7.50	7.02	7.03
Biochemical Oxygen Demand	mg/l	6.00	2.98	6.60	17.7	3.30	3.00	11.7	2.36	5.70	7.80	2.54	6.10	7.60	5.25	5.00
Chemical Oxygen Demand	mg/l	70	65	41	141	28	42	74	60	36	41	104	57	50	48	35
Nitrile - nitrogen	mg/l	1.60	1.42	1.58	3.50	2.33	2.33	3.30	0.60	2.30	3.22	1.04	3.10	2.67	1.24	2.32
Nitrite - nitrogen	mg/l	0.057	<0.050	<0.050	0.280	<0.050	0.070	0.065	<0.050	<0.050	0.068	<0.050	<0.050	0.064	<0.050	<0.050
Ammonia as Nitrogen	mg/l	0.40	<0.10	0.11	3.6	0.29	1.21	1.57	<0.10	<0.10	1.65	<0.10	0.21	1.28	0.11	<0.10
Total Kjeldahl Nitrogen	mg/l	0.85	4.02	2.11	0.28	0.52	0.80	2.10	0.77	1.83	2.98	3.10	2.36	3.70	2.26	2.61
Dissolved Phosphorus	mg/l	0.12	0.22	<0.01	0.23	<0.01	<0.01	<0.01	0.13	<0.01	0.33	0.26	0.22	0.45	0.32	0.18
Total Phosphorus	mg/l	0.16	1.04	0.74	0.21	0.31	0.06	0.21	0.34	0.40	0.46	0.33	0.60	0.51	0.39	0.20
Total Hardness	mg/l	52.2	155	35.3	44.6	21.0	26.0	216	126	105	40.9	35.1	45.5	44.3	35.3	25.0
Total Dissolved Solids	mg/l	1356	335	362	372	69	133	279	304	302	120	111	140	132	116	117
Total Suspended Solids	mg/l	65	134	286	53	174	34	478	80	87	457	62	200	45	39	42
Turbidity	ntu	22	52	58	30	25	13	17	63	60	50	27	38	18	32	35
Surfactants (MBAS)	mg/l	0.33	0.21	0.08	1.49	0.13	0.60	0.48	0.24	0.20	0.35	0.22	0.13	0.47	0.44	0.14
Organophosphate Pesticides																
Diazinon	µg/l	<0.50	0.47**	0.29	<0.50	<0.05	<0.50	0.30**	0.39**	0.18	0.27**	0.35**	0.20**	0.43**	0.48**	0.08
Chlorypyrifos	µg/l	<0.50	<0.50	<0.05	<0.50	<0.05	<0.50	<0.50	<0.05	<0.50	<0.50	<0.05	<0.50	<0.05	<0.05	<0.05

Asterisk () indicates an estimated value that is below quantification limit. Double asterisk (**) indicates the percent difference between primary and confirmation columns is greater than 40%.**
Table 5-2
DISSOLVED METAL, TOTAL METAL, AND HARDNESS DATA SUMMARY — MASS LOADING STATIONS (AH1, SD5, SD8, SD13, SV1), 1999/2000

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>AH1</th>
<th>SV1</th>
<th>SD5</th>
<th>SD8</th>
<th>SD13</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/25/00</td>
<td>2/20/00</td>
<td>3/5/00</td>
<td>1/25/00</td>
<td>3/5/00</td>
</tr>
<tr>
<td>TOTAL HARDNESS (mg/l CaCO3)</td>
<td>52.2</td>
<td>155</td>
<td>35.3</td>
<td>44.6</td>
<td>21.0</td>
</tr>
<tr>
<td>TOTAL METALS (μg/l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANTIMONY</td>
<td><1.5</td>
<td><1.5</td>
<td><1.5</td>
<td><1.5</td>
<td><1.5</td>
</tr>
<tr>
<td>ARSENIC</td>
<td><1.0</td>
<td>18.0</td>
<td>7.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>CADMIUM</td>
<td><0.25</td>
<td>1.0</td>
<td>0.25</td>
<td><0.25</td>
<td><0.25</td>
</tr>
<tr>
<td>CHROMIUM</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
</tr>
<tr>
<td>COPPER</td>
<td><5.0</td>
<td>54.0</td>
<td>20.0</td>
<td>40.0</td>
<td>10.0</td>
</tr>
<tr>
<td>LEAD</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>NICKEL</td>
<td><5.0</td>
<td>50.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
</tr>
<tr>
<td>SELENIUM</td>
