TMDL Sediment Quality Assessment Study at the B Street/Broadway Piers, Downtown Anchorage, and Switzer Creek, San Diego

PHASE II

Final Report

TEMPORAL VARIABILITY, CAUSES OF IMPACTS, AND LIKELY SOURCES OF CONTAMINANTS OF CONCERN

June 2005

Prepared by: Brian Anderson, John Hunt, Bryn Phillips Marine Pollution Studies Laboratory – Granite Canyon University of California Davis, CA

In cooperation with: San Diego Regional Water Quality Control Board City of San Diego San Diego Unified Port District

Table of Contents

1.0	Intro	duction1-	1
	1.1	Background1-	3
2.0	Study	y Design and Methods2-	1
	2.1	Objectives and Approach2-	1
	2.2	Site Conceptual Model2-	1
	2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6	Sediment Toxicity2-Toxicity Identification evaluations2-Benthic Community Composition2-Sediment Characteristics2-Bioaccumulation2-Sediment Sampling2-Switzer Creek2-B Street/Broadway Piers2-Downtown Anchorage2-1Reference Stations2-1Toxicity Identification Evaluations (TIEs)2-1	5 5 6 6 6 6 6 7 8 9 0 1 3
	2.5	Contaminant Source Identification2-1-	4
3.0	Data	Analysis and Interpretation	
	3.1	Data quality evaluation	1
	3.2.1 3.2.4	Determination of impacts 3- Aquatic Life Impact 3- Aquatic-Dependent Wildlife Impairment 3- Spatial and temporal patterns of contamination and bioeffects 3-	1 6
4.0	Rocu	lts4-1	1
	4.1 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5	Data Quality Evaluation4-Sample Handling4-Sediment Chemistry and Characteristics4-Benthic Sorting4-Bioaccumulation Testing4-Tissue Chemistry4-Determination of Impacts4-Sediment Contamination4-	<i>1</i> 1 2 2 2 3 3

	4.2.3	Toxicity Identification Evaluations (TIEs)	
	4.2.4	Benthic Community Composition	
	4.2.5	Reference Station Characteristics	
5.0	Weigh	nt of Evidence for Aquatic Life Impairment	5-1
	5.1.1	Bioaccumulation	
	5.1.2	Impairment to Aquatic Dependent Wildlife	
6.0	Discus	ssion	6-1
	6.1 S	ummary of Impairment and likely sources of copcs	6-1
	6.1.1	Switzer Creek	6-1
	6.1.2	B Street/Downtown Piers	
	6.1.3	Downtown Anchorage	
		Reference Stations	
7.0	Refere	ences	7-1

List of Tables

Table 2-1. Characteristics of reference sites for San Diego Bay. The characteristics of the B Street/Broadway Piers, Downtown Anchorage area, and Switzer Creek study sites and NPDES reference sites are also shown. Shading indicates recommended reference stations. 2-12
Table 3-1. Weight of evidence analysis framework for the aquatic life impairmentassessment. For each LOE (chemistry, toxicity and benthic community), the symbolsindicate the degree of impact including low (), moderate (), or high ()
Table 4-1. Calculated summations, quotients and prediction limits for definitivesediment metal and organic chemistry analyses.4-6
Table 4-2. Results of TIE using sediment elutriate fromSWZ014-15
Table 4-3. Summary of toxicity test results
Table 4-4. Spearman Rank Correlation matrix showing factors correlated with amphipodsurvival in laboratory exposures (n = 42)4-21
Table 4-5. Summary of benthic community measures
Table 4-6. Spearman Rank Correlation matrix showing factors correlated with BRI (n =14)
Table 4-7. Means and ranges of physical characteristics of reference and study stationsduring February, August, and October 2004 sampling periods.4-24
Table 5-1. Aquatic Life Impairment Table
Table 5-2. Summary WOE for Aquatic Life Impairment from Phase I assessment in July2003

List of Figures

Figure 1-1. Relationship of study plan to potential subsequent TMDL and cleanup activities at the study sites	1-2
Figure 1-2. Switzer Creek, B Street/Broadway Piers, and Downtown Anchorage study sites (in crosshatch; RWQCB – San Diego).	1-5
Figure 2-1. Generic site conceptual model for the Switzer Creek study area showing potentialsources and pathways to the sediment.	2-3
Figure 2-2. Generic site conceptual model for the B Street/Broadway Piers and Downtown Anchorage study areas showing potential sources and pathways to the sediment.	2-3
Figure 2-3. Generic site conceptual model for B Street/Broadway Piers. Downtown Anchorage and Switzer Creek showing the relationship between potential sources, pathways of exposure and receptors.	2-4
Figure 2-4. Switzer Creek study area with sample locations	2-9
Figure 2-5. B Street/Broadway Piers study area with sample locations	.2-10
Figure 2-6. Downtown Anchorage study area with sample locations.	.2-11
Figure 2-7. Location of candidate reference sites in San Diego Bay	.2-13
Figure 4-1. Results of Phase I TIE with SWZ01 sediment (see text for details)	.4-14
Figure 4-2. Results of Phase I TIE with DAC04 sediment	.4-16

LIST OF ACRONYMS BCA BENTHIC COMMUNITY ANALYSIS **BRI BENTHIC RESPONSE INDEX** BIGHT'98 SOUTHERN CALIFORNIA BIGHT 1998 REGIONAL MARINE MONITORING SURVEY **BPJ BEST PROFESSIONAL JUDGMENT** BPTCP BAY PROTECTION AND TOXIC CLEANUP PROGRAM BTAG BIOLOGICAL TECHNICAL ASSISTANCE GROUP CBGV CONSENSUS-BASED SEDIMENT QUALITY GUIDELINE COPC CONTAMINANTS OF POTENTIAL CONCERN CSM CONCEPTUAL SITE MODEL DDD DICHLORODIPHENYLDICHLOROETHANE DDE DICHLORODIPHENYLDICHLOROETHYLENE DDT DICHLORODIPHENYLTRICHLOROETHANE DOO DATA OUALITY OBJECTIVES EPA ENVIRONMENTAL PROTECTION AGENCY ERL EFFECTS RANGE LOW ERM EFFECTS RANGE MEDIAN ERMO EFFECTS RANGE MEDIAN OUOTIENT GC/ECD GAS CHROMATOGRAPH/ELECTRON CAPTURE DETECTOR GC/MS GAS CHROMATOGRAPH/MASS SPECTROMETER HMWPAH HIGH MOLECULAR WEIGHT PAH HPLC HIGH-PRESSURE LIQUID CHROMATOGRAPHY HO HAZARD QUOTIENT LMWPAH LOW MOLECULAR WEIGHT PAH LOE LINE OF EVIDENCE MSD MINIMUM SIGNIFICANT DIFFERENCE PAH POLYNUCLEAR AROMATIC HYDROCARBONS PCB POLYCHLORINATED BIPHENYLS PEL PROBABLE EFFECTS LEVEL PELO PROBABLE EFFECTS LEVEL OUOTIENT PPB PARTS PER BILLION PPM PARTS PER MILLION PPPAH PRIORITY POLLUTANT PAH PPT PARTS PER THOUSAND **RSD** RELATIVE STANDARD DEVIATION QA/QC QUALITY ASSURANCE/QUALITY CONTROL SAP SAMPLING AND ANALYSIS PLAN

SCCWRP SOUTHERN CALIFORNIA COASTAL WATER RESEARCH PROJECT SDRWQCB REGIONAL WATER QUALITY CONTROL BOARD, SAN **DIEGO REGION** SIM SELECTIVE ION MONITORING SQG SEDIMENT QUALITY GUIDELINE TCHLOR TOTAL CHLORDANE TDDT TOTAL DDT TEL THRESHOLD EFFECTS LEVEL THS TOXIC HOT SPOT TIE TOXICITY IDENTIFICATION EVALUATIONS TMDL TOTAL MAXIMUM DAILY LOAD TOC TOTAL ORGANIC CARBON TPAH TOTAL PAH TPCB TOTAL PCB TRV TOXICITY REFERENCE VALUES UPL UPPER PREDICTION LIMIT WOE WEIGHT OF EVIDENCE

1.0 INTRODUCTON

Sediments in San Diego Bay in the vicinity of B Street/Broadway Piers, Downtown Anchorage, and near the mouth of Switzer Creek are contaminated with anthropogenic chemicals. In addition, these sites contain degraded benthic macroinvertebrate communities, and samples from these areas have been demonstrated to be toxic to various marine invertebrate species in laboratory toxicity tests. As a consequence, these sites have been identified as areas of impaired water quality. In response to this contamination, the San Diego Regional Water Quality Control Board (SDRWQCB) has initiated efforts to develop total maximum daily loads (TMDLs) for these sites in order to reduce ongoing loadings of contaminants of concern.

The SDRWQCB has initiated studies to determine the extent and potential source reduction and clean up requirements for the impaired environment. These efforts require similar information in order to initiate action: delineation of the spatial extent and magnitude of impairment, information on temporal variability of contamination and bioeffects, causes of impacts, and descriptions of the sources of contaminants. Such information is needed by the SDRWQCB in order to prioritize TMDL actions. Similar information is needed for remediation planning, so that the affected area can be defined, and effective clean-up standards established. The primary objective of these actions is elimination of the impairment of benthic animal communities. In addition, the SDRWQCB has determined that these efforts should also minimize human health and wildlife impacts resulting from the accumulation and possible biomagnification of contaminants in the food web.

This report discusses results of Phase II TMDL studies. Phase II monitoring emphasized a temporal assessment of marine sediments adjacent to the B Street/Broadway Piers, Downtown Anchorage and Switzer Creek areas in San Diego Bay. The purpose of this study was to examine temporal variability of chemical contamination of sediments and associated bioeffects, and to investigate causes of impacts in order to provide further information needed to plan TMDL and cleanup activities. This study was developed jointly by the University of California, Davis, the City of San Diego, the San Diego Unified Port District, and the SDRWQCB in an effort to minimize duplication of effort and to provide comparable data throughout San Diego Bay. This study was similar in scope and design to ongoing sediment assessment studies being conducted throughout San Diego Bay, and the approach followed methods described for other sediment TMDL studies, particularly those at the Chollas and Paleta Creek hotspots (SCCWRP et al 2004; Brown and Bay 2005).

The relationship of the proposed study, TMDL, and cleanup activities is shown in Figure 1-1. Phase I studies were designed to determine the magnitude and spatial extent of contamination and bioeffects. Spatial assessment information is an integral component of both cleanup and TMDL activities at the study sites, consequently this information will be obtained during the initial portions of the program (Phase I in Figure 1-1). The Phase I data was used to identify areas of greatest concern for detailed investigations to support the development of TMDLs (Phase II).

The purpose of this document is to provide a more detailed description of the Phase II investigations. These activities included laboratory research to identify causes of sediment toxicity (toxicity identification evaluations - TIEs), assessment of temporal patterns in contamination and associated bioeffects, and evaluation of likely sources of the contaminants of concern.

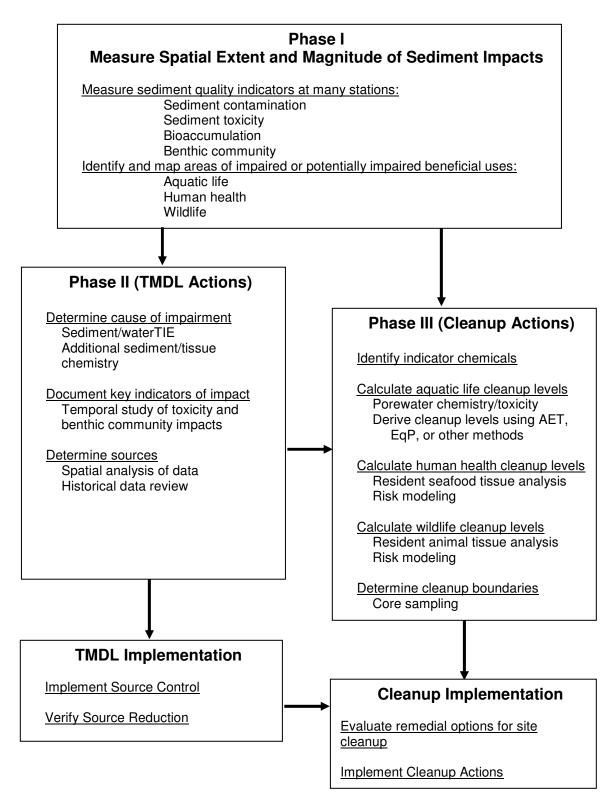


Figure 1-1. Relationship of study plan to potential subsequent TMDL and cleanup activities at the study sites.

Products from the Phase II studies and Phase III source identification and TMDL implementation will likely influence potential cleanup activities at the sites, through the identification of contaminants of concern and identification of ongoing contaminant sources. Studies that are being planned to support cleanup actions in other portions of San Diego Bay are expected to include the same components included in Phase I and II, plus additional studies necessary to derive numerical cleanup levels and determine the vertical extent of contamination (shown in Phase III). These Phase III studies may be conducted at a later date and at a reduced number of stations, depending upon the results of Phases I and II, in order to provide a more efficient and cost effective study design. Information in the Phase I and II SAPs describes the statistical analysis of the data for the purposes of determining the presence and extent of contamination or effects. However, procedures for the determination of numerical load reductions or clean up levels are not included; determination of these parameters requires the consideration of additional factors (e.g., costs and degree of protection desired) and is outside the scope of this study.

Detailed descriptions of the Phase II study design, field sampling effort, laboratory analysis, and data analysis procedures were included in the Phase II Sediment Assessment Plan. This SAP followed the general approach of the California Bay Protection and Toxic Cleanup Program (BPTCP) and the Bight'98 regional survey in measuring multiple indicators of sediment quality and using a weight of evidence approach to identify areas of impaired sediment quality. Included in this effort were determinations of the temporal patterns of:

- Sediment contamination
- Sediment physical/chemical characteristics (e.g., grain size, TOC)
- Sediment and interstitial water toxicity
- Bioaccumulation of contaminants by a marine invertebrate
- Altered benthic community composition

The four lines-of-evidence were ranked based on severity of impact used a tiered approach. This approach resulted from detailed discussions between the various stakeholders involved in the sediment TMDLs in San Diego Bay. The resulting categorizations for each indicator were then combined in a weight-of-evidence to arrive at overall categorizations for each site. This approach is described in (SCCWRP 2004).

The approach for determining causes of toxicity also involved a weight-of-evidence based on correlations between contaminant concentrations and bioeffects, tissue concentrations, and solid-phase and porewater TIEs. TIEs followed procedures developed by the U.S. Environmental Protection Agency, as well as novel techniques developed by UC Davis (MPSL-Granite Canyon).

1.1 BACKGROUND

The SDRWQB has established a cleanup plan for designated "known toxic hot spots" in San Diego Bay based on findings from the BPTCP. The cleanup plan provides definitions, rankings, and a preliminary assessment of actions for a number of sites around the bay. Under this definition, five specific areas were designated as toxic hot spots (THS), four with a ranking of moderate and one with a ranking of high. Many of the areas lie at the inlet of creeks or storm drains, indicating that stormwater may be a significant contributing factor. The three areas that are the focus of this study, one at the B Street/Broadway Piers, one in the vicinity of Downtown Anchorage, and one at the discharge of Switzer Creek, are shown in Figure 1-2.

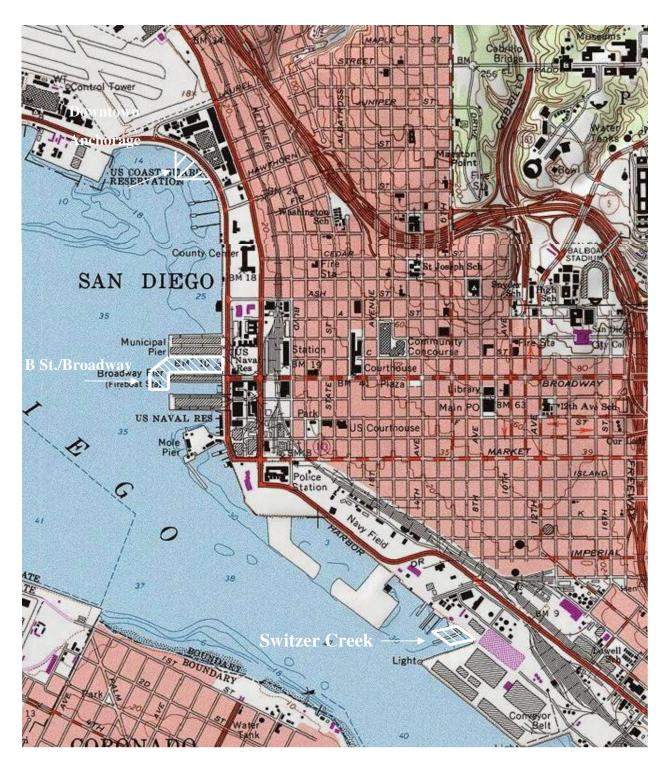


Figure 1-2. Switzer Creek, B Street/Broadway Piers, and Downtown Anchorage study sites (in crosshatch; RWQCB – San Diego).

designated as moderate priority sites. The B Street/BroadwayPiers site was designated on the basis of benthic community degradation, and elevated concentrations of polycyclic aromatic hydrocarbons (PAHs), copper, chlordane, and total chemistry. The Downtown Anchorage area was designated on the basis of metal and organochlorine pesticide contamination, sediment toxicity, and benthic community degradation. The Switzer Creek site was designated on the basis of toxicity, benthic community degradation, and elevated concentrations of copper, PAHs, chlordane and total chemistry (Fairey et al., 1996; Fairey et al., 1998). Historical data for the B Street/Broadway Piers, Downtown Anchorage area, and Switzer Creek sites were compiled from BPTCP reports (Fairey et al., 1996; Fairey et al., 1998), and are summarized in the Phase I SAP (UC Davis – MPSL, May 2002).

2.0 STUDY DESIGN AND METHODS

2.1 OBJECTIVES AND APPROACH

The primary goals of this study were to investigate temporal patterns and chemical causes of impacts on the benthic environment in the vicinity of the B Street/Broadway Piers, Downtown Anchorage, and the area adjacent to the mouth of Switzer Creek. Once chemicals of concern were identified, likely sources of these chemicals were to be identified.

The conceptual approach of the study is based on three key assumptions. First, that the determination of biological impairment is best assessed through the measurement of biological effects associated with the study site (e.g. toxicity, bioaccumulation, and benthic community degradation). Second, multiple indicators of sediment quality must be measured in order to provide a confident assessment of impacts because no single test or parameter is a consistently reliable, accurate, and predictive indicator of impairment. The final assumption is that there may be unknown site-specific factors in the study areas that will significantly affect causal relationships between contamination and effects, thus site-specific information is needed to accurately assess impacts.

This study will build on results of analyses conducted as part of the Phase I Sediment Quality Assessment. In Phase I, multiple measures of sediment quality were conducted at each station to identify the spatial extent of contamination and associated impacts. The Phase II study design entailed the collection of sediment from a subset of stations investigated as part of the Phase I studies.

As in the Phase I studies, we measured four indicators of sediment quality in Phase II: sediment contamination, sediment toxicity, benthic community composition, and bioaccumulation. These four indicators are directly related to the reasons for including these sites on the 303(d) list of impaired water bodies. We also measured other habitat factors that are necessary for the comprehensive interpretation of these indicator data. The use of multiple indicators supports a weight-of-evidence approach that increases the likelihood that the sediment quality at each sampling site will be accurately assessed.

The results of the Phase I spatial studies were used to plan subsequent studies that are needed to support TMDL and cleanup activities at the sites. Spatial distribution of contamination and toxicity were be used to select a subset of stations for toxicity identification evaluations (TIEs) in order to identify contaminants of concern for development of TMDL targets. A subset of the studies identified from the Phase I studies were also selected to determine temporal patterns of contamination and bioeffects as part of Phase II. Determination of the spatial extent of impairment will also facilitate identification of the area requiring remediation, and provide a baseline upon which to assess the effectiveness of load reductions and remediation actions.

2.2 SITE CONCEPTUAL MODEL

Based on existing data, site conceptual models were developed to help clarify the potential linkages between sources, exposure pathways, and receptors. All of the sites share similar characteristics including identified impairment of sediments, stormwater inputs from shoreline sources, and shoreline industrial activities. In addition, the Switzer Creek study area receives considerable upland inputs from the creek itself. Thus, the conceptual models for each study area reflect the generic processes that are expected to be dominant at the sites. The models are broken into two parts, the first illustrating the potential for ongoing sources to impact the site, and the second illustrating the potential exposure pathways for contaminated sediments to reach receptors.

The primary categories of potential ongoing sources are illustrated in Figures 2-1 and 2-2. These include stormwater from the upland watershed that enters the Switzer Creek site via creek drainage, stormwater from the neighboring shipping facilities and shipyards that enters the site primarily via small storm drains, and in-water sources primarily from ships via release from antifouling coatings and zinc cathodic protection systems. A significant fraction of this source material is likely to enter the site in association with particulate matter, or adsorb onto particulate matter at the site. Because of the relatively weak currents in the Switzer Creek study area, it is anticipated that much of the source material that enters the site will deposit to the sediment bed within the site, rather than be transported to the bay. This is the process that is conceptualized in Figure 2-1. In the B Street/Broadway Piers and Downtown Anchorage areas (Figure 2-2), there is greater potential for transport of contaminated sediment from adjoining areas because of tidal eddys in this part of the bay (Fairey et al. 1996). There are also a number of storm drains in the vicinity of the Downtown Anchorage. Additional insight into the links between these sources and the sediment will be gained from supporting and follow-on studies for source quantification and TIE characterization.

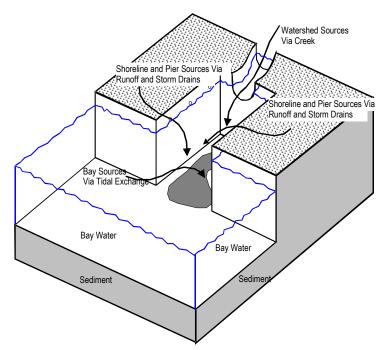


Figure 2-1. Generic site conceptual model for the Switzer Creek study area showing potentialsources and pathways to the sediment.

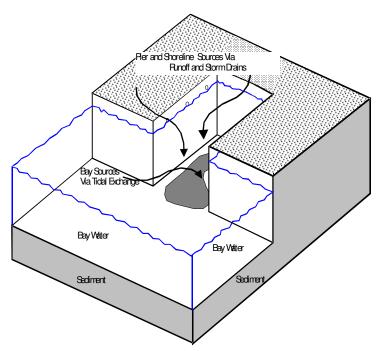


Figure 2-2. Generic site conceptual model for the B Street/Broadway Piers and Downtown Anchorage study areas showing potential sources and pathways to the sediment.

Potential pathways of exposure and receptors are illustrated in Figure 2-3. All of the sites under investigation are intermediate water depth environments. This has important implications for the potential exposure pathways that may exist. For the contaminants in

the sediment, one potential ecological exposure pathway is for direct contact or ingestion by benthic infauna, primarily invertebrates such as crustaceans, polychaetes and mollusks (Fairy et al., 1996). In association with this pathway, a second level of ecological exposure may occur for bottom feeding fish that prey on these benthic invertebrates. Existing survey data suggests that in these areas exposure would be primarily to species such as the California Halibut, Round Stingray, and Barred Sand Bass (U.S. Navy/SDUPD, 2000). Because of the depth of the sites, it is unlikely that transfer to fisheating bird species would occur. Diving birds and surface feeding birds generally limit their activities to shallow water areas, and there are few upper level receptors that feed directly on the bottom fish species mentioned above. It is possible that surf scoters (Melanitta perspicillata) or lesser scaup (Avthya affinis) feeding on shellfish may be exposed to bioaccumulatable contaminants at these sites, particularly at the Switzer Creek and Downtown Anchorage sites. Potential exposure to humans may occur through fishing activities that involve direct take of those bottom fish. Although fishing activity is generally not common within the direct confines of the sites, the mobility of the fish could provide a complete pathway for fishing activities that occur outside the site at nearby public fishing piers or in the open areas of the bay to the east of the site.

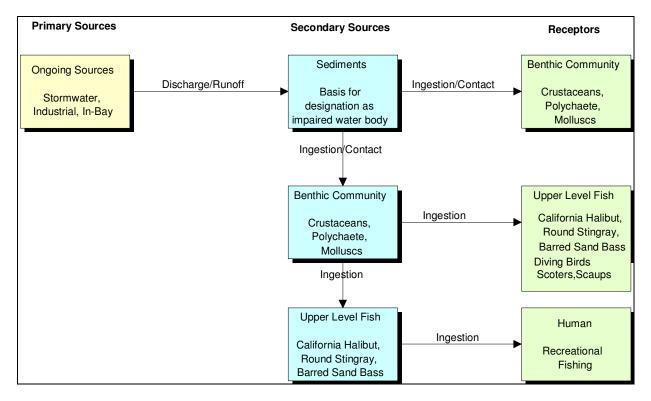


Figure 2-3. Generic site conceptual model for B Street/Broadway Piers. Downtown Anchorage and Switzer Creek showing the relationship between potential sources, pathways of exposure and receptors.

The measurements described in the following sections are designed to evaluate the exposure pathways conceptualized above. The sediment quality indicators were selected to provide quantifiable measurement endpoints to determine if these pathways of exposure are sufficient to drive significant ecological or human health risk.

2.3 SEDIMENT QUALITY INDICATORS

Up to four types of sediment quality indicators, as well as sediment characteristics necessary for indicator data interpretation will be measured at each station. Multiple indicators are necessary to increase the likelihood of an accurate determination of the presence or absence of sediment degradation at each site by supporting a weight of evidence approach to the data analysis. Each indicator is complementary to the others with regard to assessing the presence of an impact and determining whether impacts are related to chemical contamination.

Methods equivalent to those used in the BPTCP and Bight'98 regional surveys will be used wherever there is a choice. This will permit directly comparing results of the present study with region-wide values when evaluating impacts and temporal trends.

2.3.1 Sediment Contamination

Sediment chemical measurements will be used to document the extent, spatial pattern, and relative magnitude of sediment contamination at each study site, assess temporal trends through comparisons to prior measurements, and indicate the potential biological availability of sediment-associated trace metals.

The concentrations in surface sediments of the trace metals and organic contaminants measured in the Bight'98 survey (Appendix 1) will be measured at all sampling sites. The chemical analyses will use methods that are comparable to those used in the Bight'98 survey. Surface sediments are defined as those within 5 cm of the sediment-water interface.

2.3.2 Sediment Toxicity

Sediment toxicity tests will be used to document the extent, spatial pattern, and relative magnitude of acute toxicity and sublethal effects in the sediments at each study site.

Acute toxicity will measure survival of the amphipod crustacean, *Eohaustorius estuarius*, after 10 days of exposure to whole sediment (EPA 1994). Porewater and overlying water in the test chambers will be measured for ammonia; water changes will be performed as needed to reduce ammonia effects.

Sublethal sediment toxicity will be assessed by measuring the effects of porewater on sea urchin fertilization (EPA 1995). Porewater will be extracted from samples of surface sediment by centrifugation and diluted with laboratory seawater to obtain concentrations of 100, 50, and 25%. Sea urchin sperm will be exposed to each sample for 20 minutes and then the toxic effects are evaluated by measuring the ability of the sperm to fertilize eggs.

The possibility of toxicity due to unionized ammonia was assessed by comparing concentrations in the toxicity test containers to existing threshold effect and LC_{50} concentrations established for each species. In addition, concurrent unionized ammonia

reference toxicant tests will be conducted with each lot of test organisms to verify tolerance to this constituent.

2.3.3 Toxicity Identification evaluations

Causes of toxicity were investigated in selected solid-phase samples using a weight-ofevidence approach based on comparisons of responses to bulk-phase chemical concentrations, evaluation of sediment physical and non-anthropogenic chemical attributes, and U.S. Environmental Protection Agency toxicity identification evaluations (TIEs). Where appropriate Phase I (characterization) and Phase II (identification) TIEs were conducted to determine causes of toxicity. Samples selected for TIEs were from stations demonstrating the greatest magnitude of toxicity in the Phase II studies.

2.3.4 Benthic Community Composition

The numbers and kinds of benthic invertebrates in sediment samples were used to characterize benthic communities at each study site.

Sediment collected using a $0.1m^2$ Van Veen grab at each sampling site was sieved through a 1.0 mm-mesh screen onto a 0.5 mm screen. Animals retained on both screens analyzed separately were identified to the lowest possible taxon, and enumerated. Most taxa will be identified to species. These data were used to calculate the Benthic Response Index, as well as other metrics such as macroinvertebrate abundance, Shannon-Wiener Diversity, and species richness.

2.3.5 Sediment Characteristics

Sediment characteristics that influence the bioavailability of contaminants, the response of toxicity test organisms, and the structure of benthic communities were measured to distinguish biological impacts (i.e., toxicity or benthic community alteration) due to contaminants from those due to physical or non-anthropogenic factors.

The sediment grain size distribution and total organic carbon content of surface sediments were measured at each station using methods comparable to those used in the Bight'98 regional survey.

2.3.6 Bioaccumulation

Bioaccumulation tests was used to evaluate the potential for contaminant uptake and subsequent food chain transfer of organic chemicals and metals from the sediment. Samples from the B Street/Broadway Piers, Downtown Anchorage area, and Switzer Creek stations were compared to samples from appropriate reference stations to determine whether they pose a significantly greater potential for bioaccumlation. Bioaccumulation tests were conducted at reference stations and a subset of B Street/Broadway Piers, Downtown Anchorage area, and Switzer Creek stations that span the expected gradient of contamination at the site. Clams (*Macoma nasuta*) were tested using the standard laboratory 28-day exposure protocol (USEPA/USACOE 1991), with sufficient number of organisms to provide ~50-100 g of tissue (wet weight) for chemical analysis. Sediments were obtained from composite grabs from the top 5 cm at each station.

All trace metal and organic constituents to be measured in sediment samples were measured in clam tissues after exposure to study-area sediments for 28-days. The data were lipid normalized (where appropriate) and also compared to concentrations in tissue samples collected at the start of the experiment (t0). The test species is native to and widely distributed in San Diego Bay and actively ingests surface sediments. It is commonly used in dredged sediment studies (USEPA/USACOE 1991) because it provides enough tissue for trace level chemical analysis.

2.4 SEDIMENT SAMPLING

Sediments for Phase II studies were collected in February, August, and October 2004. Sample locations for the Phase II studies were based on the results of the Phase I studies. The three stations sampled in the Switzer Creek study area were SWZ01, SWZ02, and SWZ04. The three stations sampled in the B St./Downtown Piers study area were BST01, BST04, BST07. The three stations sampled in the Downtown Anchorage study area were DAC02, DAC03, and DAC04. Based on the weight-of-evidence from the Phase I studies, these were the most highly impacted stations in each study area, and so, were of greatest interest for temporal and TIE studies for Phase II.

Sampling methods were consistent with procedures used in the BPTCP (Fairey et al. 1996) and the Bight'98 surveys; a 0.1 m^2 Van Veen Grab was used for all sediment sampling. Sediment for chemical, toxicity, or bioaccumulation analyses was obtained from the upper 5 cm of the sediment surface. During each deployment of the grab sampler, sediment for toxicity, chemistry and bioaccumulation were collected from both sides of the grab sample. The entire contents of a separate grab sample from the station was processed for benthic community analysis (August 2004, only).

Approximately 4-7 replicate grab samples were taken at each station in order to provide sufficient sediment for all of the analyses, except at the bioaccumulation replicate stations where an additional 6-8 grabs will be required. Surface sediment from multiple grabs was composited together on board ship, mixed to obtain homogeneity. Samples was transported on ice to the clean facility at the Marine Pollution Studies Laboratory (Moss Landing), where they were re-homogenized and then distributed into separate containers for chemistry, toxicity and bioaccumulation testing.

A sufficient number of grab samples will be collected in each study area to determine temporal patterns of contamination and associated bioeffects. To account for temporal variability, all stations will be sampled three times: once during the wet season (February 2004), and twice during the dry season (August and October 2004). These data were compared to the Phase I data collected in the post-wet-season in May/June 2003. Because the majority of non-point source contaminant loadings in Southern California occur during the wet season (Schiff et al., 2001), it is possible that greater contamination and bioeffects will be observed in wet-season sample. Variability between seasons was

compared using the wet and dry season samples collected as part of Phases II studies. Together, the four datasets collected as part of the Phase I and II studies are sufficient to describe temporal variability. Variability was assessed in terms of differences in the contaminant concentrations and the relative magnitude of bioeffects, and bioaccumulation. Toxicity, chemistry, sediment physical factors, and bioaccumulation was measured in all samples collected in Phase II. Because benthic community structure is highly influenced by seasonality, this component was measured only in the August 2004 samples in Phase II for comparison to the spring 2003 samples collected as part of the Phase I studies. May through August was selected as an appropriate index period for characterizing benthic community structure in southern California because the majority of invertebrate species recruitment occurs then (J. Oakden, personal communication).

2.4.1 Switzer Creek

The Switzer Creek study area (Figure 2-4) is located between the north side of the 10th Avenue Marine Terminal and the Campbell Shipyard Piers at the mouth of Switzer Creek. The total sediment surface area is approximately 28,000 m². Stations SWZ01, SWZ02, and SWZ04 were sampled 3 times (February, August, and October 2004; Fig. 2-4). The exact locations of Switzer Creek stations are listed in Appendix 2.

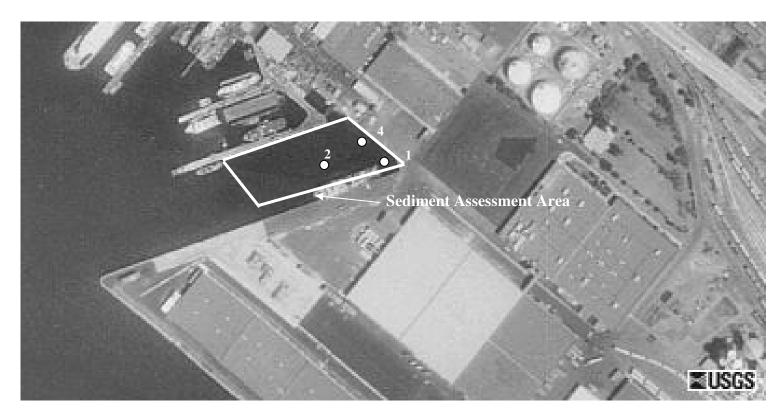


Figure 2-4. Switzer Creek study area with sample locations.

2.4.2 B Street/Broadway Piers

The B Street/Broadway Piers study area is located just south of the Municipal Pier, near the US Navy Reservation, and extends southwest approximately 100 m from the end of the Broadway Pier (Figure 2-5). Total sediment surface area is approximately 48,000 m². The 3 sampling stations were selected from those demonstrating the greatest contamination and toxicity based on the Phase I results (BST01. BST04, BST07) Specific locations of the B Street/Broadway Piers stations are summarized in Appendix 2.

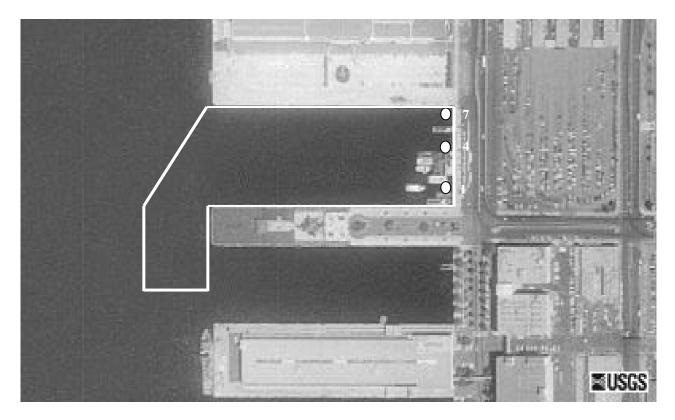


Figure 2-5. B Street/Broadway P[:]ers study area with sample locations.

2.4.3 Downtown Anchorage

The Downtown Anchorage study area is located between Grape Street and Laurel Street in the vicinity of the U.S. Coast Guard Reservation (Figure 2-6). Total sediment surface area is approximately 32,000 m². The 3 sampling stations were selected from those demonstrating the greatest contamination and toxicity based on the Phase I results (DAC02, DAC03, DAC04). Specific locations of the Downtown Anchorage area stations are summarized in Appendix 2.

Figure 2-6. Downtown Anchorage study area with sample locations.

2.4.4 Reference Stations

Five of the six reference stations described in the Phase I SAP were used during Phase II. For consistency, these included three of the same reference stations used in the Chollas Creek, Paleta Creek, and NASSCO/Southwest Marine sediment assessment studies. The two additional reference stations were those recommended by the Regional Water Board (Brennan Ott, SD Water Board, personal communication).

The reference stations and some of the characteristics meriting their use are given below.

Station #2433: Relatively high TOC and % fines, located in northern part of bay.

Station #2243: Relatively low TOC and % fines, deep water, near ship traffic.

Station #2238: Relatively low TOC and % fines, located in south part of bay.

Station # 2229: Relatively low TOC and % fines, located in north central part of bay.

Station #2441: Relatively high TOC and % fines, located in north part of bay.

Station/ Area	Level	% Fines	ТОС	Cu mg/kg	Zn mg/kg	PAH µg/kg	ERMq	# Species
Switzer		24-75	0.2-2.2					
В		48-62	1.2-2.2					
St/Broadway								
Piers								
Downtown		36-86	0.9-1.9					
Anchorage								
REF-01		38		16.6	49.4	902		
REF-02		42		179	226	72		
REF-03		65		99.1	159	5957		
2227	1	50	0.9	53.9	112	324	0.12	52
2435	1	49	0.5	28.4	64.4	0	0.07	59
2229	1	43	0.9	58.9	99.3	970	0.12	62
2440	1	38	0.5	41.8	81.1	0	0.09	58
2231	1	31	0.6	58.1	92.5	258	0.10	70
2441	2	79	2.0	71.8	123	1061	0.13	84
2225	2	57	1.0	127	130	146	0.19	69
2433	2	71	1.2	71.6	126	240	0.14	58
2442	2	79	2.0	77.7	139	4950	0.14	52
2238	2	57	1.0	55.1	143	0	0.12	41
2243	3	35	0.5	38.8	81.2	0	0.09	47
2240	3	44	0.5	47.4	103	85	0.11	40

Table 2-1. Characteristics of reference sites for San Diego Bay. The characteristics of the B Street/Broadway Piers, Downtown Anchorage area, and Switzer Creek study sites and NPDES reference sites are also shown. Shading indicates recommended reference stations.

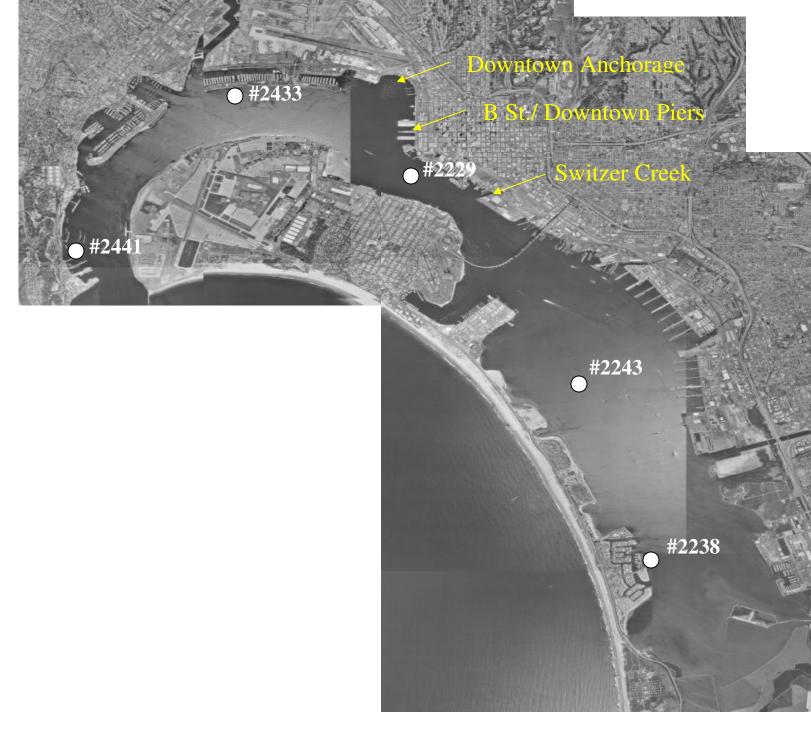


Figure 2-7. Location of candidate reference sites in San Diego Bay.

2.4.4 TOXICITY IDENTIFICATION EVALUATIONS (TIEs)

Toxicity Identification Evaluations (TIEs) are laboratory experiments that incorporate various treatments designed to reduce toxicity of water and sediment samples. The treatments are designed to mitigate toxicity caused by specific classess of chemicals such as non-polar organic compounds, divalent cations, and ionizable contaminants. Results of these experiments provide information on chemical causes of toxicity. TIEs are designed to proceed in three phases: Phase I procedures characterize the chemicals responsible for toxicity; Phase II procedures identify the cause(s) of toxicity; Phase III confirm the cause(s) of toxicity. In the current study, Phase I, and where possible, Phase

II TIEs were conducted on samples from selected sites exhibiting significant toxicity. For sites exhibiting solid-phase toxicity to amphipods, follow-up 10-day porewater and solid-phase experiments were conducted to determine the likely route of toxicant exposure. TIEs with amphipods were conducted using solid-phase, and sediment elutriate samples. This approach is detailed as a TIE decision tree in schematic form in Appendix 7. In all cases, TIEs were used in conjunction with physical and chemical analyses of different sediment matrices, and correlation analyses of relations between chemistry and toxicity, as part of a weight-of-evidence approach.

2.4.5 Amphipod TIEs

Amphipod TIEs were conducted using sediment collected in February 2004 from Switzer Creek SWZ01 and Downtown Anchorage DAC04. The general approach for amphipod TIEs followed Appendix I.

2.5 CONTAMINANT SOURCE IDENTIFICATION

Once the chemicals of concern (COCs) were identified, the sources of these contaminants were investigated. In this study, COCs were defined as chemicals responsible for toxicity, or chemicals identified as those detrimental to ecological or human health due to their bioaccumulation from sediments. Appropriate mitigation measures can only be implemented in the TMDL process after the primary contamination sources are identified. Source identification involved several lines-of-evidence, including an analysis of historical data, a spatial assessment of current data, and proximity of likely sources of contaminants.

Historical data relevant for the three study areas were reviewed to assess spatial trends in distributions of contaminants of concern and associated bioeffects. Emphasis was placed on analysis of Bay Protection and Toxic Cleanup Program (BPTCP) and Bight 1998 data sets. Where appropriate, data collected as part of previous Regional Board studies, or ongoing Port dredging studies was also considered. Spatial analysis of historic data was compared to current Phase I and II data to investigate likely sources of contaminants identified through the TIE process, or through bioaccumulation studies.

3.0 DATA ANALYSIS AND INTERPRETATION

Analysis and interpretation of the results will consist of 4 activities: evaluation of data quality, determination of impacts for each indicator, assessment of impairment at each station, evaluation of temporal contamination and bioeffects patterns, and determination of causes of toxicity. The procedures used to accomplish each of these activities are described below.

3.1 DATA QUALITY EVALUATION

Upon completion of testing, the data from each indicator will be compared to predetermined objectives for data quality. These objectives include parameters such as control performance for toxicity tests, accuracy and precision for sediment and tissue chemical analyses, and sorting efficiency and identification accuracy for benthic analysis. The objectives used in this study will be those specified in the Bight'98 quality assurance plan (chemistry, toxicity, and benthos) or in the standard method used for the bioaccumulation tests. Measurements failing to meet data quality objectives will be repeated wherever possible. Reanalysis may not be possible in some cases due to limited sample or holding time constraints. In these cases, the data will be evaluated by a supervising analyst and their best professional judgment used to determine the validity of the data. Data failing to meet all quality objectives will be flagged in the database produced from this study.

3.2 DETERMINATION OF IMPACTS

3.2.1 Aquatic Life Impact

The sediment triad approach to assessing aquatic life impact relied on the three principal LOE that included measures of sediment chemistry, sediment or interstitial water toxicity, and benthic community composition. The three LOE were individually evaluated to determine the presence of significant impacts at each station by using a three-step process. First, the data quality of each LOE was assessed relative to predetermined objectives such as accuracy and precision for sediment and tissue chemical analyses, control performance and confounding factors in the toxicity tests, and sorting efficiency and identification accuracy for the benthic analyses. Second, the data were compared to published thresholds, guidelines, or controls that indicate whether a significant response was obtained. Finally, the data were compared to the study baseline condition to assess the site-specific impact. This approach is based on the framework for evaluating sediment quality developed by the EPA for application in the St. Louis River Area of Concern (USEPA, 2000). The degree of impact indicated by each LOE was then be integrated into a weight of evidence (WOE) evaluation to provide an overall assessment of potential for aquatic life impairment (USEPA, 1997).

3.2.1.1 Sediment Chemistry

Bulk sediment chemical concentrations measured at each station were evaluated relative to sediment quality guidelines (SQGs) as well as to the reference condition. SQGs have been established as one of the most effective methods for attempting to relate sediment chemistry to their observed toxic effects (Long et al., 1995; Long et al., 1998). The evaluation in this study compared CoPCs relative to their individual ERM for metals (effects range-median, Long et al.,

1995), consensus midrange effects concentration for PAHs and PCBs (MacDonald et al., 2000: Swartz 1999), PEL for chlordane (probable effects level, MacDonald et al., 1996), and organic carbon normalized DDT effects value (Swartz et al., 1998) and their respective 95 percentile predictive limit calculated from the Baseline Pool data. The magnitude of impact was addressed by counting the number of CoPCs that exceeded each of their individual benchmarks, by evaluating them as a group against a mean SQGQ1 quotient benchmark (Fairey et al. 2001), and by counting the number or parameters that exceeded the reference condition predictive limit.

The relative magnitude of potential site-specific impact from bulk sediment CoPCs was classified into three ordinal ranking categories of low, moderate, or high likelihood of impact. The ranking was based on a semi-quantitative measure that give increasing weight to a greater number and magnitude of chemicals exceeding a threshold, similar to the method used by Long et al. (1998). The breakpoints in the ranking levels were established using best professional judgment (BPJ), again, following Long et al. (1998). The ranking criteria were based on two key assumptions. First, that there is a low likelihood of impact from CoPCs if all chemicals at a station are less than relatively low SQGs and less than the established reference condition. Second, that there was a high likelihood of impact from CoPCs when many of the chemicals at a station exceed a relatively high SQG, and exceed the reference condition. The category ranking criteria for bulk sediment chemistry are summarized below.

Low- The mean SQGQ1 was less than 0.25 or all chemicals were less than the 95% predictive limit calculated from the reference condition. Additionally, there must not be any single chemical that exceeded either its SQG or reference condition predictive limit value whichever was higher. To meet this category, all chemicals present at the site, either individually or summed must have been lower than a relatively low SQG and have been below the reference condition.

Moderate- The mean SQGQ1 was between 0.25 and 1.0 and greater than the 95% predictive limit calculated from the reference condition. Additionally, a station was classified into this category if there were five or less individual chemicals that exceeded their respective SQG or reference condition predictive limit, whichever was higher. To meet this category, some (five or less) chemicals either individually or when summed exceeded a moderate level SQG and/or the reference condition.

High- The mean SQGQ1 for all chemicals was greater than or equal to 1.0 and was greater than the 95% predictive limit calculated from the reference condition data. This category was also assigned if more than five chemicals exceed their individual SQG or the reference condition, whichever was higher. To meet this category, the reference condition as well as a relatively high SQG must have been exceeded when chemicals are considered as a group, or that there were at least six individual chemicals exceeding a SQG or the reference condition.

3.2.2.2 Sediment Toxicity

The two toxicity test results were compared to their negative controls (collection site sediment or laboratory seawater) as well as to the 95% lower prediction limit calculated from the reference stations to determine the relative magnitude of station toxicity for this LOE. The magnitude and consistency of responses was used to classify station sediments as having a low, moderate, or

high degree of toxic effects. The rankings were based on the combined toxic response from both tests.

Similar to the chemistry LOE, the ranking method employed a semi-quantitative assessment of the data that reflected both the presence and magnitude of toxicity. It was assumed that there was no, or a low degree of, toxic effects if the results of both toxicity tests were not significantly different from their controls or they had a statistically lower level of toxicity than observed under the baseline condition. Each of the toxicity tests was given equal weight for classifying a sample as moderately toxic; the presence of significant toxicity in any one test was sufficient to classify a sample as moderately toxic. A high degree of sediment toxicity was indicated when survival of amphipods was less than 50% and significantly different from the control and baseline. A high toxicity ranking was also assigned when both of the tests measured a greater level of toxicity than the baseline condition.

The amphipod test result was given greater weight for the high toxicity category because the acute survival endpoint of this test was assumed to have a higher degree of association with ecological impacts than the sublethal tests. The sea urchin fertilization test results was given less weight because this is a sublethal critical life stage tests that is more susceptible to confounding factors and its association with ecological impacts is less certain. The category ranking criteria for sediment toxicity are summarized below.

Low- There were no or a low degree of toxic effects if results of both bioassays were not significantly different from their controls or they had a statistically lower level of toxicity than observed under the reference condition.

Moderate- The sediments were considered moderately toxic if either one of the bioassay results was statistically different from its control and was less than the reference condition. There was an additional requirement that amphipod survival must have been greater than 50%, regardless of the result relative to controls or reference.

High- There were multiple criteria that can result in a categorization of the sediments as having a high degree of toxicity: 1) If survival of amphipods at a station was less than 50% and was statistically different than controls and statistically less than baseline. 2) If the amphipod test together with the fertilization test both had a result that was statistically different from control and was statistically less than reference condition.

3.2.2.3 Benthic Community Composition

Four metrics were used to assess community health at each station: total abundance, total number of species, the Shannon-Wiener (SW) Diversity Index, and the Benthic Response Index (BRI) developed by SCCWRP (Ranasinghe et al., 2003). The Benthic Community LOE compared station data against the Bight'98 BRI response level benchmarks as well as to the 95% lower (upper for BRI) prediction limit of each of the metrics calculated for the Baseline Pool. Consideration was given first to the overall BRI ranking and then to the individual metrics. The BRI was given this higher weighting because it is a more comprehensive measure of community health.

Similar to the other LOE, this evaluation was based on a semi-quantitative measure that integrated the responses and the application of ranking criteria based on BPJ. It was assumed that no, or a low degree of benthic community degradation is present when the station BRI is level I (< response II) or is statistically similar to the baseline condition and abundance, number of taxa and the SW Diversity Index are all statistically similar to the baseline condition. Conversely, a high degree of impact to community health at a station is assumed to be present when there is a BRI response of level IV (> response III) or the other indicators also show impacts. The category ranking criteria for benthic community impacts are summarized below.

Low- Benthic community health at a station had no or a low degree of degradation if the BRI is less than response level II and when abundance, number of taxa, and the SW Diversity Index were all statistically similar to the reference condition.

Moderate- There was a moderate degree of impact to community health at a station if the BRI was either response level II or III and was statistically greater than the baseline condition or if any one of the other benthic community metrics was statistically lower than the reference condition.

High- There was a high degree of impact to benthic community health at a station if the BRI was greater than response level III or the BRI response was greater than level II, statistically greater than the reference condition, and at least one of the other benthic community metrics was also statistically less than reference.

3.2.3 Triad Analysis of Impairment to Aquatic Life Beneficial Use

The three LOE described above were integrated into an overall WOE assessment focused on identifying the likelihood that site-specific aquatic life beneficial use is impaired at a given station due to the presence of a known CoPC related to the site. The approach follows the general principles of WOE analysis described by Chapman (1990, 1996) and others. Potential combinations of the ordinal rankings for individual LOE were assessed and assigned a relative overall likelihood of impairment using three categories "Unlikely", "Possible", and "Likely" based on consideration of four key elements as described by Menzie et al., (1996):

- the level of confidence or weight given to the individual LOE
- whether the LOE indicates there is an effect
- the magnitude or consistency of the effect
- the concurrence among the various LOE

For example, a station with a high ordinal ranking for chemistry, toxicity and benthic community would indicate a high likelihood of site-specific aquatic life impairment because each LOE indicates an effect, the magnitude of the effect is consistently high, and there is clear concurrence among the LOE. Alternatively, a station with a low ordinal ranking for chemistry, and moderate or high rankings for toxicity and benthic community would indicate unlikely site-specific aquatic life impairment from site CoPCs, because there is no concurrence with site CoPCs. This does not mean that there is no impairment, but that the impairment is not clearly linked to site related

contamination. The framework shown in Table 4-1 was used to interpret the results and is consistent with other published WOE frameworks.

Table 3-1. Weight of evidence analysis framework for the aquatic life impairment assessment. For each LOE (chemistry, toxicity and benthic community), the symbols indicate the degree of impact including low (\bigcirc) , moderate (\bigcirc) , or high (\bigcirc) .

Aquatic Life Impairment Table					
Chemistry	Toxicity	Benthic Community	Site-specific Impairment from CoPCs		
•	٠	•			
•	٠	•	ő		
•	•	•	oPo		
•	٠	•	С Ч		
•	•	0	Likely impairment from CoPCs		
•	0	•	ant		
•	•	•	Ű		
•	٠	•	pai		
•	•	•	<u> </u>		
•	•	•	Kely		
•	•	0	Ē		
•	0	•			
•	•	0	t s		
•	0	•	p P C		
•	•	0	Possible npairmen om CoPC		
•	0	•	Possible Impairment from CoPCs		
•	0	0	- 'F		
0	•	•			
0	•	•	щ		
0	٥	•	Unlikely impairment from CoPCs		
0	٥	•	ueu «		
0	0	•	D Co		
0	•	0	impairm. CoPCs		
0	0	•	ely i		
0	٥	0	like		
•	0	0	5		
0	0	0			

3.2.4 Aquatic-Dependent Wildlife Impairment

A screening level risk assessment was performed to assess potential impairment to aquaticdependent wildlife. For this assessment, bioaccumulation of CoPCs in the clam *Macoma nasuta* exposed to site sediments was used to estimate exposure for representative wildlife receptors including surface feeding birds and marine mammals. For the screening level assessment, conservative exposure assumptions included 100% dietary fraction from the site, 100% area use factor for the site, and the low toxicity reference value. The screening level risk assessment for aquatic-dependent wildlife was based on the following procedure. First, chemical concentrations in clam tissue were compared to measurements made on control samples to detect the presence of contaminant bioaccumulation. For those stations with chemicals demonstrating bioaccumulation, clam tissue concentrations were used to estimate contaminant doses to diving birds (lesser Scaup). This receptor is common to San Diego Bay (U.S. Navy/SDUPD, 2000) and provides an ecologically relevant exposure pathway and sensitivity to the CoPCs at the sites. For chemicals with doses exceeding the Toxicity Reference Values (TRV), tissue concentrations of clams exposed to study site sediments were compared with the 95% upper predictive interval of tissue concentrations.

Because the evaluation of aquatic-dependent wildlife is a conservative screening level assessment, sites or stations were assigned a relative likelihood of impairment ranging only from "unlikely" to "possible". The category ranking criteria for site-specific aquatic-dependent wildlife impairment is summarized below. Note that within these classifications, the presence of risk (Hazard Quotient (HQ)>1) does not necessarily equate with site-specific aquatic dependent wildlife impairment, because impairment is also measured relative to the reference condition.

Unlikely - Impairment to wildlife from the consumption of aquatic prey exposed to site sediments is unlikely for a CoPC if: (1) the estimated HQ is less than 1 or (2) the bioaccumulation is not statistically different from the reference condition.

Possible - Impairment to wildlife from the consumption of aquatic prey exposed to site sediments is possible for a CoPC if: (1) the estimated HQ is greater than 1 and (2) there is statistically different bioaccumulation relative to the reference condition.

3.3 SPATIAL AND TEMPORAL PATTERNS OF CONTAMINATION AND BIOEFFECTS

Data of concentrations of selected contaminants, results of toxicity tests and benthic community characterizations, and results of bioaccumulation studies from the Phase I were used to help identify sources of contaminants responsible for observed impacts. Temporal patterns in contamination and bioeffects were assessed by graphical analyses of results over time at the substations from Phase I and Phase II.

4.0 RESULTS

4.1 DATA QUALITY EVALUATION

This section summarizes quality assurance data; except where noted, all quality assurance data are presented in electronic files appended to this report. All analyses were conducted by the same personnel participating in the Phase I studies, except for benthic community taxonomy. Sampling, sample processing, and distribution of samples was conducted by Russell Fairey and Marco Sigala, Moss Landing Marine Laboratories. Sediment and clam tissue chemical analyses and TOC analysis were conducted byRich Gossett, CRG Laboratories. Grain size analysis and *Macoma* bioaccumulation exposure tests were conducted by Barry Snyder and Chris Stransky, AMEC Laboratories. Benthic community analyses were conducted by Doug Diener, Weston Solutions Laboratories. Toxicity tests were conducted by Brian Anderson and Bryn Phillips, UC Davis, Marine Pollution Studies Laboratory.

4.1.1 Sample Handling

All sample collection, handling, preparation and transport occurred as specified in the QAPP (Marine Pollution Studies Laboratory 2003b). Samples were received intact and cool at all analytical and testing laboratories.

4.1.2 Sediment Chemistry and Characteristics

4.1.2.1 Metals

Procedural blanks in deionized water yielded non-detect values for all metal analytes. Matrix spikes in sediment samples were performed for all analytes; all were within acceptable range, and all RPDs for matrix spike duplicates were less than 25%.

4.1.2.2 Organics

Procedural blanks in deionized water yielded non-detect values for all organic analytes during all three sampling periods. Surrogate recoveries were measured in sediment samples; recoveries for the following surrogates were below acceptable recovery thresholds in February 2004 samples: 30% recovery PCB 30 in BST04; 32% recovery of PCB 30 in BST07; 32% recovery of TCMX in BST07; 30% recovery of PCB 198 in DAC03 and DAC04, respectively; 22% recovery of d8 napthalene in reference station sample 2433; 17% recovery of d8 napthalene in reference station sample 2433; 17% recovery of d8 napthalene in reference station sample 2433; 17% recovery of d8 napthalene in sample BST01; 28% recovery of d10 acenapthene in sample BST07; 24% recovery of d10 acenapthene in DAC03 sample; 36% recovery of d8 napthalene in DAC02 sample; 21% recovery of d8 napthalene in station DAC03 sample; 38% recovery of d8 napthalene in station SWZ04 sample. All other organic chemical surrogate recoveries were within acceptable ranges in all samples in February, August, and October 2004.

4.1.2.3 Total organic carbon

No quality assurance data were provided with TOC measurements.

4.1.2.4 Grain size

No quality assurance data were provided with grain size measurements.

4.1.2.5 Toxicity Testing

Sample receiving and storage conditions were acceptable. Bulk-phase sediments were refrigerated for ten days prior to testing with *Eohaustorius*. Porewater was extracted from bulk-phase sediments after six days of refrigeration, and refrigerated for two days prior to testing.

Test acceptability criteria were met for all organisms. Water quality parameters measured during tests were within acceptable limits, with the exception of salinity in the *Eohaustorius* tests; most samples were 1 to 2 parts per thousand above the recommended salinity range for the test, but all were well within the salinity tolerance range of the organism. Temperature was within $\pm 2^{\circ}$ C for all tests. Negative control performance was acceptable in all tests.

Copper chloride reference toxicant tests were conducted as positive controls for toxicity tests, and these were within control chart limits. Ammonia toxicity tests were conducted concurrently with the definitive tests, in order to determine ammonia sensitivity for these batches of organisms. Ammonia test concentrations (as NH₃) were selected to bracket published effects thresholds for unionized ammonia.

4.1.3 Benthic Sorting

Sorting and identification of benthic infauna were as outlined in the Bight '98 QAPP.

4.1.4 Bioaccumulation Testing

Macoma exhibited acceptable control survival after 28 days, ranging from 71 to 100% among the three replicates in all three sample periods. Mean temperature, dissolved oxygen, and salinity values met the water quality criteria for all samples tested. On a few occasions, temperature and dissolved oxygen fell outside of their acceptable ranges. When this occurred, flow rates and aeration were immediately corrected. Transient temperature spikes of 2 to 3 hours duration occur on rare occasions, when new test water is added to the system. For these test batches, temperatures quickly returned to the specified test temperature.

4.1.5 Tissue Chemistry

4.1.5.1 Metals

Procedural blanks in deionized water yielded non-detect values for all metal analytes. Matrix spikes in tissue samples were performed for all analytes; all were within acceptable range, and all RPDs for matrix spike duplicates were less than 25%.

4.1.5.2 Organics

Procedural blanks in deionized water yielded non-detect values for all organic analytes. Surrogate recoveries were measured in tissue and in procedural blanks; all were within acceptable range. Matrix spikes in tissue samples were performed for selected analytes; all were within acceptable range.

4.1.5.3 Lipids

Lipids were non-detectable in procedural blanks with deionized water.

4.2 DETERMINATION OF IMPACTS

4.2.1 Sediment Contamination

Concentrations of contaminants were highest in samples collected in February 2004 (Table 4-1), and all samples categorized as having high sediment contamination based on the LOE criteria were collected during this time.

The majority of contaminants included in the analyte list were below the method detection limit in reference station samples during the three sampling periods. No PCBs or pesticides were detected in any reference station samples at any time. All metals and some PAHs were detected in reference station samples, but all were below SQG values in all of the sampling periods. The highest concentrations of contaminants were measured in reference station 2441, and this station had higher concentrations of contaminant mixtures than the other stations. While the SQGQ1 value often exceeded the lower threshold for contamination defined for the LOE categorization (0.25) at some reference stations, none of the samples at any of the reference stations were greater than their respective SQGQ1 95% UPLs. All reference stations were therefore categorized as having low sediment contamination at all times based on the chemistry LOE (Table 4-1).

Relatively low concentrations of PCBs were detected in sediments from all Switzer Creek stations except at SWZ 01 in February 2004. This was the only Switzer Creek sample that exceeded the consensus based total PCBs guideline (CBGV) value and the 95% UPL (Table 4-1). No samples from the B Street/Downtown Piers stations exceeded the consensus based Total PCBs guideline value during any of the sampling periods. One sample from a Downtown Anchorage stations exceeded the PCBs CBGV and 95% UPL; the concentration of total PCBs at DAC03 in February 2004 was 968.7 ng/g. Total PCBs in all other Downtown Anchorage stations were well below the CBG value during the other sampling periods.

Except for chlordanes, few pesticides were detected in these samples. Concentrations of DDTs were below detection limits in all samples at all times, and thus, were not compared to guideline values. Relatively high chlordane concentrations were measured in many samples, particularly in those from the Switzer Creek stations. Highest chlordane concentrations were measured at Switzer Creek in February 2004, and concentrations from all three stations were well above the PEL (4.77 ng/g), and the 95% UPL (Table 4-1). Chordane in SWZ01 in February 2004 was 80.2 ng/g, approximately 17 times the PEL value. Chlordane concentrations also exceeded the PEL and 95% UPL at all Switzer Creek stations in August and October 2004, except SWZ02 in October 2004. Chlordanes and all other pesticides were below the method detection limits in all

4-3

B Street/Downtown Pier stations at all sampling periods. Chlordane concentrations exceeded the PEL at the Downtown Anchorage station DAC04 during all three sampling periods. No other pesticides were detected in samples from the Downtown Anchorage at any time.

Although PAHs were detected in the majority of samples, concentrations of total PAHs were generally low relative to the consensus-based guideline value of $1800 \mu g/g$ oc dry wt. in all samples at all times (Table 4-1). As with the other contaminants, highest PAHs were measured in the February 2004 samples at all stations. Highest total PAHs were measured in the B Street/Downtown Piers station BST07 in February 2004 (1005.18 $\mu g/g$ oc dry wt), and although total PAHs were elevated at this station on all three sample events, none of these samples exceeded the CBGV. At Switzer Creek, the highest total PAHs were measured in SWZ01 sediments sampled in February 2004, and concentrations of PAHs in all Switzer Creek sediments declined considerably in the later sampling events. At the Downtown Anchorage, the highest total PAHs were measured in DAC03 sediments sampled in February, and lower concentrations of PAHs were measured in Downtown Anchorage stations in the later sampling events.

With few exceptions, all metals were detected at all stations (Appendix A), and seasonal differences in metal concentrations were less striking than those for organic chemicals. While many metals exceeded the threshold for enrichment based on the baseline pool reference conditions (SCCWRP, 2004), few metals exceeded both their baseline pool thresholds and ERM guideline values (Table 4-1). Zinc was the only metal in Switzer Creek stations SWZ02 and SWZ04 that exceeded both the ERM value and baseline pool threshold in the February sample period. No metals exceeded their ERM values at Swizter Creek in August. Zinc and mercury exceeded their ERMs and baseline pool thresholds at SWZ02 in October. Copper exceeded the ERM and baseline pool threshold at SWZ04 in October 2004 (Table 4-1). Two metals, zinc and copper, exceeded their ERMs and baseline pool thresholds in B Street/Downtwon Piers station BST01 in February 2004. The copper concentration in this sample was 2,960 mg/kg dry wt., which is approximately 11 times the ERM value for this metal. Sediment copper concentrations in the August and October 2004 samples from BST01were comparable to the other values measured in this study, and of the other metals, only mercury exceeded it's ERM value in the other B Street/Downtown Anchorage sediment samples (Table 4-1). Few metals exceeded their ERM values in Downtown Anchorage sediments. Mercury exceeded both the ERM and baseline pool thresholds in samples from all Downtown Anchorage stations in August 2004, and silver exceeded both the ERM and baseline pool threshold in DAC03 sediments during this time. No other metal ERM was exceeded in the February or October 2004 samples from any of the Downtown Anchorage stations.

Potential impacts of contaminant mixtures were calculated using the sediment quality guideline quotient value SQGQ1 (Fairey et al., 2001). SQGQ1 values in all but the reference station sediments exceeded the 95% UPLs for SQGQ1 at all times. Because few individual guidelines were exceeded in this study, sediments that were classified as being highly contaminated based on the LOE for sediment chemistry were placed in this category due to SQGQ1 values greater than 1.0. The highest SQGQ1 values occurred in the February samples, particularly in Switzer Creek sediments. SQGQ1 values at SWZ01 and SWZ02 were 2.055 and 1.734, respectively, and these stations were therefore characterized as having high sediment contamination using the LOE. High SQGQ1 values at these stations were largely due to high chlordane concentrations.

The SQGQ1 value at SWZ04, was just under 1.0, the threshold for a high sediment contamination, and we classified this station as moderately contaminated based on the LOE. The remaining Switzer Creek sediments sampled in August and October were also classified as being moderately contaminated based on the LOE. None of the August or October sediments had SQGQ1 values greater than 1.0 (but all had SQGQ1 values > 0.50), and there were fewer than 5 chemicals exceeding their respective SQG values in these samples. The only other station with a SQGQ1 value greater than 1.0 was B Street/Downtown Piers station BST01 sampled in February 2004 (SQGQ1 = 1.883). This was due to a high concentration of copper (2,960 mg/kg dry wt.). Although copper in the BST01 sediment was not elevated beyond those exposed to reference station sediments (see below). Because there were few individual chemicals exceeding their respective SQG values and none with SQGQ1 values greater than 1.0, all other B Street/Downtown Piers and Downtown Anchorage stations were classified as being moderately contaminated based on the LOE (Table 4-1).

Station	Total PCBs (ng/g)	PCBs > CBGV(400) & 95%UPL	Metals > ERMs & 95% UPI		Chlor > 4.77 & 95%UPL	Total PAHs (μg/g oc)	PAHs >CBGV (1800) & 95%UPI	Total SQGs & 95% UPLs exceeded	SQG Quotient	SQGQ > 95% UPL	LOE Summary
Feb 04										0.306	
SWZ01	536.0	Х		80.2	х	495.96		2	2.055	Х	High
SWZ02	334.3		Zn	64.6	х	185.87		2	1.734	Х	High
SWZ04	176.1		Zn	21.3	Х	176.09		2	0.922	Х	Moderate
Aug. 04										0.291	
SWZ01	42.1			7.9	Х	40.43		1	0.507	Х	Moderate
SWZ02	45.6			14.4	х	77.71		1	0.609	х	Moderate
SWZ04	48.9			10.8	х	69.37		1	0.579	Х	Moderate
Oct. 04										0.404	
SWZ01	32.9			18.5	Х	72.71		1	0.781	Х	Moderate
SWZ02	32.9		Zn, Hg	3		80.51		2	0.623	Х	Moderate
SWZ04	178.9		Cu	17.5	Х	92.55		2	0.889	х	Moderate
Feb 04										0.306	
BST01	78.2		Cu, Zn	3		390.54		2	1.883	х	High
BST04	83.9			3		599.49		0	0.565	Х	Moderate
BST07	79.3			3		1005.18		0	0.613	Х	Moderate
Aug. 04										0.291	
BST01	38.9		Hg	3		99.34		1	0.403	Х	Moderate
BST04	32.9		Hg	3		74.39		1	0.359	Х	Moderate
BST07	32.9		Hg	3		730.64		1	0.392	Х	Moderate

Table 4-1. Calculated summations, quotients and prediction limits for definitive sediment metal and organic chemistry analyses.

Station	Total PCBs (ng/g)	PCBs > CBGV(400) & 95%UPL	Metals > ERMs & 95% UPI	1	Chlor > 4.77 & 95%UPL	Total PAHs (μg/g oc)	PAHs >CBGV (1800) & 95%UPL	Total SQGs & 95% UPLs exceeded	SQG Quotient	SQGQ > 95% UPL	LOE Summary
Oct. 04										0.404	
BST01	52.1			3		76.63		0	0.569	Х	Moderate
BST04	38.1			3		231.34		0	0.531	х	Moderate
BST07	32.9			3		647.95		0	0.527	х	Moderate
Feb. 04										0.306	
DAC02	109.1			3		94.91		0	0.640	х	Moderate
DAC03	968.7	Х		3		317.44		1	0.872	х	Moderate
DAC04	165.1			15.3	х	130.48		1	0.620	Х	Moderate
Aug. 04										0.291	
DAC02	36.6		Hg	3		22.99		1	0.508	х	Moderate
DAC03	162.3		Hg, Ag	3		156.21		2	0.645	х	Moderate
DAC04	71.9		Hg	10.6	х	45.59		2	0.553	Х	Moderate
Oct. 04										0.404	
DAC02	66.6			3		61.43		0	0.488	х	Moderate
DAC03	311.1			3		43.55		0	0.771	х	Moderate
DAC04	69.9			24.5	х	52.41		1	0.760	Х	Moderate
Feb. 04										0.306	
2229	32.9			3		123.50		0	0.173		Low
2238	32.9			3		12.07		0	0.241		Low
2243	32.9			3		26.05		0	0.194		Low

Table 4-1. Calculated summations, quotients and prediction limits for definitive sediment metal and organic chemistry analyses.

	Total PCBs	PCBs > CBGV(400)	Metals > ERMs	Chlordanes	Chlor > 4.77	Total PAHs	PAHs >CBGV (1800)	Total SQGs & 95% UPLs	SQG	SQGQ >	LOE
Station	(ng/g)	& 95%UPL	& 95% UPL	(ng/g)	& 95%UPL	(µg/g oc)	& 95%UPI	exceeded	Quotient	95% UPL	
2433	32.9			3		39.08		0	0.185		Low
2441	32.9			3		23.21		0	0.267		Low
Aug. 04										0.291	
2229	32.9			3		115.51		0	0.172		Low
2238	32.9			3		13.02		0	0.223		Low
2243	32.9			3		16.12		0	0.204		Low
2433	32.9			3		347.45		0	0.205		Low
2441	32.9			3		6.55		0	0.263		Low
Oct. 04										0.404	
2229	43.8			3		42.92		0	0.203		Low
2238	32.9			3		3.16		0	0.244		Low
2243	32.9			3		5.89		0	0.221		Low
2433	32.9			3		15.61		0	0.190		Low
2441	32.9			3		23.17		0	0.361		Low

Table 4-1. Calculated summations, quotients and prediction limits for definitive sediment metal and organic chemistry analyses.

4.2.2 Sediment Toxicity

Unionized ammonia and grain size are two important sediment characteristics that may affect toxicity test organisms and therefore confound toxicity test results. Unionized ammonia concentrations in the interstitial waters of all samples were well below the no-observed effect concentration for the amphipod Eohaustorius estuarius at the beginning and end of all tests (NOEC = 0.8 mg/L; USEPA 1994). This indicates that interstitial water unionized ammonia was not a confounding factor in the toxicity test results. Unionized ammonia in the overlying waters of all amphipod tests were also well below this threshold at the beginning of all tests. The Day 10 unionized ammonia concentration in SWZ04 sediment overlying water in the February 2004 test was 0.808 mg/L. Although this concentration was within the range where toxic effects might occur, the initial (Day 0) concentration in this sample was well below that expected to affect *E. estuarius*. In addition, the interstitial water concentration in this sample on Day 10 was 0.093 mg/L, approximately 10% of the overlying water concentration. Because this species is primarily associated with interstitial water, unionized ammonia probably did not play a role in the amphipod mortality observed in this sample. All sediment samples were below 70% clay (Appendix B), indicating that grain size was not a confounding factor (Tay et al. 1998). The magnitude of sediment toxicity was greatest in the February samples. Amphipod mortality was observed in some reference station samples, particularly in February. Samples from reference stations 2238, 2243, and 2441 were significantly toxic to amphipods during this sampling period. Relatively low amphipod survival was also observed in samples from station 2243 in August and October. Amphipod survival exceeded the 95% LPL in all reference station samples during all sample periods. In addition, none of the reference station pore water samples had significantly reduced sea urchin fertilization in any of the sampling periods. Based on the LOE, therefore, all of the reference stations were categorized as having a low degree of sediment toxicity.

Sediments from Switzer Creek were highly toxic to both test species in February 2004. Amphipod survival was 0%, 2%, and 5% in samples from SWZ01, SWZ02, and SWZ04, respectively. Samples from SWZ01, and SWZ02 were almost completely toxic to sea urchin sperm during this period. Based on the LOE, all Switzer Creek stations were categorized as having high sediment toxicity in February. Switzer Creek sediments continued to be toxic to amphipods in August, but of the three stations, only SWZ04 (30% survival) exceeded the 95% LPL. None of the stations were toxic to sea urchin fertilization during this time. Station SWZ04 was categorized as having high sediment toxicity in August 2004, and stations SWZ01 and SWZ02 were categorized as having low toxicity based on the LOE. No significant toxicity was observed using either protocol in any Switzer Creek samples collected in October. All three stations were categorized as having low toxicity during October.

Amphipod survival was significantly lower than the controls in all B Street/Downtown Pier stations in February. Survival was 64%, 62%, and 68% in BST 01, BST04, and BST07, respectively. Amphipod survival at all stations was greater than the 95% LPL, and none of the pore water samples from the B Street stations were toxic to sea urchin fertilization. No significant toxicity to amphipods or sea urchin fertilization was observed in any of the B

Street/Downtown Pier stations in August or October. All of these stations were categorized as having low toxicity during all sample periods.

All three Downtown Anchorage samples were significantly toxic to amphipods in February. Amphipod survival in DAC04 (39% survival) was the only one that was less than the 95% LPL. Pore water from DAC04 was also significantly toxic to sea urchin fertilization in February 2004, and fertilization was less than the 95% LPL in this sample. Based on the LOE criteria, DAC04 was classified as having high toxicity during this sampling period. Pore water from DAC02 and DAC03 were also significantly toxic to sea urchin fertilization, and fertilization was less than the 95% LPL in these samples. These stations were classified as having moderate toxicity in February, based on the LOE criteria. Toxicity to amphipods was also observed in the DAC04 sample in August, but survival was greater than the 95% LPL during this period. Significant toxicity to sea urchin fertilization was observed in DAC02 pore water, and fertilization was less than the 95% LPL. Based on the LOE criteria, DAC02 was classified as having moderate toxicity in August, and DAC03 and DAC04 were classified as having low toxicity. None of the October samples were toxic to either test organisms, and all stations were classified as having low sediment toxicity based on the LOE criteria.

Amphipod mortality in the laboratory toxicity tests was highly correlated with chlordanes and total PCBs in these samples (Table 4-4), and with TOC (which was also correlated with a number of chemicals). Amphipod survival was also weakly correlated with mixtures of chemicals, quatified as the SQGQ1 value. Amphipod survival was not correlated with sediment grain size. Although correlations do not decomonstrate causality, these results suggest that amphipods in the laboratory exposures were responding to chemicals, and not physical factors. Stations with the highest toxicity to amphipods were also those with the most degraded benthic communities, and amphipod survival was negatively correlated with the BRI. Possible cause(s) of toxicity to amphipods were investigated using TIEs, and the results of these investigations are discussed below.

4.2.3 Toxicity Identification Evaluations (TIEs)

Toxicity Identification Evaluations were conducted on sediments from two stations, SWZ01 and DAC04. Samples from these stations had low amphipod survival in the February 2004 sampling period. Approximately 40 L of sediment was collected from each station in April 2004 and a series of solid-phase and porewater toxicity tests were conducted with each sample to determine the magnitude of toxicity in both matrices. Amphipod survival in solid-phase samples collected in was 23% and 0%, in DAC04 and SWZ01, respectively. Because minimal toxicity was observed in porewater extracted from these samples, solid-phase procedures were used in subsequent TIEs, except where noted. Prior to initiation of the TIEs, these samples were analyzed to determine whether confounding factors such as unionized ammonia or hydrogen sulfide exceeded published toxicity thresholds for *E. estuarius*. The highest unionized ammonia concentration measured in these samples was 0.114 mg/L, well below the un-NH3 threshold effect concentration (0.8 mg/L). The highest hydrogen sulfide concentration was 0.09 mg/L, well below the H2S LC50 (0.198 mg/L)

The two primary solid-phase TIE procedures used in these experiments were addition of Ambersorb 563 to reduce bioavailability of organic chemicals, and addition of SIR-300 to reduce

bioavailability of cationic metals. Amersorb 563 is a spherical carbonaceous resin (~300 μ m diameter) that has been shown to be effective at reducing toxicity of non-polar organic chemicals in a variety of applications (Kosian et al. 1999). SIR-300 is a spherical amino-acetate resin (~350 μ m) that has been shown to be effective at reducing toxicity due to divalent metals such as copper (Burgess et al. 2000). In addition to these treatments, the DAC04 solid-phase TIE included the addition of coconut charcoal, a fined-grain carbon that reduces bioavailability of organic chemicals in sediment (Ho et al. 2004).

A series of preliminary experiments were conducted with both sediment samples to verify the magnitude of toxicity and investigate appropriate volumes of Ambersorb, and SIR-300. These showed that both samples were toxic when diluted to 25% with control sediment. These also showed that additions of 20% SIR-300 and 15% Ambersorb were appropriate for TIEs with DAC04 and SWZ01 sediments when these were diluted to 25% (data not shown). A 15% addition of coconut charcoal was used in the solid-phase TIE with DAC04. Toxicity of all solid-phase TIE treatments was assessed with standard 10-d amphipod tests. Sample volumes were 200 g of sediment with 5 amphipods in each replicate

In addition to solid-phase TIEs, a sediment elutriate TIE was conducted with sample from SWZ01. In this TIE, an elutriate of SWZ01 was prepared by mixing 50% v:v ratio of 20% seawater with SWZ01 sediment for 1 minute then letting this solution settle overnight. This water (labeled 100% elutriate in the TIE results) was then decanted off and subjected to standard Phase I TIE treatments. These included C8 solid-phase extraction to remove organic chemicals, elution of the C8 column with methanol, EDTA addition to bind cationic metals, cation column solid-phase extraction to remove metals, and elution of the cation column with hydrochloric acid. An additional treatment designed to assess toxicity due to mixtures of organic chemicals and metals consisted of adding EDTA to post C8 column rinsate. Appropriate blanks (controls) for all of these treatments was assessed with 10-d amphipod exposures using one animal in each replicate container (10 replicates per treatment). Amphipods were exposed to 10 ml test solution in scintillation vials, and test solutions were renewed on day 5.

Results TIEs of SWZ01 using Eohaustorius estuarius.

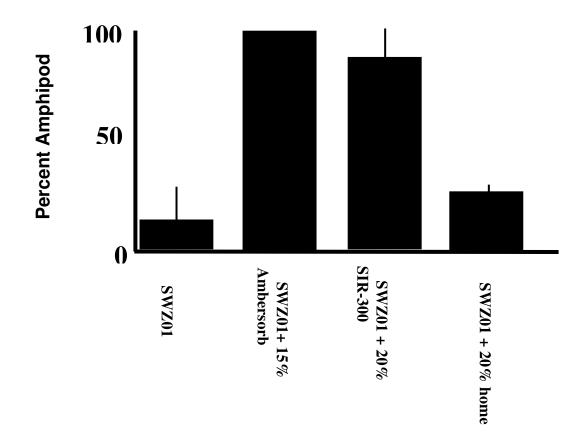
SWZ01 sediment diluted to 25% produced amphipod survival of 12% (Figure 4-1). Amphipod survival was 100% with the addition of Ambersorb, indicating toxicity was caused by an organic chemical. Amphipod survival was 80% with the addition of SIR-300, suggesting toxicity of SWZ01 could also be partly due to cationic metals (Fig. 4-1). Amphipod survival was greater than or equal to 88% in control sediment treated with the addition of Ambersorb and SIR-300, indicating no toxicity due to addition of the resins (data not shown). Amphipod survival was 20% in the treatment designed to assess dilution effects from the addition of the TIE resins, indicating the reduction in toxicity with the addition of Ambersorb and SIR-300 was not due to sediment dilution (see SWZ01 + 20% home sediment; Fig 4-1).

Amphipod survival was 60% in sediment elutriate prepared from SWZ01 sediment. Survival was 100% when the elutriate was filtered through a C8 solid-phase extraction (SPE) column. The column was then eluted with methanol, and 0% amphipod survival was observed in seawater

spiked with the C8 column methanol eluate (Table 4-2). When results of these two TIE treatments are considered together, reduction of toxicity with C8 SPE and complete mortality in the column eluate, the results strongly suggest toxicity of SWZ01 sediment was due to non-polar organic chemicals. Toxicity of the elutriate sample was not reduced by any of the treatments designed to reduce toxicity due to cationic metals (EDTA addition, cation column solid phase extraction, cation column elution with hydrochloric acid; Table 4-2).

Results of the solid-phase and sediment elutriate TIEs indicate toxicity of SWZ01 sediment was caused by organic chemical(s). Toxicity was eliminated with treatments designed to remove organic chemicals. Our observation of high toxicity in the C8 column eluate supports this conclusion. Although toxicity of the solid-phase sample was greatly reduced with the addition of the metal binding resin SIR-300, this may have been due to binding of organic chemicals rather than metals. No treatments designed to reduce toxicity due to metals were effective in the sediment elutriate TIEs, and no toxicity was observed in the cation column HCl eluate.


The conclusion that organic chemicals are the likely cause of SWZ01 toxicity to amphipods is supported by the chemical analyses of this sample. Of the organic chemicals measured, total chordanes in the SWZ01 sample was 80 ng/g, approximately 13 times the ERM SQG value (6 ng/g), and 19 times the PEL SQG (4.77 ng/g; Table 4-1). In addition, amphipod mortality was more highly correlated with total chlordane concentrations than any other chemical constituent (Table 4-4). No metals exceeded their respective ERMs in the SWZ01 sediment collected in February 2004, and amphipod mortality was not correlated with metals in this study (Table 4-4). While elevated concentrations of other organic chemicals were also measured in SWZ01 sediment, none of these exceeded their respective guideline values. Taken as a weight-of-evidence, these results suggest toxicity of SWZ01 sediment was likely due to mixtures of organic chemicals containing high concentrations of chlordane. Confirmation of chlordane as a primary cause of toxicity would require additional Phase II TIE steps such as HPLC fractionation of the C8 column (or Ambersorb) eluate, and toxicity tests and chemical analyses of the HPLC fractions. These steps were beyond the scope of the current study.


Results of TIEs of DAC04 using Eohaustorius estuarius.

DAC04 sediment diluted to 25% produced amphipod survival of 44% (Figure 4-2). Amphipod survival was 84% with the addition of Ambersorb, indicating toxicity was caused by an organic chemical. Amphipod survival was 88% with the addition of fine-grain coconut charcoal, also suggesting toxicity due to an organic chemical. Survival was 60% with the addition of SIR-300, suggesting minimal toxicity of DAC04 due to cationic metals (Fig. 4-2). Amphipod survival was greater than or equal to 88% in control sediment treated with the addition of Ambersorb, coconut charcoal and SIR-300 (data not shown). Amphipod survival was 40% in the treatment designed to assess dilution effects from the addition of the TIE resins, indicating the reduction in toxicity with the addition of Ambersorb and coconut charcoal was not due to sediment dilution (see DAC04 + 20% home sediment; Fig 4-2).

Total chlordane in the February 2004 DAC04 sample was 15.3 ng/g, 3 times the PEL SQG value (4.77 ng/g). No other organic chemical SQGs were exceeded in this sample, and no metal ERMs were exceeded. The SQGQ1 calculated for this sample was 0.616, which suggests chemical

mixtures enriched beyond those of the reference stations. Taken as a whole, these results suggest toxicity of DAC04 sediments was likely due to organic chemicals, but Phase II TIE procedures would be required to verify which compounds are responsible. Based on the weight-of-evidence, chlordane is a likely candidate for follow-up TIE work.

	Proportion Amph	ipod Survival
TIE Treatments	Control/Treatment Blank	100% Sediment Elutriate
Baseline	1.00	0.60
EDTA	0.90	0.50
C8 Column	0.90	1.00
C8 Eluate	0.90	0.00
C8 Col.+EDTA	1.00	0.90
Cation Column	0.80	0.40
Cation Eluate	0.90	0.90

Table 4-2. Results of TIE using sediment elutriate from SWZ01.

