Constituents of Emerging Concern
Science Advisory Panel for Recycled Water

Jörg E. Drewes
Technical University of Munich
Panel Chair

Costa Mesa, CA
July 19-21, 2017
Outline

• Approach, assumptions and recommendations of the 2009/2010 Science Advisory Panel

• Advances regarding recycled water CEC monitoring since 2009/2010

• Considerations and tasks for the 2017 Panel
Motivation

• What are appropriate chemicals of emerging concern (CECs) to be monitored, including analytical methods and MDLs?

• What is the known toxicological information for these constituents?

• Would the above lists change based on level of treatment and use? If so, how?

• What are possible indicators that represent a suite of CECs?

• What levels of CECs should trigger enhanced monitoring?
CEC Science Advisory Panel

California Water Recycling Policy

• Develop uniform recommendations for CEC monitoring statewide

• Focus on three reuse practices in which CECs may represent a potential threat to human and aquatic health
 1. Indirect potable reuse via *surface spreading* of recycled water
 2. Indirect potable reuse via *subsurface injection* of recycled water into a potable aquifer
 3. **Urban landscape irrigation** with recycled water
2009 Science Advisory Panel Members

- Dr. Paul Anderson
 - Human Health Toxicologist
 - AMEC

- Dr. Adam Olivieri
 - Risk Assessor
 - EOA, Inc.

- Dr. Nancy Denslow
 - Biochemist
 - University of Florida

- Dr. Daniel Schlenk
 - Environmental Toxicologist
 - University of California-Riverside

- Dr. Jörg Drewes
 - Civil Engineer
 - Colorado School of Mines

- Dr. Shane Snyder
 - Analytical Chemist
 - Total Environmental Solutions, Inc.
CEC Science Advisory Panel

2017 Science Advisory Panel Members

- **Dr. Paul Anderson**
 - Human Health Toxicologist
 - AMEC

- **Dr. Nancy Denslow**
 - Biochemist
 - University of Florida

- **Dr. Jörg Drewes**
 - Civil Engineer
 - Technical University of Munich

- **Dr. Adam Olivieri**
 - Risk Assessor
 - EOA, Inc.

- **Dr. Daniel Schlenk**
 - Environmental Toxicologist
 - University of California-Riverside

- **Dr. Shane Snyder**
 - Analytical Chemist
 - National University of Singapore

- **Dr. Walter Jakubowski**
 - Human Health Microbiologist
 - WaltJay Consulting
Surface Spreading Operation - Conceptual Model

Point of compliance (POC)

Point of exposure (POE)

Diluent:
Stormwater
Surface Water

2° Treatment
3° Treatment

6 months

Diluent
Native groundwater
Subsurface Injection - Conceptual Model

- Membrane Filtration
- Reverse Osmosis
- Advanced Oxidation Process (UV/H₂O₂)

Concentrate

POE

POC

Diluent:
- Surface Water
- Native Groundwater

6 months
Non-potable Reuse: Urban Landscape Irrigation (Title 22)

- **POE Restricted access:**
 - Landscape
 - Freeway/golf course

- **POE Unrestricted access:**
 1. Residential
 2. Golf course
 3. Urban landscape

Diagram:
- Activated Sludge
- Cl₂
- 3° Treatment
- Disinfection
- POC
- POC terrestrial
CEC Science Advisory Panel

CEC Definition (2009)

- Personal care products
- Pharmaceuticals
- Industrial
- Agricultural
- Natural hormones
- Inorganic constituents (boron, chlorate)
- Food additives and constituents (phytoestrogens, caffeine, sweeteners)
- Transformation products
- Nanomaterials
CEC Definition (2017)

- Personal care products
- Pharmaceuticals
- Industrial
- Agricultural
- Natural hormones
- Inorganic constituents (boron, chlorate)
- Food additives and constituents (phytoestrogens, caffeine, sweeteners)
- Transformation products
- Nanomaterials
- Microplastics
- Antibiotic resistance
CEC Science Advisory Panel

Outcomes of the 2009 Panel

• #1: Develop decision making framework
 – A tool to prioritize CECs now and into the future

• #2: Application of framework to recycled water projects in California
 – Preliminary CEC monitoring list (“what” to monitor)

• #3: Monitoring recommendations and interpretation
 – How, where and when to monitor; and how to respond to results

• #4: Future recommended activities
 – Research, support tools and audits to improve & refine the process
#1: Decision Making Framework (2009)

- **Step 1:** Measure CEC concentration in recycled water

- **Step 2:** Determine allowable concentration that is protective of human health (“Monitoring Trigger Level”)

- **Step 3:** Combine Steps 1 and 2 (measured / allowable)
 - If ratio is < 1, no concern
 - If ratio is ≥ 1, add to candidate list

- **Step 4:** Screen candidate CECs for availability of reliable methods
How to prioritize CECs?