<td><1.0</td>
<td>2.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>ZINC</td>
<td>10.0</td>
<td>110.0</td>
<td>50.0</td>
<td>110.0</td>
<td>80.0</td>
</tr>
<tr>
<td>DISSOLVED METALS (μg/l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANTIMONY</td>
<td><1.5</td>
<td><1.5</td>
<td><1.5</td>
<td><1.5</td>
<td><1.5</td>
</tr>
<tr>
<td>ARSENIC</td>
<td><1.0</td>
<td>11.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>CADMIUM</td>
<td><0.25</td>
<td><0.25</td>
<td><0.25</td>
<td><0.25</td>
<td><0.25</td>
</tr>
<tr>
<td>CHROMIUM</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
</tr>
<tr>
<td>COPPER</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
</tr>
<tr>
<td>LEAD</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>NICKEL</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
</tr>
<tr>
<td>SELENIUM</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>ZINC</td>
<td>10.0</td>
<td><1.0</td>
<td>5.0</td>
<td>7.0</td>
<td>9.0</td>
</tr>
</tbody>
</table>
Table 5-2
TOTAL METAL AND HARDNESS DATA SUMMARY — MASS LOADING STATIONS (AH1, SD5, SD8, SD13, SV1), 1998/99

<table>
<thead>
<tr>
<th>Metals Results</th>
<th>1997/98</th>
<th>AH1</th>
<th>SD5</th>
<th>SD8</th>
<th>SD13</th>
<th>SV1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>mg/l</td>
<td>0.008</td>
<td><0.001</td>
<td><0.001</td>
<td>0.004</td>
<td>0.0015</td>
</tr>
<tr>
<td>Cadmium</td>
<td>mg/l</td>
<td>0.007</td>
<td><0.00025</td>
<td><0.00025</td>
<td>0.004</td>
<td><0.00025</td>
</tr>
<tr>
<td>Chromium</td>
<td>mg/l</td>
<td><0.005</td>
<td><0.005</td>
<td>0.12</td>
<td><0.005</td>
<td>0.009</td>
</tr>
<tr>
<td>Copper</td>
<td>mg/l</td>
<td><0.006</td>
<td><0.005</td>
<td><0.005</td>
<td><0.005</td>
<td><0.005</td>
</tr>
<tr>
<td>Nickel</td>
<td>mg/l</td>
<td>0.03</td>
<td><0.005</td>
<td>0.01</td>
<td>0.02</td>
<td><0.005</td>
</tr>
<tr>
<td>Lead</td>
<td>mg/l</td>
<td><0.001</td>
<td><0.001</td>
<td>0.0017</td>
<td>0.04</td>
<td>0.003</td>
</tr>
<tr>
<td>Antimony</td>
<td>mg/l</td>
<td><0.0015</td>
<td><0.0015</td>
<td><0.0015</td>
<td><0.0015</td>
<td><0.0015</td>
</tr>
<tr>
<td>Selenium</td>
<td>mg/l</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Zinc</td>
<td>mg/l</td>
<td>0.03</td>
<td>0.194</td>
<td>0.035</td>
<td><0.025</td>
<td><0.025</td>
</tr>
<tr>
<td>Total hardness</td>
<td>mg/l</td>
<td>137</td>
<td>365</td>
<td>568</td>
<td>148</td>
<td>218</td>
</tr>
<tr>
<td>Mass Loading Stations</td>
<td>AH1</td>
<td>SD5</td>
<td>SD8</td>
<td>SD13</td>
<td>SV1</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>Laboratory pH</td>
<td>pH units</td>
<td>7.58</td>
<td>7.95</td>
<td>8.47</td>
<td>7.55</td>
<td>7.39</td>
</tr>
<tr>
<td>Electrical conductivity</td>
<td>μhos/cm</td>
<td>652</td>
<td>1560</td>
<td>2270</td>
<td>6070</td>
<td>629</td>
</tr>
<tr>
<td>Total hardness</td>
<td>mg/l</td>
<td>137</td>
<td>365</td>
<td>568</td>
<td>148</td>
<td>218</td>
</tr>
<tr>
<td>Total suspended solids</td>