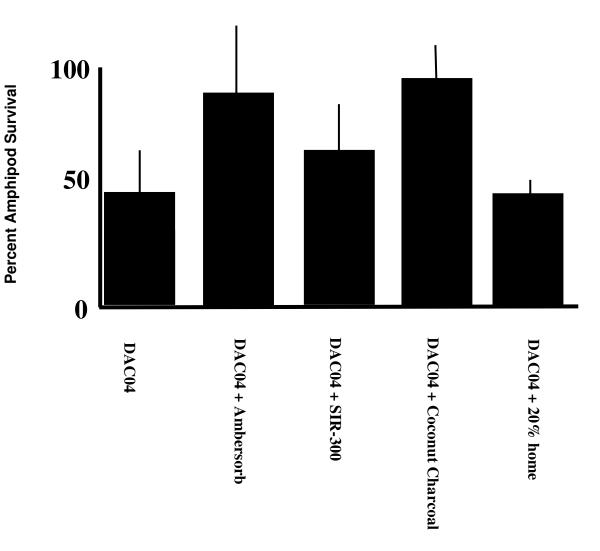


Figure 4-2. Results of Phase I TIE with DAC04 sediment.

4.2.4 Benthic Community Composition

The BRI values for all reference stations except station 2441 were RL 1 (slight deviation from reference). Relative to the stations of concern, the numbers of species and Shannon-Weiner diversity indices were higher for all reference stations. In addition, total abundances of organisms were higher at the reference stations. The BRI value was somewhat higher for reference station 2441, and this station was classified as RL 2 (biodiversity loss), though this BRI value did not exceed the 95% reference station UPL. Station 2441 had relatively high numbers of the cnidarians *Edwardsia californica* (Anthozoa – Actinaria), which has a relatively higher pollution tolerance score. In addition, this station had few crustacea, and higher numbers of polychaetes with high pollution tolerance scores (e.g., *Leitoscoloplos pugettensis, Dorvillea longicornis*). All reference stations were categorized as Low impact, using the LOE criteria for benthic community characteristics (Table 4-5).

The three Switzer Creek stations had the highest BRI values of all the stations characterized in this study, and all were classified as RL 3 (community function loss). There were low numbers of species at all three Switzer Creek stations, and few crustacea. Although some molluscs were present, these tended to be species with higher pollution tolerance scores (e.g., *Theora lubrica*). The metrics for number of species, and Shannon–Weiner diversity were lower than the 95% LPL based on reference conditions (except S-W at SWZ02). In addition, abundances at the Switzer Creek stations were lower than at the other stations. The species assemblages at the Switzer Creek stations were dominated by pollution tolerant polychaete species, particularly *Capitella capitata* and *Dorvillea longicornis*. Based on the LOE criteria for benthic communities, all three Switzer Creek stations were categorized as High Impact (Table 4-5).

Two of the three B Street/Downtown Pier stations had degraded benthic communities relative to the reference stations. BST01 and BST04 had BRI values that exceeded the 95% UPL, and both stations were classified as RL 2 (biodiversity loss). Both of these stations had fewer species than the 95% LPL, and the Shannon-Weiner index for station BST01 was lower than the 95% LPL for this metric. Although BST01 and BST04 were classified as High impact based on the LOE criteria, these stations had mixed benthic community characteristics. For example, some sensitive taxa were found at both stations (e.g., amphipods *Heterophoxus* sp., polychaetes *Mediomastus sp.*, and *Dipplocirrus sp.*), but higher numbers of pollution tolerant taxa were also found (*Theora lubrica, Musculista stenhousei, Capitella capitata*). Station BST07 was classified as Low impact based on the LOE criteria (no individual criteria were exceeded). This station had somewhat higher abundances of macroinvertebrates than the other two stations at this site, and also had more species and a higher S-W diversity score. Although this station was also classified as RL 2, the BRI value was lower than the 95% UPL based on the reference stations (Table 4-5).

At the Downtown Anchorage, DAC02 and DAC04 were classified as High Impact stations based on the LOE criteria. Both had BRI values that exceeded the 95% UPL based on the reference stations, and both had fewer species than the reference stations. DAC02 was classified as RL 3 (community function loss), and DAC04 was classified as RL 2 (biodiversity loss). Both stations had mixtures of pollution sensitive and pollution tolerant species. Both had relatively high numbers of sensitive polychaete species (e.g., *Pseudopolydora paucibranchiata, Prionospio* *heterobrachia, Mediomastus sp.*), and these were mixed with relatively high numbers of tolerant species (e.g., *Leitoscoloplos pugettensis, Theora lubrica*). Both stations had few crustacea. Although station DAC03 was similar to the other two Downtown Anchorage stations in terms of species composition, this station was classified as Moderate Impact, because the BRI value did not exceed the 95% UPL. The number of species and Shannon-Weiner indices were both lower than their respective 95% LPLs. This station also had the lowest abundance of macroinvertebrates of the three Downtown Anchorage stations.

Spearman Rank correlations showed that benthic community characteristics in these samples were correlated with a number of physical, chemical, and biological variables (Table 4-6). The BRI values were highly positively correlated with TOC in these samples (note that TOC was correlated with many of the chemicals and with chemical mixtures). BRI values were also highly correlated with total metals, the SQGQ1 values, total PCBs and chlordane. The BRI was also negatively correlated with amphipod survival in the laboratory toxicity tests. The BRI was not correlated with sediment grain size. Although statistical correlations do not demonstrate causal relationships, these results suggest that the benthic communities at these stations were responding to chemical factors and not physical factors. Stations with the most impacted benthic communities were the most contaminated stations, and were also those with the highest amphipod mortality in laboratory toxicity tests.

		<i>ohaustorius</i> in whole see			5	Sea urchin fe in 100% po		on	
Station	Proportion Survival	significant t-test (a)	< 75% cont	< lower	Proportion Fertilized	significant t-test (a,d)	< 88% cont.	< lower 95% PL (100%PW)	LOE Impact Summary
Feb 04.			0.72	0.45			0.80	0.80	
SWZ01	0.00	Х	Х	Х	0.03	Х	Х	Х	High
SWZ02	0.02	Х	Х	Х	0.05	Х	Х	Х	High
SWZ04	0.05	Х	Х	Х	0.78		Х	Х	High
Aug. 04			0.70	0.50			0.86	0.90	
SWZ01	0.51	Х	Х		0.94				Low
SWZ02	0.51	Х	Х		0.92				Low
SWZ04	0.30	Х	Х	Х	0.95				High
Oct. 04			0.70	0.55			0.87	0.92	
SWZ01	0.76	Х			0.95				Low
SWZ02	0.80	X			0.97				Low
SWZ04	0.84	Х			0.97				Low
Feb 04			0.72	0.45			0.80	0.80	
BST01	0.64	Х	Х		0.83				Low
BST04	0.62	Х	Х		0.82				Low
BST07	0.68	Х	Х		0.85				Low
Aug. 04			0.70	0.50			0.86	0.90	
BST01	0.80				0.82				Low
BST04	0.86				0.94				Low
BST07	0.85	Х			0.94				Low
Oct. 04			0.70	0.55			0.87	0.92	
BST01	0.79	X			0.98				Low
BST04	0.80				0.95				Low

Table 4-3. Summary of toxicity test results.

Table 4-3. Summary of toxicity test results.

		ohaustorius in whole sec				Sea urchin 1 in 100% po		on	
Station	Proportion Survival	significant t-test (a)	< 75% cont		Proportion Fertilized	significant t-test (a,d)	< 88% cont.	< lower 95% PL (100%PW)	LOE Impact Summary
BST07	0.79				0.95				Low
Feb. 04			0.72	0.45			0.80	0.80	
DAC02	0.56	Х	Х		0.52	Х	Х	Х	Moderate
DAC03	0.70	Х	Х		0.79	Х	Х	Х	Moderate
DAC04	0.39	Х	Х	Х	0.58	Х	Х	Х	High
Aug. 04			0.70	0.50			0.86	0.90	
DAC02	0.86				0.13	Х	Х	Х	Moderate
DAC03	0.88				0.90				Low
DAC04	0.63	Х	Х		0.93				Low
Oct. 04			0.70	0.55			0.87	0.92	
DAC02	0.82	Х			0.92				Low
DAC03	0.88				0.91				Low
DAC04	0.87				0.97				Low
Feb 04			0.72	0.45			0.80		
2229	0.87	Х			0.87				Low
2238	0.58	Х	Х		0.86				Low
2243	0.68	Х	Х		0.89				Low
2433	0.83	Х			0.83				Low
2441	0.68	Х	Х		0.84				Low
Aug. 04			0.70	0.50			0.86		
2229	0.81	Х			0.95				Low
2238	0.83	Х			0.92				Low
2243	0.61		Х		0.94				Low

4-20

		<i>Eohaustorius</i> survival in whole sediment				Sea urchin f in 100% po		on	
Station	Proportion Survival	significant t-test (a)	< 75% cont	< lower	Proportion Fertilized	significant t-test (a,d)	< 88% cont.	< lower 95% PL (100%PW)	•
2433	0.96				0.92				Low
2441	0.94				0.93				Low
Oct. 04			0.70	0.55			0.87		
2229	0.84	Х			0.99				Low
2238	0.88				0.98				Low
2243	0.63	Х	Х		0.97				Low
2433	0.95				0.97				Low
2441	0.93				0.99				Low

(a) Calculated using paired-sample t-test, one-tailed, $\alpha = 0.05$. P-values reported in Appendix D. Grey shaded cells indicate difference from controls with t-tests, difference from MSD thresholds, or difference from 95% prediction limits, as appropriate.

Table 4-4. Spearman Rank Correlation matrix showing factors correlated with amphipod survival in laboratory exposures (n = 42).

	Spearman rho value
BRI	-0.493*(n = 14)
TOC	-0.399**
Grain Size	0.190
Total metals quotient	-0.241
SQGQ1	-0.331*
Chlordanes	-0.492***
PAHs	-0.233
PCBs	-0.383**

significant @ p = 0.05, ** significant @ p = 0.01; *** significant @ p = 0.001

Station	Calc. BRI (95% UPL = 46.62)	Station Response Level	Abundance(95% LPL : NC)	No. Species (95% LPL = 18.58)	S-W (95% LPL = 2.27)	% fines	TOC (mg/dry kg)	LOE Impact Summary
SWZ01	64.24	RL 3	35.00	10.33	1.84	54.6	4.33	High
SWZ02	63.16	RL 3	55.00	15.00	2.29	53.9	3.62	High
SWZ04	55.57	RL 3	31.00	9.00	1.57	58.7	3.50	High
BST01	51.78	RL 2	54.33	14.00	2.06	58.6	1.96	High
BST04	48.18	RL 2	78.33	17.67	2.33	87.4	1.96	High
BST07	43.38	RL 2	89.33	25.33	2.77	73.5	2.23	Low
DAC02	53.89	RL 3	66.67	15.00	2.34	75.8	2.49	High
DAC03	45.91	RL 2	36.67	9.67	1.90	62.7	2.02	Moderate
DAC04	49.65	RL 2	94.67	18.00	2.24	67.5	2.77	High
2229	32.78	RL 1	74.67	23.00	2.70	22.8	0.75	Low
2238	33.58	RL 1	144.00	25.67	2.53	61.3	1.06	Low
2243	36.59	RL 1	93.67	20.67	2.60	31.3	0.51	Low
2433	33.07	RL 1	86.67	26.67	2.78	36.2	0.62	Low
2441	43.64	RL 2	198.67	24.33	2.41	81.8	2.33	Low

Table 4-5. Summary of benthic community measures.

(b) Based on calculated BRI; RL = Response Level: R = reference; RL 1 = slight deviation; RL 2 = biodiversity loss; RL 3 = Community function loss. Grey shaded cells indicate difference from 95% prediction limits. NC = lower prediction limit not calculated due to reference station variability.

Table 4-6.	Spearman Rank	Correlation matrix showing factors correlated	with BRI $(n = 14)$.
------------	---------------	---	-----------------------

	Spearman rho value
Amphipod survival	-0.493*
ТОС	0.851***
Grain Size	0.231
Total metals quotient	0.798***
SQGQ1	0.781***
Chlordane	0.652**

Table 4-6. Spearman Rank Correlation matrix showing factors correlated with BRI (n = 14).

PAHs	-0.187
PCBs	0.678**

* significant @ p = 0.05; ** = significant @ P = 0.01; *** = significant @ p = 0.001

4.2.5 Reference Station Characteristics

The ranges of depths at the reference stations were comparable to those of the study stations. While the ranges of grain sizes at the reference stations were similar to those at the study stations, the mean percent fine-grained sediments at the references stations were generally lower than those at many of the study stations. In particular, sediments at reference stations 2229 and 2433 were comprised of considerably lower percentages of fined-grained particles than those at the majority of study stations. Similarly, total organic carbon concentrations were generally lower in reference station sediments relative to those in the study stations sediments. This was particularly true when compared to sediments from Switzer Creek, where TOC was as high as 5.57%. Except for reference station 2441 (mean TOC = 2.32%), mean TOCs at the other reference stations were less than 1.0%.

Station	Depth (m)	Fines (%)	TOC (%)
	Range and (mean)	Range and (mean)	Range and (mean)
2229	12.6 - 14.5 (13.3)	15.4 - 22.8 (18.9)	0.32 - 0.75 (0.48)
2238	3.7 - 4.0 (3.9)	54.3 - 62.7 (59.4)	0.88 - 1.06 (0.97)
2243	4.0 - 4.7 (4.3)	27.1 -32.3 (30.2)	0.40 - 0.54 (0.48)
2433	9.2 - 9.5 (9.3)	31.8 - 36.2 (33.3)	0.62 - 0.65 (0.64)
2441	13.5 – 14.9 (14.3)	55.4 -81.8 (70.8)	2.29 - 2.35 (2.32)
SWZ01	10.3 – 10.7 (10.5)	38.4 -59.6 (50.9)	4.10 - 4.85 (4.43)
SWZ02	10.4 – 11.1 (10.8)	53.9 - 68.1 (61.0)	2.93 - 5.57 (4.04)
SWZ04	3.6 - 10.0 (7.5)	36.4 - 58.7 (48.0)	2.72 - 3.87 (3.36)
BST01	5.3 - 10.1 (7.6)	58.6 - 73.4 (57.5)	1.96 – 2.25 (2.14)
BST04	7.9 – 11.0 (9.6)	68.2 - 87.4 (78.4)	1.96 – 2.29 (2.09)

Table 4-7. Means and ranges of physical characteristics of reference and study stations during February, August, and October 2004 sampling periods.

4-23

BST07	7.2 – 9.7 (8.3)	61.7 -74.9 (70.0)	2.23 - 2.53 (2.35)
DAC02	5.3 - 5.7 (5.5)	75.6 - 82.7 (78.0)	2.49 -2.86 (2.61)
DAC03	5.2 - 5.3 (5.3)	62.7 – 75.1 (69.3)	1.88 – 2.46 (2.12)
DAC04	4.6 - 6.0 (5.4)	49.2 - 67.5 (57.6)	1.39 – 2.77 (2.01)
All reference stations	3.7 – 14.9	15.4 - 81.8	0.32 - 2.35
All study stations	3.6 – 11.1	36.4 - 87.4	1.39 – 5.57

Table 4-2. Means and ranges of physical characteristics of reference and study stations during February, August, and October 2004 sampling periods.

5.0 WEIGHT OF EVIDENCE FOR AQUATIC LIFE IMPAIRMENT

The weight of evidence (WOE) approach described in previous San Diego Bay sediment studies (SCCWRP 2004; Brown and Bay 2005) was applied to these data using the WOE key presented in Table 3-1. The three possible WOE classifications (Impairment Likely, Possible, or Unlikely) for the Phase II study are presented in Table 5-1. These are based on possible combinations of the three LOE classifications (High, Moderate, Low) for each of the three indicators of possible Aquatic Life Impairment assessed synoptically in August 2004, and for two of the three indicators assessed in February and October 2004. For additional temporal comparison, Table 5-2 presents WOE classifications for the same stations analyzed as part of the Phase I study conducted in July 2003. The Phase I study included all three indicators (chemistry, toxicity, benthics).

In situations where the chemistry and toxicity LOE resulted in high classifications, site-specific impairments of aquatic life due to exposure of chemicals of possible concern were considered likely. These included February samples from Switzer Creek stations SWZ01 and SWZ02, and the August 2004 sample from SWZ04. The only other station classified as likely impaired was Downtown Anchorage station DAC02 sampled in August 2004. The majority of stations in this study were classified as possibly impaired based on the WOE (Table 5-1). This is partly a result of uncertainty due to the lack of benthic community data in the February and October sampling periods, but 6 of 9 stations of concern were classified as possibly impaired in August 2004, even with the additional benthic community data. This was due to moderate classifications among the 3 sediment quality indicators, and also due inconsistent LOE classifications among the 3 indicators. In most cases, classifications of stations as "possibly impaired" based on the WOE were a result of low sediment toxicity in the August and October sampling periods. All 5 of the reference stations were classified as unlikely impaired during all three sampling periods.

The Phase I data from samples collected in July 2003 provide additional information on temporal variability at these stations. These data were compared to those from the August 2004 sampling period because both represent similar index periods for San Diego Bay benthic communities. While all of the reference stations were classified as unlikely impaired in Phase I and II, there was agreement in overall WOE classifications in only 4 of the 9 stations of concern between the Phase I and II studies. For example, all three of the Switzer Creek stations were classified as likely impaired in the Phase I study, while 2 of these three stations were classified as possibly impaired in August 2004 (Tables 5-1 and 5-2). The differences in classification are apparently due to greater toxicity in the Phase I study (this study included the SWI toxicity test), and more consistent agreement among the three indicators.

5-1

Table 5-1. Aquatic Life Impairment Table
--

Station	Chemistry	Toxicity	Benthic Community	Site-Specific Impairment From CoPCs		
Feb 04.						
SWZ01	High	High	NM	Likely		
SWZ02	High	High	NM	Likely		
SWZ04	Moderate	High	NM	Possible		
Aug. 04						
SWZ01	Moderate	Low	High	Possible		
SWZ02	Moderate	Low	High	Possible		
SWZ04	Moderate	High	High	Likely		
Oct. 04						
SWZ01	Moderate	Low	NM	Possible		
SWZ02	Moderate	Low	NM	Possible		
SWZ04	Moderate	Low	NM	Possible		
Feb 04						
BST01	High	Low	NM	Possible		
BST04	Moderate	Low	NM	Possible		
BST07	Moderate	Low	NM	Possible		
Aug. 04						
BST01	Moderate	Low	High	Possible		
BST04	Moderate	Low	High	Possible		
BST07	Moderate	Low	Low	Unlikely		
Oct. 04						
BST01	Moderate	Low	NM	Possible		
BST04	Moderate	Low	NM	Possible		
BST07	Moderate	Low	NM	Possible		

Station	Chemistry	Toxicity	Benthic Community	Site-Specific Impairment From CoPCs
Feb. 04				
DAC02	Moderate	Moderate	High	Likely
DAC03	Moderate	Moderate	Moderate	Likely
DAC04	Moderate	High	High	Likely
Aug. 04				
DAC02	Moderate	Moderate	NM	Possible
DAC03	Moderate	Low	NM	Possible
DAC04	Moderate	Low	NM	Possible
Oct. 04				
DAC02	Moderate	Low	NM	Possible
DAC03	Moderate	Low	NM	Possible
DAC04	Moderate	Low	NM	Possible
Feb 04				
2229	Low	Low	NM	Unlikely
2238	Low	Low	NM	Unlikely
2243	Low	Low	NM	Unlikely
2433	Low	Low	NM	Unlikely
2441	Low	Low	NM	Unlikely
Aug. 04				
2229	Low	Low	Low	Unlikely
2238	Low	Low	Low	Unlikely
2243	Low	Low	Low	Unlikely
2433	Low	Low	Low	Unlikely
2441	Low	Low	Low	Unlikely

Table 5-1. Aquatic Life Impairment Table.

Station	Chemistry	Toxicity	Benthic Community	Site-Specific Impairment From CoPCs
Oct. 04				
2229	Low	Low	NM	Unlikely
2238	Low	Low	NM	Unlikely
2243	Low	Low	NM	Unlikely
2433	Low	Low	NM	Unlikely
2441	Low	Low	NM	Unlikely

Table 5-1. Aquatic Life Impairment Table.

	Aquatic	Life Impairn	nent Table	
Station	Chemistry	Toxicity	Benthos	Site Specific Impairment from CoPCs
SWZ01	Moderate	Moderate	Moderate	Likely
SWZ02	Moderate	Moderate	Moderate	Likely
SWZ04	Moderate	Moderate	Moderate	Likely
BST01	Moderate	Low	Low	Unlikely
BST04	Moderate	Low	Moderate	Possible
BST07	Moderate	Low	Low	Unlikely
DAC02	Moderate	Low	Moderate	Possible
DAC03	Moderate	Low	Moderate	Possible
DAC04	Moderate	Moderate	Moderate	Likely
2229	Low	Low	Low	Unlikely
2238	Low	Low	Low	Unlikely
2243	Low	Low	Low	Unlikely
2433	Low	Low	Low	Unlikely
2441	Low	Low	Low	Unlikely

Table 5-2. Summary WOE for Aquatic Life Impairment from Phase I assessment in July 2003.

5.1.1 Bioaccumulation

Except for selected metal, PAH, and PCB constituents, chemical concentrations in *Macoma* tissues after 28-d laboratory sediment exposures were generally low during all three sampling periods. At T_0 (unexposed clams) and T_{28} (after 28 days of sediment exposure), most clam tissues contained detectable levels of most metals (Appendix D). Clam tissues also contained a number of PAHs at T_{28} during all three sample periods. Except for low concentrations of DDE in clams exposed to the reference station sediment in February, no pesticides were detected in reference station clam tissues at any time in this study. Elevated PCBs were only detected in clams exposed to sediments from stations BAC04, DAC02 and DAC03. Only low concentrations of PCBs were detected in clam tissues from the other stations during this study.

Net bioaccumulation at each site $(T_{28} - \text{mean } T_0)$ was calculated for each metal and for total PAHs, and those samples containing PCBs (Appendix D). Net bioaccumulation for these constituents was compared to the upper 95% prediction limit calculated from reference site

values (Table 5-3). PAHs and PCBs were all less than the 95% UPL in all clams exposed to reference station sediments in February, August, and October. Metals were also low in clams exposed to reference station sediments. In February, aluminum exceeded the 95% UPL in clams from reference stations 2238 and 2433. In August, aluminum in clams from reference station 2433 exceeded the 95% UPL, nickel exceeded the 95% UPL in clams from stations 2433 and 2441, and selenium exceeded the 95% UPL in clams from reference station 2238. In October, tin exceeded the 95% UPL in clams from reference stations 2229 and 2243, and iron exceeded the 95% UPL in clams from reference station 2433. The greatest number of samples exceeding metal UPLs were observed in clams exposed to sediments collected in February and August; far fewer metal UPLs were exceeded in October. In February, tissues from clams exposed to SWZ01 sediments exceeded the 95% UPLs for aluminum, antimony, chromium, and molybdenum; SWZ04 had 95% UPL exceedances for aluminum, chromium, nickel, and tin. BST04 had 95% UPL exceedances for aluminum, barium, chromium, iron, nickel, tin, vanadium, zinc, and total PAHs; BST07 had exceedances for aluminum, chromium, molybdenum, and total PAHs. DAC02 had exceedances for aluminum, arsenic, barium, chromium, iron, tin, and total PCBs. DAC03 had exceedances for aluminum, chromium, nickel, tin, and total PCBs. In August, tissues from clams exposed to SWZ01 sediments exceeded the 95% UPLs for aluminum, antimony, arsenic, molybdenum, selenium, and tin; SWZ04 had 95% UPL exceedances for aluminum, antimony, arsenic, molybdenum, selenium, tin, and vanadium. BST04 had 95% UPL exceedances for aluminum, antimony, arsenic, chromium, iron, molybdenum, selenium, tin and total PAHs; BST07 had exceedances for selenium, total PCBs and total PAHs. DAC02 had exceedances for chromium, selenium, tin, total PCBs, and total PAHs. DAC03 had exceedances for aluminum, selenium, tin, and total PCBs.

Comparison to toxicity reference values (TRVs) were available for eight of the metals detected in clam tissues after 28 days of exposure. TRVs were available for PCBs (as Arochlor 1242 or 1254). Risks were calculated for the lesser scaup, based on clam ingestion and incidental sediment ingestion (Appendix F). No tissues exceeded metal TRV high values during any of the sample periods. A number of metals exceeded TRV low values in all three sampling periods. The majority of exceedances were TRV low values for selenium and copper in February, August and October 2004. Arochlor concentrations in tissues from clams exposed to stations DAC02 (as Arochlor 1254) and DAC03 (as Arochlor 1242) sediments were well above the TRV high values during all three sample periods. Arochlor (1242) concentrations in tissues from clams exposed to BST04 and BST07 exceeded the TRV high values in October. Selected PAHs were compared to TRV low values for naphthalene and benzo(a)pyrene. TRV low values for benzo(a)pyrene were exceeded in tissues from all stations in February, August, and October except reference stations 2238 and 2243.

Only subtle seasonal trends in bioaccumulation were evident in this study. The greatest number of exceedances of TRV low values occurred in clams exposed to sediment collected in February 2004 (21 metal TRV low values were exceeded). Thirteen and 16 metal TRV low values were exceeded in August and October, respectively. The magnitude of metal, PAH and PCB concentrations in clam tissues were not appreciably higher in any one sampling period.

5.1.2 Impairment to Aquatic Dependent Wildlife

5-6

A two-step process was used to determine whether impairment to aquatic dependent wildlife was possible or unlikely due to elevated tissue concentrations of chemicals of potential concern. Impairment was considered to be possible at stations where tissue concentrations exceeded both the 95% UPL for specific CoPCs and the TRV low values for these chemicals. In February these included SWZ04, BST04, BST07, DAC02, and DAC03 for benzo(a)pyrene, and BST04 for zinc. During this sampling period DAC02, and DAC03 were classified as possibly impaired due to PCBs. All other stations were considered unlikely impaired due to CoPCs during this sampling period.

In August, stations considered possibly impaired included SWZ01, SWZ04, BST04, BST07, DAC02, DAC03, and reference station 2238 for selenium. During this sampling period DAC02 and DAC03 were considered to be possibly impaired due to PCBs, and BST07, DAC02, and DAC03 were considered possibly impaired due to benzo(a)pyrene. All other stations were considered unlikely impaired due to tissue concentrations of CoPCs in August 2004.

In October 2004, stations considered possibly impaired included SWZ01, SWZ04, BST04, BST07, DAC02, and DAC03 for benzo(a)pyrene; SWZ04 for copper, BST04, DAC02, and DAC03 for PCBs. All other stations were considered unlikely impaired due to tissue concentrations of CoPCs in October 2004.

5-7

Table 5-3. Stations where bioaccumulation exceeded upper 95% prediction limit for reference site bioaccumulation.

February 20	04	1	I I	I	1	I	I	I		I I	I	
Analyte	95% UPL	SWZ01*	SWZ04	BST04*	BST07	DAC02	DAC03	2229	2238	2243	2433	2441
Aluminum	940.5	Х	Х	Х	Х	Х	Х		Х		Х	
Antimony	0.128	Х										
Arsenic	3.565					Х						
Barium	4.710			Х		Х						
Beryllium	0											
Cadmium	1.118											
Chromium	-0.036	Х	Х	Х	Х	Х	Х					
Cobalt	844											
Copper	16.898											
Iron	1367.159			Х		Х						
Manganese	14.631											
Mercury	0											
Molybdenum	0.304	Х			Х							
Nickel	-1.752		Х	Х			Х					
Selenium	0.584											
Silver	0.563											

Sediment Quality Assessment Study at B Street/Broadway Piers, Downtown Anchorage, and Switzer Creek: Phase II Final Report

Table 5-3. Stations where bioaccumulation exceeded upper 95% prediction limit for reference site bioaccumulation.

rebruary 20		T				1						
Analyte	95% UPL	SWZ01*	SWZ04	BST04*	BST07	DAC02	DAC03	2229	2238	2243	2433	2441
Strontium	25.473											
Thallium	0											
Tin	0.113		Х	Х		Х	Х					
Titanium	69.640											
Vanadium	2.850			Х								
Zinc	97.589			Х								
Total PCBs	0					Х	Х					
Total DDT	40.51											
Total PAHs	1996.48			Х	Х							

February 2004

+ 95% upper prediction limit for reference site mean values, in mg/kg dw for metals, and ng/g dw for PAHs.

Stations where bioaccumulation			
\mathbf{S} totione whore biogeoumulatic	n avaaaaa unnar uhv/ nr	rodiction limit for rotoronco cit	
			o bioaccainatationi

August 2004

Analyte	95% UPL	SWZ01*	SWZ04	BST04	BST07	DAC02	DAC03	2229	2238	2243	2433	2441
Aluminum	940.5	Х	Х	Х			Х				Х	
Antimony	0.128	Х	Х	Х								
Arsenic	3.565	Х	Х	Х								
Barium	4.710											
Beryllium	0											
Cadmium	1.118											
Chromium	-0.036			Х	Х							
Cobalt	844											
Copper	16.898											
Iron	1367.159											
Manganese	14.631											
Mercury	0											
Molybdenum	0.304	Х	Х	Х							Х	Х
Nickel	-1.752											
Selenium	0.584	Х	Х	Х	Х	Х	Х		Х			

Sediment Quality Assessment Study at B Street/Broadway Piers, Downtown Anchorage, and Switzer Creek: Phase II Final Report

August 2004			. <u> </u>									
Analyte	95% UPL	SWZ01*	SWZ04	BST04	BST07	DAC02	DAC03	2229	2238	2243	2433	2441
Silver	0.563											
Strontium	25.473											
Thallium	0											
Tin	0.113	Х	Х	Х		Х	Х					
Titanium	69.640											
Vanadium	2.850		Х									
Zinc	97.589											
Total PCBs	0					Х	Х					
Total DDT	40.51											
Total PAHs	1996.48			Х	Х	Х						

Table 5-3. (cont.). Stations where bioaccumulation exceeded upper 95% prediction limit for reference site bioaccumulation.

+ 95% upper prediction limit for reference site mean values, in mg/kg dw for metals, and ng/g dw for PAHs.

Table 5-3. (cont.). Stations where bioaccumulation exceeded upper 95% prediction limit for reference site bioaccumulation. October 2004

95% Analyte SWZ01* SWZ04 BST04* BST07 DAC02 DAC03 2229 2238 2243 2433 2441 UPL 940.5 Aluminum Х 0.128 Antimony Х 3.565 Arsenic Barium 4.710 Beryllium 0 Cadmium 1.118 Chromium -0.036 Х -.844 Cobalt 16.898 Copper Х 1367.159 Iron Manganese 14.631 Mercury 0 Molybdenum 0.304 Nickel -1.752 0.584 Selenium

October 200												
Analyte	95% UPL	SWZ01*	SWZ04	BST04*	BST07	DAC02	DAC03	2229	2238	2243	2433	2441
Silver	0.563											
Strontium	25.473											
Thallium	0											
Tin	0.113							Х		Х		
Titanium	69.640											
Vanadium	2.850											
Zinc	97.589											
Total PCBs	0			Х		Х	Х					
Total DDT	40.51											
Total PAHs	1996.48				Х							

Table 5-3. (cont.). Stations where bioaccumulation exceeded upper 95% prediction limit for reference site bioaccumulation.

+ 95% upper prediction limit for reference site mean values, in mg/kg dw for metals, and ng/g dw for PAHs.

Analyte	SWZ01	SWZ04	BST04	BST07	DAC02	DAC03	2229	2238	2243	2433	2441
Aluminum	U	U	U	U	U	U	U	U	U	U	U
Antimony	U	U	U	U	U	U	U	U	U	U	U
Arsenic	U	U	Possible	U	U	U	U	U	U	U	U
Barium	U	U	U	U	U	U	U	U	U	U	U
Beryllium	U	U	U	U	U	U	U	U	U	U	U
Cadmium	U	U	U	U	U	U	U	U	U	U	U
Chromium	U	U	U	U	U	U	U	U	U	U	U
Cobalt	U	U	U	U	U	U	U	U	U	U	U
Copper	U	U	U	U	U	U	U	U	U	U	U
Iron	U	U	U	U	U	U	U	U	U	U	U
Lead	U	U	U	U	U	U	U	U	U	U	U
Manganese	U	U	U	U	U	U	U	U	U	U	U
Mercury	U	U	U	U	U	U	U	U	U	U	U
Molybdenum	U	U	U	U	U	U	U	U	U	U	U
Nickel	U	U	U	U	U	U	U	U	U	U	U
Selenium	U	U	U	U	U	U	U	U	U	U	U
Silver	U	U	U	U	U	U	U	U	U	U	U

Table 5-4. Potential aquatic-dependent life impairment die to bioaccumulation of CoPCs (U = unlikely impaired).

Analyte	SWZ01	SWZ04	BST04	BST07	DAC02	DAC03	2229	2238	2243	2433	2441
Strontium	U	U	U	U	U	U	U	U	U	U	U
Thallium	U	U	U	U	U	U	U	U	U	U	U
Tin	U	U	U	U	U	U	U	U	U	U	U
Titanium	U	U	U	U	U	U	U	U	U	U	U
Vanadium	U	U	U	U	U	U	U	U	U	U	U
Zinc	U	U	Possible	U	U	U	U	U	U	U	U
PCBs as Arochlors	U	U	U	U	Possible	Possible	U	U	U	U	U
Benzo(a)pyrene	U	Possible	U	Possible	Possible	Possible	U	U	U	U	U
Napthalene	U	U	U	U	U	U	U	U	U	U	U

Table 5-4. Potential aquatic-dependent life impairment due to bioaccumulation of CoPCs (U = unlikely impaired).

February 2004 cont.

Analyte	SWZ01	SWZ04	BST04	BST07	DAC02	DAC03	2229	2238	2243	2433	2441
Aluminum	U	U	U	U	U	U	U	U	U	U	U
Antimony	U	U	U	U	U	U	U	U	U	U	U
Arsenic	U	U	U	U	U	U	U	U	U	U	U
Barium	U	U	U	U	U	U	U	U	U	U	U
Beryllium	U	U	U	U	U	U	U	U	U	U	U
Cadmium	U	U	U	U	U	U	U	U	U	U	U
Chromium	U	U	U	U	U	U	U	U	U	U	U
Cobalt	U	U	U	U	U	U	U	U	U	U	U
Copper	U	U	U	U	U	U	U	U	U	U	U
Iron	U	U	U	U	U	U	U	U	U	U	U
Lead	U	U	U	U	U	U	U	U	U	U	U
Manganese	U	U	U	U	U	U	U	U	U	U	U
Mercury	U	U	U	U	U	U	U	U	U	U	U
Molybdenum	U	U	U	U	U	U	U	U	U	U	U
Nickel	U	U	U	U	U	U	U	U	U	U	U
Selenium	Possible	Possible	Possible	Possible	Possible	Possible	U	Possible	U	U	U
Silver	U	U	U	U	U	U	U	U	U	U	U
Strontium	U	U	U	U	U	U	U	U	U	U	U

Table 5-4. (cont). Potential aquatic-dependent life impairment due to bioaccumulation of CoPCs (U = unlikely impaired).

August 2004 cont.											
Analyte	SWZ01	SWZ04	BST04	BST07	DAC02	DAC03	2229	2238	2243	2433	2441
Thallium	U	U	U	U	U	U	U	U	U	U	U
Tin	U	U	U	U	U	U	U	U	U	U	U
Titanium	U	U	U	U	U	U	U	U	U	U	U
Vanadium	U	U	U	U	U	U	U	U	U	U	U
Zinc	U	U	U	U	U	U	U	U	U	U	U
PCBs as Arochlors	U	U	U	U	Possible	Possible	U	U	U	U	U
Benzo(a)pyrene	U	U	U	Possible	Possible	U	U	U	U	U	U
Napthalene	U	U	U	U	U	U	U	U	U	U	U

Table 5-4. (cont). Potential aquatic-dependent life impairment due to bioaccumulation of CoPCs (U = unlikely impaired).

Analyte	SWZ01	SWZ04	BST04	BST07	DAC02	DAC03	2229	2238	2243	2433	2441
Aluminum	U	U	U	U	U	U	U	U	U	U	U
Antimony	U	U	U	U	U	U	U	U	U	U	U
Arsenic	U	U	U	U	U	U	U	U	U	U	U
Barium	U	U	U	U	U	U	U	U	U	U	U
Beryllium	U	U	U	U	U	U	U	U	U	U	U
Cadmium	U	U	U	U	U	U	U	U	U	U	U
Chromium	U	U	U	U	U	U	U	U	U	U	U
Cobalt	U	U	U	U	U	U	U	U	U	U	U
Copper	U	Possible	U	U	U	U	U	U	U	U	U
Iron	U	U	U	U	U	U	U	U	U	U	U
Lead	U	U	U	U	U	U	U	U	U	U	U
Manganese	U	U	U	U	U	U	U	U	U	U	U
Mercury	U	U	U	U	U	U	U	U	U	U	U
Molybdenum	U	U	U	U	U	U	U	U	U	U	U
Nickel	U	U	U	U	U	U	U	U	U	U	U
Selenium	U	U	U	U	U	U	U	U	U	U	U
Silver	U	U	U	U	U	U	U	U	U	U	U

Table 5-4. (cont.). Potential aquatic-dependent life impairment due to bioaccumulation of CoPCs (U = unlikely impaired).

Analyte	SWZ01	SWZ04	BST04	BST07	DAC02	DAC03	2229	2238	2243	2433	2441
Strontium	U	U	U	U	U	U	U	U	U	U	U
Thallium	U	U	U	U	U	U	U	U	U	U	U
Tin	U	U	U	U	U	U	U	U	U	U	U
Titanium	U	U	U	U	U	U	U	U	U	U	U
Vanadium	U	U	U	U	U	U	U	U	U	U	U
Zinc	U	U	U	U	U	U	U	U	U	U	U
PCBs as Arochlors	U	U	Possible	U	Possible	Possible	U	U	U	U	U
Benzo(a)pyrene	Possible	Possible	Possible	Possible	Possible	Possible	U	U	U	U	U
Napthalene	U	U	U	U	U	U	U	U	U	U	U

Table 5-4. (cont.). Potential aquatic-dependent life impairment due to bioaccumulation of CoPCs (U = unlikely impaired).

October 2004 cont.

6.0 **DISCUSSION**

6.1 SUMMARY OF IMPAIRMENT AND LIKELY SOURCES OF CoPCS

Based on measures of chemical contamination and toxicity in this Phase II TMDL study, the greatest impacts to aquatic-dependent life were observed in samples collected in February 2004. Less severe impacts were observed in the August and October sampling periods. These data imply that greater impacts occur during the wet season than in the dry season, and this is supported by other regional sediment studies (Brown and Bay 2005; personal communication Chris Stransky, Nautilus Environmental). February sampling was conducted just after a significant rainfall event (1.41 inches fell between February 21st and February 22nd). In contrast to February, no rain fell in the San Diego area in the 3 months preceding the August 11 sampling event, and only a moderate amount of rain fell in the two days preceding the October 19th sampling event (0.81"). However, conclusions regarding the influence of seasonal rains are constrained by the lack of additional wet season data in the current project. Except for results of the July 2003 Phase I study, no current wet season data is available for these study sites. While these results suggest greater impacts may be associated with seasonal stormwater inputs, more detailed analyses of contaminant loadings are required as part of Phase III TMDL studies. Impacts and possible sources of sediment-associated contaminants in the three study areas are summarized below.

6.1.1 Switzer Creek

The weight-of-evidence of chemistry, toxicity, and benthic community analyses suggest Switzer Creek study area was the most impacted of the three study areas considered in this project, and observed impacts were greatest in February. Switzer Creek sediments were highly contaminated by chlordane in February, and station SWZ01 was also contaminated by relatively high concentrations of total PCBs. Based on results of the two toxicity tests, the highest magnitude of toxicity was observed in Switzer Creek sediments in February 2004. In addition, Switzer Creek sediments had the most impacted benthic communities of the three sites studied in this project (in August).

Two lines of evidence suggest that organic contaminants are the cause of toxicity in Switzer Creek sediments. First, amphipod mortality was highly correlated with chlordanes and PCBs in San Diego Bay sediments. In addition, amphipod mortality was weakly correlated with mixtures of contaminants in these samples. These results were corroborated by the solid-phase and elutriate TIEs, which showed that treatments that reduce bioavailability of organic chemicals significantly reduced amphipod mortality in SWZ01 sediment. Based on the chemistry of these samples, chlordane is a likely candidate for future studies. Chlordane was also identified as a primary CoPC in this study area in previous BPTCP studies (Fairey et al. 1996), and this pesticide was identified as an important contaminant in the Chollas and Paleta Creek studies (SCCWRP 2004). Relatively low concentrations of contaminants were measured in *Macoma nasuta* tissues after exposure of clams to Switzer Creek sediments. Relative to TRVs, impairment due to elevated tissue concentrations of benzo(a)pyrene, selenium, and copper was considered possible in this study area. Likely sources of contaminants responsible for aquatic life impairment in the vicinity of the Switzer Creek study area were discussed in Fairey et al. (1996). The most obvious source is the storm drain entering this system directly south of the 10th and Imperial Avenue Trolley station. This storm water system drains approximately 11 square kilometers of residential and industrial areas. Based on the contaminants of concern (chlordanes and PCBs), and the fact that greater contamination and toxicity were apparently associated with stormwater inputs, this storm drain is a likely source. Other possible sources of metal and PAH contamination in the Switzer Creek study area discussed in Fairey et al. (1996) included shipyard and ship off-loading activities associated with the 10th avenue Marine Terminal and Campbell Industries. Because this site was dredged in September 2002, it is less likely historical sediment contamination associated with these activities were a significant source of the pollution observed in the recent study.

6.1.2 B Street/Downtown Piers

The weight-of-evidence of chemistry, toxicity, and benthic community analyses suggest B Street/Downtown Pier study area was the least impacted of the three sites considered in this project. The greatest impacts in this area were observed in samples collected in February 2004. B Street/Downtown Pier sediments at station BST01 were highly contaminated by copper in February 2004, but little toxicity was observed in this sample, probably due to lack of bioavailability. This is supported by the relatively low concentrations of copper detected in clams exposed to this sediment. Based on results of the two toxicity tests, the highest magnitude of toxicity was observed in B Street/Downtown Pier sediments in February 2004, but all of the samples from this area were considered to demonstrate low toxicity based on the LOE criteria. Chemical analyses of B Street/Downtown Pier sediments showed this site to be contaminated by higher concentrations of PAHs that the other two study areas, but no samples exceeded the total PAH consensus-based guideline value. Benthic community structure was considered to be highly impacted in two stations in this area (in August 2004). Relatively low concentrations of contaminants were measured in Macoma nasuta tissues after exposure of clams to B Street/Downtown Pier sediments. Relative to TRVs, impairment due to elevated tissue concentrations of benzo(a)pyrene, selenium, and PCBs was considered possible in this study area.

Likely sources of contaminants of concern in the vicinity of the B St/Downtown Piers study area were discussed in Fairey et al. (1996). These include stormwater runoff and commercial shipping activities. Based on the contaminants of concern (PAHs, copper), and the fact that greater contamination and toxicity were apparently associated with stormwater inputs, local storm drains are a likely source.

6.1.3 Downtown Anchorage

The weight-of-evidence of chemistry, toxicity, and benthic community analyses suggest the Downtown Anchorage study area was moderately impacted, and as with the other sites, impacts were greatest in February 2004. Downtown Anchorage sediments were contaminated by of chlordanes and PCBs. Based on the LOE for chemical contamination, Downtown Anchorage sediments were considered to be moderately contaminated. Based on amphipod mortality, the highest magnitude of toxicity was observed in DAC04 sediments in February 2004.

Evidence from the TIE conducted using DAC04 sediment suggests toxicity to amphipods in this sample was due to organic chemicals. As was observed in Switzer Creek and the Chollas Creek and Paleta Creek study areas, elevated concentrations of chlordane were measured in sediments from this area. Likely sources of contaminants in the Downtown Anchorage area are a large storm drain and numerous smaller storm drains near station DAC04. These convey runoff from parking lots and light industrial and commercial areas (Fairey et al. 1996 and references therein). These authors also suggested runoff inputs from the adjacent San Diego International Airport as a possible source of contamination in this area.

6.1.4 Reference Stations

The five reference stations used in the present study have been considered to represent backround conditions in previous studies in San Diego Bay. Four of the stations used in the current study (reference stations #2238, 2243, 2433, and 2441) were used in the study of Chollas and Paleta Creeks (SCCWRP 2004). The range of depths, grain sizes, and TOC values measured in samples from these stations were comparable to values reported from the previous study (see Table 7-1; SCCWRP 2004). Two of these stations were also used in the study of temporal impacts at Chollas and Paleta Creeks(# 2243 and 2433), and values reported in that study were also comparable to those of the current study (Brown and Bay, 2005).

In the current study, amphipod survival in selected reference sediment samples was lowest in February 2004. Lower amphipod survival was observed in samples from reference stations #2238, 2243, and 2441 in February 2004. Lower amphipod survival continued to be observed in sediment from reference station #2243 during all three sample periods (mean survival = 64%). It is not clear why survival was consistently low at this station during the current study, but Brown and Bay (2005) also reported low survival at station #2243 in February 2002 (65% amphipod survival), as did SCWWRP et al (2004) in samples collected in July 2001 (amphipod survival = 50%). The cause(s) of amphipod mortality at this and other reference stations should be the subject of future studies in San Diego Bay, and these should include TIEs at reference stations. The range in toxicity observed in the other reference station samples in the current study were comparable to those reported previously.

The station with the highest TOC values (#2441) also contained the highest concentrations of contaminants, but this and the other reference stations contained low concentrations of contaminants relatively to the LOE criteria. Based on the other sediment quality indicators, the reference stations used in the current study demonstrated relatively unimpacted benthic community structures, and minimal bioaccumulation of contaminants occurred in clams exposed to these sediments. This evidence suggests that

the suite of stations used in the current study were representative of reference conditions in San Diego Bay.

7.0 REFERENCES

Battelle Marine Sciences Laboratory. 1992. Standard methods manual for environmental sampling and analysis in San Francisco Bay. Draft. United States Army Corps of Engineers, San Francisco, CA.

Bay, S, Chadwick, B. 2001. Sediment quality assessment study at Chollas Creek and paleta Creek, San Diego. June 1, 2001.

Brown, J., Bay, S. 2005. Temporal assessment of chemistry, toxicity and benthic communities in sediments from at the mouths of Chollas Creek and Paleta Creek, San Diego Bay. SCCWRP, technical report, January 2005. 31 pp with Appendices.

Bruland, K., K. Bertine, M. Koide and E. Goldberg. 1974. History of metal pollution in Southern California coastal zone. Environ. Sci. Technol. 8:425-432.

Burgess RM, Cantwell MG, Pelletier MC, Ho KT, Serbst JR, Cook H, Kuhn A. 2000. Development of a toxicity identification evaluation procedure for characterizing metal toxicity in marine sediments. *Environ Toxicol Chem* 19: 982-991.

Chadwick, D.B., J. Leather, K. Richter, S. Apitz, D. Lapota, D. Duckworth, C. Katz, V. Kirtay, J. Key, S. Steinert, G. Rosen, J. Groves, B. Davidson, M. Caballero, A. Patterson, G. Koon, A. Valkirs, K. Meyers-Schulte, M. Stallard, S. Clawson, R. Streib-Montee, D. Sutton, L. Skinner, J. Germano, R. Cheng, and P.F. Wang, Sediment Quality Characterization - Naval Station San Diego, SSC-SD Technical Report #1777, 1999.

Crecelius, E., C. Apts, L. Bingler, O. Cotter, S Diesser, and R. Sanders. 1993. Analysis of Marine Sediments and Bivalve Tissue by X-ray Fluorescence, Atomic Absorption, and Inductively Coupled Plasma Mass Spectrometry." In Sampling and Analytical Methods of the National Status and Trends Program National Benthic Surveillance and Mussel Watch Project, Volume III. NOAA Technical Memorandum NOS ORCA 71, National Oceanic Atmospheric Administration, Silver Spring, Maryland.

Fairey, R., C. Bretz, S. Lamerdin, J. Hunt, B. Anderson, S. Tudor, C. Wilson, F. LaCaro, M. Stephensen, M. Puckett, E. Long. 1996. Chemistry, toxicity and benthic community conditions in sediments of the San Diego Bay Regions. State Water Resources Control Board, Sacramento, CA. 169 pp.

Fairey, RS, Downing, J, Roberts, C, Landrau, E, Hunt, JW, Anderson, BS, Wilson, CJ, Kapahi, G, LaCaro, F, Michael, P, Stephenson, MD, Puckett, HM. 1998. Chemistry, Toxicity, and benthic community conditions in selected sediments of the San Diego Bay region. Final Addendum Report. State Water Resources Control Board, Sacaramento California. pp 21.

Fairey, R., E.R. Long, C.A. Roberts, B.S. Anderson, B.M. Phillips, J.W. Hunt, H.R. Puckett, C.J. Wilson, G. Kapahi, M.Stephenson. 2001. A recommended method for calculation of sediment quality guideline quotients. Environ Toxicol Chem 20: 2276-2286.

HERD. 2000. Use of Navy/U.S. EPA Region 9 Biological Technical Assistance Group (BTAG) Toxicity Reference Values (TRVs) for Ecological Risk Assessment. California Department of Toxic Substances Control – Human and Ecological Risk Division. HERD ERA Note No. 4. Pp 19.

7-1

Ho KT, Burgess RM, Pelletier MC, Serbst JR, Cook H, Cantwell MG, Ryba SA, Perron MM, Lebo J, Huckins J, Petty J. 2004. Use of powdered coconut charcoal as a toxicity identification and evaluation manipulation for organic toxicants in marine sediments. *Environ Toxicol Chem* 23: 2124-2131.

Ingersoll, C et al. 1995. *Ecological Risk Assessment of Contaminated Sediments*. SETAC Press, Pansacola.

Kosian PA, West CW, Pasha MS, Cox JS, Mount DR, Huggett RJ, Ankley GT. 1999. Use of nonpolar resin for reduction fluoranthene bioavailability in sediment. *Environ Toxicol Chem* 18: 201-206.

Long, E.R., D.D. MacDonald, S.L. Smith and F.D. Calder. 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ. Management 19:81-97.

Long, E.R. and D.D. MacDonald. 1998. Recommended uses of empirically derived, sediment quality guidelines for marine and estuarine ecosystems. Human and Ecological Risk Assessment 4:1019-1039.

MacDonald, DD, DiPinto, LM, Field, J, Ingersoll CG, Long, ER, Swartz, RC. 2000. Development and evaluation of consensus-based sediment effect concentrations of polychlorinated biphenyls. Environ Toxicol Chem 19: 1403-1413.

New York State Department of Environmental Conservation. 1999. Technical guidance for screening contaminated sediments. Division of Fish, Wildlife and Marine Resources. Albany, New York.

Plumb, R.H., Jr. 1981. Procedure for handling and chemical analysis of sediment and water samples. EPA/CE-81-1. Technical Report. Waterways Experiment Station, United States Army Corps of Engineer, Vicksburg, MS.

SCCWRP. 1992. SCCWRP Biennial Report 1990- 91 and 1991-92, J.N. Cross and C. Francisco eds., Southern California Coastal Water Research Project, Westminster, CA.

SCCWRP. 1996. SCCWRP Annual Report, 1994-95. M.J. Allen, Ed., Southern California Coastal Water Research Project, Westminster, CA.

SCCWRP 2004. Sediment assessment study for the mouths of Chollas and Paleta Creek, San Diego, Draft Report. Southern California Coastal Water Research Project, Space and Naval Warfare Systems Center San Diego, U.S. Navy

Schiff, K., S. Bay, M.J. Allen, and E. Zeng. 2001. Seas at the Millenium: Southern California. Mar. Poll. Bull. 41: 76-93.

SSC. 2000. Toxic Hot Spot Assessment Study at Chollas Creek and Paleta Creek-Historical Data Review. Space and Naval Warfare Systems Center, San Diego, CA.

Steel, R.G. and J.H. Torrie. 1960. *Principles and Procedures of Statistics*. McGraw-Hill Book Company, Inc. New York, NY.

Swartz, RC. 1999. Consensus sediment quality guidelines for PAH mixtures. Environ Toxicol Chem 18: 780-787.

Tay, K.-L., K. Doe, P. Jackman, and A. MacDonald. 1998. Assessment and evaluation of the effects of particle size, ammonia, and sulfide on the acute lethality test. Technical report, Environment Canada, Atlantic Region.

Trefry, J.H. and B.J. Persley. 1976. Heavy Metals in Sediments from San Antonio Bay and the Northern Gulf of Mexico. Env. Geol. 1:283-294.

USEPA/USACOE. 1991. Evaluation of dredged material proposed for ocean disposal testing manual. EPA-503/8-91/001. Office of Water, United States Environmental Protection Agency, Washington, D.C., United States Army Corps of Engineers, Vicksburg. MS.

USEPA. 1994. USEPA contract laboratory program national functional guidelines for organic data review. United States Environmental Protection Agency, Washington, D.C.

USEPA, 1994b. Methods for assessing the toxicity of sediment-associated contaminants with estuarine and marine amphipods. EPA 600-R-94-025. Office of Research and Development, Washington, DC.

USEPA, 1995. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to west coast marine and estuarine organisms. EPA 600-R-95-136. Office of Research and Development, Washington, DC.

USEPA. 2000a. Guidance for Data Quality Assessment-Practical Methods for Data Analysis QA00 Update. Office of Environmental Information, United States Environmental Protection Agency, Washington, DC. EPA/600/R-96/084 July 2000.

USEPA. 2000b. Development of a framework for evaluating numerical sediment quality targets and sediment contamination in the St. Louis River Area of Concern. United States Environmental Protection Agency, Great Lakes National Program Office, Chicago, IL. EPA 905-R-00-008.

U.S. Navy. 1999a. Naval Air Station North Island San Diego, California.- Remedial Investigation/RCRA Facility Investigation Site 1- Shoreline Sediments- Final Report. Prepared for: Southwest Division, Naval Facilities Engineering Command, San Diego, CA. Prepared by: Space and Naval Warfare Systems Center, San Diego, CA with Arthur D. Little Inc., Encinitas, CA and MEC Analytical Systems, Inc., Carlsbad, CA.

U.S. Navy. 1999b. Handbook for Statistical Analysis of Environmental Background Data. Southwest Division and Engineering Field Activity West, Naval Facilities Engineering Command.

U.S. Navy/SDUPD. 2000. San Diego Bay Integrated Natural Resources Management Plan. Southwest Division, Naval Facilities Engineering Command, U.S. Department of the Navy and San Diego Unified Port District, San Diego, CA. Prepared by Tierra Data Systems, Escondido, CA.

7-3

TMDL Sediment Quality Assessment Study at the B Street/Broadway Piers, Downtown Anchorage, and Switzer Creek, San Diego

PHASE II Final Report TEMPORAL VARIABILITY, CAUSES OF IMPACTS, AND LIKELY SOURCES OF CONTAMINANTS OF CONCERN

APPENDICES A - I

June 2005

Prepared by: Brian Anderson, John Hunt, Bryn Phillips Marine Pollution Studies Laboratory – Granite Canyon University of California Davis, CA

In cooperation with: San Diego Regional Water Quality Control Board City of San Diego San Diego Unified Port District Appendices A - I

Appendix A. Sediment chemistry data.

in mg/kg dry)—CRĠ	Marine Labo	oratories, Inc	.	2 \
Analyte	MDL	BST01	BST04	BST07	
Aluminum	1	Off Scale	Off Scale	Off Scale	
Antimony	0.05	1.02	0.96	0.68	
Arsenic	0.05	12.4	13.3	18	
Barium	0.05	138	143	177	
Beryllium	0.01	0.85	0.87	1.15	
Cadmium	0.01	0.96	1.07	0.55	
Chromium	0.05	97.6	108	130	
Cobalt	0.01	11.7	12	15.4	
Copper	0.01	2960	192	247	
Iron	1	44400	45500	60400	
Lead	0.01	106	77.1	88.7	
Manganese	0.01	291	308	416	
		0.58	0.51	0.5	
Mercury	0.005			1.92	
Molybdenum	0.05	1.8	2.04		
Nickel	0.01	25.6	24.8	28.7	
Selenium	0.05	1.33	1.43	1.75	
Silver	0.01	2.4	2.63	2.55	
Strontium	0.05	74.7	83.3	79.7	
Thallium	0.01	0.59	0.58	0.72	
Tin	0.05	36.2	15.5	14.7	
Titanium	0.05	2210	2310	2880	
Vanadium	0.05	105	101	133	
Zinc	0.05	992	320	353	
Analyte	MDL	DAC02	DAC03	DAC04	
Aluminum	1	Off Scale	Off Scale	Off Scale	
Antimony	0.05	0.64	0.63	0.55	
Arsenic	0.05	17.7	14.4	8.49	
Barium	0.05	169	140	86	
Beryllium	0.01	1.08	0.89	0.54	
Cadmium	0.01	0.83	0.72	0.35	
Chromium	0.05	171	192	72.3	
Cobalt	0.01	14.2	15	7.58	
Copper	0.01	238	180	104	
Iron	1	55500	46100	26900	
Lead	0.01	114	104	62.8	
Manganese	0.05	362	324	213	
Mercury	0.005	0.53	0.47	0.21	
Molybdenum	0.05	1.73	2.13	1.34	
Nickel	0.00	33	48.2	17.1	
Selenium	0.01	1.2	1	0.63	
Silver	0.03	3.33	3.84	1.64	
		6.95	59.4	43.2	
Strontium	0.05				
Thallium Tim	0.01	0.7	0.6	0.39	
Tin	0.05	15.8	12.8	6.55	
Titanium	0.05	2760	2420	1680	
Vanadium	0.05	124	102	64.3	
Zinc	0.05	341	282	189	
Analyte			WZ02 (R1) S		
Aluminum	1	Off Scale	Off Scale	Off Scale	Off Scale
		1 07	4 00	1 50	4 40
Antimony Arsenic	0.05	1.37 8.24	1.66 10.98	1.59 9.79	1.48 9.83

Sediment chemistry data March 02, 2004—Metals results summary (all results in mg/kg dry)—CRG Marine Laboratories, Inc.

in mg/kg dry)—CRG	Marine Labo	oratories, inc).		
Barium	0.05	124	126	126	118	
Beryllium	0.01	0.57	0.57	0.66	0.64	
Cadmium	0.01	0.87	1.32	0.91	0.83	
Chromium	0.05	53.1	63.9	74.8	67.8	
Cobalt	0.01	8.53	9.45	9.53	9.32	
Copper	0.01	133	149	201	201	
Iron	1	29300	30000	33800	32800	
Lead	0.01	115	112	141	142	
Manganese	0.05	216	218	244	230	
Mercury	0.005	0.2	0.22	0.45	0.46	
Molybdenum	0.05	3.22	4.8	2.62	2.46	
Nickel	0.01	18.1	19.7	18.9	18.4	
Selenium	0.05	0.67	1.16	1	0.97	
Silver	0.01	1.18	1.29	1.33	1.25	
Strontium	0.05	69.3	73	57.5	57.6	
Thallium	0.01	0.34	0.36	0.41	0.41	
Tin	0.05	8.86	9.92	10	9.42	
Titanium	0.05	1430	1500	1700	1700	
Vanadium	0.05	69.7	72.3	78.4	77.3	
Zinc	0.05	408	486	457	382	
Analyte	MDL	2229	2238	2243	2433	2441
Aluminum	1	Off Scale	Off Scale	Off Scale	17800	38000
Antimony	0.05	0.82	0.36	0.39	0.27	0.55
Arsenic	0.05	4.53	6.75	5.28	4.89	10.5
Barium	0.05	48.6	72	74.1	63.7	153
Beryllium	0.01	0.25	0.61	0.39	0.34	0.78
Cadmium	0.01	0.12	0.19	0.23	0.2	0.43
Chromium	0.05	25.5	46.4	36.8	32.9	64.8
Cobalt	0.01	4.29	8.59	5.49	4.88	10
Copper	0.01	39.3	69	50.6	46.6	106
Iron	1	15000	29200	20900	18400	41100
Lead	0.01	19.6	19	16.5	15.5	27.2
Manganese	0.05	126	242	186	163	352
Mercury	0.005	0.1	0.14	0.11	0.09	0.14
Molybdenum	0.05	0.35	0.48	0.6	0.55	2.13
Nickel	0.01	6.29	13.4	9.73	8.64	21
Selenium	0.05	0.22	0.43	0.25	0.25	2.21
Silver	0.01	0.39	0.96	0.67	0.6	0.94
Strontium	0.05	56.6	40.6	45.4	39.1	174
Thallium	0.01	0.16	0.32	0.3	0.28	0.53
Tin	0.05	5.14	3.65	3.11	2.93	5.47
Titanium	0.05	953	1660	1480	1310	2450
Vanadium	0.05	37.8	67.6	49.6	43.7	101
Zinc	0.05	85.8	180	107	96.9	170

Sediment chemistry data March 02, 2004—Metals results summary (all results in mg/kg dry)—CRG Marine Laboratories, Inc.

Sediment chemistry data March 02, 2004—Pesticides results summary (all results in ng/dry g)—CRG Marine Laboratories, Inc.

Analyte	MDL	BST01	BST04	BST07	
2,4'-DDD	1	ND	ND	ND	
2,4'-DDE	1	ND	ND	ND	
2,4'-DDT	1	ND	ND	ND	
4,4'-DDD	1	ND	ND	ND	
4,4'-DDE	1	ND	ND	ND	
4,4'-DDT	1	ND	ND	ND	
Aldrin	1	ND	ND	ND	

g)—CRG Marine Labor	ratories	s, Inc.				• •
BHC-alpha	1	ND	ND	ND		
BHC-beta	1	ND	ND	ND		
BHC-delta	1	ND	ND	ND		
BHC-gamma	1	ND	ND	ND		
Chlordane-alpha	1	ND	ND	ND		
Chlordane-gamma	1	ND	ND	ND		
DCPA (Dacthal)	1	ND	ND	ND		
Dieldrin	1	ND	ND	ND		
Endosulfan Sulfate	1	ND	ND	ND		
Endosulfan-l	1	ND	ND	ND		
Endosulfan-II	1	ND	ND	ND		
Endrin	1	ND	ND	ND		
Endrin Aldehyde	1	ND	ND	ND		
Endrin Ketone	1	ND	ND	ND		
Heptachlor	1	ND	ND	ND		
Heptachlor Epoxide	1	ND	ND	ND		
Methoxychlor	1	ND	ND	ND		
Mirex	1	ND	ND	ND		
Total Detectable DDTs	1	ND	ND	ND		
Toxaphene	10	ND	ND	ND		
trans-Nonachlor	1	ND	ND	ND		
Analyte	MDL	DAC02	DAC03	DAC04		
2,4'-DDD	1	ND	ND	ND		
2,4'-DDE	1	ND	ND	ND		
2,4'-DDT	1	ND	ND	ND		
4,4'-DDD	1	ND	ND	ND		
4,4'-DDE	1	ND	ND	ND		
4,4'-DDT	1	ND	ND	ND		
Aldrin	1	ND	ND	ND		
BHC-alpha	1	ND	ND	ND		
BHC-beta	1	ND	ND	ND		
BHC-delta	1	ND	ND	ND		
BHC-gamma	1	ND	ND	ND		
Chlordane-alpha	1	ND	ND	4.9		
Chlordane-gamma	1	ND	ND	5.6		
DCPA (Dacthal)	1	ND	ND	ND		
Dieldrin	1	ND	ND	ND		
Endosulfan Sulfate	1	ND	ND	ND		
Endosulfan-I	1	ND	ND	ND		
Endosulfan-II	1	ND	ND	ND		
Endrin	1	ND	ND	ND		
Endrin Aldehyde	1	ND	ND	ND		
Endrin Ketone	1	ND	ND	ND		
Heptachlor	1	ND	ND	ND		
Heptachlor Epoxide	1	ND	ND	ND		
Methoxychlor	1	ND	ND	ND		
Mirex	1	ND	ND	ND		
Total Detectable DDTs	1	ND	ND	ND		
Toxaphene	10	ND	ND	ND		
trans-Nonachlor	1	ND	ND	4.8		
Analyte	MDL	SWZ01 (R1)	SWZ02 (R1)	SWZ04 (R1)	SWZ04 (R2)	
2,4'-DDD	1	ND	ND	ND	ND	
2,4'-DDE	1	ND	ND	ND	ND	
2,4'-DDT	1	ND	ND	ND	ND	
4,4'-DDD	1	ND	ND	ND	ND	

Sediment chemistry data March 02, 2004—Pesticides results summary (all results in ng/dry	
g)—CRG Marine Laboratories, Inc.	

g)—CRG Marine Labor	ratories, Ir	IC.				
4,4'-DDE	1	ND	ND	ND	ND	
4,4'-DDT	1	ND	ND	ND	ND	
Aldrin	1	ND	ND	ND	ND	
BHC-alpha	1	ND	ND	ND	ND	
BHC-beta	1	ND	ND	ND	ND	
BHC-delta	1	ND	ND	ND	ND	
BHC-gamma	1	ND	ND	ND	ND	
Chlordane-alpha	1	25.6	20.4	6.5	4.9	
Chlordane-gamma	1	27.5	22.2	8	5.2	
DCPA (Dacthal)	1	ND	ND	ND	ND	
Dieldrin	1	ND	ND	ND	ND	
Endosulfan Sulfate	1	ND	ND	ND	ND	
Endosulfan-l	1	ND	ND	ND	ND	
Endosulfan-II	1	ND	ND	ND	ND	
Endrin	1	ND	ND	ND	ND	
Endrin Aldehyde	1	ND	ND	ND	ND	
Endrin Ketone	1	ND	ND	ND	ND	
Heptachlor	1	ND	ND	ND	ND	
Heptachlor Epoxide	1	ND	ND	ND	ND	
Methoxychlor	1	ND	ND	ND	ND	
Mirex	1	ND	ND	ND	ND	
Total Detectable DDTs	1	ND	ND	ND	ND	
Toxaphene	10	ND	ND	ND	ND	
trans-Nonachlor	1	27.1	22	6.8	4.8	
Analyte	MDL	2229	2238	2243	2433	2441
2,4'-DDD	1	ND	ND	ND	2433 ND	
2,4'-DDE	1	ND	ND	ND ND	ND	ND ND
2,4'-DDT	1	ND	ND	ND	ND	ND ND
4,4'-DDD	1	ND	ND	ND	ND	ND ND
4,4'-DDE	1	ND	ND	ND	ND	ND ND
4,4'-DDT	1	ND	ND ND	6.9	ND	ND ND
Aldrin	1	ND	ND	0.9 ND	ND	ND ND
BHC-alpha	1	ND	ND	ND	ND	ND
BHC-beta	1	ND	ND	ND	ND	ND
BHC-delta	1	ND	ND	ND	ND	ND
BHC-gamma	1	ND	ND	ND	ND	ND
Chlordane-alpha	1	ND	ND	ND	ND	ND
Chlordane-gamma	1	ND	ND	ND	ND	ND
DCPA (Dacthal)	1	ND	ND	ND	ND	ND
Dieldrin	1	ND	ND	ND	ND	ND
Endosulfan Sulfate	1	ND	ND	ND	ND	ND
Endosulfan-I	1	ND	ND	ND	ND	<u>ND</u>
Endosulfan-II	1	ND	ND	ND	ND	ND
Endrin	1	ND	ND	ND	ND	ND
Endrin Aldehyde	1	ND	ND	ND	ND	ND
Endrin Ketone	1	ND	ND	ND	ND	ND
Heptachlor	1	ND	ND	ND	ND	ND
Heptachlor Epoxide	1	ND	ND	ND	ND	ND
Methoxychlor	1	ND	ND	ND	ND	ND
Mirex	1	ND	ND	ND	ND	ND
Total Detectable DDTs	1	ND	ND	ND	ND	ND
Toxaphene	10	ND	ND	ND	ND	ND
trans-Nonachlor	1	ND	ND	ND	ND	ND

Sediment chemistry data March 02, 2004—Pesticides results summary (all results in ng/dry g)—CRG Marine Laboratories, Inc.

Marine Laboratories, Inc.					
Analyte	MDL	BST01	BST04	BST07	
1-Methylnaphthalene	1	1.9	4.1	2.6	
1-Methylphenanthrene	1	18.4	45.4	69.6	
2,3,5-Trimethylnaphthalene	1	1.5	4.9	3.4	
2,6-Dimethylnaphthalene	1	2.4	7	4.8	
2-Methylnaphthalene	1	3.1	7.8	5.2	
Acenaphthene	1	3.2	22	18.1	
Acenaphthylene	1	19.9	58.3	92.5	
Anthracene	1	120	353	532	
Benz[a]anthracene	1	844	1230	3110	
Benzo[a]pyrene	1	1890	2200	3090	
Benzo[b]fluoranthene	1	1580	1800	2660	
Benzo[e]pyrene	1	857	961	1360	
Benzo[g,h,i]perylene	1	595	601	703	
Benzo[k]fluoranthene	1	1440	1830	2500	
Biphenyl	1	1.5	3.2	2	
Chrysene	1	1040	1910	3810	
Dibenz[a,h]anthracene	1	203	229	266	
Fluoranthene	1	700	1150	4160	
Fluorene	1	9.7	44.2	47.1	
Indeno[1,2,3-c,d]pyrene	1	891	971	1170	
Naphthalene	1	9.2	20.2	6	
Perylene	1	382	412	627	
Phenanthrene	1	128	342	423	
Pyrene	1	886	1090	2570	
Total Detectable PAHs		11626	15296	27232	
Analyte	MDL	DAC02	DAC03	DAC04	
1-Methylnaphthalene	1	1	2.9	ND	
1-Methylphenanthrene	1	6.7	20.7	9.1	
2,3,5-Trimethylnaphthalene	1	1.7	3.2	ND	
2,6-Dimethylnaphthalene	1	1.9	4.6	1.6	
2-Methylnaphthalene	1	1.5	6.2	1	
Acenaphthene	1	2	3.3	2.5	
Acenaphthylene	1	11.5	28.1	6.1	
Anthracene	1		20.1	0.1	
Anunacene	1			04	
	1	42.4	105	24	
Benz[a]anthracene	1	42.4 173	105 437	136	
Benz[a]anthracene Benzo[a]pyrene	1 1	42.4 173 541	105 437 1290	136 332	
Benz[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene	1 1 1	42.4 173 541 441	105 437 1290 1060	136 332 306	
Benz[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[e]pyrene	1 1 1 1	42.4 173 541 441 271	105 437 1290 1060 659	136 332 306 193	
Benz[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene	1 1 1 1 1	42.4 173 541 441 271 240	105 437 1290 1060 659 639	136 332 306 193 197	
Benz[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene	1 1 1 1 1 1	42.4 173 541 441 271 240 466	105 437 1290 1060 659 639 1060	136 332 306 193 197 306	
Benz[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene Biphenyl	1 1 1 1 1 1 1	42.4 173 541 441 271 240 466 ND	105 437 1290 1060 659 639 1060 3	136 332 306 193 197 306 ND	
Benz[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene Biphenyl Chrysene	1 1 1 1 1 1 1 1 1 1	42.4 173 541 441 271 240 466 ND 244	105 437 1290 1060 659 639 1060	136 332 306 193 197 306	
Benz[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene Biphenyl Chrysene Dibenz[a,h]anthracene	1 1 1 1 1 1 1 1 1 1 1	42.4 173 541 441 271 240 466 ND	105 437 1290 1060 659 639 1060 3 622 173	136 332 306 193 197 306 ND	
Benz[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene Biphenyl Chrysene	1 1 1 1 1 1 1 1 1 1 1 1	42.4 173 541 441 271 240 466 ND 244	105 437 1290 1060 659 639 1060 3 622	136 332 306 193 197 306 ND 188	
Benz[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene Biphenyl Chrysene Dibenz[a,h]anthracene	1 1 1 1 1 1 1 1 1 1 1	42.4 173 541 441 271 240 466 ND 244 69.2	105 437 1290 1060 659 639 1060 3 622 173	136 332 306 193 197 306 ND 188 45.6	
Benz[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[g,h,i]perylene Benzo[g,h,i]perylene Benzo[k]fluoranthene Biphenyl Chrysene Dibenz[a,h]anthracene Fluoranthene	1 1 1 1 1 1 1 1 1 1 1 1	42.4 173 541 441 271 240 466 ND 244 69.2 173	105 437 1290 1060 659 639 1060 3 622 173 579	136 332 306 193 197 306 ND 188 45.6 227	
Benz[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[g,h,i]perylene Benzo[g,h,i]perylene Benzo[k]fluoranthene Biphenyl Chrysene Dibenz[a,h]anthracene Fluoranthene Fluorene	1 1 1 1 1 1 1 1 1 1 1 1 1	42.4 173 541 441 271 240 466 ND 244 69.2 173 2.4	105 437 1290 1060 659 639 1060 3 622 173 579 6.1	136 332 306 193 197 306 ND 188 45.6 227 3.1	
Benz[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[g,h,i]perylene Benzo[k]fluoranthene Biphenyl Chrysene Dibenz[a,h]anthracene Fluoranthene Fluorene Indeno[1,2,3-c,d]pyrene	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	42.4 173 541 441 271 240 466 ND 244 69.2 173 2.4 338	105 437 1290 1060 659 639 1060 3 622 173 579 6.1 872	136 332 306 193 197 306 ND 188 45.6 227 3.1 242	
Benz[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[g,h,i]perylene Benzo[k]fluoranthene Biphenyl Chrysene Dibenz[a,h]anthracene Fluoranthene Fluorene Indeno[1,2,3-c,d]pyrene Naphthalene	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	42.4 173 541 441 271 240 466 ND 244 69.2 173 2.4 338 2.6	105 437 1290 1060 659 639 1060 3 622 173 579 6.1 872 8.2	136 332 306 193 197 306 ND 188 45.6 227 3.1 242 2.3	
Benz[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[g,h,i]perylene Benzo[k]fluoranthene Biphenyl Chrysene Dibenz[a,h]anthracene Fluoranthene Fluorene Indeno[1,2,3-c,d]pyrene Naphthalene Perylene	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	42.4 173 541 441 271 240 466 ND 244 69.2 173 2.4 338 2.6 99.9	105 437 1290 1060 659 639 1060 3 622 173 579 6.1 872 8.2 236	136 332 306 193 197 306 ND 188 45.6 227 3.1 242 2.3 80.5	
Benz[a]anthracene Benzo[a]pyrene Benzo[e]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene Biphenyl Chrysene Dibenz[a,h]anthracene Fluoranthene Fluorene Indeno[1,2,3-c,d]pyrene Naphthalene Perylene Phenanthrene	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	42.4 173 541 441 271 240 466 ND 244 69.2 173 2.4 338 2.6 99.9 34.4	105 437 1290 1060 659 639 1060 3 622 173 579 6.1 872 8.2 236 94.2 675	136 332 306 193 197 306 ND 188 45.6 227 3.1 242 2.3 80.5 55.7 225	
Benz[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[g,h,i]perylene Benzo[k]fluoranthene Biphenyl Chrysene Dibenz[a,h]anthracene Fluoranthene Fluorene Indeno[1,2,3-c,d]pyrene Naphthalene Perylene Phenanthrene Pyrene Total Detectable PAHs	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	42.4 173 541 271 240 466 ND 244 69.2 173 2.4 338 2.6 99.9 34.4 230 3394	105 437 1290 1060 659 639 1060 3 622 173 579 6.1 872 8.2 236 94.2 675 8587	136 332 306 193 197 306 ND 188 45.6 227 3.1 242 2.3 80.5 55.7 225 2583	SWZ04 (R2)
Benz[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[g,h,i]perylene Benzo[k]fluoranthene Biphenyl Chrysene Dibenz[a,h]anthracene Fluoranthene Fluorene Indeno[1,2,3-c,d]pyrene Naphthalene Perylene Phenanthrene Pyrene Total Detectable PAHs Analyte	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	42.4 173 541 271 240 466 ND 244 69.2 173 2.4 338 2.6 99.9 34.4 230 3394 SWZ01 (R1)	105 437 1290 1060 659 639 1060 3 622 173 579 6.1 872 8.2 236 94.2 675 8587 SWZ02 (R1)	136 332 306 193 197 306 ND 188 45.6 227 3.1 242 2.3 80.5 55.7 225 2583 SWZ04 (R1)	
Benz[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[g,h,i]perylene Benzo[k]fluoranthene Biphenyl Chrysene Dibenz[a,h]anthracene Fluoranthene Fluorene Indeno[1,2,3-c,d]pyrene Naphthalene Perylene Phenanthrene Pyrene Total Detectable PAHs Analyte 1-Methylnaphthalene	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	42.4 173 541 271 240 466 ND 244 69.2 173 2.4 338 2.6 99.9 34.4 230 3394 SWZ01 (R1) 67.9	105 437 1290 1060 659 639 1060 3 622 173 579 6.1 872 8.2 236 94.2 675 8587 SWZ02 (R1) 18.8	136 332 306 193 197 306 ND 188 45.6 227 3.1 242 2.3 80.5 55.7 225 2583 SWZ04 (R1) 6.5	2.1
Benz[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[g,h,i]perylene Benzo[k]fluoranthene Biphenyl Chrysene Dibenz[a,h]anthracene Fluoranthene Fluorene Indeno[1,2,3-c,d]pyrene Naphthalene Perylene Phenanthrene Pyrene Total Detectable PAHs Analyte 1-Methylnaphthalene 1-Methylphenanthrene	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	42.4 173 541 271 240 466 ND 244 69.2 173 2.4 338 2.6 99.9 34.4 230 3394 SWZ01 (R1) 67.9 157	105 437 1290 1060 639 1060 3 622 173 579 6.1 872 8.2 236 94.2 675 8587 SWZ02 (R1) 18.8 72.3	136 332 306 193 197 306 ND 188 45.6 227 3.1 242 2.3 80.5 55.7 225 2583 SWZ04 (R1) 6.5 25.2	2.1 23.7
Benz[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[g,h,i]perylene Benzo[k]fluoranthene Biphenyl Chrysene Dibenz[a,h]anthracene Fluoranthene Fluorene Indeno[1,2,3-c,d]pyrene Naphthalene Perylene Phenanthrene Pyrene Total Detectable PAHs Analyte 1-Methylnaphthalene 2,3,5-Trimethylnaphthalene	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	42.4 173 541 271 240 466 ND 244 69.2 173 2.4 338 2.6 99.9 34.4 230 3394 SWZ01 (R1) 67.9 157 41.7	105 437 1290 1060 659 639 1060 3 622 173 579 6.1 872 8.2 236 94.2 675 8587 SWZ02 (R1) 18.8 72.3 25.7	136 332 306 193 197 306 ND 188 45.6 227 3.1 242 2.3 80.5 55.7 225 2583 SWZ04 (R1) 6.5 25.2 6.3	2.1 23.7 4.1
Benz[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[g,h,i]perylene Benzo[k]fluoranthene Biphenyl Chrysene Dibenz[a,h]anthracene Fluoranthene Fluorene Indeno[1,2,3-c,d]pyrene Naphthalene Perylene Phenanthrene Pyrene Total Detectable PAHs Analyte 1-Methylnaphthalene 1-Methylphenanthrene	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	42.4 173 541 271 240 466 ND 244 69.2 173 2.4 338 2.6 99.9 34.4 230 3394 SWZ01 (R1) 67.9 157 41.7	105 437 1290 1060 639 1060 3 622 173 579 6.1 872 8.2 236 94.2 675 8587 SWZ02 (R1) 18.8 72.3	136 332 306 193 197 306 ND 188 45.6 227 3.1 242 2.3 80.5 55.7 225 2583 SWZ04 (R1) 6.5 25.2	2.1 23.7

Sediment chemistry data March 02, 2004—PAH results summary (all results in ng/dry g)—CRG Marine Laboratories, Inc.

Sediment chemistry data March 02, 2004—PAH results summary (all results in ng/dry g)—CRG	
Marine Laboratories, Inc.	

Marine Laboratories, Inc.						
Acenaphthene	1	58.4	23.7	12.6	6.5	
Acenaphthylene	1	73.7	33.7	26.7	24.5	
Anthracene	1	296	177	95.2	86.6	
Benz[a]anthracene	1	1924	856	602	411	
Benzo[a]pyrene	1	3020	1450	1300	922	
Benzo[b]fluoranthene	1	2530	1230	857	558	
Benzo[e]pyrene	1	1650	941	615	431	
Benzo[g,h,i]perylene	1	1660	772	599	422	
Benzo[k]fluoranthene	1	2160	1290	885	571	
Biphenyl	1	25.2	19.6	10.6	4	
Chrysene	1	2540	1200	678	467	
Dibenz[a,h]anthracene	1	320	171	130	89	
Fluoranthene	1	5000	1640	925	623	
Fluorene	1	80.5	40	16.3	9.9	
Indeno[1,2,3-c,d]pyrene	1	2010	926	754	507	
Naphthalene	1	81.2	89.5	31	9.5	
Perylene	1	805	366	279	185	
Phenanthrene	1	1290	443	186	117	
Pyrene	1	5000	1880	1200	863	
Total Detectable PAHs		30911	13721	9258	6345	
Analyte	MDL	2229	2238	2243	2433	2441
1-Methylnaphthalene	1	ND	ND	ND	ND	ND
1-Methylphenanthrene	1	1.8	ND	ND	1.1	1.2
2,3,5-TrimethyInaphthalene	1	ND	ND	ND	ND	ND
2,6-Dimethylnaphthalene	1	ND	ND	ND	1.4	ND
2-Methylnaphthalene	1	ND	ND	ND	1.5	ND
Acenaphthene	1	ND	ND	ND	1.9	ND
Acenaphthylene	1	2	ND	ND	1.6	1.5
Anthracene	1	3.9	1.3	1.8	4.8	22.1
Benz[a]anthracene	1	38.7	8.3	7.1	27.5	57.3
Benzo[a]pyrene	1	110	17.5	22.7	51.1	83.5
Benzo[b]fluoranthene	1	51.1	14.8	20.5	35.3	68.7
Benzo[e]pyrene	1	50	10.8	13.8	25.9	39
Benzo[g,h,i]perylene	1	59.4	16.9	17.3	26.3	28.5
Benzo[k]fluoranthene	1	66.7	16.7	18.2	43.4	83.5
Biphenyl	1	ND	1	ND	ND	ND
Chrysene	1	39.1	10.5	8.7	35.3	94.5
Dibenz[a,h]anthracene	1	7.7	2.1	3.3	5.22	7.8
Fluoranthene	1	28.8	14.7	9.5	20.8	63.8
Fluorene	1	ND	ND	ND	ND	2.4
Indeno[1,2,3-c,d]pyrene	1	56.6	17.5	21.9	30.7	44
Naphthalene	1	ND	ND	ND	ND	ND
Perylene	1	13.9	4.9	5.2	11.5	15.5
Phenanthrene	1	3.5	2.8	1	4.2	16.4
Pyrene	1	48.4	15.6	10.7	26.1	50
Total Detectable PAHs		581	155	161	355	679

Sediment chemistry data March 02, 2004—PCB congeners results summary (all results in ng/dry g)—CRG Marine Laboratories, Inc.