- CECs at Large: EPA’s Candidate Contaminant List (CCL3) “Universe of Chemicals”
 - 40 databases: 26,000 compounds
 - Reduced to 7,720 compounds
- Excluded compounds that are already regulated in California
Determining Toxicological Relevance

- Exposure assessment at point of compliance (POC) (=conservative)
- Central: monitoring trigger levels (MTLs)

\[
\text{Monitoring Trigger Level} = \frac{\text{Screening level ADIx60kgxRSC}}{2L/day}
\]
Measured environmental concentrations (MECs)

- Based on California monitoring data for secondary/tertiary treated effluents

- Distribution plots; 90th percentile as MEC

- CCL3 CECs: 7

- Non-CCL3 CECs: 44
CEC Science Advisory Panel

#2: Application of Framework - Suggested short-list of CECs with health relevance

<table>
<thead>
<tr>
<th>Secondary/Tertiary Treated MEC 90th (ng/L)</th>
<th>Initial MTLs</th>
<th>MEC/MTLs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Potable Reuse</td>
<td>Irrigation</td>
</tr>
<tr>
<td>CCl3 CECs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17β-estradiol</td>
<td>8.4</td>
<td>9.0E-01</td>
</tr>
<tr>
<td>NDMA</td>
<td>68</td>
<td>1.0E+01</td>
</tr>
<tr>
<td>Non-CCl3 CECs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caffeine</td>
<td>900</td>
<td>350</td>
</tr>
<tr>
<td>Triclosan</td>
<td>485</td>
<td>350</td>
</tr>
</tbody>
</table>

Initial MTL of **E2** was based on the California Office of Environmental Health Hazard Assessment (OEHHA) cancer slope factor, as opposed to the ADI developed by the World Health Organization (WHO)

The initial MTL for **caffeine** of 0.35 µg/l is the drinking water guideline established by Australia because chemicals for which structural features or likely metabolic pathways either permit no strong presumption of safety, or actually suggest significant toxicity.
#2: Application of Framework - CEC List for Landscape Irrigation (Title 22)

- No CECs identified based on health risk
- Human consumption (incidental) of recycled water in this scenario is very low
- Surrogate measurements are best way to assess Title 22 recycled water quality
What is a proper number of chemicals?

- How to assess whether a process can remove CECs to safe levels?
 - Select chemicals that are toxicologically relevant at low concentrations and monitor removal
 => “health-based indicator” chemical
 - Select chemicals with different physicochemical properties and structures and demonstrate that they can be removed by a particular water treatment process
 => “performance-based indicator” chemical
 => Certain “performance-based indicators” correlate with bulk parameters (“surrogates”), which are much easier to measure

- For both groups, selected indicator chemicals should represent multiple CEC source classes (e.g., pharmaceuticals, personal care products, food additives, hormones)
#2: Application of Framework - Suggested final list of CECs

<table>
<thead>
<tr>
<th>Reuse Practice</th>
<th>Health-based Indicator</th>
<th>MRL (ng/L)</th>
<th>Performance-based Indicator</th>
<th>Expected Removal(^8)</th>
<th>MRL (ng/L)</th>
<th>Surrogate</th>
<th>Method</th>
<th>Expected Removal(^8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater Recharge SAT</td>
<td>17(\beta)-estradiol(^1)</td>
<td>1</td>
<td>(\Delta)gemfibrozil(^5)</td>
<td>>90%</td>
<td>10</td>
<td>(\Delta)ammonia</td>
<td>SM</td>
<td>>90%</td>
</tr>
<tr>
<td></td>
<td>Triclosan(^2)</td>
<td>50</td>
<td>(\Delta)DEET(^6)</td>
<td>>90%</td>
<td>10</td>
<td>(\Delta)nitrate</td>
<td>SM</td>
<td>>30%</td>
</tr>
<tr>
<td></td>
<td>Caffeine(^3)</td>
<td>50</td>
<td>(\Delta)Caffeine(^3)</td>
<td>>90%</td>
<td>50</td>
<td>(\Delta)DOC</td>
<td>SM</td>
<td>>30%</td>
</tr>
<tr>
<td></td>
<td>NDMA(^4)</td>
<td>2</td>
<td>(\Delta)iodpromide(^5)</td>
<td>>90%</td>
<td>50</td>
<td>(\Delta)UVA</td>
<td>SM</td>
<td>>30%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\Delta)Sucralose(^7)</td>
<td><25%</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct Injection</td>
<td>17(\beta)-estradiol(^1)</td>
<td>1</td>
<td>(\Delta)DEET</td>
<td>>90%</td>
<td>10</td>
<td>(\Delta)conductivity</td>
<td>SM</td>
<td>>90%</td>
</tr>
<tr>
<td></td>
<td>Triclosan(^2)</td>
<td>50</td>
<td>(\Delta)Sucralose</td>
<td>>90%</td>
<td>100</td>
<td>(\Delta)DOC</td>
<td>SM</td>
<td>>90%</td>
</tr>
<tr>
<td></td>
<td>Caffeine(^3)</td>
<td>50</td>
<td>(\Delta)NDMA</td>
<td>25-50%</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NDMA(^4)</td>
<td>2</td>
<td>(\Delta)Caffeine</td>
<td>>90%</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landscape Irrigation</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td>Turbidity</td>
<td>SM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C(2) Residual</td>
<td>SM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total Coliform</td>
<td>SM</td>
<td></td>
</tr>
</tbody>
</table>
“Unknown unknowns” (Status 2009)