<td>mg/l</td>
<td>979</td>
<td>35.0</td>
<td>5.0</td>
<td>913</td>
<td>54.0</td>
</tr>
<tr>
<td>Total dissolved solids</td>
<td>mg/l</td>
<td>853</td>
<td>892</td>
<td>1611</td>
<td>1492</td>
<td>563</td>
</tr>
<tr>
<td>Turbidity</td>
<td>NTU</td>
<td>72.0</td>
<td>8.0</td>
<td>14.0</td>
<td>84.0</td>
<td>450</td>
</tr>
<tr>
<td>Biochemical oxygen demand</td>
<td>mg/l</td>
<td>20</td>
<td><3.0</td>
<td>5.25</td>
<td>30.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Chemical oxygen demand</td>
<td>mg/l</td>
<td>34.0</td>
<td><5.0</td>
<td>21.0</td>
<td>61.0</td>
<td>33.0</td>
</tr>
<tr>
<td>Total coliform</td>
<td>MPN/100ml</td>
<td>>241900</td>
<td>8130</td>
<td>197000</td>
<td>>241900</td>
<td>125900</td>
</tr>
<tr>
<td>Fecal coliform</td>
<td>MPN/100ml</td>
<td>>1600</td>
<td>240</td>
<td><1600</td>
<td>>1600</td>
<td>>1600</td>
</tr>
<tr>
<td>Fecal streptococci</td>
<td>MPN/100ml</td>
<td>50</td>
<td>8</td>
<td>130</td>
<td><1</td>
<td>>1600</td>
</tr>
<tr>
<td>Oil and grease</td>
<td>mg/l</td>
<td>0.67</td>
<td><0.5</td>
<td>0.6</td>
<td>0.7</td>
<td><0.5</td>
</tr>
<tr>
<td>Surfactants (MBAS)</td>
<td>mg/l</td>
<td>0.25</td>
<td>0.07</td>
<td><0.05</td>
<td>0.51</td>
<td>0.08</td>
</tr>
<tr>
<td>Total kjeldahl nitrogen</td>
<td>mg/l</td>
<td><0.01</td>
<td>0.44</td>
<td>2.8</td>
<td>0.12</td>
<td>2.93</td>
</tr>
<tr>
<td>Nitrate-nitrogen</td>
<td>mg/l</td>
<td>2.1</td>
<td>0.86</td>
<td>1.10</td>
<td>0.52</td>
<td>0.70</td>
</tr>
<tr>
<td>Nitrite-nitrogen</td>
<td>mg/l</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td>0.10</td>
<td><0.05</td>
</tr>
<tr>
<td>Ammonia as nitrogen</td>
<td>mg/l</td>
<td>0.3</td>
<td>0.15</td>
<td>0.21</td>
<td>0.6</td>
<td>0.57</td>
</tr>
<tr>
<td>Total phosphorus</td>
<td>mg/l</td>
<td>0.72</td>
<td>0.13</td>
<td>0.12</td>
<td>0.61</td>
<td>0.16</td>
</tr>
<tr>
<td>Dissolved phosphorus</td>
<td>mg/l</td>
<td>0.57</td>
<td>0.12</td>
<td>0.10</td>
<td>0.52</td>
<td>0.15</td>
</tr>
<tr>
<td>Diazinon</td>
<td>μg/l</td>
<td>0.16</td>
<td><0.50</td>
<td>0.38</td>
<td>0.40</td>
<td>0.28</td>
</tr>
<tr>
<td>Chloryphils</td>
<td>μg/l</td>
<td><0.05</td>
<td>-</td>
<td><0.50</td>
<td><0.05</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 5-5

CONVENTIONAL, BIOLOGICAL AND ORGANIC COMPOUNDS AT MASS LOADING STATIONS (SD5, SD8, SD13, SV1), 1997/98

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory pH</td>
<td>pH units</td>
<td>7.35</td>
<td>7.82</td>
<td>7.27</td>
<td>6.97</td>
<td>7.56<sup>a</sup></td>
<td>6.70<sup>a</sup></td>
<td>6.35<sup>a</sup></td>
<td>7.10</td>
<td>6.70</td>
<td>7.41</td>
<td>8.90</td>
<td>7.19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical conductivity</td>
<td>μhos/cm</td>
<td>1130</td>
<td>1690</td>
<td>726</td>
<td>310</td>
<td>155</td>
<td>1146</td>
<td>732</td>
<td>337</td>
<td>61</td>
<td>—</td>
<td>—</td>
<td>259</td>
<td>62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total hardness</td>