Analyte	MDL	BST01	BST04	BST07	
PCB018	1	ND	ND	ND	
PCB028	1	ND	ND	ND	
PCB031	1	ND	ND	ND	
PCB033	1	ND	ND	ND	
PCB037	1	ND	ND	ND	
PCB044	1	ND	ND	ND	
PCB049	1	ND	ND	ND	
PCB052	1	ND	ND	ND	

ng/dry g)-CRG Marin	e Laborat	tories, Inc.	-		
PCB066	1	ND	ND	ND	
PCB070	1	ND	ND	ND	
PCB074	1	ND	ND	ND	
PCB077	1	ND	ND	ND	
PCB081	1	ND	ND	ND	
PCB087	1	ND	ND	ND	· · · · · · · · · · · · · · · · · · ·
PCB095	1	2.6	3.6	3	· · · · · · · · · · · · · · · · · · ·
PCB097	1	 ND	ND	ND	
PCB099	1	ND ND	ND ND	ND	
PCB101	1	6.3	5.6	5.8	
		ND		5.8 ND	
PCB105	1				
PCB110	1	4.5	3.6	4.8	
PCB114	1	ND	ND	ND	
PCB118	1	ND	ND	ND	
PCB119	1	ND	ND	ND	
PCB123	1	ND	ND	ND	
PCB126	1	ND	ND	ND	
PCB128+167	1	ND	ND	ND	
PCB138	1	5.3	ND	8.4	
PCB141	1	ND	ND	ND	
PCB149	1	4.7	3.4	4.9	
PCB151	1	ND	2.5	1.6	
PCB153	1	4.6	7.4	5.9	
PCB156	1	ND	ND	ND	
PCB157	1	ND	ND	ND	
PCB158	1	ND	ND	ND	
PCB168+132	1	ND	ND	ND	
PCB169	1	ND	ND	ND	
PCB170	1	ND	ND	ND	
PCB177	1	ND	ND	ND	
PCB180	1	6.5	6.3	4.1	
PCB183	1	1.6	1.5	ND	
PCB187	1	3	3.1	2	
PCB189	1	ND	ND	ND	
PCB194	1	ND	ND	ND	
PCB200	1	ND	ND	ND	
PCB201	1	ND ND	ND ND	ND	
	1				
PCB206	I	ND	5.9	ND 10.5	
Total Detectable PCBs	MDI	39.1	42.9	40.5	
Analyte	MDL	DAC02	DAC03	DAC04	
PCB018	1	ND	10.2	ND	
PCB028	1	ND	ND	ND	
PCB031	1	ND	39.8	ND	
PCB033	1	ND	ND	ND	
PCB037	1	ND	ND	ND	
PCB044	1	ND	37.9	3.5	
PCB049	1	ND	53.8	ND	
PCB052	1	ND	57.1	6.3	
PCB066	1	ND	85.6	8.4	
PCB070	1	ND	56.6	5.8	
PCB074	1	ND	ND	ND	
PCB077	1	ND	ND	ND	
PCB081	1	ND	4.4	ND	
PCB087	1	ND	ND	ND	
PCB095	1	4	26.6	4.6	
PCB097	1	ND	21.1	ND	
PCB099	1	5.2	32.3	5.4	
		0.2	52.0	0.4	
PCB101	1	7.8	60.2	8.7	

Sediment chemistry data March 02, 2004—PCB congeners results summary (all results in ng/dry g)—CRG Marine Laboratories, Inc.

ng/dry g)-CRG Marine	e Labora	atories, Inc.	-			
PCB105	1	ND	ND	ND		
PCB110	1	4.6	47.2	8.8		
PCB114	1	ND	ND	ND		
PCB118	1	ND	46.5	8.1		
PCB119	1	ND	ND	ND		
PCB123	1	ND	ND	ND		
PCB126	1	ND	ND	ND		
PCB128+167	1	ND	ND	ND		
PCB138	1	11.1	53.6	13.2		
PCB141	1	ND	ND	ND		
PCB149	1	6.4	28.3	6.2		
PCB151	1	3.2	13	ND		
PCB153	1	8.6	43.3	9		
PCB156	1	ND	ND	ND		
PCB157	1	ND	ND	ND		
PCB158	1	ND	ND	ND		
PCB168+132	1	ND	ND	ND		
PCB169	1	ND	ND	ND		
PCB170	1	ND	ND	ND		
PCB177	1	3.8	14.4	ND		
PCB180	1	8.1	26	7.8		
PCB183	1	2.4	8	ND		<u> </u>
PCB187	1	4.2	16.8	4.5		
PCB189	1	+.2 ND	ND	4.3 ND		
	1					
PCB194		ND	ND	ND		
PCB200	1	ND	ND	ND		
PCB201	1	ND	ND	ND		
PCB206	1	ND	ND	ND		
Total Detectable PCBs		69.4	782.7	100.3		
			OW/700 (D4)			
Analyte				SWZ04 (R1)		
PCB018	1	50.3	ND	ND	ND	
PCB018 PCB028	1 1	50.3 49.1	ND ND	ND ND	ND ND	
PCB018 PCB028 PCB031	1 1 1	50.3 49.1 44.8	ND ND ND	ND ND ND	ND ND ND	
PCB018 PCB028 PCB031 PCB033	1 1 1 1	50.3 49.1 44.8 35.4	ND ND ND ND	ND ND ND ND	ND ND ND ND	
PCB018 PCB028 PCB031	1 1 1	50.3 49.1 44.8	ND ND ND	ND ND ND	ND ND ND	
PCB018 PCB028 PCB031 PCB033	1 1 1 1	50.3 49.1 44.8 35.4	ND ND ND ND	ND ND ND ND	ND ND ND ND	
PCB018 PCB028 PCB031 PCB033 PCB037	1 1 1 1 1 1	50.3 49.1 44.8 35.4 ND	ND ND ND ND ND	ND ND ND ND	ND ND ND ND ND	
PCB018 PCB028 PCB031 PCB033 PCB037 PCB044	1 1 1 1 1 1	50.3 49.1 44.8 35.4 ND 22	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND	
PCB018 PCB028 PCB031 PCB033 PCB037 PCB044 PCB049	1 1 1 1 1 1 1 1	50.3 49.1 44.8 35.4 ND 22 ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	
PCB018 PCB028 PCB031 PCB033 PCB037 PCB044 PCB049 PCB052	1 1 1 1 1 1 1 1 1	50.3 49.1 44.8 35.4 ND 22 ND 29.6	ND ND ND ND ND ND 9	ND ND ND ND ND ND 9.5	ND ND ND ND ND ND 6.6	
PCB018 PCB028 PCB031 PCB033 PCB037 PCB044 PCB052 PCB066 PCB070	1 1 1 1 1 1 1 1 1 1 1 1	50.3 49.1 44.8 35.4 ND 22 ND 29.6 ND 29.6 ND	ND ND ND ND ND 9 ND ND	ND ND ND ND ND ND 9.5 ND 8.3	ND ND ND ND ND ND ND ND ND Alternative ND ND 6.6 ND 4.4	
PCB018 PCB028 PCB031 PCB033 PCB037 PCB044 PCB052 PCB066 PCB070 PCB074	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50.3 49.1 44.8 35.4 ND 22 ND 29.6 ND ND ND ND	ND ND ND ND ND 9 ND ND ND ND	ND ND ND ND ND 9.5 ND 8.3 ND	ND ND ND ND ND ND ND ND ND 4.4 ND	
PCB018 PCB028 PCB031 PCB033 PCB037 PCB044 PCB052 PCB066 PCB070 PCB074 PCB077	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50.3 49.1 44.8 35.4 ND 22 ND 29.6 ND 29.6 ND ND ND ND	ND ND ND ND ND 9 ND ND ND ND ND	ND ND ND ND ND 9.5 ND 8.3 ND ND	ND ND ND ND ND ND 0	
PCB018 PCB028 PCB031 PCB033 PCB037 PCB044 PCB052 PCB066 PCB070 PCB074 PCB077 PCB081	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50.3 49.1 44.8 35.4 ND 22 ND 29.6 ND ND ND ND ND ND	ND ND ND ND ND 9 ND ND ND ND ND ND	ND ND ND ND ND 9.5 ND 8.3 ND ND ND	ND ND ND ND ND ND 6.6 ND 4.4 ND ND ND	
PCB018 PCB028 PCB031 PCB033 PCB037 PCB044 PCB052 PCB052 PCB070 PCB074 PCB077 PCB081 PCB087	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50.3 49.1 44.8 35.4 ND 22 ND 29.6 ND ND ND ND ND ND ND ND	ND ND ND ND ND 9 ND ND ND ND ND ND ND ND	ND ND ND ND ND 9.5 ND 8.3 ND	ND ND ND ND ND ND 6.6 ND 4.4 ND ND ND ND ND	
PCB018 PCB028 PCB031 PCB033 PCB037 PCB044 PCB052 PCB052 PCB070 PCB074 PCB081 PCB087 PCB087 PCB095	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50.3 49.1 44.8 35.4 ND 22 ND 29.6 ND ND ND ND ND ND ND ND ND 21.9	ND ND ND ND ND 9 ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND 9.5 ND 8.3 ND ND ND ND 10.6	ND ND ND ND ND 0	
PCB018 PCB028 PCB031 PCB033 PCB037 PCB044 PCB052 PCB052 PCB070 PCB074 PCB081 PCB095 PCB097	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50.3 49.1 44.8 35.4 ND 22 ND 29.6 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND	ND ND ND ND ND 9.5 ND 8.3 ND ND ND ND 10.6 ND	ND ND ND ND ND 0 0	
PCB018 PCB028 PCB031 PCB033 PCB037 PCB044 PCB052 PCB052 PCB070 PCB077 PCB081 PCB095 PCB097 PCB099	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50.3 49.1 44.8 35.4 ND 22 ND 29.6 ND ND ND ND ND ND ND 21.9 ND ND ND	ND	ND ND ND ND ND 9.5 ND 8.3 ND ND ND 10.6 ND 8.5	ND ND ND ND ND 0 0	
PCB018 PCB028 PCB031 PCB033 PCB037 PCB044 PCB052 PCB052 PCB070 PCB074 PCB081 PCB095 PCB095 PCB097 PCB099 PCB101	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50.3 49.1 44.8 35.4 ND 22 ND 29.6 ND ND ND ND ND ND 21.9 ND 21.9 ND 30.1	ND 16.8 ND 36.4	ND ND ND ND ND 9.5 ND 8.3 ND ND ND 10.6 ND 8.5 19.2	ND ND ND ND ND OB OB ND A4 ND 7.7 ND 7.1 12.9	
PCB018 PCB028 PCB031 PCB033 PCB037 PCB044 PCB052 PCB066 PCB070 PCB074 PCB081 PCB095 PCB101 PCB105	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50.3 49.1 44.8 35.4 ND 22 ND 29.6 ND ND ND ND ND 21.9 ND 21.9 ND 30.1 ND	ND 16.8 ND 36.4 ND	ND ND ND ND ND 9.5 ND 8.3 ND ND ND 10.6 ND 8.5 19.2 ND	ND ND ND ND ND ND 6.6 ND 4.4 ND ND ND 7.7 ND 7.7 ND 7.1 12.9 ND	
PCB018 PCB028 PCB031 PCB033 PCB037 PCB044 PCB052 PCB052 PCB070 PCB074 PCB081 PCB095 PCB095 PCB095 PCB095 PCB095 PCB095 PCB095 PCB095 PCB101 PCB105 PCB105 PCB105	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50.3 49.1 44.8 35.4 ND 22 ND 29.6 ND ND ND ND ND 21.9 ND 21.9 ND 30.1 ND 22.3	ND 16.8 ND 36.4 ND 28.4	ND ND ND ND ND ND 9.5 ND 8.3 ND ND ND 10.6 ND 8.5 19.2 ND 15	ND ND ND ND ND ND 6.6 ND 4.4 ND ND ND 7.7 ND 7.7 ND 7.1 12.9 ND 11.8	
PCB018 PCB028 PCB031 PCB033 PCB037 PCB044 PCB052 PCB052 PCB070 PCB074 PCB081 PCB095 PCB095 PCB095 PCB095 PCB095 PCB095 PCB101 PCB105 PCB104	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50.3 49.1 44.8 35.4 ND 22 ND 29.6 ND ND ND ND 21.9 ND 21.9 ND 21.9 ND 21.9 ND 21.9 ND 21.9 ND 21.9 ND 21.9 ND	ND 16.8 ND 36.4 ND 28.4 ND	ND ND ND ND ND 9.5 ND 8.3 ND ND ND 10.6 ND 8.5 19.2 ND 15 ND	ND ND ND ND ND ND 6.6 ND 4.4 ND ND ND 7.7 ND 7.7 ND 7.1 12.9 ND 11.8 ND	
PCB018 PCB028 PCB031 PCB033 PCB037 PCB044 PCB052 PCB066 PCB070 PCB074 PCB081 PCB095 PCB095 PCB095 PCB095 PCB095 PCB101 PCB105 PCB114 PCB118	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50.3 49.1 44.8 35.4 ND 22 ND 29.6 ND ND ND ND 21.9 ND 21.9 ND 30.1 ND 22.3 ND 22.3 ND	ND 16.8 ND 36.4 ND 28.4 ND ND	ND ND ND ND ND ND 9.5 ND 8.3 ND ND ND ND ND ND ND 10.6 ND 8.5 19.2 ND 15 ND 10.4	ND ND ND ND ND ND 0.00 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	
PCB018 PCB028 PCB031 PCB033 PCB037 PCB044 PCB052 PCB066 PCB070 PCB074 PCB081 PCB095 PCB095 PCB095 PCB095 PCB101 PCB105 PCB110 PCB114 PCB118 PCB119	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50.3 49.1 44.8 35.4 ND 22 ND 29.6 ND ND ND ND ND 21.9 ND 21.9 ND 21.9 ND 21.9 ND 21.9 ND 22.3 ND 22.3 ND	ND 16.8 ND 36.4 ND 28.4 ND ND ND	ND ND ND ND ND 9.5 ND 8.3 ND ND ND 10.6 ND 8.5 19.2 ND 15 ND	ND ND ND ND ND ND 6.6 ND 4.4 ND ND ND 7.7 ND 7.7 ND 7.1 12.9 ND 11.8 ND	
PCB018 PCB028 PCB031 PCB033 PCB037 PCB044 PCB052 PCB066 PCB070 PCB074 PCB081 PCB095 PCB095 PCB095 PCB095 PCB095 PCB101 PCB105 PCB114 PCB118	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50.3 49.1 44.8 35.4 ND 22 ND 29.6 ND ND ND ND 21.9 ND 21.9 ND 30.1 ND 22.3 ND 22.3 ND	ND 16.8 ND 36.4 ND 28.4 ND ND	ND ND ND ND ND ND 9.5 ND 8.3 ND ND ND ND ND ND ND 10.6 ND 8.5 19.2 ND 15 ND 10.4	ND ND ND ND ND ND 0.00 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	
PCB018 PCB028 PCB031 PCB033 PCB037 PCB044 PCB052 PCB066 PCB070 PCB074 PCB081 PCB095 PCB095 PCB095 PCB095 PCB101 PCB105 PCB110 PCB114 PCB118 PCB119	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50.3 49.1 44.8 35.4 ND 22 ND 29.6 ND ND ND ND ND 21.9 ND 21.9 ND 21.9 ND 21.9 ND 22.3 ND 22.3 ND 22.8 ND	ND 16.8 ND 36.4 ND 28.4 ND ND ND	ND ND ND ND ND ND 9.5 ND 8.3 ND ND ND ND ND ND 10.6 ND 8.5 19.2 ND 15 ND 10.4 ND	ND ND ND ND ND ND 0.00 0.01 0.02	
PCB018 PCB028 PCB031 PCB033 PCB037 PCB037 PCB044 PCB052 PCB052 PCB070 PCB074 PCB081 PCB095 PCB095 PCB097 PCB101 PCB105 PCB110 PCB114 PCB118 PCB123	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50.3 49.1 44.8 35.4 ND 22 ND 29.6 ND ND ND ND ND 21.9 ND 21.9 ND 21.9 ND 21.9 ND 21.9 ND 22.3 ND 22.3 ND 22.8 ND	ND 16.8 ND 36.4 ND 28.4 ND ND ND ND ND	ND ND ND ND ND ND 9.5 ND 8.3 ND ND ND ND ND ND 10.6 ND 10.6 ND 10.5 19.2 ND 15 ND 10.4 ND	ND ND ND ND ND ND 0.00 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 ND 11.8 ND 9.2 ND ND ND	
PCB018 PCB028 PCB031 PCB033 PCB037 PCB037 PCB044 PCB052 PCB066 PCB070 PCB074 PCB081 PCB095 PCB097 PCB095 PCB101 PCB105 PCB110 PCB114 PCB118 PCB123 PCB128+167	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50.3 49.1 44.8 35.4 ND 22 ND 29.6 ND ND ND ND ND 21.9 ND 21.9 ND 21.9 ND 21.9 ND 21.9 ND 22.3 ND 22.3 ND 22.8 ND 22.8 ND 22.8 ND	ND 16.8 ND 36.4 ND 28.4 ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND 9.5 ND 8.3 ND ND ND ND ND 10.6 ND 15 ND 10.4 ND ND	ND ND ND ND ND ND A4 ND 4.4 ND A10 ND 7.7 ND 7.7 ND 7.1 12.9 ND 11.8 ND 9.2 ND ND ND	
PCB018 PCB028 PCB031 PCB033 PCB037 PCB037 PCB044 PCB052 PCB066 PCB070 PCB077 PCB081 PCB095 PCB095 PCB095 PCB097 PCB101 PCB105 PCB110 PCB114 PCB118 PCB123 PCB126	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50.3 49.1 44.8 35.4 ND 22 ND 29.6 ND ND ND ND ND 21.9 ND 21.9 ND 21.9 ND 21.9 ND 21.9 ND 22.3 ND 22.3 ND 22.3 ND 22.8 ND 22.8 ND 22.8 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND 16.8 ND 36.4 ND 28.4 ND ND	ND ND ND ND ND ND 9.5 ND 8.3 ND ND ND ND ND 10.6 ND 15 ND 10.4 ND ND	ND ND ND ND ND ND A ND 4.4 ND 4.4 ND ND ND ND ND ND 7.7 ND 7.7 ND 7.1 12.9 ND 11.8 ND 9.2 ND	

Sediment chemistry data March 02, 2004—PCB congeners results summary (all results in ng/dry g)—CRG Marine Laboratories, Inc.

ng/dry g)—CRG Ma	arine Laborat	ories, Inc.				
PCB149	1	21.1	21.6	9.8	8.5	
PCB151	1	ND	ND	ND	ND	
PCB153	1	32.8	24.5	12.1	10.8	
PCB156	1	ND	ND	ND	ND	
PCB157	1	ND	ND	ND	ND	
PCB158	1	ND	ND	ND	ND	
PCB168+132	1	ND	ND	ND	ND	
PCB169	1	ND	ND	ND	ND	
PCB170	1	ND	ND	ND	ND	
PCB177	1	ND	ND	ND	ND	
PCB180	1	ND	18.8	ND	ND	
	1	ND	ND		ND	
PCB183	1	ND		<u>ND</u> 5.7		
PCB187			ND		4.3	
PCB189	1	ND	ND	ND	ND	
PCB194	1	ND	ND	ND	ND	
PCB200	1	ND	ND	ND	ND	
PCB201	1	ND	ND	ND	ND	
PCB206	1	ND	ND	ND	ND	
Total Detectable PC		382.2	209.4	123.6	94.7	
Analyte	MDL	2229	2238	2243	2433	2441
PCB018	1	ND	ND	ND	ND	ND
PCB028	1	ND	ND	ND	ND	ND
PCB031	1	ND	ND	ND	ND	ND
PCB033	1	ND	ND	ND	ND	ND
PCB037	1	ND	ND	ND	ND	ND
PCB044	1	ND	ND	ND	ND	ND
PCB049	1	ND	ND	ND	ND	ND
PCB052	1	ND	ND	ND	ND	ND
PCB066	1	ND	ND	ND	ND	ND
PCB070	1	ND	ND	ND	ND	ND
PCB074	1	ND	ND	ND	ND	ND
PCB077	1	ND	ND	ND	ND	ND
PCB081	1	ND	ND	ND	ND	ND
PCB087	1	ND	ND	ND	ND	ND
PCB095	1	ND	ND	ND	ND	ND
PCB097	1	ND	ND	ND	ND	ND
PCB099	1	ND	ND	ND	ND	ND
PCB099 PCB101	1	ND	ND			
				ND	ND	<u>ND</u>
PCB105	1	ND	ND	ND	ND	ND
PCB110	1	ND	ND	ND	ND	ND
PCB114	1	ND	ND	ND	ND	ND
PCB118	1	ND	ND	ND	ND	ND
PCB119	1	ND	ND	ND	ND	ND
PCB123	1	ND	ND	ND	ND	ND
PCB126	1	ND	ND	ND	ND	ND
PCB128+167	1	ND	ND	ND	ND	ND
PCB138	1	ND	ND	ND	ND	ND
PCB141	1	ND	ND	ND	ND	ND
PCB149	1	ND	ND	ND	ND	ND
PCB151	1	ND	ND	ND	ND	ND
PCB153	1	ND	ND	ND	ND	ND
PCB156	1	ND	ND	ND	ND	ND
PCB157	1	ND	ND	ND	ND	ND
PCB158	1	ND	ND	ND	ND	ND
PCB168+132	1	ND	ND	ND	ND	ND
PCB169	1	ND	ND	ND	ND	ND
PCB170	1	ND	ND	ND	ND	ND
PCB177	1	ND	ND	ND	ND	ND
	I	טא				UVI

Sediment chemistry data March 02, 2004—PCB congeners results summary (all results in ng/dry g)—CRG Marine Laboratories, Inc.

		nico, inc.				
PCB180	1	ND	ND	ND	ND	ND
PCB183	1	ND	ND	ND	ND	ND
PCB187	1	ND	ND	ND	ND	ND
PCB189	1	ND	ND	ND	ND	ND
PCB194	1	ND	ND	ND	ND	ND
PCB200	1	ND	ND	ND	ND	ND
PCB201	1	ND	ND	ND	ND	ND
PCB206	1	ND	ND	ND	ND	ND
Total Detectable PCBs		ND	ND	ND	ND	ND

Sediment chemistry data March 02, 2004—PCB congeners results summary (all results in ng/dry g)—CRG Marine Laboratories, Inc.

Sediment chemistry data March 02, 2004—Aroclors results summary (all results in ng/dry g)—CRG Marine Laboratories, Inc.

Analyte	MDL	BST01	BST04	BST07		
Aroclor 1016	10	ND	ND	ND		
	10	ND ND	ND ND	ND ND		
Aroclor 1221						
Aroclor 1232	10	ND	ND	ND		
Aroclor 1242	10	ND	ND	ND		
Aroclor 1248	10	ND	ND	ND		
Aroclor 1254	10	36.7	29.6	38.8		
Aroclor 1260	10	ND	ND	ND		
Analyte	MDL	DAC02	DAC03	DAC04		
Aroclor 1016	10	ND	ND	ND		
Aroclor 1221	10	ND	ND	ND		
Aroclor 1232	10	ND	ND	ND		
Aroclor 1242	10	ND	347	ND		
Aroclor 1248	10	ND	ND	ND		
Aroclor 1254	10	37.4	385	71.8		
Aroclor 1260	10	ND	ND	ND		
Analyte	MDL S	NZ01 (R1) SV	NZ02 (R1) SV	WZ04 (R1) S	WZ04 (R2)	
Aroclor 1016	10	ND	ND	ND	ND	
Aroclor 1221	10	ND	ND	ND	ND	
Aroclor 1232	10	ND	ND	ND	ND	
Aroclor 1242	10	820	ND	ND	ND	
Aroclor 1248	10	ND	ND	ND	ND	
Aroclor 1254	10	182	232	122	96.3	
Aroclor 1260	10	ND	ND	ND	ND	
Analyte	MDL	2229	2238	2243	2433	2441
Aroclor 1016	10	ND	ND	ND	ND	ND
Aroclor 1221	10	ND	ND	ND	ND	ND
Aroclor 1232	10	ND	ND	ND	ND	ND
Aroclor 1242	10	ND	ND	ND	ND	ND
Aroclor 1248	10	ND	ND	ND	ND	ND
Aroclor 1254	10	ND	ND	ND	ND	ND
Aroclor 1260	10	ND	ND	ND	ND	ND

Sediment chemistry data August 17, 2004—Metals results summary (all results in mg/kg dry)—CRG Marine Laboratories, Inc.

in mg/kg ar	у)—ска м	narine Labor	atories, inc.		
Analyte	MDL	BST01	BST04	BST07	
Aluminum	1	ND	ND	ND	
Antimony	0.05	0.43	0.4	0.4	
Arsenic	0.05	11.7	12.6	11.4	
Barium	0.05	120	122	116	
Beryllium	0.01	0.67	0.66	0.63	
Cadmium	0.01	0.53	0.26	0.24	
Chromium	0.05	78	71.8	70.2	
Cobalt	0.01	9.5	9.63	9.24	
Copper	0.01	160	140	144	
Iron	1	38800	40300	3790	
Lead	0.01	60	46.3	51.1	

in mg/kg dry		Marine Labo				
Manganese	0.05	260	281	259		
Mercury	0.005	1.05	0.89	0.89		
Molybdenum	0.05	1.34	0.97	0.99		
Nickel	0.01	18.7	17.9	17.3		
Selenium	0.05	1.68	1.63	1.65		
Silver	0.01	1.76	1.73	1.51		
Strontium	0.05	52.7	57	62.7		
Thallium	0.01	0.4	0.38	0.39		
Tin	0.05	9.42	8.69	8.87		
Titanium	0.05	1980	2040	1960		
Vanadium	0.05	87.4	88.7	87.2		
Zinc	0.05	245	208	210		
Analyte	MDL	DAC02	DAC03	DAC04		
Aluminum	1	ND	ND	ND		
Antimony	0.05	0.72	0.53	0.52		
Arsenic	0.05	14.7	14.2	10.1		
Barium	0.05	134	113	99.9		
Beryllium	0.01	0.87	0.64	0.53		
Cadmium	0.01	0.53	0.41	0.45		
Chromium	0.05	125	154	78.9		
Cobalt	0.01	10.2	11.7	8.08		
Copper	0.01	180	160	121		
Iron	1	42700	38900	31900		
Lead	0.01	88.7	93.9	72.1		<u>.</u>
Manganese	0.05	288	282	224		
Mercury	0.005	1.39	1.2	0.79		
Molybdenum	0.05	1.24	1.86	1.47		
Nickel	0.00	24.6	43.2	18.3		
Selenium	0.05	1.75	1.65	1.45		<u> </u>
Silver	0.03	2.84	4.54	2		
Strontium	0.05	54.9	49.1	51.5		
Thallium	0.00	0.45	0.4	0.36		
Tin	0.05	12.5	11.2	7.35		
Titanium	0.05	2180	2010	1790		
Vanadium	0.05	98.6	87.3	73.9		<u> </u>
Zinc	0.05	265	242	226		<u> </u>
Analyte		SWZ01 (R1) S			W704 (B2)	
Aluminum	1	ND	ND	ND	ND	
Antimony	0.05	0.9	0.88	1.24	0.98	
Arsenic	0.05	9.81	9.8	10.7	10.4	
Barium	0.05	106	104	119	120	
						<u> </u>
Beryllium Cadmium	0.01	0.52	0.53	0.57	0.58	<u> </u>
Chromium	0.01	54.9	56.1	59.2	59.8	
	0.03	8.09	7.94			<u> </u>
Cobalt Connor				8.89	<u>8.78</u> 150	<u> </u>
Copper	0.01	21000	126	24000		
Iron	1	31000	3110	34000	34400	
Lead	0.01	98.2	92.1	102	104	<u> </u>
Manganese	0.05	214	216	227	228	<u> </u>
Mercury Melybdonum	0.005	0.85	0.85	0.91	0.86	<u> </u>
Molybdenum	0.05	3.41	3.33	3.32	3.52	<u> </u>
Nickel Selenium	0.01	16.3	15.5	17.7	17.3	
Selenium	0.05	1.66	1.62	1.73	1.8	
Cilver		4 4 4				
Silver Strontium	0.01	<u>1.16</u> 48.7	<u>1.11</u> 47.7	<u>1.16</u> 53.8	<u>1.22</u> 55.8	

Sediment chemistry data August 17, 2004—Metals results summary (all results in mg/kg dry)—CRG Marine Laboratories, Inc.

<u>in ing/ng ary</u>	/ 011011					
Thallium	0.01	0.32	0.32	0.36	0.37	
Tin	0.05	8.27	9.84	8.8	9.02	
Titanium	0.05	1680	1640	1790	1780	
Vanadium	0.05	76.1	75	83.3	83	
Zinc	0.05	303	290	338	325	
Analyte	MDL	2229	2238	2243	2433	2441
Aluminum	1	ND	ND	ND	ND	ND
Antimony	0.05	0.23	0.25	0.21	0.19	0.38
Arsenic	0.05	5.86	8.51	5.71	5.92	9.89
Barium	0.05	55	87.6	42.6	73.4	128
Beryllium	0.01	0.28	60	0.3	0.31	0.58
Cadmium	0.01	0.08	0.17	0.08	0.21	0.43
Chromium	0.05	28	48.9	30.4	32.6	53.1
Cobalt	0.01	4.37	9.1	4.47	4.93	8.11
Copper	0.01	47.1	70	56	47.2	95
Iron	1	17200	34900	17000	19900	36300
Lead	0.01	27.2	20.3	19.6	14.9	22.4
Manganese	0.05	139	274	134	178	303
Mercury	0.005	0.48	0.45	0.41	0.39	0.48
Molybdenum	0.05	0.42	0.41	0.4	0.48	1.62
Nickel	0.01	7.14	14.1	7.1	8.61	17.3
Selenium	0.05	0.66	1.21	0.78	0.88	2.2
Silver	0.01	0.19	0.64	0.8	0.6	1.13
Strontium	0.05	56	44.3	28.4	43	140
Thallium	0.01	0.16	0.29	0.18	0.23	0.39
Tin	0.05	4.14	4.27	3.59	2.98	4.71
Titanium	0.05	1060	1790	1050	1350	2150
Vanadium	0.05	40.4	76.8	36.2	47.8	85.3
Zinc	0.05	92.2	184	108	100	147

Sediment chemistry data August 17, 2004—Metals results summary (all results in mg/kg dry)—CRG Marine Laboratories, Inc.

Sediment chemistry data August 17, 2004—Pesticides results summary (all results in ng/dry g)—CRG Marine Laboratories, Inc.

Analysis of the main	MDI	DOTO-	DOTO 4	DOTO-	
Analyte	MDL	BST01	BST04	BST07	
2,4'-DDD	1	ND	ND	ND	
2,4'-DDE	1	ND	ND	ND	
2,4'-DDT	1	ND	ND	ND	
4,4'-DDD	1	ND	ND	ND	
4,4'-DDE	1	ND	ND	ND	
4,4'-DDT	1	ND	ND	ND	
Aldrin	1	ND	ND	ND	
BHC-alpha	1	ND	ND	ND	
BHC-beta	1	ND	ND	ND	
BHC-delta	1	ND	ND	ND	
BHC-gamma	1	ND	ND	ND	
Chlordane-alpha	1	ND	ND	ND	
Chlordane-gamma	1	ND	ND	ND	
DCPA (Dacthal)	1	ND	ND	ND	
Dieldrin	1	ND	ND	ND	
Endosulfan Sulfate	1	ND	ND	ND	
Endosulfan-I	1	ND	ND	ND	
Endosulfan-II	1	ND	ND	ND	
Endrin	1	ND	ND	ND	
Endrin Aldehyde	1	ND	ND	ND	
Endrin Ketone		ND	ND	ND	
Heptachlor	1	ND	ND	ND	
Heptachlor Epoxide	1	ND	ND	ND	
	-				

ng/dry g)—CRG Marine					
Methoxychlor	1	ND	ND	ND	
Mirex	1	ND	ND	ND	
Total Detectable DDTs	1	ND	ND	ND	
Toxaphene	10	ND	ND	ND	
trans-Nonachlor	1	ND	ND	ND	
Analyte	MDL	DAC02	DAC03	DAC04	
2,4'-DDD	1	ND	ND	ND	
2,4'-DDE	1	ND	ND	ND	
2,4'-DDT	1	ND	ND	ND	
4,4'-DDD	1	ND	ND	ND	
4,4'-DDE	1	ND	ND	ND	
4,4'-DDT	1	ND	ND	ND	
Aldrin	1	ND	ND	ND	
BHC-alpha	1	ND	ND	ND	
BHC-beta	1	ND	ND	ND	
BHC-delta	1	ND	ND	ND	
BHC-gamma	1	ND	ND	ND	
Chlordane-alpha	1	ND	ND	3.3	
Chlordane-gamma	1	ND	ND	3.6	
DCPA (Dacthal)	1	ND	ND	ND	
Dieldrin	1	ND	ND	ND	
Endosulfan Sulfate	1	ND	ND	ND	
Endosulfan-l	1	ND	ND	ND	
Endosulfan-II	1	ND	ND	ND	
Endrin	1	ND	ND	ND	
Endrin Aldehyde	1	ND	ND	ND	
Endrin Ketone	•	ND	ND	ND	
Heptachlor	1	ND	ND	ND	
Heptachlor Epoxide	1	ND	ND	ND	
Methoxychlor	1	ND	ND	ND	
Mirex	1	ND	ND	ND	
Total Detectable DDTs	1	ND	ND	ND	
Toxaphene	10	ND	ND	ND	
trans-Nonachlor	1	ND	ND	3.7	
Analyte	MDL	SWZ01	SWZ02	SWZ04	
2,4'-DDD	1	ND	ND	ND	
2,4'-DDE	1	ND	ND	ND	
2,4'-DDT	1	ND	ND	ND	
4.4'-DDD	1	ND	ND	ND	
4,4'-DDE	1	ND	ND	ND	
4,4'-DDT	1	ND	ND	ND	
Aldrin	1	ND	ND	ND	
BHC-alpha	1	ND	ND	ND ND	
BHC-aipita BHC-beta	1	ND	ND	ND	
BHC-delta	1	ND	ND	ND	
BHC-gamma	1	ND	ND	ND	
Chlordane-alpha	1	2.2	4.4	3.2	
Chlordane-gamma	1	2.8	5.1	4	
DCPA (Dacthal)	1	ND	ND	ND	
Dieldrin Fradesaulten Outlate	1	ND	ND	ND	
Endosulfan Sulfate	1	ND	ND	ND	
Endosulfan-l	1	ND	ND	ND	
Endosulfan-II	1	ND	ND	ND	
Endosulfan-II Endrin Endrin Aldehyde	1 1 1	ND ND ND	ND ND ND	ND ND ND	

Sediment chemistry data August 17, 2004—Pesticides results summary (all results in ng/dry g)—CRG Marine Laboratories, Inc.

Endrin Ketone		ND	ND	ND			
Heptachlor	1	ND	ND ND	ND			
Heptachlor Epoxide	1	ND	ND ND	ND			
Methoxychlor	1	ND	ND	ND			
Mirex	1	ND	ND ND	ND			
	1	ND	ND ND	ND			
Total Detectable DDTs Toxaphene	10	ND	ND ND	ND			
trans-Nonachlor	10	2.9	4.9	3.6			
		2.9 29 (R1) 22		2238	2243	2433	2441
Analyte							
2,4'-DDD	<u>1</u> 1	ND ND	ND ND	ND ND	ND ND	ND ND	ND
2,4'-DDE							ND
2,4'-DDT	1	ND	ND	ND	ND	ND	ND
<u>4,4'-DDD</u>	1	ND	ND	ND	ND	ND	ND
4,4'-DDE	1	ND	ND	ND	ND	ND	ND
4,4'-DDT	1	ND	ND	ND	ND	ND	ND
Aldrin	1	ND	ND	ND	ND	ND	ND
BHC-alpha	1	ND	ND	ND	ND	ND	ND
BHC-beta	1	ND	ND	ND	ND	ND	ND
BHC-delta	1	ND	ND	ND	ND	ND	ND
BHC-gamma	1	ND	ND	ND	ND	ND	ND
Chlordane-alpha	1	ND	ND	ND	ND	ND	ND
Chlordane-gamma	1	ND	ND	ND	ND	ND	ND
DCPA (Dacthal)	1	ND	ND	ND	ND	ND	ND
Dieldrin	1	ND	ND	ND	ND	ND	ND
Endosulfan Sulfate	1	ND	ND	ND	ND	ND	ND
Endosulfan-I	1	ND	ND	ND	ND	ND	ND
Endosulfan-II	1	ND	ND	ND	ND	ND	ND
Endrin	1	ND	ND	ND	ND	ND	ND
Endrin Aldehyde	1	ND	ND	ND	ND	ND	ND
Endrin Ketone	1	ND	ND	ND	ND	ND	ND
Heptachlor	1	ND	ND	ND	ND	ND	ND
Heptachlor Epoxide	1	ND	ND	ND	ND	ND	ND
Methoxychlor	1	ND	ND	ND	ND	ND	ND
Mirex	1	ND	ND	ND	ND	ND	ND
Total Detectable DDTs	1	ND	ND	ND	ND	ND	ND
Toxaphene	10	ND	ND	ND	ND	ND	ND
trans-Nonachlor	1	ND	ND	ND	ND	ND	ND
		110	110	110	110	110	

Sediment chemistry data August 17, 2004—Pesticides results summary (all results in
ng/dry g)—CRG Marine Laboratories, Inc.

Sediment chemistry data August 17, 2004—PAH results summary (all results in ng/dry g)—CRG Marine Laboratories, Inc.

Laboratories, inc.				
Analyte	MDL	BST01	BST04	BST07
1-Methylnaphthalene	1	ND	ND	2.1
1-Methylphenanthrene	1	ND	ND	22.5
2,3,5-TrimethyInaphthalene	1	ND	ND	ND
2,6-DimethyInaphthalene	1	ND	ND	3.3
2-Methylnaphthalene	1	1.3	1.4	4
Acenaphthene	1	1.9	2.9	26.8
Acenaphthylene	1	9.9	12.2	42.1
Anthracene	1	39.8	44	339
Benz[a]anthracene	1	240	298	2850
Benzo[a]pyrene	1	440	150	1570
Benzo[b]fluoranthene	1	400	270	1660
Benzo[e]pyrene	1	190	322	652
Benzo[g,h,i]perylene	1	123	29.8	237
Benzo[k]fluoranthene	1	384	317	1500
Biphenyl	1	ND	ND	2.8

Chrysene 1 215 15 1990 Dibenza, Ji, Jantracene 1 112 214 4430 Fluoranthene 1 112 214 4430 Fluoranthene 1 12 214 4430 Fluoranthene 1 14 2.1 2.1 Pergine 1 7.6 304 2.79 Phenanthrene 1 18.3 30.7 342 Pyrene 1 80.5 105.19 Analyte Prime 1 80.5 105.19 Analyte Analyte MDL DACO2 DACO3 DACO4 1-Metryinghtmaphthalene 1 ND ND ND 2.6-Dimetryinghtmaphthalene 1 ND 8 1.2 Actemaphthene 1 ND 8 1.2 Actemaphthene 1 ND 8 1.2 Actemaphthene 1 1.6 1.1 2.2 Actharacene	Laboratories, Inc.					
Flucaritheme 1 112 214 4430 Flucarene 1 3.4 4.1 41.2 Indenol 1.2.3-c.dipyrene 1 156 57.3 350 Naphthalane 1 1.4 2.1 2.1 Previdence 1 76.1 304 279 Phenanthrene 1 98.1 1500 779 Previdence 1 80.3 98.1 1500 Total Detoctable PAHs 2544.5 105.19 105.19 Analyte MDL DAC02 DAC03 DAC04 1-Methylnaphthalene 1 ND ND 142 2.6-Dimethylnaphthalene 1 ND 8 16.9 Benzolghyrene 1 ND 4.3 Anthracene 1 2.8 2.8.6 16.9 Benzolghyrene Benzolghyrene 1 70.6 250 129 Benzolghyrene 1 70.6 250 129 Benzolghyrene<	Chrysene	1	215	15	1990	
Fluorene 1 3.4 4.1 41.2 Indenci [2,3-c,d]pyrene 1 156 57.3 350 Naphthalene 1 1.4 2.1 2.1 Perylene 1 76.1 304 279 Pyrene 1 80.3 98.1 1500 Total Detectable PAHs 2544.5 105.19 Analyte Analyte MDL DAC02 DAC03 DAC04 1-Methylphanthalene 1 ND ND ND 2.3.5-Trimethylnaphthalene 1 ND 8 1.2 Acenaphthylene 1 7.4 9 4.3 Anthracene 9.8 28.8 16.9 Benzolglipurene 1 150 740 281 Benzolglipuranthene 1 129 392 254 Benzolglipuranthene 1 129 264 129 Benzolglipuranthene 1 105 129 129 Benzolaphthene 1	Dibenz[a,h]anthracene	1	51.1	125	127	
Indeno[1,2,3-c,d]pyrene 1 156 57.3 350 Napritularie 1 1.4 2.1 2.1 Perviene 1 76.1 304 2.79 Phenanthrene 1 19.3 30.7 342 Pyrene 1 80.3 98.1 1500 Total Detectable PAHs 2544.5 105.19 105.19 Analyte MDL DAC02 DAC04 1-Methylphaphthalene 1 ND ND 2.5-Trimethylnaphthalene 1 ND 1.4 Acenaphthene 1 ND 4.3 Anthracene 9.8 28.8 16.9 Benzolalpyrone 1 150 740 281 Benzolphilyoranthene 1 129 392 254 Benzolphilperylene 1 70.6 250 129 Benzolphilperylene 1 70.6 203 122 Benzolphilperylene 1 713 129	Fluoranthene	1	112	214	4430	
Indeno[1,2,3-c,djpyrene 1 156 57.3 350 Naprthalane 1 1.4 2.1 2.1 Pervigene 1 76.1 304 279 Phenanthrene 1 80.3 98.1 1500 Total Detectable PAHs 2544.5 105.19 105.19 Analyte MDL DAC02 DAC04 1-Methylaphthalene 1 ND ND 2.5.Frimethylnaphthalene 1 ND ND 2.6.Gomethylnaphthalene 1 ND 4.3 Acenaphthyloganthalene 1 ND 4.1.4 Acenaphthylene 1 3.7 4.9 4.3 Anthracene 1 8.8 16.9 Benzolglipyrene 1 Benzolghipynene 1 70.6 250 129 Benzolghipyrene 1 Benzolghipynen 1 8.9 2.03 122 Eestal Eestal Eestal Eestal Eestal Eestal Eestal Eestal<	Fluorene	1	3.4	4.1	41.2	
Naphthalene 1 1.4 2.1 2.1 Perylene 1 76.1 304 279 Pyrene 1 80.3 30.7 342 Pyrene 1 80.3 30.7 342 Pyrene 1 80.3 98.1 1500 Analyte MDL DAC03 DAC04 I-Methylophthalene 1 ND 2.4 ND 1-Methylophthalene 1 ND ND ND 2.3.5 Trimethylnaphthalene 1 ND 8.1.1 2.4.5 Trimethylnaphthalene 1 ND 4 1.4 Acenaphthene 1 ND 4 1.4 Acenaphthylene 1 3.7 4.9 4.3 Anthracene 1 56.4 492 129 Benzolglipyrene 1 76.6 250 129 Benzolglipyrene 1 76.6 230 122 Benzolglipyrene 1 77.6 <td></td> <td>1</td> <td></td> <td>57.3</td> <td></td> <td></td>		1		57.3		
Perylene 1 76.1 304 279 Phenanthrene 1 19.3 30.7 342 Pyrene 1 80.3 98.1 1500 Total Detectable PAHs 2544.5 105.19 Malyte Analyte MD DACQ2 DACO3 DAC04 1-Methylnaphthalene 1 ND ND ND 2,6-Dimethylnaphthalene 1 ND ND ND 2,6-Dimethylnaphthalene 1 ND 8 1.2 Acenaphthene 1 ND 4.3 Anthracene 1 9.8 28.8 16.9 Benzolajanthracene 1 Benzolajanthracene 1 29 392 254 Benzolajhurorene 1 70.6 250 129 Benzolajhurorene 1 70.6 281 Benzolajhurorene Benzolajhurorene 1 70.6 283 122 Benzolajhurorene 1 70.6 29 133						
Phenanthrene 1 19.3 30.7 342 Pyrene 1 80.3 98.1 1500 Total Detectable PAHs 254.45 105.19 105.19 Analyte MDL DAC02 DAC03 DAC04 1-Methylinaphthalene 1 ND ND ND 2.3.5-Timethylinaphthalene 1 ND 1.1 2 2.6-Dimethylinaphthalene 1 ND 8 1.1 2-Methylinaphthalene 1 ND 4 1.4 Acenaphthene 1 ND 4 1.4 Acenaphthene 1 3.7 4.9 4.3 Anthracene 1 9.8 28.8 16.9 Benzolapyrene 1 106 740 281 Benzolapyrene 1 126 417 236 Benzolaphurene 1 60.8 300 117 Dibenz(a, I)anthracene 1 11.5 2 Perelanthracene 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Pyrene 1 80.3 98.1 1500 Total Detectable PAHs 2544.5 105.19 MAniyte MDL DAC02 DAC04 Analyte MDL DAC02 DAC04 ND ND 1-Metrykinaphthalene 1 ND ND ND State 2,3.5.Trimethyinaphthalene 1 ND ND ND State 2,4.5.Trimethyinaphthalene 1 ND 8 1.2 Acenaphthene 1 ND 8 1.2 Acenaphthykene 1 3.7 4.9 4.3 Anthracene 9.8 28.8 16.9 Benzolgaphthene 1 129 392 254 Benzolghifuoranthene 1 129 392 264 Benzolghifuoranthene 1 126 417 236 Biphenyl 1 ND 1.2 ND Chrysene 160.8 300 117 Dibenz(a,h]anthracene 1 8.7						
Total Detectable PAHs 2544.5 105.19 106.19 Analyte MDL DAC02 DAC03 DAC04 1-Methylaphthalene 1 ND 2.4 ND 2.3.5-Trimethylaphthalene 1 ND ND ND 2.3.5-Trimethylaphthalene 1 ND ND ND 2.4.6.1144 ND 1.4 Acenaphthone 1 A.4 2.4.6.1144 Acenaphthone 1 ND 4 1.4 Acenaphthone 1 9.8 2.8.8 16.9 Benzolaphthone Benzolapyrere 1 50.4 492 129 Benzolaphthone Benzolapyrere 1 70.6 250 129 Benzolaphthone Benzolaphthonanthene 1 126 417 236 Benzolaphthone 100.7 ND Chrysene 1 60.8 300 117 Dibenzla, hjantracene 18.7 91.7 44.2 Flooranthene 1 ND 7.0					-	
Analyte MDL DAC02 DAC03 DAC04 1-Metrylpnanthrene 1 ND ND ND 2.3.5-Trimetrylnaphthalene 1 ND ND ND 2.6.Dimetrylnaphthalene 1 ND ND ND 2.6.Dimetrylnaphthalene 1 ND 4 1.4 Acenaphthylene 1 3.7 4.9 4.3 Anthracene 1 56.4 492 129 Benzolglaptrene 1 50.740 281 Benzolplifuoranthene 1 129 392 254 Benzolplifuoranthene 1 126 417 236 Benzolplifuoranthene 1 126 417 236 Benzolplifuoranthene 1 160.8 300 117 Dibenziga.hjanthracene 1 8.7 ND Classene Fluoranthene 1 17.3 13 129 Fluoranthene 1 ND 2.7 ND		1				
1-Methylphenanthrene 1 ND 2.4 ND 1-Methylphenanthrene 1 ND ND ND 2.5-Trinethylnaphthalene 1 ND ND ND 2.6-Drinethylnaphthalene 1 ND 1.8 1.1 2.Methylnaphthalene 1 ND 8 1.2 Acenaphthylene 1 3.7 4.9 4.3 Anthracene 1 9.8 28.8 16.9 Benzolglitoranthene 1 150 740 281 Benzolglitoranthene 1 129 392 254 Benzolglitoranthene 1 126 417 236 Benzolglitoranthene 1 126 417 236 Biphenyl 1 ND 1.2 ND Chrysene 1 60.8 300 117 Dibenz[a,h]anthracene 1 8.7 71.7 44.2 Fluoranthene 1 ND 2.7 ND						
I-Methylphenanthrene I ND ND 2,3,5-Trimethylnaphthalene 1 ND ND 2,3,6-Trimethylnaphthalene 1 ND 1.8 1.1 2-Methylnaphthalene 1 ND 8 1.2 Acenaphthene 1 ND 4 1.4 Acenaphthylene 1 3.7 4.9 4.3 Anthracene 1 9.8 28.8 16.9 Benzalghyrene 1 150 740 281 Benzolghyrene 1 70.6 250 129 Benzolghyrene 1 69.9 203 122 Benzolghyrene 1 60.8 300 117 Dibenz[a,h]anthracene 1 81.7 91.7 44.2 Fluoranthene 1 ND 2.7 ND Indeno[1,2,3-c,d]pyrene 79.8 229 133 Naphthalene 1 ND 45.5 18.8 Pyrene 1 23.9						
2,3.5-Trimethylnaphthalene 1 ND ND 2,6-Dimethylnaphthalene 1 ND 1.8 1.1 2,6-Dimethylnaphthalene 1 ND 8 1.2 Acenaphthylene 1 ND 4 1.4 Acenaphthylene 1 3.7 4.9 4.3 Anthracene 1 9.8 28.8 16.9 Benzolgliouranthene 1 150 740 281 Benzolgliouranthene 1 129 392 254 Benzolgliouranthene 1 126 417 236 Benzolgliouranthene 1 126 417 236 Biphenyl 1 ND 1.2 ND Chrysene 1 60.8 300 117 Dibenz(a, hjanthracene 1 18.7 91.7 44.2 Fluoranthene 1 ND 2.7 ND Indenol 1, 2.3 c.djpyrene 1 ND 2.7 ND Indenol						
2,6-Dimethylinaphthalene 1 ND 1.8 1.1 2-Methylnaphthalene 1 ND 8 1.2 Acenaphthene 1 ND 4 1.4 Acenaphthene 1 3.7 4.9 4.3 Anthracene 1 9.8 28.8 16.9 Benz(alphthylene 1 56.4 492 129 Benz(alphthylene 1 150 740 281 Benzo(blyvrene 1 70.6 250 129 Benzo(k)pyrene 1 70.6 250 129 Benzo(k)fluoranthene 1 126 417 236 Bipheryl 1 ND 1.2 ND Chrysene 1 60.8 300 117 Dibenz(a,h)anthracene 1 31.7 313 129 Fluoranthene 1 ND 2.7 ND Indeno[1, 2.3-c,d]pyrene 1 ND 45.5 18.8 Pyrene	1-Methylphenanthrene	1	ND	ND	ND	
2-Methylnaphthalene 1 ND 8 1.2 Acenaphthene 1 ND 4 1.4 Acenaphthylene 1 3.7 4.9 4.3 Anthracene 1 9.8 28.8 16.9 Benzolajpyrene 1 150 740 281 Benzolajpyrene 1 150 740 281 Benzolajpyrene 1 150 740 281 Benzolajpyrene 1 70.6 250 129 Benzolajhjpevine 1 69.9 203 122 Benzojkjfluoranthene 1 126 417 236 Biphenyl 1 ND 1.2 ND Chrysene 1 60.8 300 117 Dibenzja, hjanthracene 1 81.7 31.3 129 Fluorene 1 ND 2.7 ND Indeno[1,2,3-c,d]pyrene 79.8 229 133 Napthalene 1 ND	2,3,5-Trimethylnaphthalene	1	ND	ND	ND	
Acenaphthene 1 ND 4 1.4 Acenaphthylene 1 3.7 4.9 4.3 Anthracene 1 9.8 28.8 16.9 Benz(a]anthracene 1 56.4 492 129 Benzolejpyrene 1 150 740 281 Benzolejpyrene 1 70.6 250 129 Benzolejpyrene 1 69.9 203 122 Benzolejpyrene 1 60.8 300 117 Diberz[a,h]anthracene 1 81.7 91.7 44.2 Fluoranthene 1 31.7 313 129 Fluoranthene 1 79.8 229 133 Naphthalene 1 ND 4.7 ND Anget MD 58.7 Perylene 1 ND 4.8 Pyrene 1 ND 46.5 18.8 Pyrene ND 46.5 19.9 4.3.5 Acenaphthylenhent	2,6-DimethyInaphthalene	1	ND	1.8	1.1	
Acenaphthene 1 ND 4 1.4 Acenaphthylene 1 3.7 4.9 4.3 Anthracene 1 9.8 28.8 16.9 Benz(aljanthracene 1 56.4 492 129 Benzolpil/ucranthene 1 129 392 254 Benzolpil/ucranthene 1 126 417 236 Bipheryl 1 ND 1.2 ND Chrysene Chrysene 1 60.8 300 117 Diberz[a,h]anthracene 1 81.7 74.2 Fluoranthene 1 81.7 91.7 44.2 Fluoranthene 1 ND 2.7 ND Indeno[1,2,3-c,d]pyrene 1 92.9 133 NAghthalene ND 46.5 18.8 Pyrene	2-Methylnaphthalene	1	ND	8	1.2	
Accenaphthylene 1 3.7 4.9 4.3 Anthracene 1 9.8 28.8 16.9 Benzolalphracene 1 56.4 492 129 Benzolalpyrene 1 150 740 281 Benzolelpyrene 1 70.6 250 129 Benzolejpyrene 1 70.6 250 129 Benzolejpyrene 1 70.6 250 129 Benzolejpyrene 1 80.9 203 122 Benzolejpyrene 1 80.9 203 122 Benzolejhlucranthene 1 18.7 91.7 44.2 Fluoranthene 1 81.7 91.7 44.2 Fluoranthene 1 ND 2.7 ND Indenof1,2.3-c,djpyrene 1 79.8 229 133 Naphthalene 1 ND 46.5 18.8 Pyrene 1 ND 42.0 ND 1-Methylnaphthal		1	ND	4	1.4	
Anthracene 1 9.8 28.8 16.9 Benz[a]anthracene 1 56.4 492 129 Benzola]pyrene 1 150 740 281 Benzola[pyrene 1 720 254 281 Benzole[pyrene 1 70.6 250 129 Benzole[pyrene 1 60.8 300 122 Benzole[ituoranthene 1 126 417 236 Biphenyl 1 ND 1.2 ND Chrysene 1 60.8 300 117 Dibenz[a, h]anthracene 1 81.7 313 129 Fluoranthene 1 ND 2.7 ND Indeno[1, 2, 3-c, d]pyrene 1 ND 2.7 ND Indeno[1, 2, 3-c, d]pyrene 1 ND 1.5 2 Perylene 1 ND 40.3 72.6 Total Detectable PAHs 105.19 105.19 105.19 Analyte				-		
Benz[a]anthracene 1 56.4 492 129 Benzo[a]pyrene 1 150 740 281 Benzo[b]fuoranthene 1 129 392 254 Benzo[a]pyrene 1 70.6 250 129 Benzo[k]fluoranthene 1 266 129 Benzo[k]fluoranthene 1 266 300 Chrysene 1 0.0 1.2 ND Chrysene 1 81.7 91.7 44.2 Fluoranthene 1 31.7 313 129 Fluoranthene 1 ND 2.7 ND Indeno[1,2,3-c,d]pyrene 1 79.8 229 133 Naphthalene 1 ND 46.5 18.8 Pyrene 1 ND 403 72.6 Total Detectable PAHs 105.19 105.19 105.19 Analyte MDL SWZ01 SWZ02 SWZ04 1-Methylnaphthalene 1 0.2						
Benzolajpyrene 1 150 740 281 Benzolgjhluoranthene 1 129 392 254 Benzolgjhluoranthene 1 70.6 250 129 Benzolgjhluoranthene 1 26 417 236 Biphenyl 1 ND 1.2 ND Chrysene 1 60.8 300 117 Dibenzla, hjanthracene 1 81.7 91.7 44.2 Fluoranthene 1 31.7 313 129 Fluoranthene 1 ND 2.7 ND Indeno[1,2,3-c,d]pyrene 1 79.8 229 133 Naptithalene 1 ND 11.5 2 Perylene 1 23.9 83.7 58.7 Phenanthrene 1 ND 40.3 72.6 Total Detectable PAHs 1005.19 105.19 Analyte Analyte MDL SWZ01 SWZ02 SWZ04 1-Methylnaphtha						
Benzolp/fluoranthene 1 129 392 254 Benzolp/ipurene 1 70.6 250 129 Benzolp/iperylene 1 69.9 203 122 Benzolp/iperylene 1 26 417 236 Biphenyl 1 ND 1.2 ND Chrysene 1 60.8 300 117 Dibenz[a,h]anthracene 1 81.7 91.7 44.2 Fluoranthene 1 31.7 313 129 Fluorene 1 ND 2.7 ND Indeno[1,2,3-c,d]pyrene 1 79.8 229 133 Maphthalene 1 ND 1.5 2 Perylene 1 23.9 83.7 58.7 Phranttrene 1 ND 46.5 18.8 Pyrene 1 ND 40.3 72.6 Total Detectable PAHs 105.19 105.19 105.19 Analyte MDL						
Benzolejpyrene 1 70.6 250 129 Benzolg,h,ijperylene 1 69.9 203 122 Benzolk/fluoranthene 1 126 417 236 Biphenyl 1 ND 1.2 ND Chrysene 1 60.8 300 117 Dibenz[a,h]anthracene 1 18.7 91.7 44.2 Fluoranthene 1 31.7 313 129 Fluorene 1 ND 2.7 ND Indeno[1,2,3-c,d]pyrene 1 79.8 229 133 Naphthalene 1 ND 1.5 2 Perylene 1 23.9 83.7 58.7 Phenanthrene 1 ND 46.5 18.8 Pyrene 1 ND 105.19 105.19 Analyte MDL SWZ04 1 1 1-Methylphaphthalene 1 2.1 6.8 2.9 2-bimethylnaphthalene						
Benzolg,h.ijperylene 1 69.9 203 122 Benzolg,lijuoranthene 1 126 417 236 Biphenyl 1 ND 1.2 ND Chrysene 1 60.8 300 117 Dibenz[a,h]anthracene 1 18.7 91.7 44.2 Fluoranthene 1 31.7 313 129 Fluorene 1 ND 2.7 ND Indeno[1,2,3-c,d]pyrene 1 79.8 229 133 Naphthalene 1 ND 11.5 2 Perylene 1 23.9 83.7 58.7 Phenanthrene 1 ND 40.3 72.6 Total Detectable PAHs 105.19 105.19 105.19 Analyte MDL SW201 SW204 1-Methyliphenanthrene 1 ND 5.2 ND 1-Methyliphenhalene 1 2.1 6.8 2.9 2.4-Dimithylnaphthalene <td< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td></td<>			-			
Benzolk/Huoranthene 1 126 417 236 Biphenyl 1 ND 1.2 ND Chrysene 1 60.8 300 117 Dibenz[a,h]anthracene 1 18.7 91.7 44.2 Fluoranthene 1 31.7 313 129 Fluorene 1 ND 2.7 ND Indeno[1,2,3-c,d]pyrene 1 79.8 229 133 Naphthalene 1 ND 11.5 2 Perylene 1 23.9 83.7 58.7 Phenanthrene 1 ND 46.5 18.8 Pyrene 1 ND 40.3 72.6 Total Detectable PAHs 105.19 105.19 105.19 1.Methylnaphthalene 1 ND 16.2 ND 2.3.5-Trimethylnaphthalene 1 3.7 37.1 3 2.6-Dimethylnaphthalene 1 7.4 2.1 Acenaphthylnaphthalene 1						
Biphenyl 1 ND 1.2 ND Chrysene 1 60.8 300 117 Dibenz[a,h]anthracene 1 18.7 91.7 44.2 Fluoranthene 1 31.7 313 129 Fluorenthene 1 ND 2.7 ND Indeno[1,2,3-c,d]pyrene 1 79.8 229 133 Naphthalene 1 ND 2.7 ND Indeno[1,2,3-c,d]pyrene 1 23.9 83.7 58.7 Phenanthrene 1 ND 46.5 18.8 Pyrene 1 ND 403 72.6 Total Detectable PAHs 105.19 105.19 105.19 1-Methylnaphthalene 1 3.7 37.1 3 2,6-Dimethylnaphthalene 1 2.7 4.2.1 Acenaphthene 1 2 7.4 2.1 Acenaphthene 1 3.5 4.4 3.5 Acenaphthene 1 7.4	Benzo[g,h,i]perylene	1	69.9	203	122	
Chrysene 1 60.8 300 117 Dibenz[a,h]anthracene 1 18.7 91.7 44.2 Fluoranthene 1 31.7 313 129 Fluorene 1 ND 2.7 ND Indeno[1,2,3-c,d]pyrene 1 79.8 229 133 Naphthalene 1 ND 11.5 2 Perylene 1 23.9 83.7 58.7 Phenanthrene 1 ND 46.5 18.8 Pyrene 1 ND 40.3 72.6 Total Detectable PAHs 105.19 105.19 105.19 Analyte MDL SWZ01 SWZ02 SWZ04 2,3.5-Trimethylnaphthalene 1 3.7 37.1 3 2,6-Dimethylnaphthalene 1 3.7 37.1 3 2,6-Dimethylnaphthalene 1 7.4 4.4 3.5 Acenaphthylene 1 7.4 1.4.6 9.2 Anthracene	Benzo[k]fluoranthene	1	126	417	236	
Dibenz[a,h]anthracene 1 18.7 91.7 44.2 Fluoranthene 1 31.7 313 129 Fluorene 1 ND 2.7 ND Indeno[1,2,3-c,d]pyrene 1 79.8 229 133 Naphthalene 1 ND 1.5 2 Perylene 1 23.9 83.7 58.7 Phenanthrene 1 ND 46.5 18.8 Pyrene 1 ND 403 72.6 Total Detectable PAHs 105.19 105.19 Analyte MDL SWZ01 SWZ02 SWZ04 1-Methylphenanthrene 1 ND 5.2 ND 1.4 1.4 1.6.8 2.9 2.4.5-Trimethylnaphthalene 1 2.7 7.4 2.1 Acenaphthene 1 3.5 4.4 3.5 Acenaphthene 1 7.4 14.6 9.2 9.2 4.4 3.5 Acenaphthylene 1 7.4 2.1	Biphenyl	1	ND	1.2	ND	
Dibenz[a,h]anthracene 1 18.7 91.7 44.2 Fluoranthene 1 31.7 313 129 Fluorene 1 ND 2.7 ND Indeno[1,2,3-c,d]pyrene 1 79.8 229 133 Naphthalene 1 ND 1.5 2 Perylene 1 23.9 83.7 58.7 Phenanthrene 1 ND 46.5 18.8 Pyrene 1 ND 403 72.6 Total Detectable PAHs 105.19 105.19 105.19 Analyte MDL SWZ01 SWZ02 SWZ04 1-Methylphenanthrene 1 ND 5.2 ND 1-Methylphenanthrene 1 2.1 6.8 2.9 2.4Methylinaphthalene 1 3.7 37.1 3 2.6-Dimethylinaphthalene 1 7.4 2.1 Acenaphthylene 1 7.4 14.6 9.2 Acenaphthylene 1 <td< td=""><td>Chrysene</td><td>1</td><td>60.8</td><td>300</td><td>117</td><td></td></td<>	Chrysene	1	60.8	300	117	
Fluoranthene 1 31.7 313 129 Fluorene 1 ND 2.7 ND Indencj 1,2,3-c,d]pyrene 1 79.8 229 133 Naphthalene 1 ND 11.5 2 Perylene 1 23.9 83.7 58.7 Phenanthrene 1 ND 46.5 18.8 Pyrene 1 ND 403 72.6 Total Detectable PAHs 105.19 105.19 105.19 Analyte MDL SWZ01 SWZ02 SWZ04 1-Methylipaphthalene 1 ND 16.2 ND 2,3-5-Trimethylnaphthalene 1 3.7 37.1 3 2,6-Dimethylnaphthalene 1 2.1 6.8 2.9 2-Methylnaphthalene 1 2.1 6.8 2.9 2-Methylnaphthalene 1 7.4 3.1.3 30.2 Benz[a]anthracene 1 19.6 31.3 30.2 Benzo[a]pyrene 1 421 565 526 Benzo[a]pyrene <td>Dibenz[a,h]anthracene</td> <td>1</td> <td>18.7</td> <td>91.7</td> <td>44.2</td> <td></td>	Dibenz[a,h]anthracene	1	18.7	91.7	44.2	
Fluorene 1 ND 2.7 ND Indeno[1,2,3-c,d]pyrene 1 79.8 229 133 Naphthalene 1 ND 11.5 2 Perylene 1 23.9 83.7 58.7 Phenanthrene 1 ND 46.5 18.8 Pyrene 1 ND 403 72.6 Total Detectable PAHs 105.19 105.19 105.19 Analyte MDL SWZ01 SWZ02 SWZ04 1-Methylnaphthalene 1 ND 5.2 ND 1-Methylphenanthrene 1 ND 16.2 ND 2,3.5-Trimethylnaphthalene 1 2.7 4 2.1 Acenaphthene 1 3.7 37.1 3 2.6-Dimethylnaphthalene 1 2.1 6.8 2.9 2.4 2.4-Dimethylnaphthalene 1 7.4 2.1 Acenaphthylene 1 7.4 3.1 3.0.2 Benzo[alphrene 1 <		1	31.7		129	
Indeno[1,2,3-c,d]pyrene 1 79.8 229 133 Naphthalene 1 ND 11.5 2 Perylene 1 23.9 83.7 58.7 Phenanthrene 1 ND 46.5 18.8 Pyrene 1 ND 403 72.6 Total Detectable PAHs 105.19 105.19 105.19 Analyte MDL SWZ01 SWZ04 1-Methylnaphthalene 1 ND 5.2 ND 1-Methylphenanthrene 1 ND 16.2 ND 2,3-5-Trimethylnaphthalene 1 2.7 3 2.9 2-Methylnaphthalene 1 2.7 4 2.1 Accenaphthene 1 7.4 2.1 Accenaphthylene 1 1 7.4 14.6 9.2 Anthracene 1 19.6 31.3 30.2 Benzo[a]pyrene 1 421 565 526 526 526 526 526						
Naphthalene 1 ND 11.5 2 Perylene 1 23.9 83.7 58.7 Phenanthrene 1 ND 46.5 18.8 Pyrene 1 ND 403 72.6 Total Detectable PAHs 105.19 105.19 105.19 Analyte MDL SWZ01 SWZ02 SWZ04 1-Methylinaphthalene 1 ND 5.2 ND 1-Methylinaphthalene 1 3.7 37.1 3 2,6-Dimethylinaphthalene 1 2.7 4 2.1 Acenaphthene 1 3.5 4.4 3.5 Acenaphthene 1 7.4 2.1 Acenaphthylene 1 7.4 14.6 9.2 Anthracene 1 19.6 31.3 30.2 Benz[a]anthracene 1 1 19.6 31.3 30.2 Benzo[a]pyrene 1 421 565 526 Benzo[a]pyrene 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
Perylene 1 23.9 83.7 58.7 Phenanthrene 1 ND 46.5 18.8 Pyrene 1 ND 403 72.6 Total Detectable PAHs 105.19 105.19 105.19 Analyte MDL SWZ01 SWZ02 SWZ04 1-Methylnaphthalene 1 ND 5.2 ND 1-Methylphenanthrene 1 ND 5.2 ND 2.3,5-Trimethylnaphthalene 1 3.7 7.1 3 2,6-Dimethylnaphthalene 1 2.7 4 2.1 Acenaphthylaphthalene 1 2.7 4 2.1 Acenaphthene 1 3.5 4.4 3.5 Acenaphthylene 1 7.4 14.6 9.2 Anthracene 1 19.6 31.3 30.2 Benzo[a]phyrene 1 226 252 252 Benzo[a]phyrene 1 226 269 254 Benzo[g]h,i]p						
Phenanthrene 1 ND 46.5 18.8 Pyrene 1 ND 403 72.6 Total Detectable PAHs 105.19 105.19 105.19 Analyte MDL SWZ01 SWZ02 SWZ04 1-Methylaphthalene 1 ND 5.2 ND 1-Methylphenanthrene 1 ND 16.2 ND 2,3,5-Trimethylnaphthalene 1 3.7 37.1 3 2,6-Dimethylnaphthalene 1 2.7.4 2.1 Acenaphthene 1 3.5 4.4 3.5 Acenaphthene 1 7.4 2.1 Acenaphthylene 1 7.4 14.6 9.2 Anthracene 1 19.6 31.3 30.2 Benz[a]anthracene 1 170 265 526 526 526 526 526 526 526 526 526 526 526 526 526 526 526 526 526 526						
Pyrene 1 ND 403 72.6 Total Detectable PAHs 105.19 105.19 105.19 Analyte MDL SWZ01 SWZ02 SWZ04 1-Methylaphthalene 1 ND 5.2 ND 1-Methylphenanthrene 1 ND 16.2 ND 2,3,5-Trimethylnaphthalene 1 3.7 37.1 3 2,6-Dimethylnaphthalene 1 2.1 6.8 2.9 2-Methylnaphthalene 1 2.7 4 2.1 Accenaphthene 1 3.5 4.4 3.5 Accenaphthylene 1 7.4 14.6 9.2 Anthracene 1 19.6 31.3 30.2 Benz[a]anthracene 1 170 265 252 Benzo[b]fluoranthene 1 226 269 254 Benzo[b]pyrene 1 83 241 215 Benzo[k]fluoranthene 1 253 353 335						
Total Detectable PAHs 105.19 105.19 105.19 Analyte MDL SWZ01 SWZ02 SWZ04 1-Methylnaphthalene 1 ND 5.2 ND 1-Methylphenanthrene 1 ND 16.2 ND 2,3,5-Trimethylnaphthalene 1 3.7 37.1 3 2,6-Dimethylnaphthalene 1 2.1 6.8 2.9 2-Methylnaphthalene 1 2.1 6.8 2.9 2-Methylnaphthalene 1 2.7.4 2.1 Acenaphthene 1 3.5 4.4 3.5 Acenaphthylene 1 7.4 14.6 9.2 Anthracene 1 19.6 31.3 30.2 Benz[a]anthracene 1 170 265 252 Benzo[a]pyrene 1 421 565 526 Benzo[b]fluoranthene 1 295 426 381 Benzo[c]pyrene 1 183 241 215 Benzo[k]fluoranth						
Analyte MDL SWZ01 SWZ02 SWZ04 1-Methylnaphthalene 1 ND 5.2 ND 1-Methylphenanthrene 1 ND 16.2 ND 2,3,5-Trimethylnaphthalene 1 3.7 37.1 3 2,6-Dimethylnaphthalene 1 2.1 6.8 2.9 2-Methylnaphthalene 1 2.7.4 2.1 Acenaphthene 1 3.5 4.4 3.5 Acenaphthene 1 7.4 14.6 9.2 Anthracene 1 19.6 31.3 30.2 Benz[a]anthracene 1 170 265 252 Benzo[a]pyrene 1 421 565 526 Benzo[bfluoranthene 1 295 426 381 Benzo[c]pyrene 1 183 241 215 Benzo[g,h,i]perylene 1 226 269 254 Benzo[k]f(luoranthene 1 233 335 335		1				
1-Methylnaphthalene 1 ND 5.2 ND 1-Methylphenanthrene 1 ND 16.2 ND 2,3,5-Trimethylnaphthalene 1 3.7 37.1 3 2,6-Dimethylnaphthalene 1 2.1 6.8 2.9 2-Methylnaphthalene 1 2 7.4 2.1 Acenaphthene 1 3.5 4.4 3.5 Acenaphthylene 1 7.4 14.6 9.2 Anthracene 1 19.6 31.3 30.2 Benz[a]anthracene 1 170 265 252 Benzo[a]pyrene 1 421 565 526 Benzo[a]pyrene 1 226 269 254 Benzo[b]fluoranthene 1 226 269 254 Benzo[k]fluoranthene 1 23 353 335 Biphenyl 1 1.3 2.1 1.5 Chrysene 1 141 234 203 <						
1-Methylphenanthrene 1 ND 16.2 ND 2,3,5-Trimethylnaphthalene 1 3.7 37.1 3 2,6-Dimethylnaphthalene 1 2.1 6.8 2.9 2-Methylnaphthalene 1 2 7.4 2.1 Acenaphthene 1 3.5 4.4 3.5 Acenaphthylene 1 7.4 14.6 9.2 Anthracene 1 19.6 31.3 30.2 Benz[a]anthracene 1 170 265 252 Benzo[a]pyrene 1 421 565 526 Benzo[b]fluoranthene 1 295 426 381 Benzo[c]pyrene 1 183 241 215 Benzo[g,h,i]perylene 1 226 269 254 Benzo[k]fluoranthene 1 253 353 335 Biphenyl 1 1.3 2.1 1.5 Chrysene 1 141 234 203						
2,3,5-Trimethylnaphthalene 1 3.7 37.1 3 2,6-Dimethylnaphthalene 1 2.1 6.8 2.9 2-Methylnaphthalene 1 2 7.4 2.1 Acenaphthene 1 3.5 4.4 3.5 Acenaphthylene 1 7.4 14.6 9.2 Anthracene 1 19.6 31.3 30.2 Benz[a]anthracene 1 170 265 252 Benzo[a]pyrene 1 421 565 526 Benzo[b]fluoranthene 1 295 426 381 Benzo[b]fluoranthene 1 226 269 254 Benzo[b]fluoranthene 1 253 353 335 Biphenyl 1 1.3 2.1 1.5 Chrysene 1 141 234 203 Dibenz[a,h]anthracene 1 54 73.7 70.8 Fluoranthene 1 195 385 312 Fluoranthene 1 3.7 6.3 5.4 Indeno[1,2,3-	1-Methylnaphthalene	1			ND	
2,6-Dimethylnaphthalene 1 2.1 6.8 2.9 2-Methylnaphthalene 1 2 7.4 2.1 Acenaphthene 1 3.5 4.4 3.5 Acenaphthylene 1 7.4 14.6 9.2 Anthracene 1 19.6 31.3 30.2 Benz[a]anthracene 1 170 265 252 Benzo[a]pyrene 1 421 565 526 Benzo[b]fluoranthene 1 295 426 381 Benzo[g]pyrene 1 183 241 215 Benzo[g]h,i]perylene 1 253 353 335 Biphenyl 1 1.3 2.1 1.5 Chrysene 1 141 234 203 Dibenz[a,h]anthracene 1 54 73.7 70.8 Fluoranthene 1 195 385 312 Fluoranthene 1 3.7 6.3 5.4 Indeno[1,2,3-c,d]pyrene 1 220 272 260	1-Methylphenanthrene	1	ND	16.2	ND	
2-Methylnaphthalene 1 2 7.4 2.1 Acenaphthene 1 3.5 4.4 3.5 Acenaphthylene 1 7.4 14.6 9.2 Anthracene 1 19.6 31.3 30.2 Benz[a]anthracene 1 170 265 252 Benzo[a]pyrene 1 421 565 526 Benzo[b]fluoranthene 1 295 426 381 Benzo[e]pyrene 1 183 241 215 Benzo[k]fluoranthene 1 226 269 254 Benzo[k]fluoranthene 1 253 353 335 Biphenyl 1 1.3 2.1 1.5 Chrysene 1 141 234 203 Dibenz[a,h]anthracene 1 5 385 312 Fluoranthene 1 195 385 312 Fluoranthene 1 3.7 6.3 5.4 Indeno[1,2,3-c,d]pyrene 1 220 272 260	2,3,5-TrimethyInaphthalene	1	3.7	37.1	3	
2-Methylnaphthalene 1 2 7.4 2.1 Acenaphthene 1 3.5 4.4 3.5 Acenaphthylene 1 7.4 14.6 9.2 Anthracene 1 19.6 31.3 30.2 Benz[a]anthracene 1 170 265 252 Benzo[a]pyrene 1 421 565 526 Benzo[b]fluoranthene 1 295 426 381 Benzo[e]pyrene 1 183 241 215 Benzo[k]fluoranthene 1 226 269 254 Benzo[k]fluoranthene 1 253 353 335 Biphenyl 1 1.3 2.1 1.5 Chrysene 1 141 234 203 Dibenz[a,h]anthracene 1 5 385 312 Fluoranthene 1 195 385 312 Fluoranthene 1 3.7 6.3 5.4 Indeno[1,2,3-c,d]pyrene 1 220 272 260		1	2.1	6.8	2.9	
Acenaphthene 1 3.5 4.4 3.5 Acenaphthylene 1 7.4 14.6 9.2 Anthracene 1 19.6 31.3 30.2 Benz[a]anthracene 1 170 265 252 Benzo[a]pyrene 1 421 565 526 Benzo[b]fluoranthene 1 295 426 381 Benzo[e]pyrene 1 183 241 215 Benzo[g,h,i]perylene 1 226 269 254 Benzo[k]fluoranthene 1 253 353 335 Biphenyl 1 1.3 2.1 1.5 Chrysene 1 141 234 203 Dibenz[a,h]anthracene 1 54 73.7 70.8 Fluoranthene 1 195 385 312 Fluorene 1 3.7 6.3 5.4 Indeno[1,2,3-c,d]pyrene 1 220 272 260		1	2		2.1	
Acenaphthylene 1 7.4 14.6 9.2 Anthracene 1 19.6 31.3 30.2 Benz[a]anthracene 1 170 265 252 Benz[a]pyrene 1 421 565 526 Benzo[b]fluoranthene 1 295 426 381 Benzo[e]pyrene 1 183 241 215 Benzo[g,h,i]perylene 1 226 269 254 Benzo[k]fluoranthene 1 253 353 335 Biphenyl 1 1.3 2.1 1.5 Chrysene 1 141 234 203 Dibenz[a,h]anthracene 1 54 73.7 70.8 Fluoranthene 1 195 385 312 Fluorene 1 3.7 6.3 5.4 Indeno[1,2,3-c,d]pyrene 1 220 272 260						
Anthracene 1 19.6 31.3 30.2 Benz[a]anthracene 1 170 265 252 Benzo[a]pyrene 1 421 565 526 Benzo[b]fluoranthene 1 295 426 381 Benzo[e]pyrene 1 183 241 215 Benzo[g,h,i]perylene 1 226 269 254 Benzo[k]fluoranthene 1 253 353 335 Biphenyl 1 1.3 2.1 1.5 Chrysene 1 141 234 203 Dibenz[a,h]anthracene 1 54 73.7 70.8 Fluoranthene 1 195 385 312 Fluorene 1 3.7 6.3 5.4 Indeno[1,2,3-c,d]pyrene 1 220 272 260						
Benz[a]anthracene 1 170 265 252 Benzo[a]pyrene 1 421 565 526 Benzo[b]fluoranthene 1 295 426 381 Benzo[e]pyrene 1 183 241 215 Benzo[g,h,i]perylene 1 226 269 254 Benzo[k]fluoranthene 1 253 353 335 Biphenyl 1 1.3 2.1 1.5 Chrysene 1 141 234 203 Dibenz[a,h]anthracene 1 54 73.7 70.8 Fluoranthene 1 195 385 312 Fluorene 1 3.7 6.3 5.4 Indeno[1,2,3-c,d]pyrene 1 220 272 260						
Benzo[a]pyrene 1 421 565 526 Benzo[b]fluoranthene 1 295 426 381 Benzo[e]pyrene 1 183 241 215 Benzo[g,h,i]perylene 1 226 269 254 Benzo[k]fluoranthene 1 253 353 335 Biphenyl 1 1.3 2.1 1.5 Chrysene 1 141 234 203 Dibenz[a,h]anthracene 1 54 73.7 70.8 Fluoranthene 1 195 385 312 Fluorene 1 3.7 6.3 5.4 Indeno[1,2,3-c,d]pyrene 1 220 272 260						
Benzo[b]fluoranthene 1 295 426 381 Benzo[e]pyrene 1 183 241 215 Benzo[g,h,i]perylene 1 226 269 254 Benzo[k]fluoranthene 1 253 353 335 Biphenyl 1 1.3 2.1 1.5 Chrysene 1 141 234 203 Dibenz[a,h]anthracene 1 54 73.7 70.8 Fluoranthene 1 195 385 312 Fluorene 1 3.7 6.3 5.4 Indeno[1,2,3-c,d]pyrene 1 220 272 260						
Benzo[e]pyrene 1 183 241 215 Benzo[g,h,i]perylene 1 226 269 254 Benzo[k]fluoranthene 1 253 353 335 Biphenyl 1 1.3 2.1 1.5 Chrysene 1 141 234 203 Dibenz[a,h]anthracene 1 54 73.7 70.8 Fluoranthene 1 195 385 312 Fluorene 1 3.7 6.3 5.4 Indeno[1,2,3-c,d]pyrene 1 220 272 260						
Benzo[g,h,i]perylene 1 226 269 254 Benzo[k]fluoranthene 1 253 353 335 Biphenyl 1 1.3 2.1 1.5 Chrysene 1 141 234 203 Dibenz[a,h]anthracene 1 54 73.7 70.8 Fluoranthene 1 195 385 312 Fluorene 1 3.7 6.3 5.4 Indeno[1,2,3-c,d]pyrene 1 220 272 260						
Benzo[k]fluoranthene 1 253 353 335 Biphenyl 1 1.3 2.1 1.5 Chrysene 1 141 234 203 Dibenz[a,h]anthracene 1 54 73.7 70.8 Fluoranthene 1 195 385 312 Fluorene 1 3.7 6.3 5.4 Indeno[1,2,3-c,d]pyrene 1 220 272 260						
Biphenyl 1 1.3 2.1 1.5 Chrysene 1 141 234 203 Dibenz[a,h]anthracene 1 54 73.7 70.8 Fluoranthene 1 195 385 312 Fluorene 1 3.7 6.3 5.4 Indeno[1,2,3-c,d]pyrene 1 220 272 260						
Chrysene 1 141 234 203 Dibenz[a,h]anthracene 1 54 73.7 70.8 Fluoranthene 1 195 385 312 Fluorene 1 3.7 6.3 5.4 Indeno[1,2,3-c,d]pyrene 1 220 272 260	Benzo[k]fluoranthene	1	253	353		
Chrysene 1 141 234 203 Dibenz[a,h]anthracene 1 54 73.7 70.8 Fluoranthene 1 195 385 312 Fluorene 1 3.7 6.3 5.4 Indeno[1,2,3-c,d]pyrene 1 220 272 260	Biphenyl	1	1.3	2.1	1.5	
Dibenz[a,h]anthracene 1 54 73.7 70.8 Fluoranthene 1 195 385 312 Fluorene 1 3.7 6.3 5.4 Indeno[1,2,3-c,d]pyrene 1 220 272 260		1				
Fluoranthene 1 195 385 312 Fluorene 1 3.7 6.3 5.4 Indeno[1,2,3-c,d]pyrene 1 220 272 260						
Fluorene 1 3.7 6.3 5.4 Indeno[1,2,3-c,d]pyrene 1 220 272 260						
Indeno[1,2,3-c,d]pyrene 1 220 272 260						
ivaprilinalene I 3.7 4.4 3.2						
	ivapninaiene	1	3.7	4.4	3.2	

Sediment chemistry data August 17, 2004—PAH results summary (all results in ng/dry g)—CRG Marine Laboratories, Inc.

Laboratories, Inc.							
Perylene	1	83.3	104	100			
Phenanthrene	1	23.8	103	53.3			
Pyrene	1	214	421	314			
Total Detectable PAHs		105.19	105.19	105.19			
Analyte	MDL	2229 (R1)	2229 (R2)	2238	2243	2433	2441
1-Methylnaphthalene	1	ND	ND	ND	ND	2.7	ND
1-Methylphenanthrene	1	ND	ND	29.6	ND	ND	ND
2,3,5-TrimethyInaphthalene	1	ND	ND	ND	ND	ND	ND
2,6-Dimethylnaphthalene	1	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene	1	ND	ND	ND	ND	6.1	ND
Acenaphthene	1	ND	ND	ND	ND	1.5	ND
Acenaphthylene	1	3.4	2	ND	ND	9.8	ND
Anthracene	1	10.3	ND	1.1	ND	27.8	6.8
Benz[a]anthracene	1	116	39.1	3.6	11	269	26.5
Benzo[a]pyrene	1	184	64.9	8.1	20.6	531	30.5
Benzo[b]fluoranthene	1	103	49.3	6.8	17.9	346	24.1
Benzo[e]pyrene	1	73.1	29.9	3.5	10.9	225	12.7
Benzo[g,h,i]perylene	1	89.4	28.2	3.6	10.1	212	7.4
Benzo[k]fluoranthene	1	122	46.7	5.9	16.2	355	25.5
Biphenyl	1	ND	ND	ND	ND	2.4	ND
Chrysene	1	75.7	26.4	4.3	8.5	233	23.9
Dibenz[a,h]anthracene	1	22.5	8.4	ND	ND	ND	ND
Fluoranthene	1	127	17.9	15	ND	168	9.4
Fluorene	1	1.4	ND	ND	ND	2.4	ND
Indeno[1,2,3-c,d]pyrene	1	96	29.7	3.4	9.6	227	10.3
Naphthalene	1	ND	ND	ND	ND	13.5	ND
Perylene	1	31.5	10.1	ND	3.8	70.4	4.1
Phenanthrene	1	27.1	ND	9.6	ND	32.2	ND
Pyrene	1	94.4	ND	79.6	ND	165	ND
Total Detectable PAHs		105.19	105.19	174.1	108.6	2899.8	181.2

Sediment chemistry data August 17, 2004—PAH results summary (all results in ng/dry g)—CRG Marine Laboratories, Inc.

Sediment chemistry data August 17, 2004—PCB congeners results summary (all results in ng/dry g)—CRG Marine Laboratories, Inc.

ng/dry g)—CRG I		ories, inc.			
Analyte	MDL	BST01	BST04	BST07	
PCB018	1	ND	ND	ND	
PCB028	1	ND	ND	ND	
PCB031	1	ND	ND	ND	
PCB033	1	ND	ND	ND	
PCB037	1	ND	ND	ND	
PCB044	1	ND	ND	ND	
PCB049	1	ND	ND	ND	
PCB052	1	ND	ND	ND	
PCB066	1	ND	ND	ND	
PCB070	1	ND	ND	ND	
PCB074	1	ND	ND	ND	
PCB077	1	ND	ND	ND	
PCB081	1	ND	ND	ND	
PCB087	1	ND	ND	ND	
PCB095	1	1	ND	ND	
PCB097	1	ND	ND	ND	
PCB099	1	ND	ND	1	
PCB101	1	1.8	ND	1.1	
PCB105	1	ND	ND	ND	
PCB110	1	1.1	ND	1.1	
PCB114	1	ND	ND	ND	
PCB118	1	ND	ND	ND	
PCB119	1	ND	ND	ND	
PCB123	1	ND	ND	ND	

ng/dry g)—CRG Mari	ne Laborat		j	ie recute cumuly (un recute m
PCB126	1	ND	ND	ND
PCB128+167	1	ND	ND	ND
PCB138	1	1.7	ND	1
PCB141	1	ND	ND	ND
PCB149	1	1.1	ND	ND
PCB151	1	ND	ND	ND
PCB153	1	1.7	ND	ND
PCB156	1	ND	ND	ND
PCB157	1	ND	ND	ND
PCB158	1	ND	ND	ND
PCB168+132	1	ND	ND	ND
PCB169	1	ND	ND	ND
PCB170	1	ND	ND	ND
PCB177	1	ND	ND	ND
PCB180	1	1.6	ND	ND
PCB183	1	ND	ND	ND
PCB187	1	ND	ND	ND
PCB189	1	ND	ND	ND
PCB194	1	ND	ND	ND
PCB200	1	ND	ND	ND
	1	ND		ND
PCB201 PCB206	1	ND ND	ND ND	ND ND
Total Detectable PCBs		10	ND	4.2
Analyte	MDL	DAC02	DAC03	DAC04
PCB018	1	ND	5.5	ND
PCB028	1	ND	6.3	ND
PCB031	1	ND	7.8	ND
PCB033	1	ND	ND	ND
PCB037	1	ND	ND	ND
PCB044	1	ND	3.7	ND
PCB049	1	1.8	11.9	2.5
PCB052	1	ND	11	1.6
PCB066	1	ND	10.1	2.8
PCB070	1	ND	8.7	2.3
PCB074	1	2.1	6.3	4.3
PCB077	1	ND	ND	ND
PCB081	1	ND	ND	ND
PCB087	1	ND	ND	ND
PCB095	1	1.1	3.6	2.8
PCB097	1	ND	ND	ND
PCB099	1	ND	3.4	2.1
PCB101	1	ND	6.7	5.4
PCB105	1	ND	ND	ND
PCB110	1	1.2	5.2	4
PCB114	1	ND	ND	ND
PCB118	1	ND	7.9	2.9
PCB119	1	ND	ND	ND
PCB123	1	ND	ND	ND
PCB126	1	ND	ND	ND
PCB128+167	1	ND	ND	ND
PCB138	1	1.2	6.1	4
PCB136 PCB141	1	 ND	ND	ND
PCB149	1	1.3	3.2	3
PCB151	1	ND	1.3	1.2
PCB153	1	1.7	7.9	3.8
PCB156	1	ND	ND	ND
PCB157	1	ND	ND	ND
PCB158	1	ND	ND	ND

Sediment chemistry data August 17, 2004—PCB congeners results summary (all results in	
ng/dry g)—CRG Marine Laboratories, Inc.	