- Bioanalytical screening tools

- The Panel recommended the use of bioanalytical screening tools to overcome limitations associated with measuring individual chemicals

- However, the Panel also acknowledged that additional research was needed to develop these methods
C18 RP-Liquid Chromatography

Bieber et al. (2017). *Analytical Chemistry*
Definition ‘Polarity’ via LC Columns

Log P vs Log D

-6 -4 -2 0 2 4 6

RPLC (e.g. C18)

Polar mod. RPLC (e.g. polar-embedded C18)

Hydrophilic Interaction Liquid Chr.

Supercritical Fluid Chromatography

Very Polar

Polar

Non Polar

Hydrophilic compounds

Hydrophobic compounds

Bieber et al. (2017). Analytical Chemistry
CEC Science Advisory Panel

RPLC-HILIC/TOF-MS

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Substanz</th>
<th>log D pH 7</th>
<th>Strukturformel</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Guanylurea</td>
<td>-2,64</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Sotalol</td>
<td>-2,47</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Melamin</td>
<td>-1,97</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Gabapentin</td>
<td>-1,27</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Sulfamethoxazol</td>
<td>0,18</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>4-OH Diclofenac</td>
<td>0,89</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Carbamazepine</td>
<td>2,77</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Oxazepam</td>
<td>2,92</td>
<td></td>
</tr>
</tbody>
</table>

Bieber et al. (2017). *Analytical Chemistry*
#3: Monitoring Recommendations - Data Collection

• Panel recommended that all permitted recycled water facilities should perform monitoring
 – Distinguish between plant start-up & mature operations
 – Sample recycled water before it is consumed (“point of compliance”)

• Sampling & instrumental methods that can do the job
 – GC-MS; LC-MS/MS
 – Incorporation of isotope labeled standards

• And the need for rigorous QA/QC
 – Adequate detection or reporting limits
 – Precision and accuracy
 – Participation in round-robin exercises
Conclusions (2010)

- Transparent framework that can assist in identifying suitable CECs for monitoring programs of drinking water and recycled water projects
- Proposed approach is conservative
- Considers toxicological relevance and allows assessment of proper performance of unit processes
- Provides guidance on analytical methods and interpretation of monitoring results
- Recommendations were adopted in California Recycled Water Policy, Amendment A (2013)
Considerations regarding Antimicrobials and Antibiotic Resistance (2009)

- Antimicrobials were considered by the Panel.
- Since occurrence of antimicrobials in recycled water is expected to be very low, they would have an insignificant impact on any risk associated with reuse practices of interest.
- Antibiotic resistant bacteria were NOT considered by the Panel since microorganisms were outside the Panel’s charge.
- However, the Panel acknowledged that antibiotic resistant genes have been reported in groundwater, drinking water and wastewater and therefore represent a national problem that requires further study. It is the view of the Panel that the specific reuse practices of interest here do not cause the problem nor add to it at the present time.
Antibiotic Resistance (2017)

• Risk of antibiotic resistance transfer through water reuse practices (like agricultural irrigation) has been documented

• Risk levels associated with ARBs/ARGs in water have not been determined yet

• What are suitable indicator for human sources of antibiotic resistance (e.g., cefotaxime resistant *E. coli*)?

• Need for standardized methods for their quantification
Recommended Future Activities (2010)

- Improving the database for CEC monitoring information
 - Conduct comprehensive review of peer-reviewed literature and occurrence studies *outside California* to populate a recycled water database for CECs
 - Use that database as a basis to execute the selection framework

- Development of bioanalytical screening techniques
 - Develop techniques that can address “unknown” chemicals potentially present in recycled water

- Programmatic support to manage the process
 - Develop a process to manage data & apply framework
 - Perform independent audit of Panel’s initial recommendations
 - Revisit monitoring recommendations every 3-5 years
Conclusions (2017)

• Suitability and practicability of framework to identify suitable CECs for monitoring programs for recycled water will be critically reviewed

• Lessons learned from monitoring data collected by utilities

• Consider advances in environmental analytical chemistry and bioanalytical methods

• Consider advances in screening methods to assess toxicological relevance

• Recommendations of CEC monitoring for a broader list of reuse practices (approved under Title 22)