<td>mg/l</td>
<td>694</td>
<td>186</td>
<td>124</td>
<td>116</td>
<td>39</td>
<td>96.4</td>
<td>44.2</td>
<td>16.5</td>
<td>14.4</td>
<td>—</td>
<td>—</td>
<td>46.3</td>
<td>52.0</td>
<td>54.7</td>
<td></td>
</tr>
<tr>
<td>Total suspended solids</td>
<td>mg/l</td>
<td>410</td>
<td>503</td>
<td>2024</td>
<td>182</td>
<td>315</td>
<td>805</td>
<td>350</td>
<td>140</td>
<td>198</td>
<td>164</td>
<td>258</td>
<td>348</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total dissolved solids</td>
<td>mg/l</td>
<td>1730</td>
<td>447</td>
<td>318</td>
<td>374</td>
<td>209</td>
<td>344</td>
<td>167</td>
<td>92</td>
<td>98</td>
<td>154</td>
<td>160</td>
<td>214</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbidity</td>
<td>NTU</td>
<td>160</td>
<td>27</td>
<td>96</td>
<td>90</td>
<td>29</td>
<td>24</td>
<td>62</td>
<td>71</td>
<td>43</td>
<td>63</td>
<td>68</td>
<td>392</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochemical oxygen demand</td>
<td>mg/l</td>
<td>33</td>
<td>43</td>
<td>22</td>
<td>49</td>
<td>24</td>
<td>40<sup>a</sup></td>
<td>39</td>
<td>62</td>
<td>4</td>
<td>15</td>
<td>52</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical oxygen demand</td>
<td>mg/l</td>
<td>89</td>
<td>40</td>
<td>22</td>
<td>146</td>
<td>44</td>
<td>135</td>
<td>85</td>
<td>100</td>
<td>17</td>
<td>124</td>
<td>87</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total coliform</td>
<td>MPN/100ml</td>
<td>>160,000</td>
<td>>20,000</td>
<td>>20,000</td>
<td>>160,000</td>
<td>>20,000</td>
<td>—</td>
<td>>160,000</td>
<td>>20,000</td>
<td>—</td>
<td>—</td>
<td>>20,000</td>
<td>16,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fecal coliform</td>
<td>MPN/100ml</td>
<td>160,000</td>
<td>3,640</td>
<td>8,850</td>
<td>>160,000</td>
<td>9,450</td>
<td>—</td>
<td>90,000</td>
<td>10,900</td>
<td>9,450</td>
<td>—</td>
<td>3,640</td>
<td>420</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fecal streptococci</td>
<td>MPN/100ml</td>
<td>160,000</td>
<td>16,000<sup>a</sup></td>
<td>50</td>
<td>>160,000</td>
<td>16,000<sup>a</sup></td>
<td>—</td>
<td>160,000<sup>a</sup></td>
<td>230</td>
<td>170</td>
<td>—</td>
<td>2,400</td>
<td>1,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil and grease</td>
<td>mg/l</td>
<td>3.6</td>
<td>1.0</td>
<td>0.6</td>
<td>6.9</td>
<td><0.5</td>
<td>4.56</td>
<td>2.9</td>
<td>1.3</td>
<td><0.5</td>
<td>—</td>
<td>—</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total petroleum hydrocarbons (TPH)</td>
<td>mg/l</td>
<td><0.10</td>
<td>0.05</td>
<td>0.20</td>
<td><0.10</td>
<td>0.07</td>
<td>0.66<sup>a</sup></td>
<td>0.14</td>
<td>0.062</td>
<td><0.05</td>
<td>0.10</td>
<td>0.112</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surfactants (MBAS)</td>
<td>mg/l</td>
<td>1.6</td>
<td><1.0</td>
<td>1.1</td>
<td>1.6</td>
<td><1.0</td>
<td>15.0</td>
<td>1.5</td>
<td>1.41</td>
<td>1.6</td>
<td>0.95</td>
<td>1.32</td>