Sediment chemistry data August 17, 2004—PCB congeners results summary (all results in	
ng/dry g)—CRG Marine Laboratories, Inc.	

ng/dry g)—CRG M	arine Laborat	tories, inc.			
PCB168+132	1	ND	ND	ND	
PCB169	1	ND	ND	ND	
PCB170	1	ND	ND	ND	
PCB177	1	ND	1.1	1.6	
PCB180	1	1.7	3.3	3.7	
PCB183	1	ND	ND	ND	
PCB187	1	1.1	1.6	1.6	
PCB189	1	ND	ND	ND	
PCB194	1	ND	ND	ND	
PCB200	1	ND	ND	ND	
PCB201	1	ND	ND	ND	
PCB206	1	ND	ND	ND	
Total Detectable PC		13.2	122.6	49.6	
Analyte	MDL	SWZ01	SWZ02	SWZ04	
PCB018	1	ND	ND	ND	
PCB028	1	ND	ND	ND	
PCB031	1	ND	ND	ND	
PCB033	1	ND	ND	ND	
PCB033	1	ND	ND	ND	
PCB037 PCB044	1	ND	ND	ND	
PCB044 PCB049	1	ND	ND	ND	
PCB049 PCB052	1	ND	ND	ND	
PCB052 PCB066	1	ND	ND	ND	
	1				
PCB070		ND	ND	ND	
PCB074	1	ND	ND	ND	
PCB077	1	ND	ND	ND	
PCB081	1	ND	ND	ND	
PCB087	1	ND	ND	ND	
PCB095	1	1.7	2.8	1.6	
PCB097	1	ND	ND	ND	
PCB099	1	1.8	ND	1.5	
PCB101	1	3.1	4.4	2.4	
PCB105	1	ND	ND	ND	
PCB110	1	2.3	3.2	1.9	
PCB114	1	ND	ND	ND	
PCB118	1	ND	ND	ND	
PCB119	1	ND	ND	ND	
PCB123	1	ND	ND	ND	
PCB126	1	ND	ND	ND	
PCB128+167	1	ND	ND	ND	
PCB138	1	ND	ND	2.9	
PCB141	1	ND	ND	ND	
PCB149	1	2.7	2.9	1.5	
PCB151	1	ND	ND	ND	
PCB153	1	2.2	3	1.2	
PCB156	1	ND	ND	ND	
PCB157	1	ND	ND	ND	
PCB158	1	ND	ND	ND	
PCB168+132	1	ND	ND	ND	
PCB169	1	ND	ND	ND	
PCB170	1	ND	ND	ND	
PCB177	1	ND	1.4	ND	
PCB180	1	1.7	ND	4.8	
PCB183	1	ND	ND	ND	
PCB187	1	1.2	1.4	1	
PCB189	1	ND	ND	ND	
PCB194	1	ND	ND	ND	
PCB200	1	ND	ND	ND	

Sediment chemistry data August 17, 2004—PCB congeners results summary (all results in	
ng/dry g)—CRG Marine Laboratories, Inc.	

ng/dry g)—CRG Marin	e Laborat					
PCB201	1	ND	ND	ND		
PCB206	1	ND	ND	ND		
Total Detectable PCBs		16.7	19.1	18.8		
Analyte	MDL	2229	2238	2243	2433	2441
PCB018	1	ND	ND	ND	ND	ND
PCB028	1	ND	ND	ND	ND	ND
PCB031	1	ND	ND	ND	ND	ND
PCB033	1	ND	ND	ND	ND	ND
PCB037	1	ND	ND	ND	ND	ND
PCB044	1	ND	ND	ND	ND	ND
PCB049	1	ND	ND	ND	ND	ND
PCB052	1	ND	ND	ND	ND	ND
PCB066	1	ND	ND	ND	ND	ND
PCB070	1	ND	ND	ND	ND	ND
PCB074	1	ND	ND	ND	ND	ND
PCB077	1	ND	ND	ND	ND	ND
PCB081	1	ND	ND	ND	ND	ND
PCB087	1	ND	ND	ND	ND	ND
PCB095	1	ND	ND	ND	ND	ND
PCB097	1	ND	ND	ND	ND	ND
PCB099	1	ND	ND	ND	ND	ND
PCB101	1	ND	ND	ND	ND	ND
PCB105	1	ND	ND	ND	ND	ND
PCB110	1	ND	ND	ND	ND	ND
PCB114	1	ND	ND	ND	ND	ND
PCB118	1	ND	ND	ND	ND	ND
PCB119	1	ND	ND	ND	ND	ND
PCB123	1	ND	ND	ND	ND	ND
PCB126	1	ND	ND	ND	ND	ND
PCB128+167	1	ND	ND	ND	ND	ND
PCB138	1	ND	ND	ND	ND	ND
PCB141	1	ND	ND	ND	ND	ND
PCB149	1	ND	ND	ND	ND	ND
PCB151	1	ND	ND	ND	ND	ND
PCB153	1	ND	ND	ND	ND	ND
PCB156	1	ND	ND	ND	ND	ND
PCB157	1	ND	ND	ND	ND	ND
PCB158	1	ND	ND	ND	ND	ND
PCB168+132	1	ND	ND	ND	ND	ND
PCB169	1	ND	ND	ND	ND	ND
PCB170	1	ND	ND	ND	ND	ND
PCB177	1	ND	ND	ND	ND	ND
PCB180	1	ND	ND	ND	ND	ND
PCB183	1	ND	ND	ND	ND	ND
PCB187	1	ND	ND	ND	ND	ND
PCB189	1	ND	ND	ND	ND	ND
PCB194	1	ND	ND	ND	ND	ND
PCB200	1	ND	ND	ND	ND	ND
PCB201	1	ND	ND	ND	ND	ND
PCB206	1	ND	ND	ND	ND	ND
Total Detectable PCBs		ND	ND	ND	ND	ND
						110

Sediment chemistry data August 17, 2004—Aroclors results summary (all results in ng/dry g)—CRG Marine Laboratories, Inc.

<u></u>			,		
Analyte	MDL	BST01	BST04	BST07	
Aroclor 1016	10	ND	ND	ND	
Aroclor 1221	10	ND	ND	ND	
Aroclor 1232	10	ND	ND	ND	

ing/ary g/ on	e marine	Easeraterie	0, 11101			
Aroclor 1242	10	ND	ND	ND		
Aroclor 1248	10	ND	ND	ND		
Aroclor 1254	10	ND	ND	ND		
Aroclor 1260	10	ND	ND	ND		
Analyte	MDL	DAC02	DAC03	DAC04		
Aroclor 1016	10	ND	ND	ND		
Aroclor 1221	10	ND	ND	ND		
Aroclor 1232	10	ND	ND	ND		
Aroclor 1242	10	ND	68.4	ND		
Aroclor 1248	10	ND	ND	ND		
Aroclor 1254	10	10	42.4	32.4		
Aroclor 1260	10	ND	ND	ND		
Analyte	MDL	SWZ01	SWZ02	SWZ04		
Aroclor 1016	10	ND	ND	ND		
Aroclor 1221	10	ND	ND	ND		
Aroclor 1232	10	ND	ND	ND		
Aroclor 1242	10	ND	ND	ND		
Aroclor 1248	10	ND	ND	ND		
Aroclor 1254	10	18.8	26.4	15.7		
Aroclor 1260	10	ND	ND	ND		
Analyte	MDL	2229 (R1)	2229 (R2)	2238	2243	2441
Aroclor 1016	10	ND	ND	ND	ND	ND
Aroclor 1221	10	ND	ND	ND	ND	ND
Aroclor 1232	10	ND	ND	ND	ND	ND
Aroclor 1242	10	ND	ND	ND	ND	ND
Aroclor 1248	10	ND	ND	ND	ND	ND
Aroclor 1254	10	ND	ND	ND	ND	ND
Aroclor 1260	10	ND	ND	ND	ND	ND

Sediment chemistry data August 17, 2004—Aroclors results summary (all results in ng/dry g)—CRG Marine Laboratories, Inc.

Sediment chemistry data October 29, 2004—Metals results summary (all results in mg/kg dry)—CRG Marine Laboratories, Inc.

results in mg/kg dry)—CRG Marine Laboratories, Inc.							
Analyte	MDL	BST01	BST04	BST07			
Aluminum	1	off scale	off scale	off scale			
Antimony	0.05	0.49	0.5	0.42			
Arsenic	0.05	12.4	12.9	14.4			
Barium	0.05	153	154	122			
Beryllium	0.01	0.84	0.81	0.72			
Cadmium	0.01	0.65	0.48	0.4			
Chromium	0.05	103	100	92.4			
Cobalt	0.01	12.7	12.4	10.8			
Copper	0.01	257	227	193			
Iron	1	52800	51000	44700			
Lead	0.01	77.8	73	74.6			
Manganese	0.05	352	344	294			
Mercury	0.005	0.63	0.64	0.54			
Molybdenum	0.05	1.69	1.61	1.59			
Nickel	0.01	24.1	24.8	20.6			
Selenium	0.05	1.4	1.23	1.37			
Silver	0.01	3.07	2.73	2.65			
Strontium	0.05	77.6	74.2	64.6			
Thallium	0.01	0.6	0.56	0.48			
Tin	0.05	12.6	12.8	10.9			
Titanium	0.05	2650	2410	2260			
Vanadium	0.05	122	118	104			
Zinc	0.05	325	320	287			
Analyte	MDL D	AC02 (R1) D	AC02 (R2)	DAC03	DAC04		
Aluminum	1	off scale	off scale	off scale	off scale		
Antimony	0.05	1.27	0.47	0.37	0.47		

results in mg	g/kg dry)–	–CRG Mariı	ne Laborator	ries, Inc.		
Arsenic	0.05	10.6	10.6	13.2	4.97	
Barium	0.05	102	106	117	55.1	
Beryllium	0.01	0.58	0.56	0.72	0.32	
Cadmium	0.01	0.4	0.37	0.53	0.46	
Chromium	0.05	112	110	171	45.5	
Cobalt	0.01	9.22	10.1	13.6	5.8	
Copper	0.01	173	174	178	82.2	
Iron	1	35700	35600	44000	18500	
Lead	0.01	81.1	80.2	105	75.2	
Manganese	0.05	242	241	316	153	
Mercury	0.005	0.49	0.47	0.53	0.23	
Molybdenum	0.05	1.23	1.16	1.96	1.03	
Nickel	0.00	23.6	23	46.5	11.8	
Selenium	0.01	1.03	1.09	0.96	0.58	
Silver	0.03	2.79	3	5.58	1.55	
Strontium	0.01	50.1	49.5	58.8	35.4	
Thallium	0.01	0.41	0.41	0.52	0.31	
<u>Tin</u>	0.05	11.5	12.2	12.3	4.4	
Titanium	0.05	1820	1810	2330	1420	
Vanadium	0.05	83	82.4	101	47.1	
Zinc	0.05	219	216	263	192	
Analyte	MDL	SWZ01		WZ04 (R1) S		
Aluminum	1	off scale	off scale	off scale	off scale	
Antimony	0.05	0.99	1.07	1.01	0.79	
Arsenic	0.05	9.26	14.8	7.96	7.94	
Barium	0.05	118	189	99	108	
Beryllium	0.01	0.72	1.06	0.51	0.52	
Cadmium	0.01	0.69	0.77	0.67	0.68	
Chromium	0.05	73.4	109	70.6	79.8	
Cobalt	0.01	10.3	15.2	7.5	7.5	
Copper	0.01	178	245	296	320	
Iron	1	39600	60400	29600	29500	
Lead	0.01	110	137	182	193	
Manganese	0.05	267	435	207	222	
Mercury	0.005	0.5	0.84	0.69	0.67	
Molybdenum	0.05	4.19	3.01	2.89	2.76	
Nickel	0.01	20.3	28.5	15.8	15.3	
Selenium	0.05	1.03	1.44	0.69	0.72	
Silver	0.01	1.96	2.7	1.26	1.6	
Strontium	0.05	60.7	90.7	44.1	48.1	
Thallium	0.01	0.51	0.77	0.52	0.54	
Tin	0.05	10	21.8	8.66	8.55	
Titanium	0.05	2210	3200	1590	1630	
Vanadium	0.05	97.4	144	73.2	73.1	
Zinc	0.05	322	419	357	363	
Analyte	MDL	2229	2238	2243	2433	2441
Aluminum	1	off scale	off scale	off scale	off scale	off scale
Antimony	0.05	0.54	0.29	0.11	0.13	0.45
Arsenic	0.05	5.49	7.05	4.63	4.7	12.5
Barium	0.05	51.3	85.4	4.03	73.3	12.5
Beryllium	0.05	0.2	0.55	0.31	0.29	0.86
Cadmium	0.01	0.23	0.33	0.09	0.29	0.80
Chromium	0.01	26.8	48.9	33.3	32.1	
						81.9
Cobalt Coppor	0.01	4.13	9.18	4.9	5.04	12.4
Copper	0.01	44.7	70.9	63.9	47.2	162

Sediment chemistry data October 29, 2004—Metals results summary (all results in mg/kg dry)—CRG Marine Laboratories, Inc.

Sediment chemistry data October 29, 2004—Metals results summary (all
results in mg/kg dry)—CRG Marine Laboratories, Inc.

	3 3 11			, -		
Iron	1	16600	35000	18800	20000	55000
Lead	0.01	32.6	21.6	22.7	15.6	36.8
Manganese	0.05	138	276	147	178	463
Mercury	0.005	0.24	0.23	0.24	0.19	0.42
Molybdenum	0.05	0.42	0.49	0.39	0.49	2.58
Nickel	0.01	6.89	13.8	7.73	8.35	25.8
Selenium	0.05	0.4	0.65	0.33	0.42	2.64
Silver	0.01	0.44	0.98	0.99	0.7	1.64
Strontium	0.05	132	44.6	33.7	41.4	222
Thallium	0.01	0.16	0.33	0.22	0.26	0.65
Tin	0.05	10.3	4.16	3.7	3.01	6.84
Titanium	0.05	981	1880	1100	1420	3350
Vanadium	0.05	43.3	78.9	41.5	47.7	136
Zinc	0.05	125	177	107	94.9	222

Sediment chemistry data October 29, 2004—Pesticides results summary (all results in ng/dry g)— CRG Marine Laboratories, Inc.

CRG Marine Laborator	,					
Analyte	MDL	BST01	BST04	BST07		
2,4'-DDD	1	ND	ND	ND		
2,4'-DDE	1	ND	ND	ND		
2,4'-DDT	1	ND	ND	ND		
4,4'-DDD	1	ND	ND	ND		
4,4'-DDE	1	ND	ND	ND		
4,4'-DDT	1	ND	ND	ND		
Aldrin	1	ND	ND	ND		
BHC-alpha	1	ND	ND	ND		
BHC-beta	1	ND	ND	ND		
BHC-delta	1	ND	ND	ND		
BHC-gamma	1	ND	ND	ND		
Chlordane-alpha	1	ND	ND	ND		
Chlordane-gamma	1	ND	ND	ND		
Dieldrin	1	ND	ND	ND		
Endosulfan Sulfate	1	ND	ND	ND		
Endosulfan-l	1	ND	ND	ND		
Endosulfan-II	1	ND	ND	ND		
Endrin	1	ND	ND	ND		
Endrin Aldehyde	1	ND	ND	ND		
Endrin Ketone		ND	ND	ND		
Heptachlor	1	ND	ND	ND		
Heptachlor Epoxide	1	ND	ND	ND		
Methoxychlor	1	ND	ND	ND		
Mirex	1	ND	ND	ND		
Total Detectable DDTs	1	ND	ND	ND		
Toxaphene	10	ND	ND	ND		
trans-Nonachlor	1	ND	ND	ND		
Analyte	MDL	DAC02	DAC03 DA	AC04 (R1) DA0	C04 (R2)	
2,4'-DDD	1	ND	ND	ND	ND	
2,4'-DDE	1	ND	ND	ND	ND	
2,4'-DDT	1	ND	ND	ND	ND	
4,4'-DDD	1	ND	ND	ND	ND	
4,4'-DDE	1	ND	ND	ND	ND	
4,4'-DDT	1	ND	ND	ND	ND	
Aldrin	1	ND	ND	ND	ND	
BHC-alpha	1	ND	ND	ND	ND	
BHC-beta	1	ND	ND	ND	ND	
BHC-delta	1	ND	ND	ND	ND	

Sediment Quality Assessment Study at the B Street/Broadway Piers, Downtown Anchorage, and Switzer Creek A-22 Phase II Draft Report

Sediment chemistry data October 29, 2004—Pesticides results summary (all results in ng/dry g)—	
CRG Marine Laboratories, Inc.	

CRG Marine Laborator	ries, Inc						
BHC-gamma	1	ND	ND	ND	ND		
Chlordane-alpha	1	ND	ND	9.4	14.8		
Chlordane-gamma	1	ND	ND	14.1	16.2		
Dieldrin	1	ND	ND	ND	ND		
Endosulfan Sulfate	1	ND	ND	ND	ND		
Endosulfan-I	1	ND	ND	ND	ND		
Endosulfan-II	1	ND	ND	ND	ND		
Endrin	1	ND	ND	ND	ND		
Endrin Aldehyde	1	ND	ND	ND	ND		
Endrin Ketone		ND	ND	ND	ND		
Heptachlor	1	ND	ND	ND	ND		
Heptachlor Epoxide	1	ND	ND	ND	ND		
Methoxychlor	1	ND	ND	ND	ND		
Mirex	1	ND	ND	ND	ND		<u> </u>
Total Detectable DDTs	1	ND	ND	ND	ND		
Toxaphene	10	ND	ND	ND	ND		<u> </u>
trans-Nonachlor	1	ND	ND	ND	ND		<u> </u>
Analyte	MDL	SWZ01	SWZ02	SWZ04	ND		
2,4'-DDD	1	ND	ND	ND			
2,4'-DDE	1	ND	ND	ND			
2,4'-DDT	1	ND	ND	ND			
4,4'-DDD	1	ND ND	ND	ND ND			
4,4'-DDE	1	ND	ND ND	ND ND			
4,4'-DDE 4,4'-DDT	1	ND	ND	ND			
Aldrin	1	ND	ND	ND			
BHC-alpha	1	ND	ND	ND			
BHC-beta	1	ND	ND	ND			
BHC-delta	1	ND	ND	ND			
BHC-gamma	1	ND	ND	ND			
Chlordane-alpha	1	6	ND	4.5			
Chlordane-gamma	1	6.2	ND	8.1			
Dieldrin	1	ND	ND	ND			
Endosulfan Sulfate	1	ND	ND	ND			
Endosulfan-l	1	ND	ND	ND			
Endosulfan-II	1	ND	ND	ND			
Endrin	1	ND	ND	ND			
Endrin Aldehyde	1	ND	ND	ND			
Endrin Ketone		ND	ND	ND			
Heptachlor	1	ND	ND	ND			
Heptachlor Epoxide	1	ND	ND	ND			
Methoxychlor	1	ND	ND	ND			
Mirex	1	ND	ND	ND			
Total Detectable DDTs	1	ND	ND	ND			
Toxaphene	10	ND	ND	ND			
trans-Nonachlor	1	6.3	ND	4.9			
Analyte	MDL	2229 (R1)	2229 (R2)	2238	2243	2433	2441
2,4'-DDD	1	ND	ND	ND	ND	ND	ND
2,4'-DDE	1	ND	ND	ND	ND	ND	ND
2,4'-DDT	1	ND	ND	ND	ND	ND	ND
4,4'-DDD	1	ND	ND	ND	ND	ND	ND
4,4'-DDE	1	ND	ND	ND	ND	ND	ND
4,4'-DDT	1	ND	ND	ND	ND	ND	ND
Aldrin	1	ND	ND	ND	ND	ND	ND
BHC-alpha	1	ND	ND	ND	ND	ND	ND
BHC-beta	1	ND	ND	ND	ND	ND	ND
	•						

Sediment chemistry data October 29, 2004—Pesticides results summary (all results in ng/dry g)—	
CRG Marine Laboratories, Inc.	

	,						
BHC-delta	1	ND	ND	ND	ND	ND	ND
BHC-gamma	1	ND	ND	ND	ND	ND	ND
Chlordane-alpha	1	ND	ND	ND	ND	ND	ND
Chlordane-gamma	1	ND	ND	ND	ND	ND	ND
Dieldrin	1	ND	ND	ND	ND	ND	ND
Endosulfan Sulfate	1	ND	ND	ND	ND	ND	ND
Endosulfan-l	1	ND	ND	ND	ND	ND	ND
Endosulfan-II	1	ND	ND	ND	ND	ND	ND
Endrin	1	ND	ND	ND	ND	ND	ND
Endrin Aldehyde	1	ND	ND	ND	ND	ND	ND
Endrin Ketone		ND	ND	ND	ND	ND	ND
Heptachlor	1	ND	ND	ND	ND	ND	ND
Heptachlor Epoxide	1	ND	ND	ND	ND	ND	ND
Methoxychlor	1	ND	ND	ND	ND	ND	ND
Mirex	1	ND	ND	ND	ND	ND	ND
Total Detectable DDTs	1	ND	ND	ND	ND	ND	ND
Toxaphene	10	ND	ND	ND	ND	ND	ND
trans-Nonachlor	1	ND	ND	ND	ND	ND	ND

Sediment chemistry data October 29, 2004—PAH results summary (all results in ng/dry g)—CRG Marine Laboratories, Inc.

Laboratories, Inc.	MDL	BST01	BST04	BST07		
1-Methylnaphthalene	1	1.5	2.6	4.4		
	1		2.6			
1-Methylphenanthrene		8		50.4		
2,3,5-Trimethylnaphthalene	1	<u>1</u> 2.4	<u>3.2</u> 11.1	<u>3.5</u> 9.8		
2,6-Dimethylnaphthalene	1	3.2	5.8	9.8		
2-Methylnaphthalene	-					
Acenaphthene	1	3.9	21.4	59		
Acenaphthylene	1	50.4	171	590		
Anthracene	1	137	407	1420		
Benz[a]anthracene	1	147	432	1510		
Benzo[a]pyrene	1	230	624	1650		
Benzo[b]fluoranthene	1	214	650	2260		
Benzo[e]pyrene	1	157	440	1190		
Benzo[g,h,i]perylene	1	124	288	606		
Benzo[k]fluoranthene	1	234	614	1470		
Biphenyl	1	1.3	3.2	4.9		
Chrysene	1	287	758	2570		
Dibenz[a,h]anthracene	1	38.4	90.3	216		
Fluoranthene	1	160	691	2260		
Fluorene	1	13.4	33	98.2		
Indeno[1,2,3-c,d]pyrene	1	151	362	803		
Naphthalene	1	5.4	11.2	6.9		
Perylene	1	55.9	158	468		
Phenanthrene	1	71.1	246	609		
Pyrene	1	171	639	1890		
Total Detectable PAHs		2270	6680	19800		
Analyte	MDL	DAC02	DAC03	DAC04 (R1)	DAC04 (R2)	
1-Methylnaphthalene	1	1.3	1.7	2	1.6	
1-Methylphenanthrene	1	4	ND	2.7	ND	
2,3,5-TrimethyInaphthalene	1	1.1	2.7	3	1.4	
2,6-Dimethylnaphthalene	1	2.4	2.4	3	3.8	
2-Methylnaphthalene	1	2.5	4.5	3	3	
Acenaphthene	1	2.1	3.5	3.4	2.6	
Acenaphthylene	1	46.4	27.6	18.7	16.7	
Anthracene	1	112	60.7	45.6	43	

Sediment chemistry data October 29, 2004—PAH results summary (all results in ng/dry g)—CRG Marin	е
Laboratories, Inc.	

Laboratories, Inc.							
Benzo[a]pyrene	1	217	161	107	102		
Benzo[b]fluoranthene	1	230	170	135	137		
Benzo[e]pyrene	1	163	132	107	98.1		
Benzo[g,h,i]perylene	1	117	143	120	114		
Benzo[k]fluoranthene	1	229	153	121	96.8		
Biphenyl	1	1.6	2.4	2.4	1.9		
Chrysene	1	305	125	94.5	104		
Dibenz[a,h]anthracene	1	31.1	34	21.5	19.2		
Fluoranthene	1	221	122	165	140		
Fluorene	1	8.2	5.6	3.4	3.9		
Indeno[1,2,3-c,d]pyrene	1	134	147	100	93.9		
Naphthalene	1	4.11	7.6	5.2	4.6		
Pervlene	1	58.3	40.7	39.6	37.8		
Phenanthrene	1	53.1	37.8	52.5	50.1		
Pyrene	1	116	121	164	147		
Total Detectable PAHs		2270	1582	1380	1279		
Analyte	MDL	SWZ01	SWZ02	SWZ04	1275		
1-Methylnaphthalene	1	5.1	10.8	4.4			
	1	11.6	10.8	6.5			
1-Methylphenanthrene 2,3,5-Trimethylnaphthalene		12.9					
			10.4	6.8			
2,6-Dimethylnaphthalene	1	9	10.5	5.8			
2-Methylnaphthalene	1	9.5	14.5	7.8			
Acenaphthene	1	9.5	4.9	8.9			
Acenaphthylene	1	53.9	62.4	50.2			
Anthracene	1	107	116	98.1			
Benz[a]anthracene	1	193	183	151			
Benzo[a]pyrene	1	349	247	327			
Benzo[b]fluoranthene	1	351	282	294			
Benzo[e]pyrene	1	280	258	271			
Benzo[g,h,i]perylene	1	347	347	317			
Benzo[k]fluoranthene	1	288	268	264			
Biphenyl	1	8.7	3.6	5.6			
Chrysene	1	316	276	237			
Dibenz[a,h]anthracene	1	44.4	47.4	43.2			
Fluoranthene	1	484	322	380			
Fluorene	1	13.4	9.2	11.6			
Indeno[1,2,3-c,d]pyrene	1	317	260	289			
Naphthalene	1	22.5	14.4	18.6			
Perylene	1	105	81.3	94			
Phenanthrene	1	150	79.1	141			
Pyrene	1	644	495	536			
Total Detectable PAHs		4130	3420	3570			
Analyte	MDL	2229 (R1)	2229 (R2)	2238	2243	2433	2441
1-Methylnaphthalene	1	1.7	ND	ND	ND	ND	1
1-Methylphenanthrene	1	2	6.9	ND	ND	1	3.8
2,3,5-TrimethyInaphthalene	1	1.6	1.3	ND	ND	ND	ND
2,6-Dimethylnaphthalene	1	1.5	1.2	ND	ND	ND	1.9
2-Methylnaphthalene	1	2.8	1	1	ND	ND	1.3
Acenaphthene	1	1.3	ND	ND	ND	ND	2.7
Acenaphthylene	1	2.9	8	ND	ND	2.1	6.8
Anthracene		6.6	8.7	ND	1	2.5	42.9
	1		5.7				55.9
	<u>1</u> 1		43.8	17	23		
Benz[a]anthracene	1	10.7	43.8	1.7	2.3	10.2	
Benz[a]anthracene Benzo[a]pyrene	1 1	10.7 22	63.6	3.2	4.2	14.8	39.6
Benz[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene	1 1 1	10.7 22 16.3	63.6 32.8	3.2 2.8	4.2 3.4	14.8 9.6	39.6 37.5
Benz[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[e]pyrene	1 1 1 1	10.7 22 16.3 15.1	63.6 32.8 39	3.2 2.8 2.5	4.2 3.4 3.3	14.8 9.6 9.5	39.6 37.5 27.3
Benz[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene	1 1 1 1 1	10.7 22 16.3 15.1 20.8	63.6 32.8 39 40.9	3.2 2.8 2.5 4	4.2 3.4 3.3 4.5	14.8 9.6 9.5 9.8	39.6 37.5 27.3 19.2
Benz[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[e]pyrene	1 1 1 1	10.7 22 16.3 15.1	63.6 32.8 39	3.2 2.8 2.5	4.2 3.4 3.3	14.8 9.6 9.5	39.6 37.5 27.3

Euboratorioo, mor							
Chrysene	1	13.9	47.2	2.2	2.8	12.5	132
Dibenz[a,h]anthracene	1	2.6	6.5	ND	ND	2.2	6.6
Fluoranthene	1	24.4	52.9	4.7	3.6	13.6	65.5
Fluorene	1	2.2	1	ND	ND	ND	7.4
Indeno[1,2,3-c,d]pyrene	1	19.5	38.1	2.5	4.1	9.7	22
Naphthalene	1	2.3	1.7	1.3	1	1	2.5
Perylene	1	5.5	12.1	ND	1	3.5	8.8
Phenanthrene	1	14.2	16.1	3.4	1.4	5.3	43.6
Pyrene	1	26	86.1	5.2	4.9	14.3	45.8
Total Detectable PAHs		233	547.8	37.3	41.7	133.6	623.5

Sediment chemistry data October 29, 2004—PAH results summary (all results in ng/dry g)—CRG Marine Laboratories, Inc.

Sediment chemistry data October 29, 2004—PCB congeners results summary (all results in ng/dry g)— CRG Marine Laboratories, Inc.

CRG Marine Labora					
Analyte	MDL	BST01	BST04	BST07	
PCB018	1	ND	ND	ND	
PCB028	1	ND	ND	ND	
PCB031	1	ND	ND	ND	
PCB033	1	ND	ND	ND	
PCB037	1	ND	ND	ND	
PCB044	1	ND	ND	ND	
PCB049	1	ND	ND	ND	
PCB052	1	ND	ND	ND	
PCB066	1	ND	ND	ND	
PCB070	1	ND	ND	ND	
PCB074	1	ND	ND	ND	
PCB077	1	ND	ND	ND	
PCB081	1	ND	ND	ND	
PCB087	1	ND	ND	ND	
PCB095	1	2.1	1.5	ND	
PCB097	1	ND	ND	ND	
PCB099	1	1.8	ND	ND	
PCB101	1	4.2	ND	ND	
PCB105	1	ND	ND	ND	
PCB110	1	3.2	ND	ND	
PCB114	1	ND	ND	ND	
PCB118	1	2.1	ND	ND	
PCB119	1	ND	ND	ND	
PCB123	1	ND	ND	ND	
PCB126	1	ND	ND	ND	
PCB128+167	1	ND	ND	ND	
PCB138	1	3.7	ND	ND	
PCB141	1	ND	ND	ND	
PCB149	1	2.4	1.8	ND	
PCB151	1	ND	ND	ND	
PCB153	1	2.8	3.4	ND	
PCB156	1	ND	ND	ND	
PCB157	1	ND	ND	ND	
PCB158	1	ND	ND	ND	
PCB168+132	1	ND	ND	ND	
PCB169	1	ND	ND	ND	
PCB170	1	ND	ND	ND	
PCB177	1	ND	ND	ND	
PCB180	1	ND	ND	ND	
PCB183	1	ND	ND	ND	
PCB187	1	ND	ND	ND	
PCB189	1	ND	ND	ND	
PCB194	1	ND	ND	ND	
PCB200	1	ND	ND	ND	
	•				

Sediment chemistry data October 29, 2004—PCB congeners results summary (all results in ng/dry g)—	
CRG Marine Laboratories, Inc.	

CRG Marine Laborate						
PCB201	1	ND	ND	ND		
PCB206	1	ND	ND	ND		
Total Detectable PCBs		22.3	6.7	ND		
Analyte	MDL	DAC02		· · /	DAC04 (R2)	
PCB018	1	ND	14.3	ND	ND	
PCB028	1	ND	9.1	ND	ND	
PCB031	1	ND	17.2	ND	ND	
PCB033	1	ND	ND	ND	ND	
PCB037	1	ND	ND	ND	ND	
PCB044	1	ND	6.9	ND	ND	
PCB049	1	ND	20.4	5.1	6.7	
PCB052	1	ND	19.4	ND	4	
PCB066	1	3.7	29.2	ND	7.1	
PCB070	1	ND	16.7	3.6	5	
PCB074	1	ND	5.3	ND	ND	
PCB077	1	ND	ND	ND	ND	
PCB081	1	ND	ND	ND	ND	
PCB087	1	ND	ND	ND	ND	
PCB095	1	2.4	7.2	3.9	4.2	
PCB097	1	ND	3.1	ND	ND	
PCB099	1	2.6	8.6	4.3	3.7	
PCB101	1	4.9	18	7.4	9.3	
PCB105	1	ND	ND	ND	ND	
PCB110	1	4.5	12.6	4.6	5.9	
PCB114	1	ND	ND	ND	ND	
PCB118	1	ND	12.6	2.8	5.2	
PCB119	1	ND	ND	ND	ND	
PCB123	1	ND	ND	ND	ND	
PCB126	1	ND	ND	ND	ND	
PCB128+167	1	ND	ND	ND	ND	
PCB138	1	4.1	11.1	5	8.3	
PCB141	1	ND	ND	ND	ND	
PCB149	1	3	9.8	4.4	4.1	
PCB151	1	ND	3	ND	ND	
PCB153	1	3.2	10.8	4.4	5.6	
PCB156	1	ND	ND	ND	ND	
PCB157	1	ND	ND	ND	ND	
PCB158	1	ND	ND	ND	ND	
PCB168+132	1	ND	ND	ND	ND	
PCB169	1	ND	ND	ND	ND	
PCB170	1	ND	ND	ND	ND	
PCB177	1	ND	ND	ND	ND	
PCB180	1	3.3	ND	ND	ND	
PCB183	1	ND	ND	ND	ND	
PCB187	1	2.2	5.6	2.3	1.1	
PCB189	1	ND	ND	ND	ND	
PCB194	1	ND	ND	ND	ND	
PCB200	1	ND	ND	ND	ND	
PCB201	1	ND	ND	ND	ND	
PCB206	1	ND	ND	ND	ND	
Total Detectable PCBs		33.9	241	47.8	64.7	
Analyte	MDL	SWZ01	SWZ02	SWZ04		
PCB018	1	ND	ND	ND		
PCB028	1	ND	ND	ND		
PCB028 PCB031	1	ND	ND	ND		
PCB033	1	ND ND	ND ND	ND ND		
PCB033 PCB037	1	ND	ND	ND		
PCB037 PCB044	1	ND	ND	6.8		
1 00044	1	ND	IND	0.0		

CRG Marine Laborator	ries, Inc.	•	•				
PCB049	1	ND	ND	ND			
PCB052	1	ND	ND	8.4			
PCB066	1	ND	ND	6.6			
PCB070	1	ND	ND	7.2			
PCB074	1	ND	ND	3.2			
PCB077	1	ND	ND	ND			
PCB081	1	ND	ND	ND			
PCB087	1	ND	ND	ND			
PCB095	1	ND	ND	10.4			
PCB097	1	ND	ND	7.2			
PCB099	1	ND	ND	8.4			
PCB101	1	ND ND	ND	18.3			
PCB105	1	ND	ND	ND			
PCB110	1	ND	ND	16.9			
PCB114	1	ND	ND	ND			
PCB118	1	ND	ND	13.4			
PCB119	1	ND	ND	ND			
PCB123	1	ND	ND	ND			
PCB126	1	ND	ND	ND			
PCB128+167	1	ND	ND	ND			
PCB138	1	ND	ND	13.2			
PCB141	1	ND	ND	ND			
PCB149	1	ND	ND	10.6			
PCB151	1	ND	ND	2.4			
PCB153	1	ND	ND	7			
PCB156	1	ND	ND	ND			
PCB157	1	ND	ND	ND			
PCB158	1	ND	ND	ND			
PCB168+132	1	ND	ND	5.9			
PCB169	1	ND	ND	ND			
PCB170	1	ND	ND	ND			
PCB177	1	ND	ND	ND			
PCB180	1	ND	ND	ND			
PCB183	1	ND	ND	ND			
PCB187	1	ND	ND	ND			
PCB189	1	ND	ND	ND			
PCB194	1	ND	ND	ND			
PCB200	1	ND	ND	ND			
PCB201	1	ND	ND	ND			
PCB206	1	ND	ND	ND			
Total Detectable PCBs		ND	ND	387			
Analyte	MDL	2229 (R1)	2229 (R2)	2238	2243	2433	2441
PCB018	1	ND	ND	ND	ND	ND	ND
PCB028	1	ND	ND	ND	ND	ND	ND
PCB031	1	ND	ND	ND	ND	ND	ND
PCB033	1	ND	ND	ND	ND	ND	ND
PCB037	1	ND	ND	ND	ND	ND	ND
PCB044	1	ND	ND	ND	ND	ND	ND
PCB049	1	1.2	ND	ND	ND	ND	ND
PCB052	1	1.3	ND	ND	ND	ND	ND
PCB066	1	ND	ND	ND	ND	ND	ND
PCB070	1	ND	ND	ND	ND	ND	ND
PCB074	1	ND	ND	ND	ND	ND	ND
PCB077	1	ND	ND	ND	ND	ND	ND
PCB081	1	ND	ND	ND	ND	ND	ND
PCB087	1	ND	ND	ND	ND	ND	ND
PCB095	1	1.3	ND	ND	ND	ND	ND
PCB095 PCB097	1	1.5	ND	ND	ND	ND	ND ND
	1	1.0	עא	שאו	שא	טא	שאו

Sediment chemistry data October 29, 2004—PCB congeners results summary (all results in ng/dry g)— CRG Marine Laboratories, Inc.

CRG Marine Laboratori	es, inc.						
PCB099	1	ND	ND	ND	ND	ND	ND
PCB101	1	2.7	ND	ND	ND	ND	ND
PCB105	1	ND	ND	ND	ND	ND	ND
PCB110	1	2.5	ND	ND	ND	ND	ND
PCB114	1	ND	ND	ND	ND	ND	ND
PCB118	1	1.6	ND	ND	ND	ND	ND
PCB119	1	ND	ND	ND	ND	ND	ND
PCB123	1	ND	ND	ND	ND	ND	ND
PCB126	1	ND	ND	ND	ND	ND	ND
PCB128+167	1	ND	ND	ND	ND	ND	ND
PCB138	1	2.9	ND	ND	ND	ND	ND
PCB141	1	ND	ND	ND	ND	ND	ND
PCB149	1	1.5	ND	ND	ND	ND	ND
PCB151	1	ND	ND	ND	ND	ND	ND
PCB153	1	1.5	ND	ND	ND	ND	ND
PCB156	1	ND	ND	ND	ND	ND	ND
PCB157	1	ND	ND	ND	ND	ND	ND
PCB158	1	ND	ND	ND	ND	ND	ND
PCB168+132	1	ND	ND	ND	ND	ND	ND
PCB169	1	ND	ND	ND	ND	ND	ND
PCB170	1	ND	ND	ND	ND	ND	ND
PCB177	1	ND	ND	ND	ND	ND	ND
PCB180	1	ND	ND	ND	ND	ND	ND
PCB183	1	ND	ND	ND	ND	ND	ND
PCB187	1	ND	ND	ND	ND	ND	ND
PCB189	1	ND	ND	ND	ND	ND	ND
PCB194	1	ND	ND	ND	ND	ND	ND
PCB200	1	ND	ND	ND	ND	ND	ND
PCB201	1	ND	ND	ND	ND	ND	ND
PCB206	1	ND	ND	ND	ND	ND	ND
Total Detectable PCBs		18	ND	ND	ND	ND	ND

Sediment chemistry data October 29, 2004—PCB congeners results summary (all results in ng/dry g)— CRG Marine Laboratories, Inc.

Sediment chemistry data October 29, 2004—Aroclors results summary (all results in ng/dry g)— CRG Marine Laboratories, Inc.

CRG Marine La	aporatori	es, inc.					
Analyte	MDL	BST01	BST04	BST07			
Aroclor 1016	10	ND	ND	ND			
Aroclor 1221	10	ND	ND	ND			
Aroclor 1232	10	ND	ND	ND			
Aroclor 1242	10	ND	ND	ND			
Aroclor 1248	10	ND	ND	ND			
Aroclor 1254	10	25.9	ND	ND			
Aroclor 1260	10	ND	ND	ND			
Analyte	MDL	DAC02	DAC03	DAC04 (R1)	DAC04 (R2)		
Aroclor 1016	10	ND	ND	ND	ND		
Aroclor 1221	10	ND	ND	ND	ND		
Aroclor 1232	10	ND	ND	ND	ND		
Aroclor 1242	10	ND	150	ND	ND		
Aroclor 1248	10	ND	ND	ND	ND		
Aroclor 1254	10	36.3	103	37.4	48.4		
Aroclor 1260	10	ND	ND	ND	ND		
Analyte	MDL	SWZ01	SWZ02	SWZ04			
Aroclor 1016	10	ND	ND	ND			
Aroclor 1221	10	ND	ND	ND			
Aroclor 1232	10	ND	ND	ND			
Aroclor 1242	10	ND	ND	ND			
Aroclor 1248	10	ND	ND	ND			
Aroclor 1254	10	ND	ND	138			
Aroclor 1260	10	ND	ND	ND			
Analyte	MDL	2229 (R1)	2229 (R2)	2238	2243	2433	2441

	Donatomes	, mc.					
Aroclor 1016	10	ND	ND	ND	ND	ND	ND
Aroclor 1221	10	ND	ND	ND	ND	ND	ND
Aroclor 1232	10	ND	ND	ND	ND	ND	ND
Aroclor 1242	10	ND	ND	ND	ND	ND	ND
Aroclor 1248	10	ND	ND	ND	ND	ND	ND
Aroclor 1254	10	20.1	ND	ND	ND	ND	ND
Aroclor 1260	10	ND	ND	ND	ND	ND	ND

Sediment chemistry data October 29, 2004—Aroclors results summary (all results in ng/dry g)— CRG Marine Laboratories, Inc.

Appendix **B**. Grain size data.

.					
Size (mm)	BST 01	BST 04	BST 07		
> 2000	2.6%	1.0%	0.2%		
63-2000	32.7%	30.8%	38.1%		
4-63	47.3%	54.1%	54.0%		
<4	17.4%	14.1%	7.7%		
	100.0%	100.0%	100.0%		
<63	64.8%	68.2%	61.7%		
Size (mm)	DAC 02	DAC 03	DAC 04		
> 2000	0.6%	0.5%	0.6%		
63-2000	23.9%	29.3%	43.3%		
4-63	56.7%	48.4%	38.1%		
<4	18.9%	21.8%	18.0%		
	100.0%	100.0%	100.0%		
<63	75.6%	70.2%	56.1%		
Size (mm)	SWZ 01	SWZ 04			
> 2000	0.6%	1.2%			
63-2000	60.9%	62.8%			
4-63	21.4%	25.7%			
<4					
<63	38.4%	36.0%			
Size (mm)	2229	2238	2243	2433	2441
> 2000	0.7%	0.8%	0.3%	0.0%	0.0%
63-2000	83.9%	45.0%	72.6%	67.9%	44.6%
4-63	6.4%	46.2%	17.5%	16.8%	34.1%
<4	9.0%	8.0%	9.5%	15.3%	21.3%
	100.0%	100.0%	100.0%	100.0%	100.0%
<63	15.4%	54.3%	27.1%	32.0%	55.4%
		54.3%	27.1%	32.0%	55.4%
<63 st 17, 2004—A Size (mm)		54.3% BST 04	27.1% BST 07	32.0%	55.4%
st 17, 2004—A	MEC			32.0%	55.4%
st 17, 2004—A Size (mm) > 2000	MEC BST 01 2.4%	BST 04 0.0%	BST 07 1.9%	32.0%	55.4%
st 17, 2004—A Size (mm) > 2000 63-2000	MEC BST 01 2.4% 39.0%	BST 04 0.0% 12.6%	BST 07 1.9% 24.6%	32.0%	55.4%
st 17, 2004—A Size (mm) > 2000 63-2000 4-63	MEC BST 01 2.4% 39.0% 45.2%	BST 04 0.0% 12.6% 68.3%	BST 07 1.9% 24.6% 57.2%	32.0%	55.4%
st 17, 2004—A Size (mm) > 2000 63-2000	MEC BST 01 2.4% 39.0%	BST 04 0.0% 12.6%	BST 07 1.9% 24.6%	32.0%	55.4%
st 17, 2004—A Size (mm) > 2000 63-2000 4-63	MEC BST 01 2.4% 39.0% 45.2% 13.3%	BST 04 0.0% 12.6% 68.3% 19.1%	BST 07 1.9% 24.6% 57.2% 16.3%	32.0%	55.4%
st 17, 2004—A Size (mm) > 2000 63-2000 4-63 <4 <63	MEC BST 01 2.4% 39.0% 45.2% 13.3% 100.0% 58.6%	BST 04 0.0% 12.6% 68.3% 19.1% 100.0% 87.4%	BST 07 1.9% 24.6% 57.2% 16.3% 100.0% 73.5%	32.0%	55.4%
st 17, 2004—A Size (mm) > 2000 63-2000 4-63 <4 <63 <63 Size (mm)	MEC BST 01 2.4% 39.0% 45.2% 13.3% 100.0% 58.6% DAC 02	BST 04 0.0% 12.6% 68.3% 19.1% 100.0% 87.4% DAC 03	BST 07 1.9% 24.6% 57.2% 16.3% 100.0% 73.5% DAC 04	32.0%	55.4%
st 17, 2004—A Size (mm) > 2000 63-2000 4-63 <4 <63 <63 Size (mm) > 2000	MEC BST 01 2.4% 39.0% 45.2% 13.3% 100.0% 58.6% DAC 02 0.1%	BST 04 0.0% 12.6% 68.3% 19.1% 100.0% 87.4% DAC 03 0.0%	BST 07 1.9% 24.6% 57.2% 16.3% 100.0% 73.5% DAC 04 0.1%	32.0%	55.4%
st 17, 2004—A Size (mm) > 2000 63-2000 4-63 <4 <63 <63 Size (mm) > 2000 63-2000	MEC BST 01 2.4% 39.0% 45.2% 13.3% 100.0% 58.6% 58.6% DAC 02 0.1% 24.1%	BST 04 0.0% 12.6% 68.3% 19.1% 100.0% 87.4% DAC 03 0.0% 37.3%	BST 07 1.9% 24.6% 57.2% 16.3% 100.0% 73.5% DAC 04 0.1% 32.5%	32.0%	55.4%
st 17, 2004—A Size (mm) > 2000 63-2000 4-63 <4 <63 <63	MEC BST 01 2.4% 39.0% 45.2% 13.3% 100.0% 58.6% 58.6% 0.1% 24.1% 63.1%	BST 04 0.0% 12.6% 68.3% 19.1% 100.0% 87.4% DAC 03 0.0% 37.3% 42.6%	BST 07 1.9% 24.6% 57.2% 16.3% 100.0% 73.5% DAC 04 0.1% 32.5% 52.5%	32.0%	55.4%
st 17, 2004—A Size (mm) > 2000 63-2000 4-63 <4 <63 <63 Size (mm) > 2000 63-2000	MEC BST 01 2.4% 39.0% 45.2% 13.3% 100.0% 58.6% 58.6% 0.1% 24.1% 63.1% 12.6%	BST 04 0.0% 12.6% 68.3% 19.1% 100.0% 87.4% DAC 03 0.0% 37.3% 42.6% 20.1%	BST 07 1.9% 24.6% 57.2% 16.3% 100.0% 73.5% DAC 04 0.1% 32.5% 52.5% 15.0%	32.0%	55.4%
st 17, 2004—A Size (mm) > 2000 63-2000 4-63 <4 <63 <63	MEC BST 01 2.4% 39.0% 45.2% 13.3% 100.0% 58.6% 58.6% 0.1% 24.1% 63.1%	BST 04 0.0% 12.6% 68.3% 19.1% 100.0% 87.4% DAC 03 0.0% 37.3% 42.6%	BST 07 1.9% 24.6% 57.2% 16.3% 100.0% 73.5% DAC 04 0.1% 32.5% 52.5%	32.0%	55.4%
	<63 Size (mm) > 2000 63-2000 4-63 <4 <	100.0% <63	100.0%100.0%<63	100.0% $100.0%$ $100.0%$ <63	100.0%

Grain size analyses August 17, 2004—AMEC

Grain size analyses Au	•		SWZ 02	SWZ 04		
Size Fraction	Size (mm)	SWZ 01	SWZ 02	SWZ 04		
<u>%Gravel</u>	> 2000	0.0%	0.0%	0.7%		
<u>%Sand</u>	63-2000	45.4%	46.1%	40.6%		
%Silt	4-63	31.2%	33.4%	35.7%		
%Clay	<4	23.4%	20.5%	23.0%		
<u>%Total</u>		100.0%	100.0%	100.0%		
%Fines (Silt + Clay)	<63	54.6%	53.9%	58.7%		
Size Fraction	Size (mm)	2229	2238	2243	2433	2441
%Gravel	> 2000	1.9%	0.4%	0.1%	0.0%	0.0%
%Sand	63-2000	75.3%	38.3%	68.6%	63.8%	18.2%
%Silt	4-63	12.1%	48.2%	22.6%	25.3%	40.9%
%Clay	<4	10.6%	13.1%	8.7%	10.9%	40.9%
%Total		100.0%	100.0%	100.0%	100.0%	100.0%
%Fines (Silt + Clay)	<63	22.8%	61.3%	31.3%	36.2%	81.8%
Grain size analyses Oc						
Size Fraction	Size (mm)	BST 01	BST 04	BST 07		
%Gravel	> 2000	2.3%	0.1%	1.7%		
%Sand	63-2000	24.4%	20.3%	23.4%		
%Silt	4-63	43.6%	45.5%	29.0%		
%Clay	<4	29.8%	34.1%	45.9%		
%Total		100.0%	100.0%	100.0%		
%Fines (Silt + Clay)	<63	73.4%	79.5%	74.9%		
Size Fraction	Size (mm)	DAC 02	DAC 03	DAC 04		
%Gravel	> 2000	0.0%	0.0%	0.2%		
%Sand	63-2000	17.3%	24.9%	50.5%		
%Silt	4-63	26.0%	10.4%	30.2%		
%Clay	<4	56.7%	64.7%	19.1%		
%Total		100.0%	100.0%	100.0%		
%Fines (Silt + Clay)	<63	82.7%	75.1%	49.2%		
Size Fraction	Size (mm)	SWZ 01	SWZ 02	SWZ 04		
%Gravel	> 2000	0.4%	0.0%	0.0%		
%Sand	63-2000	40.1%	31.9%	51.0%		
%Silt	4-63	4.4%	12.8%	12.7%		
%Clay	<4	55.1%	55.4%	36.3%		
%Total		100.0%	100.0%	100.0%		
%Fines (Silt + Clay)	<63	50.6%	69 10/	49.0%		
%Filles (Silt + Clay)	<03	59.6%	68.1%	49.0%		<u> </u>
Size Fraction	Size (mm)	2229	2238	2243	2433	2441
%Gravel	> 2000	6.1%	0.3%	0.0%	0.0%	0.0%
%Sand	63-2000	75.4%	37.0%	67.7%	68.2%	24.9%
%Silt	4-63	10.0%	28.3%	4.8%	3.0%	14.5%
%Clay	<4	8.6%	34.4%	27.4%	28.8%	60.6%
%Total		100.0%	100.0%	100.0%	100.0%	100.0%
%Fines (Silt + Clay)	<63	18.5%	62.7%	32.3%	31.8%	75.1%

Appendix C. Total Organic Carbon (TOC) data.

Sediment chemistry data March 02, 2004—TOC results summary (all results in percent)—CRG Marine Laboratories, Inc.

inc.					
Analyte	BST01	BST04	BST07		
Total Organic Carbon	2.22	2.01	2.29		
Analyte	DAC02	DAC03	DAC04		
Total Organic Carbon	2.49	1.88	1.39		
Analyte	SWZ01	SWZ02	SWZ04		
Total Organic Carbon	4.85	5.57	3.87		
Analyte	2229	2238	2243	2433	2441
Total Organic Carbon	0.32	0.88	0.4	0.65	2.35

Sediment chemistry data August 17, 2004—TOC results summary (all results in percent)—CRG Marine Laboratories, Inc.

Analyte	BST01	BST04	BST07		
Total Organic Carbon	1.96	1.96	2.23		
Analyte	DAC02	DAC03	DAC04		
Total Organic Carbon	2.49	2.02	2.77		
Analyte	SWZ01	SWZ02	SWZ04		
Total Organic Carbon	4.33	3.62	3.5		
Analyte	2229	2238	2243	2433	2441
Total Organic Carbon	0.75	1.06	0.51	0.62	2.33

Sediment chemistry data October 29, 2004—TOC results summary (all results in percent)—CRG Marine Laboratories, Inc.

Analyte	BST01	BST04	BST07		
Total Organic Carbon	2.25	2.29	2.53		
Analyte	DAC02	DAC03	DAC04		
Total Organic Carbon	2.86	2.46	1.86		
Analyte	SWZ01	SWZ02	SWZ04		
Total Organic Carbon	4.10	2.93	2.72		
Analyte	2229	2238	2243	2433	2441
Total Organic Carbon	0.37	0.99	0.54	0.64	2.29

Appendix D. Toxicity test results.

<u></u>	onaustona			<u>test in sedi</u> Final	Mean Final	SD Final					y
Station	Replicate		Initial # Alive	Proportion Alive	Proportion Alive	Proportion Alive	Controls	Р	% Control	MSD Cutoff	Toxic
BST01	1	15	20	0.75	0.64	0.14	1.00	0.003	0.67	0.72	Т
BST01	2	13	20	0.65			0.95				
BST01	3	11	20	0.55			0.90				
BST01	4	16	20	0.80			0.95				
BST01	5	9	20	0.45			1.00				
BST04	1	12	20	0.60	0.62	0.10	1.00	0.000	0.65	0.72	Т
BST04	2	16	20	0.80			0.95				
BST04	3	11	20	0.55			0.90				
BST04	4	11	20	0.55			0.95				
BST04	5	12	20	0.60			1.00				
BST07	1	13	20	0.65	0.68	0.19	1.00	0.013	0.71	0.72	Т
BST07	2	17	20	0.85	0.00	0.10	0.95	0.010	0.71	0.72	
BST07	3	13	20	0.65			0.90				
BST07 BST07	4	17	20	0.85			0.95				
BST07 BST07	5	8	20	0.40			1.00				
DAC02	1	8	20	0.40	0.56	0.11	1.00	0.000	0.58	0.72	Т
					0.50	0.11		0.000	0.50	0.72	1
DAC02	2 3	13 12	20 20	0.65			0.95				
DAC02				0.60			0.90				
DAC02	4	10	20	0.50			0.95				
DAC02	5	13	20	0.65	0.70	0.1.1	1.00	0.005	0.70	0.70	NIT
DAC03	1	15	20	0.75	0.70	0.14	1.00	0.005	0.73	0.72	NT
DAC03	2	11	20	0.55			0.95				
DAC03	3	14	20	0.70			0.90				
DAC03	4	18	20	0.90			0.95				
DAC03	5	12	20	0.60			1.00				
DAC04	1	8	20	0.40	0.39	0.09	1.00	0.000	0.41	0.72	Т
DAC04	2	9	20	0.45			0.95				
DAC04	3	6	20	0.30			0.90				
DAC04	4	10	20	0.50			0.95				
DAC04	5	6	20	0.30			1.00				
SWZ01	1	0	20	0.00	0.00	0.00	1.00	0.000	0.00	0.72	Т
SWZ01	2	0	20	0.00			0.95				
SWZ01	3	0	20	0.00			0.90				
SWZ01	4	0	20	0.00			0.95				
SWZ01	5	0	20	0.00			1.00				
SWZ02	1	1	20	0.05	0.02	0.03	1.00	0.000	0.02	0.72	Т
SWZ02	2	0	20	0.00			0.95				
SWZ02	3	0	20	0.00			0.90				
SWZ02	4	0	20	0.00			0.95				
SWZ02	5	1	20	0.05			1.00				
SWZ04	1	2	20	0.10	0.05	0.04	1.00	0.000	0.05	0.72	Т
SWZ04	2	1	20	0.05			0.95				
SWZ04	3	0	20	0.00			0.90				
SWZ04	4	1	20	0.05			0.95				
SWZ04	5	1	20	0.05			1.00				
2229	1	17	20	0.85	0.87	0.09	1.00	0.047	0.91	0.72	NT
2229	2	15	20	0.75			0.95				
2229	3	17	20	0.85			0.90				
2229	4	18	20	0.90			0.95				
2229	5	20	20	1.00			1.00				
2238	1	12	20	0.60	0.58	0.18	1.00	0.004	0.60	0.72	Т

Sediment Quality Assessment Study at the B Street/Broadway Piers, Downtown Anchorage, and Switzer Creek D-1 Phase II Draft Report

2238	2	9	20	0.45			0.95				
2238	3	16	20	0.80			0.90				
2238	4	7	20	0.35			0.95				
2238	5	14	20	0.70			1.00				
2243	1	14	20	0.70	0.68	0.06	1.00	0.000	0.71	0.72	Т
2243	2	15	20	0.75			0.95				
2243	3	12	20	0.60			0.90				
2243	4	13	20	0.65			0.95				
2243	5	14	20	0.70			1.00				
2433	1	19	20	0.95	0.83	0.13	1.00	0.040	0.86	0.72	NT
2433	2	13	20	0.65			0.95				
2433	3	18	20	0.90			0.90				
2433	4	18	20	0.90			0.95				
2433	5	15	20	0.75			1.00				
2441	1	12	20	0.60	0.68	0.06	1.00	0.000	0.71	0.72	Т
2441	2	14	20	0.70			0.95				
2441	3	15	20	0.75			0.90				
2441	4	14	20	0.70			0.95				
2441	5	13	20	0.65			1.00				
HOME	1	20	20	1.00	0.96	0.04					
HOME	2	19	20	0.95							
HOME	3	18	20	0.90							
HOME	4	19	20	0.95							
HOME	5	20	20	1.00							

10-day *Eohaustorius* survival toxicity test in sediment March 02, 2004—Marine Pollution Studies Laboratory

10-day *Eohaustorius* survival toxicity test in sediment March 02, 2004—Marine Pollution Studies Laboratory

	liony	Final #	Initial #	Proportion	Mean	
Concentration	Replicate		Alive	Survival	Survival	SD
0	1	9	10	0.90	0.97	0.06
0	2	10	10	1.00		
0	3	10	10	1.00		
560	1	0	10	0.00	0.00	0.00
560	2	0	10	0.00		
560	3	0	10	0.00		
1000	1	0	10	0.00	0.00	0.00
1000	2	0	10	0.00		
1000	3	0	10	0.00		
1800	1	0	10	0.00	0.00	0.00
1800	2	0	10	0.00		
1800	3	0	10	0.00		
3200	1	0	10	0.00	0.00	0.00
3200	2	0	10	0.00		
3200	3	0	10	0.00		
5600	1	0	10	0.00	0.00	0.00
5600	2	0	10	0.00		
5600	3	0	10	0.00		

Concentrat	ion pH	Total Ammonia	Un-ionized Ammonia
0	7.84	0	0.000
560	7.28	482	1.924
1000	7.13	984	2.785
1800	6.97	1685	3.302
3200	6.8	3000	3.977
5600	6.6	5100	4.268

Studies L			#	#	Proportion		SD			%	MSD	
Station				Unfertilized			Fertilized			Control		
BST01	25	1	90	10	0.90	0.87	0.08	0.90	0.198	0.96	0.80	NT
BST01	25	2	91	9	0.91			0.91				
BST01	25	3	91	9	0.91			0.95				
BST01	25	4	92	9	0.91			0.92				
BST01	25	5	74	26	0.74			0.86				
BST01	50	1	87	13	0.87	0.90	0.03	0.90	0.383	0.99	0.80	NT
BST01	50	2	94	11	0.90			0.91				
BST01	50	3	104	6	0.95			0.95				
BST01	50	4	90	10	0.90			0.92				
BST01	50	5	90	10	0.90			0.86				
BST01	100	1	76	24	0.76	0.83	0.06	0.90	0.027	0.92	0.81	NT
BST01	100	2	90	11	0.89			0.91				
BST01	100	3	87	13	0.87			0.95				
BST01	100	4	88	20	0.81			0.92				
BST01	100	lost	lost	lost	lost			0.86				
BST04	25	1	90	10	0.90	0.86	0.05	0.90	0.038	0.94	0.80	NT
BST04	25	2	100	17	0.85			0.91				
BST04	25	3	91	12	0.88			0.95				
BST04	25	4	78	22	0.78			0.92				
BST04	25	5	86	14	0.86			0.86				
BST04	50	1	96	12	0.89	0.90	0.05	0.90	0.339	0.99	0.80	NT
BST04	50	2	99	6	0.94			0.91				
BST04	50	3	87	13	0.87			0.95				
BST04	50	4	83	17	0.83			0.92				
BST04	50	5	95	5	0.95			0.86				
BST04	100	1	85	15	0.85	0.82	0.04	0.90	0.003	0.90	0.80	NT
BST04	100	2	76	24	0.76			0.91				
BST04	100	3	80	20	0.80			0.95				
BST04	100	4	112	21	0.84			0.92				
BST04	100	5	118	21	0.85			0.86				
BST07	25	1	90	13	0.87	0.89	0.04	0.90	0.214	0.98	0.80	NT
BST07	25	2	92	15	0.86			0.91				
BST07	25	3	95	14	0.87			0.95				
BST07	25	4	94	13	0.88			0.92				
BST07	25	5	118	5	0.96			0.86				
BST07	50	1	91	9	0.91	0.84	0.04	0.90	0.014	0.93	0.80	NT
BST07	50	2	113	24	0.82			0.91				
BST07	50	3	108	28	0.79			0.95				
BST07	50	4	83	17	0.83			0.92				
BST07	50	5	85	15	0.85			0.86				
BST07	100	1	83	17	0.83	0.85	0.02	0.90	0.005	0.93	0.80	NT
BST07	100	2	99	16	0.86			0.91				
BST07	100	3	87	18	0.83			0.95				
BST07	100	4	88	12	0.88			0.92				
BST07	100	5	83	17	0.83			0.86				
DAC02	25	1	108	15	0.88	0.82	0.07	0.90	0.021	0.91	0.80	NT
DAC02	25	2	85	15	0.85		2.2.	0.91	5.0EI	5.01	5.00	
DAC02	25	3	87	14	0.86			0.95				
DAC02	25	4	72	29	0.71			0.92				
DAC02 DAC02	25	5	90	29	0.81			0.92				
DAC02 DAC02	50	1	<u> </u>	23	0.77	0.73	0.04	0.90	0.000	0.80	0.80	NT
DAC02 DAC02	50	2	83	32	0.77	0.70	0.04	0.90	0.000	0.00	0.00	111
DAUUZ	50	2	00	52	0.72			0.91				

Strongylocentrotus purpuratus (purple urchin) fertilization toxicity test in porewater March 03, 2004—Marine Pollution Studies Laboratory

DAC02 50 3 73 27 0.73 0.95 DAC02 50 4 76 2.4 0.76 0.96 0.92 DAC02 100 1 58 42 0.78 0.952 0.95 0.90 0.000 0.57 0.80 T DAC02 100 2 48 52 0.48 0.91	Studies L	.aborato	ory [`]		-		-	-		-		
DAC02 50 6 67 33 0.67 0.88 DAC02 100 1 58 42 0.58 0.52 0.60 0.000 0.57 0.80 T DAC02 100 2 48 52 0.48 0.91	DAC02	50	3	73	27	0.73			0.95			
DAC02 100 1 58 42 0.58 0.52 0.05 0.0000.057 0.80 T DAC02 100 3 51 49 0.51 0.95 0.0000.057 0.80 T DAC02 100 4 57 43 0.57 0.92 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.80 NT DAC02 100 5 4.6 5.4 0.46 0.86 0.90 0.021 0.93 0.80 NT DAC03 25 5 83 27 0.75 0.86 0.92 0.229 0.97 0.40 NT DAC03 50 1 65 15 0.85 0.32 0.80 0.77 0.40 NT DAC03 50 4 81 19 0.81 0.92 0.97 0.40 NT DAC03 50 5 87	DAC02	50	4	76	24	0.76			0.92			
DAC02 100 2 48 52 0.48 0.91 DAC02 100 4 57 43 0.57 0.92 DAC02 100 4 57 43 0.57 0.92 DAC02 25 1 88 12 0.88 0.84 0.66 0.90 0.032 0.93 0.80 NT DAC03 25 2 90 10 0.90 0.91 DAC03 25 3 83 17 0.83 0.95 DAC03 25 83 17 0.83 0.95 DAC03 25 83 27 0.75 0.86 DAC03 50 1 85 15 0.87 0.80 NT DAC03 50 2 87 13 0.87 0.88 DAC03 100 1 74 26 0.74 0.79 0.33 0.90 0.000 0.87 0.80 NT DAC03 100 4 97 27 <td>DAC02</td> <td>50</td> <td>5</td> <td>67</td> <td>33</td> <td>0.67</td> <td></td> <td></td> <td>0.86</td> <td></td> <td></td> <td></td>	DAC02	50	5	67	33	0.67			0.86			
DAC02 100 3 51 49 0.51 0.485 DAC02 100 5 46 54 0.46 0.66 0.80 0.32 0.93 0.80 NT DAC03 25 1 88 12 0.88 0.84 0.66 0.090 0.032 0.93 0.80 NT DAC03 25 2 90 10 0.80 0.91 0.92 0.80 NT DAC03 25 5 83 27 0.75 0.86 0.92 0.80 NT DAC03 50 1 85 15 0.85 0.82 0.97 0.80 NT DAC03 50 2 87 13 0.87 0.92 0.80 NT DAC03 50 4 81 19 0.81 0.92 0.80 NT DAC03 100 2 84 20 0.81 0.91 0.91 0.91 DAC03 <td>DAC02</td> <td>100</td> <td>1</td> <td>58</td> <td>42</td> <td>0.58</td> <td>0.52</td> <td>0.05</td> <td>0.90</td> <td>0.000 0.57</td> <td>0.80</td> <td>Т</td>	DAC02	100	1	58	42	0.58	0.52	0.05	0.90	0.000 0.57	0.80	Т
DAC02 100 4 57 43 0.57 0.92 DAC02 100 5 46 54 0.46 0.66	DAC02	100	2		52	0.48			0.91			
DAC02 100 5 46 54 0.46 0.86 DAC03 25 1 88 12 0.88 0.84 0.06 0.90 0.91 DAC03 25 2 90 10 0.90 0.91 0.80 NT DAC03 25 4 85 15 0.85 0.92 DAC03 25 5 83 27 0.75 0.86 0.07 0.91 NT DAC03 50 2 87 13 0.87 0.91 NT DAC03 50 4 81 19 0.81 0.92 NT DAC03 50 5 87 13 0.87 0.88 NT DAC03 100 2 84 20 0.61 0.91 NT DAC03 100 497 27 0.78 <	DAC02	100	3	51	49	0.51			0.95			
DAC03 25 1 88 12 0.88 0.84 0.06 0.90 0.032 0.93 0.80 NT DAC03 25 2 90 10 0.90 0.91 0.91 0.91 DAC03 25 3 83 17 0.83 0.95 0.86 0.92 0.86 0.92 0.80 NT DAC03 25 5 83 27 0.75 0.86 0.92 0.80 NT DAC03 50 2 87 1.3 0.87 0.91 0.92 0.97 0.80 NT DAC03 50 4 81 19 0.81 0.92 0.92 0.80 NT DAC03 100 1 74 26 0.74 0.79 0.03 0.80 0.80 NT DAC03 100 2 84 20 0.81 0.92 0.80 NT DAC04 25 103 12 <td>DAC02</td> <td>100</td> <td></td> <td>57</td> <td></td> <td>0.57</td> <td></td> <td></td> <td>0.92</td> <td></td> <td></td> <td></td>	DAC02	100		57		0.57			0.92			
DAC03 25 2 90 10 0.90 0.91 DAC03 25 3 83 17 0.83 0.95 DAC03 25 4 85 15 0.85 0.92 DAC03 50 1 85 15 0.86 0.91 DAC03 50 1 85 13 0.87 0.91 0.91 DAC03 50 4 81 19 0.81 0.92 0.97 0.80 NT DAC03 50 4 81 19 0.81 0.92 0.000 0.87 0.80 NT DAC03 100 2 84 20 0.74 0.79 0.30 0.000 0.87 0.80 NT DAC03 100 4 97 27 0.76 0.92 0.20 0.80 NT DAC03 100 5 82 20 0.80 0.86 0.86 0.87 0.80 NT	DAC02	100	5	46	54	0.46			0.86			
DAC03 25 3 83 17 0.83 0.95 DAC03 25 4 85 15 0.85 0.92 DAC03 25 5 83 27 0.75 0.066 DAC03 50 1 85 15 0.85 0.88 0.07 0.90 0.290.97 0.80 NT DAC03 50 2 87 13 0.87 0.91 0.95 DAC03 50 3 129 0 1.00 0.95 DAC03 50 5 87 13 0.87 0.86 DAC03 0.90 0.80 NT DAC03 100 1 74 26 0.74 0.79 0.03 0.90 0.80 NT DAC03 100 3 83 17 0.83 0.95 DAC04 25 1 90 0 0.90 0.91 DAC04 25 1 90 0 0.91 DAC4 25 1	DAC03	25	1	88	12	0.88	0.84	0.06	0.90	0.032 0.93	0.80	NT
DAC03 25 4 85 15 0.85 0.92 DAC03 25 5 83 27 0.75 0.86 DAC03 50 1 85 15 0.85 0.88 0.07 0.90 0.229 0.97 0.80 NT DAC03 50 2 87 13 0.87 0.91 0.91 DAC03 50 4 81 19 0.81 0.92 DAC03 50 4 81 19 0.81 0.92 DAC03 100 1 74 26 0.74 0.79 0.03 0.90 0.80 NT DAC03 100 2 84 20 0.81 0.91 0.91 DAC03 100 5 82 20 0.80 0.98 0.99 0.96 0.86 D.92 DAC04 25 1 90 10 0.99 0.84 0.98 0.90 0.91 DAC04 25 1 83 17 0.8	DAC03	25	2	90	10	0.90			0.91			
DAC03 25 5 83 27 0.75 0.86 0.77 0.86 0.77 0.80 NT DAC03 50 2 87 13 0.87 0.91 0.91 0.91 DAC03 50 3 129 0 1.00 0.95 0.91 DAC03 50 4 81 19 0.81 0.92 0.86 DAC03 50 5 87 13 0.87 0.03 0.90 0.87 0.80 NT DAC03 100 1 74 26 0.74 0.79 0.03 0.90 0.80 NT DAC03 100 4 97 27 0.78 0.92 DAC04 25 1 90 10 0.90 0.86 0.92 DAC04 25 1 90 10 0.90 0.91 DAC04 25 1	DAC03	25	3	83	17	0.83			0.95			
DAC03 50 1 85 15 0.85 0.88 0.07 0.90 0.229 0.97 0.80 NT DAC03 50 2 87 13 0.87 0.91 0.91 0.91 DAC03 50 4 81 19 0.81 0.92 0.965 DAC03 50 4 81 19 0.81 0.92 0.00 0.86 DAC03 100 1 74 26 0.74 0.79 0.03 0.86 DAC03 100 2 84 20 0.81 0.91 0.92 DAC03 100 4 97 27 0.78 0.92 DAC03 100 4 97 27 0.78 0.92 DAC04 25 1 90 0.84 0.08 0.90 0.91 DAC04 25 1 90 0.70 0.95 DAC04 25 3 75 32 0.70 0.95 DAC04 25 5	DAC03	25	4	85	15	0.85			0.92			
DAC03 50 2 87 13 0.87 0.91 DAC03 50 4 81 19 0.81 0.92 DAC03 50 4 81 19 0.81 0.92 DAC03 50 5 87 13 0.87 0.86 DAC03 100 1 74 26 0.74 0.79 0.90 0.000 0.87 0.80 NT DAC03 100 2 84 20 0.81 0.91 DAC03 100 3 83 17 0.83 0.95 DAC03 100 4 97 27 0.78 0.92 DAC04 25 1 90 10 0.90 0.84 0.86 0.99 DAC04 25 2 103 12 0.90 0.91 DAC04 25 4 86 14 0.86 0.92 DAC04 25 3 75 32 0.71 0.95 DAC04 25 82 18 0.82 0.73 0.91 DAC04 50 1 75 <t< td=""><td>DAC03</td><td>25</td><td>5</td><td></td><td>27</td><td>0.75</td><td></td><td></td><td>0.86</td><td></td><td></td><td></td></t<>	DAC03	25	5		27	0.75			0.86			
DAC03 50 3 129 0 1.00 0.95 DAC03 50 4 81 19 0.81 0.92 DAC03 50 5 87 13 0.87 0.86 DAC03 100 1 74 26 0.74 0.79 0.03 0.90 0.000 0.87 0.80 NT DAC03 100 2 84 20 0.81 0.91	-	50	1				0.88	0.07	0.90	0.229 0.97	0.80	NT
DAC03 50 4 81 19 0.81 0.92 DAC03 50 5 87 13 0.87 0.86 DAC03 100 1 74 26 0.74 0.79 0.03 0.90 0.000 0.87 0.80 NT DAC03 100 2 84 20 0.81 0.91 0.91 DAC03 100 4 97 27 0.78 0.92 0.80 NT DAC04 25 1 90 10 0.90 0.84 0.90 0.61 0.92 0.80 NT DAC04 25 3 75 32 0.70 0.95 DAC04 25 4 86 14 0.86 0.92 DAC04 25 82 18 0.82 0.80 T DAC04 25 5 82 18 0.82 0.80 T DAC04 50 17 75 25 0.71 0.05	DAC03					0.87						
DAC03 50 5 87 13 0.87 0.86 DAC03 100 1 74 26 0.74 0.79 0.03 0.80 0.000 0.87 0.80 NT DAC03 100 2 84 20 0.81 0.91 0.91 0.000 0.87 0.80 NT DAC03 100 4 97 27 0.78 0.92 0.95 0.92 0.001 0.92 0.80 NT DAC04 25 1 90 10 0.90 0.84 0.08 0.90 0.061 0.92 0.80 NT DAC04 25 2 103 12 0.90 0.95 0.95 0.86 0.92 0.80 T 0.86 0.80 T 0.86 0.80 T 0.80 T 0.81 0.80 T 0.80 T 0.82 0.80 T 0.80 0.90 0.001 0.63 0.80 T 0.80 T 0.82 <	DAC03	50	3	129	0	1.00			0.95			
DAC03 100 1 74 26 0.74 0.79 0.03 0.90 0.000 0.87 0.80 NT DAC03 100 2 84 20 0.81 0.91		50	4	81	19	0.81			0.92			
DAC03 100 2 84 20 0.81 0.91 DAC03 100 3 83 17 0.83 0.95 DAC03 100 5 82 20 0.80 0.86 0.92 DAC04 25 1 90 10 0.90 0.84 0.08 0.91 DAC04 25 1 90 10 0.90 0.84 0.08 0.91 DAC04 25 1 90 10 0.90 0.91	-	50	5	87	13	0.87			0.86			
DAC03 100 3 83 17 0.83 0.95 DAC03 100 4 97 27 0.78 0.92 DAC03 100 5 82 20 0.80 0.86 DAC04 25 1 90 10 0.90 0.84 0.08 0.90 0.061 0.92 0.80 NT DAC04 25 2 103 12 0.90 0.91 0.95 DAC04 25 3 75 32 0.70 0.95 DAC04 25 5 82 18 0.82 0.86 DAC04 25 5 82 18 0.82 0.86 T DAC04 50 1 75 25 0.75 0.71 0.05 0.80 T DAC04 50 3 77 28 0.73 0.91 DAC04 50 5 63 37 0.63 0.86 D DAC04 100 1 72 <t< td=""><td>DAC03</td><td>100</td><td>1</td><td>74</td><td></td><td>0.74</td><td>0.79</td><td>0.03</td><td>0.90</td><td>0.000 0.87</td><td>0.80</td><td>NT</td></t<>	DAC03	100	1	74		0.74	0.79	0.03	0.90	0.000 0.87	0.80	NT
DAC03 100 4 97 27 0.78 0.92 DAC03 100 5 82 20 0.80 0.86 0.90 0.061 0.92 0.80 NT DAC04 25 1 90 10 0.90 0.84 0.08 0.90 0.91 DAC04 25 2 103 12 0.90 0.95 0.95 0.95 0.95 0.95 0.92 0.92 0.92 0.93 0.000 0.78 0.80 T 0.86 0.91 DAC04 50 3 77 28 0.73 0.91 DAC04 50 5 63 37 0.63 0.86 DAC04 100 1 72 31 <	DAC03	100	2	84	20	0.81			0.91			
DAC03 100 5 82 20 0.80 0.86 DAC04 25 1 90 10 0.90 0.84 0.08 0.90 0.61 0.92 0.80 NT DAC04 25 2 103 12 0.90 0.91	DAC03	100	3	83	17	0.83			0.95			
DAC04 25 1 90 10 0.90 0.84 0.08 0.90 0.061 0.92 0.80 NT DAC04 25 2 103 12 0.90 0.91 DAC04 25 3 75 32 0.70 0.95 DAC04 25 5 82 18 0.82 0.86 DAC04 25 5 82 18 0.82 0.86 DAC04 50 1 75 25 0.75 0.71 0.05 0.90 0.000 0.78 0.80 T DAC04 50 4 71 29 0.71 0.92 DAC04 100 1 72 31 0.70 0.58 0.12 0.90 0.001 0.63 0.80 T DAC04 100 1 72 31 0.70 0.58 0.21 0.5 </td <td>DAC03</td> <td>100</td> <td></td> <td></td> <td></td> <td>0.78</td> <td></td> <td></td> <td>0.92</td> <td></td> <td></td> <td></td>	DAC03	100				0.78			0.92			
DAC04 25 2 103 12 0.90 0.91 DAC04 25 3 75 32 0.70 0.95 DAC04 25 4 86 14 0.86 0.92 DAC04 25 5 82 18 0.82 0.86 DAC04 50 1 75 25 0.75 0.71 0.05 0.90 0.000 0.78 0.80 T DAC04 50 2 78 29 0.73 0.91	-	100				0.80			0.86			
DAC04 25 3 75 32 0.70 0.95 DAC04 25 4 86 14 0.86 0.92 DAC04 25 5 82 18 0.82 0.86 DAC04 50 1 75 25 0.75 0.71 0.05 0.90 0.000 0.78 0.80 T DAC04 50 2 78 29 0.73 0.91 0.71 0.92 DAC04 50 4 71 29 0.71 0.92 DAC04 50 4 71 29 0.71 0.92 DAC04 50 4 71 29 0.71 0.92 DAC04 50 5 63 7 0.63 0.86 DEC04 100 1 72 31 0.70 0.58 0.12 0.90 0.001 0.63 0.80 T DAC04 100 2 61 48 0.56 0.91 S DAC04	DAC04	25	1	90	10	0.90	0.84	0.08	0.90	0.061 0.92	0.80	NT
DAC04 25 4 86 14 0.86 0.92 DAC04 25 5 82 18 0.82 0.86 DAC04 50 1 75 25 0.75 0.71 0.05 0.90 0.000 0.78 0.80 T DAC04 50 2 78 29 0.73 0.91 DAC04 50 3 77 28 0.73 0.95 DAC04 50 4 71 29 0.71 0.92 <td>DAC04</td> <td>25</td> <td>2</td> <td>103</td> <td>12</td> <td>0.90</td> <td></td> <td></td> <td>0.91</td> <td></td> <td></td> <td></td>	DAC04	25	2	103	12	0.90			0.91			
DAC04 25 5 82 18 0.82 0.86 DAC04 50 1 75 25 0.75 0.71 0.05 0.90 0.000 0.78 0.80 T DAC04 50 2 78 29 0.73 0.91 D D D 0.95 D D 0.92 D D D 1 72 31 0.70 0.58 0.12 0.90 0.001 0.63 0.80 T DAC04 100 2 61 48 0.56 0.91 D <td< td=""><td>DAC04</td><td>25</td><td>3</td><td>75</td><td>32</td><td>0.70</td><td></td><td></td><td>0.95</td><td></td><td></td><td></td></td<>	DAC04	25	3	75	32	0.70			0.95			
DAC04 50 1 75 25 0.75 0.71 0.05 0.90 0.000 0.78 0.80 T DAC04 50 2 78 29 0.73 0.91	DAC04	25	4	86	14	0.86			0.92			
DAC04 50 2 78 29 0.73 0.91 DAC04 50 3 77 28 0.73 0.95 DAC04 50 4 71 29 0.71 0.92 DAC04 50 5 63 37 0.63 0.86 DAC04 100 1 72 31 0.70 0.58 0.12 0.90 0.001 0.63 0.80 T DAC04 100 2 61 48 0.56 0.91 DAC04 100 3 41 59 0.41 0.95 0.92 0.92	DAC04	25	5	82	18	0.82			0.86			
DAC04 50 3 77 28 0.73 0.95 DAC04 50 4 71 29 0.71 0.92 DAC04 50 5 63 37 0.63 0.86 DAC04 100 1 72 31 0.70 0.58 0.12 0.90 0.001 0.63 0.80 T DAC04 100 2 61 48 0.56 0.91 DAC04 100 3 41 59 0.41 0.95 DAC04 100 4 84 41 0.67 0.92 DAC04 100 5 54 46 0.54 0.86 SW201 25 1 80 20 0.80 0.91 SW201 25 3 72 28 0.72 0.95 SW201 25 4 8	DAC04	50	1		25	0.75	0.71	0.05	0.90	0.000 0.78	0.80	Т
DAC04 50 4 71 29 0.71 0.92 DAC04 50 5 63 37 0.63 0.86 DAC04 100 1 72 31 0.70 0.58 0.12 0.90 0.001 0.63 0.80 T DAC04 100 2 61 48 0.56 0.91 DAC04 100 3 41 59 0.41 0.95 0.92 0.92 0.92 DAC04 100 5 54 46 0.54 0.86 DAV201 25 1 80 20 0.80 0.91 SWZ01 25 4 83	-	50	2									
DAC04 50 5 63 37 0.63 0.86 DAC04 100 1 72 31 0.70 0.58 0.12 0.90 0.001 0.63 0.80 T DAC04 100 2 61 48 0.56 0.91 D DAC04 100 3 41 59 0.41 0.95 D D 0.92 DAC04 100 4 84 41 0.67 0.92 DAC04 100 5 54 46 0.54 0.86 SW201 25 1 80 20 0.80 0.91 SW201 25 3 72 28 0.72 0.95 SW201 25 4 83 18 0.82 0.92 SW201 25 5 85 22 0.79 0.86 SW201 50 1												
DAC04 100 1 72 31 0.70 0.58 0.12 0.90 0.001 0.63 0.80 T DAC04 100 2 61 48 0.56 0.91	DAC04	50	4	71		0.71			0.92			
DAC04 100 2 61 48 0.56 0.91 DAC04 100 3 41 59 0.41 0.95 DAC04 100 4 84 41 0.67 0.92 DAC04 100 5 54 46 0.54 0.86 SWZ01 25 1 80 20 0.80 0.79 0.04 0.90 0.000 0.87 0.80 NT SWZ01 25 2 80 20 0.80 0.91 SWZ01 25 3 72 28 0.72 0.95 SWZ01 25 4 83 18 0.82 0.92 SWZ01 25 5 85 22 0.79 0.86 SWZ01 25 5 85 22 0.79 0.86 SWZ01 50 1 91 25 0.78 0.85 0.04 0.90 0.23 0.94 0.80 NT SWZ01 50 2 100	DAC04	50	5		37	0.63			0.86			
DAC04 100 3 41 59 0.41 0.95 DAC04 100 4 84 41 0.67 0.92 DAC04 100 5 54 46 0.54 0.86 SW201 25 1 80 20 0.80 0.79 0.04 0.90 0.000 0.87 0.80 NT SW201 25 2 80 20 0.80 0.79 0.04 0.90 0.000 0.87 0.80 NT SW201 25 2 80 20 0.80 0.91	-	100	1	72	31	0.70	0.58	0.12	0.90	0.001 0.63	0.80	Т
DAC04 100 4 84 41 0.67 0.92 DAC04 100 5 54 46 0.54 0.86 SWZ01 25 1 80 20 0.80 0.79 0.04 0.90 0.000 0.87 0.80 NT SWZ01 25 2 80 20 0.80 0.91 SWZ01 25 3 72 28 0.72 0.95 SWZ01 25 4 83 18 0.82 0.92 SWZ01 25 5 85 22 0.79 0.86 SWZ01 25 5 85 22 0.79 0.86 SWZ01 50 1 91 25 0.78 0.85 0.04 0.90 0.023 0.94 0.80 NT SWZ01 50 2 100 14 0.88 0.91 SWZ01 50 3 103 12 0.90 0.92 SWZ01 50 5 86 14 0.86 <td></td> <td>100</td> <td>2</td> <td></td> <td></td> <td>0.56</td> <td></td> <td></td> <td>0.91</td> <td></td> <td></td> <td></td>		100	2			0.56			0.91			
DAC04 100 5 54 46 0.54 0.86 SWZ01 25 1 80 20 0.80 0.79 0.04 0.90 0.000 0.87 0.80 NT SWZ01 25 2 80 20 0.80 0.91 SWZ01 25 3 72 28 0.72 0.95 SWZ01 25 4 83 18 0.82 0.92 SWZ01 25 5 85 22 0.79 0.86 SWZ01 25 5 85 22 0.79 0.86 SWZ01 50 1 91 25 0.78 0.85 0.04 0.90 0.023 0.94 0.80 NT SWZ01 50 2 100 14 0.88 0.91 SWZ01 50 5 86 14 0.86 0.86 SWZ01<	DAC04	100	3	41	59	0.41			0.95			
SWZ01 25 1 80 20 0.80 0.79 0.04 0.90 0.000 0.87 0.80 NT SWZ01 25 2 80 20 0.80 0.91	DAC04	100	4	84	41	0.67			0.92			
SWZ01 25 2 80 20 0.80 0.91 SWZ01 25 3 72 28 0.72 0.95 SWZ01 25 4 83 18 0.82 0.92 SWZ01 25 5 85 22 0.79 0.86 SWZ01 50 1 91 25 0.78 0.85 0.04 0.90 0.023 0.94 0.80 NT SWZ01 50 2 100 14 0.88 0.91 <td< td=""><td></td><td>100</td><td>5</td><td></td><td></td><td>0.54</td><td></td><td></td><td>0.86</td><td></td><td></td><td></td></td<>		100	5			0.54			0.86			
SWZ01 25 3 72 28 0.72 0.95 SWZ01 25 4 83 18 0.82 0.92 SWZ01 25 5 85 22 0.79 0.86 SWZ01 50 1 91 25 0.78 0.85 0.04 0.90 0.023 0.94 0.80 NT SWZ01 50 2 100 14 0.88 0.91							0.79	0.04		0.000 0.87	0.80	NT
SWZ01 25 4 83 18 0.82 0.92 SWZ01 25 5 85 22 0.79 0.86 SWZ01 50 1 91 25 0.78 0.85 0.04 0.90 0.023 0.94 0.80 NT SWZ01 50 2 100 14 0.88 0.91	SWZ01	25										
SWZ01 25 5 85 22 0.79 0.86 SWZ01 50 1 91 25 0.78 0.85 0.04 0.90 0.023 0.94 0.80 NT SWZ01 50 2 100 14 0.88 0.91 0.90 0.023 0.94 0.80 NT SWZ01 50 2 100 14 0.88 0.91 0.90 0.95 0.92			3									
SWZ01 50 1 91 25 0.78 0.85 0.04 0.90 0.023 0.94 0.80 NT SWZ01 50 2 100 14 0.88 0.91	-											
SWZ01 50 2 100 14 0.88 0.91 SWZ01 50 3 103 12 0.90 0.95 SWZ01 50 4 89 18 0.83 0.92 SWZ01 50 5 86 14 0.86 0.86 SWZ01 100 1 4 96 0.04 0.03 0.90 0.000 0.03 0.80 T SWZ01 100 2 2 98 0.02 0.91		25	5									
SWZ01 50 3 103 12 0.90 0.95 SWZ01 50 4 89 18 0.83 0.92 SWZ01 50 5 86 14 0.86 0.86 SWZ01 100 1 4 96 0.04 0.03 0.03 0.90 0.000 0.03 0.80 T SWZ01 100 2 2 98 0.02 0.91	SWZ01	50	1	91	25	0.78	0.85	0.04	0.90	0.023 0.94	0.80	NT
SWZ01 50 4 89 18 0.83 0.92 SWZ01 50 5 86 14 0.86 0.86 SWZ01 100 1 4 96 0.04 0.03 0.90 0.000 0.03 0.80 T SWZ01 100 2 2 98 0.02 0.91 SWZ01 100 3 0 100 0.00 0.95 SWZ01 100 4 1 99 0.01 0.92 SWZ01 100 5 8 92 0.08 0.86 SWZ02 25 1 82 18 0.82 0.84 0.04 0.90 0.007 0.93 0.80 NT		50	2	100		0.88			0.91			
SWZ01 50 5 86 14 0.86 0.86 SWZ01 100 1 4 96 0.04 0.03 0.90 0.000 0.03 0.80 T SWZ01 100 2 2 98 0.02 0.91 SWZ01 100 3 0 100 0.00 0.95 SWZ01 100 4 1 99 0.01 0.92 SWZ01 100 5 8 92 0.08 0.86 SWZ02 25 1 82 18 0.82 0.84 0.04 0.90 0.007 0.93 0.80 NT	-											
SWZ01 100 1 4 96 0.04 0.03 0.03 0.90 0.000 0.03 0.80 T SWZ01 100 2 2 98 0.02 0.91		50										
SWZ01 100 2 2 98 0.02 0.91 SWZ01 100 3 0 100 0.00 0.95 SWZ01 100 4 1 99 0.01 0.92 SWZ01 100 5 8 92 0.08 0.86 SWZ02 25 1 82 18 0.82 0.84 0.04 0.90 0.007 0.93 0.80 NT			5	86								
SWZ01 100 3 0 100 0.00 0.95 SWZ01 100 4 1 99 0.01 0.92 SWZ01 100 5 8 92 0.08 0.86 SWZ02 25 1 82 18 0.82 0.84 0.04 0.90 0.007 0.93 0.80 NT		100					0.03	0.03		0.000 0.03	0.80	Т
SWZ01 100 4 1 99 0.01 0.92 SWZ01 100 5 8 92 0.08 0.86 SWZ02 25 1 82 18 0.82 0.84 0.04 0.90 0.007 0.93 0.80 NT		100			98	0.02						
SWZ01 100 5 8 92 0.08 0.86 SWZ02 25 1 82 18 0.82 0.84 0.04 0.90 0.007 0.93 0.80 NT												
SWZ02 25 1 82 18 0.82 0.84 0.04 0.90 0.007 0.93 0.80 NT	SWZ01	100				0.01			0.92			
		100	5			0.08			0.86			
	SWZ02	25	1	82	18	0.82	0.84	0.04	0.90	0.007 0.93	0.80	NT
SWZ02 25 2 80 20 0.80 0.91												

Strongylocentrotus purpuratus (purple urchin) fertilization toxicity test in porewater March 03, 2004—Marine Pollution Studies Laboratory

Studies L	.aborato	ory					·				
SWZ02	25	3	83	17	0.83			0.95			
SWZ02	25	4	86	14	0.86			0.92			
SWZ02	25	5	91	11	0.89			0.86			
SWZ02	50	1	66	37	0.64	0.68	0.08	0.90	0.001 0.75	0.80	Т
SWZ02	50	2	61	40	0.60			0.91			
SWZ02	50	3	62	38	0.62			0.95			
SWZ02	50	4	93	28	0.77			0.92			
SWZ02	50	5	96	31	0.76			0.86			
SWZ02	100	1	1	109	0.01	0.05	0.06	0.90	0.000 0.06	0.80	Т
SWZ02	100	2	1	99	0.01			0.91			
SWZ02	100	3	13	77	0.14			0.95			
SWZ02	100	4	2	99	0.02			0.92			
SWZ02	100	5	8	101	0.07			0.86			
SWZ04	25	1	113	16	0.88	0.86	0.06	0.90	0.092 0.95	0.80	NT
SWZ04	25	2	91	9	0.91			0.91			
SWZ04	25	3	84	16	0.84			0.95			
SWZ04	25	4	100	9	0.92			0.92			
SWZ04	25	5	78	22	0.78			0.86			
SWZ04	50	1	89	16	0.85	0.79	0.24	0.90	0.003 0.87	0.80	NT
SWZ04	50	2	89	152	0.37			0.91			
SWZ04	50	3	87	13	0.87			0.95			
SWZ04	50	4	114	10	0.92			0.92			
SWZ04	50	5	105	8	0.93			0.86			
SWZ04	100	1	70	33	0.68	0.78	0.06	0.90	0.003 0.85	0.80	NT
SWZ04	100	2	86	20	0.81			0.91			
SWZ04	100	3	89	20	0.82			0.95			
SWZ04	100	4	81	29	0.74			0.92			
SWZ04	100	5	84	17	0.83			0.86			
2229	25	1	88	12	0.88	0.84	0.04	0.90	0.014 0.93	0.80	NT
2229	25	2	88	25	0.78			0.91			
2229	25	3	88	13	0.87			0.95			
2229	25	4	90	15	0.86			0.92			
2229	25	5	97	19	0.84			0.86			
2229	50	1	88	12	0.88	0.89	0.04	0.90	0.197 0.98	0.80	NT
2229	50	2	99	8	0.93			0.91			
2229	50	3	98	7	0.93			0.95			
2229	50	4	87	14	0.86			0.92			
2229	50	5	83	17	0.83			0.86			
2229	100	1	93	7	0.93	0.87	0.05	0.90	0.106 0.96	0.80	NT
2229	100	2	87	13	0.87			0.91			
2229	100	3	81	19	0.81			0.95			
2229	100	4	86	14	0.86			0.92			
2229	100	5	90	10	0.90			0.86			
2238	25	1	94	17	0.85	0.90	0.03	0.90	0.276 0.99	0.80	NT
2238	25	2	89	11	0.89			0.91			
2238	25	3	96	8	0.92			0.95			
2238	25	4	112	10	0.92			0.92			
2238	25	5	90	10	0.90			0.86			
2238	50	1	91	9	0.91	0.91	0.03	0.90	0.474 1.00	0.80	NT
2238	50	2	92	8	0.92			0.91			
2238	50	3	97	6	0.94			0.95			
2238	50	4	87	13	0.87			0.92			
0000	50	5	99	12	0.89			0.86			
2238	50	<u> </u>									
2238 2238 2238	100	1	88	12 13	0.88	0.86	0.03	0.90	0.015 0.94	0.80	NT

Strongylocentrotus purpuratus (purple urchin) fertilization toxicity test in porewater March 03, 2004—Marine Pollution Studies Laboratory

Studies	Laborato	ory		-		-					
2238	100	3	82	16	0.84			0.95			
2238	100	4	97	21	0.82			0.92			
2238	100	5	88	12	0.88			0.86			
2243	25	1	89	11	0.89	0.89	0.01	0.90	0.098 0.97	0.80	NT
2243	25	2	99	12	0.89			0.91			
2243	25	3	97	13	0.88			0.95			
2243	25	4	95	14	0.87			0.92			
2243	25	5	89	11	0.89			0.86			
2243	50	1	94	7	0.93	0.91	0.04	0.90	0.456 1.00	0.80	NT
2243	50	2	86	14	0.86			0.91			
2243	50	3	94	6	0.94			0.95			
2243	50	4	95	6	0.94			0.92			
2243	50	5	106	18	0.85			0.86			
2243	100	1	90	10	0.90	0.89	0.06	0.90	0.259 0.98	0.80	NT
2243	100	2	122	2	0.98	0.00	0.00	0.91	0.200 0.00	0.00	
2243	100	3	82	18	0.82			0.95			
2243	100	4	86	14	0.86			0.92			
2243	100	5	93	14	0.87			0.86			
2433	25	1	83	17	0.83	0.85	0.05	0.90	0.037 0.94	0.80	NT
2433	25	2	80	20	0.80	0.00	0.00	0.91	0.007 0.04	0.00	
2433	25	3	91	19	0.83			0.95			
2433	25	4	93	7	0.83			0.93			
2433	25	5	87	13	0.93			0.92			
2433	50	1	83	17	0.83	0.85	0.03	0.80	0.009 0.94	0.80	NT
						0.05	0.03		0.009 0.94	0.60	
2433	50	2	89	11	0.89			0.91			
2433	50	3 4	108	22	0.83			0.95			
2433	50 50		87	13	0.87			0.92			
2433		5	83	17	0.83	0.00	0.00	0.86	0.000.0.01	0.00	
2433	100	1	91	19	0.83	0.83	0.03	0.90	0.003 0.91	0.80	NT
2433	100	2	80	22	0.78			0.91			
2433	100	3	86	15	0.85			0.95			
2433	100	4	87	13	0.87			0.92			
2433	100	5	82	18	0.82	0.07	0.04	0.86			NIT
2441	25	1	88	12	0.88	0.87	0.04	0.90	0.080 0.96	0.80	NT
2441	25	2	110	19	0.85			0.91			
2441	25	3	102	8	0.93			0.95			
2441	25	4	88	12	0.88			0.92			
2441	25	5	83	17	0.83	0.07	0.04	0.86			NIT
2441	50	1	82	18	0.82	0.87	0.04	0.90	0.090 0.96	0.80	NT
2441	50	2	90	10	0.90			0.91			
2441	50	3	90	10	0.90			0.95			
2441	50	4	104	21	0.83			0.92			
2441	50	5	91	9	0.91			0.86			
2441	100	1	110	12	0.90	0.84	0.03	0.90	0.009 0.93	0.80	NT
2441	100	2	83	17	0.83			0.91			
2441	100	3	85	15	0.85			0.95			
2441	100	4	82	19	0.81			0.92			
2441	100	5	83	17	0.83			0.86			
CONTRO		1	90	10	0.90	0.91	0.03				
CONTRO		2	91	9	0.91						
CONTR		3	95	5	0.95						
-	OL 100										
	OL 100	3 4 5	92	8 14	0.92						

Strongylocentrotus purpuratus (purple urchin) fertilization toxicity test in porewater March 03, 2004—Marine Pollution Studies Laboratory

				Proportion	Mean	SD
Concentration	Replicate	Fertilized	Unfertilized	Fertilized	Fertilized	Fertilized
0	1	81	19	0.81	0.84	0.06
0	2	77	23	0.77		
0	3	91	10	0.90		
0	4	81	20	0.80		
0	5	121	11	0.92		
18	1	78	22	0.78	0.78	0.04
18	2	73	27	0.73		
18	3	89	18	0.83		
18	4	79	21	0.79		
18	5	79	21	0.79		
32	1	73	27	0.73	0.74	0.03
32	2	70	30	0.70		
32	3	77	24	0.76		
32	4	86	24	0.78		
32	5	74	26	0.74		
56	1	72	34	0.68	0.70	0.03
56	2	73	27	0.73		
56	3	72	28	0.72		
56	4	80	39	0.67		
56	5	71	29	0.71		

Strongylocentrotus purpuratus (purple urchin) fertilization toxicity test in porewater March 03, 2004—Marine Pollution Studies Laboratory

Concentration	рН	Total Ammonia	Un-ionized Ammonia	
0	7.86	0	0.000	
18	7.85	16.4	0.241	
32	7.83	30.3	0.425	
56	7.79	50.9	0.652	
100	7.71	91.4	0.976	
180	7.62	166.4	1.447	

10-day Eohaustorius survival toxicity test in sediment August 20, 2004—Marine Pollution Studies Laboratory

				Final	Mean Final				•		
Station	Replicate	Final # Alive	Initial # Alive	Alive	Proportion Alive	Alive	Controls	Р	% Control	MSD Cutoff	Toxic
BST01	1	18	20	0.90	0.80	0.12	0.90	0.033	0.86	0.70	NT
BST01	2	17	20	0.85			0.90				
BST01	3	18	20	0.90			0.90				
BST01	4	14	20	0.70			0.95				
BST01	5	13	20	0.65			1.00				
BST04	1	17	20	0.85	0.86	0.11	0.90	0.118	0.92	0.70	NT
BST04	2	17	20	0.85			0.90				
BST04	3	14	20	0.70			0.90				
BST04	4	20	20	1.00			0.95				
BST04	5	18	20	0.90			1.00				
BST07	1	18	20	0.90	0.85	0.05	0.90	0.014	0.91	0.70	NT
BST07	2	16	20	0.80			0.90				
BST07	3	18	20	0.90			0.90				
BST07	4	16	20	0.80			0.95				
BST07	5	17	20	0.85			1.00				
DAC02	1	19	20	0.95	0.86	0.14	0.90	0.167	0.92	0.70	NT
DAC02	2	20	20	1.00			0.90				
DAC02	3	16	20	0.80			0.90				
DAC02	4	18	20	0.90			0.95				
DAC02	5	13	20	0.65			1.00				

-						August 20, 2004–		Pollution		Laborat	
DAC03	1	20	20	1.00	0.88	0.09	0.90	0.156	0.95	0.70	NT
DAC03	2	19	20	0.95			0.90				
DAC03	3	17	20	0.85			0.90				
DAC03	4	16	20	0.80			0.95				
DAC03	5	16	20	0.80			1.00				
DAC04	1	11	20	0.55	0.63	0.09	0.90	0.000	0.68	0.70	Т
DAC04	2	11	20	0.55			0.90				
DAC04	3	15	20	0.75			0.90				
DAC04	4	12	20	0.60			0.95				
DAC04	5	14	20	0.70			1.00				
SWZ01	1	5	20	0.25	0.51	0.17	0.90	0.002	0.55	0.70	Т
SWZ01	2	10	20	0.50			0.90				
SWZ01	3	10	20	0.50			0.90				
SWZ01	4	24	40	0.60			0.95				
SWZ01	5	14	20	0.70			1.00				
SWZ02	1	11	20	0.55	0.51	0.07	0.90	0.000	0.55	0.70	Т
SWZ02	2	8	20	0.40			0.90				
SWZ02	3	12	20	0.60			0.90				
SWZ02	4	10	20	0.50			0.95				
SWZ02	5	10	20	0.50			1.00				
SWZ04	1	3	20	0.15	0.30	0.11	0.90	0.000	0.32	0.70	Т
SWZ04	2	6	20	0.30			0.90				
SWZ04	3	8	20	0.40			0.90				
SWZ04	4	8	20	0.40			0.95				
SWZ04	5	5	20	0.25			1.00				
2229	1	17	20	0.85	0.81	0.11	0.90	0.034	0.87	0.70	NT
2229	2	13	20	0.65			0.90				
2229	3	18	20	0.90			0.90				
2229	4	18	20	0.90			0.95				
2229	5	15	20	0.75			1.00				
2238	1	19	20	0.95	0.83	0.10	0.90	0.050	0.89	0.70	NT
2238	2	18	20	0.90			0.90				
2238	3	14	20	0.70			0.90				
2238	4	15	20	0.75			0.95				
2238	5	17	20	0.85			1.00				
2243	1	14	20	0.70	0.61	0.36	0.90	0.059	0.66	0.70	NT
2243	2	13	20	0.65			0.90				
2243	3	0	20	0.00			0.90				
2243	4	15	20	0.75			0.95				
2243	5	19	20	0.95			1.00				
2433	1	20	20	1.00	0.96	0.04	0.90	0.153	1.03	0.70	NT
2433	2	19	20	0.95			0.90				
2433	3	19	20	0.95			0.90				
2433	4	20	20	1.00			0.95				
2433	5	18	20	0.90			1.00				
2441	1	1	20	predator	0.94	0.03	0.90	0.380	1.01	0.70	NT
2441	2	19	20	0.95			0.90				
2441	3	19	20	0.95			0.90				
2441	4	18	20	0.90			0.95				
2441	5	19	20	0.95			1.00				
HOME	1	18	20	0.90	0.93	0.04					
HOME	2	18	20	0.90							
HOME	3	18	20	0.90							
HOME	4	38	40	0.95							
HOME	5	20	20	1.00							
		20		1.00							

10-day Eohaustorius survival toxicity test in sediment August 20, 2004—Marine Pollution Studies Laboratory

Concentration	Replicate	Final # Alive	Initial # Alive	Proportion Survival	Mean Survival	SD
0	1	17	20	0.85	0.87	0.03
0	2	18	20	0.90		
0	3	17	20	0.85		
100	1	16	20	0.80	0.78	0.03
100	2	15	20	0.75		
100	3	16	20	0.80		
180	1	8	20	0.40	0.55	0.13
180	2	13	20	0.65		
180	3	12	20	0.60		
320	1	4	20	0.20	0.35	0.15
320	2	10	20	0.50		
320	3	7	20	0.35		
560	1	0	20	0.00	0.00	0.00
560	2	0	20	0.00		
560	3	0	20	0.00		
1000	1	0	20	0.00	0.00	0.00
1000	2	0	20	0.00		
1000	3	0	20	0.00		

10-day *Eohaustorius* survival toxicity test in sediment August 20, 2004—Marine Pollution Studies Laboratory

Concentratio	on pH	Total Ammonia	Un-ionized Ammonia	
0	7.86	0.6	0.009	
100	7.65	56.2	0.523	
180	7.42	228.4	1.257	
320	7.39	252	1.295	
560	7.27	480	1.873	
1000	7.1	930	2.457	

Strongylocentrotus purpuratus (purple urchin) fertilization toxicity test in porewater August 17, 2004—Marine Pollution Studies Laboratory

			#	#	Proportion		SD		_	%	MSD	
Station	Dilutio	n Replicate	Fertilized	Unfertilized	Fertilized	Fertilized	Fertilized	Control	Р	Control	Cutoff	Toxic
BST01	25	1	127	9	0.93	0.92	0.02	0.99	0.001	0.95	0.86	NT
BST01	25	2	100	6	0.94			0.97				
BST01	25	3	101	7	0.94			0.98				
BST01	25	4	90	10	0.90			0.96				
BST01	25	5	91	9	0.91			0.99				
BST01	50	1	100	4	0.96	0.96	0.02	0.99	0.072	0.98	0.86	NT
BST01	50	2	94	6	0.94			0.97				
BST01	50	3	97	6	0.94			0.98				
BST01	50	4	979	3	1.00			0.96				
BST01	50	5	95	5	0.95			0.99				
BST01	100	1	92	8	0.92	0.82	0.10	0.99	0.031	0.84	0.86	Т
BST01	100	2	89	11	0.89			0.97				
BST01	100	3	62	28	0.69			0.98				
BST01	100	4	80	20	0.80			0.96				
BST01	100	5	84	16	0.84			0.99				
BST04	25	1	96	4	0.96	0.94	0.03	0.99	0.023	0.97	0.86	NT
BST04	25	2	97	3	0.97			0.97				
BST04	25	3	95	5	0.95			0.98				
BST04	25	4	94	6	0.94			0.96				
BST04	25	5	90	10	0.90			0.99				
BST04	50	1	100	5	0.95	0.95	0.01	0.99	0.009	0.98	0.86	NT
BST04	50	2	101	3	0.97			0.97				

Studies I	Laborato	ory					-				
BST04	50	3	95	5	0.95			0.98			
BST04	50	4	94	6	0.94			0.96			
BST04	50	5	96	4	0.96			0.99			
BST04	100	1	101	13	0.89	0.94	0.05	0.99	0.075 0.96	0.86	NT
BST04	100	2	100	14	0.88			0.97			
BST04	100	3	102	4	0.96			0.98			
BST04	100	4	98	2	0.98			0.96			
BST04	100	5	98	2	0.98			0.99			
BST07	25	1	135	8	0.94	0.91	0.02	0.99	0.000 0.94	0.86	NT
BST07	25	2	101	9	0.92			0.97			
BST07	25	3	100	11	0.90			0.98			
BST07	25	4	99	11	0.90			0.96			
BST07	25	5	91	9	0.91			0.99			
BST07	50	1	97	5	0.95	0.94	0.04	0.99	0.039 0.96	0.86	NT
BST07	50	2	99	5	0.95			0.97			
BST07	50	3	114	4	0.97			0.98			
BST07	50	4	101	15	0.87			0.96			
BST07	50	5	95	5	0.95			0.99			
BST07	100	1	95	5	0.95	0.94	0.03	0.99	0.015 0.96	0.86	NT
BST07	100	2	99	4	0.96			0.97			
BST07	100	3	108	8	0.93			0.98			
BST07	100	4	102	5	0.95			0.96			
BST07	100	5	89	11	0.89			0.99			
DAC02	25	1	96	4	0.96	0.93	0.04	0.99	0.033 0.95	0.86	NT
DAC02	25	2	97	3	0.97			0.97			
DAC02	25	3	95	5	0.95			0.98			
DAC02	25	4	87	13	0.87			0.96			
DAC02	25	5	99	10	0.91			0.99			
DAC02	50	1	53	71	0.43	0.54	0.15	0.99	0.001 0.55	0.86	Т
DAC02	50	2	39	74	0.35			0.97			
DAC02	50	3	67	50	0.57			0.98			
DAC02	50	4	67	35	0.66			0.96			
DAC02	50	5	70	30	0.70			0.99			
DAC02	100	1	21	85	0.20	0.13	0.05	0.99	0.000 0.13	0.86	Т
DAC02	100	2	17	100	0.15			0.97			
DAC02	100	3	13	92	0.12			0.98			
DAC02	100	4	12	88	0.12			0.96			
DAC02	100	5	5	95	0.05			0.99			
DAC03	25	1	100	3	0.97	0.95	0.03	0.99	0.036 0.97	0.86	NT
DAC03	25	2	95	5	0.95			0.97			
DAC03	25	3	101	11	0.90			0.98			
DAC03	25	4	96	6	0.94			0.96			
DAC03	25	5	100	3	0.97			0.99			
DAC03	50	1	101	8	0.93	0.92	0.05	0.99	0.020 0.94	0.86	NT
DAC03	50	2	96	4	0.96			0.97			
DAC03	50	3	84	16	0.84			0.98			
DAC03	50	4	94	6	0.94			0.96			
DAC03	50	5	92	8	0.92			0.99			
DAC03	100	1	98	2	0.98	0.90	0.07	0.99	0.038 0.92	0.86	NT
DAC03	100	2	111	7	0.94			0.97			
DAC03	100	3	87	16	0.84			0.98			
DAC03	100	4	93	7	0.93			0.96			
DAC03	100	5	80	20	0.80			0.99			
DAC04	25	1	100	3	0.97	0.94	0.02	0.99	0.007 0.96	0.86	NT
DAC04	25	2	101	6	0.94	-		0.97	*		
	_,	_		-							

Strongylocentrotus purpuratus (purple urchin) fertilization toxicity test in porewater August 17, 2004—Marine Pollution Studies Laboratory

Studies L	aborato	ory				-					
DAC04	25	3	92	8	0.92			0.98			
DAC04	25	4	92	8	0.92			0.96			
DAC04	25	5	95	5	0.95			0.99			
DAC04	50	1	92	8	0.92	0.93	0.04	0.99	0.013 0.95	0.86	NT
DAC04	50	2	97	3	0.97			0.97			
DAC04	50	3	93	12	0.89			0.98			
DAC04	50	4	102	5	0.95			0.96			
DAC04	50	5	90	10	0.90			0.99			
DAC04	100	1	93	7	0.93	0.93	0.04	0.99	0.017 0.95	0.86	NT
DAC04	100	2	101	8	0.93			0.97			
DAC04	100	3	850	15	0.98			0.98			
DAC04	100	4	99	9	0.92			0.96			
DAC04	100	5	88	12	0.88			0.99			
SWZ01	25	1	96	4	0.96	0.95	0.01	0.99	0.012 0.98	0.86	NT
SWZ01	25	2	100	4	0.96			0.97			
SWZ01	25	3	100	4	0.96			0.98			
SWZ01	25	4	96	4	0.96			0.96			
SWZ01	25	5	93	7	0.93			0.99			
SWZ01	50	1	102	4	0.96	0.93	0.03	0.99	0.013 0.95	0.86	NT
SWZ01	50	2	94	6	0.94			0.97			
SWZ01	50	3	96	4	0.96			0.98			
SWZ01	50	4	90	10	0.90			0.96			
SWZ01	50	5	90	10	0.90			0.99			
SWZ01	100	1	94	6	0.94	0.94	0.04	0.99	0.051 0.96	0.86	NT
SWZ01	100	2	103	17	0.86			0.97			
SWZ01	100	3	96	4	0.96			0.98			
SWZ01	100	4	96	4	0.96			0.96			
SWZ01	100	5	102	4	0.96			0.99			
SWZ02	25	1	118	6	0.95	0.94	0.04	0.99	0.038 0.96	0.86	NT
SWZ02	25	2	98	2	0.98			0.97			
SWZ02	25	3	100	7	0.93			0.98			
SWZ02	25	4	94	6	0.94			0.96			
SWZ02	25	5	87	13	0.87			0.99			
SWZ02	50	1	98	4	0.96	0.95	0.01	0.99	0.004 0.97	0.86	NT
SWZ02	50	2	103	6	0.94			0.97			
SWZ02	50	3	95	5	0.95			0.98			
SWZ02	50	4	99	5	0.95			0.96			
SWZ02	50	5	95	5	0.95			0.99			
SWZ02	100	1	101	8	0.93	0.92	0.04	0.99	0.048 0.94	0.86	NT
SWZ02	100	2	101	5	0.95			0.97			
SWZ02	100	3	97	3	0.97			0.98			
SWZ02	100	4	91	9	0.91			0.96			
SWZ02	100	5	86	14	0.86			0.99			
SWZ04	25	1	101	6	0.94	0.92	0.06	0.99	0.048 0.94	0.86	NT
SWZ04	25	2	100	4	0.96			0.97			
SWZ04	25	3	100	2	0.98			0.98			
SWZ04	25	4	92	12	0.88			0.96			
SWZ04	25	5	76	14	0.84			0.99			
SWZ04	50	1	98	2	0.98	0.94	0.03	0.99	0.030 0.96	0.86	NT
SWZ04	50	2	97	3	0.97			0.97			
SWZ04	50	3	91	9	0.91			0.98			
SWZ04	50	4	96	7	0.93			0.96			_
SWZ04	50	5	94	8	0.92			0.99			_
SWZ04	100	1	96	4	0.96	0.95	0.02	0.99	0.014 0.97	0.86	NT
SWZ04	100	2	93	7	0.93			0.97			_
			~					-			

Strongylocentrotus purpuratus (purple urchin) fertilization toxicity test in porewater August 17, 2004—Marine Pollution Studies Laboratory

Studies I	Laborato	ory .				-	-	-	-		
SWZ04	100	3	97	3	0.97			0.98			
SWZ04	100	4	100	5	0.95			0.96			
SWZ04	100	5	110	10	0.92			0.99			
2229	25	1	91	9	0.91	0.95	0.04	0.99	0.093 0.97	0.86	NT
2229	25	2	101	1	0.99			0.97			
2229	25	3	98	6	0.94			0.98			
2229	25	4	100	1	0.99			0.96			
2229	25	5	100	9	0.92			0.99			
2229	50	1	96	10	0.91	0.92	0.03	0.99	0.004 0.94	0.86	NT
2229	50	2	95	5	0.95			0.97			
2229	50	3	94	6	0.94			0.98			
2229	50	4	88	12	0.88			0.96			
2229	50	5	100	7	0.93			0.99			
2229	100	1	90	11	0.89	0.95	0.04	0.99	0.104 0.97	0.86	NT
2229	100	2	101	3	0.97			0.97			
2229	100	3	97	3	0.97			0.98			
2229	100	4	95	5	0.95			0.96			
2229	100	5	111	2	0.98			0.99			
2238	25	1	106	6	0.95	0.91	0.08	0.99	0.060 0.93	0.86	NT
2238	25	2	99	1	0.99			0.97			
2238	25	3	93	7	0.93			0.98			
2238	25	4	93	10	0.90			0.96			
2238	25	5	79	21	0.79			0.99			
2238	50	1	103	8	0.93	0.93	0.06	0.99	0.063 0.95	0.86	NT
2238	50	2	100	2	0.98			0.97			
2238	50	3	98	5	0.95			0.98			
2238	50	4	115	6	0.95			0.96			
2238	50	5	83	17	0.83			0.99			
2238	100	1	89	11	0.89	0.92	0.05	0.99	0.019 0.94	0.86	NT
2238	100	2	100	4	0.96			0.97			
2238	100	3	97	3	0.97			0.98			
2238	100	4	89	11	0.89			0.96			
2238	100	5	87	13	0.87			0.99			
2243	25	1	121	3	0.98	0.95	0.04	0.99	0.114 0.97	0.86	NT
2243	25	2	102	2	0.98			0.97			
2243	25	3	100	7	0.93			0.98			
2243	25	4	98	2	0.98			0.96			
2243	25	5	90	11	0.89			0.99			
2243	50	1	98	4	0.96	0.96	0.01	0.99	0.020 0.98	0.86	NT
2243	50	2	101	6	0.94			0.97			
2243	50	3	102	6	0.94			0.98			
2243	50	4	97	3	0.97			0.96			
2243	50	5	97	3	0.97			0.99			
2243	100	1	102	2	0.98	0.94	0.04	0.99	0.051 0.96	0.86	NT
2243	100	2	100	8	0.93			0.97			
2243	100	3	101	13	0.89			0.98			
2243	100	4	96	4	0.96			0.96			
2243	100	5	96	4	0.96			0.99			
2433	25	1	101	8	0.93	0.93	0.03	0.99	0.005 0.95	0.86	NT
2433	25	2	103	13	0.89			0.97			
2433	25	3	101	6	0.94			0.98			
2433	25	4	96	4	0.96			0.96			
2433	25	5	91	9	0.91			0.99			
2433	50	1	100	4	0.96	0.94	0.03	0.99	0.034 0.96	0.86	NT
2433	50	2	100	8	0.93		,	0.97			

Strongylocentrotus purpuratus (purple urchin) fertilization toxicity test in porewater August 17, 2004—Marine Pollution Studies Laboratory

Studies	Laborate	ory									
2433	50	3	95	5	0.95			0.98			
2433	50	4	90	10	0.90			0.96			
2433	50	5	98	2	0.98			0.99			
2433	100	1	101	3	0.97	0.92	0.06	0.99	0.047 0.94	0.86	NT
2433	100	2	102	6	0.94			0.97			
2433	100	3	101	17	0.86			0.98			
2433	100	4	102	3	0.97			0.96			
2433	100	5	90	16	0.85			0.99			
2441	25	1	104	5	0.95	0.93	0.04	0.99	0.032 0.95	0.86	NT
2441	25	2	152	11	0.93			0.97			
2441	25	3	101	5	0.95			0.98			
2441	25	4	95	5	0.95			0.96			
2441	25	5	85	15	0.85			0.99			
2441	50	1	94	6	0.94	0.94	0.03	0.99	0.022 0.96	0.86	NT
2441	50	2	101	7	0.94			0.97			
2441	50	3	96	6	0.94			0.98			
2441	50	4	98	2	0.98			0.96			
2441	50	5	89	11	0.89			0.99			
2441	100	1	104	8	0.93	0.93	0.06	0.99	0.092 0.95	0.86	NT
2441	100	2	96	4	0.96			0.97			
2441	100	3	100	3	0.97			0.98			
2441	100	4	98	2	0.98			0.96			
2441	100	5	88	18	0.83			0.99			
CONTR	OL 100	1	99	1	0.99	0.98	0.01				
CONTR	OL 100	2	97	3	0.97						
CONTR	OL 100	3	98	2	0.98						
CONTR	OL 100	4	96	4	0.96						
CONTR	OL 100	5	99	1	0.99						

Strongylocentrotus purpuratus (purple urchin) fertilization toxicity test in porewater August 17, 2004—Marine Pollution Studies Laboratory

Strongylocentrotus purpuratus (purple urchin) fertilization toxicity test in porewater August 17, 2004—Marine Pollution Studies Laboratory

Concentration	Replicate	Fertilized	Unfertilized	Proportion Fertilized	Mean Fertilized	SD Fertilized
0	1	97	3	0.97	0.96	0.02
0	2	100	6	0.94		
0	3	111	9	0.93		
0	4	97	3	0.97		
0	5	98	2	0.98		
18	1	94	6	0.94	0.95	0.02
18	2	95	5	0.95		
18	3	98	2	0.98		
18	4	101	5	0.95		
18	5	92	8	0.92		
32	1	88	12	0.88	0.88	0.04
32	2	102	10	0.91		
32	3	92	8	0.92		
32	4	95	13	0.88		
32	5	90	21	0.81		
56	1	89	22	0.80	0.82	80.0
56	2	96	4	0.96		
56	3	87	30	0.74		
56	4	87	23	0.79		
56	5	101	23	0.81		
100	1	63	89	0.41	0.34	0.06
100	2	46	82	0.36		
100	3	26	78	0.25		

Augusti	, 2004 - Wia			boratory			
100	4	35	68	0.34			
100	5	46	97	0.32			
180	1	3	97	0.03	0.03	0.01	
180	2	1	99	0.01			
180	3	3	97	0.03			
180	4	2	98	0.02			
180	5	4	96	0.04			

Strongylocentrotus purpuratus (purple urchin) fertilization toxicity test in porewater August 17, 2004—Marine Pollution Studies Laboratory

Concentra	tion pH	Total Ammonia	Un-ionized Ammonia	
0	7.82	0	0.000	
18	7.86	16.6	0.249	
32	7.82	31	0.425	
56	7.8	52	0.681	
100	7.75	91.8	1.073	
180	7.67	167.6	1.633	

10-day *Eohaustorius* survival toxicity test in sediment October 29, 2004—Marine Pollution Studies Laboratory

				Final	Mean Final	SD Final					
			Initial #		Proportion				%	MSD	
Station	Replicate		Alive	Alive	Alive	Alive	Controls	Ρ	Control		Toxic
BST01	1	13	20	0.65	0.79	0.10	0.85	0.014	0.85	0.70	NT
BST01	2	17	20	0.85			0.90				
BST01	3	18	20	0.90			1.00				
BST01	4	15	20	0.75			0.95				
BST01	5	16	20	0.80			0.95				
BST04	1	18	20	0.90	0.80	0.21	0.85	0.121	0.86	0.70	NT
BST04	2	20	20	1.00			0.90				
BST04	3	9	20	0.45			1.00				
BST04	4	16	20	0.80			0.95				
BST04	5	17	20	0.85			0.95				
BST07	1	16	20	0.80	0.79	0.16	0.85	0.066	0.85	0.70	NT
BST07	2	17	20	0.85			0.90				
BST07	3	20	20	1.00			1.00				
BST07	4	15	20	0.75			0.95				
BST07	5	11	20	0.55			0.95				
DAC02	1	15	20	0.75	0.82	0.08	0.85	0.023	0.88	0.70	NT
DAC02	2	15	20	0.75			0.90				
DAC02	3	16	20	0.80			1.00				
DAC02	4	17	20	0.85			0.95				
DAC02	5	19	20	0.95			0.95				
DAC03	1	18	20	0.90	0.88	0.08	0.85	0.137	0.95	0.70	NT
DAC03	2	18	20	0.90			0.90				
DAC03	3	18	20	0.90			1.00				
DAC03	4	15	20	0.75			0.95				
DAC03	5	19	20	0.95			0.95				
DAC04	1	17	20	0.85	0.87	0.12	0.85	0.169	0.94	0.70	NT
DAC04	2	20	20	1.00			0.90				
DAC04	3	14	20	0.70			1.00				
DAC04	4	17	20	0.85			0.95				
DAC04	5	19	20	0.95			0.95				
SWZ01	1	13	20	0.65	0.76	0.09	0.85	0.005	0.82	0.70	NT
SWZ01	2	14	20	0.70			0.90				
SWZ01	3	17	20	0.85			1.00				
SWZ01	4	17	20	0.85			0.95				
SWZ01	5	15	20	0.75			0.95				

TO-uay I	LUIIa	usionus sui	vival tox	ionly test in a		10001 23, 200		Fonution			liory
SWZ02	1	18	20	0.90	0.80	0.08	0.85	0.010	0.86	0.70	NT
SWZ02	2	16	20	0.80			0.90				
SWZ02	3	17	20	0.85			1.00				
SWZ02	4	14	20	0.70			0.95				
SWZ02	5	15	20	0.75			0.95				
SWZ04	1	18	20	0.90	0.84	0.08	0.85	0.042	0.90	0.70	NT
SWZ04	2	14	20	0.70			0.90				
SWZ04	3	17	20	0.85			1.00				
SWZ04	4	18	20	0.90			0.95				
SWZ04	5	17	20	0.85			0.95				
2229	1	18	20	0.90	0.84	0.08	0.85	0.042	0.90	0.70	NT
2229	2	18	20	0.90			0.90				
2229	3	17	20	0.85			1.00				
2229	4	17	20	0.85			0.95				
2229	5	14	20	0.70			0.95				
2238	1	19	20	0.95	0.88	0.07	0.85	0.120	0.95	0.70	NT
2238	2	16	20	0.80			0.90				
2238	3	19	20	0.95			1.00				
2238	4	17	20	0.85			0.95				
2238	5	17	20	0.85			0.95				
2243	1	15	20	0.75	0.63	0.25	0.85	0.026	0.68	0.70	Т
2243	2	5	20	0.25			0.90				
2243	3	14	20	0.70			1.00				
2243	4	18	20	0.90			0.95				
2243	5	11	20	0.55			0.95				
2433	1	20	20	1.00	0.95	0.04	0.85	0.264	1.02	0.70	NT
2433	2	19	20	0.95			0.90				
2433	3	19	20	0.95			1.00				
2433	4	18	20	0.90			0.95				
2433	5	19	20	0.95			0.95				
2441	1	18	20	0.90	0.93	0.06	0.85	0.500	1.00	0.70	NT
2441	2	17	20	0.85			0.90				
2441	3	19	20	0.95			1.00				
2441	4	20	20	1.00			0.95				
2441	5	19	20	0.95			0.95				
HOME	2	18	20	0.90							
HOME	3	20	20	1.00							
HOME	4	19	20	0.95							
HOME	5	19	20	0.95							
HOME	2	18	20	0.90							
	-	.5		0.00							

10-day Echaustorius survival toxicity test in sediment October 29, 2004-Marine Pollution Studies Laborate	ory

10-day *Eohaustorius* survival toxicity test in sediment October 29, 2004—Marine Pollution Studies Laboratory

Concentration	Replicate	Final # Alive	Initial # Alive	Proportion Survival	Mean Survival	SD
0	1	20	20	1.00	1.00	0.00
0	2	20	20	1.00		
0	3	20	20	1.00		
100	1	19	20	0.95	0.95	0.05
100	2	20	20	1.00		
100	3	18	20	0.90		
180	1	17	20	0.85	0.90	0.05
180	2	18	20	0.90		
180	3	19	20	0.95		
320	1	16	20	0.80	0.80	0.10
320	2	14	20	0.70		

Pollution	Studies Lab	oratory				
320	3	18	20	0.90		
560	1	4	20	0.20	0.32	0.10
560	2	8	20	0.40		
560	3	7	20	0.35		
1000	1	0	20	0.00	0.00	0.00
1000	2	0	20	0.00		
1000	3	0	20	0.00		

10-day *Eohaustorius* survival toxicity test in sediment October 29, 2004—Marine Pollution Studies Laboratory

Concentra	tion pH	Total Ammonia	Un-ionized Ammonia	
0	7.9	0	0.000	
100	7.89	72.8	1.170	
180	7.53	136	0.963	
320	7.43	263	1.481	
560	7.32	532	2.328	
1000	7.17	940	2.916	

Strongylocentrotus purpuratus (purple urchin) fertilization toxicity test in porewater October 27, 2004—Marine Pollution Studies Laboratory

	aporato	.,	#	#	Proportion	Mean	SD			%	MSD	
Station	Dilutio	n Replicate	Fertilized	Unfertilized			Fertilized	Control	Ρ	Control	Cutoff	Toxic
BST01	25	1	98	2	0.98	0.96	0.05	0.98	0.133	0.97	0.87	NT
BST01	25	2	99	1	0.99			0.99				
BST01	25	3	88	12	0.88			1.00				
BST01	25	4	100	0	1.00			0.98				
BST01	25	5	96	4	0.96			1.00				
BST01	50	1	100	0	1.00	0.97	0.03	0.98	0.078	0.98	0.87	NT
BST01	50	2	99	1	0.99			0.99				
BST01	50	3	93	7	0.93			1.00				
BST01	50	4	96	4	0.96			0.98				
BST01	50	5	96	4	0.96			1.00				
BST01	100	1	98	2	0.98	0.98	0.02	0.98	0.193	0.98	0.87	NT
BST01	100	2	99	1	0.99			0.99				
BST01	100	3	99	1	0.99			1.00				
BST01	100	4	94	6	0.94			0.98				
BST01	100	5	96	4	0.96			1.00				
BST04	25	1	100	0	1.00	0.99	0.01	0.98	0.370	1.00	0.87	NT
BST04	25	2	99	1	0.99			0.99				
BST04	25	3	98	2	0.98			1.00				
BST04	25	4	98	2	0.98			0.98				
BST04	25	5	99	1	0.99			1.00				
BST04	50	1	100	0	1.00	0.98	0.01	0.98	0.098	0.99	0.87	NT
BST04	50	2	97	3	0.97			0.99				
BST04	50	3	98	2	0.98			1.00				
BST04	50	4	97	3	0.97			0.98				
BST04	50	5	98	2	0.98			1.00				
BST04	100	1	90	10	0.90	0.95	0.06	0.98	0.081	0.96	0.87	NT
BST04	100	2	98	2	0.98			0.99				
BST04	100	3	100	0	1.00			1.00				
BST04	100	4	98	2	0.98			0.98				
BST04	100	5	87	13	0.87			1.00				
BST07	25	1	98	2	0.98	0.97	0.02	0.98	0.068	0.98	0.87	NT
BST07	25	2	99	1	0.99			0.99				
BST07	25	3	94	6	0.94			1.00				
BST07	25	4	99	1	0.99			0.98				
BST07	25	5	98	5	0.95			1.00				

Sediment Quality Assessment Study at the B Street/Broadway Piers, Downtown Anchorage, and Switzer Creek D-16 Phase II Draft Report

Studies I	Laborato	ory				-			-		
BST07	50	1	99	1	0.99	0.95	0.04	0.98	0.043 0.96	0.87	NT
BST07	50	2	91	9	0.91			0.99			
BST07	50	3	99	1	0.99			1.00			
BST07	50	4	95	5	0.95			0.98			
BST07	50	5	93	7	0.93			1.00			
BST07	100	1	90	10	0.90	0.95	0.06	0.98	0.094 0.96	0.87	NT
BST07	100	2	100	0	1.00			0.99			
BST07	100	3	87	13	0.87			1.00			
BST07	100	4	98	2	0.98			0.98			
BST07	100	5	99	1	0.99			1.00			
DAC02	25	1	100	4	0.96	0.98	0.02	0.98	0.167 0.99	0.87	NT
DAC02	25	2	95	5	0.95			0.99			
DAC02	25	3	100	0	1.00			1.00			
DAC02	25	4	100	0	1.00			0.98			
DAC02	25	5	99	2	0.98			1.00			
DAC02	50	1	100	0	1.00	0.98	0.03	0.98	0.240 0.99	0.87	NT
DAC02	50	2	100	0	1.00			0.99			
DAC02	50	3	99	1	0.99			1.00			
DAC02	50	4	98	2	0.98			0.98			
DAC02	50	5	92	8	0.92			1.00			
DAC02	100	1	100	0	1.00	0.92	0.07	0.98	0.045 0.93	0.87	NT
DAC02	100	2	87	3	0.97			0.99			
DAC02	100	3	96	10	0.91			1.00			
DAC02	100	4	106	11	0.91			0.98			
DAC02	100	5	81	19	0.81			1.00			
DAC03	25	1	98	2	0.98	0.97	0.02	0.98	0.073 0.98	0.87	NT
DAC03	25	2	94	6	0.94			0.99			
DAC03	25	3	97	3	0.97			1.00			
DAC03	25	4	100	0	1.00			0.98			
DAC03	25	5	97	3	0.97			1.00			
DAC03	50	1	100	0	1.00	0.96	0.04	0.98	0.079 0.97	0.87	NT
DAC03	50	2	92	8	0.92			0.99			
DAC03	50	3	101	7	0.94			1.00			
DAC03	50	4	95	5	0.95			0.98			
DAC03	50	5	101	0	1.00			1.00			
DAC03	100	1	94	6	0.94	0.91	0.05	0.98	0.013 0.92	0.87	NT
DAC03	100	2	83	17	0.83			0.99			
DAC03	100	3	97	3	0.97			1.00			
DAC03	100	4	91	9	0.91			0.98			
DAC03	100	5	90	10	0.90			1.00			
DAC04	25	1	98	2	0.98	0.98	0.02	0.98	0.117 0.99	0.87	NT
DAC04	25	2	98	2	0.98			0.99			
DAC04	25	3	100	0	1.00			1.00			
DAC04	25	4	102	5	0.95			0.98			
DAC04	25	5	98	2	0.98			1.00			
DAC04	50	1	97	3	0.97	0.98	0.02	0.98	0.064 0.99	0.87	NT
DAC04	50	2	96	4	0.96			0.99			
DAC04	50	3	100	0	1.00			1.00			
DAC04	50	4	98	2	0.98			0.98			
DAC04	50	5	97	3	0.97			1.00			
DAC04	100	1	98	2	0.98	0.97	0.03	0.98	0.095 0.98	0.87	NT
DAC04	100	2	94	6	0.94			0.99			
DAC04	100	3	93	7	0.93			1.00			
DAC04	100	4	91	1	0.99			0.98			
DAC04	100	5	100	0	1.00			1.00			
		-		-							

Strongylocentrotus purpuratus (purple urchin) fertilization toxicity test in porewater October 27, 2004—Marine Pollution Studies Laboratory

SWZ01 2 SWZ01 2	25 25 25 25	1 2 2	100 92	0	1.00	0.93	0.04	0.98	0.015 0.94	0.87	NT
SWZ01 2 SWZ01 2 SWZ01 2 SWZ01 2 SWZ01 5	25		92	•							
SWZ01 2 SWZ01 2 SWZ01 2 SWZ01 5		0		8	0.92			0.99			
<u>SWZ01</u> 2 SWZ01 5	25	3	92	8	0.92			1.00			
SWZ01 5		4	91	9	0.91			0.98			
	25	5	88	12	0.88			1.00			
SWZ01	50	1	99	1	0.99	0.99	0.01	0.98	0.500 1.00	0.87	NT
<u></u>	50	2	100	0	1.00			0.99			
SWZ01 5	50	3	99	1	0.99			1.00			
SWZ01 5	50	4	99	1	0.99			0.98			
SWZ01 5	50	5	98	2	0.98			1.00			
SWZ01 1	100	1	96	4	0.96	0.95	0.02	0.98	0.004 0.96	0.87	NT
SWZ01 1	100	2	94	6	0.94			0.99			
SWZ01 1	100	3	97	3	0.97			1.00			
SWZ01 1	100	4	97	3	0.97			0.98			
SWZ01 1	100	5	93	7	0.93			1.00			
SWZ02 2	25	1	100	0	1.00	0.96	0.04	0.98	0.145 0.97	0.87	NT
SWZ02 2	25	2	97	3	0.97			0.99			
SWZ02 2	25	3	90	10	0.90			1.00			
SWZ02 2	25	4	97	3	0.97			0.98			
SWZ02 2	25	5	98	2	0.98			1.00			
SWZ02 5	50	1	100	0	1.00	0.97	0.04	0.98	0.145 0.98	0.87	NT
SWZ02 5	50	2	92	8	0.92			0.99			
SWZ02 5	50	3	99	1	0.99			1.00			
SWZ02 5	50	4	100	0	1.00			0.98			
SWZ02 5	50	5	94	7	0.93			1.00			
SWZ02 1	100	1	100	0	1.00	0.97	0.03	0.98	0.152 0.98	0.87	NT
SWZ02 1	100	2	96	4	0.96			0.99			
SWZ02 1	100	3	100	0	1.00			1.00			
SWZ02 1	100	4	98	2	0.98			0.98			
SWZ02 1	100	5	92	8	0.92			1.00			
SWZ04 2	25	1	99	1	0.99	0.98	0.02	0.98	0.281 0.99	0.87	NT
SWZ04 2	25	2	99	1	0.99			0.99			
SWZ04 2	25	3	95	5	0.95			1.00			
SWZ04 2	25	4	100	0	1.00			0.98			
SWZ04 2	25	5	99	1	0.99			1.00			
SWZ04 5	50	1	98	2	0.98	0.96	0.04	0.98	0.095 0.97	0.87	NT
SWZ04 5	50	2	99	1	0.99			0.99			
SWZ04 5	50	3	98	2	0.98			1.00			
SWZ04 5	50	4	97	3	0.97			0.98			
SWZ04 5	50	5	90	10	0.90			1.00			
SWZ04 1	100	1	100	0	1.00	0.97	0.03	0.98	0.174 0.98	0.87	NT
SWZ04 1	100	2	100	0	1.00			0.99			
SWZ04 1	100	3	97	3	0.97			1.00			
SWZ04 1	100	4	92	8	0.92			0.98			
SWZ04 1	100	5	98	2	0.98			1.00			
2229 2	25	1	100	0	1.00	0.98	0.03	0.98	0.198 0.99	0.87	NT
2229 2	25	2	99	1	0.99			0.99			
2229 2	25	3	99	1	0.99			1.00			
2229 2	25	4	98	2	0.98			0.98			
-	25	5	92	8	0.92			1.00			
	50	1	99	1	0.99	0.96	0.04	0.98	0.104 0.97	0.87	NT
	50	2	90	10	0.90			0.99			
2229 5	50	3	99	1	0.99			1.00			
	50	4	106	2	0.98			0.98			
	50	5	96	4	0.96			1.00			

Strongylocentrotus purpuratus (purple urchin) fertilization toxicity test in porewater October 27, 2004—Marine Pollution Studies Laboratory

Studies	Laborato	ory		,		<u> </u>	•				
2229	100	1	100	0	1.00	0.99	0.01	0.98	0.500 1.00	0.87	NT
2229	100	2	97	3	0.97			0.99			
2229	100	3	100	0	1.00			1.00			
2229	100	4	98	2	0.98			0.98			
2229	100	5	100	0	1.00			1.00			
2238	25	1	99	1	0.99	0.95	0.05	0.98	0.078 0.96	0.87	NT
2238	25	2	103	0	1.00			0.99			
2238	25	3	97	3	0.97			1.00			
2238	25	4	90	10	0.90			0.98			
2238	25	5	90	10	0.90			1.00			
2238	50	1	96	4	0.96	0.94	0.04	0.98	0.035 0.95	0.87	NT
2238	50	2	98	2	0.98			0.99			
2238	50	3	90	10	0.90			1.00			
2238	50	4	89	11	0.89			0.98			
2238	50	5	98	2	0.98			1.00			
2238	100	1	100	0	1.00	0.98	0.02	0.98	0.090 0.99	0.87	NT
2238	100	2	98	2	0.98			0.99			
2238	100	3	98	2	0.98			1.00			
2238	100	4	97	3	0.97			0.98			
2238	100	5	95	5	0.95			1.00			
2243	25	1	100	0	1.00	0.94	0.08	0.98	0.108 0.95	0.87	NT
2243	25	2	99	1	0.99			0.99			
2243	25	3	98	2	0.98			1.00			
2243	25	4	82	18	0.82			0.98			
2243	25	5	91	9	0.91			1.00			
2243	50	1	100	0	1.00	0.99	0.02	0.98	0.427 1.00	0.87	NT
2243	50	2	100	0	1.00			0.99			
2243	50	3	104	3	0.97			1.00			
2243	50	4	100	0	1.00			0.98			
2243	50	5	97	3	0.97			1.00			
2243	100	1	96	4	0.96	0.97	0.01	0.98	0.008 0.98	0.87	NT
2243	100	2	98	2	0.98			0.99			
2243	100	3	97	3	0.97			1.00			
2243	100	4	97	3	0.97			0.98			
2243	100	5	98	2	0.98			1.00			
2433	25	1	100	0	1.00	0.97	0.04	0.98	0.223 0.98	0.87	NT
2433	25	2	99	1	0.99			0.99			
2433	25	3	90	10	0.90			1.00			
2433	25	4	99	1	0.99			0.98			
2433	25	5	99	1	0.99			1.00			
2433	50	1	99	1	0.99	0.98	0.02	0.98	0.166 0.99	0.87	NT
2433	50	2	98	2	0.98			0.99			
2433	50	3	95	5	0.95			1.00			
2433	50	4	98	2	0.98			0.98			
2433	50	5	100	0	1.00			1.00			
2433	100	1	100	0	1.00	0.97	0.03	0.98	0.109 0.98	0.87	NT
2433	100	2	100	0	1.00			0.99			
2433	100	3	96	4	0.96			1.00			
2433	100	4	94	6	0.94			0.98			
2433	100	5	96	4	0.96			1.00			
2441	25	1	91	9	0.91	0.95	0.03	0.98	0.023 0.96	0.87	NT
2441	25	2	96	4	0.96			0.99			
2441	25	3	95	5	0.95			1.00			
2441	25	4	99	1	0.99			0.98			

Strongylocentrotus purpuratus (purple urchin) fertilization toxicity test in porewater October 27, 2004—Marine Pollution Studies Laboratory

Studies		uy									
2441	50	1	93	7	0.93	0.96	0.02	0.98	0.028 0.97	0.87	NT
2441	50	2	96	4	0.96			0.99			
2441	50	3	98	2	0.98			1.00			
2441	50	4	99	1	0.99			0.98			
2441	50	5	101	6	0.94			1.00			
2441	100	1	100	0	1.00	0.99	0.02	0.98	0.331 1.00	0.87	NT
2441	100	2	96	4	0.96			0.99			
2441	100	3	99	1	0.99			1.00			
2441	100	4	100	0	1.00			0.98			
2441	100	5	98	2	0.98			1.00			
CONTR	OL 100	3	100	0	1.00						
CONTR	OL 100	4	98	2	0.98						
CONTR	IOL 100	5	100	0	1.00						
CONTR	IOL 100	3	100	0	1.00						
CONTR	OL 100	4	98	2	0.98						

Strongylocentrotus purpuratus (purple urchin) fertilization toxicity test in porewater October 27, 2004—Marine Pollution Studies Laboratory

Strongylocentrotus purpuratus (purple urchin) fertilization toxicity test in porewater October 27, 2004—Marine Pollution Studies Laboratory

Concentration	Replicate	e Fertilized	Unfertilized	Proportion Fertilized	Mean Fertilized	SD Fertilized
0	1		due to improper	ly prepared a	mmonia dilut	ions
0	2					
0	3					
0	4					
0	5					
18	1					
18	2					
18	3					
18	4					
18	5					
32	1					
32	2					
32	3					
32	4					
32	5					
56	1					
56	2					
56	3					
56	4					
56	5					
100	1					
100	2					
100	3					
100	4					
100	5					
180	1					
180	2					
180	3					
180	4					
180	5					
		Total	Un-ionized			

Concentration pH	Total Ammonia	Un-ionized Ammonia
0		0.000
18		0.000
32		0.000

October 27, 2004—Marine Fonduion Studies Laboratory								
56	0.000							
100	0.000							
180	0.000							

Strongylocentrotus purpuratus (purple urchin) fertilization toxicity test in porewater October 27, 2004—Marine Pollution Studies Laboratory

Appendix E. Tissue chemistry

Laboratories	,							
Analyte	MDL	TO-1	TO-2	TO-3				
Aluminum	1	369	295	354				
Antimony	0.05	0.22	0.15	0.23				
Arsenic	0.05	26.7	28.0	21.6				
Barium	0.05	4.32	2.51	2.86				
Beryllium	0.01	ND	ND	ND				
Cadmium	0.01	0.44	0.37	0.54				
Chromium	0.01	6.00	3.91	5.94				
Cobalt	0.03	2.12	1.55	2				
Copper								
	0.01	10.8	11.1	11.1				
Iron	1	864	652	709				
Lead	0.01	1.02	0.66	1.00				
Manganese	0.05	7.69	6.41	7.02				
Mercury	0.005	ND	ND	ND				
Molybdenum	0.05	4.25	3.76	4.16				
Nickel	0.01	10.2	3.39	4.39				
Selenium	0.05	4.17	3.68	3.62				
Silver	0.01	0.66	0.66	0.69				
Strontium	0.05	110	91.40	94.10				
Thallium	0.01	ND	ND	ND				
Tin	0.05	0.81	0.66	0.77				
Titanium	0.05	147	28.8	41.4				
Vanadium	0.05	2.78	2.28	2.70				
Zinc	0.05	123	122	130				
Analyte	MDL	BST04	BST07	DAC02 (R1)	DAC02 (R2)	DAC03	SWZ01	SWZ04
Aluminum	1	2200	1350	2240	1330	1450	1490	1420
Antimony	0.05	0.26	0.26	0.27	0.27	0.27	0.33	0.30
Arsenic	0.05	26.10	26.90	30.30	29.60	27.50	24.40	23.20
Barium	0.05	8.94	5.67	8.17	5.51	6.47 ND	7.81	6.48
Beryllium	0.01	ND	ND	ND	ND		ND	ND
Cadmium	0.01	1.12	0.60	0.62	0.53	0.45	0.50	0.61
Chromium	0.05	7.31	4.90	8.08	6.13	7.91	4.99	5.34
Cobalt	0.01	2.49	1.98	2.31	2.04	2.52	2.08	2.21
Copper	0.01	18.90	18.30	21.80	19.50	17.30	22.40	21.60
Iron	1	2770	1690	2840	1770	1870	1740	1720
Lead	0.01	7.31	4.13	8.08	5.68	7.28	6.65	7.85
Manganese	0.05	15.40	10.90	14.10	9.41	10.80	10.80	11.30
Mercury	0.005	ND	ND	ND	ND	ND	ND	ND
Molybdenum	0.05	3.96	4.47	4.09	4.17	4.31	4.49	3.66
Nickel	0.01	4.56	3.35	4.09	3.73	5.57	3.74	4.50
Selenium	0.05	4.13	4.04	3.73	4.00	4.13	3.74	3.66
Silver	0.01	1.03	0.86	0.80	0.89	0.90	1.16	0.91
Strontium	0.05	107	93	101	101	101	96	98
Thallium	0.01	ND	ND	ND	ND	ND	ND	ND
Tin	0.05	1.38	0.77	1.07	0.80	0.90	0.83	1.14
Titanium	0.05	134.00	81.60	129.00	71.00	76.30	93.90	87.70
Vanadium	0.05	5.50	4.13	5.42	4.17	4.40	4.74	4.19
Zinc	0.05	230	181	189	170	173	178	201
Analyte	<u>MDL</u>	2229	2238	2243	2433	2441	170	201
						789		
Aluminum	1	1270	1460	1030	1850			
Antimony	0.05	0.17	0.26	0.18	0.17	0.27		
Arsenic	0.05	24.70	25.00	27.10	24.50	27.40		
Barium	0.05	6.01	4.72	3.80	6.75	5.04		
Beryllium	0.01	ND	ND	ND	ND	ND		
Cadmium	0.01	0.42	0.60	0.36	0.43	1.33		
Chromium	0.05	4.48	4.46	4.44	4.87	3.89		
Cobalt	0.01	2.20	2.49	1.81	1.88	2.12		
Copper	0.01	23.60	18.80	16.30	17.00	11.10		
Iron	1	1560	1630	1420	1960	1450		
-			-	-	-			

Tissue chemistry data March 02, 2004—Metals results summary (all results in µg/dry g)—CRG Marine Laboratories, Inc.

Laboratories	, 1110.						
Lead	0.01	3.47	2.23	2.63	2.65	2.21	
Manganese	0.05	13.50	16.30	9.69	15.70	7.16	
Mercury	0.005	ND	ND	ND	ND	ND	
Molybdenum	0.05	3.89	3.69	4.08	3.84	4.15	
Nickel	0.01	3.55	3.86	3.89	4.01	3.62	
Selenium	0.05	3.47	3.69	3.53	3.25	4.15	
Silver	0.01	1.10	0.86	1.00	0.77	0.80	
Strontium	0.05	112.0	108.0	88.3	95.6	104.0	
Thallium	0.01	ND	ND	ND	ND	ND	
Tin	0.05	0.51	0.60	0.54	0.77	0.44	
Titanium	0.05	86.30	85.20	58.60	119.00	52.70	
Vanadium	0.05	3.89	4.55	3.53	4.78	3.45	
Zinc	0.05	176	193	142	141	182	

Tissue chemistry data March 02, 2004—Metals results summary (all results in μ g/dry g)—CRG Marine Laboratories, Inc.

Tissue chemistry data March 02, 2004—Pesticides results summary (all results in ng/dry g)—CRG Marine	
Laboratories, Inc.	

Laboratories, Inc.		TO 1	TO 0	TO 0				
Analyte	MDL	T0-1	TO-2	TO-3				
2,4'-DDD	1	ND	ND	ND				
2,4'-DDE	1	ND	ND	ND				
2,4'-DDT	1	ND	ND	ND				
4,4'-DDD	1	ND	ND	ND				
4,4'-DDE	1	ND	ND	ND				
4,4'-DDT	1	ND	ND	ND				
Aldrin	1	ND	ND	ND				
BHC-alpha	1	ND	ND	ND				
BHC-beta	1	ND	ND	ND				
BHC-delta	1	ND	ND	ND				
BHC-gamma	1	ND	ND	ND				
Chlordane-alpha	1	ND	ND	ND				
Chlordane-gamma	1	ND	ND	ND				
DCPA (Dacthal)	1	ND	ND	ND				
Dieldrin	1	ND	ND	ND				
Endosulfan Sulfate	1	ND	ND	ND				
Endosulfan-l	1	ND	ND	ND				
Endosulfan-II	1	ND	ND	ND				
Endrin	1	ND	ND	ND				
Endrin Aldehyde	1	ND	ND	ND				
Endrin Ketone	1	ND	ND	ND				
Heptachlor	1	ND	ND	ND				
Heptachlor Epoxide	1	ND	ND	ND				
Methoxychlor	1	ND	ND	ND				
Mirex	1	ND	ND	ND				
Total Detectable DDTs	1	0	0	0				
Toxaphene	10	ND	ND	ND				
trans-Nonachlor	1	ND	ND	ND				
Analyte	MDL	BST04	BST07	DAC02	DAC03 (R1)	DAC03 (R2)	SWZ01 (R1)	SWZ04 (R1)
2,4'-DDD	1	ND	ND	ND	ND	ND	ND	ND
2,4'-DDE	1	ND	ND	ND	ND	ND	ND	ND
2,4'-DDT	1	ND	ND	ND	ND	ND	ND	ND
4,4'-DDD	1	ND	ND	ND	ND	ND	ND	ND
4,4'-DDE	1	ND	ND	ND	ND	ND	ND	ND
4,4'-DDT	1	ND	ND	ND	ND	ND	ND	ND
Aldrin	1	ND	ND	ND	ND	ND	ND	ND
BHC-alpha	1	ND	ND	ND	ND	ND	ND	ND
BHC-beta	1	ND	ND	ND	ND	ND	ND	ND
BHC-delta	1	ND	ND	ND	ND	ND	ND	ND
BHC-gamma	1	ND	ND	ND	ND	ND	ND	ND
Chlordane-alpha	1	ND	ND	ND	ND	ND	ND	ND
Chlordane-gamma	1	ND	ND	ND	ND	ND	ND	ND
DCPA (Dacthal)	1	ND	ND	ND	ND	ND	ND	ND
Dieldrin	1	ND	ND	ND	ND	ND	ND	ND
		110	110					

Laboratories, Inc.								
Endosulfan Sulfate	1	ND	ND	ND	ND	ND	ND	ND
Endosulfan-I	1	ND	ND	ND	ND	ND	ND	ND
Endosulfan-II	1	ND	ND	ND	ND	ND	ND	ND
Endrin	1	ND	ND	ND	ND	ND	ND	ND
Endrin Aldehyde	1	ND	ND	ND	ND	ND	ND	ND
Endrin Ketone	1	ND	ND	ND	ND	ND	ND	ND
Heptachlor	1	ND	ND	ND	ND	ND	ND	ND
Heptachlor Epoxide	1	ND	ND	ND	ND	ND	ND	ND
Methoxychlor	1	ND	ND	ND	ND	ND	ND	ND
Mirex	1	ND	ND	ND	ND	ND	ND	ND
Total Detectable DDTs	1	ND	ND	ND	ND	ND	ND	ND
Toxaphene	10	ND	ND	ND	ND	ND	ND	ND
trans-Nonachlor	1	ND	ND	ND	ND	ND	ND	ND
Analyte	MDL	2238	2243	2433	2441	2229		
2.4'-DDD	1	ND	ND	ND	ND	ND		
2,4'-DDE	1	ND	ND	ND	ND	ND		
2,4'-DDT	1	ND	ND	ND	ND	ND		
4.4'-DDD	1	ND	ND	ND	ND	ND		
4,4'-DDE	1	22.3	ND	16.1	11.5	27.9		
4.4'-DDT	1	ND	ND	ND	ND	ND		
Aldrin	1	ND	ND	ND	ND	ND		
BHC-alpha	1	ND	ND	ND	ND	ND		
BHC-beta	1	ND	ND	ND	ND	ND		
BHC-delta	1	ND	ND	ND	ND	ND		
BHC-gamma	1	ND	ND	ND	ND	ND		
Chlordane-alpha	1	ND	ND	ND	ND	ND		
Chlordane-gamma	1	ND	ND	ND	ND	ND		
DCPA (Dacthal)	1	ND	ND	ND	ND	ND		
Dieldrin	1	ND	ND	ND	ND	ND		
Endosulfan Sulfate	1	ND	ND	ND	ND	ND		
Endosulfan-I	1	ND	ND	ND	ND	ND		
Endosulfan-II	1	ND	ND	ND	ND	ND		
Endrin	1	ND	ND	ND	ND	ND		
Endrin Aldehyde	1	ND	ND	ND	ND	ND		
Endrin Ketone	1	ND	ND	ND	ND	ND		
Heptachlor	1	ND	ND	ND	ND	ND		
Heptachlor Epoxide	1	ND	ND	ND	ND	ND		
Methoxychlor	1	ND	ND	ND	ND	ND		
Mirex	1	ND	ND	ND	ND	ND		
Total Detectable DDTs	1	22.3	ND	16.1	11.5	27.9		
Toxaphene	10	ND	ND	ND	ND	ND		
trans-Nonachlor	1	ND	ND	ND	ND	ND		
	•							

Tissue chemistry data March 02, 2004—Pesticides results summary (all results in ng/dry g)—CRG Marine Laboratories, Inc.

Tissue chemistry data March 02, 2004—PAH results summary (all results in ng/dry g)—CRG Marine Laboratories, Inc.

Analyte	MDL	TO-1	TO-2	TO-3
1-Methylnaphthalene	1	11.7	5.9	ND
1-Methylphenanthrene	1	ND	ND	ND
2,3,5-TrimethyInaphthalene	1	ND	ND	ND
2,6-Dimethylnaphthalene	1	ND	ND	ND
2-Methylnaphthalene	1	13.2	10.3	ND
Acenaphthene	1	ND	ND	ND
Acenaphthylene	1	ND	ND	ND
Anthracene	1	ND	ND	ND
Benz[a]anthracene	1	ND	ND	ND
Benzo[a]pyrene	1	ND	ND	ND
Benzo[b]fluoranthene	1	ND	ND	ND
Benzo[e]pyrene	1	ND	ND	ND
Benzo[g,h,i]perylene	1	ND	ND	ND
Benzo[k]fluoranthene	1	ND	ND	ND
Biphenyl	1	8.8	7.4	3.1

Tissue chemistry data March 02, 2004—PAH results summary (all results in ng/dry g)—CRG Marine Laborator	ies,
Inc.	

Inc.								
Chrysene	1	ND	ND	ND				
Dibenz[a,h]anthracene	1	ND	ND	ND				
Fluoranthene	1	16.1	15.5	19.3				
Fluorene	1	ND	ND	ND				
Indeno[1,2,3-c,d]pyrene	1	ND	ND	ND				
Naphthalene	1	13.9	10.3	ND				
Perylene	1	ND	ND	ND				
Phenanthrene	1	3.7	3.0	5.4				
Pyrene	1		16.2	18.5				
Total Detectable PAHs	I	67.4	68.6	46.3				
	MDL		BST07		C02 (D1) D4		701 /01) 01	/704 (D1)
Analyte		BST04	ND			AC03 (R2) SW		
1-Methylnaphthalene	1	3.4		ND	ND	1.80	10.8	7.6
1-Methylphenanthrene	1	11.2	19.8	ND	ND	ND	14.1	17.5
2,3,5-Trimethylnaphthalene		12.9	12.00	ND	ND	ND	ND	ND
2,6-Dimethylnaphthalene	1	ND	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene	1	1.7	ND	ND	ND	ND	5.8	3.00
Acenaphthene	1	ND	ND	ND	ND	ND	ND	ND
Acenaphthylene	1	86	113	17.8	18	9.9	ND	15.2
Anthracene	1	328	442	44.4	38.6	38.6	27.4	46.5
Benz[a]anthracene	1	761	1070	93.3	68.3	85.4	42.4	143
Benzo[a]pyrene	1	1380	1260	198	184	167	71.5	184
Benzo[b]fluoranthene	1	1940	1560	317	295	268	57.4	211
Benzo[e]pyrene	1	1240	1100	234	231	168	84.8	205
Benzo[g,h,i]perylene	1	274	206	76.4	60.2	61.1	43.2	99.1
Benzo[k]fluoranthene	1	1850	1700	394	355	293	80.6	309
Biphenyl	1	9.5	6.00	14.2	18.9	18	12.5	15.2
Chrysene	1	1250	1670	123	132	118	99.8	243
Dibenz[a,h]anthracene	1	64.5	48.2	ND	ND	ND	ND	ND
Fluoranthene	1	2260	4910	106	85.4	75.5	201	419
Fluorene	1	5.2	9.5	ND	1.8	2.7	4.2	9.9
Indeno[1,2,3-c,d]pyrene	1	272	251	59.5	84.5	57.5	ND	111
Naphthalene	1	4.3	ND	ND	13.5	2.7	20	15.2
Perylene	1	267	252	ND	68.3	ND	ND	42.7
Phenanthrene	1	59.3	157	17.8	17.1	12.6	61.5	63.3
Pyrene	1	2360	3200	181	130	120	221	646
Total Detectable PAHs		14440	17986.5	1876.4	1801.6	1499.8	1058	2806.2
Analyte	MDL	2238	2243	2433	2441	2229		
1-Methylnaphthalene	1	16.30	ND	ND	ND	ND		
1-Methylphenanthrene	1	ND	ND	ND	ND	ND		
2,3,5-Trimethylnaphthalene		ND	ND	ND	ND	ND		
	<u>1</u>	ND	ND	ND	ND	ND		<u> </u>
2,6-Dimethylnaphthalene			ND			ND ND		
2-Methylnaphthalene	1	18						
Acenaphthene				ND	ND			
	1	ND	ND	ND	ND	ND		
Acenaphthylene	1	ND ND	ND ND	ND ND	ND ND	ND 11.8		
Acenaphthylene Anthracene	1 1	ND ND ND	ND ND 10	ND ND 23.1	ND ND 41.5	ND 11.8 29.6		
Acenaphthylene Anthracene Benz[a]anthracene	1 1 1	ND ND ND ND	ND ND 10 12.7	ND ND 23.1 24.8	ND ND 41.5 110	ND 11.8 29.6 57.5		
Acenaphthylene Anthracene Benz[a]anthracene Benzo[a]pyrene	1 1	ND ND ND	ND ND 10	ND ND 23.1	ND ND 41.5	ND 11.8 29.6		
Acenaphthylene Anthracene Benz[a]anthracene	1 1 1	ND ND ND ND	ND ND 10 12.7	ND ND 23.1 24.8	ND ND 41.5 110	ND 11.8 29.6 57.5		
Acenaphthylene Anthracene Benz[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene	1 1 1 1 1 1	ND ND ND ND ND ND	ND ND 10 12.7 ND 55.3	ND ND 23.1 24.8 44.4 91.4	ND ND 41.5 110 104 145	ND 11.8 29.6 57.5 96.4 146		
Acenaphthylene Anthracene Benz[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[e]pyrene	1 1 1 1 1 1 1	ND ND ND ND ND ND ND	ND ND 10 12.7 ND 55.3 ND	ND ND 23.1 24.8 44.4 91.4 82.8	ND ND 41.5 110 104 145 103	ND 11.8 29.6 57.5 96.4 146 101		
Acenaphthylene Anthracene Benz[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene	1 1 1 1 1 1 1 1	ND ND ND ND ND ND ND ND	ND ND 10 12.7 ND 55.3 ND ND	ND 23.1 24.8 44.4 91.4 82.8 ND	ND ND 41.5 110 104 145 103 30	ND 11.8 29.6 57.5 96.4 146 101 26.2		
Acenaphthylene Anthracene Benz[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene	1 1 1 1 1 1 1 1 1 1	ND ND ND ND ND ND ND ND	ND ND 10 12.7 ND 55.3 ND ND 66.10	ND ND 23.1 24.8 44.4 91.4 82.8 ND 102	ND ND 41.5 110 104 145 103 30 155	ND 11.8 29.6 57.5 96.4 146 101 26.2 194		
Acenaphthylene Anthracene Benz[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene Biphenyl	1 1 1 1 1 1 1 1 1 1 1 1 1	ND ND ND ND ND ND ND ND 18	ND ND 10 12.7 ND 55.3 ND ND 66.10 13.6	ND 23.1 24.8 44.4 91.4 82.8 ND 102 4.3	ND ND 41.5 110 104 145 103 30 155 5.3	ND 11.8 29.6 57.5 96.4 146 101 26.2 194 9.3		
Acenaphthylene Anthracene Benz[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene Biphenyl Chrysene	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND ND ND ND ND ND ND ND 18 ND	ND ND 10 12.7 ND 55.3 ND ND 66.10 13.6 31.70	ND 23.1 24.8 44.4 91.4 82.8 ND 102 4.3 41	ND ND 41.5 110 104 145 103 30 155 5.3 148	ND 11.8 29.6 57.5 96.4 146 101 26.2 194 9.3 87.1		
Acenaphthylene Anthracene Benz[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene Biphenyl Chrysene Dibenz[a,h]anthracene	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND ND ND ND ND ND ND 18 ND ND	ND ND 10 12.7 ND 55.3 ND ND 66.10 13.6 31.70 ND	ND 23.1 24.8 44.4 91.4 82.8 ND 102 4.3 41 ND	ND ND 41.5 110 104 145 103 30 155 5.3 148 ND	ND 11.8 29.6 57.5 96.4 146 101 26.2 194 9.3 87.1 ND		
Acenaphthylene Anthracene Benz[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene Biphenyl Chrysene Dibenz[a,h]anthracene Fluoranthene	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND ND ND ND ND ND ND 18 ND 18 ND 17.2	ND ND 10 12.7 ND 55.3 ND ND 66.10 13.6 31.70 ND 40.8	ND ND 23.1 24.8 44.4 91.4 82.8 ND 102 4.3 41 ND 54.7	ND 41.5 110 104 145 103 30 155 5.3 148 ND 351	ND 11.8 29.6 57.5 96.4 146 101 26.2 194 9.3 87.1 ND 105		
Acenaphthylene Anthracene Benz[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene Biphenyl Chrysene Dibenz[a,h]anthracene Fluoranthene Fluorene	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND ND ND ND ND ND ND 18 ND 17.2 6	ND ND 10 12.7 ND 55.3 ND 66.10 13.6 31.70 ND 40.8 1.80	ND ND 23.1 24.8 44.4 91.4 82.8 ND 102 4.3 41 ND 54.7 1.7	ND ND 41.5 110 104 145 103 30 155 5.3 148 ND 351 ND	ND 11.8 29.6 57.5 96.4 146 101 26.2 194 9.3 87.1 ND 105 5.1		
Acenaphthylene Anthracene Benz[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene Biphenyl Chrysene Dibenz[a,h]anthracene Fluoranthene Fluorene Indeno[1,2,3-c,d]pyrene	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND ND ND ND ND ND ND ND ND 18 ND 17.2 6 ND	ND 10 12.7 ND 55.3 ND 66.10 13.6 31.70 ND 40.8 1.80 ND	ND ND 23.1 24.8 44.4 91.4 82.8 ND 102 4.3 41 ND 54.7 1.7 ND	ND 41.5 110 104 145 103 30 155 5.3 148 ND 351 ND 30	ND 11.8 29.6 57.5 96.4 146 101 26.2 194 9.3 87.1 ND 105 5.1 72.8		
Acenaphthylene Anthracene Benz[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene Biphenyl Chrysene Dibenz[a,h]anthracene Fluoranthene Fluorene Indeno[1,2,3-c,d]pyrene Naphthalene	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND ND ND ND ND ND ND ND 18 ND 17.2 6 ND 23.2	ND ND 10 12.7 ND 55.3 ND 66.10 13.6 31.70 ND 40.8 1.80 ND ND	ND ND 23.1 24.8 44.4 91.4 82.8 ND 102 4.3 41 ND 54.7 1.7 ND ND	ND ND 41.5 110 104 145 103 30 155 5.3 148 ND 351 ND 30 ND 30	ND 11.8 29.6 57.5 96.4 146 101 26.2 194 9.3 87.1 ND 105 5.1 72.8 3.4		
Acenaphthylene Anthracene Benz[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene Biphenyl Chrysene Dibenz[a,h]anthracene Fluoranthene Fluorene Indeno[1,2,3-c,d]pyrene Naphthalene Perylene	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND ND ND ND ND ND ND ND 18 ND 17.2 6 ND 23.2 ND	ND 10 12.7 ND 55.3 ND 66.10 13.6 31.70 ND 40.8 1.80 ND ND	ND ND 23.1 24.8 44.4 91.4 82.8 ND 102 4.3 41 ND 54.7 1.7 ND ND ND	ND ND 41.5 110 104 145 103 30 155 5.3 148 ND 351 ND 30 ND 30 ND 30 ND 30 ND 30 ND 23	ND 11.8 29.6 57.5 96.4 146 101 26.2 194 9.3 87.1 ND 105 5.1 72.8 3.4 26.2		
Acenaphthylene Anthracene Benz[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene Biphenyl Chrysene Dibenz[a,h]anthracene Fluoranthene Fluorene Indeno[1,2,3-c,d]pyrene Naphthalene	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND ND ND ND ND ND ND ND ND 18 ND 17.2 6 ND 23.2 ND 6.9	ND ND 10 12.7 ND 55.3 ND 66.10 13.6 31.70 ND 40.8 1.80 ND ND	ND ND 23.1 24.8 44.4 91.4 82.8 ND 102 4.3 41 ND 54.7 1.7 ND ND	ND ND 41.5 110 104 145 103 30 155 5.3 148 ND 351 ND 30 ND 30	ND 11.8 29.6 57.5 96.4 146 101 26.2 194 9.3 87.1 ND 105 5.1 72.8 3.4		
Acenaphthylene Anthracene Benz[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene Biphenyl Chrysene Dibenz[a,h]anthracene Fluoranthene Fluorene Indeno[1,2,3-c,d]pyrene Naphthalene Perylene	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND ND ND ND ND ND ND ND 18 ND 17.2 6 ND 23.2 ND	ND 10 12.7 ND 55.3 ND 66.10 13.6 31.70 ND 40.8 1.80 ND ND	ND ND 23.1 24.8 44.4 91.4 82.8 ND 102 4.3 41 ND 54.7 1.7 ND ND ND	ND ND 41.5 110 104 145 103 30 155 5.3 148 ND 351 ND 30 ND 30 ND 30 ND 30 ND 30 ND 23	ND 11.8 29.6 57.5 96.4 146 101 26.2 194 9.3 87.1 ND 105 5.1 72.8 3.4 26.2		

Tissue chemistry data March 02, 2004—PAH results summary (all results in ng/dry g)—CRG Marine Laboratories, Inc. 1109.9

Total Detectable PAHs 121.9 280 529.2 1493.6

Inc.								
Analyte	MDL	TO-1	TO-2	TO-3				
PCB018	1	ND	ND	ND				
PCB028	1	ND	ND	ND				
PCB031	1	ND	ND	ND				
PCB033	1	ND	ND	ND				
PCB037	1	ND	ND	ND				
PCB044	1	ND	ND	ND				
PCB049	1	ND	ND	ND				
PCB052	1	ND	ND	ND				
PCB066	1	ND	ND	ND				
PCB070	1	ND	ND	ND				
PCB074	1	ND	ND	ND				
PCB077	1	ND	ND	ND				
PCB081	1	ND	ND	ND				
PCB087	1	ND	ND	ND				
PCB095	1	ND	ND	ND				
PCB093 PCB097	1	ND	ND	ND				
PCB099	1	ND	ND	ND				
PCB101		ND	ND	ND				
PCB105	<u>1</u> 1	ND	ND	ND ND				
PCB105 PCB110	1	ND	ND	ND				
PCB114	1	ND ND						
PCB114 PCB118	1	ND	ND ND	ND ND				
PCB119	1	ND	ND	ND				
PCB123	1	ND	ND	ND				
PCB126	1	ND	ND	ND				
PCB128+167	1	ND	ND	ND				
PCB138	1	ND	ND	ND				
PCB141	1	ND	ND ND	ND ND				
PCB149	1	ND						
PCB151	1	ND	ND	ND				
PCB153	1	ND	ND	ND				
PCB156	1	ND	ND	ND				
PCB157	1	ND	ND	ND				
PCB158	1	ND	ND	ND				
PCB168+132	1	ND	ND	ND				
PCB169	1	ND	ND	ND				
PCB170	1	ND	ND	ND				
PCB177	1	ND	ND	ND				
PCB180	1	ND	ND	ND				
PCB183	1	ND	ND	ND				
PCB187	1	ND	ND	ND				
PCB189	1	ND	ND	ND				
PCB194	1	ND	ND	ND				
PCB200	1	ND	ND	ND				
PCB201	1	ND	ND	ND				
PCB206	1	ND	ND	ND				
Total Detectable PCBs		ND	ND	ND				
Analyte	MDL	BST04	BST07			C03 (R2) SW		<u> </u>
PCB018	1	ND	ND	ND	ND	ND	ND	ND
PCB028	1	ND	ND	ND	43.10	32.80	ND	ND
PCB031	1	ND	ND	ND	65.60	63.20	ND	ND
PCB033	1	ND	ND	ND	ND	ND	ND	ND
PCB037	1	ND	ND	ND	53.90	ND	ND	ND
PCB044	1	ND	ND	ND	12.60	11.70	ND	ND
PCB049	1	ND	ND	ND	80.00	74.60	ND	ND
PCB052	1	ND	ND	9.77	78.20	70.10	ND	ND
								=

Tissue chemistry data March 02, 2004—PCB results summary (all results in ng/dry g)—CRG Marine Laboratories, Inc.