<td><1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrate-nitrile as nitrogen</td>
<td>mg/l</td>
<td>1.7</td>
<td>—</td>
<td>0.54</td>
<td>0.5</td>
<td>—</td>
<td>0.52</td>
<td>0.4</td>
<td>—</td>
<td>1.0</td>
<td>0.5</td>
<td>—</td>
<td>1.5</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrate-nitrogen</td>
<td>mg/l</td>
<td>—</td>
<td>0.06</td>
<td>0.05</td>
<td>—</td>
<td>0.08</td>
<td><0.05</td>
<td>—</td>
<td><0.05</td>
<td><0.05</td>
<td>—</td>
<td><0.05</td>
<td><0.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrite - nitrogen</td>
<td>mg/l</td>
<td>—</td>
<td>0.06</td>
<td>0.05</td>
<td>—</td>
<td>0.08</td>
<td><0.05</td>
<td>—</td>
<td><0.05</td>
<td><0.05</td>
<td>—</td>
<td><0.05</td>
<td><0.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonia as nitrogen</td>
<td>mg/l</td>
<td>0.56</td>
<td>0.57</td>
<td>0.60</td>
<td>1.3</td>
<td>0.4</td>
<td>10.0</td>
<td>0.55</td>
<td>1.09</td>
<td><0.5</td>
<td>1.3</td>
<td>0.80</td>
<td><0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total phosphorus</td>
<td>mg/l</td>
<td>0.70</td>
<td>0.12</td>
<td>0.23</td>
<td>0.7</td>
<td><0.10</td>
<td>2.2</td>
<td>0.90</td>
<td>0.70</td>
<td>0.36</td>
<td>0.30</td>
<td>0.273</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissolved phosphorus</td>
<td>mg/l</td>
<td><0.10</td>
<td>0.10</td>
<td>0.12</td>
<td>0.40</td>
<td><0.10</td>
<td>1.41</td>
<td>0.50</td>
<td>0.54</td>
<td>0.21</td>
<td>0.10</td>
<td>0.15</td>
<td>0.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cyanide</td>
<td>mg/l</td>
<td><0.01</td>
<td><0.02</td>
<td><0.02</td>
<td><0.01</td>
<td><0.02</td>
<td><0.02</td>
<td><0.01</td>
<td><0.02</td>
<td><0.02</td>
<td>—</td>
<td><0.02</td>
<td><0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bis (2-ethylhexyl) phthalate<sup>*</sup></td>
<td>μg/l</td>
<td>15<sup>a</sup></td>
<td>24.7</td>
<td>13.3</td>
<td>24<sup>a</sup></td>
<td>8.72</td>
<td>37.5</td>
<td>—</td>
<td>94.5</td>
<td>10.9</td>
<td>—</td>
<td>14.7</td>
<td>9.98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butyl benzyl phthalate</td>
<td>μg/l</td>
<td><10<sup>a</sup></td>
<td><2.5</td>
<td>2.51</td>
<td><10<sup>a</sup></td>
<td><2.5</td>
<td>13.3</td>
<td>—</td>
<td>29.3</td>
<td><2.5</td>
<td>—</td>
<td>12.8</td>
<td><2.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Di-n-butyl phthalate</td>
<td>μg/l</td>
<td><10<sup>a</sup></td>
<td>37.5</td>
<td>42.7</td>
<td><10<sup>a</sup></td>
<td>34.6</td>
<td>15.9</td>
<td>—</td>
<td>49.8</td>
<td>55.7</td>
<td>—</td>
<td>69.5</td>
<td>43.8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Bis (2-ethylhexyl) phthalate was detected in a field equipment blank taken prior to the start of the wet-weather monitoring season. Since this compound was detected in the blank, levels present in the stormwater should be considered as non-detected at an elevated level.

* Estimated result due to sample holding time exceedence.