Inc.								
PCB066	1	ND	ND	22.20	111.00	119.00	ND	ND
PCB070	1	ND	ND	27.50	107.00	106.00	ND	ND
PCB074	1	ND	ND	14.20	44.00	49.40	ND	ND
PCB077	1	ND	ND	ND	10.80	19.80	ND	ND
PCB081	1	ND	ND	ND	ND	ND	ND	ND
PCB087	1	ND	ND	ND	39.50	ND	ND	ND
PCB095	1	ND	ND	19.50	26.10	33.20	ND	ND
PCB097	1	ND	ND	ND	30.50	ND	ND	ND
PCB099	1	ND	ND	ND	39.50	28.80	ND	ND
PCB101	1	ND	ND	24.90	62.00	59.30	ND	ND
PCB105	1	ND	ND	ND	ND	ND	ND	ND
PCB110	1	ND	ND	20.40	56.60	71.90	ND	ND
PCB114	1	ND	ND	ND	32.30	ND	ND	ND
PCB118	1	ND	ND	33.70	62.00	64.70	ND	ND
PCB119	1	ND	ND	ND	ND	ND	ND	ND
PCB123	1	ND	ND	ND	ND	9.88	ND	ND
PCB126	1	ND	ND	ND	ND	ND	ND	ND
PCB128+167	1	ND	ND	ND	ND	ND	ND	ND
PCB138	1	ND	ND	ND	21.60	31.40	ND	ND
PCB141	1	ND	ND	ND	ND	ND	ND	
PCB149	1	ND	ND	ND	21.60	10.80	ND	ND
PCB151	1	ND	ND	ND	ND	ND	ND	ND
PCB153	1	ND ND	ND	22.20	39.50	26.10	ND	ND
PCB156	1	ND	ND	ND		20.10 ND	ND	ND
PCB157	1	ND	ND	ND	ND	ND	ND	ND
PCB158	1	ND	ND	ND	24.30	18.00	ND	ND
PCB168+132	1	ND	ND ND	ND ND	24.30 ND	ND	ND	ND
PCB169	1	ND	ND	ND	ND	ND	ND	
PCB170								ND
	1	ND	ND	ND	ND	ND	ND	ND
PCB177	1	ND	ND	ND	ND	ND	ND ND	ND ND
PCB180	1	ND	ND	ND	ND	ND	ND	ND
PCB183	1	ND	ND	ND	ND	ND	ND ND	ND
PCB187	<u>1</u>	ND	ND	ND	ND	ND	ND ND	ND ND
PCB189		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
PCB194	1							ND
PCB200	1	ND	ND	ND	ND	ND	ND	ND
PCB201	1	ND	ND	ND	ND	ND	ND	ND
PCB206	1	ND	ND	ND	ND	ND	ND	ND
Total Detectable PCBs		ND	ND	194.37	1061.70	900.68	ND	ND
Analyte	MDL	2238	2243	2433	2441	2229		
PCB018	1	ND	ND	ND	ND	ND		
PCB028	1	ND	ND	ND	ND	ND		
PCB031	1	ND	ND	ND	ND	ND		
PCB033	1	ND	ND	ND	ND	ND		
PCB037	1	ND	ND	ND	ND	ND		
PCB044	1	ND	ND	ND	ND	ND		
PCB049	1	ND	ND	ND	ND	ND		
PCB052	1	ND	ND	ND	ND	ND		
PCB066	1	ND	ND	ND	ND	ND		
PCB070								
	1	ND	ND	ND	ND	ND		
PCB074	1 1	ND	ND	ND	ND	ND		
PCB074 PCB077	1 1 1	ND ND	ND ND	ND ND	ND ND	ND ND		
PCB074 PCB077 PCB081	1 1 1 1	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND		
PCB074 PCB077 PCB081 PCB087	1 1 1 1 1 1	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND		
PCB074 PCB077 PCB081 PCB087 PCB095	1 1 1 1 1 1 1	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND		
PCB074 PCB077 PCB081 PCB087 PCB095 PCB097	1 1 1 1 1 1	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND		
PCB074 PCB077 PCB081 PCB087 PCB095 PCB097 PCB099	1 1 1 1 1 1 1 1 1 1	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND		
PCB074 PCB077 PCB081 PCB087 PCB095 PCB097	1 1 1 1 1 1 1 1 1	ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND		
PCB074 PCB077 PCB081 PCB087 PCB095 PCB097 PCB099	1 1 1 1 1 1 1 1 1 1	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND		
PCB074 PCB077 PCB081 PCB087 PCB095 PCB097 PCB099 PCB101	1 1 1 1 1 1 1 1 1 1 1	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND		

Tissue chemistry data March 02, 2004—PCB results summary (all results in ng/dry g)—CRG Marine Laboratories, Inc.

Inc.							
PCB118	1	ND	ND	ND	ND	ND	
PCB119	1	ND	ND	ND	ND	ND	
PCB123	1	ND	ND	ND	ND	ND	
PCB126	1	ND	ND	ND	ND	ND	
PCB128+167	1	ND	ND	ND	ND	ND	
PCB138	1	ND	ND	ND	ND	ND	
PCB141	1	ND	ND	ND	ND	ND	
PCB149	1	ND	ND	ND	ND	ND	
PCB151	1	ND	ND	ND	ND	ND	
PCB153	1	ND	ND	ND	ND	ND	
PCB156	1	ND	ND	ND	ND	ND	
PCB157	1	ND	ND	ND	ND	ND	
PCB158	1	ND	ND	ND	ND	ND	
PCB168+132	1	ND	ND	ND	ND	ND	
PCB169	1	ND	ND	ND	ND	ND	
PCB170	1	ND	ND	ND	ND	ND	
PCB177	1	ND	ND	ND	ND	ND	
PCB180	1	ND	ND	ND	ND	ND	
PCB183	1	ND	ND	ND	ND	ND	
PCB187	1	ND	ND	ND	ND	ND	
PCB189	1	ND	ND	ND	ND	ND	
PCB194	1	ND	ND	ND	ND	ND	
PCB200	1	ND	ND	ND	ND	ND	
PCB201	1	ND	ND	ND	ND	ND	
PCB206	1	ND	ND	ND	ND	ND	
Total Detectable PCBs		ND	ND	ND	ND	ND	

Tissue chemistry data March 02, 2004—PCB results summary (all results in ng/dry g)—CRG Marine Laboratories, Inc.

Tissue chemistry data March 02, 2004—Aroclors results summary (all results in ng/dry g)—CRG Marine Laboratories, Inc.

Laboratories, inc.								
Analyte	MDL	TO-1	TO-2	TO-3				
Aroclor 1016	10	ND	ND	ND				
Aroclor 1221	10	ND	ND	ND				
Aroclor 1232	10	ND	ND	ND				
Aroclor 1242	10	ND	ND	ND				
Aroclor 1248	10	ND	ND	ND				
Aroclor 1254	10	ND	ND	ND				
Aroclor 1260	10	ND	ND	ND				
Analyte	MDL	BST04	BST07	DAC02 DA	C03 (R1) DA	C03 (R2) SW2	Z01 (R1) SWZ	204 (R1)
Aroclor 1016	10	ND	ND	ND	ND	ND	ND	ND
Aroclor 1221	10	ND	ND	ND	ND	ND	ND	ND
Aroclor 1232	10	ND	ND	ND	ND	ND	ND	ND
Aroclor 1242	10	ND	ND	ND	949	838	ND	ND
Aroclor 1248	10	ND	ND	ND	ND	ND	ND	ND
Aroclor 1254	10	ND	ND	166	462	586	ND	ND
Aroclor 1260	10	ND	ND	ND	ND	ND	ND	ND
Analyte	MDL	2238	2243	2433	2441	2229		
Aroclor 1016	10	ND	ND	ND	ND	ND		
Aroclor 1221	10	ND	ND	ND	ND	ND		
Aroclor 1232	10	ND	ND	ND	ND	ND		
Aroclor 1242	10	ND	ND	ND	ND	ND		
Aroclor 1248	10	ND	ND	ND	ND	ND		
Aroclor 1254	10	ND	ND	ND	ND	ND		
Aroclor 1260	10	ND	ND	ND	ND	ND		

Tissue chemistry data March 02, 2004—Lipids results summary (all results in percent)—CRG Marine Laboratories, Inc.

Analyte	TO-1	TO-2	TO-3				
Lipid	0.56	0.36	0.54				
Analyte	BST04	BST07	DAC02 DA	AC03 (R1) DA	C03 (R2)	SWZ01	SWZ04
Lipid	0.61	0.56	0.46	0.57	0.5	0.54	0.7
Analyte	2229	2238	2243	2433	2441		

Sediment Quality Assessment Study at the B Street/Broadway Piers, Downtown Anchorage, and Switzer Creek E-7 Phase II Draft Report

 Tissue chemistry data March 02, 2004—Lipids results summary (all results in percent)—CRG Marine Laboratories, Inc.

 Lipid
 0.57
 0.47
 0.5
 0.35
 0.52

Tissue chemistry					i results in µg/	ary g)—CKG N	harine Laborato	ories, inc.
Analyte	MDL	TO-1	TO-2	TO-3				
Aluminum	1	245	311	235				
Antimony	0.05	0.23	0.3	0.23				
Arsenic	0.05	23	22.4	23.5				
Barium	0.05	3.38	3.5	3.44				
Beryllium	0.01	ND	ND	ND				
Cadmium	0.01	0.3	0.3	0.31				
Chromium	0.05	4.36	7.3	6.12				
Cobalt	0.01	1.05	1.04	0.99				
Copper	0.01	25.3	17.8	21.2				
Iron	1	738	760	681				
Lead	0.01	1.8	11.6	1.68				
Manganese	0.05	5.04	6.48	4.82				
Mercury	0.005	0.15	0.15	0.08				
Molybdenum	0.005	7.44	7.3	7.42				
Nickel	0.03	4.51	7.9	5.97				
Selenium	0.01							
		2.56	2.61	2.68				
Silver	0.01	1.88	1.49	1.53				
Strontium	0.05	108	82.7	88.8				
Thallium	0.01	ND	ND	ND				
Tin	0.05	0.3	0.37	0.31				
Titanium	0.05	26.5	31.7	27.5				
Vanadium	0.05	2.63	3.2	2.98				
Zinc	0.05	88	84.2	91.8				
Analyte	MDL	BST04	BST07	DAC02	DAC03 (R1)	DAC03 (R2)	SWZ01	SWZ04
Aluminum	1	1190	641	638	884	618	836	1220
Antimony	0.05	0.46	0.27	0.33	0.24	0.24	0.46	0.45
Arsenic	0.05	28.2	23.9	20.1	19.3	19.7	29.1	29.2
Barium	0.05	6.94	4.44	4.18	4.22	3.19	6.87	7.12
Beryllium	0.01	ND	ND	ND	ND	ND	ND	ND
Cadmium	0.01	0.27	0.27	0.42	0.24	0.24	0.37	0.27
Chromium	0.05	9.86	6.93	9.61	8.69	8.21	7.89	8.56
Cobalt	0.01	1.28	1.07	1.34	1.51	1.59	1.21	1.26
Copper	0.01	24.9	15.3	14	12.8	11.5	19.7	23.2
Iron	1	1700	1060	1160	1390	1120	1300	1710
Lead	0.01	3.47	2.49	4.76	4.94	3.43	4.36	4.68
Manganese	0.05	10.5	6.84	6.02	8.45	6.45	6.31	8.11
Mercury	0.005	0.09	0.09	0.08	0.08	0.08	0.09	0.09
Molybdenum	0.005	8.58	5.6	3.76	3.27	3.11	7.61	9.01
Nickel	0.03	3.74	3.46	3.34	4.94	4.38	4.09	6.67
Selenium	0.01	3.47	3.40	3.43	3.03	3.19	3.16	
		1.37		0.75	0.56	0.64	1.39	<u>3.42</u> 1.17
Silver	0.01		0.89					
Strontium	0.05	92.2	81.4	66.1	66.9	66.7	90.7	92.8
Thallium	0.01	ND	ND	ND	ND	ND	ND	ND
Tin	0.05	0.82	0.44	0.67	0.56	0.56	0.65	0.9
Titanium	0.05	69.6	34.5	35.8	49.7	33.9	43.5	59.3
Vanadium	0.05	4.93	3.64	3.8	4.06	3.82	4.18	5.32
Zinc	0.05	96.8	95.9	86.9	82.1	81.3	104	114
Analyte	MDL	2229	2238	2243	2433	2441 (R1)	2441 (R2)	
Aluminum	1	1410	1210	1180	2100	1090	962	
Antimony	0.05	0.15	0.23	0.25	0.33	0.32	0.24	
Arsenic	0.05	18.4	17	16.1	19.1	21.2	18.6	
Barium	0.05	6.5	4.44	5.3	10.6	7.47	6.92	
Banam	0.01	ND	ND	ND	ND	ND	ND	
Beryllium								
	0.01	0.23	0.23	0.25	0.25	0.24	0.24	
Beryllium	0.01 0.05	0.23 8.01	0.23	0.25	0.25	0.24	0.24 8.9	
Beryllium Cadmium								

Tissue chemistry data August 17, 2004—Metals results summa	ary (all results in µg/dry g)—CRG Marine Laboratories, Inc.
--	---

Iron	1	1840	1460	1380	2460	1570	1340	
Lead	0.01	3.93	1.71	3.06	3.51	2.94	2.07	
Manganese	0.05	12.5	15.1	9.68	17.7	9.62	8.11	
Mercury	0.005	0.08	0.08	0.08	0.08	0.08	0.08	
Molybdenum	0.05	2.87	3.12	2.81	3.26	3.58	3.26	
Nickel	0.01	4.08	3.43	3.89	4.34	4.93	4.37	
Selenium	0.05	3.32	3.97	3.71	3.93	4.21	3.66	
Silver	0.01	0.53	0.55	0.58	0.67	0.56	0.56	
Strontium	0.05	67.3	71.7	65.7	71.8	71.1	64	
Thallium	0.01	ND	ND	ND	ND	ND	ND	
Tin	0.05	0.68	0.55	0.58	0.75	0.56	0.56	
Titanium	0.05	79.3	62.5	57.9	124	65.5	59.9	
Vanadium	0.05	5.44	4.67	4.47	6.85	5.01	4.45	
Zinc	0.05	75.5	88.8	75.6	83.5	68.4	60.3	

Tissue chemistry data August 17, 2004—Pesticides results summary (all results in ng/dry g)—CRG Marine Laboratories, Inc.

Marine Laboratories,							
Analyte	MDL	TO-1	TO-2	TO-3			
2,4'-DDD	1	ND	ND	ND			
2,4'-DDE	1	ND	ND	ND			
2,4'-DDT	1	ND	ND	ND			
4,4'-DDD	1	ND	ND	ND			
4,4'-DDE	1	ND	ND	ND			
4,4'-DDT	1	ND	ND	ND			
Aldrin	1	ND	ND	ND			
BHC-alpha	1	ND	ND	ND			
BHC-beta	1	ND	ND	ND			
BHC-delta	1	ND	ND	ND			
BHC-gamma	1	ND	ND	ND			
Chlordane-alpha	1	ND	ND	ND			
Chlordane-gamma	1	ND	ND	ND			
DCPA (Dacthal)	1	ND	ND	ND			
Dieldrin	1	ND	ND	ND			
Endosulfan Sulfate	1	ND	ND	ND			
Endosulfan-I	1	ND	ND	ND			
Endosulfan-II	1	ND	ND	ND			
Endrin	1	ND	ND	ND			
Endrin Aldehyde	1	ND	ND	ND			
Endrin Ketone	1	ND	ND	ND			
Heptachlor	1	ND	ND	ND			
Heptachlor Epoxide	1	ND	ND	ND			
Methoxychlor	1	ND	ND	ND			
Mirex	1	ND	ND	ND			
Total Detectable DDTs	1	ND	ND	ND			
Toxaphene	10	ND	ND	ND			
trans-Nonachlor	1	ND	ND	ND			
Analyte	MDL	BST04	BST07	DAC02	DAC03	SWZ01	SWZ04
2,4'-DDD	1	ND	ND	ND	ND	ND	ND
2,4'-DDE	1	ND	ND	ND	ND	ND	ND
2,4'-DDT	1	ND	ND	ND	ND	ND	ND
4,4'-DDD	1	ND	ND	ND	ND	ND	ND
4,4'-DDE	1	ND	ND	ND	ND	ND	ND
4,4'-DDT	1	ND	ND	ND	ND	ND	ND
Aldrin	1	ND	ND	ND	ND	ND	ND
BHC-alpha	1	ND	ND	ND	ND	ND	ND
BHC-beta	1	ND	ND	ND	ND	ND	ND
BHC-delta	1	ND	ND	ND	ND	ND	ND
BHC-gamma	1	ND	ND	ND	ND	ND	ND
Chlordane-alpha	1	ND	ND	ND	ND	ND	ND
Chlordane-gamma	1	ND	ND	ND	ND	ND	ND
DCPA (Dacthal)	1	ND	ND	ND	ND	ND	ND
Dieldrin	1	ND	ND	ND	ND	ND	ND

Endosulfan Sulfate	1	ND	ND	ND	ND	ND	ND
Endosulfan-I	1	ND	ND	ND	ND	ND	ND
Endosulfan-II	1	ND	ND	ND	ND	ND	ND
Endrin	1	ND	ND	ND	ND	ND	ND
Endrin Aldehyde	1	ND	ND	ND	ND	ND	ND
Endrin Ketone	1	ND	ND	ND	ND	ND	ND
Heptachlor	1	ND	ND	ND	ND	ND	ND
Heptachlor Epoxide	1	ND	ND	ND	ND	ND	ND
Methoxychlor	1	ND	ND	ND	ND	ND	ND
Mirex	1	ND	ND	ND	ND	ND	ND
Total Detectable DDTs	1	ND	ND	ND	ND	ND	ND
Toxaphene	10	ND	ND	ND	ND	ND	ND
trans-Nonachlor	1	ND	ND	ND	ND	ND	ND
Analyte	MDL	2238	2243	2433	2229	2441 (R1)	2441 (R2)
2,4'-DDD	1	ND	ND	ND	ND	ND	ND
2,4'-DDE	1	ND	ND	ND	ND	ND	ND
2,4'-DDT	1	ND	ND	ND	ND	ND	ND
4,4'-DDD	1	ND	ND	ND	ND	ND	ND
4,4'-DDE	1	ND	ND	ND	ND	ND	ND
4,4'-DDT	1	ND	ND	ND	ND	ND	ND
Aldrin	1	ND	ND	ND	ND	ND	ND
BHC-alpha	1	ND	ND	ND	ND	ND	ND
BHC-beta	1	ND	ND	ND	ND	ND	ND
BHC-delta	1	ND	ND	ND	ND	ND	ND
BHC-gamma	1	ND	ND	ND	ND	ND	ND
Chlordane-alpha	1	ND	ND	ND	ND	ND	ND
Chlordane-gamma							

ND

DCPA (Dacthal)

Endosulfan-I

Endosulfan-II

Endrin Aldehyde

Heptachlor Epoxide

Total Detectable DDTs

Endrin Ketone

Methoxychlor

Toxaphene

trans-Nonachlor

Heptachlor

Endosulfan Sulfate

Dieldrin

Endrin

Mirex

1

1

1

1

1

1

1

1

1

1

1

1

1

10

1

ND

Tissue chemistry data August 17, 2004—Pesticides results summary (all results in ng/dry g)—CRG Marine Laboratories, Inc.

Tissue chemistry data August 17, 2004—PAH results summary (all results in ng/dry g)—CRG Marine Laboratories, Inc.

Laboratorico, inc.					
Analyte	MDL	TO-1	TO-2	TO-3	
1-Methylnaphthalene	1	ND	ND	ND	
1-Methylphenanthrene	1	ND	ND	ND	
2,3,5-TrimethyInaphthalene	1	ND	ND	ND	
2,6-DimethyInaphthalene	1	ND	ND	ND	
2-Methylnaphthalene	1	ND	ND	ND	
Acenaphthene	1	ND	ND	ND	
Acenaphthylene	1	ND	ND	ND	
Anthracene	1	ND	ND	ND	
Benz[a]anthracene	1	ND	ND	ND	
Benzo[a]pyrene	1	ND	ND	ND	
Benzo[b]fluoranthene	1	ND	ND	ND	
Benzo[e]pyrene	1	ND	ND	ND	
Benzo[g,h,i]perylene	1	ND	ND	ND	
Benzo[k]fluoranthene	1	ND	ND	ND	
Biphenyl	1	ND	ND	ND	

Laboratories, Inc.							
Chrysene	1	ND	ND	ND			
Dibenz[a,h]anthracene	1	ND	ND	ND			
Fluoranthene	1	ND	ND	ND			
Fluorene	1	ND	ND	ND			
Indeno[1,2,3-c,d]pyrene	1	ND	ND	ND			
Naphthalene	1	ND	ND	ND			
Perylene	1	ND	ND	ND			
Phenanthrene	1	ND	ND	ND			
Pyrene	1	ND	ND	ND			
Total Detectable PAHs		ND	ND	ND			
Analyte	MDL	BST04	BST07	DAC02	DAC03	SWZ01	SWZ04
1-Methylnaphthalene	1	ND	ND	ND	ND	ND	ND
1-Methylphenanthrene	1	ND	123	ND	ND	ND	ND
2,3,5-Trimethylnaphthalene	1	ND	ND	ND	ND	ND	ND
2,6-Dimethylnaphthalene	1	ND	ND	ND	ND	136	ND
2-Methylnaphthalene	1	ND	ND	ND	ND	ND	ND
Acenaphthene	1	ND	35.5	ND	ND	ND	ND
Acenaphthylene	1	ND	55.1	ND	ND	ND	ND
Anthracene	1	95	258	38.4	28.7	ND	ND
Benz[a]anthracene	1	1120	2600	191	100	ND	ND
Benzo[a]pyrene	1	1360	4960	683	312	221	124
Benzo[b]fluoranthene	1	1240	4750	614	353	171	113
Benzo[e]pyrene	1	683	2330	412	235	113	76.6
Benzo[g,h,i]perylene	1	157	458	104	51.8	ND	ND
Benzo[k]fluoranthene	1	1530	4710	835	372	194	155
Biphenyl	1	ND	25.8	 ND			ND
	1		3530	182	124	104	ND
Chrysene Dihanzla hlanthraaana	1	901 ND	3530 ND	ND	ND	ND	ND ND
Dibenz[a,h]anthracene							
Fluoranthene	1	2050	14900	217 ND	110 ND	242 ND	140
Fluorene	1	ND	24.9				ND
Indeno[1,2,3-c,d]pyrene	1	221	644	190	72.5	ND	ND
Naphthalene	1	ND	ND	ND	ND	ND	ND
Perylene	1	246	841	98.6	ND	ND	ND
Phenanthrene	1	ND	481	ND	ND 107	ND	ND
Pyrene	1	1300	9770	260	107	331	210
Total Detectable PAHs		10903	50496.3	3825	1866	1512	818.6
Analyte	MDL	2238	2243	2433	2229	2441 (R1)	2441 (R2)
1-Methylnaphthalene	1	ND	ND	ND	ND	ND	ND
1-Methylphenanthrene	1	ND	ND	ND	ND	ND	ND
2,3,5-Trimethylnaphthalene	1	ND	ND	ND	ND	ND	ND
2,6-Dimethylnaphthalene	1	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene	1	ND	ND	ND	ND	ND	ND
Acenaphthene	1	ND	ND	ND	ND	ND	ND
Acenaphthylene	1	ND	ND	ND	ND	ND	ND
Anthracene	1	ND	ND	ND	18.9	73.9	89
Benz[a]anthracene	1	ND	ND	41.8	103	274	281
Benzo[a]pyrene	1	ND	ND	ND	168	157	184
Benzo[b]fluoranthene	1	ND	89.3	92.7	212	156	191
Benzo[e]pyrene	1	ND	60.4	48.5	122	111	111
Benzo[g,h,i]perylene					74.0		ND
	1	ND	ND	ND	71.8	ND	
Benzo[k]fluoranthene	<u>1</u> 1	ND ND	ND 120	<u>ND</u> 166	<u>/1.8</u> 265	301	270
Benzo[k]fluoranthene Biphenyl							
	1	ND	120	166	265	301	270
Biphenyl Chrysene	1 1	ND ND	120 ND	166 ND	265 ND	301 ND	270 ND
Biphenyl	1 1 1	ND ND ND	120 ND ND	166 ND 51	265 ND 88.4	301 ND 178	270 ND 199
Biphenyl Chrysene Dibenz[a,h]anthracene	1 1 1 1	ND ND ND ND	120 ND ND ND	166 ND 51 ND	265 ND 88.4 ND	301 ND 178 ND	270 ND 199 ND
Biphenyl Chrysene Dibenz[a,h]anthracene Fluoranthene Fluorene	1 1 1 1 1	ND ND ND ND 56.1	120 ND ND ND 40.5	166 ND 51 ND 54.3 ND	265 ND 88.4 ND 95.2 ND	301 ND 178 ND 803 11.1	270 ND 199 ND 766 11.9
Biphenyl Chrysene Dibenz[a,h]anthracene Fluoranthene	1 1 1 1 1 1 1	ND ND ND 56.1 ND	120 ND ND 40.5 ND	166 ND 51 ND 54.3	265 ND 88.4 ND 95.2	301 ND 178 ND 803	270 ND 199 ND 766
Biphenyl Chrysene Dibenz[a,h]anthracene Fluoranthene Fluorene Indeno[1,2,3-c,d]pyrene Naphthalene	1 1 1 1 1 1 1 1	ND ND ND 56.1 ND ND	120 ND ND 40.5 ND ND ND	166 ND 51 S4.3 ND 86	265 ND 88.4 ND 95.2 ND 80.1	301 ND 178 ND 803 11.1 65.2	270 ND 199 ND 766 11.9 74.7 ND
Biphenyl Chrysene Dibenz[a,h]anthracene Fluoranthene Fluorene Indeno[1,2,3-c,d]pyrene Naphthalene Perylene	1 1 1 1 1 1 1 1 1 1	ND ND ND 56.1 ND ND ND ND	120 ND ND 40.5 ND ND ND ND ND	166 ND 51 S4.3 ND 86 ND ND	265 ND 88.4 ND 95.2 ND 80.1 ND 43.8	301 ND 178 ND 803 11.1 65.2 ND 41.3	270 ND 199 ND 766 11.9 74.7 ND 56.4
Biphenyl Chrysene Dibenz[a,h]anthracene Fluoranthene Fluorene Indeno[1,2,3-c,d]pyrene Naphthalene	1 1 1 1 1 1 1 1 1 1 1	ND ND ND 56.1 ND ND ND	120 ND ND 40.5 ND ND ND	166 ND 51 ND 54.3 ND 86 ND	265 ND 88.4 ND 95.2 ND 80.1 ND	301 ND 178 ND 803 11.1 65.2 ND	270 ND 199 ND 766 11.9 74.7 ND

Tissue chemistry data August 17, 2004—PAH results summary (all results in ng/dry g)—CRG Marine Laboratories, Inc.

Tissue chemistry data August 17, 2004—PAH results summary (all results in ng/dry g)—CRG Marine Laboratories, Inc.

	Total Detectable PAHs	126.2	345.8	584.6	1390.5	2749.6	2799
--	-----------------------	-------	-------	-------	--------	--------	------

Laboratories, Inc.	U /				5	,	
Analyte	MDL	TO-1	TO-2	TO-3			
PCB018	1	ND	ND	ND			
PCB028	1	ND	ND	ND			
PCB031	1	ND	ND	ND			
PCB033	1	ND	ND	ND			
PCB037	1	ND	ND	ND			
PCB044	1	ND	ND	ND			
PCB049	1	ND	ND	ND			
PCB052	1	ND	ND	ND			
PCB066	1	ND	ND	ND			
PCB070	1	ND	ND	ND			
PCB074	1	ND	ND	ND			
PCB077	1	ND	ND	ND			
PCB081	1	ND	ND	ND			
PCB087	1	ND	ND	ND			
PCB095	1	ND	ND	ND			
PCB097	1	ND	ND	ND			
PCB099	1	ND	ND	ND			
PCB101	1	ND	ND	ND			
PCB105	1	ND	ND	ND			
PCB110	1	ND	ND	ND			
PCB114	1	ND	ND	ND			
PCB118	1	ND	ND	ND			
PCB119	1	ND	ND	ND			
PCB123	1	ND	ND	ND			
PCB126	1	ND	ND	ND			
PCB128+167	1	ND	ND	ND			
PCB138	1	ND	ND	ND			
PCB141	1	ND	ND	ND			
PCB149	1	ND	ND	ND			
PCB151	1	ND	ND	ND			
PCB153	1	ND	ND	ND			
PCB156	1	ND	ND	ND			
PCB157	1	ND	ND	ND			
PCB158	1	ND	ND	ND			
PCB168+132	1	ND	ND	ND			
PCB169	1	ND	ND	ND			
PCB170	1	ND	ND	ND			
PCB177	1	ND	ND	ND			
PCB180	1	ND	ND	ND			
PCB183	1	ND	ND	ND			
PCB187	1	ND	ND	ND			
PCB189	1	ND	ND	ND			
PCB194	1	ND	ND	ND			
PCB200	1	ND	ND	ND			
PCB201	1	ND	ND	ND			
PCB206	1	ND	ND	ND			
Total Detectable PCBs		ND	ND	ND			
Analyte	MDL	BST04	BST07	DAC02	DAC03	SWZ01	SWZ04
PCB018	1	ND	ND	ND	ND	ND	ND
PCB028	1	ND	ND	ND	60.6	ND	ND
PCB031	1	ND	ND	ND	129	ND	ND
PCB033	1	ND	ND	ND	ND	ND	ND
PCB037	1	ND	ND	ND	ND	ND	ND
PCB044	1	ND	ND	ND	ND	ND	ND
PCB049	1	ND	ND	ND	120	ND	ND
PCB052	1	ND	ND	ND	122	ND	ND
							·

Tissue chemistry data August 17, 2004—PCB results summary (all results in ng/dry g)—CRG Marine Laboratories, Inc.

Laboratories, Inc.	U			2 \	Ū		
PCB066	1	ND	ND	ND	108	ND	ND
PCB070	1	ND	ND	ND	90.8	ND	ND
PCB074	1	ND	ND	ND	54.2	ND	ND
PCB077	1	ND	ND	ND	ND	ND	ND
PCB081	1	ND	ND	ND	ND	ND	ND
PCB087	1	ND	ND	ND	ND	ND	ND
PCB095	1	ND	ND	ND	ND	ND	ND
PCB097	1	ND	ND	ND	ND	ND	ND
PCB099	1	ND	ND	ND	ND	ND	ND
PCB101	1	ND	ND	ND	68.5	ND	ND
PCB105	1	ND	ND	ND	ND	ND	ND
PCB110	1	ND	ND	38.4	48.6	ND	ND
PCB114	1	ND	ND	ND	ND	ND	ND
PCB118	1	ND	ND	56	74.9	ND	ND
PCB119	1	ND	ND	ND	,4.5 ND	ND	ND
PCB123	1	ND	ND	ND	ND	ND	ND
PCB125 PCB126	1	ND	ND	ND	ND	ND	ND
PCB128+167	1	ND	ND	ND	ND	ND	ND ND
PCB138	1	ND	ND	ND	ND	ND	ND
PCB141	1	ND	ND	ND	ND	ND	ND
PCB149	1	ND	ND	ND	ND	ND	ND
PCB151	1	ND	ND	ND	ND	ND	ND
PCB153	1	ND	ND	ND	ND	ND	ND
PCB156	1	ND	ND	ND	ND	ND	ND
PCB157	1	ND	ND	ND	ND	ND	ND
PCB158	1	ND	ND	ND	ND	ND	ND
PCB168+132	1	ND	ND	ND	ND	ND	ND
PCB169	1	ND	ND	ND	ND	ND	ND
PCB170	1	ND	ND	ND	ND	ND	ND
PCB177	1	ND	ND	ND	ND	ND	ND
PCB180	1	ND	ND	ND	ND	ND	ND
PCB183	1	ND	ND	ND	ND	ND	ND
PCB187	1	ND	ND	ND	ND	ND	ND
PCB189	1	ND	ND	ND	ND	ND	ND
PCB194	1	ND	ND	ND	ND	ND	ND
PCB200	1	ND	ND	ND	ND	ND	ND
PCB201	1	ND	ND	ND	ND	ND	ND
PCB206	1	ND	ND	ND	ND	ND	ND
Total Detectable PCBs		ND	ND	94.4	876.6	ND	ND
Analyte	MDL	2238	2243	2433	2229	2441 (R1)	2441 (R2)
PCB018	1	ND	ND	ND	ND	ND	ND
PCB028	1	ND	ND	ND	ND	ND	ND
PCB031	1	ND	ND	ND	ND	ND	ND
PCB033	1	ND	ND	ND	ND	ND	ND
PCB037	1	ND	ND	ND	ND	ND	ND
PCB044	1	ND	ND	ND	ND	ND	ND
PCB049	1	ND	ND	ND	ND	ND	ND
PCB052	1	ND	ND	ND	ND	ND	ND
PCB066	1	ND	ND	ND	ND	ND	ND
PCB070	1	ND	ND	ND	ND	ND	ND
PCB074	1	ND	ND	ND	ND	ND	ND
PCB077	1	ND	ND	ND	ND	ND	ND
PCB081	1	ND	ND	ND	ND	ND	ND
PCB087	1	ND	ND	ND	ND	ND	ND
PCB095	1	ND	ND	ND	ND	ND	ND
			ND	ND	ND	ND	ND
PCB097	1	ND					
	1 1	ND ND	ND	ND	ND	ND	ND
PCB097					ND ND	ND ND	ND ND
PCB097 PCB099	1	ND	ND	ND			
PCB097 PCB099 PCB101	1 1	ND ND	ND ND	ND ND	ND	ND	ND
PCB097 PCB099 PCB101 PCB105	1 1 1	ND ND ND	ND ND ND	ND ND ND	ND ND	ND ND	ND ND

Tissue chemistry data August 17, 2004—PCB results summary (all results in ng/dry g)—CRG Marine Laboratories, Inc.

Laboratories, inc.							
PCB118	1	ND	ND	ND	ND	ND	ND
PCB119	1	ND	ND	ND	ND	ND	ND
PCB123	1	ND	ND	ND	ND	ND	ND
PCB126	1	ND	ND	ND	ND	ND	ND
PCB128+167	1	ND	ND	ND	ND	ND	ND
PCB138	1	ND	ND	ND	ND	ND	ND
PCB141	1	ND	ND	ND	ND	ND	ND
PCB149	1	ND	ND	ND	ND	ND	ND
PCB151	1	ND	ND	ND	ND	ND	ND
PCB153	1	ND	ND	ND	ND	ND	ND
PCB156	1	ND	ND	ND	ND	ND	ND
PCB157	1	ND	ND	ND	ND	ND	ND
PCB158	1	ND	ND	ND	ND	ND	ND
PCB168+132	1	ND	ND	ND	ND	ND	ND
PCB169	1	ND	ND	ND	ND	ND	ND
PCB170	1	ND	ND	ND	ND	ND	ND
PCB177	1	ND	ND	ND	ND	ND	ND
PCB180	1	ND	ND	ND	ND	ND	ND
PCB183	1	ND	ND	ND	ND	ND	ND
PCB187	1	ND	ND	ND	ND	ND	ND
PCB189	1	ND	ND	ND	ND	ND	ND
PCB194	1	ND	ND	ND	ND	ND	ND
PCB200	1	ND	ND	ND	ND	ND	ND
PCB201	1	ND	ND	ND	ND	ND	ND
PCB206	1	ND	ND	ND	ND	ND	ND
Total Detectable PCBs		ND	ND	ND	ND	ND	ND

Tissue chemistry data August 17, 2004—PCB results summary (all results in ng/dry g)—CRG Marine)
Laboratories, Inc.	

Tissue chemistry data August 17, 2004—Aroclors results summary (all results in ng/dry g)—CRG Marine Laboratories, Inc.

Marine Laboratories	s, Inc.						
Analyte	MDL	TO-1	TO-2	TO-3			
Aroclor 1016	10	ND	ND	ND			
Aroclor 1221	10	ND	ND	ND			
Aroclor 1232	10	ND	ND	ND			
Aroclor 1242	10	ND	ND	ND			
Aroclor 1248	10	ND	ND	ND			
Aroclor 1254	10	ND	ND	ND			
Aroclor 1260	10	ND	ND	ND			
Analyte	MDL	BST04	BST07	DAC02	DAC03	SWZ01	SWZ04
Aroclor 1016	10	ND	ND	ND	ND	ND	ND
Aroclor 1221	10	ND	ND	ND	ND	ND	ND
Aroclor 1232	10	ND	ND	ND	ND	ND	ND
Aroclor 1242	10	ND	ND	ND	1660	ND	ND
Aroclor 1248	10	ND	ND	ND	ND	ND	ND
Aroclor 1254	10	ND	ND	313	397	ND	ND
Aroclor 1260	10	ND	ND	ND	ND	ND	ND
Analyte	MDL	2238	2243	2433	2441 (R1)	2441 (R2)	2229
Aroclor 1016	10	ND	ND	ND	ND	ND	ND
Aroclor 1221	10	ND	ND	ND	ND	ND	ND
Aroclor 1232	10	ND	ND	ND	ND	ND	ND
Aroclor 1242	10	ND	ND	ND	ND	ND	ND
Aroclor 1248	10	ND	ND	ND	ND	ND	ND
Aroclor 1254	10	ND	ND	ND	ND	ND	ND
Aroclor 1260	10	ND	ND	ND	ND	ND	ND
·							

Tissue chemistry data August 17, 2004—Lipids results summary (all results in percent)—CRG Marine Laboratories, Inc.

Analyte	TO-1	TO-2	TO-3				
Lipid	0.64	0.35	0.6				
Analyte	BST04	BST07	DAC02	DAC03	SWZ01	SWZ04	
Lipid	0.44	0.49	0.45	0.53	0.12	0.32	
Analyte	2229	2238	2243	2433 (R1)	2433 (R2)	2441 (R1)	2441 (R2)

Sediment Quality Assessment Study at the B Street/Broadway Piers, Downtown Anchorage, and Switzer Creek E-14 Phase II Draft Report

 Tissue chemistry data August 17, 2004—Lipids results summary (all results in percent)—CRG Marine Laboratories, Inc.

 Lipid
 0.48
 0.6
 0.51
 0.45
 ND
 0.5

0.54

Analyte	MDL	T0-1	T0-2	T0-3				
Aluminum	1	249	373	258				
Antimony	0.05	ND	0.08	ND				
Arsenic	0.05	22.6	26.8	25.6				
Barium	0.05	2.43	3.41	2.7				
Beryllium	0.01	ND	ND	ND				
Cadmium	0.01	3.9	0.49	0.6				
Chromium	0.05	ND	ND	ND				
Cobalt	0.01	1.99	2.2	2.14				
Copper	0.01	18.7	23.3	21.4				
Iron	1	581	837	594				
Lead	0.01	1.65	1.95	1.74				
Manganese	0.05	10.9	13.5	11.3				
Mercury	0.005	0.69	0.24	0.09				
Molybdenum	0.05	0.35	4.8	4.27				
Nickel	0.01	4.68	5.77	4.79				
Selenium	0.05	3.21	3.66	3.05				
Silver	0.03	0.95	0.65	0.61				
Strontium	0.05	65.2	79.8	72.5				
Thallium	0.03	ND	ND	ND				
Tin	0.05	ND	ND	ND				
Titanium	0.05	19.9	32.2	26.2				
Vanadium	0.05	2.86	3.82	3.05				
Zinc	0.05	94.5	100	102				
Analyte	MDL	BST04	BST07	DAC02	DAC03	SWZ01	SWZ04 (R1)	SWZ04 (R2)
Aluminum	1	728	788	806	1190	1310	1100	1160
Antimony	0.05	0.2	0.09	0.1	ND	0.09	0.09	0.09
Arsenic	0.05	26	26.7	27.3	25.9	23.3	23.7	22.9
Barium	0.05	9.27	4.43	4.54	6.37	6.44	6.22	6.78
Beryllium	0.03	9.27 ND	4.43 ND	4.34 ND	0.37 ND	0.44 ND	0.22 ND	0.78 ND
Cadmium	0.01	0.49	0.38	0.39	0.36	0.37	0.46	0.46
Chromium	0.01	0.43 ND	0.30	0.33 ND	0.30 ND	ND	0.40 ND	0.40
Cobalt	0.03	1.95	2.08	2.12	2.33	2.05	2.23	2.32
Copper	0.01	20	18.7	19.1	19.8	2.03	2.23	30.9
Iron	0.01	1200	1160	1190	1580	1580	1400	1490
Lead	0.01	2.93	3.11	3.19	4.85	5.7	8.08	9.66
Manganese	0.01	6.83	6.98	7.14	9.96	9.34	8.82	9.56
Mercury	0.005	0.83 ND	0.98 ND		9.90 ND	9.34 ND	ND	9.30 ND
Molybdenum	0.005	4	4.81	4.92	4.49	4.67	4.46	4.46
Nickel	0.03	5.07	4.01	4.92	5.48	4.67	4.46	4.40
Selenium	0.01	3.71	4.08	4.15	3.68	4.11	4.40	4.64
Silver	0.03	0.29	0.19	0.19	0.18	0.19	0.28	0.37
Strontium	0.05	84.4 ND	81.5 ND	83.4 ND	87.8 ND	84 ND	79.7 ND	81.8 ND
Thallium Tin		ND	ND				ND	
<u>Tin</u>	0.05			ND	ND	ND		ND
Titanium Vanadium	0.05	40.3	43.5	44.5	61.8	71.9	60.4	68.7
Vanadium	0.05		3.96	4.05	4.85	5.14	4.92	5.01
Zinc	0.05	131	109	112	122	106	110	110
Analyte	MDL	2229	2238	2243	2433	2441 (R1)	2229	2238
Aluminum	1	876	1290	1030	1480	1110	876	1290
Antimony	0.05	0.1	0.09	0.1	0.16	0.09	0.1	0.09
Arsenic	0.05	22.5	21.1	26.9	22.5	25.7	22.5	21.1
	0.05	5.36	4.73	6.49	6.74	7.43	5.36	4.73
Barium	~ ~ ·	ND	ND	ND	ND	ND	ND	ND
Barium Beryllium	0.01			A A A	• •			.
Barium Beryllium Cadmium	0.01	0.39	0.44	0.39	0.4	0.36	0.39	0.44
Barium Beryllium Cadmium Chromium	0.01 0.05	0.39 ND	0.44 ND	ND	ND	ND	ND	ND
Barium Beryllium Cadmium	0.01	0.39	0.44					

Iron	1	1030	1360	1360	1820	1500	1030	1360
Lead	0.01	3.53	2.36	2.81	3.77	2.18	3.53	2.36
Manganese	0.05	13.8	12.4	9.4	13.6	9.25	13.8	12.4
Mercury	0.005	0.2	0.09	ND	0.08	ND	0.2	0.09
Molybdenum	0.05	3.92	3.77	4.65	4.41	4.26	3.92	3.77
Nickel	0.01	4.22	3.85	4.36	4.17	3.9	4.22	3.85
Selenium	0.05	2.65	2.8	4.36	3.39	4.08	2.65	2.8
Silver	0.01	0.59	0.35	0.39	0.4	0.27	0.59	0.35
Strontium	0.05	77.1	73.6	93.3	78.2	80.1	77.1	73.6
Thallium	0.01	ND						
Tin	0.05	4.22	ND	4.75	ND	ND	4.22	ND
Titanium	0.05	47.6	67.1	50.4	79.1	63.7	47.6	67.1
Vanadium	0.05	3.82	4.82	4.36	5.13	4.71	3.82	4.82
Zinc	0.05	109	103	128	137	110	109	103

Tissue chemistry data October 29, 2004—Pesticides results summary (all results in ng/dry g)—CRG Marine	
Laboratories, Inc.	

Analyte								
T and y to	MDL	T0-1	T0-2	T0-3				
2,4'-DDD	1	ND	ND	ND				
2,4'-DDE	1	ND	ND	ND				
2,4'-DDT	1	ND	ND	ND				
4,4'-DDD	1	ND	ND	ND				
4,4'-DDE	1	ND	ND	ND				
4,4'-DDT	1	ND	ND	ND				
Aldrin	1	ND	ND	ND				
BHC-alpha	1	ND	ND	ND				
BHC-beta	1	ND	ND	ND				
BHC-delta	1	ND	ND	ND				
BHC-gamma	1	ND	ND	ND				
Chlordane-alpha	1	ND	ND	ND				
Chlordane-gamma	1	ND	ND	ND				
Dieldrin	1	ND	ND	ND				
Endosulfan Sulfate	1	ND	ND	ND				
Endosulfan-l	1	ND	ND	ND				
Endosulfan-II	1	ND	ND	ND				
Endrin	1	ND	ND	ND				
Endrin Aldehyde	1	ND	ND	ND				
Heptachlor	1	ND	ND	ND				
Heptachlor Epoxide	1	ND	ND	ND				
Toxaphene	10	ND	ND	ND				
Analyte	MDL	BST04	BST07	DAC02	DAC03	SWZ01	SWZ04	SWZ01
	MDL 1	BST04 ND	BST07 ND	DAC02 ND	DAC03 ND	SWZ01 ND	SWZ04 ND	SWZ01 ND
Analyte								
Analyte 2,4'-DDD	1	ND	ND	ND	ND	ND	ND	ND
Analyte 2,4'-DDD 2,4'-DDE	1 1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Analyte 2,4'-DDD 2,4'-DDE 2,4'-DDT 4,4'-DDD	1 1 1	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Analyte 2,4'-DDD 2,4'-DDE 2,4'-DDT	1 1 1 1	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND
Analyte 2,4'-DDD 2,4'-DDE 2,4'-DDT 4,4'-DDD 4,4'-DDE	1 1 1 1 1	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND
Analyte 2,4'-DDD 2,4'-DDE 2,4'-DDT 4,4'-DDD 4,4'-DDE 4,4'-DDE 4,4'-DDT Aldrin	1 1 1 1 1 1 1	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND
Analyte 2,4'-DDD 2,4'-DDE 2,4'-DDT 4,4'-DDD 4,4'-DDE 4,4'-DDT	1 1 1 1 1 1 1 1	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND
Analyte 2,4'-DDD 2,4'-DDE 2,4'-DDT 4,4'-DDD 4,4'-DDE 4,4'-DDE 4,4'-DDT Aldrin BHC-alpha	1 1 1 1 1 1 1 1 1 1	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND
Analyte 2,4'-DDD 2,4'-DDE 2,4'-DDT 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin BHC-alpha BHC-beta BHC-delta	1 1 1 1 1 1 1 1 1 1 1 1	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND
Analyte 2,4'-DDD 2,4'-DDE 2,4'-DDT 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin BHC-alpha BHC-beta BHC-beta BHC-delta BHC-gamma	1 1 1 1 1 1 1 1 1 1 1	ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND
Analyte 2,4'-DDD 2,4'-DDE 2,4'-DDT 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin BHC-alpha BHC-beta BHC-beta BHC-delta BHC-gamma Chlordane-alpha	1 1 1 1 1 1 1 1 1 1 1 1 1	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND
Analyte 2,4'-DDD 2,4'-DDE 2,4'-DDT 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin BHC-alpha BHC-beta BHC-beta BHC-delta BHC-gamma	1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND
Analyte 2,4'-DDD 2,4'-DDE 2,4'-DDT 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin BHC-alpha BHC-beta BHC-beta BHC-delta BHC-gamma Chlordane-alpha Chlordane-gamma	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND
Analyte 2,4'-DDD 2,4'-DDE 2,4'-DDT 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin BHC-alpha BHC-beta BHC-beta BHC-delta BHC-delta BHC-gamma Chlordane-gamma Dieldrin	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N
Analyte 2,4'-DDD 2,4'-DDE 2,4'-DDT 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin BHC-alpha BHC-beta BHC-beta BHC-delta BHC-delta BHC-gamma Chlordane-alpha Chlordane-gamma Dieldrin Endosulfan Sulfate Endosulfan-1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND
Analyte2,4'-DDD2,4'-DDE2,4'-DDT4,4'-DDD4,4'-DDE4,4'-DDTAldrinBHC-alphaBHC-betaBHC-deltaBHC-deltaBHC-gammaChlordane-alphaChlordane-gammaDieldrinEndosulfan Sulfate	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND
Analyte2,4'-DDD2,4'-DDE2,4'-DDT4,4'-DDD4,4'-DDE4,4'-DDTAldrinBHC-alphaBHC-betaBHC-deltaBHC-deltaBHC-gammaChlordane-alphaChlordane-gammaDieldrinEndosulfan SulfateEndosulfan-IEndosulfan-II	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND
Analyte2,4'-DDD2,4'-DDE2,4'-DDT4,4'-DDD4,4'-DDE4,4'-DDTAldrinBHC-alphaBHC-betaBHC-deltaBHC-deltaBHC-gammaChlordane-alphaChlordane-gammaDieldrinEndosulfan-IlEndosulfan-IIEndosulfan-IIEndrin	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND

Toxaphene	10	ND	ND	ND	ND	ND	ND	ND
Analyte	MDL	2229	2238	2243	2433	2411	ND	
2,4'-DDD	1	ND	ND	ND	ND	ND		
2,4'-DDE	1	ND	ND	ND	ND	ND		
2,4'-DDT	1	ND	ND	ND	ND	ND		
4,4'-DDD	1	ND	ND	ND	ND	ND		
4,4'-DDE	1	ND	ND	ND	ND	ND		
4,4'-DDT	1	ND	ND	ND	ND	ND		
Aldrin	1	ND	ND	ND	ND	ND		
BHC-alpha	1	ND	ND	ND	ND	ND		
BHC-beta	1	ND	ND	ND	ND	ND		
BHC-delta	1	ND	ND	ND	ND	ND		
BHC-gamma	1	ND	ND	ND	ND	ND		
Chlordane-alpha	1	ND	ND	ND	ND	ND		
Chlordane-gamma	1	ND	ND	ND	ND	ND		
Dieldrin	1	ND	ND	ND	ND	ND		
Endosulfan Sulfate	1	ND	ND	ND	ND	ND		
Endosulfan-I	1	ND	ND	ND	ND	ND		
Endosulfan-II	1	ND	ND	ND	ND	ND		
Endrin	1	ND	ND	ND	ND	ND		
Endrin Aldehyde	1	ND	ND	ND	ND	ND		
Heptachlor	1	ND	ND	ND	ND	ND		
Heptachlor Epoxide	1	ND	ND	ND	ND	ND		
Toxaphene	10	ND	ND	ND	ND	ND		

Tissue chemistry data October 29, 2004—Pesticides results summary (all results in ng/dry g)—CRG Marine Laboratories, Inc.

Tissue chemistry data October 29, 2004—PAH results summary (all results in ng/dry g)—CRG Marine Laboratories, Inc.

Inc.								
Analyte	MDL	T0-1	T0-2	T0-3				
1-Methylnaphthalene	1	ND	ND	ND				
1-Methylphenanthrene	1	ND	ND	ND				
2,3,5-TrimethyInaphthalene	1	ND	ND	ND				
2,6-Dimethylnaphthalene	1	ND	ND	ND				
2-Methylnaphthalene	1	ND	ND	ND				
Acenaphthene	1	ND	ND	ND				
Acenaphthylene	1	ND	ND	ND				
Anthracene	1	ND	ND	ND				
Benz[a]anthracene	1	ND	10.7	ND				
Benzo[a]pyrene	1	ND	ND	ND				
Benzo[b]fluoranthene	1	ND	ND	ND				
Benzo[e]pyrene	1	ND	ND	ND				
Benzo[g,h,i]perylene	1	ND	ND	ND				
Benzo[k]fluoranthene	1	ND	ND	ND				
Biphenyl	1	ND	ND	ND				
Chrysene	1	ND	13.4	ND				
Dibenz[a,h]anthracene	1	ND	ND	ND				
Fluoranthene	1	58.6	50.8	55.2				
Fluorene	1	ND	ND	ND				
Indeno[1,2,3-c,d]pyrene	1	ND	ND	ND				
Naphthalene	1	ND	ND	ND				
Perylene	1	ND	ND	ND				
Phenanthrene	1	20.6	13.7	12.6				
Pyrene	1	32.2	29	36.5				
Total Detectable PAHs		111.4	117.6	104.3				
Analyte	MDL	BST04	BST07	DAC02	DAC03	SWZ01	SWZ04 (R1)	SWZ04 (R2)
1-Methylnaphthalene	1	11.3	12.2	11.1	ND	N) ND	ND
1-Methylphenanthrene	1	ND	ND	ND	ND	NE) ND	ND
2,3,5-TrimethyInaphthalene	1	ND	ND	ND	ND	NE) ND	ND
2,6-Dimethylnaphthalene	1	ND	ND	ND	ND	N) ND	ND
2-Methylnaphthalene	1	25.4	22.1	14.1	ND	N) ND	ND
Acenaphthene	1	ND	ND	ND	ND	N) ND	ND
Acenaphthylene	1	44.7	111	ND	ND	NE) 12	13.7
· · ·								

Anthracene								
Anunacene	1	200	425	34.7	37.1	37.1	47.7	36.7
Benz[a]anthracene	1	791	2510	93.3	80.1	96.8	109	135
Benzo[a]pyrene	1	1280	3830	226	178	133	279	301
Benzo[b]fluoranthene	1	1610	4720	348	247	168	305	364
Benzo[e]pyrene	1	959	2690	228	180	137	234	282
Benzo[g,h,i]perylene	1	229	450	59.2	63.8	62.1	103	109
Benzo[k]fluoranthene	1	1550	4190	340	246	161	299	361
Biphenyl	1	9.5	ND	6.7	ND	ND	ND	ND
Chrysene	1	968	3520	126	125	132	215	252
Dibenz[a,h]anthracene	1	ND	155	ND	ND	ND	ND	ND
Fluoranthene	1	2670	11630	167	148	321	287	318
Fluorene	1	ND	24.3	12.5	ND	ND	20.3	19.5
Indeno[1,2,3-c,d]pyrene	1	277	661	91	116	ND	113	104
Naphthalene	1	43.2	42.7	24.7	ND	30.2	29.3	21.2
Perylene	1	229	695	45.7	44.3	26.2	47.8	60
Phenanthrene	1	120	209	20.8	30.6	34.7	38.4	42.5
Pyrene	1	3170	10120	187	152	465	727	816
Total Detectable PAHs		14187.1	45993	2035.8	1647.9	1804.1	2866.5	3235.6
Analyte	MDL	2229	2238	2243	2433	2411		
1-Methylnaphthalene	1	ND	ND	ND	ND	ND		
1-Methylphenanthrene	1	ND	ND	ND	ND	ND		
2,3,5-Trimethylnaphthalene	1	ND	ND	ND	ND	ND		
2,6-DimethyInaphthalene	1	ND	ND	ND	ND	ND		
2-Methylnaphthalene	1	ND	ND	ND	ND	14.6		
Acenaphthene	1	ND	ND	ND	ND	ND		
Acenaphthylene	1	ND	ND	ND	ND	ND		
Anthracene	1	18.4	ND	ND	15.3	88.1		
Benz[a]anthracene	1							
		42.2	ND	26.2	31.3	169		
Benzo[a]pyrene	1	42.2 75	ND	26.2 42.2	31.3 65.1	169 29.9		
Benzo[a]pyrene Benzo[b]fluoranthene		75 118						
	1	75	ND	42.2	65.1	29.9		
Benzo[b]fluoranthene	1 1	75 118	ND ND ND ND	42.2 58.8 43.9 ND	65.1 96	29.9 159 114 ND		
Benzo[b]fluoranthene Benzo[e]pyrene	1 1 1	75 118 78.3 ND 120	ND ND ND ND ND	42.2 58.8 43.9	65.1 96 53.9 ND 100	29.9 159 114		
Benzo[b]fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene	1 1 1 1	75 118 78.3 ND	ND ND ND ND	42.2 58.8 43.9 ND	65.1 96 53.9 ND	29.9 159 114 ND		
Benzo[b]fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene	1 1 1 1 1	75 118 78.3 ND 120	ND ND ND ND ND	42.2 58.8 43.9 ND 71.2	65.1 96 53.9 ND 100	29.9 159 114 ND 101		
Benzo[b]fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene Biphenyl	1 1 1 1 1 1 1	75 118 78.3 ND 120 ND	ND ND ND ND ND ND	42.2 58.8 43.9 ND 71.2 ND	65.1 96 53.9 ND 100 ND	29.9 159 114 ND 101 9.6		
Benzo[b]fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene Biphenyl Chrysene	1 1 1 1 1 1 1 1	75 118 78.3 ND 120 ND 72.7 ND 79.1	ND ND ND ND ND ND ND	42.2 58.8 43.9 ND 71.2 ND 43.3 ND 45.4	65.1 96 53.9 ND 100 ND 32.9	29.9 159 114 ND 101 9.6 165		
Benzo[b]fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene Biphenyl Chrysene Dibenz[a,h]anthracene	1 1 1 1 1 1 1 1 1 1	75 118 78.3 ND 120 ND 72.7 ND	ND ND ND ND ND ND ND ND	42.2 58.8 43.9 ND 71.2 ND 43.3 ND	65.1 96 53.9 ND 100 ND 32.9 ND	29.9 159 114 ND 101 9.6 165 ND		
Benzo[b]fluoranthene Benzo[c]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene Biphenyl Chrysene Dibenz[a,h]anthracene Fluoranthene	1 1 1 1 1 1 1 1 1 1 1	75 118 78.3 ND 120 ND 72.7 ND 79.1	ND ND ND ND ND ND ND ND ND ND 18.9	42.2 58.8 43.9 ND 71.2 ND 43.3 ND 45.4	65.1 96 53.9 ND 100 ND 32.9 ND 56.4	29.9 159 114 ND 101 9.6 165 ND 835		
Benzo[b]fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene Biphenyl Chrysene Dibenz[a,h]anthracene Fluoranthene Fluorene	1 1 1 1 1 1 1 1 1 1 1 1 1	75 118 78.3 ND 120 ND 72.7 ND 79.1 ND ND ND	ND ND	42.2 58.8 43.9 ND 71.2 ND 43.3 ND 45.4 ND ND ND	65.1 96 53.9 ND 100 ND 32.9 ND 56.4 16.9 ND ND	29.9 159 114 ND 101 9.6 165 ND 835 27.7 ND 19.9		
Benzo[b]fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene Biphenyl Chrysene Dibenz[a,h]anthracene Fluoranthene Fluorene Indeno[1,2,3-c,d]pyrene	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	75 118 78.3 ND 120 ND 72.7 ND 79.1 ND ND	ND	42.2 58.8 43.9 ND 71.2 ND 43.3 ND 45.4 ND ND	65.1 96 53.9 ND 100 ND 32.9 ND 56.4 16.9 ND	29.9 159 114 ND 101 9.6 165 ND 835 27.7 ND		
Benzo[b]fluoranthene Benzo[g]pyrene Benzo[g]h,i]perylene Benzo[k]fluoranthene Biphenyl Chrysene Dibenz[a,h]anthracene Fluoranthene Fluorene Indeno[1,2,3-c,d]pyrene Naphthalene	1 1 1 1 1 1 1 1 1 1 1 1 1	75 118 78.3 ND 120 ND 72.7 ND 79.1 ND ND ND	ND ND	42.2 58.8 43.9 ND 71.2 ND 43.3 ND 45.4 ND ND ND	65.1 96 53.9 ND 100 ND 32.9 ND 56.4 16.9 ND ND	29.9 159 114 ND 101 9.6 165 ND 835 27.7 ND 19.9		
Benzo[b]fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene Biphenyl Chrysene Dibenz[a,h]anthracene Fluoranthene Fluorene Indeno[1,2,3-c,d]pyrene Naphthalene Perylene	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	75 118 78.3 ND 120 ND 72.7 ND 79.1 ND ND ND ND	ND ND	42.2 58.8 43.9 ND 71.2 ND 43.3 ND 45.4 ND ND ND ND	65.1 96 53.9 ND 100 ND 32.9 ND 56.4 16.9 ND ND ND	29.9 159 114 ND 101 9.6 165 ND 835 27.7 ND 19.9 ND		

Tissue chemistry data October 29, 2004—PAH results summary (all results in ng/dry g)—CRG Marine Laborato	ries,
Inc.	

Tissue chemistry data October 29, 2004—PCB results summary (all results in ng/dry g)—CRG Marine Laboratories, Inc.

Analyte	MDL	T0-1	T0-2	T0-3	
PCB018	1	ND	ND	ND	
PCB028	1	ND	ND	ND	
PCB031	1	ND	ND	ND	
PCB033	1	ND	ND	ND	
PCB037	1	ND	ND	ND	
PCB044	1	ND	ND	ND	
PCB049	1	ND	ND	ND	
PCB052	1	ND	ND	ND	
PCB066	1	ND	ND	ND	
PCB070	1	ND	ND	ND	
PCB074	1	ND	ND	ND	
PCB077	1	ND	ND	ND	
PCB081	1	ND	ND	ND	

Inc.					-	
PCB087	1	ND	ND	ND		
PCB095	1	ND	ND	ND		
PCB097	1	ND	ND	ND		
PCB099	1	ND	ND	ND		
PCB101	1	ND	ND	ND		
PCB105	1	ND	ND	ND		
PCB110	1	ND	ND	ND		
PCB114	1	ND	ND	ND		
	1	ND		ND		
PCB118			ND			
PCB119	1	ND	ND	ND		
PCB123	1	ND	ND	ND		
PCB126	1	ND	ND	ND		
PCB128+167	1	ND	ND	ND		
PCB138	1	ND	ND	ND		
PCB141	1	ND	ND	ND		
PCB149	1	ND	ND	ND		
PCB151	1	ND	ND	ND		
PCB153	1	ND	ND	ND		
PCB156	1	ND	ND	ND		
PCB157	1	ND	ND	ND		
PCB158	1	ND	ND	ND		
PCB168+132	1	ND	ND	ND		
PCB169	1	ND	ND	ND		
PCB170	1	ND	ND	ND		
PCB177	1	ND	ND	ND		
PCB180	1	ND	ND	ND		
PCB183	1	ND	ND	ND		
PCB187	1	ND	ND	ND		
PCB189	1	ND	ND	ND		
		ND				
PCB194 PCB200	<u>1</u> 1	ND	ND ND	ND		
				ND		
PCB201	1	ND	ND	ND		
PCB201 PCB206		ND ND	ND ND	ND ND		
PCB201 PCB206 Total Detectable PCBs	1	ND ND ND	ND ND ND	ND ND ND	D4 000	
PCB201 PCB206 Total Detectable PCBs Analyte	1 1 MDL	ND ND ND BST04	ND ND ND BST07	ND ND ND DAC02	DAC03	
PCB201 PCB206 Total Detectable PCBs Analyte PCB018	1 1 MDL 1	ND ND ND BST04 ND	ND ND ND BST07 ND	ND ND ND DAC02 ND	86.5	
PCB201 PCB206 Total Detectable PCBs Analyte PCB018 PCB028	1 1 MDL 1 1	ND ND BST04 ND ND	ND ND BST07 ND ND	ND ND DAC02 ND ND	86.5 142	
PCB201 PCB206 Total Detectable PCBs Analyte PCB018 PCB028 PCB031	1 1 MDL 1 1 1	ND ND BST04 ND ND ND ND	ND ND BST07 ND ND ND	ND ND DAC02 ND ND ND	86.5 142 257	
PCB201 PCB206 Total Detectable PCBs Analyte PCB018 PCB028 PCB031 PCB033	1 1 MDL 1 1 1 1 1	ND ND BST04 ND ND ND ND ND	ND ND BST07 ND ND ND ND	ND ND DAC02 ND ND ND ND	86.5 142 257 16.5	
PCB201 PCB206 Total Detectable PCBs Analyte PCB018 PCB028 PCB031 PCB033 PCB037	1 1 1 1 1 1 1 1 1 1	ND ND BST04 ND ND ND ND ND ND	ND ND BST07 ND ND ND ND ND	ND ND DAC02 ND ND ND ND ND	86.5 142 257 16.5 ND	
PCB201 PCB206 Total Detectable PCBs Analyte PCB018 PCB028 PCB031 PCB033 PCB037 PCB044	1 1 MDL 1 1 1 1 1	ND ND BST04 ND ND ND ND ND ND ND	ND ND BST07 ND ND ND ND ND ND ND	ND ND DAC02 ND ND ND ND ND 21.9	86.5 142 257 16.5 ND 46.9	
PCB201 PCB206 Total Detectable PCBs Analyte PCB018 PCB028 PCB031 PCB033 PCB037 PCB044 PCB049	1 1 1 1 1 1 1 1 1 1	ND ND BST04 ND ND ND ND ND ND ND ND ND	ND ND BST07 ND ND ND ND ND ND ND ND	ND ND DAC02 ND ND ND ND 21.9 38.1	86.5 142 257 16.5 ND 46.9 278	
PCB201 PCB206 Total Detectable PCBs Analyte PCB018 PCB028 PCB031 PCB033 PCB037 PCB044	1 1 1 1 1 1 1 1 1 1 1 1	ND ND BST04 ND ND ND ND ND ND ND	ND ND BST07 ND ND ND ND ND ND ND	ND ND DAC02 ND ND ND ND ND 21.9	86.5 142 257 16.5 ND 46.9	
PCB201 PCB206 Total Detectable PCBs Analyte PCB018 PCB028 PCB031 PCB033 PCB037 PCB044 PCB049	1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND ND BST04 ND ND ND ND ND ND ND ND ND	ND ND BST07 ND ND ND ND ND ND ND ND	ND ND DAC02 ND ND ND ND 21.9 38.1 35.7 62.3	86.5 142 257 16.5 ND 46.9 278	
PCB201 PCB206 Total Detectable PCBs Analyte PCB018 PCB028 PCB031 PCB033 PCB044 PCB052 PCB066 PCB070	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND ND BST04 ND ND ND ND ND ND ND ND ND ND	ND ND BST07 ND ND ND ND ND ND ND ND ND ND	ND ND DAC02 ND ND ND ND 21.9 38.1 35.7	86.5 142 257 16.5 ND 46.9 278 284	
PCB201 PCB206 Total Detectable PCBs Analyte PCB018 PCB028 PCB031 PCB033 PCB044 PCB049 PCB052 PCB066	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND ND BST04 ND ND ND ND ND ND ND ND ND ND ND	ND ND BST07 ND ND ND ND ND ND ND ND ND ND ND	ND ND DAC02 ND ND ND ND 21.9 38.1 35.7 62.3	86.5 142 257 16.5 ND 46.9 278 284 215	
PCB201 PCB206 Total Detectable PCBs Analyte PCB018 PCB028 PCB031 PCB033 PCB044 PCB052 PCB066 PCB070	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND ND BST04 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND BST07 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND DAC02 ND ND ND ND 21.9 38.1 35.7 62.3 38.1	86.5 142 257 16.5 ND 46.9 278 284 215 179	
PCB201 PCB206 Total Detectable PCBs Analyte PCB018 PCB028 PCB031 PCB033 PCB044 PCB052 PCB052 PCB066 PCB070 PCB074	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND ND BST04 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND BST07 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND DAC02 ND ND ND ND 21.9 38.1 35.7 62.3 38.1 27.6	86.5 142 257 16.5 ND 46.9 278 284 215 179 94.1	
PCB201 PCB206 Total Detectable PCBs Analyte PCB018 PCB028 PCB031 PCB033 PCB037 PCB044 PCB052 PCB052 PCB070 PCB074 PCB077 PCB081	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND ND BST04 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND BST07 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND DAC02 ND DAC02 ND ND ND 21.9 38.1 35.7 62.3 38.1 27.6 ND ND	86.5 142 257 16.5 ND 46.9 278 284 215 179 94.1 ND	
PCB201 PCB206 Total Detectable PCBs Analyte PCB018 PCB028 PCB031 PCB033 PCB037 PCB044 PCB052 PCB052 PCB070 PCB074 PCB077 PCB081 PCB087	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND ND BST04 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND BST07 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND DAC02 ND ND ND ND 21.9 38.1 35.7 62.3 38.1 27.6 ND	86.5 142 257 16.5 ND 46.9 278 284 215 179 94.1 ND ND ND	
PCB201 PCB206 Total Detectable PCBs Analyte PCB018 PCB031 PCB033 PCB037 PCB044 PCB052 PCB052 PCB070 PCB071 PCB072 PCB073 PCB074 PCB075 PCB081 PCB087 PCB095	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND ND BST04 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND BST07 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND DAC02 ND DAC02 ND ND ND 21.9 38.1 35.7 62.3 38.1 27.6 ND ND ND ND	86.5 142 257 16.5 ND 46.9 278 284 215 179 94.1 ND ND 63.1	
PCB201 PCB206 Total Detectable PCBs Analyte PCB018 PCB028 PCB031 PCB033 PCB037 PCB044 PCB052 PCB052 PCB070 PCB074 PCB077 PCB081 PCB095 PCB097	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND ND BST04 ND	ND ND BST07 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND DAC02 ND DAC02 ND ND ND 21.9 38.1 35.7 62.3 38.1 27.6 ND	86.5 142 257 16.5 ND 46.9 278 284 215 179 94.1 ND ND 63.1 ND	
PCB201 PCB206 Total Detectable PCBs Analyte PCB018 PCB031 PCB033 PCB037 PCB044 PCB052 PCB070 PCB074 PCB081 PCB087 PCB087 PCB095 PCB097 PCB099	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND ND BST04 ND	ND ND BST07 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND DAC02 ND ND ND ND 38.1 35.7 62.3 38.1 27.6 ND	86.5 142 257 16.5 ND 46.9 278 284 215 179 94.1 ND ND 63.1 ND 63.1 ND 79.8	
PCB201 PCB206 Total Detectable PCBs Analyte PCB018 PCB031 PCB033 PCB037 PCB044 PCB052 PCB052 PCB070 PCB074 PCB081 PCB082 PCB077 PCB081 PCB095 PCB095 PCB091 PCB091	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND ND BST04 ND ND	ND ND BST07 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND DAC02 ND ND ND ND 21.9 38.1 35.7 62.3 38.1 27.6 ND	86.5 142 257 16.5 ND 46.9 278 284 215 179 94.1 ND ND 63.1 ND 63.1 ND 79.8 121	
PCB201 PCB206 Total Detectable PCBs Analyte PCB018 PCB028 PCB031 PCB033 PCB037 PCB044 PCB052 PCB070 PCB071 PCB081 PCB082 PCB070 PCB071 PCB081 PCB095 PCB095 PCB097 PCB091 PCB101 PCB105	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND ND BST04 ND ND	ND ND BST07 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND DAC02 ND ND ND ND 21.9 38.1 35.7 62.3 38.1 27.6 ND	86.5 142 257 16.5 ND 46.9 278 284 215 179 94.1 ND ND 63.1 ND 63.1 ND 79.8 121 ND	
PCB201 PCB206 Total Detectable PCBs Analyte PCB018 PCB028 PCB031 PCB033 PCB037 PCB044 PCB052 PCB070 PCB074 PCB081 PCB087 PCB095 PCB097 PCB099 PCB101 PCB105	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND ND BST04 ND ND	ND ND BST07 ND ND	ND ND ND DAC02 ND ND ND ND ND 38.1 35.7 62.3 38.1 27.6 ND S0.8	86.5 142 257 16.5 ND 46.9 278 284 215 179 94.1 ND 94.1 ND 063.1 ND 63.1 ND 79.8 121 ND	
PCB201 PCB206 Total Detectable PCBs Analyte PCB018 PCB028 PCB031 PCB033 PCB037 PCB044 PCB052 PCB070 PCB071 PCB081 PCB082 PCB070 PCB071 PCB081 PCB095 PCB095 PCB095 PCB091 PCB101 PCB105 PCB101 PCB105 PCB105 PCB104	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND ND BST04 ND ND	ND ND BST07 ND ND	ND ND ND DAC02 ND ND ND ND 21.9 38.1 35.7 62.3 38.1 27.6 ND S0.8	86.5 142 257 16.5 ND 46.9 278 284 215 179 94.1 ND ND 63.1 ND 63.1 ND 79.8 121 ND 101 ND	
PCB201 PCB206 Total Detectable PCBs Analyte PCB018 PCB031 PCB033 PCB037 PCB044 PCB052 PCB070 PCB071 PCB081 PCB082 PCB070 PCB071 PCB081 PCB095 PCB095 PCB095 PCB091 PCB101 PCB105 PCB101 PCB114 PCB118	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND ND BST04 ND ND	ND ND BST07 ND ND	ND ND ND DAC02 ND ND ND ND ND 21.9 38.1 35.7 62.3 38.1 27.6 ND S0.8 ND 53	86.5 142 257 16.5 ND 46.9 278 284 215 179 94.1 ND ND 63.1 ND 63.1 ND 79.8 121 ND 79.8 121 ND 96.9	
PCB201 PCB206 Total Detectable PCBs Analyte PCB018 PCB028 PCB031 PCB033 PCB037 PCB044 PCB052 PCB070 PCB071 PCB081 PCB082 PCB070 PCB071 PCB081 PCB095 PCB095 PCB097 PCB101 PCB105 PCB101 PCB105 PCB101 PCB105 PCB101 PCB105 PCB110 PCB114 PCB118 PCB119	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND ND BST04 ND ND	ND ND BST07 ND ND	ND ND ND DAC02 ND ND ND ND ND 38.1 35.7 62.3 38.1 27.6 ND ND ND ND ND ND ND ND ND S0.8 ND 50.8 ND 53 ND	86.5 142 257 16.5 ND 46.9 278 284 215 179 94.1 ND 94.1 ND 03.1 ND 63.1 ND 63.1 ND 79.8 121 ND 101 ND 96.9 ND	
PCB201 PCB206 Total Detectable PCBs Analyte PCB018 PCB028 PCB031 PCB033 PCB037 PCB044 PCB052 PCB070 PCB071 PCB081 PCB082 PCB070 PCB071 PCB081 PCB095 PCB095 PCB097 PCB101 PCB105 PCB101 PCB105 PCB105 PCB105 PCB105 PCB110 PCB111 PCB112	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND ND BST04 ND ND	ND ND BST07 ND ND	ND ND ND DAC02 ND ND ND ND ND 38.1 35.7 62.3 38.1 27.6 ND ND ND ND ND ND ND ND ND S0.8 ND 50.8 ND 53 ND ND	86.5 142 257 16.5 ND 46.9 278 284 215 179 94.1 ND 94.1 ND 63.1 ND 63.1 ND 63.1 ND 79.8 121 ND 101 ND 96.9 ND ND	
PCB201 PCB206 Total Detectable PCBs Analyte PCB018 PCB031 PCB033 PCB037 PCB044 PCB052 PCB070 PCB071 PCB081 PCB081 PCB095 PCB097 PCB099 PCB101 PCB105 PCB110 PCB114 PCB118 PCB123 PCB126	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND ND BST04 ND ND	ND ND BST07 ND ND	ND ND ND DAC02 ND ND ND ND ND 38.1 35.7 62.3 38.1 27.6 ND ND ND ND ND ND ND ND S0.8 ND 50.8 ND 53 ND ND	86.5 142 257 16.5 ND 46.9 278 284 215 179 94.1 ND 94.1 ND 03.1 ND 63.1 ND 63.1 ND 79.8 121 ND 101 ND 96.9 ND ND ND ND	
PCB201 PCB206 Total Detectable PCBs Analyte PCB018 PCB028 PCB031 PCB033 PCB037 PCB044 PCB052 PCB070 PCB071 PCB081 PCB095 PCB097 PCB099 PCB101 PCB105 PCB114 PCB118 PCB119 PCB123	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND ND BST04 ND ND	ND ND BST07 ND ND	ND ND ND DAC02 ND ND ND ND ND 38.1 35.7 62.3 38.1 27.6 ND ND ND ND ND ND ND ND ND S0.8 ND 50.8 ND 53 ND ND	86.5 142 257 16.5 ND 46.9 278 284 215 179 94.1 ND 94.1 ND 63.1 ND 63.1 ND 63.1 ND 79.8 121 ND 101 ND 96.9 ND ND	

Tissue chemistry data October 29, 2004—PCB results summary (all results in ng/dry g)—CRG Marine Laboratorie	s,
Inc.	

Inc.							
PCB138	1	ND	ND	43.8	67.8		
PCB141	1	ND	ND	ND	ND		
PCB149	1	ND	ND	30.5	ND		
PCB151	1	ND	ND	ND	ND		
PCB153	1	153	22.4	38.7	48.1		
PCB156	1	ND	ND	ND	ND		
PCB157	1	ND	ND	ND	ND		
PCB158	1	ND	ND	ND	ND		
PCB168+132	1	ND	ND	12.1	17.8		
PCB169	1	ND	ND	ND	ND		
PCB170	1	ND ND	ND	ND	ND ND		
PCB177	1	ND	ND	ND	ND		
PCB180	1	ND	ND	ND	ND		
PCB183	1	ND	ND	ND	ND		
PCB187	1	ND	ND	ND	ND		
PCB189	1	ND	ND	ND	ND		
PCB194	1	ND	ND	ND	ND		
PCB200	1	ND	ND	ND	ND		
PCB201	1	ND	ND	ND	ND		
PCB206	1	ND	ND	ND	ND		
Total Detectable PCBs		162.8	40.5	571.5	2194.5		
Analyte	MDL	2229	2238	2243	2433	2411	
PCB018	1	ND	ND	ND	47.3	ND	
PCB028	1	ND	ND	ND	ND	ND	
PCB031	1	ND	ND	ND	ND	ND	
PCB033	1	ND	ND	ND	ND	ND	
PCB037	1	ND	ND	ND	ND	ND	
PCB044	1	ND	ND	ND	ND	ND	
PCB049	1	ND	ND	ND	ND	ND	
PCB049 PCB052		ND	ND	ND	ND	ND	
	1						
PCB066	1	ND	ND	ND	ND	ND	
PCB070	1	ND	ND	ND	ND	ND	
PCB074	1	ND	ND	ND	ND	ND	
PCB077	1	ND	ND	ND	ND	ND	
PCB081	1	ND	ND	ND	ND	ND	
PCB087	1	ND	ND	ND	ND	ND	
PCB095	1	ND	ND	ND	ND	ND	
PCB097	1	ND	ND	ND	ND	ND	
PCB099	1	ND	ND	ND	ND	ND	
PCB101	1	ND	ND	ND	ND	ND	
PCB105	1	ND	ND	ND	ND	ND	
PCB110	1	ND	ND	ND	10.6	ND	
PCB114	1	ND	ND	ND	ND	ND	
PCB118	1	ND	ND	ND	ND	ND	
PCB119	1	ND	ND	ND	ND	ND	
PCB123	1	ND	ND	ND	ND	ND	
PCB126	1	ND	ND	ND	ND	ND	
PCB128+167	1	ND	ND	ND	ND	ND	
PCB138	1	ND	ND	ND	ND	ND	
PCB141	1	ND	ND	ND	ND	ND	
PCB149	1	ND	ND	ND	ND	ND	
PCB149 PCB151		ND			ND ND	ND	
	1		ND	ND			
PCB153	1	ND	ND	ND	18.4	ND	
PCB156	1	ND	ND	ND	ND	ND	
PCB157	1	ND	ND	ND	ND	ND	
PCB158	1	ND	ND	ND	ND	ND	
PCB168+132	1	ND	ND	ND	ND	ND	
PCB169	1	ND	ND	ND	ND	ND	
PCB170	1	ND	ND	ND	ND	ND	
				NID	NID	110	
PCB177	1	ND	ND	ND	ND	ND	
PCB177 PCB180	1 1	ND ND	ND ND	ND ND	ND ND	ND ND	

Tissue chemistry data October 29, 2004—PCB results summary (all results in ng/dry g)—CRG Marine Laboratories, Inc.

Inc.							
PCB183	1	ND	ND	ND	ND	ND	
PCB187	1	ND	ND	ND	ND	ND	
PCB189	1	ND	ND	ND	ND	ND	
PCB194	1	ND	ND	ND	ND	ND	
PCB200	1	ND	ND	ND	ND	ND	
PCB201	1	ND	ND	ND	ND	ND	
PCB206	1	ND	ND	ND	ND	ND	
Total Detectable PCBs		ND	ND	ND	76.3	ND	

Tissue chemistry data October 29, 2004—PCB results summary (all results in ng/dry g)—CRG Marine Laboratories, Inc.

Tissue chemistry data October 29, 2004—Aroclors results summary (all results in ng/dry g)—CRG Marine Laboratories, Inc.

Analyte	MDL	T0-1	T0-2	T0-3				
Aroclor 1016	10	ND	ND	ND				
Aroclor 1221	10	ND	ND	ND				
Aroclor 1232	10	ND	ND	ND				
Aroclor 1242	10	ND	ND	ND				
Aroclor 1248	10	ND	ND	ND				
Aroclor 1254	10	ND	ND	ND				
Aroclor 1260	10	ND	ND	ND				
Analyte	MDL	BST04	BST07	DAC02	DAC03	SWZ01 SW	Z04 (R1) SW2	Z04 (R2)
Aroclor 1016	10	ND	ND	ND	ND	ND	ND	ND
Aroclor 1221	10	ND	ND	ND	ND	ND	ND	ND
Aroclor 1232	10	ND	ND	ND	ND	ND	ND	ND
Aroclor 1242	10	ND	ND	ND	3480	ND	ND	ND
Aroclor 1248	10	ND	ND	ND	ND	ND	ND	ND
Aroclor 1254	10	80.3	147	415	822	ND	612	370
Aroclor 1260	10	ND	ND	ND	ND	ND	ND	ND
Analyte	MDL	2229	2238	2243	2433	2411		
Aroclor 1016	10	ND	ND	ND	ND	ND		
Aroclor 1221	10	ND	ND	ND	ND	ND		
Aroclor 1232	10	ND	ND	ND	ND	ND		
Aroclor 1242	10	ND	ND	ND	ND	ND		
Aroclor 1248	10	ND	ND	ND	ND	ND		
Aroclor 1254	10	ND	ND	ND	86.2	ND		
Aroclor 1260	10	ND	ND	ND	ND	ND		

Tissue chemistry data October 27, 2004—Lipids results summary (all results in percent)—CRG Marine Laboratories, Inc.

Analyte	T0-1	T0-2	T0-3				
Lipid	0.51	0.47	0.48				
Analyte	BST04	BST07	DAC02	DAC03	SWZ01 SW	Z04 (R1) SW	Z04 (R2)
Lipid	0.42	0.4	0.37	0.45	0.38	0.5	0.49
Analyte	2229	2238	2243	2433	2411		
Lipid	0.4	0.45	0.38	0.51	0.44		

Macoma concentration Dose from macoma Dose from concentration Dose from macoma Tatal Dose (mg/s)() TFV Table (mg/s)() TFV		••			-	-		-				
SWZ 01 Gu L105 L105 <thl105< th=""> L105 L105 <thl< th=""><th></th><th>Station</th><th>Analyte</th><th>concentration</th><th>Macoma</th><th>conc.</th><th>sediment</th><th>(mg/kg/d)</th><th>TRV high</th><th></th><th>TRV high</th><th>TRV low</th></thl<></thl105<>		Station	Analyte	concentration	Macoma	conc.	sediment	(mg/kg/d)	TRV high		TRV high	TRV low
SWZ 01 Cu 22.40 1.732 133 0.541 2.525 52.26 2.3 0.048 1.086 SWZ 01 Mn 10.80 0.835 216 0.879 1.1944 776 0.002 0.001 0.001 0.001 0.18 0.006 0.22 SWZ 01 Ni 3.74 0.289 18.1 0.074 0.403 56.26 1.38 0.007 0.292 SWZ 01 Se 3.74 0.289 16.1 0.074 0.403 56.26 1.38 0.007 0.292 SWZ 01 Naph 20 1.546 81.2 0.330 2.085 2.9 0.719 SWZ 04 As 23.20 1.793 9.79 0.404 0.057 10.43 0.88 0.005 0.706 SWZ 04 As 23.20 1.773 9.76 0.766 0.033 0.27 5.26 1.38 0.032 0.022 0.18 0.399 0.319 0.343 1.386		SWZ 01	As	24.40	1.886	8.24	0.034	2.133	22.01	5.5	0.097	0.388
SWZ 01 Mu 10.80 0.835 216 0.837 1.920 <th1.920< th=""> <th1.920< th=""> <th1.920<< td=""><td></td><td>SWZ 01</td><td>Cd</td><td>0.50</td><td>0.039</td><td>0.87</td><td>0.004</td><td>0.047</td><td>10.43</td><td>0.08</td><td>0.004</td><td>0.586</td></th1.920<<></th1.920<></th1.920<>		SWZ 01	Cd	0.50	0.039	0.87	0.004	0.047	10.43	0.08	0.004	0.586
SWZ 01 Hig 0.0025 0.000 0.2 0.001 0.001 0.18 0.039 0.006 0.029 SWZ 01 Ni 3.74 0.289 18.1 0.074 0.403 56.26 1.38 0.007 0.282 SWZ 01 Zn 178 13.759 408 1.660 17.132 17.2 0.100 0.966 SWZ 01 Naph 20 1.546 81.2 0.330 2.085 2.9 0.719 SWZ 04 As 23.20 1.733 9.79 0.004 0.057 10.43 0.08 0.005 0.706 SWZ 04 As 23.20 1.733 9.79 0.004 0.057 10.43 0.08 0.005 0.706 SWZ 04 As 23.20 1.733 9.79 0.004 0.057 10.43 0.08 0.027 SWZ 04 Mn 1.130 0.872 244 0.993 0.077 0.472 56.26 1.38 0.007		SWZ 01	Cu	22.40	1.732	133	0.541	2.525	52.26	2.3	0.048	1.098
SWZ 01 Ni 3.7.4 0.289 18.1 0.07 0.40 56.26 1.38 0.00 0.292 SWZ 01 Se 3.7.4 0.289 0.67 0.003 0.324 0.93 0.23 0.349 1.410 SWZ 01 Se 3.74 0.289 408 1.660 1.712 172 172 0.100 0.996 SWZ 01 BaP 71.5 5.527 3020 12.285 19.791 2 9.896 SWZ 04 As 23.20 1.793 9.79 0.040 2.037 22.01 5.5 0.093 0.370 SWZ 04 Cd 0.61 0.047 0.91 0.040 0.057 10.43 0.08 0.005 0.76 SWZ 04 Mn 11.30 0.873 244 0.993 2.03 7.76 0.003 0.227 SWZ 04 Ni 4.50 0.348 18.9 0.077 0.472 56.26 1.38 0.008 0.342<		SWZ 01	Mn	10.80	0.835	216	0.879	1.904	776	77.6	0.002	0.025
SWZ 01 Se 3.74 0.289 0.67 0.003 0.324 0.32 0.339 0.132 SWZ 01 Zn 178 13.759 408 1.660 17.132 172 17.2 0.100 0.996 SWZ 01 Naph 20 1.546 81.2 0.330 2.085 2.9 0.719 SWZ 04 As 23.20 1.793 9.79 0.040 2.037 22.01 5.5 0.093 0.370 SWZ 04 As 23.20 1.793 9.79 0.040 2.037 22.01 5.5 0.093 0.370 SWZ 04 Cu 21.60 1.670 201 0.818 2.764 52.26 2.3 0.063 1.202 SWZ 04 Min 11.30 0.873 244 0.993 2.073 776 776 0.038 0.342 SWZ 04 Ni 4.50 0.348 18.9 0.077 0.472 56.26 1.38 0.008 0.34		SWZ 01	Hg	0.0025	0.000	0.2	0.001	0.001	0.18	0.039	0.006	0.029
SWZ 01 Zn 178 13.759 408 1.660 17.132 172 17.2 0.100 0.996 SWZ 01 Naph 20 1.546 81.2 0.330 2.085 2.9 0.719 SWZ 04 As 23.20 1.733 9.79 0.040 2.037 22.01 5.5 0.030 0.370 SWZ 04 Cd 0.61 0.047 0.91 0.004 0.057 10.43 0.08 0.005 0.706 SWZ 04 Cu 21.60 1.670 201 0.818 2.764 52.26 2.3 0.053 1.022 SWZ 04 Mn 11.30 0.873 244 0.993 2.073 776 77.6 0.003 0.027 SWZ 04 Ni 4.50 0.348 18.9 0.077 0.472 56.26 1.38 0.080 0.342 SWZ 04 Naph 15.2 1.175 31 0.126 1.446 2.9 0.128 <tr< td=""><td></td><td>SWZ 01</td><td>Ni</td><td>3.74</td><td>0.289</td><td>18.1</td><td>0.074</td><td>0.403</td><td>56.26</td><td>1.38</td><td>0.007</td><td>0.292</td></tr<>		SWZ 01	Ni	3.74	0.289	18.1	0.074	0.403	56.26	1.38	0.007	0.292
SWZ 01 Naph 20 1.546 81.2 0.330 2.035 2.9 0.719 SWZ 01 BaP 71.5 5.527 3020 12.285 19.791 2 9.866 SWZ 04 As 23.20 1.793 9.79 0.040 2.037 22.01 5.5 0.093 0.370 SWZ 04 Cu 21.60 1.670 201 0.818 2.764 52.26 2.3 0.053 1.202 SWZ 04 Mn 11.30 0.873 244 0.993 2.073 776 7.76 0.008 0.058 SWZ 04 Hg 0.0025 0.000 0.45 0.002 0.18 0.039 0.112 0.058 SWZ 04 Ni 4.50 0.348 18.9 0.077 0.472 56.26 1.38 0.008 0.343 1.366 SWZ 04 Naph 15.2 1.175 31 0.126 1.446 2.9 0.4488 SWZ 04 BaP		SWZ 01	Se	3.74	0.289	0.67	0.003	0.324	0.93	0.23	0.349	1.410
SWZ 01 BaP 71.5 5.527 3020 12.285 19.791 2 9.896 SWZ 04 As 23.20 1.793 9.79 0.040 2.037 22.01 5.5 0.033 SWZ 04 Cd 0.61 0.047 0.91 0.004 0.057 10.43 0.083 0.005 1766 SWZ 04 Cu 21.60 1.670 201 0.818 2.764 52.26 2.3 0.033 1.202 SWZ 04 Mn 11.30 0.873 244 0.993 2.073 776 77.6 0.003 0.027 SWZ 04 Ni 4.50 0.348 18.9 0.077 0.472 56.26 1.38 0.088 0.342 SWZ 04 Se 3.66 0.283 1 0.004 0.319 0.93 0.23 0.33 1.386 SWZ 04 BaP 184 14.223 1300 5.288 21.60 0.112 1.241 0.342 1.94		SWZ 01	Zn	178	13.759	408	1.660	17.132	172	17.2	0.100	0.996
SWZ 04 As 23.20 1.793 9.79 0.040 2.037 22.01 5.5 0.093 0.370 SWZ 04 Cd 0.61 0.047 0.91 0.004 0.057 10.43 0.08 0.005 0.766 SWZ 04 Cu 21.60 1.670 201 0.818 2.764 52.26 2.3 0.053 1.202 SWZ 04 Mn 11.30 0.873 244 0.993 2.073 776 7.6 0.003 0.027 SWZ 04 Ni 4.50 0.348 18.9 0.077 0.472 56.26 1.38 0.008 0.342 SWZ 04 Xi 2.01 15.537 457 1.859 19.329 172 17.2 0.112 1.124 SWZ 04 BaP 184 14.223 1300 5.288 21.680 2 10.80 0.11 1.43 0.48 0.015 SWZ 04 BaP 184 14.23 1303 0.54 </td <td></td> <td>SWZ 01</td> <td>Naph</td> <td>20</td> <td>1.546</td> <td>81.2</td> <td>0.330</td> <td>2.085</td> <td></td> <td>2.9</td> <td></td> <td>0.719</td>		SWZ 01	Naph	20	1.546	81.2	0.330	2.085		2.9		0.719
SWZ 04 Cd 0.61 0.047 0.044 0.057 10.43 0.05 0.005 0.076 SWZ 04 Cu 21.60 1.670 201 0.818 2.764 52.26 2.3 0.053 1.202 SWZ 04 Mn 11.30 0.873 244 0.993 2.073 776 77.6 0.003 0.027 SWZ 04 Hg 0.0025 0.000 0.45 0.002 0.18 0.039 0.012 0.058 SWZ 04 Ni 4.50 0.348 18.9 0.077 0.472 55.6 1.38 0.008 0.342 SWZ 04 Ni 4.50 0.348 18.9 0.077 0.472 55.6 1.38 0.084 0.343 1.386 SWZ 04 Naph 15.2 1.175 31 0.126 1.446 2.9 0.498 SWZ 04 BaP 184 14.223 1300 5.288 2.1680 2 10.840 BST04		SWZ 01	BaP	71.5	5.527	3020	12.285	19.791		2		9.896
SWZ 04 Cu Cu <th< td=""><td></td><td>SWZ 04</td><td>As</td><td>23.20</td><td>1.793</td><td>9.79</td><td>0.040</td><td>2.037</td><td>22.01</td><td>5.5</td><td>0.093</td><td>0.370</td></th<>		SWZ 04	As	23.20	1.793	9.79	0.040	2.037	22.01	5.5	0.093	0.370
SW2 04 Mn 11.30 0.873 244 0.933 2.073 776 <		SWZ 04	Cd	0.61	0.047	0.91	0.004	0.057	10.43	0.08	0.005	0.706
SW2 04 Hig 0.0025 0.003 0.018 0.003 0.018 0.003 0.018 0.003 0.013 0.003 0.013 0.003 0.023 0.034 1.386 SWZ 04 Ni 4.50 0.348 18.9 0.077 0.472 56.26 1.38 0.008 0.342 SWZ 04 Se 3.66 0.283 1 0.004 0.319 0.93 0.23 0.343 1.386 SWZ 04 Naph 15.2 1.175 31 0.126 1.446 2.9 0.498 SWZ 04 BaP 184 14.223 1300 5.288 21.680 2 10.848 BST04 As 26.10 2.018 13.3 0.054 2.302 22.01 5.5 0.105 0.419 BST04 Cu 18.90 1.461 192 0.781 2.491 52.26 2.3 0.048 10.033 BST04 Mn 15.40 0.352 24.8 <td< td=""><td></td><td>SWZ 04</td><td>Cu</td><td>21.60</td><td>1.670</td><td>201</td><td>0.818</td><td>2.764</td><td>52.26</td><td>2.3</td><td>0.053</td><td>1.202</td></td<>		SWZ 04	Cu	21.60	1.670	201	0.818	2.764	52.26	2.3	0.053	1.202
SW2 04 Ni 4.50 0.034 18.9 0.007 0.472 56.26 1.38 0.008 0.342 SWZ 04 Se 3.66 0.283 1 0.004 0.319 0.93 0.23 0.343 1.386 SWZ 04 Zn 201 15.537 457 1.859 19.329 172 17.2 0.112 1.124 SWZ 04 Naph 15.2 1.175 31 0.126 1.446 2.9 0.498 SWZ 04 BaP 184 14.223 1300 5.288 21.680 2 0.105 0.419 BST04 As 26.10 2.018 13.3 0.054 2.302 22.01 5.5 0.105 0.419 BST04 Cd 1.12 0.087 1.07 0.004 0.101 10.43 0.08 0.010 1.263 BST04 Cu 18.90 1.461 192 0.781 2.491 52.26 2.3 0.048 1065		SWZ 04	Mn	11.30	0.873	244	0.993	2.073	776	77.6	0.003	0.027
SWZ 04 See 3.66 0.283 1 0.001 0.112 0.123 0.343 1.386 SWZ 04 Zn 201 15.537 457 1.859 19.329 172 17.2 0.112 1.124 SWZ 04 Naph 15.2 1.175 31 0.126 1.446 2.9 0.498 SWZ 04 BaP 184 14.223 1300 5.288 21.680 2 10.840 BST04 As 26.10 2.018 13.3 0.054 2.302 22.01 5.5 0.105 0.419 BST04 Cd 1.12 0.087 1.07 0.004 0.101 1.043 0.08 0.010 1.263 BST04 Cu 18.90 1.461 192 0.781 2.491 52.26 2.3 0.048 1.083 BST04 Mn 15.40 1.190 308 1.253 2.715 776 77.6 0.03 0.355 BST04		SWZ 04	Hg	0.0025	0.000	0.45	0.002	0.002	0.18	0.039	0.012	0.058
SW2 04 Zn 201 15.537 457 1.859 19.329 17.2 1.12 1.124 SWZ 04 Naph 15.2 1.175 31 0.126 1.446 2.9 0.498 SWZ 04 BaP 184 14.223 1300 5.288 21.680 2 10.840 BST04 As 26.10 2.018 13.3 0.054 2.302 22.01 5.5 0.105 0.419 BST04 Cd 1.12 0.087 1.07 0.004 0.101 10.43 0.08 0.001 1.263 BST04 Cu 18.90 1.461 192 0.781 2.491 52.26 2.3 0.048 1.083 BST04 Mn 15.40 1.190 308 1.253 2.715 776 77.6 0.03 0.35 BST04 Ni 4.56 0.352 24.8 0.101 0.504 56.26 1.38 0.009 0.365 BST04		SWZ 04	Ni	4.50	0.348	18.9	0.077	0.472	56.26	1.38	0.008	0.342
SWZ 04 Naph 15.2 1.175 31 0.126 1.44 2.9 0.498 SWZ 04 BaP 184 1.4223 1300 5.288 21.680 2 10.840 BST04 As 26.10 2.018 13.3 0.054 2.302 22.01 5.5 0.105 0.419 BST04 Cd 1.12 0.087 1.07 0.004 0.101 10.43 0.08 0.010 1.263 BST04 Cu 18.90 1.461 192 0.781 2.491 52.26 2.3 0.048 1.083 BST04 Mn 15.40 1.190 308 1.253 2.715 776 77.6 0.003 0.035 BST04 Hg 0.0025 0.000 0.51 0.002 0.003 0.18 0.039 0.014 0.065 BST04 Nai 4.56 0.352 24.8 0.101 0.504 56.26 1.38 0.009 0.361		SWZ 04	Se	3.66	0.283	1	0.004	0.319	0.93	0.23	0.343	1.386
SWZ 04 BaP 184 14.223 1300 5.288 21.680 2 10.840 BST04 As 26.10 2.018 13.3 0.054 2.302 22.01 5.5 0.105 0.419 BST04 Cd 1.12 0.087 1.07 0.004 0.101 10.43 0.08 0.010 1.263 BST04 Cu 18.90 1.461 192 0.781 2.491 52.26 2.3 0.048 1.083 BST04 Mn 15.40 1.190 308 1.253 2.715 776 77.6 0.003 0.035 BST04 Hg 0.0025 0.000 0.51 0.002 0.003 0.18 0.039 0.014 0.065 BST04 Se 4.13 0.319 1.43 0.066 0.361 0.93 0.23 0.388 1.570 BST04 Se 4.13 0.332 20.2 0.082 0.461 2.9 0.159		SWZ 04	Zn	201	15.537	457	1.859	19.329	172	17.2	0.112	1.124
BST04 As 26.10 2.018 13.3 0.054 2.302 22.01 5.5 0.105 0.419 BST04 Cd 1.12 0.087 1.07 0.004 0.101 10.43 0.08 0.010 1.263 BST04 Cu 18.90 1.461 192 0.781 2.491 52.26 2.3 0.048 1.083 BST04 Mn 15.40 1.190 308 1.253 2.715 776 77.6 0.003 0.035 BST04 Hg 0.0025 0.000 0.51 0.002 0.003 0.18 0.039 0.014 0.065 BST04 Ni 4.56 0.352 24.8 0.101 0.504 56.26 1.38 0.009 0.365 BST04 Se 4.13 0.319 1.43 0.006 0.361 0.93 0.23 0.388 1.570 BST04 Se 4.13 0.332 20.2 0.082 0.461 2.9 <td></td> <td>SWZ 04</td> <td>Naph</td> <td>15.2</td> <td>1.175</td> <td>31</td> <td>0.126</td> <td>1.446</td> <td></td> <td>2.9</td> <td></td> <td>0.498</td>		SWZ 04	Naph	15.2	1.175	31	0.126	1.446		2.9		0.498
BST04 Cd 1.12 0.087 1.07 0.004 0.101 10.43 0.08 0.010 1.263 BST04 Cu 18.90 1.461 192 0.781 2.491 52.26 2.3 0.048 1.083 BST04 Mn 15.40 1.190 308 1.253 2.715 776 77.6 0.003 0.035 BST04 Hg 0.0025 0.000 0.51 0.002 0.003 0.18 0.039 0.014 0.065 BST04 Ni 4.56 0.352 24.8 0.101 0.504 56.26 1.38 0.009 0.365 BST04 Se 4.13 0.319 1.43 0.006 0.361 0.93 0.23 0.388 1.570 BST04 Naph 4.3 0.332 20.2 0.082 0.461 2.9 0.159 BST04 BaP 1380 106.674 2200 8.950 128.471 2 64.235 <tr< td=""><td></td><td>SWZ 04</td><td>BaP</td><td>184</td><td>14.223</td><td>1300</td><td>5.288</td><td>21.680</td><td></td><td>2</td><td></td><td>10.840</td></tr<>		SWZ 04	BaP	184	14.223	1300	5.288	21.680		2		10.840
BST04 Cu 18.90 1.461 192 0.781 2.491 52.26 2.3 0.048 1.083 BST04 Mn 15.40 1.190 308 1.253 2.715 776 77.6 0.003 0.035 BST04 Hg 0.0025 0.000 0.51 0.002 0.003 0.18 0.039 0.014 0.065 BST04 Ni 4.56 0.352 24.8 0.101 0.504 56.26 1.38 0.009 0.385 BST04 Se 4.13 0.319 1.43 0.006 0.361 0.93 0.23 0.388 1.570 BST04 Zn 230 17.779 320 1.302 21.201 172 17.2 0.123 1.233 BST04 BaP 1380 106.674 2200 8.950 128.471 2 64.235 BST07 As 26.90 2.079 18 0.073 2.392 22.01 5.5 0.109 0.435 BST07 Cd 0.60 0.046 0.55 0.002 <td></td> <td>BST04</td> <td>As</td> <td>26.10</td> <td>2.018</td> <td>13.3</td> <td>0.054</td> <td>2.302</td> <td>22.01</td> <td>5.5</td> <td>0.105</td> <td>0.419</td>		BST04	As	26.10	2.018	13.3	0.054	2.302	22.01	5.5	0.105	0.419
BST04 Mn 15.40 1.190 308 1.251 1.1011 1.1011 1.		BST04	Cd	1.12	0.087	1.07	0.004	0.101	10.43	0.08	0.010	1.263
BST04 Hg 0.0025 0.000 0.51 0.002 0.003 0.18 0.039 0.014 0.065 BST04 Ni 4.56 0.352 24.8 0.101 0.504 56.26 1.38 0.009 0.365 BST04 Se 4.13 0.319 1.43 0.006 0.361 0.93 0.23 0.388 1.570 BST04 Zn 230 17.779 320 1.302 21.201 172 17.2 0.123 1.233 BST04 Naph 4.3 0.332 20.2 0.082 0.461 2.9 0.159 BST04 BaP 1380 106.674 2200 8.950 128.471 2 64.235 BST07 As 26.90 2.079 18 0.073 2.392 22.01 5.5 0.109 0.435 BST07 Cd 0.60 0.046 0.55 0.002 0.054 10.43 0.08 0.050 0.675 BST07 Mn 10.90 0.843 416 1.692 2.817 776 </td <td></td> <td>BST04</td> <td>Cu</td> <td>18.90</td> <td>1.461</td> <td></td> <td>0.781</td> <td>2.491</td> <td>52.26</td> <td>2.3</td> <td>0.048</td> <td>1.083</td>		BST04	Cu	18.90	1.461		0.781	2.491	52.26	2.3	0.048	1.083
BST04 Ni 4.56 0.352 24.8 0.101 0.504 56.26 1.38 0.009 0.365 BST04 Se 4.13 0.319 1.43 0.006 0.361 0.93 0.23 0.388 1.570 BST04 Zn 230 17.779 320 1.302 21.201 172 17.2 0.123 1.233 BST04 Naph 4.3 0.332 20.2 0.082 0.461 2.9 0.159 BST04 BaP 1380 106.674 2200 8.950 128.471 2 64.235 BST07 As 26.90 2.079 18 0.073 2.392 22.01 5.5 0.109 0.435 BST07 Cd 0.60 0.046 0.55 0.002 0.054 10.43 0.08 0.005 0.675 BST07 Cu 18.30 1.415 247 1.005 2.688 52.26 2.3 0.011 0.036 BST07 Mn 10.90 0.843 416 1.692 2.817 77.6 <td></td> <td>BST04</td> <td>Mn</td> <td>15.40</td> <td>1.190</td> <td>308</td> <td>1.253</td> <td>2.715</td> <td>776</td> <td>77.6</td> <td>0.003</td> <td>0.035</td>		BST04	Mn	15.40	1.190	308	1.253	2.715	776	77.6	0.003	0.035
BST04 Se 4.13 0.319 1.43 0.006 0.361 0.93 0.23 0.388 1.570 BST04 Zn 230 17.779 320 1.302 21.201 172 17.2 0.123 1.233 BST04 Naph 4.3 0.332 20.2 0.082 0.461 2.9 0.159 BST04 BaP 1380 106.674 2200 8.950 128.471 2 64.235 BST07 As 26.90 2.079 18 0.073 2.392 22.01 5.5 0.109 0.435 BST07 Cd 0.60 0.046 0.55 0.002 0.054 10.43 0.08 0.005 0.675 BST07 Cu 18.30 1.415 247 1.005 2.688 52.26 2.3 0.051 1.169 BST07 Mn 10.90 0.843 416 1.692 2.817 776 77.6 0.004 0.036 BST07 Mg 0.0025 0.000 0.5 0.002 0.002 0.18		BST04	Hg	0.0025	0.000	0.51	0.002	0.003	0.18	0.039	0.014	0.065
BST04 Zn 230 17.779 320 1.302 21.201 172 17.2 0.123 1.233 BST04 Naph 4.3 0.332 20.2 0.082 0.461 2.9 0.159 BST04 BaP 1380 106.674 2200 8.950 128.471 2 64.235 BST07 As 26.90 2.079 18 0.073 2.392 22.01 5.5 0.109 0.435 BST07 Cd 0.60 0.046 0.55 0.002 0.054 10.43 0.08 0.005 0.675 BST07 Cu 18.30 1.415 247 1.005 2.688 52.26 2.3 0.051 1.169 BST07 Mn 10.90 0.843 416 1.692 2.817 776 77.6 0.004 0.036 BST07 Hg 0.0025 0.000 0.5 0.002 0.002 0.18 0.039 0.14 0.663 BST07 Ni 3.35 0.259 28.7 0.117 0.417 56.26 <td></td> <td>BST04</td> <td>Ni</td> <td>4.56</td> <td>0.352</td> <td>24.8</td> <td>0.101</td> <td>0.504</td> <td>56.26</td> <td>1.38</td> <td>0.009</td> <td>0.365</td>		BST04	Ni	4.56	0.352	24.8	0.101	0.504	56.26	1.38	0.009	0.365
BST04 Naph 4.3 0.332 20.2 0.082 0.461 2.9 0.159 BST04 BaP 1380 106.674 2200 8.950 128.471 2 64.235 BST07 As 26.90 2.079 18 0.073 2.392 22.01 5.5 0.109 0.435 BST07 Cd 0.60 0.046 0.55 0.002 0.054 10.43 0.08 0.005 0.675 BST07 Cu 18.30 1.415 247 1.005 2.688 52.26 2.3 0.011 1.169 BST07 Mn 10.90 0.843 416 1.692 2.817 776 77.6 0.004 0.036 BST07 Hg 0.0025 0.000 0.5 0.002 0.002 0.18 0.039 0.14 0.663 BST07 Ni 3.35 0.259 28.7 0.117 0.417 56.26 1.38 0.007 0.303 BST07 Se 4.04 0.312 1.75 0.007 0.355 0.93 <td></td> <td>BST04</td> <td>Se</td> <td>4.13</td> <td>0.319</td> <td>1.43</td> <td>0.006</td> <td>0.361</td> <td>0.93</td> <td>0.23</td> <td>0.388</td> <td>1.570</td>		BST04	Se	4.13	0.319	1.43	0.006	0.361	0.93	0.23	0.388	1.570
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		BST04	Zn	230	17.779	320	1.302	21.201	172	17.2	0.123	1.233
BST07As26.902.079180.0732.39222.015.50.1090.435BST07Cd0.600.0460.550.0020.05410.430.080.0050.675BST07Cu18.301.4152471.0052.68852.262.30.0511.169BST07Mn10.900.8434161.6922.81777677.60.0040.036BST07Hg0.00250.0000.50.0020.0020.180.0390.0140.663BST07Ni3.350.25928.70.1170.41756.261.380.0070.303BST07Se4.040.3121.750.0070.3550.930.230.3821.543BST07Zn18113.9913531.43617.14117217.20.1000.997BST07Naph0.500.03960.0240.0702.90.02461.093BST07BaP126097.398309012.570122.187261.093DAC 02As30.302.34217.70.0722.68222.015.50.1220.488		BST04	Naph	4.3	0.332	20.2	0.082	0.461		2.9		0.159
BST07 Cd 0.60 0.046 0.55 0.002 0.054 10.43 0.08 0.005 0.675 BST07 Cu 18.30 1.415 247 1.005 2.688 52.26 2.3 0.051 1.169 BST07 Mn 10.90 0.843 416 1.692 2.817 776 77.6 0.004 0.036 BST07 Mn 10.90 0.843 416 1.692 2.817 776 77.6 0.004 0.036 BST07 Mn 10.90 0.843 416 1.692 2.817 776 77.6 0.004 0.036 BST07 Mg 0.0025 0.000 0.5 0.002 0.002 0.18 0.039 0.014 0.063 BST07 Ni 3.35 0.259 28.7 0.117 0.417 56.26 1.38 0.007 0.303 BST07 Se 4.04 0.312 1.75 0.007 0.355 0.93 0.23 0.382 1.543 BST07 Naph 0.50 0.039 <td></td> <td>BST04</td> <td>BaP</td> <td>1380</td> <td>106.674</td> <td></td> <td>8.950</td> <td>128.471</td> <td></td> <td>2</td> <td></td> <td>64.235</td>		BST04	BaP	1380	106.674		8.950	128.471		2		64.235
BST07Cu18.301.4152471.0052.68852.262.30.0511.169BST07Mn10.900.8434161.6922.81777677.60.0040.036BST07Hg0.00250.0000.50.0020.0020.180.0390.0140.063BST07Ni3.350.25928.70.1170.41756.261.380.0070.303BST07Se4.040.3121.750.0070.3550.930.230.3821.543BST07Zn18113.9913531.43617.14117217.20.1000.997BST07Naph0.500.03960.0240.0702.90.024BST07BaP126097.398309012.570122.187261.093DAC 02As30.302.34217.70.0722.68222.015.50.1220.488		BST07	As	26.90	2.079		0.073	2.392	22.01	5.5	0.109	0.435
BST07Mn10.900.8434161.6922.81777677.60.0040.036BST07Hg0.00250.0000.50.0020.0020.180.0390.0140.063BST07Ni3.350.25928.70.1170.41756.261.380.0070.303BST07Se4.040.3121.750.0070.3550.930.230.3821.543BST07Zn18113.9913531.43617.14117217.20.1000.997BST07Naph0.500.03960.0240.0702.90.024BST07BaP126097.398309012.570122.187261.093DAC 02As30.302.34217.70.0722.68222.015.50.1220.488		BST07	Cd	0.60	0.046		0.002	0.054	10.43	0.08	0.005	0.675
BST07Hg0.00250.0000.50.0020.0020.180.0390.0140.063BST07Ni3.350.25928.70.1170.41756.261.380.0070.303BST07Se4.040.3121.750.0070.3550.930.230.3821.543BST07Zn18113.9913531.43617.14117217.20.1000.997BST07Naph0.500.03960.0240.0702.90.024BST07BaP126097.398309012.570122.187261.093DAC 02As30.302.34217.70.0722.68222.015.50.1220.488		BST07	Cu	18.30	1.415		1.005	2.688	52.26	2.3	0.051	1.169
BST07Ni3.350.25928.70.1170.41756.261.380.0070.303BST07Se4.040.3121.750.0070.3550.930.230.3821.543BST07Zn18113.9913531.43617.14117217.20.1000.997BST07Naph0.500.03960.0240.0702.90.024BST07BaP126097.398309012.570122.187261.093DAC 02As30.302.34217.70.0722.68222.015.50.1220.488		BST07	Mn	10.90	0.843		1.692	2.817	776	77.6	0.004	0.036
BST07Se4.040.3121.750.0070.3550.930.230.3821.543BST07Zn18113.9913531.43617.14117217.20.1000.997BST07Naph0.500.03960.0240.0702.90.024BST07BaP126097.398309012.570122.187261.093DAC 02As30.302.34217.70.0722.68222.015.50.1220.488		BST07	Hg	0.0025	0.000		0.002	0.002	0.18	0.039	0.014	0.063
BST07 Zn 181 13.991 353 1.436 17.141 172 17.2 0.100 0.997 BST07 Naph 0.50 0.039 6 0.024 0.070 2.9 0.024 BST07 BaP 1260 97.398 3090 12.570 122.187 2 61.093 DAC 02 As 30.30 2.342 17.7 0.072 2.682 22.01 5.5 0.122 0.488		BST07	Ni	3.35	0.259		0.117	0.417	56.26	1.38	0.007	0.303
BST07 Naph 0.50 0.039 6 0.024 0.070 2.9 0.024 BST07 BaP 1260 97.398 3090 12.570 122.187 2 61.093 DAC 02 As 30.30 2.342 17.7 0.072 2.682 22.01 5.5 0.122 0.488		BST07	Se	4.04	0.312		0.007	0.355	0.93	0.23	0.382	1.543
BST07 BaP 1260 97.398 3090 12.570 122.187 2 61.093 DAC 02 As 30.30 2.342 17.7 0.072 2.682 22.01 5.5 0.122 0.488		BST07	Zn	181	13.991	353	1.436	17.141	172	17.2	0.100	0.997
DAC 02 As 30.30 2.342 17.7 0.072 2.682 22.01 5.5 0.122 0.488		BST07	Naph	0.50	0.039	6	0.024	0.070				0.024
			BaP	1260			12.570			2		
DAC 02 Cd 0.62 0.048 0.83 0.003 0.057 10.43 0.08 0.005 0.713			As	30.30	2.342				22.01	5.5	0.122	0.488
	L	DAC 02	Cd	0.62	0.048	0.83	0.003	0.057	10.43	0.08	0.005	0.713

Appendix F. Clam (Macoma nasuta) tissue chemistry vs. TRVs – February 2004

[DAC 02	Cu	21.80	1.685	238	0.968	2.948	52.26	2.3	0.056	1.282
[DAC 02	Mn	14.10	1.090	362	1.473	2.847	776	77.6	0.004	0.037
[DAC 02	Hg	0.0025	0.000	0.53	0.002	0.003	0.18	0.039	0.015	0.067
[DAC 02	Ni	4.09	0.316	33	0.134	0.500	56.26	1.38	0.009	0.363
[DAC 02	Se	3.73	0.288	1.2	0.005	0.326	0.93	0.23	0.350	1.416
[DAC 02	Zn	189	14.610	341	1.387	17.774	172	17.2	0.103	1.033
[DAC 02	Total PCBs	166.00	12.832	37.4	0.152	14.427	1.27	0.09	11.36	160.296
[DAC 02	Naph	0.50	0.039	2.6	0.011	0.055		2.9		0.019
[DAC 02	BaP	198	15.305	541	2.201	19.451		2		9.726
[DAC 03	As	27.50	2.126	14.4	0.059	2.427	22.01	5.5	0.110	0.441
[DAC 03	Cd	0.45	0.035	0.72	0.003	0.042	10.43	0.08	0.004	0.524
[DAC 03	Cu	17.30	1.337	180	0.732	2.299	52.26	2.3	0.044	1.000
[DAC 03	Mn	10.80	0.835	324	1.318	2.392	776	77.6	0.003	0.031
[DAC 03	Hg	0.0025	0.000	0.47	0.002	0.002	0.18	0.039	0.013	0.060
[DAC 03	Ni	5.57	0.431	48.2	0.196	0.696	56.26	1.38	0.012	0.505
[DAC 03	Se	4.13	0.319	1	0.004	0.359	0.93	0.23	0.386	1.562
[DAC 03	Zn	173	13.373	282	1.147	16.133	172	17.2	0.094	0.938
[DAC 03	Total PCBs	949	73.358	347	1.412	83.077	1.27	0.09	65.42	923.078
[DAC 03	Naph	13.5	1.044	8.2	0.033	1.197		2.9		0.413
[DAC 03	BaP	184	14.223	1290	5.248	21.634		2		10.817
	2229	As	24.70	1.909	4.53	0.018	2.142	22.01	5.5	0.097	0.389
	2229	Cd	0.42	0.032	0.12	0.000	0.037	10.43	0.08	0.004	0.458
	2229	Cu	23.60	1.824	39.3	0.160	2.205	52.26	2.3	0.042	0.959
	2229	Mn	13.50	1.044	126	0.513	1.729	776	77.6	0.002	0.022
	2229	Hg	0.0025	0.000	0.1	0.000	0.001	0.18	0.039	0.004	0.017
	2229	Ni	3.55	0.274	6.29	0.026	0.333	56.26	1.38	0.006	0.242
	2229	Se	3.47	0.268	0.22	0.001	0.299	0.93	0.23	0.322	1.300
	2229	Zn	176	13.605	85.8	0.349	15.504	172	17.2	0.090	0.901
	2229	Naph	3.4	0.263	1	0.004	0.297		2.9		0.102
	2229	BaP	96.4	7.452	110	0.447	8.777		2		4.388
	2238	As	25.00	1.933	6.75	0.027	2.178	22.01	5.5	0.099	0.396
	2238	Cd	0.60	0.046	0.19	0.001	0.052	10.43	0.08	0.005	0.655
	2238	Cu	18.80	1.453	69	0.281	1.927	52.26	2.3	0.037	0.838
	2238	Mn	16.30	1.260	242	0.984	2.494	776	77.6	0.003	0.032
	2238	Hg	0.0025	0.000	0.14	0.001	0.001	0.18	0.039	0.005	0.022
	2238	Ni	3.86	0.298	13.4	0.055	0.392	56.26	1.38	0.007	0.284
	2238	Se	3.69	0.285	0.43	0.002	0.319	0.93	0.23	0.343	1.386
	2238	Zn	193	14.919	180	0.732	17.390	172	17.2	0.101	1.011
	2238	Naph	23	1.793	1	0.004	1.997		2.9		0.689
	2238	BaP	1	0.039	17.5	0.071	0.122		2		0.061
	2243	As	27.10	2.095	5.28	0.021	2.351	22.01	5.5	0.107	0.428
	2243	Cd	0.36	0.028	0.23	0.001	0.032	10.43	0.08	0.003	0.399
	2243	Cu	16.30	1.260	50.6	0.206	1.629	52.26	2.3	0.031	0.708
	2243	Mn	9.69	0.749	186	0.757	1.673	776	77.6	0.002	0.022
	2243	Hg	0.0025	0.000	0.11	0.000	0.001	0.18	0.039	0.004	0.018
	2243	Ni	3.89	0.301	9.73	0.040	0.378	56.26	1.38	0.007	0.274
	2243	Se	3.53	0.273	0.25	0.001	0.304	0.93	0.23	0.327	1.323

2243	Zn	142	10.977	107	0.435	12.680	172	17.2	0.074	0.737
2243	Naph	0.50	0.039	1	0.004	0.047		2.9		0.016
2243	BaP	1	0.039	22.7	0.092	0.146		2		0.073
2433	As	24.50	1.894	4.89	0.020	2.126	22.01	5.5	0.097	0.387
2433	Cd	0.43	0.033	0.2	0.001	0.038	10.43	0.08	0.004	0.473
2433	Cu	17.00	1.314	46.6	0.190	1.671	52.26	2.3	0.032	0.726
2433	Mn	15.70	1.214	163	0.663	2.085	776	77.6	0.003	0.027
2433	Hg	0.0025	0.000	0.09	0.000	0.001	0.18	0.039	0.003	0.016
2433	Ni	4.01	0.310	8.64	0.035	0.383	56.26	1.38	0.007	0.278
2433	Se	3.25	0.251	0.25	0.001	0.280	0.93	0.23	0.301	1.219
2433	Zn	141	10.899	96.9	0.394	12.548	172	17.2	0.073	0.73
2433	Naph	0.50	0.039	1	0.004	0.047		2.9		0.016
2433	BaP	44.4	3.432	51.1	0.208	4.044		2		2.022
2441	As	27.40	2.118	10.5	0.043	2.401	22.01	5.5	0.109	0.437
2441	Cd	1.33	0.103	0.43	0.002	0.116	10.43	0.08	0.011	1.452
2441	Cu	11.10	0.858	106	0.431	1.432	52.26	2.3	0.027	0.623
2441	Mn	7.16	0.553	352	1.432	2.206	776	77.6	0.003	0.028
2441	Hg	0.0025	0.000	0.14	0.001	0.001	0.18	0.039	0.005	0.022
2441	Ni	3.62	0.280	21	0.085	0.406	56.26	1.38	0.007	0.294
2441	Se	4.15	0.321	2.21	0.009	0.366	0.93	0.23	0.394	1.593
2441	Zn	182	14.069	170	0.692	16.400	172	17.2	0.095	0.953
2441	Naph	0.50	0.039	1	0.004	0.047		2.9		0.016
	BaP	104	8.039	83.5	0.340	9.310		2		4.65

(b) Calculated Macoma ingestion rate for 0.9 kg scaup is 0.0773 kg/day

(c) Calculated incidental sediment ingestion rate for 0.9 kg scaup is 0.004068 kg/day (5% of total food intake)

(d) Assumes a body mass of 0.9 kg

Clam (Macoma nasuta) tissue chemistry vs. TRVs - August 2004

Station	Analyte	Macoma concentration (mg/kg) (a)	Dose from Macoma (mg/d) (b)	Sediment concentration (mg/kg)	Dose from sediment (mg/d) (c)	Total Dose (mg/kg/d) (d)	TRV high	TRV low	dose: TRV high ratio	dose: TRV low ratio
SWZ 01	As	29.1	2.25	9.81	0.04	2.54	22.01	5.50	0.12	0.46
SWZ 01	Cd	0.37	0.03	1.02	0.00	0.04	10.43	0.08	0.00	0.45
SWZ 01	Cu	19.7	1.52	128	0.52	2.27	52.26	2.30	0.04	0.99
SWZ 01	Mn	6.31	0.49	214	0.87	1.51	776.00	77.60	0.00	0.02
SWZ 01	Hg	0.09	0.01	0.85	0.00	0.01	0.18	0.04	0.06	0.30
SWZ 01	Ni	4.09	0.32	16.3	0.07	0.42	56.26	1.38	0.01	0.31
SWZ 01	Se	3.16	0.24	1.66	0.01	0.28	0.93	0.23	0.30	1.21
SWZ 01	Zn	104	8.04	303	1.23	10.30	172.00	17.20	0.06	0.60
SWZ 01	Naph	0.50	0.04	3.7	0.02	0.06		2.90		0.02
SWZ 01	BaP	221.00	17.08	421	1.71	20.88		2.00		10.44
SWZ 04	As	29.2	2.26	10.7	0.04	2.56	22.01	5.50	0.12	0.46
SWZ 04	Cd	0.27	0.02	0.79	0.00	0.03	10.43	0.08	0.00	0.33
SWZ 04	Cu	23.2	1.79	148	0.60	2.66	52.26	2.30	0.05	1.16
SWZ 04	Mn	8.11	0.63	227	0.92	1.72	776.00	77.6	0.00	0.02
SWZ 04	Hg	0.09	0.01	0.91	0.00	0.01	0.18	0.04	0.07	0.30