Table 5-8
TOTAL METAL AND HARDNESS DATA SUMMARY — INDUSTRIAL SITES (SC2, NC3, SD11), 1997/98

<table>
<thead>
<tr>
<th>Metals Results 1997/98</th>
<th>NC3</th>
<th>SC2</th>
<th>SD11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver</td>
<td><7</td>
<td><7</td>
<td><7</td>
</tr>
<tr>
<td>Arsenic</td>
<td><53</td>
<td><53</td>
<td><53</td>
</tr>
<tr>
<td>Beryllium</td>
<td><0.3</td>
<td><0.3</td>
<td><0.3</td>
</tr>
<tr>
<td>Cadmium</td>
<td><4</td>
<td><4</td>
<td><4</td>
</tr>
<tr>
<td>Chromium</td>
<td><7</td>
<td><7</td>
<td>18</td>
</tr>
<tr>
<td>Copper</td>
<td>42</td>
<td>38</td>
<td>60</td>
</tr>
<tr>
<td>Aqueous Mercury</td>
<td><2</td>
<td><2</td>
<td><2</td>
</tr>
<tr>
<td>Nickel</td>
<td>31</td>
<td>43</td>
<td><15</td>
</tr>
<tr>
<td>Lead</td>
<td><42</td>
<td><42</td>
<td>151</td>
</tr>
<tr>
<td>Antimony</td>
<td><32</td>
<td><32</td>
<td><32</td>
</tr>
<tr>
<td>Selenium</td>
<td><75</td>
<td><75</td>
<td><75</td>
</tr>
<tr>
<td>Thallium</td>
<td><40</td>
<td><40</td>
<td><40</td>
</tr>
<tr>
<td>Zinc</td>
<td>204</td>
<td>214</td>
<td>81</td>
</tr>
<tr>
<td>Hardness</td>
<td>67.0</td>
<td>148.0</td>
<td>221.0</td>
</tr>
</tbody>
</table>

Table 5-9
TOTAL METAL AND HARDNESS DATA SUMMARY — MASS LOADING STATIONS (SD5, SD8, SD13, SV1), 1997/98

<table>
<thead>
<tr>
<th>Metals Results 1997/98</th>
<th>SD5</th>
<th>SD8</th>
<th>SD13</th>
<th>SV1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver</td>
<td><5</td>
<td><7</td>
<td><7</td>
<td><5</td>
</tr>
<tr>
<td>Arsenic</td>
<td>1</td>
<td><53</td>
<td><53</td>
<td>2</td>
</tr>
<tr>
<td>Beryllium</td>
<td><2</td>
<td><0.3</td>
<td><0.3</td>
<td><2</td>
</tr>
<tr>
<td>Cadmium</td>
<td><0.25</td>
<td><4</td>
<td><4</td>
<td>0.30</td>
</tr>
<tr>
<td>Chromium</td>
<td><5</td>
<td><7</td>
<td><7</td>
<td><5</td>
</tr>
<tr>
<td>Copper</td>
<td>9</td>
<td>56</td>
<td>146</td>
<td>17</td>
</tr>
<tr>
<td>Aqueous Mercury</td>
<td><0.5</td>
<td><2</td>
<td><2</td>
<td><0.5</td>
</tr>
<tr>
<td>Nickel</td>
<td><5</td>
<td><15</td>
<td><15</td>
<td>9</td>
</tr>
<tr>
<td>Lead</td>
<td><1</td>
<td><42</td>
<td><42</td>
<td>3</td>
</tr>
<tr>
<td>Antimony</td>
<td><1.5</td>
<td><32</td>
<td><32</td>
<td>1.6</td>
</tr>
<tr>
<td>Selenium</td>
<td><1</td>
<td><75</td>
<td><75</td>
<td>1</td>
</tr>
<tr>
<td>Thallium</td>
<td><2</td>
<td><40</td>
<td><40</td>
<td><2</td>
</tr>
<tr>
<td>Zinc</td>
<td>69</td>
<td>68</td>
<td>130</td>
<td>176</td>
</tr>
<tr>
<td>Hardness</td>
<td>684.0</td>
<td>186.0</td>
<td>214.0</td>
<td>116.0</td>
</tr>
</tbody>
</table>