SM/24 Ns 6.67 0.52 1/7 0.07 0.65 95/26 1.38 0.01 0.33 SMZ 44 Za 0.24 0.23 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.06 0.0			1								
SW2 64 Amph 114 8.81 338 1.132 11.32 12.00 7.2 0.07 0.66 SW2 64 BaP 124.00 9.69 556 2.14 13.03 2.90 0.02 0.02 SW1 64 As 2.80 2.16 10.60 0.24 0.20 0.00 0.24 2.80 0.00 0.02 10.43 0.00 0.03 <t< td=""><td>SWZ 04</td><td>Ni</td><td>6.67</td><td>0.52</td><td>17.7</td><td>0.07</td><td>0.65</td><td>56.26</td><td>1.38</td><td>0.01</td><td>0.47</td></t<>	SWZ 04	Ni	6.67	0.52	17.7	0.07	0.65	56.26	1.38	0.01	0.47
SWZ 04 Baph 12.00 9.02 0.01 0.06 2.90 0.02 SWZ 04 Bar 12.00 9.56 526 2.14 13.03 2.00 6.51 BST04 Cd 0.27 0.02 0.28 0.00 0.02 10.43 0.08 0.00 0.03 BST04 Cd 0.27 0.52 0.07 6.06 7.74 0.05 1.80 BST04 Mu 0.56 0.87 2.77 52.86 1.88 0.01 0.23 BST04 Nu 0.74 0.29 1.72 0.07 0.40 52.86 1.88 0.01 0.23 1.83 0.01 0.23 1.83 0.01 0.28 0.33 1.83 1.14 0.01 0.51 1.72.00 1.72 0.62 0.62 BST04 Naph 0.50 0.16 1.16 0.01 0.51 1.50 0.11 0.51 1.50 0.11 0.53 0.53 0.53											
SW2 64 BaP 124.00 9.56 25.68 2.14 13.03 2.00 5.61 BST04 A.8 28.20 2.18 12.60 0.05 2.44 2.20 1.55 0.01 0.43 BST04 C.0 2.49 1.82 1.40 0.57 2.77 52.26 2.30 0.05 1.20 BST04 M. 1.63 0.61 2.81 1.16 2.07 52.62 1.38 0.03 1.23 BST04 M. 2.74 0.27 1.78 0.04 52.5 1.72 0.52 0.54 BST04 Sag 0.30 0.35 1.53 0.01 0.51 1.60 0.61 1.74 2.00 52.4 0.02 0.24 0.02 0.02 52.4 0.02 0.02 52.4 0.02 0.02 52.4 0.02 0.02 52.4 0.02 0.02 52.6 0.02 0.02 52.6 0.02 0.02 52.6 0.02 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>172.00</td> <td></td> <td>0.07</td> <td></td>								172.00		0.07	
B8T04 As 28.20 2.18 12.60 0.05 2.48 22.01 5.50 0.11 0.45 B8T04 Cu 24.9 1.92 1.40 0.57 2.77 52.82 2.30 0.05 1.40 B8T04 Mn 1.05 0.61 281 1.14 2.17 77.60 7.6 0.00 0.33 B8T04 Ka 0.01 0.03 0.03 0.03 0.33 1.93 1.93 0.33 1.93 B8T04 Ka 6.8 7.47 0.76 0.01 0.11 0.16 0.11 0.11 0.11 0.11 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.15 1.14 0.16 0.16 0.16 0.16 0.14 0.16 0.14 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16		Naph	0.50								
BST04 Cd 0.27 0.02 0.28 0.00 0.22 10.43 0.08 0.08 0.03 BST04 Mn 10.5 0.81 281 1.14 2.17 75.228 2.30 0.05 1.30 BST04 Map 0.56 0.81 281 1.14 2.17 77.60 0.77 0.30 BST04 S. 3.74 0.29 1.73 0.07 0.40 66.26 1.33 0.01 0.23 0.33 1.33 BST04 S. 6.50 0.74 2.20 0.85 0.77 0.06 0.02 BST04 S. 0.50 0.11 1.74 0.14 0.14 0.14 0.14 0.14 0.00 0.02 BST04 S. 2.90 1.85 1.14 0.59 1.98 52.80 0.00 0.00 0.23 BST07 Cd 0.53 1.18 1.14 0.59 1.76 0.76 0.76 0	SWZ 04	BaP	124.00	9.59	526	2.14	13.03		2.00		6.51
BST04 Cu 24.9 1.92 140 0.57 2.77 52.26 2.30 0.05 1.20 BST04 Hq 0.09 0.01 0.88 0.00 0.01 0.18 0.00 0.18 0.04 0.07 0.30 BST04 Ni 3.74 0.29 1.79 0.07 0.40 65.26 1.38 0.01 0.32 0.33 1.33 BST04 Zan 68.6 7.48 20.6 0.65 1.72.00 1.72 0.05 0.54 BST04 Bap 1.800.00 1.051 1.60 0.06 2.10 2.00 1.00 0.65 1.72 0.02 0.65 0.62 1.83 0.01 0.89 2.20 1.00 0.08 0.00 0.04 0.65 0.10 0.80 0.60 0.01 0.80 0.60 0.61 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81<	BST04	As	28.20	2.18	12.60	0.05	2.48	22.01	5.50	0.11	0.45
BST04 Cu 24.9 1.92 140 0.57 2.77 52.26 2.30 0.05 1.20 BST04 Hq 0.09 0.01 0.88 0.00 0.01 0.18 0.00 0.18 0.04 0.07 0.30 BST04 Ni 3.74 0.29 1.79 0.07 0.40 65.26 1.38 0.01 0.32 0.33 1.33 BST04 Zan 68.6 7.48 20.6 0.65 1.72.00 1.72 0.05 0.54 BST04 Bap 1.800.00 1.051 1.60 0.06 2.10 2.00 1.00 0.65 1.72 0.02 0.65 0.62 1.83 0.01 0.89 2.20 1.00 0.08 0.00 0.04 0.65 0.10 0.80 0.60 0.01 0.80 0.60 0.61 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81<	BST04	Cd	0.27	0.02	0.26	0.00	0.02	10.43	0.08	0.00	0.30
BST04 Mn 10.5 0.81 281 1.14 2.17 776.0 0.07 6.30 BST04 Ni 3.74 0.29 1.79 0.07 0.40 56.26 1.38 0.01 0.23 0.33 1.33 BST04 Se 3.74 0.27 1.63 0.01 0.31 0.33 0.33 1.33 BST04 Naph 0.56 0.04 2.1 0.01 0.05 2.30 0.50 0.54 BST07 As 2.39 1.85 11.4 0.05 2.10 2.201 5.50 0.10 0.38 BST07 C.4 5.3 1.18 144 0.50 1.06 1.06 1.08 2.26 2.30 0.60 0.22 1.43 0.60 0.30 BST07 No As 0.27 0.27 0.37 0.37 0.38 66.28 1.38 0.67 0.30 BST07 No As 0.24 1.27 <td>BST04</td> <td></td> <td></td> <td>1.92</td> <td></td> <td></td> <td></td> <td>52.26</td> <td>2.30</td> <td>0.05</td> <td>1.20</td>	BST04			1.92				52.26	2.30	0.05	1.20
BST04 Hg 0.09 0.01 0.89 0.00 0.11 0.18 0.04 0.64 0.62 0.33 0.33 BST04 So 3.47 0.27 1.83 0.01 0.31 0.93 0.23 0.33 1.33 BST04 Zn 96.8 7.48 226 0.72 0.72 0.72 0.72 0.55 0.54 BST04 Sap 1350.00 10.51 150 0.61 17.49 2.00 150 0.02 BST07 As 23.9 1.85 11.4 0.62 2.02 0.30 0.00 0.38 BST07 Ma 6.84 0.53 259 1.05 1.76 776 0.07 0.30 BST07 Ni 3.46 0.27 1.73 0.07 0.38 68.28 0.38 0.30 0.11 0.27 0.30 BST07 Naph 0.50 0.44 1.65 0.17 0.67 0.28 0.											
BST04 Ni 3.74 0.29 17.9 0.07 0.40 55.8 1.38 0.01 0.29 BST04 Zn 96.8 7.48 208 0.85 9.25 172.0 1.03 0.33 1.33 BST04 Naph 0.50 0.64 2.1 0.01 0.57 2.90 0.02 BST07 As 23.9 1.85 11.4 0.05 2.24 0.00 0.22 0.01 0.58 0.01 0.38 BST07 Cd 0.27 0.02 0.24 0.00 0.22 10.43 0.06 0.01 0.58 BST07 Mn 6.84 0.53 259 1.05 1.76 7.66 0.00 0.29 BST07 Ng 0.06 0.07 0.58 0.07 0.58 0.39 0.01 0.29 0.20 0.21 0.53 BST07 Ng 3.46 0.27 1.75 0.39 433.11 1.20 0.5											
BST04 Se 3.47 0.27 1.83 0.01 0.31 0.33 0.23 0.33 1.33 BST04 Naph 0.50 0.64 2.1 0.01 0.05 2.80 0.54 BST04 BaP 1380.00 105.13 150 0.61 117.49 2.00 58.74 BST07 As 23.9 1.85 11.4 0.05 2.10 22.01 0.64 0.00 0.30 BST07 Cu 15.3 1.18 14.4 0.59 1.96 52.62 1.38 0.01 0.38 BST07 Mn 6.84 0.52 279 1.05 1.76 0.776.00 7.6 0.00 0.01 0.18 0.02 0.30 0.33 1.33 BST07 Ng 0.66 7.71 0.07 0.38 1.57 0.31 0.32 0.33 1.53 BST07 Ng 0.69 7.41 210 0.65 9.13 2.00											
BST04 Zn 96.8 7.48 208 0.85 9.25 172.00 17.2 0.05 0.02 BST04 BaP 1360.00 105.13 150 0.61 117.49 2.00 56.0 0.02 BST07 As 2.3.9 1.85 11.4 0.05 2.20 1.50 0.10 0.38 BST07 Cd 0.27 0.02 0.24 0.00 0.02 10.43 0.08 0.00 0.38 BST07 Mn 6.84 0.53 259 1.05 1.76 7.60 0.00 0.01 0.85 BST07 N 3.46 0.27 17.3 0.07 0.38 56.26 1.38 0.01 0.27 BST07 Naph 0.50 0.44 1.60 0.83 1.19 122.01 5.50 0.83 1.39 DAC02 As 20.10 1.55 1.47 0.66 1.79 22.01 5.50 0.83 0.22											
BST04 Naph 0.50 0.64 2.1 0.01 0.05 z 2.90 D.02 BST04 BAP 1380.00 105.13 150 0.61 117.49 2.00 5.50 0.10 0.38 BST07 Cd 0.27 0.02 0.24 0.00 0.02 10.43 0.86 0.00 0.30 BST07 Cu 15.3 1.18 144 0.59 1.96 52.62 2.30 0.04 0.30 BST07 Mn 6.84 0.52 279 1.05 1.76 0.77 0.00 0.01 0.18 0.02 0.30 0.32 BST07 Hg 0.69 7.41 210 0.85 9.13 172.00 172 0.05 0.33 1.19 BST07 Bap 4960.00 38.41 177 0.36 0.40 0.33 0.40 0.43 0.30 0.34 0.33 0.40 0.44 0.48 0.40 0.40											
BST04 BaP 1360.0 105.11 11.4 0.05 2.10 2.00 56.74 BST07 Cd 0.27 0.02 0.24 0.00 0.02 10.43 0.08 0.00 0.30 BST07 Cu 15.3 1.18 144 0.59 1.96 52.26 2.30 0.04 0.85 BST07 Mn 6.84 0.53 259 1.05 1.76 77.60 0.04 0.07 0.30 BST07 Ni 3.46 0.27 17.3 0.07 0.38 56.26 1.38 0.01 0.27 BST07 Naph 0.50 0.42 1.65 0.11 0.05 2.0 0.40 0.53 BST07 Naph 0.50 0.44 1.63 1.47 0.66 1.79 2.211 5.50 0.68 0.33 DAC 02 As 20.10 1.55 1.47 0.66 1.79 2.211 5.50 0.60 0.33								172.00		0.05	
BST07 As 23.9 1.85 11.4 0.05 2.10 2.50 0.10 0.38 BST07 Cu 15.3 1.18 144 0.59 1.96 52.28 2.30 0.04 0.85 BST07 Mn 6.84 0.53 2.59 1.05 1.76 77.6 0.00 0.02 BST07 Hg 0.09 0.01 0.89 0.00 0.01 0.18 0.44 0.07 0.30 BST07 Ni 3.46 0.27 1.73 0.07 0.38 56.28 1.38 0.01 0.27 BST07 Se 3.11 0.24 1.65 0.01 0.27 0.93 0.33 1.19 BST07 Naph 0.50 0.04 2.1 0.01 0.05 2.90 2.00 2.16.55 DAC 02 As 20.1 1.55 1.4.7 0.06 1.73 2.01 1.55 0.00 0.44 0.33 DAC								-		-	
BST07 Cd 0.27 0.02 0.24 0.00 0.02 10.43 0.08 0.00 0.30 BST07 Mn 6.84 0.53 259 1.05 1.76 77.60 77.6 0.00 0.02 BST07 Ni 3.46 0.27 17.3 0.07 0.38 56.26 1.38 0.01 0.27 BST07 Se 3.11 0.24 1.65 0.01 0.27 0.93 0.23 0.30 0.53 BST07 Se 3.11 0.241 1.65 0.11 0.05 2.2 0.00 0.62 BST07 Naph 0.50 0.04 2.1 0.01 0.05 1.2 0.00 0.02 1.65 0.08 0.33 DAC02 As 2.010 1.55 1.47 0.06 1.79 2.201 5.50 0.08 0.33 DAC02 CA As 0.01 1.39 0.01 1.04 1.04 0.04											
BST07 Cu 15.3 1.18 144 0.59 1.96 52.82 2.30 0.04 0.851 BST07 Hg 0.09 0.01 0.89 0.00 0.11 0.18 0.04 0.07 0.30 BST07 Ni 3.46 0.27 1.73 0.07 0.38 56.26 1.38 0.01 0.27 BST07 Se 3.11 0.24 1.65 0.01 0.27 0.93 0.23 0.30 1.19 BST07 Naph 0.50 0.04 2.1 0.01 0.05 2.90 0.02 285 DAC 02 As 20.10 1.55 14.7 0.06 1.79 2.20 5.28 0.00 0.48 DAC 02 Cd 0.42 0.03 0.53 0.01 0.14 0.43 0.08 0.00 0.48 DAC 02 Cd 0.42 0.02 5.26 1.30 0.01 0.29 0.23 0.33											
BST07 Mn 6.84 0.53 259 1.05 1.76 77.600 77.6 0.00 0.07 0.30 BST07 NI 3.46 0.27 17.3 0.07 0.38 56.26 1.38 0.01 0.27 0.83 0.23 0.30 1.19 BST07 Se 3.11 0.24 1.65 0.01 0.27 0.83 0.23 0.30 1.19 BST07 Naph 0.50 0.04 2.1 0.01 0.05 2.80 0.05 0.06 0.33 0.00 0.04 0.08 0.00 0.04 0.08 0.00 0.02 0.04 0.05 0.04 0.05 0.04	BST07										
BST07 Hg 0.09 0.01 0.18 0.44 0.07 0.30 BST07 Se 3.11 0.24 1.65 0.07 0.38 56.26 1.38 0.01 0.27 BST07 Se 3.11 0.24 1.65 0.01 0.27 0.93 0.23 0.30 1.19 BST07 Naph 0.50 0.04 2.11 0.05 0.93 0.22 0.05 0.12 2.06 0.02 216.55 DAC 02 As 20.10 1.55 14.7 0.06 0.04 10.43 0.08 0.33 DAC 02 Ca 0.42 0.03 0.53 0.00 0.04 10.48 0.08 0.00 0.44 0.88 DAC 02 Ca Hg 0.33 0.32 1.32 0.62 2.86 1.48 0.01 0.16 0.48 0.62 1.38 0.01 0.23 0.33 1.32 DAC 02 Sa 3.3.4											
B\$T07 Ni 3.46 0.27 17.3 0.07 0.38 56.26 1.38 0.01 0.27 0.93 0.23 0.30 1.19 B\$T07 Zn 95.9 7.41 210 0.85 9.19 17.2.00 17.2 0.05 0.23 0.30 1.19 B\$T07 Bap 4960.00 383.41 1570 6.39 433.11 2.00 2216.55 DAC 02 Cd 0.42 0.03 0.53 0.00 0.04 10.43 0.08 0.00 0.44 DAC 02 Cd 0.42 0.03 0.53 0.00 0.04 10.43 0.08 0.01 0.22 2.262 2.30 0.04 0.80 0.02 DAC 02 Mn 6.02 0.47 2.88 1.17 1.82 776.0 0.06 0.22 DAC 02 NM 3.34 0.26 2.46 0.10 0.40 56.28 1.38 0.01 1.29 DAC 02 Se <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
BST07 Se 3.11 0.24 1.65 0.01 0.27 0.93 0.23 0.30 1.19 BST07 Naph 0.50 0.04 2.1 0.01 0.05 7 2.00 0.05 33 BST07 BaP 4960.00 383.41 1570 6.39 433.11 2.00 0.02 266.55 DAC 02 As 20.10 1.55 1.47 0.06 1.72 22.01 5.50 0.08 0.33 DAC 02 Cd 0.42 0.03 0.53 0.00 0.04 1.043 0.08 0.01 0.04 0.04 0.04 0.08 0.02 DAC 02 Mn 6.02 0.47 288 1.17 1.82 776.00 7.6 0.00 0.02 DAC 02 Na 3.34 0.26 1.46 0.01 0.10 0.11 0.28 0.04 0.07 0.34 DAC 02 Na 3.34 0.26 1.02 0.01 0.18 <td></td>											
BST07 Se 3.11 0.24 1.65 0.01 0.27 0.93 0.23 0.30 1.19 BST07 Naph 0.50 0.04 2.1 0.01 0.05 7 2.00 0.05 33 BST07 BaP 4960.00 383.41 1570 6.39 433.11 2.00 0.02 266.55 DAC 02 As 20.10 1.55 1.47 0.06 1.72 22.01 5.50 0.08 0.33 DAC 02 Cd 0.42 0.03 0.53 0.00 0.04 1.043 0.08 0.01 0.04 0.04 0.04 0.08 0.02 DAC 02 Mn 6.02 0.47 288 1.17 1.82 776.00 7.6 0.00 0.02 DAC 02 Na 3.34 0.26 1.46 0.01 0.10 0.11 0.28 0.04 0.07 0.34 DAC 02 Na 3.34 0.26 1.02 0.01 0.18 <td></td> <td>Ni</td> <td>3.46</td> <td>0.27</td> <td>17.3</td> <td>0.07</td> <td></td> <td></td> <td>1.38</td> <td>0.01</td> <td>0.27</td>		Ni	3.46	0.27	17.3	0.07			1.38	0.01	0.27
BST07 Naph 0.50 0.04 2.1 0.05 17.2 0.05 0.53 BST07 BaP 4960.00 383.41 1570 6.39 433.11 2.00 216.55 DAC 02 As 201.0 1.55 1.47 0.06 1.79 2.21 5.50 0.08 0.33 DAC 02 Ca 0.42 0.03 0.53 0.00 0.04 1.043 0.08 0.04 0.48 DAC 02 Ca 1.4 1.08 180 0.73 2.02 52.26 2.30 0.04 0.48 DAC 02 Mn 6.02 0.47 2.88 1.17 1.82 776.00 7.6 0.00 0.29 DAC 02 Se 3.43 0.27 1.75 0.11 0.30 0.93 0.23 0.33 1.32 DAC 02 Naph 0.50 0.44 1.00 0.04 2.89 1.27 0.05 0.29 2.00 0.02		Se									
BST07 Naph 0.50 0.04 2.1 0.01 0.05 2.90 0.02 DAC 02 As 2010 1.55 14.7 0.68 173 22.01 5.50 0.08 0.33 DAC 02 Ga 0.42 0.03 0.53 0.00 1.04 10.43 0.08 0.00 0.44 DAC 02 Gu 1.4 1.08 180 0.73 2.02 52.26 2.30 0.04 0.04 DAC 02 Mn 6.02 0.47 288 1.17 1.82 776.0 0.76 0.00 0.23 DAC 02 Ni 3.34 0.26 24.6 0.01 0.40 0.40 0.07 0.33 1.32 DAC 02 ToiPCBs 3.43 0.27 1.25 1.01 0.30 0.33 1.32 DAC 02 ToiPCBs 313.00 24.19 10.00 0.06 12.20 11.20 0.02 10.43 0.08 0.31 <											
BST07 BaP 4960.00 383.41 1570 6.39 433.11 2.00 721 55.50 0.08 0.33 DAC 02 Cd 0.42 0.03 0.53 0.00 0.44 10.43 0.08 0.00 0.48 DAC 02 Mn 6.02 0.47 288 1.17 1.82 776.00 77.6 0.00 0.22 DAC 02 Mn 6.02 0.47 288 1.17 1.82 776.00 77.6 0.07 0.34 DAC 02 Hg 0.08 0.01 1.39 0.01 0.01 0.18 0.04 0.29 0.07 0.34 DAC 02 Se 3.43 0.27 1.75 0.01 0.40 0.23 0.33 1.32 DAC 02 Naph 0.50 0.44 1.00 0.04 2.83 1.27 0.99 21.20 29.20 DAC 02 Naph 0.50 0.44 0.06 1.60 0.62 1.60											
DAC 02 As 20.10 1.55 14.7 0.06 1.79 22.01 5.50 0.08 0.33 DAC 02 Cu 14 1.08 180 0.73 2.02 52.26 2.30 0.04 0.88 DAC 02 Mn 6.02 0.47 288 1.17 1.82 776.00 77.6 0.00 0.02 DAC 02 Nu 3.34 0.26 2.46 0.10 0.01 0.18 0.04 0.07 0.24 DAC 02 Nu 3.34 0.26 2.46 0.10 0.40 56.26 1.38 0.01 0.29 DAC 02 Se 3.43 0.27 1.75 0.01 0.30 0.33 1.32 DAC 02 Naph 0.50 0.04 1.00 0.00 0.66 2.90 16.03 DAC 02 Naph 0.50 0.64 1.36.06 2.90 16.03 0.03 0.22 DAC 03 As 19.3								1		1	
DAC 02 Cd 0.42 0.03 0.53 0.00 0.44 10.43 0.00 0.44 DAC 02 Mn 6.02 0.47 288 1.17 1.82 776.00 77.6 0.00 0.02 DAC 02 Hg 0.08 0.01 1.39 0.01 0.01 0.18 0.07 0.34 DAC 02 N 3.34 0.27 1.75 0.01 0.00 0.93 0.23 0.33 1.32 DAC 02 Se 3.43 0.27 1.75 0.01 0.00 0.93 0.23 0.33 1.32 DAC 02 Naph 0.50 0.41 1.00 0.04 2.83 1.27 0.05 0.02 DAC 02 Naph 0.50 0.41 1.00 0.04 2.83 1.27 0.05 0.02 DAC 02 Maph 0.50 0.64 1.00 0.00 0.22 1.043 0.80 0.00 0.28 DAC 03								22.01		0.08	
DAC 02 Cu 14 1.08 180 0.73 2.02 52.26 2.30 0.04 0.88 DAC 02 Mn 6.02 0.47 288 1.17 1.82 776.00 77.6 0.00 0.02 DAC 02 Ni 3.34 0.26 24.6 0.10 0.40 56.26 1.38 0.01 0.23 0.33 1.32 DAC 02 Se 3.43 0.27 1.75 0.01 0.30 0.93 0.23 0.33 1.32 DAC 02 Zn 86.9 6.72 265 1.08 8.66 172.00 17.2 0.05 0.50 DAC 02 Naph 0.50 0.04 1.00 0.00 0.05 2.90 0.02 0.42 0.92 0.02 DAC 03 As 19.3 1.49 14.2 0.06 1.72 22.01 5.50 0.08 0.31 DAC 03 Cu 12.8 0.99 160 0.65											
DAC 02 Mn 6.02 0.47 288 1.17 1.82 776.00 77.6 0.00 0.02 DAC 02 Ni 3.34 0.26 24.6 0.10 0.40 56.26 1.38 0.01 0.23 DAC 02 Se 3.43 0.27 1.75 0.01 0.30 0.93 0.23 0.33 1.32 DAC 02 Se 3.43 0.27 1.75 0.01 0.30 0.93 0.23 0.33 1.32 DAC 02 Naph 0.50 0.64 1.00 0.04 26.33 1.27 0.09 21.20 299.20 DAC 02 Naph 0.50 0.64 1.00 0.06 0.55 2.00 18.03 0.02 1.43 0.02 0.41 0.00 0.05 2.00 18.03 0.02 0.41 0.00 0.02 10.43 0.08 0.31 DAC 03 Cu 12.8 0.99 160 0.65 1.82 52.26											
DAC 02 Hg 0.08 0.01 1.39 0.01 0.01 0.18 0.04 0.07 0.34 DAC 02 Ni 3.34 0.26 2.46 0.10 0.40 56.26 1.38 0.01 0.29 DAC 02 Se 3.43 0.27 1.75 0.01 0.30 0.93 0.23 0.33 1.32 DAC 02 TorPCBS 313.00 24.19 10.00 0.04 26.93 1.27 0.99 21.20 299.20 DAC 02 Naph 0.50 0.04 1.00 0.00 0.05 2.90 0.02 DAC 02 BaP 412.00 31.85 150 0.61 36.66 2.00 18.03 DAC 03 As 19.3 1.49 14.2 0.06 1.72 2.201 5.50 0.08 0.01 0.28 DAC 03 Ma 8.45 0.65 1.82 52.26 1.38 0.01 0.27 0.32 0.33 <											
DAC 02 Ni 3.34 0.26 24.6 0.10 0.40 56.26 1.38 0.01 0.29 DAC 02 Se 3.43 0.27 1.75 0.01 0.30 0.23 0.23 0.33 1.32 DAC 02 TotPCBs 313.00 24.19 10.00 0.04 26.93 1.27 0.09 21.20 299.20 DAC 02 Naph 0.50 0.04 1.00 0.00 0.05 2.90 0.02 DAC 02 BaP 412.00 31.85 150 0.61 36.06 2.00 18.03 DAC 03 Cd 0.24 0.02 0.41 0.00 0.02 10.43 5.60 0.08 0.01 DAC 03 Cd 1.28 0.99 160 0.65 1.82 5.26 2.30 0.03 0.79 DAC 03 Mn 8.45 0.65 2.82 1.15 2.00 77.6 0.00 0.03 DAC 03											
DAC 02 See 3.43 0.27 1.75 0.01 0.30 0.93 0.23 0.33 1.32 DAC 02 Zn 86.9 6.72 265 1.08 8.66 172.00 17.2 0.05 0.50 DAC 02 Naph 0.50 0.04 1.00 0.04 26.93 1.27 0.09 21.20 299.20 DAC 02 BaP 412.00 31.85 150 0.61 36.06 2.00 18.03 DAC 03 As 19.3 1.49 14.2 0.06 1.72 22.01 5.50 0.08 0.31 DAC 03 Cu 1.28 0.99 160 0.65 1.82 5.26 2.30 0.03 0.79 DAC 03 Mn 8.45 0.65 282 1.15 2.00 776.00 77.6 0.00 0.03 DAC 03 Ni 4.94 0.38 43.2 0.18 0.62 56.26 1.38 0.01 0.45<											
DAC 02 Zn 86.9 6.72 285 1.08 8.66 172.00 17.2 0.05 0.50 DAC 02 ToIPCBs 313.00 24.19 10.00 0.04 26.93 1.27 0.09 21.20 299.20 DAC 02 BaP 412.00 31.85 150 0.61 36.06 2.90 0.02 DAC 03 As 19.3 1.49 14.2 0.06 1.72 2.01 5.50 0.08 0.31 DAC 03 Cd 0.24 0.02 0.41 0.00 0.02 10.43 0.08 0.00 0.28 DAC 03 Cu 12.8 0.99 160 0.65 1.82 52.26 2.30 0.03 0.79 DAC 03 Mm 8.45 0.65 2.82 1.15 2.00 77.6 0.00 0.03 0.79 DAC 03 Se 3.03 0.23 1.65 0.01 0.27 0.93 0.23 0.29 1											
DAC 02 ToiPCBs 313.00 24.19 10.00 0.04 26.93 1.27 0.09 21.20 299.20 DAC 02 Naph 0.50 0.04 1.00 0.00 0.05 2.90 0.02 DAC 02 BaP 412.00 31.85 150 0.61 36.06 2.00 18.03 DAC 03 As 19.3 1.49 14.2 0.06 1.72 22.01 5.50 0.08 0.00 0.28 DAC 03 Cu 12.8 0.99 160 0.65 1.82 52.26 2.30 0.03 0.79 DAC 03 Mn 8.45 0.65 282 1.15 2.00 776.00 77.6 0.00 0.01 0.28 DAC 03 Mn 4.94 0.38 43.2 0.18 0.62 56.26 1.38 0.01 0.45 DAC 03 Zn 82.1 6.35 242 0.98 8.15 172.00 17.2 0.05											
DAC 02 Naph 0.50 0.04 1.00 0.00 0.05 2.90 0.02 DAC 02 BaP 412.00 31.85 150 0.61 36.06 2.00 18.03 DAC 03 Cd 0.24 0.02 0.41 0.06 1.72 22.01 5.50 0.08 0.31 DAC 03 Cd 0.24 0.02 0.41 0.00 0.02 10.43 0.08 0.00 0.28 DAC 03 Cu 12.8 0.99 160 0.65 1.82 52.26 2.30 0.03 0.79 DAC 03 Mn 8.45 0.65 282 1.15 2.00 77.60 7.6 0.00 0.03 DAC 03 Se 3.03 0.23 1.65 0.01 0.27 0.93 0.23 0.47 DAC 03 Tar 82.1 6.35 242 0.98 142.88 1.7 0.05 0.47 0.30 12.37 0.50 0.47	DAC: 02	/n	86.9	6 /2	265				1/2		0 50
DAC 02 BaP 412.00 31.85 150 0.61 36.06 2.00 18.03 DAC 03 As 19.3 1.49 14.2 0.06 1.72 22.01 5.50 0.08 0.31 DAC 03 Cd 0.24 0.02 0.41 0.00 0.02 10.43 0.08 0.00 0.28 DAC 03 Cu 12.8 0.99 160 0.65 1.82 52.26 2.30 0.03 0.79 DAC 03 Mn 8.45 0.65 282 1.15 2.00 776.00 77.6 0.00 0.03 DAC 03 Hg 0.08 0.01 1.2 0.00 0.01 0.18 0.04 0.07 0.32 DAC 03 Se 3.03 0.23 1.65 0.01 0.27 0.93 0.23 0.29 1.16 DAC 03 TotPCBs 1660.00 128.32 68.40 0.28 142.88 1.27 0.09 12.51 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
DAC 03 As 19.3 1.49 14.2 0.06 1.72 22.01 5.50 0.08 0.31 DAC 03 Cd 0.24 0.02 0.41 0.00 0.02 10.43 0.08 0.00 0.28 DAC 03 Cu 12.8 0.99 160 0.65 1.82 52.26 2.30 0.03 0.79 DAC 03 Mn 8.45 0.65 282 1.15 2.00 776.00 77.6 0.00 0.03 DAC 03 Ni 4.94 0.38 43.2 0.18 0.62 56.26 1.38 0.01 0.45 DAC 03 Se 3.03 0.23 1.65 0.01 0.27 0.93 0.23 0.29 1.16 DAC 03 TotPCBs 1660.00 128.32 68.40 0.28 142.88 1.27 0.09 112.51 1587.6 DAC 03 Maph 0.50 0.04 11.5 0.05 0.09 2.90 <	DAC 02	TotPCBs	313.00	24.19	10.00	0.04	26.93		0.09		299.20
DAC 03 Cd 0.24 0.02 0.41 0.00 0.02 10.43 0.08 0.00 0.28 DAC 03 Cu 12.8 0.99 160 0.65 1.82 52.26 2.30 0.03 0.79 DAC 03 Mn 8.45 0.65 282 1.15 2.00 77.6 0.00 0.03 0.79 DAC 03 Ni 4.94 0.38 43.2 0.18 0.62 56.26 1.38 0.01 0.45 DAC 03 Ni 4.94 0.38 43.2 0.18 0.62 56.26 1.38 0.11 0.45 DAC 03 Zn 82.1 6.35 242 0.98 8.15 172.00 17.2 0.05 0.47 DAC 03 TotPCBs 1660.00 128.32 68.40 0.28 142.88 1.27 0.09 112.51 1587.6 DAC 03 BaP 235.00 18.17 740 3.01 23.53 2.00	DAC 02 DAC 02	TotPCBs Naph	313.00 0.50	24.19 0.04	10.00 1.00	0.04 0.00	26.93 0.05		0.09 2.90		299.20 0.02
DAC 03 Cu 12.8 0.99 160 0.65 1.82 52.26 2.30 0.03 0.79 DAC 03 Mn 8.45 0.65 282 1.15 2.00 776.00 776.00 0.03 0.03 DAC 03 Ni 4.94 0.38 43.2 0.18 0.62 56.26 1.38 0.01 0.45 DAC 03 Se 3.03 0.23 1.65 0.01 0.27 0.93 0.23 0.29 1.16 DAC 03 TotPCBs 1660.00 128.32 68.40 0.28 142.88 1.27 0.09 112.51 1587.6 DAC 03 TotPCBs 1660.00 128.32 68.40 0.28 142.88 1.27 0.09 112.51 1587.6 DAC 03 Maph 0.50 0.04 11.5 0.05 0.09 2.90 0.03 0.48 DAC 03 BaP 235.00 18.17 740 3.01 23.53 2.00 <t< td=""><td>DAC 02 DAC 02 DAC 02</td><td>TotPCBs Naph BaP</td><td>313.00 0.50 412.00</td><td>24.19 0.04 31.85</td><td>10.00 1.00 150</td><td>0.04 0.00</td><td>26.93 0.05 36.06</td><td>1.27</td><td>0.09 2.90 2.00</td><td></td><td>299.20 0.02 18.03</td></t<>	DAC 02 DAC 02 DAC 02	TotPCBs Naph BaP	313.00 0.50 412.00	24.19 0.04 31.85	10.00 1.00 150	0.04 0.00	26.93 0.05 36.06	1.27	0.09 2.90 2.00		299.20 0.02 18.03
DAC 03 Mn 8.45 0.65 282 1.15 2.00 776.00 77.6 0.00 0.03 DAC 03 Hg 0.08 0.01 1.2 0.00 0.01 0.18 0.04 0.07 0.32 DAC 03 Ni 4.94 0.38 43.2 0.18 0.62 56.26 1.38 0.01 0.45 DAC 03 Se 3.03 0.23 1.65 0.01 0.27 0.93 0.23 0.29 1.16 DAC 03 TolPCBs 1660.00 128.32 68.40 0.28 1.42.88 1.27 0.09 112.51 1587.6 DAC 03 Naph 0.50 0.04 11.5 0.05 0.09 2.90 0.03 0.37 DAC 03 BaP 235.00 18.17 740 3.01 23.53 2.00 11.76 2.29 2229 Cd 0.23 0.02 0.08 0.00 0.02 1.61 22.01 5.50	DAC 02 DAC 02 DAC 02 DAC 03	TotPCBs Naph BaP As	313.00 0.50 412.00 19.3	24.19 0.04 31.85 1.49	10.00 1.00 150 14.2	0.04 0.00 0.61 0.06	26.93 0.05 36.06 1.72	1.27 22.01	0.09 2.90 2.00 5.50	21.20 0.08	299.20 0.02 18.03 0.31
DAC 03 Hg 0.08 0.01 1.2 0.00 0.01 0.18 0.04 0.07 0.32 DAC 03 Ni 4.94 0.38 43.2 0.18 0.62 56.26 1.38 0.01 0.45 DAC 03 Se 3.03 0.23 1.65 0.01 0.27 0.93 0.23 0.29 1.16 DAC 03 Zn 82.1 6.35 242 0.98 8.15 172.00 17.2 0.05 0.47 DAC 03 TotPCBs 1660.00 128.32 68.40 0.28 142.88 1.27 0.09 112.51 1587.6 DAC 03 Naph 0.50 0.04 11.5 0.05 0.09 2.00 11.76 2229 As 18.4 1.42 5.86 0.02 1.61 22.01 5.50 0.07 0.29 2229 Cu 15.7 1.21 47.1 0.19 1.56 52.26 2.30 0.03 0	DAC 02 DAC 02 DAC 02 DAC 03	TotPCBs Naph BaP As	313.00 0.50 412.00 19.3	24.19 0.04 31.85 1.49	10.00 1.00 150 14.2	0.04 0.00 0.61 0.06	26.93 0.05 36.06 1.72	1.27 22.01	0.09 2.90 2.00 5.50	21.20 0.08	299.20 0.02 18.03 0.31
DAC 03 Ni 4.94 0.38 43.2 0.18 0.62 56.26 1.38 0.01 0.45 DAC 03 Se 3.03 0.23 1.65 0.01 0.27 0.93 0.23 0.29 1.16 DAC 03 Zn 82.1 6.35 242 0.98 8.15 172.00 17.2 0.05 0.47 DAC 03 TotPCBs 1660.00 128.32 68.40 0.28 142.88 1.27 0.09 112.51 1587.6 DAC 03 Naph 0.50 0.04 11.5 0.05 0.09 2.90 0.03 DAC 03 BaP 235.00 18.17 740 3.01 23.53 2.00 11.76 2229 As 18.4 1.42 5.86 0.02 1.61 22.01 5.0 0.07 0.29 2229 Cd 0.23 0.02 1.08 0.00 0.02 10.43 0.08 0.00 0.23 2.30 <	DAC 02 DAC 02 DAC 02 DAC 03 DAC 03	TotPCBs Naph BaP As Cd	313.00 0.50 412.00 19.3 0.24	24.19 0.04 31.85 1.49 0.02	10.00 1.00 150 14.2 0.41	0.04 0.00 0.61 0.06 0.00	26.93 0.05 36.06 1.72 0.02	1.27 22.01 10.43	0.09 2.90 2.00 5.50 0.08	21.20 0.08 0.00	299.20 0.02 18.03 0.31 0.28
DAC 03 Ni 4.94 0.38 43.2 0.18 0.62 56.26 1.38 0.01 0.45 DAC 03 Se 3.03 0.23 1.65 0.01 0.27 0.93 0.23 0.29 1.16 DAC 03 Zn 82.1 6.35 242 0.98 8.15 172.00 17.2 0.05 0.47 DAC 03 TotPCBs 1660.00 128.32 68.40 0.28 142.88 1.27 0.09 112.51 1587.6 DAC 03 Naph 0.50 0.04 11.5 0.05 0.09 2.90 0.03 DAC 03 BaP 235.00 18.17 740 3.01 23.53 2.00 11.76 2229 As 18.4 1.42 5.86 0.02 1.61 22.01 5.0 0.07 0.29 2229 Cd 0.23 0.02 1.08 0.00 0.02 10.43 0.08 0.00 0.23 2.30 <	DAC 02 DAC 02 DAC 02 DAC 03 DAC 03 DAC 03 DAC 03	TotPCBs Naph BaP As Cd Cu	313.00 0.50 412.00 19.3 0.24 12.8	24.19 0.04 31.85 1.49 0.02 0.99	10.00 1.00 150 14.2 0.41 160	0.04 0.00 0.61 0.06 0.00 0.65	26.93 0.05 36.06 1.72 0.02 1.82	1.27 22.01 10.43 52.26	0.09 2.90 2.00 5.50 0.08 2.30	21.20 0.08 0.00 0.03	299.20 0.02 18.03 0.31 0.28 0.79
DAC 03 Se 3.03 0.23 1.65 0.01 0.27 0.93 0.23 0.29 1.16 DAC 03 Zn 82.1 6.35 242 0.98 8.15 172.00 17.2 0.05 0.47 DAC 03 TotPCBs 1660.00 128.32 68.40 0.28 142.88 1.27 0.09 112.51 1587.6 DAC 03 Naph 0.50 0.04 11.5 0.05 0.09 2.90 0.03 DAC 03 BaP 235.00 18.17 740 3.01 23.53 2.00 11.76 2229 Cd 0.23 0.02 0.08 0.00 0.02 10.43 0.08 0.00 0.25 2229 Cu 15.7 1.21 47.1 0.19 1.56 52.26 2.30 0.03 0.68 2229 Mn 12.5 0.97 139 0.57 1.70 77.6 0.00 0.02 2229 Hg<	DAC 02 DAC 02 DAC 02 DAC 03 DAC 03 DAC 03 DAC 03	TotPCBs Naph BaP As Cd Cu Mn	313.00 0.50 412.00 19.3 0.24 12.8 8.45	24.19 0.04 31.85 1.49 0.02 0.99 0.65	10.00 1.00 150 14.2 0.41 160 282	0.04 0.00 0.61 0.06 0.00 0.65 1.15	26.93 0.05 36.06 1.72 0.02 1.82 2.00	1.27 22.01 10.43 52.26 776.00	0.09 2.90 2.00 5.50 0.08 2.30 77.6	21.20 0.08 0.00 0.03 0.00	299.20 0.02 18.03 0.31 0.28 0.79 0.03
DAC 03 Zn 82.1 6.35 242 0.98 8.15 172.00 17.2 0.05 0.47 DAC 03 TotPCBs 1660.00 128.32 68.40 0.28 142.88 1.27 0.09 112.51 1587.6 DAC 03 Naph 0.50 0.04 11.5 0.05 0.09 2.90 0.03 DAC 03 BaP 235.00 18.17 740 3.01 23.53 2.00 11.76 2229 As 18.4 1.42 5.86 0.02 16.1 22.01 5.50 0.07 0.29 2229 Cd 0.23 0.02 0.08 0.00 0.02 10.43 0.08 0.00 0.25 2229 Mn 12.5 0.97 139 0.57 1.70 776.00 77.6 0.00 0.02 2229 Hg 0.08 0.01 0.48 0.00 0.29 0.93 0.23 0.31 1.25 222	DAC 02 DAC 02 DAC 02 DAC 03 DAC 03 DAC 03 DAC 03 DAC 03	TotPCBs Naph BaP As Cd Cu Mn Hg	313.00 0.50 412.00 19.3 0.24 12.8 8.45 0.08	24.19 0.04 31.85 1.49 0.02 0.99 0.65 0.01	10.00 1.00 150 14.2 0.41 160 282 1.2	0.04 0.00 0.61 0.06 0.00 0.65 1.15 0.00	26.93 0.05 36.06 1.72 0.02 1.82 2.00 0.01	1.27 22.01 10.43 52.26 776.00 0.18	0.09 2.90 5.50 0.08 2.30 77.6 0.04	21.20 0.08 0.00 0.03 0.00 0.07	299.20 0.02 18.03 0.31 0.28 0.79 0.03 0.32
DAC 03 TotPCBs 1660.00 128.32 68.40 0.28 142.88 1.27 0.09 112.51 1587.6 DAC 03 Naph 0.50 0.04 11.5 0.05 0.09 2.90 0.03 DAC 03 BaP 235.00 18.17 740 3.01 23.53 2.00 11.76 2229 As 18.4 1.42 5.86 0.02 1.61 22.01 5.50 0.07 0.29 2229 Cd 0.23 0.02 0.08 0.00 0.02 10.43 0.08 0.00 0.25 2229 Cu 15.7 1.21 47.1 0.19 1.56 52.26 2.30 0.03 0.68 2229 Mn 12.5 0.97 139 0.57 1.70 776.00 77.6 0.00 0.23 2229 Ni 4.08 0.32 7.14 0.03 0.38 56.26 1.38 0.01 0.28 2229	DAC 02 DAC 02 DAC 02 DAC 03 DAC 03 DAC 03 DAC 03 DAC 03 DAC 03 DAC 03	TotPCBs Naph BaP As Cd Cu Cu Mn Hg Ni	313.00 0.50 412.00 19.3 0.24 12.8 8.45 0.08 4.94	24.19 0.04 31.85 1.49 0.02 0.99 0.65 0.01 0.38	10.00 1.00 150 14.2 0.41 160 282 1.2 43.2	0.04 0.00 0.61 0.06 0.00 0.65 1.15 0.00 0.18	26.93 0.05 36.06 1.72 0.02 1.82 2.00 0.01 0.62	1.27 22.01 10.43 52.26 776.00 0.18 56.26	0.09 2.90 5.50 0.08 2.30 77.6 0.04 1.38	21.20 0.08 0.00 0.03 0.00 0.07 0.01	299.20 0.02 18.03 0.31 0.28 0.79 0.03 0.32 0.45
DAC 03 Naph 0.50 0.04 11.5 0.05 0.09 2.90 0.03 DAC 03 BaP 235.00 18.17 740 3.01 23.53 2.00 11.76 2229 As 18.4 1.42 5.86 0.02 1.61 22.01 5.50 0.07 0.29 2229 Cd 0.23 0.02 0.08 0.00 0.02 10.43 0.08 0.00 0.25 2229 Cu 15.7 1.21 47.1 0.19 1.56 52.26 2.30 0.03 0.68 2229 Mn 12.5 0.97 139 0.57 1.70 776.00 77.6 0.00 0.02 2229 Mi 4.08 0.32 7.14 0.03 0.38 56.26 1.38 0.01 0.28 2229 Se 3.32 0.26 0.66 0.00 0.29 0.93 0.23 0.31 1.25 2229 Z	DAC 02 DAC 02 DAC 02 DAC 03 DAC 03 DAC 03 DAC 03 DAC 03 DAC 03 DAC 03	TotPCBs Naph BaP As Cd Cu Cu Mn Hg Ni Se	313.00 0.50 412.00 19.3 0.24 12.8 8.45 0.08 4.94 3.03	24.19 0.04 31.85 1.49 0.02 0.99 0.65 0.01 0.38 0.23	10.00 1.00 150 14.2 0.41 160 282 1.2 43.2 1.65	0.04 0.00 0.61 0.06 0.00 0.65 1.15 0.00 0.18 0.01	26.93 0.05 36.06 1.72 0.02 1.82 2.00 0.01 0.62 0.27	1.27 22.01 10.43 52.26 776.00 0.18 56.26 0.93	0.09 2.90 5.50 0.08 2.30 77.6 0.04 1.38 0.23	21.20 0.08 0.00 0.03 0.00 0.07 0.01 0.29	299.20 0.02 18.03 0.31 0.28 0.79 0.03 0.32 0.45 1.16
DAC 03 BaP 235.00 18.17 740 3.01 23.53 2.00 11.76 2229 As 18.4 1.42 5.86 0.02 1.61 22.01 5.50 0.07 0.29 2229 Cd 0.23 0.02 0.08 0.00 0.02 10.43 0.08 0.00 0.25 2229 Cu 15.7 1.21 47.1 0.19 1.56 52.26 2.30 0.03 0.68 2229 Mn 12.5 0.97 139 0.57 1.70 776.00 7.76 0.00 0.02 2229 Hg 0.08 0.01 0.48 0.00 0.01 0.18 0.04 0.55 0.23 2229 Ni 4.08 0.32 7.14 0.03 0.38 56.26 1.38 0.01 0.28 2229 Se 3.32 0.26 0.66 0.00 0.27 2.00 7.63 2229 Naph<	DAC 02 DAC 02 DAC 02 DAC 03 DAC 03 DAC 03 DAC 03 DAC 03 DAC 03 DAC 03 DAC 03 DAC 03	TotPCBs Naph BaP As Cd Cu Mn Hg Ni Se Zn	313.00 0.50 412.00 19.3 0.24 12.8 8.45 0.08 4.94 3.03 82.1	24.19 0.04 31.85 1.49 0.02 0.99 0.65 0.01 0.38 0.23 6.35	10.00 1.00 150 14.2 0.41 160 282 1.2 43.2 1.65 242	0.04 0.00 0.61 0.06 0.00 0.65 1.15 0.00 0.18 0.01 0.98	26.93 0.05 36.06 1.72 0.02 1.82 2.00 0.01 0.62 0.27 8.15	1.27 22.01 10.43 52.26 776.00 0.18 56.26 0.93 172.00	0.09 2.90 2.00 5.50 0.08 2.30 77.6 0.04 1.38 0.23 17.2	21.20 0.08 0.00 0.03 0.00 0.07 0.01 0.29 0.05	299.20 0.02 18.03 0.31 0.28 0.79 0.03 0.32 0.45 1.16 0.47
2229As18.41.425.860.021.6122.015.500.070.292229Cd0.230.020.080.000.0210.430.080.000.252229Cu15.71.2147.10.191.5652.262.300.030.682229Mn12.50.971390.571.70776.0077.60.000.022229Hg0.080.010.480.000.010.180.040.050.232229Ni4.080.327.140.030.3856.261.380.010.282229Se3.320.260.660.000.290.930.230.311.252229Zn75.55.8492.20.386.90172.0017.20.040.402229Naph0.500.041.000.000.052.900.020.272238As171.318.510.031.5022.015.500.070.272238Cu13.21.02700.281.4552.262.300.030.632238Ki0.080.010.450.000.010.180.040.050.232238Ki0.080.010.450.000.010.180.040.050.232238Ki0.080.010.450.000.01<	DAC 02 DAC 02 DAC 02 DAC 03 DAC 03 DAC 03 DAC 03 DAC 03 DAC 03 DAC 03 DAC 03 DAC 03 DAC 03	TotPCBs Naph BaP As Cd Cu Mn Hg Ni Se Zn TotPCBs	313.00 0.50 412.00 19.3 0.24 12.8 8.45 0.08 4.94 3.03 82.1 1660.00	24.19 0.04 31.85 1.49 0.02 0.99 0.65 0.01 0.38 0.23 6.35 128.32	10.00 1.00 150 14.2 0.41 160 282 1.2 43.2 1.65 242 68.40	0.04 0.00 0.61 0.06 0.00 0.65 1.15 0.00 0.18 0.01 0.98 0.28	26.93 0.05 36.06 1.72 0.02 1.82 2.00 0.01 0.62 0.27 8.15 142.88	1.27 22.01 10.43 52.26 776.00 0.18 56.26 0.93 172.00	0.09 2.90 5.50 0.08 2.30 77.6 0.04 1.38 0.23 17.2 0.09	21.20 0.08 0.00 0.03 0.00 0.07 0.01 0.29 0.05	299.20 0.02 18.03 0.31 0.28 0.79 0.03 0.32 0.45 1.16 0.47 1587.6
2229 Cd 0.23 0.02 0.08 0.00 0.02 10.43 0.08 0.00 0.25 2229 Cu 15.7 1.21 47.1 0.19 1.56 52.26 2.30 0.03 0.68 2229 Mn 12.5 0.97 139 0.57 1.70 776.00 77.6 0.00 0.02 2229 Hg 0.08 0.01 0.48 0.00 0.01 0.18 0.04 0.05 0.23 2229 Ni 4.08 0.32 7.14 0.03 0.38 56.26 1.38 0.01 0.28 2229 Se 3.32 0.26 0.66 0.00 0.29 0.93 0.23 0.31 1.25 2229 Naph 0.50 0.04 1.00 0.00 0.05 2.90 0.02 2229 BaP 168.00 12.99 184 0.75 15.26 2.00 7.63 2238 As	DAC 02 DAC 02 DAC 02 DAC 03 DAC 03	TotPCBs Naph BaP As Cd Cu Mn Hg Ni Se Zn TotPCBs Naph	313.00 0.50 412.00 19.3 0.24 12.8 8.45 0.08 4.94 3.03 82.1 1660.00 0.50	24.19 0.04 31.85 1.49 0.02 0.99 0.65 0.01 0.38 0.23 6.35 128.32 0.04	10.00 1.00 150 14.2 0.41 160 282 1.2 43.2 1.65 242 68.40 11.5	0.04 0.00 0.61 0.06 0.00 0.65 1.15 0.00 0.18 0.01 0.98 0.28 0.05	26.93 0.05 36.06 1.72 0.02 1.82 2.00 0.01 0.62 0.27 8.15 142.88 0.09	1.27 22.01 10.43 52.26 776.00 0.18 56.26 0.93 172.00	0.09 2.90 2.00 5.50 0.08 2.30 77.6 0.04 1.38 0.23 17.2 0.09 2.90	21.20 0.08 0.00 0.03 0.00 0.07 0.01 0.29 0.05	299.20 0.02 18.03 0.31 0.28 0.79 0.03 0.32 0.45 1.16 0.47 1587.6 0.03
2229Cu15.71.2147.10.191.5652.262.300.030.682229Mn12.50.971390.571.70776.0077.60.000.022229Hg0.080.010.480.000.010.180.040.050.232229Ni4.080.327.140.030.3856.261.380.010.282229Se3.320.260.660.000.290.930.230.311.252229Zn75.55.8492.20.386.90172.0017.20.040.402229Naph0.500.041.000.000.052.900.022229BaP168.0012.991840.7515.262.007.632238As171.318.510.031.5022.015.500.070.27238Cd0.230.020.170.000.0210.430.080.000.26238Mn15.11.172741.112.54776.0077.60.000.032238Ni3.430.2714.10.060.3656.261.380.010.26238Se3.970.311.210.000.350.930.230.371.512238Zn88.86.861840.758.46172.0017.20.05 </td <td>DAC 02 DAC 02 DAC 02 DAC 03 DAC 03</td> <td>TotPCBs Naph BaP As Cd Cu Mn Hg Ni Se Zn TotPCBs Naph BaP</td> <td>313.00 0.50 412.00 19.3 0.24 12.8 8.45 0.08 4.94 3.03 82.1 1660.00 0.50 235.00</td> <td>24.19 0.04 31.85 1.49 0.02 0.99 0.65 0.01 0.38 0.23 6.35 128.32 0.04 18.17</td> <td>10.00 1.00 150 14.2 0.41 160 282 1.2 43.2 1.65 242 68.40 11.5 740</td> <td>0.04 0.00 0.61 0.06 0.00 0.65 1.15 0.00 0.18 0.01 0.98 0.28 0.05 3.01</td> <td>26.93 0.05 36.06 1.72 0.02 1.82 2.00 0.01 0.62 0.27 8.15 142.88 0.09 23.53</td> <td>1.27 22.01 10.43 52.26 776.00 0.18 56.26 0.93 172.00 1.27</td> <td>0.09 2.90 2.00 5.50 0.08 2.30 77.6 0.04 1.38 0.23 17.2 0.09 2.90</td> <td>21.20 0.08 0.00 0.03 0.00 0.07 0.01 0.29 0.05 112.51</td> <td>299.20 0.02 18.03 0.31 0.28 0.79 0.03 0.32 0.45 1.16 0.47 1587.6 0.03 11.76</td>	DAC 02 DAC 02 DAC 02 DAC 03 DAC 03	TotPCBs Naph BaP As Cd Cu Mn Hg Ni Se Zn TotPCBs Naph BaP	313.00 0.50 412.00 19.3 0.24 12.8 8.45 0.08 4.94 3.03 82.1 1660.00 0.50 235.00	24.19 0.04 31.85 1.49 0.02 0.99 0.65 0.01 0.38 0.23 6.35 128.32 0.04 18.17	10.00 1.00 150 14.2 0.41 160 282 1.2 43.2 1.65 242 68.40 11.5 740	0.04 0.00 0.61 0.06 0.00 0.65 1.15 0.00 0.18 0.01 0.98 0.28 0.05 3.01	26.93 0.05 36.06 1.72 0.02 1.82 2.00 0.01 0.62 0.27 8.15 142.88 0.09 23.53	1.27 22.01 10.43 52.26 776.00 0.18 56.26 0.93 172.00 1.27	0.09 2.90 2.00 5.50 0.08 2.30 77.6 0.04 1.38 0.23 17.2 0.09 2.90	21.20 0.08 0.00 0.03 0.00 0.07 0.01 0.29 0.05 112.51	299.20 0.02 18.03 0.31 0.28 0.79 0.03 0.32 0.45 1.16 0.47 1587.6 0.03 11.76
2229Mn12.50.971390.571.70776.0077.60.000.022229Hg0.080.010.480.000.010.180.040.050.232229Ni4.080.327.140.030.3856.261.380.010.282229Se3.320.260.660.000.290.930.230.311.252229Zn75.55.8492.20.386.90172.0017.20.040.402229Naph0.500.041.000.000.052.900.020.222238As171.318.510.031.5022.015.500.070.272238Cu13.21.02700.281.4552.262.300.030.632238Mn15.11.172741.112.54776.0077.60.000.032238Ni3.430.2714.10.060.3656.261.380.010.262238Ni3.430.2714.10.060.3656.261.380.010.262238Zn88.86.861840.758.46172.0017.20.050.49	DAC 02 DAC 02 DAC 02 DAC 03 DAC 03	TotPCBs Naph BaP As Cd Cu Mn Hg Ni Se Zn TotPCBs Naph BaP As	313.00 0.50 412.00 19.3 0.24 12.8 8.45 0.08 4.94 3.03 82.1 1660.00 0.50 235.00 18.4	24.19 0.04 31.85 1.49 0.02 0.99 0.65 0.01 0.38 0.23 6.35 128.32 0.04 18.17 1.42	10.00 1.00 150 14.2 0.41 160 282 1.2 43.2 1.65 242 68.40 11.5 740 5.86	0.04 0.00 0.61 0.06 0.00 0.65 1.15 0.00 0.18 0.01 0.98 0.28 0.05 3.01 0.02	26.93 0.05 36.06 1.72 0.02 1.82 2.00 0.01 0.62 0.27 8.15 142.88 0.09 23.53 1.61	1.27 22.01 10.43 52.26 776.00 0.18 56.26 0.93 172.00 1.27 22.01	0.09 2.90 2.00 5.50 0.08 2.30 77.6 0.04 1.38 0.23 17.2 0.09 2.90 2.00	21.20 0.08 0.00 0.03 0.00 0.07 0.01 0.29 0.05 112.51 0.07	299.20 0.02 18.03 0.31 0.28 0.79 0.03 0.32 0.45 1.16 0.47 1587.6 0.03 11.76 0.29
2229Hg0.080.010.480.000.010.180.040.050.232229Ni4.080.327.140.030.3856.261.380.010.282229Se3.320.260.660.000.290.930.230.311.252229Zn75.55.8492.20.386.90172.0017.20.040.402229Naph0.500.041.000.000.052.900.020.222238As171.318.510.031.5022.015.500.070.272238Cd0.230.020.170.000.0210.430.080.000.262238Cu13.21.02700.281.4552.262.300.030.632238Mn15.11.172741.112.54776.0077.60.000.032238Ni3.430.2714.10.060.3656.261.380.010.262238Se3.970.311.210.000.350.930.230.371.512238Zn88.86.861840.758.46172.0017.20.050.49	DAC 02 DAC 02 DAC 02 DAC 03 DAC 03	TotPCBs Naph BaP As Cd Cu Mn Hg Ni Se Zn TotPCBs Naph BaP As Cd	313.00 0.50 412.00 19.3 0.24 12.8 8.45 0.08 4.94 3.03 82.1 1660.00 0.50 235.00 18.4 0.23	24.19 0.04 31.85 1.49 0.02 0.99 0.65 0.01 0.38 0.23 6.35 128.32 0.04 18.17 1.42 0.02	10.00 1.00 150 14.2 0.41 160 282 1.2 43.2 1.65 242 68.40 11.5 740 5.86 0.08	0.04 0.00 0.61 0.06 0.00 0.65 1.15 0.00 0.18 0.01 0.98 0.28 0.05 3.01 0.02 0.00	26.93 0.05 36.06 1.72 0.02 1.82 2.00 0.01 0.62 0.27 8.15 142.88 0.09 23.53 1.61 0.02	1.27 22.01 10.43 52.26 776.00 0.18 56.26 0.93 172.00 1.27 22.01 10.43	0.09 2.90 2.00 5.50 0.08 2.30 77.6 0.04 1.38 0.23 17.2 0.09 2.90 2.00 5.50	21.20 0.08 0.00 0.03 0.00 0.07 0.01 0.29 0.05 112.51 0.07 0.00	299.20 0.02 18.03 0.31 0.28 0.79 0.03 0.32 0.45 1.16 0.47 1587.6 0.03 11.76 0.29 0.25
2229Ni4.080.327.140.030.3856.261.380.010.282229Se3.320.260.660.000.290.930.230.311.252229Zn75.55.8492.20.386.90172.0017.20.040.402229Naph0.500.041.000.000.052.900.022239BaP168.0012.991840.7515.262.007.632238As171.318.510.031.5022.015.500.070.272238Cd0.230.020.170.000.0210.430.080.000.262238Cu13.21.02700.281.4552.262.300.030.632238Mn15.11.172741.112.54776.0077.60.000.032238Hg0.080.010.450.000.010.180.040.050.232238Ni3.430.2714.10.060.3656.261.380.010.262238Se3.970.311.210.000.350.930.230.371.512238Zn88.86.861840.758.46172.0017.20.050.49	DAC 02 DAC 02 DAC 02 DAC 03 DAC 03 DA	TotPCBs Naph BaP As Cd Cu Mn Hg Ni Se Zn TotPCBs Naph BaP As Cd Cu	313.00 0.50 412.00 19.3 0.24 12.8 8.45 0.08 4.94 3.03 82.1 1660.00 0.50 235.00 18.4 0.23 15.7	24.19 0.04 31.85 1.49 0.02 0.99 0.65 0.01 0.38 0.23 6.35 128.32 0.04 18.17 1.42 0.02 1.21	10.00 1.00 150 14.2 0.41 160 282 1.2 43.2 1.65 242 68.40 11.5 740 5.86 0.08 47.1	0.04 0.00 0.61 0.06 0.00 0.65 1.15 0.00 0.18 0.01 0.98 0.05 3.01 0.02 0.00 0.19	26.93 0.05 36.06 1.72 0.02 1.82 2.00 0.01 0.62 0.27 8.15 142.88 0.09 23.53 1.61 0.02 1.56	1.27 22.01 10.43 52.26 776.00 0.18 56.26 0.93 172.00 1.27 22.01 10.43 52.26	0.09 2.90 2.00 5.50 0.08 2.30 77.6 0.04 1.38 0.23 17.2 0.09 2.90 2.90 2.90 2.00 5.50 0.08 2.30	21.20 0.08 0.00 0.03 0.00 0.07 0.01 0.29 0.05 112.51 0.07 0.00 0.03	299.20 0.02 18.03 0.31 0.28 0.79 0.03 0.32 0.45 1.16 0.47 1587.6 0.03 11.76 0.29 0.25 0.68
2229Se3.320.260.660.000.290.930.230.311.252229Zn75.55.8492.20.386.90172.0017.20.040.402229Naph0.500.041.000.000.052.900.022229BaP168.0012.991840.7515.262.007.63238As171.318.510.031.5022.015.500.070.27238Cd0.230.020.170.000.0210.430.080.000.262238Cu13.21.02700.281.4552.262.300.030.632238Mn15.11.172741.112.54776.0077.60.000.032238Hg0.080.010.450.000.010.180.040.050.232238Ni3.430.2714.10.060.3656.261.380.010.262238Se3.970.311.210.000.350.930.230.371.512238Zn88.86.861840.758.46172.0017.20.050.49	DAC 02 DAC 02 DAC 03 2229 2229 2229 2229 2229 2229 2229	TotPCBs Naph BaP As Cd Cu Mn Hg Ni Se Zn TotPCBs Naph BaP As Cd Cu Mn	313.00 0.50 412.00 19.3 0.24 12.8 8.45 0.08 4.94 3.03 82.1 1660.00 0.50 235.00 18.4 0.23 15.7 12.5	24.19 0.04 31.85 1.49 0.02 0.99 0.65 0.01 0.38 0.23 6.35 128.32 0.04 18.17 1.42 0.02 1.21 0.97	10.00 1.00 150 14.2 0.41 160 282 1.2 43.2 1.65 242 68.40 11.5 740 5.86 0.08 47.1 139	0.04 0.00 0.61 0.06 0.00 0.65 1.15 0.00 0.18 0.01 0.98 0.05 3.01 0.02 0.00 0.19 0.57	26.93 0.05 36.06 1.72 0.02 1.82 2.00 0.01 0.62 0.27 8.15 142.88 0.09 23.53 1.61 0.02 1.56 1.70	1.27 22.01 10.43 52.26 776.00 0.18 56.26 0.93 172.00 1.27 22.01 10.43 52.26 776.00	0.09 2.90 2.00 5.50 0.08 2.30 77.6 0.04 1.38 0.23 17.2 0.09 2.90 2.90 2.90 2.90 5.50 0.08 2.30 77.6	21.20 0.08 0.00 0.03 0.00 0.07 0.01 0.29 0.05 112.51 0.07 0.00 0.03 0.00 0.03 0.00	299.20 0.02 18.03 0.31 0.28 0.79 0.03 0.32 0.45 1.16 0.47 1587.6 0.03 11.76 0.29 0.25 0.68 0.02
2229Zn75.55.8492.20.386.90172.0017.20.040.402229Naph0.500.041.000.000.052.900.02229BaP168.0012.991840.7515.262.007.632238As171.318.510.031.5022.015.500.070.272238Cd0.230.020.170.000.0210.430.080.000.262238Cu13.21.02700.281.4552.262.300.030.632238Mn15.11.172741.112.54776.0077.60.000.032238Hg0.080.010.450.000.010.180.040.050.232238Ni3.430.2714.10.060.3656.261.380.010.262238Se3.970.311.210.000.350.930.230.371.512238Zn88.86.861840.758.46172.0017.20.050.49	DAC 02 DAC 02 DAC 03 2229 2229 2229 2229 2229 2229 2229 2229 2229 2229 2229	TotPCBs Naph BaP As Cd Cu Mn Hg Ni Se Zn TotPCBs Naph BaP As Cd Cu Cu Mn Hg	313.00 0.50 412.00 19.3 0.24 12.8 8.45 0.08 4.94 3.03 82.1 1660.00 0.50 235.00 18.4 0.23 15.7 12.5 0.08	24.19 0.04 31.85 1.49 0.02 0.99 0.65 0.01 0.38 0.23 6.35 128.32 0.04 18.17 1.42 0.02 1.21 0.97 0.01	$\begin{array}{c} 10.00\\ 1.00\\ 1.00\\ 150\\ 14.2\\ 0.41\\ 160\\ 282\\ 1.2\\ 43.2\\ 1.65\\ 242\\ 68.40\\ 11.5\\ 740\\ 5.86\\ 0.08\\ 47.1\\ 139\\ 0.48\\ \end{array}$	0.04 0.00 0.61 0.06 0.00 0.65 1.15 0.00 0.18 0.01 0.98 0.05 3.01 0.02 0.00 0.19 0.57 0.00	26.93 0.05 36.06 1.72 0.02 1.82 2.00 0.01 0.62 0.27 8.15 142.88 0.09 23.53 1.61 0.02 1.56 1.70 0.01	1.27 22.01 10.43 52.26 776.00 0.18 56.26 0.93 172.00 1.27 22.01 10.43 52.26 776.00 0.18	0.09 2.90 2.00 5.50 0.08 2.30 77.6 0.04 1.38 0.23 17.2 0.09 2.90 2.90 2.90 5.50 0.08 2.30 77.6 0.09	21.20 0.08 0.00 0.03 0.00 0.07 0.01 0.29 0.05 112.51 0.07 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00	299.20 0.02 18.03 0.31 0.28 0.79 0.03 0.32 0.45 1.16 0.47 1587.6 0.03 11.76 0.29 0.25 0.68 0.02 0.23
2229Naph0.500.041.000.000.052.900.02229BaP168.0012.991840.7515.262.007.632238As171.318.510.031.5022.015.500.070.272238Cd0.230.020.170.000.0210.430.080.000.262238Cu13.21.02700.281.4552.262.300.030.632238Mn15.11.172741.112.54776.0077.60.000.032238Hg0.080.010.450.000.010.180.040.050.232238Ni3.430.2714.10.060.3656.261.380.010.262238Se3.970.311.210.000.350.930.230.371.512238Zn88.86.861840.758.46172.0017.20.050.49	DAC 02 DAC 02 DAC 03 2229	TotPCBs Naph BaP As Cd Cu Mn Hg Ni Se Zn TotPCBs Naph BaP As Cd Cu Cu Mn Hg Ni	313.00 0.50 412.00 19.3 0.24 12.8 8.45 0.08 4.94 3.03 82.1 1660.00 0.50 235.00 18.4 0.23 15.7 12.5 0.08 4.08	24.19 0.04 31.85 1.49 0.02 0.99 0.65 0.01 0.38 0.23 6.35 128.32 0.04 18.17 1.42 0.02 1.21 0.97 0.01 0.32	$\begin{array}{c} 10.00\\ 1.00\\ 1.00\\ 150\\ 14.2\\ 0.41\\ 160\\ 282\\ 1.2\\ 43.2\\ 1.65\\ 242\\ 68.40\\ 11.5\\ 740\\ 5.86\\ 0.08\\ 47.1\\ 139\\ 0.48\\ 7.14\\ \end{array}$	0.04 0.00 0.61 0.06 0.00 0.65 1.15 0.00 0.18 0.01 0.98 0.28 0.05 3.01 0.02 0.00 0.19 0.57 0.00 0.03	26.93 0.05 36.06 1.72 0.02 1.82 2.00 0.01 0.62 0.27 8.15 142.88 0.09 23.53 1.61 0.02 1.56 1.70 0.01 0.38	1.27 22.01 10.43 52.26 776.00 0.18 56.26 0.93 172.00 1.27 22.01 10.43 52.26 776.00 0.18 56.26 0.93 172.00 1.27	0.09 2.90 2.00 5.50 0.08 2.30 77.6 0.04 1.38 0.23 17.2 0.09 2.90 2.90 5.50 0.08 2.30 77.6 0.09 2.90 2.50 0.08 2.30 77.6 0.04 1.38	21.20 0.08 0.00 0.03 0.00 0.07 0.01 0.29 0.05 112.51 0.07 0.00 0.03 0.00 0.03 0.00 0.05 0.01	299.20 0.02 18.03 0.31 0.28 0.79 0.03 0.32 0.45 1.16 0.47 1587.6 0.03 11.76 0.29 0.25 0.68 0.02 0.23 0.28
2229BaP168.0012.991840.7515.262.007.632238As171.318.510.031.5022.015.500.070.272238Cd0.230.020.170.000.0210.430.080.000.262238Cu13.21.02700.281.4552.262.300.030.632238Mn15.11.172741.112.54776.0077.60.000.032238Hg0.080.010.450.000.010.180.040.050.232238Ni3.430.2714.10.060.3656.261.380.010.262238Se3.970.311.210.000.350.930.230.371.512238Zn88.86.861840.758.46172.0017.20.050.49	DAC 02 DAC 02 DAC 02 DAC 03 DAC 03 DA	TotPCBs Naph BaP As Cd Cu Mn Hg Ni Se Zn TotPCBs Naph BaP As Cd Cd Cu Mn Hg Ni Se	313.00 0.50 412.00 19.3 0.24 12.8 8.45 0.08 4.94 3.03 82.1 1660.00 0.50 235.00 18.4 0.23 15.7 12.5 0.08 4.08 3.32	24.19 0.04 31.85 1.49 0.02 0.99 0.65 0.01 0.38 0.23 6.35 128.32 0.04 18.17 1.42 0.02 1.21 0.97 0.01 0.32 0.26	$\begin{array}{c} 10.00\\ 1.00\\ 1.00\\ 150\\ 14.2\\ 0.41\\ 160\\ 282\\ 1.2\\ 43.2\\ 1.65\\ 242\\ 68.40\\ 11.5\\ 740\\ 5.86\\ 0.08\\ 47.1\\ 139\\ 0.48\\ 7.14\\ 0.66\\ \end{array}$	0.04 0.00 0.61 0.06 0.00 0.65 1.15 0.00 0.18 0.01 0.98 0.28 0.05 3.01 0.02 0.00 0.19 0.57 0.00 0.03	26.93 0.05 36.06 1.72 0.02 1.82 2.00 0.01 0.62 0.27 8.15 142.88 0.09 23.53 1.61 0.02 1.56 1.70 0.01 0.38 0.29	1.27 22.01 10.43 52.26 776.00 0.18 56.26 0.93 172.00 1.27 22.01 10.43 52.26 776.00 0.18 56.26 0.93	0.09 2.90 2.00 5.50 0.08 2.30 77.6 0.04 1.38 0.23 17.2 0.09 2.90 5.50 0.09 2.90 5.50 0.08 2.30 77.6 0.08 2.30 77.6 0.04 1.38 0.23	21.20 0.08 0.00 0.03 0.00 0.07 0.01 0.29 0.05 112.51 0.07 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.05 0.01 0.03 0.00 0.05 0.00 0.03 0.00 0.05 0.00 0.05 0.00 0.03 0.00 0.05 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.00 0.05 0.00 0.05 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.03 0.00 0.03 0.01 0.05 0.03 0.03 0.01 0.03 0.03 0.01 0.03 0.03 0.01 0.03 0.0	299.20 0.02 18.03 0.31 0.28 0.79 0.03 0.32 0.45 1.16 0.47 1587.6 0.03 11.76 0.29 0.25 0.68 0.02 0.23 0.28 1.25
2238As171.318.510.031.5022.015.500.070.272238Cd0.230.020.170.000.0210.430.080.000.262238Cu13.21.02700.281.4552.262.300.030.632238Mn15.11.172741.112.54776.0077.60.000.032238Hg0.080.010.450.000.010.180.040.050.232238Ni3.430.2714.10.060.3656.261.380.010.262238Se3.970.311.210.000.350.930.230.371.512238Zn88.86.861840.758.46172.0017.20.050.49	DAC 02 DAC 02 DAC 03 2229	TotPCBs Naph BaP As Cd Cu Mn Hg Ni Se Zn TotPCBs Naph BaP As Cd Cd Cu Mn Hg Ni Se Zn Cd Cu Zn	313.00 0.50 412.00 19.3 0.24 12.8 8.45 0.08 4.94 3.03 82.1 1660.00 0.50 235.00 18.4 0.23 15.7 12.5 0.08 4.08 3.32 75.5	24.19 0.04 31.85 1.49 0.02 0.99 0.65 0.01 0.38 0.23 6.35 128.32 0.04 18.17 1.42 0.02 1.21 0.97 0.01 0.32 0.26 5.84	10.00 1.00 150 14.2 0.41 160 282 1.2 43.2 1.65 242 68.40 11.5 740 5.86 0.08 47.1 139 0.48 7.14 0.66 92.2	0.04 0.00 0.61 0.06 0.00 0.65 1.15 0.00 0.18 0.01 0.98 0.28 0.05 3.01 0.02 0.00 0.19 0.57 0.00 0.03 0.00 0.38	26.93 0.05 36.06 1.72 0.02 1.82 2.00 0.01 0.62 0.27 8.15 142.88 0.09 23.53 1.61 0.02 1.56 1.70 0.38 0.29 6.90	1.27 22.01 10.43 52.26 776.00 0.18 56.26 0.93 172.00 1.27 22.01 10.43 52.26 776.00 0.18 56.26 0.93	0.09 2.90 2.00 5.50 0.08 2.30 77.6 0.04 1.38 0.23 17.2 0.09 2.90 2.90 2.90 5.50 0.08 2.30 77.6 0.08 2.30 77.6 0.04 1.38 0.23 17.2	21.20 0.08 0.00 0.03 0.00 0.07 0.01 0.29 0.05 112.51 0.07 0.00 0.03 0.00 0.03 0.00 0.05 0.01 0.31	299.20 0.02 18.03 0.31 0.28 0.79 0.03 0.32 0.45 1.16 0.47 1587.6 0.03 11.76 0.29 0.25 0.68 0.02 0.23 0.28 1.25 0.40
2238Cd0.230.020.170.000.0210.430.080.000.262238Cu13.21.02700.281.4552.262.300.030.632238Mn15.11.172741.112.54776.0077.60.000.032238Hg0.080.010.450.000.010.180.040.050.232238Ni3.430.2714.10.060.3656.261.380.010.262238Se3.970.311.210.000.350.930.230.371.512238Zn88.86.861840.758.46172.0017.20.050.49	DAC 02 DAC 02 DAC 03 2229	TotPCBs Naph BaP As Cd Cu Mn Hg Ni Se Zn TotPCBs Naph BaP As Cd Cd Cu Cu Mn Hg Ni Se Zn Ni Se Zn Ni	313.00 0.50 412.00 19.3 0.24 12.8 8.45 0.08 4.94 3.03 82.1 1660.00 0.50 235.00 18.4 0.23 15.7 12.5 0.08 4.08 3.32 75.5 0.50	24.19 0.04 31.85 1.49 0.02 0.99 0.65 0.01 0.38 0.23 6.35 128.32 0.04 18.17 1.42 0.02 1.21 0.97 0.01 0.32 0.26 5.84 0.04	10.00 1.00 150 14.2 0.41 160 282 1.2 43.2 1.65 242 68.40 11.5 740 5.86 0.08 47.1 139 0.48 7.14 0.66 92.2 1.00	0.04 0.00 0.61 0.06 0.00 0.65 1.15 0.00 0.18 0.01 0.98 0.28 0.05 3.01 0.02 0.00 0.19 0.57 0.00 0.03 0.00 0.38 0.00	26.93 0.05 36.06 1.72 0.02 1.82 2.00 0.01 0.62 0.27 8.15 142.88 0.09 23.53 1.56 1.70 0.01 0.38 0.29 6.90 0.05	1.27 22.01 10.43 52.26 776.00 0.18 56.26 0.93 172.00 1.27 22.01 10.43 52.26 776.00 0.18 56.26 0.93	0.09 2.90 2.00 5.50 0.08 2.30 77.6 0.04 1.38 0.23 17.2 0.09 2.90 2.00 5.50 0.08 2.30 77.6 0.08 2.30 77.6 0.04 1.38 0.23 17.2 2.90	21.20 0.08 0.00 0.03 0.00 0.07 0.01 0.29 0.05 112.51 0.07 0.00 0.03 0.00 0.03 0.00 0.05 0.01 0.31	299.20 0.02 18.03 0.31 0.28 0.79 0.03 0.32 0.45 1.16 0.47 1587.6 0.03 11.76 0.29 0.25 0.68 0.02 0.23 0.28 1.25 0.40 0.02
2238Cd0.230.020.170.000.0210.430.080.000.262238Cu13.21.02700.281.4552.262.300.030.632238Mn15.11.172741.112.54776.0077.60.000.032238Hg0.080.010.450.000.010.180.040.050.232238Ni3.430.2714.10.060.3656.261.380.010.262238Se3.970.311.210.000.350.930.230.371.512238Zn88.86.861840.758.46172.0017.20.050.49	DAC 02 DAC 02 DAC 03 2229	TotPCBs Naph BaP As Cd Cu Mn Hg Ni Se Zn TotPCBs Naph BaP As Cd Cd Cu Mn Hg Ni Se Zn Naph BaP Xi Se Zn Ni	313.00 0.50 412.00 19.3 0.24 12.8 8.45 0.08 4.94 3.03 82.1 1660.00 0.50 235.00 18.4 0.23 15.7 12.5 0.08 4.08 3.32 75.5 0.50 168.00	24.19 0.04 31.85 1.49 0.02 0.99 0.65 0.01 0.38 0.23 6.35 128.32 0.04 18.17 1.42 0.02 1.21 0.97 0.01 0.32 0.26 5.84 0.04 12.99	10.00 1.00 150 14.2 0.41 160 282 1.2 43.2 1.65 242 68.40 11.5 740 5.86 0.08 47.1 139 0.48 7.14 0.66 92.2 1.00 184	0.04 0.00 0.61 0.06 0.00 0.65 1.15 0.00 0.18 0.01 0.98 0.28 0.05 3.01 0.02 0.00 0.19 0.57 0.00 0.03 0.00 0.38 0.00 0.38 0.00	26.93 0.05 36.06 1.72 0.02 1.82 2.00 0.01 0.62 0.27 8.15 142.88 0.09 23.53 1.61 0.02 1.56 1.70 0.01 0.38 0.29 6.90 0.05 15.26	1.27 22.01 10.43 52.26 776.00 0.18 56.26 0.93 172.00 1.27 22.01 10.43 52.26 776.00 0.18 56.26 0.93 172.00 172.00	0.09 2.90 2.00 5.50 0.08 2.30 77.6 0.04 1.38 0.23 17.2 0.09 2.90 2.00 5.50 0.08 2.30 77.6 0.09 2.00 5.50 0.04 1.38 0.23 17.2 2.90 2.90 2.00	21.20 0.08 0.00 0.03 0.00 0.07 0.01 0.29 0.05 112.51 0.07 0.00 0.03 0.00 0.03 0.00 0.05 0.01 0.31 0.04	299.20 0.02 18.03 0.31 0.28 0.79 0.03 0.32 0.45 1.16 0.47 1587.6 0.03 11.76 0.29 0.25 0.68 0.02 0.23 0.28 1.25 0.40 0.02 7.63
2238Cu13.21.02700.281.4552.262.300.030.632238Mn15.11.172741.112.54776.0077.60.000.032238Hg0.080.010.450.000.010.180.040.050.232238Ni3.430.2714.10.060.3656.261.380.010.262238Se3.970.311.210.000.350.930.230.371.512238Zn88.86.861840.758.46172.0017.20.050.49	DAC 02 DAC 02 DAC 03 DAC 229 2229	TotPCBs Naph BaP As Cd Cu Mn Hg Ni Se Zn TotPCBs Naph BaP As Cd Cu Mn Hg Ni Se Zn Ni Se Zn Ni Se Zn Naph BaP As	313.00 0.50 412.00 19.3 0.24 12.8 8.45 0.08 4.94 3.03 82.1 1660.00 0.50 235.00 18.4 0.23 15.7 12.5 0.08 4.08 3.32 75.5 0.50 168.00 17	24.19 0.04 31.85 1.49 0.02 0.99 0.65 0.01 0.38 0.23 6.35 128.32 0.04 18.17 1.42 0.02 1.21 0.97 0.01 0.32 0.26 5.84 0.04 12.99 1.31	10.00 1.00 150 14.2 0.41 160 282 1.2 43.2 1.65 242 68.40 11.5 740 5.86 0.08 47.1 139 0.48 7.14 0.66 92.2 1.00 184 8.51	0.04 0.00 0.61 0.06 0.00 0.65 1.15 0.00 0.18 0.01 0.98 0.28 0.05 3.01 0.02 0.00 0.19 0.57 0.00 0.38 0.00 0.38 0.00 0.38 0.00	26.93 0.05 36.06 1.72 0.02 1.82 2.00 0.01 0.62 0.27 8.15 142.88 0.09 23.53 1.61 0.02 1.70 0.01 0.38 0.29 6.90 0.05 15.26 1.50	1.27 22.01 10.43 52.26 776.00 0.18 56.26 0.93 172.00 1.27 22.01 10.43 52.26 776.00 0.18 56.26 0.93 172.00 172.00 22.01	0.09 2.90 2.00 5.50 0.08 2.30 77.6 0.04 1.38 0.23 17.2 0.09 2.90 2.00 5.50 0.08 2.30 77.6 0.09 2.00 5.50 0.04 1.38 0.23 17.2 2.90 2.00 5.50	21.20 0.08 0.00 0.03 0.00 0.07 0.01 0.29 0.05 112.51 0.07 0.00 0.03 0.00 0.03 0.00 0.05 0.01 0.31 0.04	299.20 0.02 18.03 0.31 0.28 0.79 0.03 0.32 0.45 1.16 0.47 1587.6 0.03 11.76 0.29 0.25 0.68 0.02 0.23 0.23 0.28 1.25 0.40 0.02 7.63 0.27
2238Mn15.11.172741.112.54776.0077.60.000.032238Hg0.080.010.450.000.010.180.040.050.232238Ni3.430.2714.10.060.3656.261.380.010.262238Se3.970.311.210.000.350.930.230.371.512238Zn88.86.861840.758.46172.0017.20.050.49	DAC 02 DAC 02 DAC 03 DAC 229 2229	TotPCBs Naph BaP As Cd Cu Mn Hg Ni Se Zn TotPCBs Naph BaP As Cd Cu Mn Hg Ni Se Zn Ni Se Zn Ni Se Zn Naph BaP As	313.00 0.50 412.00 19.3 0.24 12.8 8.45 0.08 4.94 3.03 82.1 1660.00 0.50 235.00 18.4 0.23 15.7 12.5 0.08 4.08 3.32 75.5 0.50 168.00 17	24.19 0.04 31.85 1.49 0.02 0.99 0.65 0.01 0.38 0.23 6.35 128.32 0.04 18.17 1.42 0.02 1.21 0.97 0.01 0.32 0.26 5.84 0.04 12.99 1.31	10.00 1.00 150 14.2 0.41 160 282 1.2 43.2 1.65 242 68.40 11.5 740 5.86 0.08 47.1 139 0.48 7.14 0.66 92.2 1.00 184 8.51	0.04 0.00 0.61 0.06 0.00 0.65 1.15 0.00 0.18 0.01 0.98 0.28 0.05 3.01 0.02 0.00 0.19 0.57 0.00 0.38 0.00 0.38 0.00 0.38 0.00	26.93 0.05 36.06 1.72 0.02 1.82 2.00 0.01 0.62 0.27 8.15 142.88 0.09 23.53 1.61 0.02 1.70 0.01 0.38 0.29 6.90 0.05 15.26 1.50	1.27 22.01 10.43 52.26 776.00 0.18 56.26 0.93 172.00 1.27 22.01 10.43 52.26 776.00 0.18 56.26 0.93 172.00 172.00 22.01	0.09 2.90 2.00 5.50 0.08 2.30 77.6 0.04 1.38 0.23 17.2 0.09 2.90 2.00 5.50 0.08 2.30 77.6 0.09 2.00 5.50 0.04 1.38 0.23 17.2 2.90 2.00 5.50	21.20 0.08 0.00 0.03 0.00 0.07 0.01 0.29 0.05 112.51 0.07 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.05 0.01 0.03 0.00 0.05 0.01 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.05 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.0	299.20 0.02 18.03 0.31 0.28 0.79 0.03 0.32 0.45 1.16 0.47 1587.6 0.03 11.76 0.29 0.25 0.68 0.02 0.23 0.23 0.28 1.25 0.40 0.02 7.63 0.27
2238 Hg 0.08 0.01 0.45 0.00 0.01 0.18 0.04 0.05 0.23 2238 Ni 3.43 0.27 14.1 0.06 0.36 56.26 1.38 0.01 0.26 2238 Se 3.97 0.31 1.21 0.00 0.35 0.93 0.23 0.37 1.51 2238 Zn 88.8 6.86 184 0.75 8.46 172.00 17.2 0.05 0.49	DAC 02 DAC 02 DAC 03 DAC 229 2229	TotPCBs Naph BaP As Cd Cu Mn Hg Ni Se Zn TotPCBs Naph BaP As Cd Cu Mn Hg Ni Se Zn Cd Cu Zn Se Zn Cd Cu Mn Hg Ni Se Zn Naph BaP As Cd Cd Cu Cu Cu Mn Hg Ni Se Zn Naph BaP As Cd	313.00 0.50 412.00 19.3 0.24 12.8 8.45 0.08 4.94 3.03 82.1 1660.00 0.50 235.00 18.4 0.23 15.7 12.5 0.08 4.08 3.32 75.5 0.50 168.00 17 0.23	24.19 0.04 31.85 1.49 0.02 0.99 0.65 0.01 0.38 0.23 6.35 128.32 0.04 18.17 1.42 0.02 1.21 0.97 0.01 0.32 0.26 5.84 0.04 12.99 1.31 0.02	10.00 1.00 150 14.2 0.41 160 282 1.2 43.2 1.65 242 68.40 11.5 740 5.86 0.08 47.1 139 0.48 7.14 0.66 92.2 1.00 184 8.51 0.17	0.04 0.00 0.61 0.06 0.00 0.65 1.15 0.00 0.18 0.01 0.98 0.28 0.05 3.01 0.02 0.00 0.19 0.57 0.00 0.38 0.00 0.38 0.00 0.38 0.00 0.38 0.00 0.38 0.00	26.93 0.05 36.06 1.72 0.02 1.82 2.00 0.01 0.62 0.27 8.15 142.88 0.09 23.53 1.61 0.02 1.56 1.70 0.01 0.38 0.29 6.90 0.05 15.26 1.50	1.27 22.01 10.43 52.26 776.00 0.18 56.26 0.93 172.00 1.27 22.01 10.43 52.26 776.00 0.18 52.26 776.00 0.18 56.26 0.93 172.00 22.01 10.43	0.09 2.90 2.00 5.50 0.08 2.30 77.6 0.04 1.38 0.23 17.2 0.09 2.90 2.00 5.50 0.08 2.30 77.6 0.09 2.00 5.50 0.23 17.2 2.90 2.00 5.50 0.08	21.20 0.08 0.00 0.03 0.00 0.07 0.01 0.29 0.05 112.51 0.07 0.00 0.03 0.00 0.03 0.00 0.05 0.01 0.31 0.04 0.07 0.07 0.00	299.20 0.02 18.03 0.31 0.28 0.79 0.03 0.32 0.45 1.16 0.47 1587.6 0.03 11.76 0.29 0.25 0.68 0.02 0.23 0.23 0.28 1.25 0.40 0.02 7.63 0.27 0.26
2238 Ni 3.43 0.27 14.1 0.06 0.36 56.26 1.38 0.01 0.26 2238 Se 3.97 0.31 1.21 0.00 0.35 0.93 0.23 0.37 1.51 2238 Zn 88.8 6.86 184 0.75 8.46 172.00 17.2 0.05 0.49	DAC 02 DAC 02 DAC 03 DA	TotPCBs Naph BaP As Cd Cu Mn Hg Ni Se Zn TotPCBs Naph BaP As Cd Cu Mn Hg Ni Se Zn Cd Cu Mn Hg Ni Se Zn Cd Cu Mn Hg Ni Se Zn Cd Cu	313.00 0.50 412.00 19.3 0.24 12.8 8.45 0.08 4.94 3.03 82.1 1660.00 0.50 235.00 18.4 0.23 15.7 12.5 0.08 4.08 3.32 75.5 0.50 168.00 17 0.23 13.2	24.19 0.04 31.85 1.49 0.02 0.99 0.65 0.01 0.38 0.23 6.35 128.32 0.04 18.17 1.42 0.02 1.21 0.97 0.01 0.32 0.26 5.84 0.04 12.99 1.31 0.02 1.02	10.00 1.00 150 14.2 0.41 160 282 1.2 43.2 1.65 242 68.40 11.5 740 5.86 0.08 47.1 139 0.48 7.14 0.66 92.2 1.00 184 8.51 0.17 70	0.04 0.00 0.61 0.06 0.00 0.65 1.15 0.00 0.18 0.01 0.98 0.28 0.05 3.01 0.02 0.00 0.19 0.57 0.00 0.38 0.00 0.38 0.00 0.38 0.00 0.38 0.00 0.75 0.03 0.00 0.28	26.93 0.05 36.06 1.72 0.02 1.82 2.00 0.01 0.62 0.27 8.15 142.88 0.09 23.53 1.61 0.02 1.56 1.70 0.01 0.38 0.29 6.90 0.05 15.26 1.50 0.02 1.45	1.27 22.01 10.43 52.26 776.00 0.18 56.26 0.93 172.00 1.27 22.01 10.43 52.26 776.00 0.18 56.26 0.93 172.00 1.27 22.01 10.43 52.26 776.00 0.18 56.26 0.93 172.00 22.01 10.43 52.26	0.09 2.90 2.00 5.50 0.08 2.30 77.6 0.04 1.38 0.23 17.2 0.09 2.90 2.00 5.50 0.08 2.30 77.6 0.09 2.90 2.00 5.50 0.23 17.2 2.90 2.90 2.00 5.50 0.08 2.30	21.20 0.08 0.00 0.03 0.00 0.07 0.01 0.29 0.05 112.51 0.07 0.00 0.03 0.00 0.03 0.00 0.05 0.01 0.31 0.04 0.07 0.00 0.03	299.20 0.02 18.03 0.31 0.28 0.79 0.03 0.32 0.45 1.16 0.47 1587.6 0.03 11.76 0.29 0.25 0.68 0.02 0.23 0.28 1.25 0.40 0.02 7.63 0.27 0.26 0.63
2238 Se 3.97 0.31 1.21 0.00 0.35 0.93 0.23 0.37 1.51 2238 Zn 88.8 6.86 184 0.75 8.46 172.00 17.2 0.05 0.49	DAC 02 DAC 02 DAC 02 DAC 03 DAC 03 DA	TotPCBs Naph BaP As Cd Cu Mn Hg Ni Se Zn TotPCBs Naph BaP As Cd Cu Mn Hg Ni Se Zn Cd Cu Mn Hg Ni Se Zn Cd Cu Mn Hg Ni Se Zn Cd Cu Mn Hg Cd Cu Mn BaP As Cd Cu As Cu	313.00 0.50 412.00 19.3 0.24 12.8 8.45 0.08 4.94 3.03 82.1 1660.00 0.50 235.00 18.4 0.23 15.7 12.5 0.08 4.08 3.32 75.5 0.50 168.00 17 0.23 13.2 15.1	24.19 0.04 31.85 1.49 0.02 0.99 0.65 0.01 0.38 0.23 6.35 128.32 0.04 18.17 1.42 0.02 1.21 0.97 0.01 0.32 0.26 5.84 0.04 12.99 1.31 0.02 1.02 1.17	10.00 1.00 150 14.2 0.41 160 282 1.2 43.2 1.65 242 68.40 11.5 740 5.86 0.08 47.1 139 0.48 7.14 0.66 92.2 1.00 184 8.51 0.17 70 274	0.04 0.00 0.61 0.06 0.00 0.65 1.15 0.00 0.18 0.01 0.98 0.28 0.05 3.01 0.02 0.00 0.19 0.57 0.00 0.38 0.00 0.75 0.03 0.00 0.75 0.03 0.00 0.28 1.11	26.93 0.05 36.06 1.72 0.02 1.82 2.00 0.01 0.62 0.27 8.15 142.88 0.09 23.53 1.61 0.02 1.56 1.70 0.01 0.38 0.29 6.90 0.05 15.26 1.50 0.02 1.45 2.54	1.27 22.01 10.43 52.26 776.00 0.18 56.26 0.93 172.00 1.27 22.01 10.43 52.26 776.00 0.18 56.26 0.93 172.00 1.27 22.01 10.43 52.26 776.00 22.01 10.43 52.26 776.00	0.09 2.90 2.00 5.50 0.08 2.30 77.6 0.04 1.38 0.23 17.2 0.09 2.90 2.00 5.50 0.08 2.30 77.6 0.09 2.90 2.00 5.50 0.04 1.38 0.23 17.2 2.90 2.30 77.6 0.08 2.90 2.00 5.50 0.08 2.30 77.6	21.20 0.08 0.00 0.03 0.00 0.07 0.01 0.29 0.05 112.51 0.07 0.00 0.03 0.00 0.03 0.04 0.04 0.07 0.00 0.03 0.04	299.20 0.02 18.03 0.31 0.28 0.79 0.03 0.32 0.45 1.16 0.47 1587.6 0.03 11.76 0.29 0.25 0.68 0.02 0.23 0.28 1.25 0.40 0.02 7.63 0.27 0.26 0.03 0.32 0.32 0.45 0.32 0.45 0.45 0.47 0.29 0.25 0.68 0.02 0.23 0.28 0.23 0.28 0.23 0.27 0.26 0.27 0.26 0.33 0.27 0.26 0.33 0.27 0.26 0.33 0.27 0.26 0.33 0.27 0.26 0.33 0.27 0.26 0.33 0.27 0.26 0.33 0.27 0.33
2238 Zn 88.8 6.86 184 0.75 8.46 172.00 17.2 0.05 0.49	DAC 02 DAC 02 DAC 03 DA	TotPCBs Naph BaP As Cd Cu Mn Hg Ni Se Zn TotPCBs Naph BaP As Cd Cu Mn Hg Ni Se Zn Cd Cu Mn Hg Ni Se Zn Cd Cu Mn Hg Ni BaP As Cd Cu Mn Hg Ni BaP As Cd Cu Mn Hg Hg Ni BaP As Cd Cu Mn Hg Hg Ni	313.00 0.50 412.00 19.3 0.24 12.8 8.45 0.08 4.94 3.03 82.1 1660.00 0.50 235.00 18.4 0.23 15.7 12.5 0.08 4.08 3.32 75.5 0.50 13.2 15.1 0.08	24.19 0.04 31.85 1.49 0.02 0.99 0.65 0.01 0.38 0.23 6.35 128.32 0.04 18.17 1.42 0.02 1.21 0.97 0.01 0.32 0.26 5.84 0.04 12.99 1.31 0.02 1.02 1.17 0.01	10.00 1.00 150 14.2 0.41 160 282 1.2 43.2 1.65 242 68.40 11.5 740 5.86 0.08 47.1 139 0.48 7.14 0.66 92.2 1.00 184 8.51 0.17 70 274 0.45	0.04 0.00 0.61 0.06 0.00 0.65 1.15 0.00 0.18 0.01 0.98 0.28 0.05 3.01 0.02 0.00 0.19 0.57 0.00 0.38 0.00 0.75 0.03 0.00 0.75 0.03 0.00 0.28 1.11 0.00	26.93 0.05 36.06 1.72 0.02 1.82 2.00 0.01 0.62 0.27 8.15 142.88 0.09 23.53 1.61 0.02 1.56 1.70 0.01 0.38 0.29 6.90 0.05 15.26 1.50 0.02 1.45 2.54 0.01	1.27 22.01 10.43 52.26 776.00 0.18 56.26 0.93 172.00 1.27 22.01 10.43 52.26 776.00 0.18 56.26 0.93 172.00 22.01 10.43 52.26 776.00 22.01 10.43 52.26 776.00 0.18	0.09 2.90 2.00 5.50 0.08 2.30 77.6 0.04 1.38 0.23 17.2 0.09 2.90 2.00 5.50 0.08 2.30 77.6 0.08 2.30 77.6 0.04 1.38 0.23 17.2 2.90 2.30 77.6 0.08 2.30 5.50 0.08 2.30 77.6 0.04	21.20 0.08 0.00 0.03 0.00 0.07 0.01 0.29 0.05 112.51 0.07 0.00 0.03 0.00 0.03 0.00 0.04 0.07 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.00 0.05 0.05 0.05 0.05 0.00 0.05 0.00 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.00 0.00 0.05 0.00 0.0	299.20 0.02 18.03 0.31 0.28 0.79 0.03 0.32 0.45 1.16 0.47 1587.6 0.03 11.76 0.29 0.25 0.68 0.02 0.23 0.28 1.25 0.40 0.28 1.25 0.40 0.27 0.26 0.63 0.03 0.23 0.23
	DAC 02 DAC 02 DAC 03 DA	TotPCBs Naph BaP As Cd Cu Mn Hg Ni Se Zn TotPCBs Naph BaP As Cd Cu Mn Hg Ni Se Zn Naph BaP As Cd Cu Cu Mn Hg SaP As Cd Cu Cu Mn Hg Ni Se Zn Naph	313.00 0.50 412.00 19.3 0.24 12.8 8.45 0.08 4.94 3.03 82.1 1660.00 0.50 235.00 18.4 0.23 15.7 12.5 0.08 4.08 3.32 75.5 0.50 168.00 17 0.23 13.2 15.1 0.08 3.43	24.19 0.04 31.85 1.49 0.02 0.99 0.65 0.01 0.38 0.23 6.35 128.32 0.04 18.17 1.42 0.02 1.21 0.97 0.01 0.32 0.26 5.84 0.04 12.99 1.31 0.02 1.02 1.17 0.01 0.27	10.00 1.00 150 14.2 0.41 160 282 1.2 43.2 1.65 242 68.40 11.5 740 5.86 0.08 47.1 139 0.48 7.14 0.66 92.2 1.00 184 8.51 0.17 70 274 0.45 14.1	0.04 0.00 0.61 0.06 0.00 0.65 1.15 0.00 0.18 0.01 0.98 0.28 0.05 3.01 0.02 0.00 0.19 0.57 0.00 0.33 0.00 0.38 0.00 0.75 0.03 0.00 0.28 1.11 0.00 0.28 1.11	26.93 0.05 36.06 1.72 0.02 1.82 2.00 0.01 0.62 0.27 8.15 142.88 0.09 23.53 1.61 0.02 1.56 1.70 0.01 0.38 0.29 6.90 0.05 15.26 1.45 2.54 0.01 0.36	1.27 22.01 10.43 52.26 776.00 0.18 56.26 0.93 172.00 1.27 22.01 10.43 52.26 776.00 0.18 56.26 0.93 172.00 22.01 10.43 52.26 776.00 0.18 52.26 776.00 0.18 52.26 776.00 0.18 52.26 776.00 0.18 56.26	0.09 2.90 2.00 5.50 0.08 2.30 77.6 0.04 1.38 0.23 17.2 0.09 2.90 2.90 2.90 2.00 5.50 0.08 2.30 77.6 0.04 1.38 0.23 17.2 2.90 2.00 5.50 0.04 1.38 0.23 17.2 2.90 2.30 77.6 0.08 2.30 77.6 0.08 2.30 77.6 0.04 1.38	21.20 0.08 0.00 0.03 0.00 0.07 0.01 0.29 0.05 112.51 0.07 0.00 0.03 0.00 0.03 0.00 0.05 0.01 0.07 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.05 0.01 0.03 0.00 0.05 0.01 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.0	299.20 0.02 18.03 0.31 0.28 0.79 0.03 0.32 0.45 1.16 0.47 1587.6 0.03 11.76 0.29 0.25 0.68 0.02 0.23 0.28 1.25 0.40 0.02 0.23 0.28 1.25 0.40 0.02 0.23 0.28 1.25 0.40 0.02 0.23 0.28 1.25 0.40 0.02 0.23 0.22 0.26 0.03 0.23 0.23 0.23 0.23 0.23 0.26
2230 Maphi 0.30 0.04 1.00 0.00 0.05 2.90 0.02	DAC 02 DAC 02 DAC 03 DA	TotPCBs Naph BaP As Cd Cu Mn Hg Ni Se Zn TotPCBs Naph BaP As Cd Cu Mn Hg Ni Se Zn Naph BaP As Cd Cu Mn Hg Ni Se Zn Naph BaP As Cd Cu Mn Hg Ni Se Zn Naph Hg Ni Se Zn Naph Se Zn Naph	313.00 0.50 412.00 19.3 0.24 12.8 8.45 0.08 4.94 3.03 82.1 1660.00 0.50 235.00 18.4 0.23 15.7 12.5 0.08 4.08 3.32 75.5 0.50 168.00 17 0.23 13.2 15.1 0.08 3.43 3.97	24.19 0.04 31.85 1.49 0.02 0.99 0.65 0.01 0.38 0.23 6.35 128.32 0.04 18.17 1.42 0.02 1.21 0.97 0.01 0.32 0.26 5.84 0.04 12.99 1.31 0.02 1.02 1.17 0.01 0.27 0.31	10.00 1.00 150 14.2 0.41 160 282 1.2 43.2 1.65 242 68.40 11.5 740 5.86 0.08 47.1 139 0.48 7.14 0.66 92.2 1.00 184 8.51 0.17 70 274 0.45 14.1 1.21	0.04 0.00 0.61 0.06 0.00 0.65 1.15 0.00 0.18 0.01 0.98 0.28 0.05 3.01 0.02 0.00 0.19 0.57 0.00 0.38 0.00 0.38 0.00 0.75 0.03 0.00 0.28 1.11 0.00 0.28 1.11 0.00	26.93 0.05 36.06 1.72 0.02 1.82 2.00 0.01 0.62 0.27 8.15 142.88 0.09 23.53 1.61 0.02 1.56 1.70 0.01 0.38 0.29 6.90 0.05 15.26 1.50 0.02 1.45 2.54 0.01 0.36 0.35	1.27 22.01 10.43 52.26 776.00 0.18 56.26 0.93 172.00 1.27 22.01 10.43 52.26 776.00 0.18 56.26 0.93 172.00 22.01 10.43 52.26 776.00 0.18 52.26 776.00 0.18 52.26 776.00 0.18 52.26 776.00 0.18 56.26 0.93	0.09 2.90 2.00 5.50 0.08 2.30 77.6 0.04 1.38 0.23 17.2 0.09 2.90 2.90 2.90 2.00 5.50 0.08 2.30 77.6 0.04 1.38 0.23 17.2 2.90 2.00 5.50 0.04 1.38 0.23 17.2 2.90 2.00 5.50 0.04 1.38 0.23	21.20 0.08 0.00 0.03 0.00 0.07 0.01 0.29 0.05 112.51 0.07 0.00 0.03 0.00 0.03 0.00 0.05 0.01 0.31 0.04 0.07 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.05 0.01 0.31 0.04 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.05 0.01 0.05 0.01 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.0	299.20 0.02 18.03 0.31 0.28 0.79 0.03 0.32 0.45 1.16 0.47 1587.6 0.03 11.76 0.29 0.25 0.68 0.02 0.23 0.28 1.25 0.40 0.02 7.63 0.27 0.26 0.03 0.23 0.23 0.26 1.51
	DAC 02 DAC 02 DAC 03 DA	TotPCBs Naph BaP As Cd Cu Mn Hg Ni Se Zn TotPCBs Naph BaP As Cd Cu Mn Hg Ni Se Zn Naph BaP As Cd Cu Mn Hg Ni Se Zn Naph BaP As Cd Cu Mn Hg Ni Se Zn Naph Hg Ni Se Zn Naph	313.00 0.50 412.00 19.3 0.24 12.8 8.45 0.08 4.94 3.03 82.1 1660.00 0.50 235.00 18.4 0.23 15.7 12.5 0.08 4.08 3.32 75.5 0.50 168.00 17 0.23 13.2 15.1 0.08 3.43 3.97 88.8	24.19 0.04 31.85 1.49 0.02 0.99 0.65 0.01 0.38 0.23 6.35 128.32 0.04 18.17 1.42 0.02 1.21 0.97 0.01 0.32 0.26 5.84 0.04 12.99 1.31 0.02 1.02 1.17 0.01 0.27 0.31 6.86	10.00 1.00 150 14.2 0.41 160 282 1.2 43.2 1.65 242 68.40 11.5 740 5.86 0.08 47.1 139 0.48 7.14 0.66 92.2 1.00 184 8.51 0.17 70 274 0.45 14.1 1.21 184	0.04 0.00 0.61 0.06 0.00 0.65 1.15 0.00 0.18 0.01 0.98 0.05 3.01 0.02 0.00 0.19 0.57 0.00 0.38 0.00 0.38 0.00 0.75 0.03 0.00 0.28 1.11 0.00 0.28 1.11 0.00 0.75	26.93 0.05 36.06 1.72 0.02 1.82 2.00 0.01 0.62 0.27 8.15 142.88 0.09 23.53 1.61 0.02 1.56 1.70 0.01 0.38 0.29 6.90 0.05 15.26 1.50 0.02 1.45 2.54 0.01 0.36 0.35 8.46	1.27 22.01 10.43 52.26 776.00 0.18 56.26 0.93 172.00 1.27 22.01 10.43 52.26 776.00 0.18 56.26 0.93 172.00 22.01 10.43 52.26 776.00 0.18 52.26 776.00 0.18 52.26 776.00 0.18 52.26 776.00 0.18 56.26 0.93	0.09 2.90 2.00 5.50 0.08 2.30 77.6 0.04 1.38 0.23 17.2 0.09 2.90 2.00 5.50 0.08 2.30 77.6 0.09 2.00 5.50 0.04 1.38 0.23 17.2 2.90 2.00 5.50 0.04 1.38 0.23 17.2 2.90 2.00 5.50 0.08 2.30 77.6 0.04 1.38 0.23 17.2	21.20 0.08 0.00 0.03 0.00 0.07 0.01 0.29 0.05 112.51 0.07 0.00 0.03 0.00 0.03 0.00 0.05 0.01 0.31 0.04 0.07 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.05 0.01 0.31 0.04 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.05 0.01 0.05 0.01 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.0	299.20 0.02 18.03 0.31 0.28 0.79 0.03 0.32 0.45 1.16 0.47 1587.6 0.03 11.76 0.29 0.25 0.68 0.02 0.23 0.28 1.25 0.40 0.02 7.63 0.27 0.26 0.63 0.23 0.23 0.23 0.23 0.26 1.51 0.49

2238	BaP	0.50	0.04	8.1	0.03	0.08		2.00		0.04
2243	As	16.1	1.24	5.71	0.02	1.41	22.01	5.50	0.06	0.26
2243	Cd	0.25	0.02	0.08	0.00	0.02	10.43	0.08	0.00	0.27
2243	Cu	14.2	1.10	56	0.23	1.47	52.26	2.30	0.03	0.64
2243	Mn	9.68	0.75	134	0.55	1.44	776.00	77.6	0.00	0.02
2243	Hg	0.08	0.01	0.41	0.00	0.01	0.18	0.04	0.05	0.22
2243	Ni	3.89	0.30	7.1	0.03	0.37	56.26	1.38	0.01	0.27
2243	Se	3.71	0.29	0.78	0.00	0.32	0.93	0.23	0.35	1.40
2243	Zn	75.6	5.84	108	0.44	6.98	172.00	17.2	0.04	0.41
2243	Naph	0.50	0.04	20.6	0.08	0.14		2.90		0.05
2243	BaP	0.50	0.04	1.00	0.00	0.05		2.00		0.02
2433	As	19.10	1.48	5.92	0.02	1.67	22.01	5.50	0.08	0.30
2433	Cd	0.25	0.02	0.21	0.00	0.02	10.43	0.08	0.00	0.28
2433	Cu	17.7	1.37	47.2	0.19	1.73	52.26	2.30	0.03	0.75
2433	Mn	17.7	1.37	178	0.72	2.32	776.00	77.6	0.00	0.03
2433	Hg	0.08	0.01	0.39	0.00	0.01	0.18	0.04	0.05	0.22
2433	Ni	4.34	0.34	8.61	0.04	0.41	56.26	1.38	0.01	0.30
2433	Se	3.93	0.30	0.88	0.00	0.34	0.93	0.23	0.37	1.48
2433	Zn	83.5	6.45	100	0.41	7.62	172.00	17.2	0.04	0.44
2433	Naph	0.50	0.04	13.5	0.05	0.10		2.90		0.04
2433	BaP	0.50	0.04	531	2.16	2.44		2.00		1.22
2441	As	21.2	1.64	9.89	0.04	1.87	22.01	5.50	0.08	0.34
2441	Cd	0.24	0.02	0.43	0.00	0.02	10.43	0.08	0.00	0.28
2441	Cu	14.6	1.13	95	0.39	1.68	52.26	2.30	0.03	0.73
2441	Mn	9.62	0.74	303	1.23	2.20	776.00	77.6	0.00	0.03
2441	Hg	0.08	0.01	0.48	0.00	0.01	0.18	0.04	0.05	0.23
2441	Ni	4.93	0.38	17.3	0.07	0.50	56.26	1.38	0.01	0.36
2441	Se	4.21	0.33	2.2	0.01	0.37	0.93	0.23	0.40	1.62
2441	Zn	68.4	5.29	147	0.60	6.54	172.00	17.2	0.04	0.38
2441	Naph	0.50	0.04	1.00	0.00	0.05		2.90		0.02
2441	BaP	157.00	12.14	30.5	0.12	13.62		2.00		6.81

								1		T •
		Macoma	Dose from	Sed	Dose from	Total Dose	TRV		dose:	dose:
Ctation	Analuta	concentration	Macoma	concen	sediment	(mg/kg/d)	high	TRV low	TRV high	TRV low
Station	Analyte	(mg/kg) (a)	(mg/d) (b)	(mg/kg)	(mg/d) (c)	(d)			ratio	ratio
SWZ 01	Arsenic	23.3	1.801	9.26	0.038	2.043	22.01	5.5	0.093	0.371
							10.40			
SWZ 01	Cadmium (0.37	0.029	0.69	0.003	0.035	10.43	0.00	0.003	0.436
SWZ 01	Copper	20.6	1.592	178	0.724	2.574	52.26	2.3	0.049	1.119
SWZ 01	Manganese	9.34	0.722	267	1.086	2.009	776	77.6	0.003	0.026
SWZ 01	Mercury	0.025	0.002	0.5	0.002	0.004	0.18	0.04	0.024	0.113
SWZ 01	Nickel (Ni)	4.11	0.318	20.3	0.083	0.445	56.26	1.38	0.008	0.322
SWZ 01	Selenium (4.95	0.383	1.03	0.004	0.430	0.93	0.23	0.462	1.869
SWZ 01	Zinc	106	8.194	322	1.310	10.560	172	17.2	0.061	0.614
SWZ 01	Napth	30.2	2.334	22.5	0.092	2.696		2.9		0.929
SWZ 01	BaP	133	10.281	349	1.420	13.001	00.04	2	0.001	6.500
SWZ 04 SWZ 04	Arsenic	22.9 0.46	1.770 0.036	7.96 0.67	0.032	2.003 0.043	22.01 10.43	5.5 0.08	0.091 0.004	0.364 0.532
SWZ 04	Cadmium (30.9	2.389	296	1.204	3.992	52.26	2.3	0.004	1.736
SWZ 04	Copper	9.56	0.739	290	0.842	1.757	776	77.6	0.002	0.023
SWZ 04	Manganese	0.025	0.739	0.69	0.003	0.005	0.18	0.04	0.002	0.023
SWZ 04	Mercury Nickel (Ni)	4.64	0.002	15.8	0.064	0.005	56.26	1.38	0.029	0.135
SWZ 04	Selenium	4.64	0.359	0.69	0.003	0.470	0.93	0.23	0.432	1.746
SWZ 04	Zinc	110	8.503	357	1.452	11.061	172	17.2	0.064	0.643
SWZ 04	Napth	29.3	2.265	18.6	0.076	2.601	172	2.9	0.004	0.897
SWZ 04	BaP	279	21.567	327	1.330	25.441		2		12.72
BST04	Arsenic	26	2.010	12.9	0.052	2.291	22.01	5.5	0.104	0.417
BST04	Cadmium	0.49	0.038	0.48	0.002	0.044	10.43	0.08	0.004	0.553
BST04	Copper	20	1.546	227	0.923	2.744	52.26	2.3	0.053	1.193
BST04	Manganese	6.83	0.528	344	1.399	2.142	776	77.6	0.003	0.028
BST04	Mercury	0.025	0.002	0.64	0.003	0.005	0.18	0.04	0.028	0.129
BST04	Nickel	5.07	0.392	24.8	0.101	0.548	56.26	1.38	0.010	0.397
BST04	Selenium	3.71	0.287	1.23	0.005	0.324	0.93	0.23	0.349	1.410
BST04	Zinc	131	10.126	320	1.302	12.698	172	17.2	0.074	0.738
BST04	Total PCBs	80.3	6.207	0.5	0.002	6.899	1.27	0.09	5.432	76.66
BST04	Napth	43.2	3.339	11.2	0.046	3.761		2.9		1.297
BST04	BaP	1280	98.944	624	2.538	112.758		2		56.38
BST07	Arsenic	26.7	2.064	14.4	0.059	2.358	22.01	5.5	0.107	0.429
BST07	Cadmium	0.38	0.029	0.4	0.002	0.034	10.43	0.08	0.003	0.431
BST07	Copper	18.7	1.446	193	0.785	2.478	52.26	2.3	0.047	1.078
BST07	Manganese	6.98	0.540	294	1.196	1.928	776	77.6	0.002	0.025
BST07	Mercury	0.025	0.002	0.54	0.002	0.005	0.18	0.04	0.025	0.118
BST07 BST07	Nickel (Ni) Selenium	4.06 4.43	0.314 0.342	20.6 1.37	0.084 0.006	0.442	56.26 0.93	1.38 0.23	0.008 0.416	0.320 1.681
BST07	Zinc	109	8.426	287	1.168	10.659	172	17.2	0.416	0.620
BST07	Total PCBs	147	11.363	0.5	0.002	12.628	1.27	0.09	9.943	140.3
BST07	Napth	42.7	3.301	6.9	0.028	3.699	1.27	2.9	0.040	1.275
BST07	BaP	3830	296.059	1650	6.712	336.412		2		168.2
DAC 02	Arsenic	27.3	2.110	10.6	0.043	2.393	22.01	5.5	0.109	0.435
DAC 02	Cadmium	0.39	0.030	0.37	0.002	0.035	10.43	0.08	0.003	0.440
DAC 02	Copper	19.1	1.476	174	0.708	2.427	52.26	2.3	0.046	1.055
DAC 02	Manganese	7.14	0.552	241	0.980	1.703	776	77.6	0.002	0.022
DAC 02	Mercury	0.025	0.002	0.47	0.002	0.004	0.18	0.04	0.024	0.110
DAC 02	Nickel	4.15	0.321	23	0.094	0.460	56.26	1.38	0.008	0.334
DAC 02	Selenium	4.54	0.351	1.09	0.004	0.395	0.93	0.23	0.425	1.717
DAC 02	Zinc	112	8.658	216	0.879	10.596	172	17.2	0.062	0.616
DAC 02	Total PCBs	415	32.080	36.3	0.148	35.808	1.27	0.090	28.195	397.9
DAC 02	Napth	24.7	1.909	4.11	0.017	2.140		2.9		0.738
DAC 02	BaP	226	17.470	217	0.883	20.392		2		10.20
DAC 03	Arsenic	25.9	2.002	13.2	0.054	2.284	22.01	5.5	0.104	0.415
DAC 03 DAC 03	Cadmium Copper	0.36 19.8	0.028	0.53 178	0.002 0.724	0.033 2.505	10.43 52.26	0.08	0.003 0.048	0.416 1.089

DAC 03 DAC 03 DAC 03 DAC 03 DAC 03 DAC 03 DAC 03 DAC 03 DAC 03	Manganese Mercury Nickel Selenium Zinc	9.96 0.025 5.48	0.770 0.002	316 0.53	1.285 0.002	2.284 0.005	776 0.18	77.6 0.04	0.003	0.029
DAC 03 DAC 03 DAC 03 DAC 03 DAC 03 DAC 03	Nickel Selenium	5.48		0.53						1 11 1 1 1
DAC 03 DAC 03 DAC 03 DAC 03	Selenium		0 101							0.116
DAC 03 DAC 03 DAC 03		0.00	0.424	46.5	0.189	0.681	56.26	1.38	0.012	0.493
DAC 03 DAC 03	ZINC	3.68	0.284	0.96	0.004	0.320	0.93	0.23	0.345	1.393
DAC 03		122	9.431	263	1.070	11.667	172	17.2	0.068 235.88	0.678
	Total PCBs	3480	269.004	150	0.610	299.571	1.27	0.09	233.88	3328.6
DAC 03	Napth	0.5	0.039	7.6	0.031	0.077		2.9		0.027
	BaP	178	13.759	161	0.655	16.016	00.04	2	0.000	8.008
2229	Arsenic	22.5	1.739	5.49	0.022	1.957	22.01	5.5	0.089	0.356
2229	Cadmium	0.39	0.030	0.23	0.001	0.035	10.43	0.08	0.003	0.432
2229	Copper	19.6	1.515	44.7	0.182	1.885	52.26	2.3	0.036	0.820
2229	Manganese	13.8	1.067	138	0.561	1.809	776	77.6	0.002	0.023
2229	Mercury	0.2	0.015	0.24	0.001	0.018	0.18	0.04	0.101	0.468
2229	Nickel	4.22	0.326	6.89	0.028	0.394	56.26	1.38	0.007	0.285
2229	Selenium	2.65	0.205	0.4	0.002	0.229	0.93	0.23	0.247	0.997
2229	Zinc	109	8.426	125	0.509	9.927	172	17.2	0.058	0.577
2229	Napth	0.5	0.039	2.3	0.009	0.053		2.9		0.018
2229	BaP	75	5.798	22	0.089	6.541	00.04	2	0.094	3.271
2238	Arsenic	21.1	1.631	7.05	0.029	1.844	22.01	5.5	0.084	0.335
2238	Cadmium	0.44	0.034	0.18	0.001	0.039	10.43	0.08	0.004	0.483
2238	Copper	17.1	1.322	70.9	0.288	1.789	52.26	2.3	0.034	0.778
2238	Manganese	12.4	0.959	276	1.123	2.313	776 0.18	77.6	0.003	0.030
2238	Mercury	0.09	0.007	0.23	0.001	0.009		0.04		0.225
2238 2238	Nickel Selenium	3.85 2.8	0.298	13.8 0.65	0.056 0.003	0.393 0.243	56.26 0.93	1.38 0.23	0.007 0.262	0.285 1.058
			0.216							
2238 2238	Zinc	103	7.962	177	0.720	9.647	172	17.2 2.9	0.056	0.561 0.017
2238	Napth BaP	0.5 0.5	0.039 0.039	1.3 3.2	0.005 0.013	0.049 0.057		2.9		0.017
		26.9		4.63	0.013		22.01	2 5.5	0.106	0.029
2243 2243	Arsenic Cadmium	0.39	2.079 0.030	0.09	0.019	2.331 0.034	10.43	5.5 0.08	0.106	0.424
2243	Cadmum	17.5	1.353	63.9	0.000	1.792	52.26	2.3	0.003	0.424
2243	Manganese	9.4	0.727	147	0.260	1.472	52.26 776	77.6	0.002	0.019
2243	Manganese	0.0025	0.000	0.24	0.001	0.001	0.18	0.04	0.002	0.019
2243	Nickel	4.36	0.337	7.73	0.001	0.409	56.26	1.38	0.007	0.033
2243	Selenium	4.36	0.337	0.33	0.001	0.409	0.93	0.23	0.404	1.635
2243	Zinc	128	9.894	107	0.435	11.477	172	17.2	0.067	0.667
2243	Napth	0.5	0.039	107	0.004	0.047	112	2.9	0.007	0.007
2243	BaP	42.2	3.262	4.2	0.004	3.643		2.5		1.822
2433	Arsenic	22.5	1.739	4.2	0.019	1.954	22.01	5.5	0.089	0.355
2433	Cadmium	0.4	0.031	0.23	0.001	0.035	10.43	0.08	0.003	0.333
2433	Copper	21	1.623	47.2	0.192	2.017	52.26	2.3	0.039	0.442
2433	Manganese	13.6	1.051	178	0.724	1.973	776	77.6	0.003	0.025
2433	Manganese	0.08	0.006	0.19	0.001	0.008	0.18	0.04	0.043	0.198
2433	Nickel	4.17	0.322	8.35	0.034	0.396	56.26	1.38	0.007	0.130
2433	Selenium	3.39	0.262	0.42	0.002	0.293	0.93	0.23	0.315	1.274
2433	Zinc	137	10.590	94.9	0.386	12.196	172	17.2	0.071	0.709
2433	Napth	0.5	0.039	1	0.004	0.047		2.9	0.071	0.016
2433	BaP	65.1	5.032	14.8	0.060	5.658		2.3		2.829
2441	Arsenic	25.7	1.987	12.5	0.051	2.264	22.01	5.5	0.103	0.412
2441	Cadmium	0.36	0.028	0.55	0.002	0.033	10.43	0.08	0.003	0.418
2441	Copper	17	1.314	162	0.659	2.192	52.26	2.3	0.042	0.953
2441	Manganese	9.25	0.715	463	1.883	2.887	776	77.6	0.004	0.037
2441	Manganese	0.0025	0.000	0.42	0.002	0.002	0.18	0.04	0.012	0.054
2441	Nickel	3.9	0.301	25.8	0.105	0.452	56.26	1.38	0.008	0.327
2441	Selenium	4.08	0.315	2.64	0.011	0.362	0.93	0.23	0.390	1.575
2441	Zinc	110	8.503	222	0.903	10.451	172	17.2	0.061	0.608
2441	Napth	19.9	1.538	2.5	0.010	1.720	112	2.9	0.001	0.593
2441	BaP	29.9	2.311	39.6	0.161	2.747		2.5		1.374

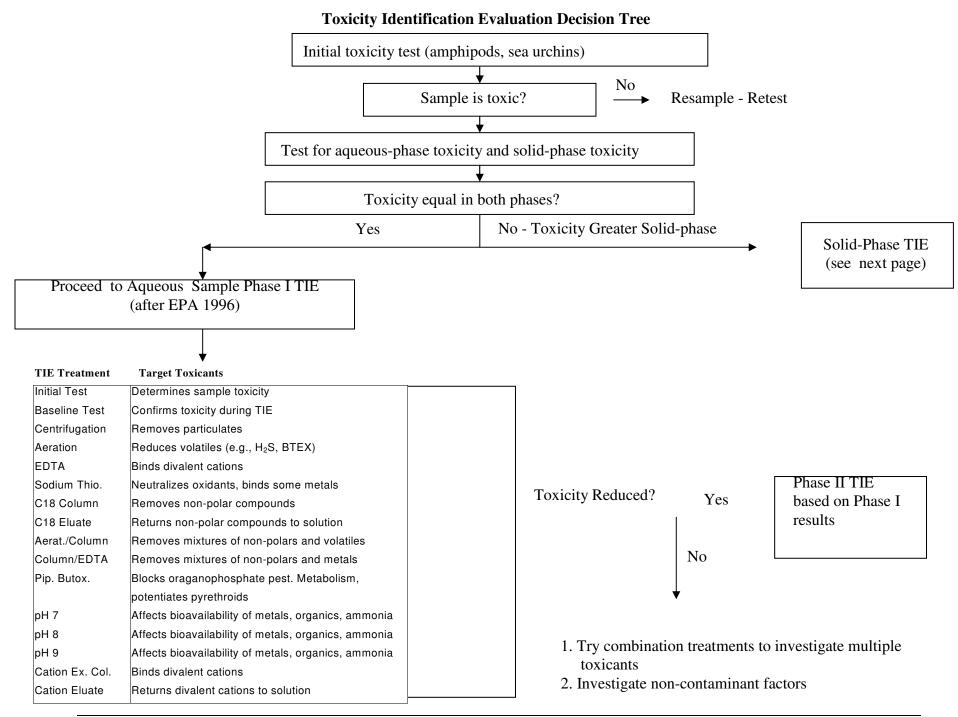
Appendix G. Constituents that were measured in marine sediments for temporal assessment studies in San Diego Bay.

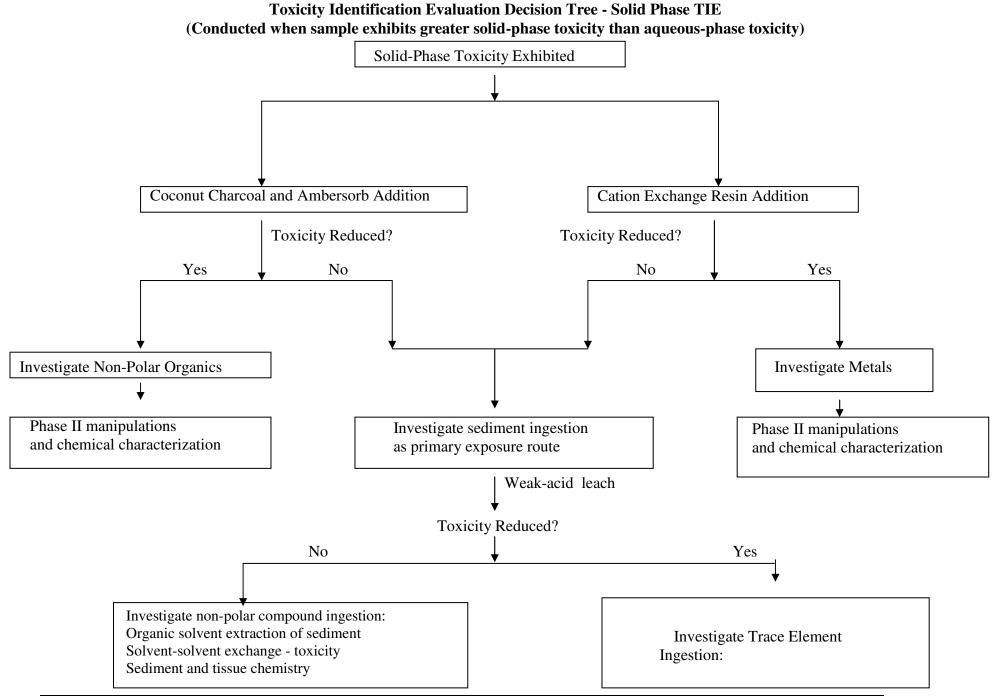
GENERAL	PCB Congeners ^a
	F OD Congeners
CONSTITUENTS	
Sediment grain size	MDL = 0.01-1 (ng/g dry wt.)
Total organic carbon	
Metals	CHORINATED PESTICIDES
MDL = 0.1 (ug/g dry wt.)	MDL = 0.1-2 (ng/g dry wt.)
except Cd, Ag, Hg = 0.02	
Aluminum	4,4'-DDT
Antimony	2,4'-DDT
Arsenic	4,4'-DDD
Barium	2,4'-DDD
Beryllium	4,4'-DDE
Cadmium	2,4'-DDE
Chromium	Dieldrin
Copper	Cis & trans-Chlordane; Oxychlordane
Iron	Cis & trans Nonachlor
Lead	PAHs
Mercury	MDL = 0.7-2.8 (ng/g dry wt.)
Nickel	Acenaphthene
Selenium	Acenaphthylene
Silver	Anthracene
Zinc	Benz[a]anthracene
	Benzo[a]pyrene
	Benzo[b]fluoranthene
	Benzo[e]pyrene
	Benzo[g,h,i]perylene
	Benzo[k]fluoranthene
	Biphenyl
	Chrysene
	Dibenz[a,h]anthracene
	Fluoranthene
	Fluorene
	Indeno(1,2,3-c,d)pyrene
	Naphthalene
	Perylene
	Phenanthrene
	Pyrene
	2,6-Dimethylnaphthalene
	1-Methylnapthalene
	2-Methylnapthalene
	1-Methylphenanthrene
	1,6,7-TrimethyInaphthalene

^aCongeners 18, 28, 37, 44, 49, 52, 66, 70, 74, 77, 81, 87, 99, 101, 105, 110, 114, 118, 119, 123, 126, 128, 138, 149, 151, 153, 156, 157, 158, 167, 168, 169, 170, 177, 180, 183, 187, 189, 194, 201, 206.

Metal	Minimum Detection Limit (ug/g dry wt.)
Aluminum	0.2
Antimony	0.2
Arsenic	0.5
Barium	0.2
Beryllium	0.2
Cadmium	0.025
Chromium	0.01
Copper	0.2
Iron	0.2
Lead	0.2
Mercury	0.3
Nickel	0.0005
Selenium	0.07
Silver	0.025
Zinc	0.1

Appendix H. List of station locations for B Street/Downtown Piers, Downtown Anchorage area, and Switzer Creek study areas and reference sites.


B Street/Downtown Piers							
Station	Longitude	Latitude					
BST01	-117°10.418	32°42.970					
BST04	-117°10.417	32°42.996					
BST07	-117°10.417	32°43.006					


	Downtown Anchorage						
_	Station	Longitude	Latitude				
	DAC02	-117°10.493	32°43.564				
	DAC03	-117°10.545	32°43.603				
	DAC04	-117°10.599	32°43.624				

		Switzer Cree	k	
_	Station	Longitude	Latitude	-
	SWZ01	-117 <i>°</i> 9.482	32°42.124	
	SWZ02	-117 <i>°</i> 9.519	32°42.105	
	SWZ04	-117°9.500	32°42.135	

Reference Stations			
Station	Longitude	Latitude	
2238	-117°7.719	32°37.526	
2243	-117 <i>°</i> 8.558	32°39.869	
2433	-117°12.546	32°43.350	
2441	-117°14.278	32°41.468	
2229	-117°10.562	32°42.537	

Appendix I. Toxicity Ientification Evaluation Procedures

Sediment Quality Assessment Study at the B Street/Broadway Piers, Downtown Anchorage, and Switzer Creek E-2 Phase II Draft Report